
The Use of Design Thinking for a Human-centered Requirements
Engineering Approach

DISSERTATION
of the University of St.Gallen,
School of Management,

Economics, Law, Social Sciences
and International Affairs
to obtain the title of

Doctor of Philosophy in Management

submitted by

Jennifer Hehn

from

Germany

Approved on the application of

Prof. Dr. Walter Brenner

and

Prof. Dr. Lutz Kolbe

Dissertation no. 4992

Baier Digitaldruck GmbH, Heidelberg 2020

The University of St.Gallen, School of Management, Economics, Law, Social Sciences
and International Affairs hereby consents to the printing of the present dissertation,
without hereby expressing any opinion on the views herein expressed.

St.Gallen, May 18, 2020

The President:

Prof. Dr. Bernhard Ehrenzeller

I

Acknowledgements
I would like to thank all the people who supported me in the last few years in making
this thesis possible. I owe them my sincere acknowledgement.

First of all, I want to thank my supervisor Prof. Dr. Walter Brenner for giving me the
opportunity to write this dissertation and for providing continuous guidance. His
assistance, his expertise, and, most importantly, his support during the past years have
been invaluable for the dissertation. I wholeheartedly thank my co-supervisor Prof. Dr.
Lutz Kolbe for his advice and valuable feedback on previous versions of this thesis.

Furthermore, I thank all my colleagues of the DT@HSG Teaching Team and fellow
PhD students, who I met over the past years. Thank you for all the fruitful discussions,
for your insights, and for the friendship. In particular, I want to thank Falk Uebernickel.
Without his advice I would have not even considered to start this dissertation and who
has been a mentor ever since. I am very grateful for his confidence in me and for his
continuous guidance. I wish to acknowledge the administrative and personal support of
Barbara Brenner who always had an open ear for me.

A very special mention goes to my friend Ina for continuously proofreading ever since
I started writing my first papers back in my first days at university. Thank you for
sharing your own experiences, for motivating me, and for just being a great friend.

I am deeply grateful to my family for their continuous encouragement, even though I
think they never really understood what my dissertation topic was about. I could have
not been more fortunate to have “Oma und Opa” by my side. In so many ways I owe
my work to them. Finally, I want to thank my parents. They were, and are, always
willing to support and encourage me in any way possible.

Over and above all, Tobias: I am deeply grateful to you for unconditionally standing by
my side. It was his love and his patience that helped me get through rough patches,
always supported me, and provided me with motivation and joy. I feel extremely lucky
to have you by my side.

St.Gallen, September 2020

Jennifer Hehn

II

III

Table of Contents

Acknowledgements .. I

Table of Contents .. III

List of Figures ... VII

List of Tables .. IX

List of Pictures .. XI

List of Abbreviations ... XIII

Abstract ... XV

Zusammenfassung ... XVII

1 Introduction .. 1
1.1 Motivation .. 1
1.2 Research Questions and Research Methods ... 3
1.3 Structure of the Dissertation ... 8
1.4 Overview of Publications ... 11

2 Conceptual Background and Related Work .. 13
2.1 Socio-Technical Systems Theory ... 13
2.2 Requirements Engineering ... 15

2.2.1 Requirements and their Classification ... 15
2.2.2 Key Activities in Requirements Engineering 16
2.2.3 Artifact-orientation in Requirements Engineering 17
2.2.4 Requirements Engineering in Agile Development Settings 18

2.3 Design Thinking ... 20
2.3.1 Design Thinking Process Model .. 21
2.3.2 Design Thinking Toolbox .. 23
2.3.3 Design Thinking Principles .. 23

2.4 Related Work ... 24

3 Benefits of Eliciting Requirements with Design Thinking 27
3.1 Challenges in Requirements Elicitation ... 27
3.2 Research Methodology ... 29

3.2.1 Data collection ... 30
3.2.2 Data analysis .. 31

3.3 Key Findings .. 31
3.3.1 Process-related Findings .. 32

IV

3.3.2 Cognition-related Findings .. 34
3.3.3 Quality-related Findings .. 36

3.4 Discussion .. 38
3.4.1 Implications for Theory ... 39
3.4.2 Implications for Practice .. 40
3.4.3 Limitations and Outlook .. 40

3.5 Conclusion of the Chapter .. 41

4 Challenges when Specifying Requirements with Design Thinking 43
4.1 The Need to study Challenges in Design Thinking 43
4.2 Research Methodology ... 44

4.2.1 Data Collection .. 45
4.2.2 Data Analysis ... 45

4.3 Key Challenges .. 47
4.3.1 Output-Related Challenges .. 48
4.3.2 Process-Related Challenges ... 51

4.4 Discussion .. 52
4.4.1 Implications for Theory ... 53
4.4.2 Implications for Practice .. 53
4.4.3 Limitations and Outlook .. 54

4.5 Conclusion of Chapter .. 55

5 A Combined Artifact-based Reference Model ... 57
5.1 The Need for an Artifact-based Reference Model 57
5.2 Research Methodology ... 59

5.2.1 Research Design ... 59
5.2.2 Identification of RE Artifacts ... 61
5.2.3 Identification of DT Artifacts .. 63
5.2.4 Core Construction and Validation .. 70

5.3 The Combined Artifact-based Reference Model 73
5.3.1 Overall Structure .. 74
5.3.2 Distribution of Artifacts ... 76
5.3.3 Description of Artifacts .. 78

5.4 Discussion .. 131
5.4.1 Implications for Theory ... 132
5.4.2 Implications for Practice .. 133
5.4.3 Limitations and Outlook .. 135

5.5 Conclusion of Chapter .. 136

V

6 Operationalization Strategies .. 137
6.1 Customization .. 137
6.2 Upfront Design Thinking ... 138
6.3 Infused Design Thinking .. 140
6.4 Continuous Design Thinking ... 142
6.5 Discussion .. 143

6.5.1 Implications for Theory ... 145
6.5.2 Implications for Practice .. 145
6.5.3 Limitations and Outlook .. 146

6.6 Conclusion of Chapter .. 146

7 Continuous Design Thinking: A Longitudinal Case Study 149
7.1 Motivation .. 149
7.2 Research Methodology ... 150

7.2.1 Case Selection .. 150
7.2.2 Data Collection .. 151
7.2.3 Data Analysis ... 152

7.3 Results .. 152
7.3.1 How is Design Thinking used to support Requirements

Engineering? .. 152
7.3.2 How does Design Thinking address Requirements Engineering

challenges? ... 156
7.4 Discussion .. 157

7.4.1 Implications for Theory ... 160
7.4.2 Implications for Practice .. 161
7.4.3 Limitations and Outlook .. 161

7.5 Conclusion of Chapter .. 162

8 Synthesis of Findings .. 163
8.1 Leveraging the Best of Both Worlds .. 163
8.2 Complementary Artifacts for a Comprehensive Blueprint 164
8.3 Three Ways to Operationalize a Combination ... 165

9 Theoretical Contributions ... 167
9.1 Contributing to Artifact-based Requirements Engineering 167
9.2 Providing Prescriptive Knowledge for Problem Solving 168
9.3 Linking Design Thinking to IS and Software Engineering 169

10 Practical Implications .. 171
10.1 Avoiding Common Challenges in Requirements Elicitation 171

VI

10.2 “Doing the Right Things Right” .. 171
10.3 Improving the Effectiveness of Projects .. 173

11 Limitations and Avenues for Future Research .. 175
11.1 Focus on Project Level ... 175
11.2 Boundary Conditions of Innovative Software-intensive Systems 176
11.3 Generalizability of Findings and Quantification 177

12 Conclusion ... 179

References .. I

Curriculum Vitae .. XV

VII

List of Figures

Figure 1: Structure of the Dissertation .. 10

Figure 2: Design Thinking as Process, Toolbox, and Mindset 21

Figure 3: Design Thinking Macro Process ... 22

Figure 4: Convergence of Multiple Sources of Evidence ... 47

Figure 5: Evolution from Intermediate Prototypes to a Final Prototype 50

Figure 6: Development Steps for the Combined Artifact-based Reference Model 59

Figure 7: AMDiRE Model .. 61

Figure 8: Overview of Artifact Types, Roles, and Milestones in AMDiRE 62

Figure 9: Development Steps of DT-based Artifact Model .. 63

Figure 10: Version 1 of the Artifact-based Design Thinking Model 66

Figure 11: Version 2 of the Artifact-based Design Thinking Model 67

Figure 12: Final Artifact-based Design Thinking Model ... 69

Figure 13: Construction and Evaluation of Combined Artifact Model 70

Figure 14: Initial Version of Combined Artifact-based Reference Model 71

Figure 15: Final Combined Artifact-based Reference Model 74

Figure 16: Overall Distribution of Artifacts ... 76

Figure 17: Example of a Design Challenge .. 80

Figure 18: Connecting Constraints and Capabilities .. 81

Figure 19: Example of a Business Case Document .. 82

Figure 20: Example of a Stakeholder Map ... 84

Figure 21: Example of Objectives and Goals ... 86

Figure 22: Example of a Domain Model .. 87

Figure 23: Example of an Assumptions Document .. 89

Figure 24: Example of a Glossary Structure ... 90

Figure 25: Example of a Secondary Research Report Structure 92

Figure 26: Example of a Persona Template .. 96

Figure 27: Example of a Customer Journey ... 97

Figure 28: Example of an Opportunity Area .. 100

Figure 29: Example of a Medium-fidelity Prototype .. 106

Figure 30: Example of a High-fidelity Prototype ... 109

VIII

Figure 31: Examples of Usability-oriented Test Results .. 111

Figure 32: Example of a System Vision in RE ... 112

Figure 33: Example of a System Vision in DT ... 113

Figure 34: Example of a Usage Model ... 114

Figure 35: Example of a Service Model in DT ... 116

Figure 36: Example of a Service Model in RE ... 117

Figure 37: Example of Process Requirements .. 118

Figure 38: Example of a Functional Hierarchy .. 119

Figure 39: Example of a Data Model in the Requirements Specification 120

Figure 40: Example of Deployment Requirements .. 121

Figure 41: Example of a Risk List .. 122

Figure 42: Example of System Constraints .. 123

Figure 43: Example of Quality Requirements .. 124

Figure 44: Example of a Glossary Structure ... 125

Figure 45: Example of an Architecture Overview .. 126

Figure 46: Example of a Function Model ... 127

Figure 47: Example of a Data Model in the System Specification 128

Figure 48: Example of a Component Model .. 129

Figure 49: Example of a Behavior Model .. 130

Figure 50: Example of a Glossary Structure ... 131

Figure 51: Upfront, Infused, and Continuous Design Thinking Strategies 138

Figure 52: Evolution from Process, via Toolbox, to Mindset 159

IX

List of Tables

Table 1: Overview of Publications ... 11

Table 2: Challenges in Agile Requirements Engineering ... 19

Table 3: Challenges in Requirements Elicitation ... 28

Table 4: Case Details .. 30

Table 5: Overview of Findings ... 32

Table 6: Overview Cases .. 45

Table 7: Sources of Evidence ... 46

Table 8: Overview of Elements in the Artifact Model ... 75

Table 9: Layer-related Distribution of Artifacts ... 77

Table 10: Benefits and Challenges of each Operationalization Strategy 144

Table 11: Project Falcon: Timeline and Goals per Stage ... 153

Table 12: Summary of Phases 1-3 .. 158

X

XI

List of Pictures

Picture 1: Wizard of Oz Prototype .. 35

Picture 2: Low-resolution Digital Prototype ... 35

Picture 3: Paper Wireframe ... 35

Picture 4: Customer Journey ... 35

Picture 5: Empathy Suit of an MS Patient I .. 37

Picture 6: Empathy Suit of an MS Patient II .. 37

Picture 7: Example of a Design Space Map ... 88

Picture 9: Examples of Transcribed Field Studies .. 93

Picture 10: Example of Thematic Clusters ... 94

Picture 12: Example of Insights .. 98

Picture 13: Example of a Solution Idea .. 101

Picture 14: Example of a Wizard of Oz Prototype ... 103

Picture 15: Example of a Paper Wireframe Prototype .. 104

Picture 16: Example of a Feedback Capture Grid .. 105

Picture 17: Example of Feature-oriented Test Results ... 108

XII

XIII

List of Abbreviations

AMDiRE Artifact Model for Domain-independent Requirements Engineering

ATM Automatic Teller Machine

BPMN Business Process Model and Notation

DT Design Thinking

e.g. exempli gratia

et al. et alii

GI Gesellschaft für Informatik

i.e. id est

IEEE Institute of Electrical and Electronics Engineers

IREB International Requirements Engineering Board

IS Information Systems

IT Information Technology

KAOS Keep All Objectives Satisfied

RE Requirements Engineering

RQ Research Question

SoE Sources of Evidence

UML Unified Modeling Language

XIV

XV

Abstract

Effective Requirements Engineering is one of the most crucial activities in software-
intensive development projects. The human-centered approach of Design Thinking is
considered a powerful way to complement Requirements Engineering activities when
designing innovative systems. While in recent years research has already made great
strides to indicate potential benefits of bringing Design Thinking and Requirements
Engineering together, it has remained mostly unclear how to actually realize a
combination of the two. Hence, the objective of this dissertation is to identify usage
schemes of Design Thinking in order to achieve a (more) human-centered Requirements
Engineering approach. To accomplish this goal, the dissertation is organized into three
research questions. Based on multiple-case studies the first research question aims to
understand the value of using Design Thinking for two main activities of Requirements
Engineering, i.e. requirements elicitation and specification. The second research
question combines and compares Design Thinking and Requirements Engineering
artifacts for designing innovative software-intensive systems. Based on an exploratory
case study the third research question derives three concrete operationalization strategies
on how to use Design Thinking for Requirements Engineering depending on the specific
project context. Overall, this dissertation provides a number of important theoretical
contributions. First, it offers empirically sound evidence beyond current research
findings on how to address common challenges in Requirements Engineering with
Design Thinking. Second, it contributes to ongoing research on artifact-oriented
Requirements Engineering with an evaluated reference model for the design of
innovative and human-centered software-intensive systems. Third, it offers prescriptive
knowledge on how to use Design Thinking for Requirements Engineering. In this
context the differentiated view on Design Thinking as process, toolbox, and mindset is
substantiated and expanded. For practitioners the dissertation offers recommendations
on how to improve the effectiveness of Requirements Engineering with the help of
Design Thinking depending on the specific project context and objective. Overall, the
results of this dissertation provide a solid foundation for many researchers and
practitioners because they give a better understanding of what Design Thinking
represents in the context of Requirements Engineering and how both approaches can be
combined in innovative software-intensive development projects.

XVI

XVII

Zusammenfassung

Effektives Requirements Engineering ist eine der wichtigsten Aktivitäten bei
softwareintensiven Entwicklungsprojekten. Der menschen-zentrierte Ansatz des Design
Thinking kann dabei die Aktivitäten des Requirements Engineering wirkunsgvoll
ergänzen, vor allem bei der Entwicklung von innovativen Systemen. Während
Forschung und Praxis in vergangenen Jahren bereits Hinweise für solche gemeinsame
Synergien aufgezeigt haben, bleibt der Einsatz von Design Thinking vielschichtig und
(noch) umstritten. Weitestgehend ist noch unklar, wie genau eine Kombination beider
Ansätze aussehen kann. Ziel dieser Dissertation ist es daher, ein besseres Verständnis
zu schaffen, wie Design Thinking eingesetzt werden kann, um ein mensch-zentriertes
Requirements Engineering zu erreichen. Dazu ist die Dissertation in drei Teile
gegliedert. Basierend auf empirischen Fallstudien analysiert die erste Forschungsfrage
den Nutzen von Design Thinking für zwei Hauptaktivitäten des Requirements
Engineering, nämlich, die Ermittlung und Spezifikation von Anforderungen. Die zweite
Forschungsfrage kombiniert und vergleicht die Artefakte, die aus der Anwendung von
Design Thinking und Requirements Engineering im Kontext innovativer
softwareintensiver Systeme entstehen. Basierend auf einer explorativen Fallstudie leitet
die dritte Forschungsfrage drei Handlungsstrategien ab, die Design Thinking und
Requirements Engineering je nach Projektkontext unterschiedlich kombinieren. Die
Dissertation folgende wichtige theoretische Beiträge. Erstens bietet sie, über aktuelle
Forschungsergebnisse hinaus, empirisch fundierte Belege und gibt Aufschluss darüber,
wie allgemeine Herausforderungen im Requirements Engineering mit Design Thinking
angegangen werden können. Zweitens trägt sie mit einem evaluierten Referenzmodell
für innovative softwareintensive Systeme zur Forschung des artefakt-orientiertem
Requirements Engineering bei. Drittens vertieft sie das Gestaltungswissen zur
Verwendung von Design Thinking für das Requirements Engineering. In diesem
Zusammenhang wird die differenzierte Sicht auf Design Thinking als Prozess, Toolbox
und Denkweise konkretisiert und erweitert. Für Praktiker bietet die Dissertation
konkrete Empfehlungen, wie die Effektivität von Requirements Engineering mit Hilfe
von Design Thinking, abhängig von Projektkontext und -ziel, gesteigert werden kann.
Insgesamt vermitteln die Ergebnisse dieser Dissertation ein besseres Verständnis dafür,
was die Anwendung von Design Thinking im Kontext von Requirements Engineering
bedeutet und wie beide Ansätze in innovativen softwareintensiven
Entwicklungsprojekten kombiniert werden können.

XVIII

1

1 Introduction

1.1 Motivation

A successful information system (IS) anchors in a comprehensive understanding of its
users’ needs and requirements (Maguire and Bevan 2002). “Getting the requirements
right” has always been a desired objective in Requirements Engineering activities and
is naturally seen as one of the most significant activities in development projects (Broy
2006; Roberston and Robertson 2013). However, many companies still struggle in this
complex endeavor. One of the main reasons is that a lot of factors are vague at the
beginning of a project, which makes the task inherently complex and volatile. A survey
of IT software projects revealed that 33% of the reasons for project failures originate
from insufficient Requirements Engineering (Emam and Koru 2008; Méndez Fernández
and Wagner 2014). Further studies have shown that requirements errors may represent
40% of the total project costs; when they are found late in the development process,
their correction can make up to 200 times more than when correcting them during the
early stages (Venkatesh Sharma and Kumar 2013). Recent research has summarized a
variety of challenges in existing Requirements Engineering techniques (Méndez
Fernández and Wagner 2014); in particular, actual user needs are disregarded,
requirements are invented, are solely based on the requirements engineer’s intuition, or
they lack creativity (Inayat et al. 2015). Accordingly, the Requirements Engineering
community calls to improve the Requirements Engineering process for the development
of software-intensive systems (Hickey and Davis 2004; Méndez Fernández and Wagner
2014).

With its growing relevance in agile software development, Design Thinking has gained
recognition as a creative problem-solving method, particularly when the real-world
problem is complex or “wicked” (Buchanan 1992). Some researchers consider Design
Thinking as a “modern form of requirements engineering” (Beyhl and Giese 2016,
p.288) addressing some of the aforementioned challenges in current Requirements
Engineering practices. Design Thinking leverages interdisciplinary teamwork, a
structured approach of ethnographic methods, and fast and simple prototyping cycles to
produce innovative solutions in early product, service, and system development
processes (Brown 2008; Kolko 2015). This rather diverging nature of problem-solving

2

is notably different from the more converging ways of Requirements Engineering
practices in most software-intensive projects (Harte et al. 2017).

The multi-facetted opportunities of applying Design Thinking for Requirements
Engineering are highlighted by several authors. Vetterli et al. (2013) was one of the first
who suggested to bring Design Thinking and Requirements Engineering together for
developing software applications. Academics with a content-focused view (what value
does Design Thinking add) have recognized its value in terms of product quality, user
acceptance, and process speed, mostly in specific domains like learning environments
(Soledade et al. 2013), social innovation (Newman et al. 2015), or health care (Harte et
al. 2017). Academics with a process-focused view (how does Design Thinking add
value), examine usage schemes of Design Thinking with software engineering
techniques and agile development toolkits. For instance, authors have investigated the
integration of Design Thinking and Scrum (e.g. Häger et al. 2015; Przybilla et al. 2018)
and found evidence for higher innovation potential stemming from a combination of
both approaches.

Although mainly practice-oriented literature suggests potential benefits of combining
Design Thinking and Requirements Engineering, knowledge on how this is actually
operationalized and which concrete challenges and benefits to expect still remains
unclear (Beyhl and Giese 2016; Vetterli et al. 2013). While Requirements Engineering
is a mature discipline with a long research and practice history, there is still limited
knowledge about Design Thinking as Yoo (2017, p.v) emphasizes in his call to “advance
the intellectual foundation of Design Thinking” for IS research. Little is known, in
particular, about the specific impact on Requirements Engineering. A deeper
understanding of Design Thinking would enable both communities, Requirements
Engineering and Design Thinking, to evaluate its application purpose and potential for
discovering and specifying requirements more thoroughly. My research interest arises
from the call for a more effective Requirements Engineering and Design Thinking as a
promising ‘cure’.

3

This dissertation aims to address this call. The objective of the dissertation is to define

usage schemes of Design Thinking for a more effective Requirements Engineering in

the context of innovative software-intensive development projects. In particular, the

objectives are (1) to understand the benefits and challenges of using Design Thinking

to elicit and specify requirements, (2) to create an artifact model, integrating both

approaches, and (3) to derive concrete operationalization strategies for Design

Thinking and Requirements Engineering.

The context for this dissertation is provided by innovative software-intensive
development projects as the unit of analysis. A software-intensive system is defined as
“any system where software contributes essential influences on the design, construction,
deployment, and evolution of the system as a whole" (IEEE1471-2000). In addition,
typical software-intensive systems consist of software as well as of hardware (Braun et
a. 2014, p. 22). To do a proper integration of Design Thinking and Requirements
Engineering justice, this dissertation concentrates on projects with an innovative
character.

An innovative software-intensive development project is characterized by an unknown
project goal and system vision. It has been regularly mentioned that the main purpose
of Design Thinking is to solve design problems, especially “wicked” ones (Buchanan
1992), and create (disruptive) innovations that meet people’s needs in new ways (e.g.
Badke-Schaub et al. 2011; Leavy 2010). Researchers confirm this and recognize the
application of Design Thinking particularly in the early stages of software-intensive
development projects, when uncertainty about needs is especially high (e.g. Vetterli et
al. 2013; Kolko 2015). This implies that during innovative software-intensive
development projects design choices are to be made by the project team and project
manager.

1.2 Research Questions and Research Methods

Derived from the goal and context of the dissertation, the following three primary
research questions with separate research methods are followed.

4

RQ 1 What are benefits and challenges of using Design Thinking for the elicitation
and specification of requirements?

RQ 2 How does an integrated model of Design Thinking and Requirements
Engineering look like?

RQ 3 What are operationalization strategies for combining Design Thinking and
Requirements Engineering?

Each research question includes one or several studies with substantial standalone
contributions. The first research question uses a qualitative approach to describe the
benefits and challenges of using Design Thinking to elicit and specify requirements.
Building upon these findings, the second research question aims to create a model
integrating Design Thinking and Requirements Engineering based on an artifact-
oriented approach. Finally, the third research question integrates the previous findings
and aims to derive three ways of operationalizing Design Thinking in the context of
Requirements Engineering. The following paragraphs describe each research question
and the methodological approach used in the studies in more detail.

RQ 1 What are benefits and challenges of using Design Thinking for the elicitation
and specification of requirements?

The first research question aims to understand the benefits and challenges of using
Design Thinking for eliciting and specifying requirements. On the one side, practitioners
in Requirements Engineering have voiced a plethora of elicitation challenges that might
be “cured” by using Design Thinking (Méndez Fernández and Wagner 2014). On the
other side, prior literature has mentioned challenges in Design Thinking projects,
especially in the context of requirements specification and the transition to software
development processes (Beyhl and Giese 2016; Häger et al. 2015). Here, established
practices from Requirements Engineering are considered helpful. As literature is scarce,
an empirical approach is taken to provide robust evidence for examining this RQ with
two separate multiple-case studies (Yin 2011). Both studies stem from a 10-months
university course, where teams approached a problem statement provided by a corporate
sponsor and guided by the Design Thinking process. To support validity for the findings,
empirical data from multiple sources of evidence are collected (Eisenhardt 1989).

5

The first study presents seven key findings from employing Design Thinking for
requirements elicitation practices. Potential benefits of using Design Thinking address
elicitation challenges regarding (1) process guidance, (2) stakeholder communication,
and (3) requirements quality. First, the process of eliciting requirements, which
researchers have criticized to be insufficiently guided (Browne and Rogich 2001), can
be steered positively and creatively by the Design Thinking process model, which might
even compensate for a lack of professional experience of the analyst. Second,
stakeholder communication is considered one of the main challenges in eliciting
requirements (Zowghi and Coulin 2005) and can be supported when using low-
resolution prototypes to expose tacit knowledge of relevant stakeholders. Third, quality
issues can be partially addressed by using Design Thinking. Although Design Thinking
also faces challenges in terms of traceability, correctness, consistency, and
completeness, it derives a comprehensive set of requirements from a user point of view.
The continuous integration of stakeholders throughout the process supports the
understanding of changing requirements and has potential to resolve the problem of
invented requirements that are not based on real user needs. The findings provide an
advanced understanding of the benefits of using Design Thinking for Requirements
elicitation practices and give concrete advice for practitioners.

The second study is concerned with presenting six challenges for specifying
requirements with Design Thinking. The findings elaborate on three challenges that
relate to the output of Design Thinking: (1) User requirements are emphasized, while
software and system requirements are neglected, (2) critical artifacts are insufficiently
traceable within Design Thinking (i.e. needs, insights, learnings, requirements), and (3)
documentation shortcomings limit the use of project results in later implementation
stages. In addition, three challenges can be attributed to the Design Thinking process:
(4) Project members lack motivation to specify requirements systematically, (5) they
perceive resource constraints to be hindering, and (6) they miss adequate tool support
for documenting and structuring (implicit) team knowledge. The findings of this article
complement findings from the first study to provide a holistic picture of benefits and
challenges of applying Design Thinking for two core activities in Requirements
Engineering, i.e. to elicit and specify requirements.

6

RQ 2 How does an integrated model of Design Thinking and Requirements
Engineering look like?

The second research question aims at designing a model that integrates Design Thinking
and Requirements Engineering on an artifact-level in order to better understand
combination possibilities. An artifact-oriented view specifies what has to be done while
neglecting the particularities of processes and methods which are barely comparable
across both approaches and projects (Méndez Fernández et al. 2014). For Requirements
Engineering, an existing and evaluated artifact model is used (Méndez Fernández and
Penzenstadler 2014a). For Design Thinking, the most relevant artifacts have been
developed based on literature, cases from academia-industry collaborations (as
evaluated in RQ1), and based on the results of a Delphi study.

The development of a combined artifact-based reference model of Design Thinking and
Requirements Engineering is inspired by the design science research approach (Hevner
et al. 2004; Peffers et al. 2007). The emergent model has been continuously tested with
Design Thinking and Requirements Engineering experts and practitioners to adapt the
relevant artifacts and their interdependencies for a comprehensive overview. The
resulting model holds 40 artifacts; 16 of these are exclusively assigned to Requirements
Engineering, 16 to Design Thinking, and 8 to both (sometimes with differing purpose).
It establishes a blueprint of relevant artifacts, i.e. the work results, contents, and
dependencies of each approach. The artifact model helps to deduct relevant
operationalization strategies as established in RQ 3.

RQ 3 What are operationalization strategies for combining Design Thinking and
Requirements Engineering?

The third research question investigates three operationalization strategies for using
Design Thinking and Requirements Engineering. They are specified and evaluated in
real-world project settings and based on exploratory (longitudinal) case study research
(Yin 2011). For each strategy, benefits and challenges are reflected. First, upfront
Design Thinking is applied to produce Design Thinking artifacts as a basis for
performing Requirements Engineering activities. Design Thinking takes the form of a
pre-project to identify relevant needs and produce a product vision with key features and
functionalities. This approach is particularly suitable when the problem and solution

7

space is unclear. Second, infused Design Thinking utilizes selected methods, and, thus,
selected artifacts from the Design Thinking toolbox to integrate them into existing
Requirements Engineering efforts. This approach is particularly suitable when
commonly used Requirements Engineering practices fail to address specific challenges
like lack of creativity. Third, continuous Design Thinking integrates activities and
artifacts of Design Thinking continuously into existing Requirements Engineering
processes with the goal of a seamless transition of artifacts. This approach is often
associated with a specific project role and suitable for addressing problems with high
uncertainty. The definition of three integration strategies with their benefits and
challenges enhances the understanding on how to integrate Design Thinking and
Requirements Engineering and gives guidance on when to use which approach
depending on the specific project situation.

The third approach is evaluated with rich qualitative data from a longitudinal study in a
real-life setting. It illustrates how the continuous Design Thinking approach uses Design
Thinking as a process, toolbox, and mindset in combination with Requirements
Engineering practices. The findings reveal a morphing nature of Design Thinking from
idea formulation to market-ready implementation in an agile project setting. Design
Thinking evolves from (1) a pre-project and a process to understand the problem and
define a product vision (upfront Design Thinking), via (2) the usage of Design Thinking
as a toolbox to complement Requirements Engineering practices (infused Design
Thinking), to (3) a manifestation of a human-centered mindset among the entire project
team pushing a continuous product delivery (continuous Design Thinking). The findings
suggest a human-centered Requirements Engineering approach including principles,
methods, and artifacts from both Design Thinking and Requirements Engineering,
allowing for a back and forth between the two concepts. In other words: such an
integration allows to give Requirements Engineering an arm into “wicked” problems
and Design Thinking a seamless transition to subsequent software engineering and
quality assurance activities.

8

1.3 Structure of the Dissertation

To address the previously defined research questions, the remainder of this dissertation
comprises 12 major chapters. Figure 1 presents an overview of the structure of the
dissertation and the content of each chapter.

Chapter 2 provides the conceptual background of the dissertation for all subsequent
chapters. First, in section 2.1, socio-technical theory is introduced as a theoretical
foundation for the context of the dissertation. Sections 2.2 and 2.3 outline the key
characteristics of Requirements Engineering and Design Thinking. Both sections review
elements and methods considered essential for the respective approach. Finally, in
section 2.4, a brief discussion of related work in the fields of Design Thinking and
Requirements Engineering provides further insights into the current research on the
topic.

Chapters 3 and 4 build upon this conceptual background and addresses the first research
question of the dissertation. The chapters are based on the results of two multiple-case
studies. Chapter 3 examines the usage of Design Thinking for requirements elicitation
by addressing known elicitation challenges. Chapter 4 focuses on the challenges of
specifying requirements through Design Thinking and how Requirements Engineering
might help to address these challenges.

Chapter 5 addresses the second research question of the dissertation. It investigates how
Design Thinking and Requirements Engineering can be combined depending on their
produced artifacts. The chapter reports the results of a design science research inspired
study that was conducted based on the experience of academia-industry collaborations.
It describes the layers and artifacts in the combined model that can shape a human-
centered Requirements Engineering approach.

Chapters 6 and 7 address the third research question and establish operationalization
strategies to combine Design Thinking and Requirements Engineering based on the
previous findings. Chapter 6 examines three operationalization strategies: (1) upfront,
(2) infused, and (3) continuous Design Thinking and their respective challenges and
benefits. Chapter 7 extends these findings and strengthens the continuous Design
Thinking approach with the results of a longitudinal case study.

9

Chapter 8 consolidates the results of the previous chapters and synthesizes the main
findings of the dissertation. The goal is to present an overall discussion of the results of
chapters 3 to 7 with regard to the three research questions.

Chapters 9 and 10 outline the theoretical and practical contributions of the dissertation.
Chapter 9 presents the contributions for research. Chapter 10 illustrates the practical
implications. They show how the findings may be used to improve the elicitation and
specification of requirements for innovative software-intensive development projects.

Chapter 11 acknowledges the limitations of the dissertation and emphasizes potential
avenues for future research to extend the findings of the dissertation. It provides an
outlook and potential research agenda for studies that intend to delve deeper into using
Design Thinking for Requirements Engineering.

Chapter 12 concludes the dissertation and offers a summary.

10

Figure 1: Structure of the Dissertation

(Source: own illustration)

1 Motivation Research Questions & Methods Structure of the Dissertation

Introduction

2 Socio-Technical
Theory

Requirements
Engineering

Design
Thinking

Related
Work

Conceptual Background & Related Work

3
Multiple-Case Study (Data Collection & Analysis)

Benefits of Eliciting Requirements with Design Thinking (Research Question 1)

Process-related Learnings Cognition-related Learnings Quality-related Learnings

Design Thinking as Process Design Thinking as Toolbox Design Thinking as Mindset

7
Longitudinal Case Study (Data Collection & Analysis)

Continuous Design Thinking (Research Question 3)

9-
10

Benefits and Challenges (RQ1)
Research & Practice

Artifact Model (RQ2)
Research & Practice

Operationalization Strategies (RQ3)
Research & Practice

Theoretical and Practical Contributions

12 Conclusion

11 Limitations & Avenues for Future Research

4
Multiple-Case Study (Data Collection & Analysis)

Challenges of Specifying Requirements with Design Thinking (Research Question 1)

Output-related Challenges Process-related Challenges

6

Operationalization Strategies for Design Thinking and Requirements Engineering (Research Question 3)

Upfront Design Thinking Infused Design Thinking Continuous Design Thinking

Research Design (Context and Development)

5
Research Design (Context and Development)

An Artifact-based Reference Model for Design Thinking and Requirements Engineering (Research Question 2)

Combined Artifact-based Reference Model

8 Synthesis of Findings

11

1.4 Overview of Publications

Parts of this dissertation have been published in proceedings of peer-reviewed
conferences and/or are accepted for publication. Table 1 provides an overview of these
papers and indicates in which chapters the content of these papers has been used.

No. Publication Chapter RQ

1 Hehn, J., Uebernickel, F. 2018. “Towards an understanding of the Role of
Design Thinking for Requirements Elicitation – Findings from a Multiple-Case
Study,” Proceedings of the 24th Americas Conference on Information Systems
(AMCIS 2018). New Orleans, USA: AIS

1, 2, 3, 8,
9, 10, 11

RQ1

2 Hehn, J., Uebernickel, F., Stöckli, E., Brenner, W. 2018. “Towards Designing
Human-Centered Information Systems: Challenges in Specifying
Requirements in Design Thinking Projects,” Proceedings of the
Multikonferenz Wirtschaftsinformatik (MKWI 2018). Lüneburg, Germany:
AIS.

1, 2, 4, 8,
9, 10, 11

RQ1

3 Hehn, J., Uebernickel, F., Herterich, M. 2018. “Design Thinking Methods for
Service Innovation – A Delphi Study,” Proceedings of the 22nd Pacific Asia
Conference on Information Systems (PACIS 2018). Yokohama, Japan: AIS.

1, 2, 5, 8,
9, 10, 11

RQ2

4 Hehn, J., Mendez, D., Uebernickel, F., Brenner, W., Broy, M. 2020. “On
Integrating Design Thinking for a Human-centered Requirements
Engineering,” IEEE Software, Special Issue Design Thinking.

1, 2, 5, 6,
7, 8, 9, 10,
11

RQ2

RQ3

5 Hehn, J., Uebernickel, F. 2018. “The Use of Design Thinking for Requirements
Engineering – An Ongoing Case Study in the Field of Innovative Software-
Intensive Systems,” Proceedings of the 26th IEEE International Requirements
Engineering Conference (RE'18). Banff, Canada: IEEE.

1, 2, 6, 7,
8, 9, 10,
11

RQ3

6 Hehn, J., Uebernickel, F. 2019. “The Use of Design Thinking for
Requirements Engineering – An Ongoing Case Study in the Field of
Innovative Software-Intensive Systems,” Lecture Notes: 49. Jahrestagung
der Gesellschaft für Informatik, Extended Abstract.

7 RQ3

Table 1: Overview of Publications

(Source: own illustration)

12

13

2 Conceptual Background and Related Work

The following sections provide the conceptual background of the dissertation.1 The first
section establishes the context for this dissertation with the help of the socio-technical
systems theory (section 2.1). The second part introduces the core concepts of
Requirements Engineering (section 2.2) and Design Thinking (section 2.3). The last
section deals with related work regarding the combination of both concepts (section 2.4).

2.1 Socio-Technical Systems Theory

The term ‘socio-technical systems’ (STS) was coined by Emery and Trist (1960) to
describe complex organizational work design that acknowledges the interaction between
social humans and technical systems. STS theory highlights the importance of joint
optimization of social and technical sub-systems in an organization to solve complex
issues (Cooper and Foster 1971; Bostrom and Heinen 1977). Four interrelated
components should be taken into account when developing new information systems
(IS) (Leavitt 1965): the social sub-system with actors and structures, and the technical
sub-system including technology and tasks. Actors are defined by the employees’
capabilities and a shared culture. Structures are defined by project organizations and
institutional arrangements, technology by tools and technological systems, and tasks by
the required activities to fulfill work or deliver services (Lyytinen and Newman 2008).
The interactions between the social and technical systems are inherently recursive as
Orlikowski (2000) emphasizes: “Users shape the technology structure that shapes their
use.” (p. 407)

Understanding the connection between the socio-technical components is critical when
introducing new work routines, business processes, or technical systems (Baxter and
Sommerville 2011). STS theory has been frequently applied within IS research to
investigate IS-induced changes in the organizational context (Lyytinen and Newman
2008). Originating from the workplace, STS is nowadays quite broadly used to describe
a variety of other complex settings where technology is deployed, for example in health
applications (Whetton 2005) or in the context of smart home-based systems
(Sommerville and Dewsbury 2007).

1 Parts of this chapter have been published in proceedings of peer-reviewed conferences. Please refer to section
1.4 for an overview.

14

Socio-technical system design methods were developed to facilitate the creation of such
systems (see Mumford (2006) for a historical development of such methods). Early
work focused mainly on manufacturing industries and emphasized a humanistic
approach to work as opposed to the mechanistic view with division of labor as promoted
by Taylor (1911). Since then socio-technical system design methods had their ups (e.g.
in the 70s when labor shortages prompted organizations to retain their staff by all means
available) and downs (e.g. in the 80s when lean production techniques and business
process re-engineering dominated) (Baxter and Sommerville 2011). The emergence of
ethnographic approaches in the late 1980s initiated the importance of socio-technical
issues in the design of software-intensive systems (e.g. Blomberg 1988; Heath and Luff
1991), which have been growing ever since. Common methods that support socio-
technical ideas include approaches such as participatory design (e.g. Greenbaum and
Kyng 1991), empathic design (e.g. Leonard and Rayport 1997), contextual design (e.g.
Beyer and Holtzblatt 1999), or human-centered design (ISO 2010). Although differing
in some respects, all of these methods follow the same principles of basing design on an
explicit understanding of users, their tasks, and the context, in which the system will be
used.

Dissertation context: The activities of performing Design Thinking and/or
Requirements Engineering can be understood as a socio-technical phenomenon
affecting organizations in multiple ways. Accordingly, STS theory offers a holistic view
on a combination of both concepts. The combined approach of Design Thinking and
Requirements Engineering can be interpreted as a design method to support the creation
of STS. This requires a change in social and technical systems in terms of technology
(i.e. the system to be developed), task (i.e. requirements and needs analysis activities),
actors (i.e. project team with their knowledge and capabilities), and structures (i.e. new
project framework with a combination of Design Thinking and Requirements
Engineering activities). With regard to the social system, actors require applied skills in
the areas and intersections of Design Thinking and Requirements Engineering to
successfully conduct, lead, manage, and implement a combined approach (task). With
regard to technology, the design and implementation of the system is required to provide
the technological vehicle to address the users’ and stakeholders’ needs. Further, an
organization needs to transform its organizational structures in a way that it supports
and establishes this (new) way of working. Therefore, combining Design Thinking and

15

Requirements Engineering can be regarded as a strategic capability for gaining insights
and design knowledge. Organizations need to analyze and understand how they can use
and manage a combined approach in terms of skills, resources, and capacity to achieve
the potential advantage of a combination.

2.2 Requirements Engineering

Requirements Engineering has been researched and practiced for over 40 years, when
professionals recognized the benefits of adopting a systematic approach to discovering
and managing those requirements for a software development process (Nuseibeh and
Easterbrook 2000). Requirements Engineering constitutes activities within the initial
phase of software-intensive development projects. Its objective is to make sure that the
intended system meets the needs of its users, customers, and product owners (Broy
2014). The key is to decide on the functionality and the quality of the software to be
produced. Requirements Engineering, thus, has to make a decision on the overall
functionality, its details in the steps of interaction, the physical user interface, and its
various quality attributes.

According to the International Requirements Engineering Board (IREB), Requirements
Engineering is defined as “a systematic and disciplined approach to the specification
and management of requirements with the following goals: (1) Knowing the relevant
requirements, achieving a consensus among the stakeholders about these requirements,
documenting them according to given standards, and managing them systematically, (2)
understanding and documenting the stakeholders’ desires and needs, (3) specifying and
managing requirements to minimize the risk of delivering a system that does not meet
the stakeholders’ desires and needs.” (Glinz 2018, p. 18)

2.2.1 Requirements and their Classification

A requirement can be understood as “a need perceived by a stakeholder; a capability, or
property that a system shall have; a documented representation of a need, capability, or
property,” (Glinz 2018, p. 17). Requirements are typically specified by natural language,
diagrams, or models.

A unified classification for requirements does not exist. The classification of
requirements and the respective choice of attributes is dependent on the specific
characteristics of the application domain. According to Ebert and Wieringa (2005), one

16

reason for the lack of agreement on a comprehensive requirements classification is that
the discipline of Requirements Engineering itself is not well linked with other software
life-cycle activities such as quality assurance or project management. Nevertheless,
there is a common understanding that there are three requirement levels, independent
from the respective domain: (1) why the system under consideration is needed
(context/business requirements), (2) what functionalities will satisfy this context
(functional requirements), and (3) how the system is to be constructed (system qualities
(also called non-functional requirements) such as security, performance, safety,
usability etc., and constraints (Chung and do Prado Leite 2009; Glinz 2007).

Dissertation context: Requirements classification plays an essential role in structuring
the layers of the combined artifact model in the context of this dissertation. It is
explained and incorporated into the artifact model of chapter 5.

2.2.2 Key Activities in Requirements Engineering

There are different process models that guide Requirements Engineering activities (e.g.
van Lamsweerde 2009; Nuseibeh and Easterbrook 2000). In general, they include four
key activities independent of their alignment:

(1) Elicitation considering the discovery of user needs and requirements in
collaboration with all relevant stakeholders (Zowghi and Coulin 2005).

(2) Analysis and negotiation considering the refinement of the requirements in terms
of abstraction levels and their classification (Geisberger et al. 2006).

(3) Specification considering the modelling and documentation of requirements in a
structured form, for example according to standards like the IEEE Std. 830-1998
(IEEE 1998).

(4) Validation of requirements ensuring completeness, correctness, consistency, and
clarity for the system to be developed and the contexts in which the system will
be used (Nuseibeh and Easterbrook 2000).

The activities are usually performed iteratively. Various frameworks exist in literature
– including linear, incremental, non-linear, and spiral models – combining the key
activities in a notion of a development process model (see Aurum and Wohlin (2005)
for an overview).

17

As a multidisciplinary domain Requirements Engineering makes use of many
technological approaches and various techniques for eliciting, modeling, analyzing, and
managing requirements (Wiegers 2003). The selection of the specific Requirements
Engineering techniques used depends on best practices, the organizational culture of a
particular company, and on the application domain. Zowghi and Coulin (2005), for
example, provide an overview of various elicitation approaches and classify
corresponding methods that can be used.

Dissertation context: In this dissertation, all of the above-mentioned activities are
considered for interpreting the results. A particular focus is put on requirements
elicitation. As elaborated in section 2.4, this key activity is considered to be especially
suited for the application of Design Thinking. The empirical results of chapters 3 and 5
support these indications.

2.2.3 Artifact-orientation in Requirements Engineering

Artifact-orientation has become a well-accepted approach in software-intensive
development processes (Méndez Fernández et al. 2019). An artifact is defined as an
“intermediate or final result of system development” (Glinz 2014, p. 9). Typically,
artifacts inherit particular properties and can be described using standardized modeling
concepts. To explain artifact-orientation, authors regularly contrast it with activity-
orientation (e.g. Méndez Fernández and Penzenstadler 2014a). While the former
emphasizes what to produce, the latter highlights how to approach a project, for example
by defining the activities and how to combine them. According to Hammerschall (2008),
activity-based approaches either neglect artifacts completely, see them as an optional
element, or when stated mandatory, they are considered at the project’s periphery or
they lack interrelations. In the context of a software-intensive development project,
artifact-orientation means that the project participants agree on the artifacts to be
produced independently from how they are realized. The complexity of a development
process is, thus, reduced by predefining a set of deliverables and their structure.

Artifact models provide a framework to structure artifacts and their dependencies
throughout the development process. In practice, the first artifact models provided a
common understanding on the general contents to be considered in Requirements
Engineering, mainly as part of guidelines and checklists like the ‘VOLERE
Requirements Specification’ templates (Robertson and Robertson 2018) or the ‘IEEE

18

Recommended Practice for Software Requirements Specifications (IEEE std. 830-
1998)’ (IEEE 1998). Those templates, however, neglected interdependencies between
contents, which is important when supporting syntactically consistent result structures
(Méndez Fernández and Penzenstadler 2014a). Berenbach et al. (2009) were among the
first to consider content-related dependencies and described how to model artifacts and
key components. They created a measurable reference model that can be tailored to the
specific domain application and provided process guidelines. Building on this
foundation, several authors have suggested domain-specific (e.g. Silva et al. 2009) and
domain-independent artifact models (e.g. Méndez Fernández and Penzenstadler 2014a)
with varying claims for comprehensibility. An example for an artifact model in the
context of a development process model is the V-Modell XT (Friedrich et al. 2008),
which has an artifact model at its core for defining all relevant sub-models and their
project execution (Kuhrmann and Hammerschall 2008). The steadily growing interest
in artifact-orientation and its differences in interpretation caused Méndez Fernández et
al. (2019) to put out a position paper with the goal to standardize the term artifact and
syntactically consistent result structures for software engineering “so that researchers
and practitioners have a common understanding for discussions and contributions” (p.
2254). They contribute a meta model that provides a description of an artifact that is
independent from any underlying process model.

Dissertation context: One of the main objectives of this dissertation is the development
of an artifact-based reference model for Design Thinking and Requirements
Engineering. The construction builds on the current body of knowledge in artifact-based
Requirements Engineering.

2.2.4 Requirements Engineering in Agile Development Settings

Requirements Engineering and agile methods are often seen at opposite ends. The
former is associated with heavy documentation for knowledge sharing. The latter
leverages cyclical face-to-face collaboration with customers and developers to reach
similar goals (Paetsch et al. 2003). Authors have stressed that the main difference
between the traditional and agile approach is not whether to do Requirements
Engineering, but rather when to do it (e.g. Paetsch et al. 2003). In traditional settings,
Requirements Engineering focuses on defining all requirements in a specification
document before system development starts. In agile settings, Requirements

19

Engineering is performed repeatedly throughout the development process. This iterative
character often leads to a just-in-time model to refine the high-level requirements and
derive them into low-level tasks that can be implemented by developers (Schön et al.
2017). Changing requirements, even late in the development lifecycle, can then be
addressed appropriately (Vetterli et al. 2013). This circumstance solves some of the
mentioned challenges in Requirements Engineering, however, it also produces new
challenges which are summarized in Table 2. These challenges will be discussed in
chapter 7.

Challenges Implications for Requirements Engineering

Minimalistic
documentation

Requirements in minimalistic documentations are difficult to trace back (Inayat
et al. 2015; Heikkila et al. 2015)

Problems with
customers or users

Hindering access to and communication with customers slows down the process
(Inayat et al. 2015; Heikkila et al. 2015; Méndez Fernández and S. Wagner 2016)

Neglect of non-
functional requirements

User stories mostly focus on system and product features, not non-functional
requirements (e.g. security, usability) (Inayat et al. 2015)

Inappropriate
architecture

Due to short planning time horizon, the architecture might be inadequate or
inappropriate (Inayat et al. 2015)

Tacit requirements
knowledge

Most knowledge often stays tacit as agile practices rely on highly skilled people
(Heikkila et al. 2015; Méndez Fernández and S. Wagner 2016)

Imprecise effort
estimates

Estimates of time and cost are difficult due to the agile project character (Inayat
et al. 2015; Heikkila et al. 2015)

Difficulties in the
prioritization of
requirements

Focus on immediate business value as prioritization focus might cause neglect of
system related requirements (Inayat et al. 2015; Heikkila et al. 2015)

Table 2: Challenges in Agile Requirements Engineering

(Source: Hehn and Uebernickel 2018b)

Dissertation context: In the context of this dissertation, Design Thinking and
Requirements Engineering are seen from a mainly process-agnostic perspective in order
to concentrate on artifacts, i.e. on what has to be done rather than on particularities when
or how to do it. For this purpose, the distinction of upfront or agile Requirements
Engineering can be neglected. However, for the evaluation of the operationalization
strategy of continuous Design Thinking, Design Thinking has been analyzed in the
context of Requirements Engineering practices in an agile project environment (see
chapter 7).

20

2.3 Design Thinking

Design Thinking has become increasingly important in both the academic and the
business communities over the past two decades. Industry studies have highlighted this
significant development. For example, based on a survey of the Hasso-Plattner Institute
(Schmiedgen et al. 2015), over 69% of Design Thinking practitioners and managers
identified Design Thinking as one of the major contributors to conduct an efficient
innovation process. In a survey of IBM by Forrester (2018), Design Thinking was
reported to reduce development and testing time by 33%, equating cost savings of
around $1.1M per major software development project. In academia, Yoo (2017)
commented on the emerging opportunities for IS academics as follows: “IS scholars can
deepen our understanding on the linkage between digital artifacts and human
experiences by explicitly embracing Design Thinking practices in their research” and,
thus, help to “shape human experiences in a digital world” (p. v).

The opportunities associated with Design Thinking in IS and other areas have helped
generate significant interest in this way of problem-solving, which is often referred to
as “a human-centered approach to innovation that draws from the designer's toolkit to
integrate the needs of people, the possibilities of technology, and the requirements for
business success.” (Brown 2012) The roots of Design Thinking date back to the late
1960s, when design academics examined the mental processes that underlie design
activities and transformed them into normative guidelines for creative problem solving
(Simon 1969). These studies have expanded the scope of design beyond the boundaries
of product styling to a way of thinking that can now be universalized for a multitude of
disciplines (e.g. management, business, software development, engineering).

On an operational level, Design Thinking is interpreted in three ways: as (1) a process
with a sequence of steps according to a prescriptive process framework, (2) a toolbox
with a collection of methods for situational support, and (3) a mindset with a set of
human-centered principles to be internalized (see Figure 2). While all three modes are
interlinked, they result in different conceptualizations on a practical level. As Fraser
(2011) suggests, “it takes a combination of the right mindset (being) and a rigorous
methodology (doing) that unlocks a person’s thinking, and that one must consider all
three of these factors.” (p. 71)

!
&%"

$

"#$%&'!=)!0'1#$3!8/#3G#3$!21!<&-,'11J!8--69-KJ!23E!L#3E1'+!!

4?E2M+'E!.&-B!LCN(H!23E!O&'33'&!'+!26P!=H(Q7!

<,B,8! -#C%@$!H)%$?%$@!*'+;#CC!P+:#0!

!"#$,'.2/5*@#$)#&*+,$!"*,-*,+$;.'4#&&$2'6#DE$/&1*,$5"*&$6*&&#.5/5*',E$*&$/6/;5#6$
(.'2$)#&*+,$!"*,-*,+$4'1.&#&$/5$=5/,('.6$%,*@#.&*5A$/,6$5"#$%,*@#.&*5A$'($=5BC/DD#,B$<5$
4/,$I#$6*@*6#6$*,5'$5H'$2/*,$;"/&#&S$5"#$;*%25(0.&;#4($H*5"$hQi$;.'ID#2$6#(*,*5*',EhMi
,##6(*,6*,+Ehbi&A,5"#&*&$/,6$5"#$&%57$'%,.&;#4($H*5"$hKi$*6#/5*',E$hci$;.'5'5A;*,+E$/,6$
hdi$5#&5*,+$hF9bQO$MOQOiB$N'5"$'@#./.4"*,+$;"/&#&$*,4D16#$/,$*,5#.;D/A$'($6*@#.+#,5$
/45*@*5*#&$ h*,('.2/5*',$ +/5"#.*,+i$ /,6$ 4',@#.+#,5$ /45*@*5*#&$ h*,('.2/5*',$;.'4#&&*,+iB$
!"#$;.'ID#2$&;/4#$6#2/,6&$6*D*+#,5$#P/2*,/5*',$'($5"#$;.'ID#2$4',5#P5$IA$*,5#+./5*,+$
/DD$.#D#@/,5$&5/-#"'D6#.&$5"#$&A,5"#&*&$'($/DD$4'DD#45#6$*,('.2/5*',$5'$/$4D#/.DA$6#(*,#6$
;'*,5$ '($ @*#HE$ *,4D16*,+$,##6&$ /,6$ *,&*+"5&B$!"#$ &'D15*',$ &;/4#$ #,4'1./+#&$ 5"#$
+#,#./5*',$'($*6#/&$/,6$5"#$4.#/5*',$'($;.'5'5A;#&E$H"*4"$4/,$I#$#@/D1/5#6$/,6$5#&5#6$
H*5"$1&#.&B$!"#$;.'4#&&$*&$.#;#/5#6$&#@#./D$5*2#&$1,5*D$/$(*,/D$&'D15*',$4/,$I#$;.#&#,5#6B$
7#(D#45*',$;'*,5&$ /.#$ 4/..*#6$ '15$ 61.*,+$ 5"#$;.'4#&&$H"#.#@#.$,#4#&&/.A$ /&$ 5"#A$ /.#$
4.14*/D$ &5#;&$ ('.$/6/;5*,+$ 5'$,'@#D$ *,('.2/5*',$/,6$6#@#D';*,+$6##;#.$ *,&*+"5&B$9/4"$
4A4D#$&5*21D/5#&$4.#/5*@*5A$/,6$#,4'1./+#&$./;*6$D#/.,*,+$5".'1+"$5.*/D3/,63#..'.B$$

Way of Doing Way of Thinking

Process Toolbox MindsetR ô Aɥ
�9L��KLÄUL�[OL
problem
Design never
ends

5LLKÄUKPUN�
& Synthesis
Understand

the users & the
design space

Ideate
Brainstorm

Prototype
Build

Test
Learn

5LLKÄUKPUN�
�:`U[OLZPZ�
Interviews
Focus Groups
Observation
Customer Journeys
Emmersion

Prototype
3V^�ÄKLSP[`�7YV[V[`WPUN
Wireframes
Mockups
3D printing
Role plays
Mechanical and electrical
engineering

Bias towards action

Radical collaboration

Experimentation

Focus on human values

Iteration

!
&&"

$

"#$%&'!N)!0'1#$3!8/#3G#3$!L2,&-!<&-,'11!!

4?E2M+'E!.&-B!O&'33'&!'+!26P!=H(R7!

!"#$ *5#./5*@#$;.'4#&&$ 2'6#D$ *&$ *,5#+./5#6$ *,5'$ /$ I.'/6#.$ 2*D#&5',#$ (./2#H'.-$ h/D&'$
-,'H,$/&$ 5"#$ r2/4.'3;.'4#&&liB$!"*&$ (./2#H'.-$ #,4'1./+#&$ 5"#$ 5#/2$ 5'$ *5#./5#$ 5"#*.$
;.'5'5A;#&$ *,$ &*P$ 6*((#.#,5$;.'5'5A;*,+$;"/&#&E$ H"*4"$ #@#,51/DDA$2#.+#$ 5'$ ',#$ (*,/D$
;.'5'5A;#B$)*@#.+#,5$ /45*@*5*#&$ "/@#$ 5"#$ ('DD'H*,+$ 2*D#&5',#&S$ hQi$)#&*+,$ =;/4#$
9P;D'./5*',$ h5'$ +/*,$ /,$ *,36#;5"$ 1,6#.&5/,6*,+$ '($ 5"#$;.'ID#2$ &;/4#iE$ hMi$].*5*4/D$
U1,45*',t9P;#.*#,4#$ J.'5'5A;#$ h5'$ 5#&5$ /,6$ 6#(*,#$ 5"#$ 4'.#$ (1,45*',/D*5*#&$ '($ 5"#$
&'D15*',iE$/,6$hbi$)/.-$0'.&#$J.'5'5A;#$h5'$4"/DD#,+#$-#A$/&&12;5*',&$/,6$I'1,6/.*#&$
H*5"$@*&*',/.A$;.'5'5A;#&iB$]',@#.+#,5$/45*@*5*#&$"/@#$hKi$U1,-A$J.'5'5A;#$h5'$4'2I*,#$
5"#$ 2'&5$;.'2*&*,+$ #D#2#,5&$ *,5'$ &A&5#2$;.'5'5A;#&iE$ hci$ U1,45*',/D$ J.'5'5A;#$ h5'$
6#(*,#$5"#$&A&5#2$@*&*',$/,6$&4';#$'($5"#$(*,/D$&'D15*',iE$hdi$_3*&$(*,*&"#6$J.'5'5A;#$h5'$
(*,/D*T#$',#$&*,+D#$(1,45*',$'($5"#$(*,/D$;.'5'5A;#iE$/,6heiU*,/D$J.'5'5A;#$h5'$*,5#+./5#$
5"#$ *,&*+"5&$ /,6$ 2'&5$ &144#&&(1D$ (#/51.#&$ *,5'$ ',#$ (*,/DE$ "*+"3.#&'D15*',$;.'5'5A;#i$
h%#I#.,*4-#D$ #5$ /DB$ MOQciB$ <,$ 5"#$ 4',5#P5$ '($ &'(5H/.#$ 6#@#D';2#,5$ /,6$ #,+*,##.*,+E$
)#&*+,$!"*,-*,+$*&$2/*,DA$D#@#./+#6$/&$/$4'DD/I'./5*@#$/;;.'/4"$5'$6#@#D';$*,,'@/5*@#$
6*+*5/D$&'D15*',&B$)#&*+,$!"*,-*,+$*&$/I'15$1,6#.&5/,6*,+$5"#$;.'ID#2$I#('.#$5"*,-*,+$
h5''$&'',i$/I'15$;.#6#5#.2*,#6$&'D15*',&$'.$.#&1D5&B$0#,4#E$5"#$/451/D$;.'ID#2$/,/DA&*&$
+/*,&$ /5$ D#/&5$ /&$ 214"E$ '(5#,$ #@#,$ 2'.#E$ /55#,5*',$ /&$ (*,6*,+$ /,6$ 6#@#D';*,+$ *6#/&$
hN.'H,$MOORiB$$

8'&&(*$#$'%,. 4%,$(C$D$!"#$;.#&#,5#6$)#&*+,$!"*,-*,+$;.'4#&&$2'6#D&$ "/@#$ I##,$ 5"#$
+1*6*,+$(./2#H'.-$('.$#D*4*5*,+$/,6$6#(*,*,+$.#81*.#2#,5&$*,$5"#$h21D5*;D#3i4/&#$&516*#&$
/&$*,5.'614#6$*,$4"/;5#.&$bEKE/,6eB

Design
space

exploration

Final
prototype

Critical
function

prototype

Dark horse
prototype

D I V E R G I N G C O N V E R G I N G

Funky
prototype Functional

prototype

X-is
finished

prototype

23

2.3.2 Design Thinking Toolbox

A wide range of practitioner catalogs of Design Thinking methods and tools have
emerged in recent years (Doorley et al. 2018; IDEO.org 2015; Uebernickel et al. 2015).
Design Thinking as a toolbox applies selective (design) methods and techniques for
situational support (e.g. storytelling, empathy maps, point of view, brainstorming,
ethnographic research, and journey mapping) (Liedtka & Ogilvie 2012). A Delphi study
with Design Thinking experts from industry and academia generated a comprehensive
list of initial 172 methods, which were distilled to 59 core methods that can be attributed
to Design Thinking (for more details see Hehn et al. 2018). Contrary to the process-
view, the toolbox offers a more flexible way of using Design Thinking and tailoring it
to specific project conditions.

Dissertation context: The toolbox of Design Thinking is particularly important in the
context of chapter 5 for developing the Design Thinking artifact model. Design
Thinking methods and tools provide the basis for defining Design Thinking artifacts. In
addition, the toolbox application is discussed as part of the operationalization strategies
in chapter 6 and 7.

2.3.3 Design Thinking Principles

A growing number of authors stress that the core of Design Thinking goes beyond
process models and tools (e.g. Kröper et al. 2010; Martin 2009). They perceive Design
Thinking primarily as a mindset or general “design attitude” (Boland & Collopy 2004,
p. 3) towards creative problem-solving. This entails the development of empathy, an
open-minded and optimistic approach to generating insights and ideas, and the
rationality to investigate and fit those ideas in compliance with the context. The main
principles are highlighted in the following:

(1) Design Thinking puts the emphasis on human values as a starting point and
foundation for all related activities (Brown 2008). Understanding what people
need and want anchors in a deep empathy for users and is achieved by
systematically integrating a variety of stakeholder groups throughout the
development process, both through direct dialog and non-obtrusive observation
methods.

24

(2) Solutions are mainly generated through radical collaboration, both with users
and by composing a multidisciplinary project team that incorporates different
functions and departments (Açar & Rother 2011; Doorley et al. 2018).

(3) Design Thinking leverages abductive reasoning to constantly generate new
information and consider alternative options early on. The abductive nature of
this way of working induces a “reflective conversation with the situation” (Schön
1984, p. 76) by looking beyond “what is” and exploring the logic of “what might
be” to generate customer and business value (Martin 2009).

(4) Design Thinking emphasizes a bias toward action. This means that the preferred
ways for gathering insights and feedback from stakeholders are hands-on
activities such as experimenting with ideas, building prototypes, and testing them
(Doorley et al. 2018; Leavy 2010).

(5) Design Thinking can be seen a “fundamentally exploratory process” (Brown
2009, pp.16-17) that encourages rapid and iterative learning cycles. According
to the “fail early and often”-principle every iteration leads to further adjustments
and new directions in the development process. In the long run, this iterative
approach to development is supposed to mitigate risks of not meeting customer
needs in the long run (Brown 2009).

Dissertation context: In the context of this dissertation, Design Thinking is mainly
analyzed on a process and toolbox level as it looks at the artifacts created by Design
Thinking and how they relate to Requirements Engineering. Nevertheless, the principles
that form the Design Thinking mindset have been kept in mind when interpreting the
results. Fostering a likewise mindset is of high importance especially when reflecting
upon a sustainable integration of Design Thinking principles into common
Requirements Engineering activities (see chapter 7)

2.4 Related Work

Researchers have highlighted the similarities between Requirements Engineering and
Design Thinking and pointed at the closely related methods and principles of both
approaches in the following ways: First, Requirements Engineering, in terms of user-
centeredness, has always considered the discovery of user requirements as part of their
activities in order to design better systems (Hansen et al. 2009). Second, Requirements

25

Engineering shares the same goal as Design Thinking in software-intensive
development projects, namely, to define the purpose of a system/solution (Jarke et al.
2011). Finally, Requirements Engineering pays attention to the context in which systems
are embedded (Kahan et al. 2019), which is similar to Design Thinking taking the
problem-context into account.

Prior research has recognized the value of Design Thinking for Requirements
Engineering in software-intensive projects, mainly by conducting experiments or case
studies in a particular domain (e.g. Soledade et al. 2013; Vetterli et al. 2013; Carell et
al. 2018). For example, researchers have pointed out the importance of empathy for
defining privacy requirements (e.g., Levy and Hadar 2018), using Design Thinking to
design health care applications (Carroll and Richardson 2016; Harte et. al. 2017), or
interactive mobile apps (de Carvalho Souza and Silva 2015; Sandino et al. 2013). Using
Design Thinking to address common challenges in Requirements Engineering is also
highlighted by several researchers. Kahan et al. (2019) point at challenges in
Requirements Engineering such as business process focus, systems transparency,
distributed requirements, layers of requirements, packaged software, or interdependent
complexity. They found that applying Design Thinking raises the awareness about own
biases, which can enhance system transparency. They also highlighted that, due to its
structured approach, Design Thinking can help to deal with the interdependent
complexity of a system. The authors emphasize the benefits Design Thinking could
provide for requirements elicitation and stress the “need for a specific process of
requirement elicitation that will incorporate the most suitable Design Thinking
techniques” (p. 84). Martins et al. (2019) similarly investigate Design Thinking as a
means to solve challenges of elicitation when using agile methods. They provide
evidence that Design Thinking strengthens stakeholder participation along the core
Requirements Engineering activities, while, also indicating a neglect of considering
non-functional requirements (except usability requirements).

Academics have also provided first evidence on how Requirements Engineering
practices can strengthen the relevance of Design Thinking in software development, for
example, by addressing documentation and traceability problems of Design Thinking
with Requirements Engineering techniques (Beyhl et al. 2014; Beyhl and Giese 2016).
Other researchers provide evidence for a beneficial integration of activities to address

26

hand-over challenges from Design Thinking to later staged software development
activities (e.g., Häger et al. 2015; Przybilla et al. 2018).

Dissertation context: Literature on the effective integration of Design Thinking and
Requirements Engineering is still in its infancy. Most contributions discussing an
integrated view on Requirements Engineering and Design Thinking have so far focused
on the integration of isolated methods or principles in particular application domains.
This dissertation builds on these findings to achieve a structured assessment of both
approaches for a joint result-oriented application.

27

3 Benefits of Eliciting Requirements with Design Thinking

This chapter addresses the first research question of the dissertation and is concerned
with understanding the usage of Design Thinking for requirements elicitation and its
respective benefits. The chapter presents the results of a multiple case study2 that
investigated the role of Design Thinking for requirements elicitation. This chapter,
together with chapter 4, forms the foundation for all subsequent chapters of the
dissertation that delve deeper into operationalizing a combination of Design Thinking
and Requirements Engineering (i.e. chapters 5-7). Section 3.1 explains the motivation
and objectives of the multiple-case study in more detail. Section 3.2 outlines the
methodology of the study and provides a detailed description of the data collection and
analysis. Section 3.3 reveals the results of the study. Section 3.4 discusses the
implications for both theory and practice and shows the study’s limitations and an
outlook for future research. Section 3.5 concludes the chapter.

3.1 Challenges in Requirements Elicitation

Requirements elicitation is an early-stage but continuous activity in software-intensive
development projects to determine the needs and requirements of all relevant
stakeholders (Hadar et al. 2014). The tasks performed in requirements elicitation can
vary but may be broadly categorized into (1) understanding the domain, (2) identifying
relevant sources, (3) analyzing stakeholders, (4) selecting techniques, and (5) obtaining
the requirements. In reality, this is a complex and iterative endeavor that heavily relies
on the communication skills of the analyst, and involves many tasks, with multiple
techniques at hand, to perform these activities (Zowghi and Coulin 2005). Thus, the
Requirements Engineering community calls for research on improving requirements
elicitation as this holds much promise for enhancing the success of software systems
(Hickey and Davis 2004). Accordingly, we propose the following research question:
What can be learned from Design Thinking for requirements elicitation in software-
intensive projects?

To investigate our research question, we set up an exploratory multiple-case study,
based on twelve cases from three consecutive years in multiple problem domains. We

2 Parts of this chapter have been published in Hehn, J., Uebernickel, F. 2018. “Towards an understanding of the
Role of Design Thinking for Requirements Elicitation – Findings from a Multiple-Case Study,” Proceedings of
the 24th Americas Conference on Information Systems (AMCIS 2018). New Orleans, USA: AIS

28

use existing theoretical and empirical knowledge about the challenges of requirements
elicitation as a lens to analyze the contribution of Design Thinking.

Academics have generated long lists of challenges in requirements elicitation. Based on
a structured literature review (Webster and Watson 2002), we have summarized the
main challenges of requirements elicitation practices in terms of process guidance,
stakeholder communication, and requirements quality. The results of our analysis are
presented in Table 3.

Challenges Explanation Key Literature

Process Guidance (Process)

C1 Lack of process
guidance

There is little guidance on selecting the “right” method in
different contextual situations. Many techniques developed in
theory are not considered sufficiently useful for practice.

Carrizo et al. 2014;

C2 Lack of creativity The process of eliciting requirements is missing creativity and the
application of creativity techniques to develop innovative
software systems.

Mich et al. 2005;
Maiden et al. 2004

C3 Insufficient technical
translation of needs

Many terms used in the real world are hard to translate into exact
technical specifications (e.g. ‘user friendliness’) and are, thus,
easily misinterpreted or prone to ‘wrong’ execution.

Davey and Parker
2015

Stakeholder Cognition and Communication (Cognition)

C4 Communication gaps
with stakeholders

Stakeholders can encounter difficulties articulating their needs or
requirements, e.g. due to cultural differences or a lack of common
language between analyst and stakeholder.

Davey and Parker
2015

C5 Tacit knowledge is
hard to grasp

Stakeholders cannot express their needs or requirements clearly
because they have only tacit knowledge about them and the topic.

Zowghi and Coulin
2005

C6 Analyst has limited
knowledge/capability

Analysts are not equipped with sufficient expertise (e.g. wrong
choice of techniques) or capability (e.g. lack in soft skills) to
perform effective requirements elicitation.

Hadar et al. 2014;
Davey and Parker
2015

Quality of Requirements (Quality)

C7 Requirements are
invented, not elicited

Requirements don’t anchor in ‘discovered’ needs but are rather
invented by analysts or developers.

Karlsson et al. 2007

C8 Requirements
volatility

Requirements change over time due to multiple reasons, e.g. new
market trends, feedback from coding reviews, resource constraints,
or the influence of new business requirements.

Karlsson et al.
2002; Davey and
Parker 2015

C9 Lack of traceability
and interdependency

Requirements are not traceable, especially in complex project
environments, and/or their (dynamic) interdependencies are hard
to deal with.

Karlsson et al. 2007

C10 Incorrect,
incomplete, and
inconsistent
requirements

The set of elicited requirements may lack in the “three Cs”:
correctness, completeness, and/or consistency.

Zowghi and Coulin
2005

Table 3: Challenges in Requirements Elicitation

(Source: own illustration)

29

3.2 Research Methodology

We chose an exploratory study design since our research examines the learning potential
of Design Thinking for eliciting requirements. Our aim was to generate generalizable
and robust findings. This is why we selected cases that were mainly replications of each
other. Therefore, a multiple-case study approach seemed most appropriate (Yin 2011).

The unit of analysis are project teams and the artifacts they produce by applying Design
Thinking. Each team approaches a problem statement from a corporate sponsor guided
by the Design Thinking process in a university setup as introduced in the research
background. We selected twelve cases following the principles of similarity and
variation (Eisenhardt 1989). We aimed at similarity in terms of project duration (8
months), an IS-related problem statement, a multi-disciplinary team configuration
(mainly master students from business, design, informatics, and engineering), and the
knowledge level of Design Thinking. The team members had no or little prior
experience in using the presented Design Thinking approach for requirements
elicitation. However, they shared the same level of coaching support from experienced
Design Thinking experts to elicit needs and requirements to address their problem
statement.

All cases were equipped with the same (or a similar) data base, i.e. sources of evidence
for our data analysis. Our selection explicitly sought variation in other characteristics
such as the corporate sponsor’s specific problem statement, their industry, and firm
structure. Because the intent of this study is to generate a holistic view on requirements
elicitation in Design Thinking projects, variation in context was especially desirable. By
balancing the principles of similarity and variation, we identified twelve projects from
nine organizations in three consecutive years as appropriate cases (Table 4).

30

Company
Name

Country

Industry
Sector

Revenue
‘16
(B.
EUR)

of
employees

of prototypes;
type of final solution

A
B
C
D
E
F
G
H
I
J
K
L

Alpha
Beta
Gamma
Delta
Epsilon
Zeta
Eta
Theta
Theta
Iota
Alpha
Zeta

GER
FRA
GER
GER
GER
GER
GER
CH
CH
GER
GER
GER

Pharma
Pharma
Pharma
Financial
Conglomerate
Information
Aviation
Financial
Financial
Automotive
Pharma
Information

ca. 15
ca. 15
ca. 15
ca. 33
ca. 39
ca. .06
ca. 5
ca. 40
ca. 40
ca. 58
ca. 15
ca. .06

ca. 50’000
ca. 110’000
ca. 48’000
ca.142’000
ca. 155.000
ca. 500
ca. 21’000
ca. 53’000
ca. 53’000
ca. 84’000
ca. 50’000
ca. 500

33; Chatbot
32; Smartwatch App, CRM Plug-in
32; Platform, App, hardware device
28; App
44; Platform
44; App
36; Platform
23; App
33; Platform
46; Web App
55; Platform, Smartwatch App
52; Platform

Table 4: Case Details

(Source: own illustration)

3.2.1 Data collection

The authors of this paper were lecturers in the university course with numerous years of
experience in applying Design Thinking in corporate settings. The data was collected
from October 2013 until June 2016 via multiple sources of evidence (SoE) for the
purpose of data triangulation, construct validity, and reliability (Yin 2011). We
compiled project documentations (SoE1), physical artifacts (SoE2), and participant-
observations (SoE3) for each case. First, project documentations include (a) two text
documentations about intermediate results and the final prototype (35-140 pages), (b) a
booklet showcasing all produced prototypes and corresponding testing feedback (20-
50), (c) a video about the final prototype, and (d) pictures of intermediate work results
(ca. 300). We gathered SoE1 because our topic is concerned with requirements
elicitation in Design Thinking projects and, thus, we see all documentation generated
within the project as an indicator for analyzing our research questions, mainly on a
content-basis. Second, we gathered all physical and digital artifacts, i.e. prototypes
ranging from low to high resolution (32-52). In Design Thinking, elicited needs and
requirements are expressed via prototypes, which appoints them a vital role within our
research evaluation. Third, participant-observations include (a) memos of weekly
review meetings (28), (b) lecture materials (32), and (c) team performance reports at
certain project milestones (6). We collected SoE3 to gain process-oriented insights about
applying Design Thinking for requirements elicitation.

31

3.2.2 Data analysis

We applied a team-based research approach and used cross-case analysis as the study’s
analysis strategy (Yin 2011). All researchers were experienced Design Thinking or
Requirements Engineering practitioners as well as trained academics. First, we analyzed
all cases separately in reference to the dimensions of Table 3, always keeping an open
mind to extend the lens of these challenges (Stake 2005). Specifically, we coded relevant
passages and derived themes for requirements elicitation. Each document was
independently analyzed by two researchers to avoid subjective interpretation and
enhance validity of our study (Yin 2011). To demonstrate rigor, two researchers
discussed the results and revised the themes together in an iterative approach. For
example, we particularly identified themes that addressed user requirements (e.g. “the
solution must evoke positive emotions during usage”, or “the bot should be usable by
voice recognition”) or usability requirements (e.g. “the bot should be easy to setup and
use”). As a result of the first analysis round, we assigned a conceptual label to each
theme (e.g. “user requirements”, “usability requirements”, “context analysis”). Second,
we linked similar themes together into categories (Stake 2005). Thus, we merged
workflow requirements, user requirements, and usability requirements into the category
“user requirements” and cross-referenced it with the identified elicitation challenges.
Third, we used cross-case analysis to derive the core findings of our study. In this phase,
a third researcher acted as a sparring partner to shape the final set of findings and to
provide quality assurance and objectivity. This also increased the internal validity of our
research (Eisenhardt 1989).

3.3 Key Findings

We identified seven key findings from the use of Design Thinking for requirements
elicitation; each finding is associated with one of the challenge dimensions process
guidance (process), stakeholder communication (cognition), and requirements quality
(quality). Table 5 highlights which findings supports which elicitation challenge(s)
(grey-shaded). It also provides an evaluation to what extent we perceive Design
Thinking to support each challenge based on the results of the cross-case analysis and
our experience. A high learning potential is marked by (++), inversely, (--) indicates that
Design Thinking is not perceived helpful or suffers similar challenges.

32

Findings derived from case studies

Case

Elicitation Challenges

Process Cognition Quality
1 2 3 4 5 6 7 8 9 10

F1 Design Thinking provides a guideline for requirements
elicitation.

all x x x x x x x x x

F2 Design Thinking explicitly differentiates between user
needs and requirements.

all x x x x

F3 Design Thinking enhances creativity by creating re-framed
system contexts in the problem- and solution domain.

B, C, D,
E, I, K

x x x x x x

F4 Design Thinking leverages prototyping as a major method
to elicit functional and non-functional requirements already
in early project phases.

all x x x x x x x

F5 Design Thinking enhances the priority of eliciting non-
functional requirements with a special focus on user
experience.

all x x x x x

F6 In Design Thinking, context is about the human not the
system.

all x x x x x x x

F7 Design Thinking takes a holistic view on requirements
elicitation for a domain-agnostic solution.

A-D, G,
I, K, L

 x x x x x

Impact on individual Requirements Elicitation Challenges ++ ++ ++ + ++ + ++ + -- +

Table 5: Overview of Findings

(Source: own illustration)

We see high learning potential especially for process guidance and stakeholder
communication. A rather mixed evaluation needs to be stated for dealing with
challenges in the dimension quality of requirements. In general, we could hardly find
supporting evidence to suggest positive impact on Challenge 9 (traceability). Similar to
existing requirements elicitation techniques, we found that needs and requirements
discovered in Design Thinking projects lack traceability despite the process-oriented
way of approaching problems. Our memos highlight the confusion of teams when
attempting to recap previous insights and requirements: “Where did we document it?
Did we document it all? How did we get there?” (Case E). We explain this finding with
the working attitude of Design Thinking teams, that, similar to agile techniques,
prioritizes doing over documenting to quickly move forward. In that sense, we do
believe that Design Thinking can learn from the more formalized way of documenting
in requirements elicitation.

3.3.1 Process-related Findings

Finding 1 – Design Thinking provides a guideline for requirements elicitation. All
project teams in our study followed the iterative problem-solving approach of the micro-
and macro-process as described in section 2.3. While leaving enough freedom for the

33

use of specific methods, the structure helps to systematically focus on user needs first
and only then turn them into testable solutions. A statement of one project member
highlights the usefulness: “Design Thinking provides us with a helping guideline on
what to do next, without forcing us to apply a technique that we didn’t find useful.”
(Case K) Another one adds: “It is extremely helpful to have a framework that steers you,
but that does not overpower you. It encourages to think about content, not the process.”
(Case H). We find that the structured, yet flexible, process framework of Design
Thinking could help in overcoming the often-mentioned lack of guidance in conducting
requirements elicitation (C1). We firmly believe that integrating process steps of the
Design Thinking micro- and macro-model into existing practices will lead to a more
effective requirements elicitation. A structure will help the novice to more confidently
approach unknown situations and the expert to oversee complex problems more easily.
We find that, at least in part, this also helps balance capability and experience issues
requirements analysts face. In addition, we see the application of a guiding, yet not rigid
framework for requirements elicitation positively influencing most of the other
challenges as well. For example, the Design Thinking process has institutionalized the
application of creativity techniques (C2) and a structured translation from needs into
requirements (C3). Furthermore, with every iteration of the Design Thinking process,
the team gains deeper knowledge of the problem domain and empathy with the
stakeholders and, thus, collects more detailed needs and requirements leading to further
adjustments in order to mitigate the risk of not addressing user needs in the long run
(C7, C10).

Finding 2 – Design Thinking explicitly differentiates between user needs and
requirements. In Design Thinking, an explicit distinction is drawn between discovering
needs and deriving requirements. User needs relate to people and express their wants,
beliefs, and desires. Requirements are expressions of what is demanded to fulfill these
needs with an intended solution. Thus, requirements provide an answer or at least the
direction towards an answer for meeting the elicited user need. On a process level, this
is defined by the interplay of needfinding, focusing on the human (need-driven), and
ideation and prototyping, which concentrates on finding a solution (requirement-
driven). Several project teams applied methods like Maslow’s need hierarchy or the
“Common-to-Qualifier-Framework” for structuring needs and deriving requirements
(Cases K, H, I). In Case A, for example, the team identified the following need:

34

“Multiple Sclerosis (MS) patients have a great need for an understandable, suitable,
and accessible source of MS information.” Based on this need, the team translated and
derived several requirements such as: “The solution must be available in the user's
native language,” or “Sent content must reach the user in nearly real-time.” Putting our
results into the context of established elicitation practices, we see that Design Thinking
provides a set of activities and methods to foster the translation of elicited needs into
requirements (C3) and to prevent the invention of new requirements (C7) as it
establishes an explicit, logical connection between needs and requirements.

Finding 3 – Design Thinking enhances creativity by creating re-framed system contexts
in the problem- and solution domain. Design Thinking has institutionalized the framing
and re-framing of given problems to challenge stereotypical perceptions, encourage
learning, and enhance creativity. Case D, for example, visualized their discarded
prototypes from early elicitation phases to make failures and learnings explicit and, thus,
to inspire continuous experimentation and re-framing. Another team re-framed their
given problem statement of “How does an intelligent collaboration platform in the
engineering process for our engineers look like?” into the vision “We aim to coordinate
knowledge and information in order to enable transparent communication for
engineers” based on their learnings from needfinding and testing (Case E). Eventually,
the final prototype looked vastly different from the originally intended platform idea of
the project sponsors because the team had created an email-embedded software
prototype for knowledge management. During testing users highlighted the ease of use
as well as the integration and usefulness in their day-to-day business. Our research
suggests learning potential for requirements elicitation practices as Design Thinking
mainly addresses process-and method-related (C1-3) and quality challenges (C7, C8,
C10). The process of re-framing problems in Design Thinking might be in contrast with
the more rational analytic approach prevalent in most elicitation practices. From our
point of view, requirements elicitation should be viewed as an explorative dialog with
stakeholders and users to obtain questions first to find better answers eventually.

3.3.2 Cognition-related Findings

Finding 4 – Design Thinking leverages prototyping as a major method to elicit
functional and non-functional requirements already in early project phases. The use of
(non-technical) prototypes to gain early user feedback is a key component of Design

!
')"

!"*,-*,+B$!"#A$/.#$1$5'$;1.&1#$21D5*;D#$'IY#45*@#&S$hQi$5"#A$#P;.#&&$/,6$4',&#.@#$
5"#$5#/2l&$#D*4*5#6$1&#.$,##6&E$*,&*+"5&E$/,6$6#&*+,$6#4*&*',&mhMi5"#A$/.#$1$5'$#D*4*5$
(1.5"#.$,##6&$ /,6$.#81*.#2#,5&$ 5".'1+"$ 5#&5*,+m$ hbi$ 5"#A$ 4"/DD#,+#$ /&&12;5*',&$ /,6$
4',&5./*,5&m$/,6$hKi$5"#A$4'221,*4/5#$*6#/&$5'$&5/-#"'D6#.&$/,6$H*5"*,$5"#$;.'Y#45$5#/2B$
<,$'1.$&516AE$#/4"$4/&#$4.#/5#6$I#5H##,Mb/,6cMD'H3$5'$2#6*123.#&'D15*',$;.'5'5A;#&$
5'$#P;.#&&$(1,45*',/D$.#81*.#2#,5&$*,$'.6#.$5'$6#5#.2*,#$H"/5$&"'1D6$I#$6',#$/,6$,',3
(1,45*',/D$.#81*.#2#,5&$ 5'$ #P/2*,#$ "'H$ 5"#$ &'D15*',$ &"'1D6$ H'.-$ /,6$ D''-$ D*-#B$
U1,45*',/D$.#81*.#2#,5&$ H#.#$ 5"#.#('.#$ 2/*,DA$ #P;D'.#6$ 5".'1+"$ 5#&5*,+$ ('.2$ /,6$
(#/51.#&$'($5"#$;.'5'5A;#B$?',3(1,45*',/D$.#81*.#2#,5&$H#.#$2/*,DA$6*&4'@#.#6$5".'1+"$
5"#$/451/D$*,5#./45*',$H*5"$*5B$J*451.#$Q3J*451.#K*DD1&5./5#$5"#$@/.*#5A$'($;.'5'5A;#$('.2&$
h(.'2$ D#(5$ 5'$.*+"5iS$ /$ D'H3.#&'D15*',$ZV*T/.63'(3>T[3;.'5'5A;#$ 5#&5#6$ 5"#$ *,5#./45*',$
H*5"$/$6*+*5/D$/@/5/.$h]/&#$0im$/$.'D#3;D/A$#P/2*,#6$/,$/&;*.#6$&#.@*4#$&4#,/.*'$h]/&#$
Wim$;/;#.3I/$H*.#(./2#&$#@/D1/5#6$4'.#$(#/51.#&$'($/,$/;;$h]/&#$Gim$/$1&#.$Y'1.,#A$
/&&#&$6/*DA$5'14";'*,5&$H*5"$/$I/,-*,+$/;;$h]/&#$<iB$F##5*,+$2#2'&$&"'H$/$;.'Y#45$
2#2I#.l&$;#.4#;5*',E$IA$&5/5*,+S$Z<5$ *&$#/&*#.$ 5'$ 5/D-$H*5"$ 5"#$"#D;$'($;.'5'5A;#&$/,6$
.#(*,#$ *6#/&$ 5'$ &"/.;#,$ 5"#$ '@#./DD$ 4',4#;5B[$ h]/&#$ <i$ V#$ (*,6$ 5"/5$ 1&*,+$)#&*+,$
!"*,-*,+E$H"*4"$#,4'1./+#&$5"#$4',5*,1'1&$4.#/5*',$'($D'H3.#&'D15*',$;.'5'5A;#&E$4/,$
"#D;$ '@#.4'2#$ &'2#$ '($ 5"#$ 2#,5*',#6$ 4"/DD#,+#&$ *,$.#81*.#2#,5&$ #D*4*5/5*',B$
J/.5*41D/.DAE$H#$/4-,'HD#6+#$5"#*.$;'5#,5*/D$5'$#,"/,4#$4.#/5*@*5A$'($.#81*.#2#,5&$h]MiE$
5'$5./,&D/5#$,##6&$*,5'$5#4",*4/D$.#81*.#2#,5&$*,$/$2'.#$;.#4*&#$H/A$h]bE$]QOiE$5'$#/&#$
4'221,*4/5*',$H*5"$&5/-#"'D6#.&$h]KiE$5'$#P;'&#$5/4*5$-,'HD#6+#$h]ciE$/,6$(*,/DDAhKi
5'$(/&5#.$/6/;5$5'$4"/,+*,+$.#81*.#2#,5&$h]RiE$5"#.#IA$*,4.#/&*,+$5"#$#((#45*@#,#&&$'($
.#81*.#2#,5&$#D*4*5/5*',$'@#./DDB$$

!
<#,+%&'!()!S#T2&E!-.!:T!

<&-+-+UM'!

!
<#,+%&'!=)!V-5W
&'1-6%+#-3!0#$#+26!

<&-+-+UM'!

!
<#,+%&'!N)!<2M'&!
S#&'.&2B'!

!
<#,+%&'!Q)!>%1+-B'&!

X-%&3'U!

4*-%&,')!F3#;'&1#+U!-.!*+PY266'3J!08ZD*Y!=H(=J!=H(QJ!=H([7!
�

$

36

3.3.3 Quality-related Findings

Finding 5 – Design Thinking enhances the priority of eliciting non-functional
requirements with a special focus on user experience. Our results suggest that Design
Thinking creates an enhanced priority for eliciting user needs and requirements in terms
of usability (context of use), workflows (workflows and tasks performed by the user),
and user interface (interaction flow or screen layout). However, we also observed a lack
of eliciting other non-functional requirements such as security, safety, or performance
in our cases. In terms of user experience, Case A distinguishes between functional (given
and discovered) and so-called experiential requirements “to define the emotions that the
final concept must evoke in its users,” i.e. how the solution should eventually feel like.
Case G, a B2B project to improve aircraft maintenance by connecting demand and
supply on a platform, approached emotional aspects via mood boards to inspire the ease
of use and to enhance fast decision-making processes for users in a time- and cost-
sensitive high-pressure environment. Moreover, Case D made it its mission to “make
people management a daily experience.” The team identified user experience as one key
requirement to guarantee usage on a regular basis. With the help of persona storytelling,
they prioritized usability and workflow requirements in every development step to
transform “an improved user experience to an outstanding one.” Relating these findings
to existing elicitation practices and challenges, we find that the strong user focus leads
to a thorough examination of the user experience, and, thus, to an enhanced priority for
eliciting non-functional requirements. In this context, we especially see potential for
weakening Challenges 3 (translation) and 7 (invented requirements). While we also need
to report the neglect of other (non-functional) requirements, which are essential for later-
staged software implementation, we expect higher completeness of requirements (C10)
when both methodologies are applied complementarily.

Finding 6 – In Design Thinking, context is about the human not the system. Elicitation
activities focus on understanding stakeholders and their context regardless of the future
solution. This means that they are considered “humans” first and “users” second.
Methods to capture context variables are, among many, personas, mood boards, or
contextual interviews. In Case A, for example, the team used an empathy suit to mimic
limited moving capabilities of an MS patient (Pictures 5 and 6). Thereby the team gained
deeper empathy for the daily impairments in their living context first, which was
independent from the specific context of the future solution (which was explored at a

!
'+"

D/5#.$&5/+#iB$:,'5"#.$5#/2$*2;.'@#6$5"#*.$1,6#.&5/,6*,+$'($5"#$2/*,$5/.+#5$+.'1;E$H"'$
H#.#$6'45'.&E$IA$H*6#,*,+$5"#$#P;D'./5*',$4',5#P5$5'$*,(D1#,5*/D$;/.5*#&$D*-#$"'&;*5/D&E$
;"/.2/4*#&E$ /,6$;/5*#,5&$ h]/&#$]iB$ <,$ /$ &*2*D/.$ @#*,E$ 5"#$ 5#/2$;15$ 5"#$ ('41&$ ',$ 5"#$
.#D#@/,5$ &5/-#"'D6#.&$ '($ 5"#$ 4"/DD#,+#$ /,6$ 4.#/5#6$ /$ @*&*',$ 5'$ #,/ID#$ /$ 5.1&5(1D$ /,6$
#((*4*#,5$#P4"/,+#$I#5H##,$6'45'.&$/,6$;"/.2/4#15*4/D$4'2;/,*#&E$&5#22*,+$(.'2$5"#$
'.*+*,/D$;.'ID#2$ &5/5#2#,5$ 5'$.#36#&*+,$ 5"#$ +'35'32/.-#5$ 2'6#D$ ('.$;.#&4.*;5*',$
2#6*4*,#$;.'6145&B$V#$(*,6$5"/5$5"*&$H/A$'($/;;.'/4"*,+$;.'ID#2&$4'1D6$4',5.*I15#$5'$
'@#.4'2*,+$&#@#./D$#D*4*5/5*',$4"/DD#,+#&$ *,$ 5#.2&$'($4.#/5*@*5A$ h]MiE$4'221,*4/5*',$
*&&1#&$h]KiE$5/4*5$-,'HD#6+#$'($&5/-#"'D6#.&$h]ciE$/,6$.#81*.#2#,5&$81/D*5A$h]eEREQOiB$
0'H#@#.E$ 5"*&$2*+"5$/D&'$.#81*.#$/$;.'('1,6$2*,6$&"*(5$ ('.$h&'2#i$/,/DA&5&$/&$ 5"#$
;.'4#&&$2*+"5$(##D$5''$D#,+5"A$'.$,'5$('41$#,'1+"B$

!
<#,+%&'!R)!CBM2+/U!*%#+!-.!23!L*!<2+#'3+!\!!

!
<#,+%&'![)!CBM2+/U!*%#+!-.!23!L*!<2+#'3+!\\!!

4*-%&,')!F3#;'&1#+U!-.!*+PY266'3J!08ZD*Y!=H([7!

I',3',6. Z. K.8(&'6,.9"',:',6. $#:(&. #. "%5'&$'4. -'(!. %,. *(<7'*(0(,$&. (5'4'$#$'%,.)%*. #.
3%0#',+#6,%&$'4. &%57$'%,L$ <,$+#,#./DE$ 5"#$/;;D*4/5*',$'($)#&*+,$!"*,-*,+$ *&$,'5$',DA$
6'2/*,3/+,'&5*4$*,$5"#$;.'ID#2$6'2/*,$h*B#B$/;;D*4/ID#$5'$/$@/.*#5A$'($6'2/*,&i$I15$/D&'$
,$5"#$&'D15',$6'2/*,$h*B#B$&'D15*',&$4/,$I#$6#@#D';#6$@*/$6*((#.#,5$5A;#&$'($/.5*(/45&E$
',DA$',#$'($ 5"#2$I#*,+$<=iB$=1IQ#,5DAE$)#&*+,$!"*,-*,+$*&$/ID#$ 5'$ 5/-#$/$"'D*&5*4$
;#.&;#45*@#$ ',$ /,/DAT*,+$ 5"#$.#/D$ H'.D6E$ *,4D16*,+$ 21D5*;D#$ 6'2/*,&E$ *,5#./45*,+$
&A&5#2&E$/,6$&5/-#"'D6#.&B$V#$(*,6$#@*6#,4#$(.'2$&#@#./D$4/&#&$5"/5$6'2/*,$-,'HD#6+#$
&$ IA$ (/.$,'5$ #,'1+"$ 5'$ 5/4-D#$ 5"#$ +@#,$;.'ID#2$ &5/5#2#,5B$:DD$ 4/&#&$ &"'H$/$ I.'/6$
;.'ID#2$#P;D'./5*',$H*5"$ 5"#$"#D;$'($&5/-#"'D6#.$2/;;*,+E$6#&-$.#&#/.4"E$ *,5#.@*#H&$
/,6$'I&#.@/5*',&E$I#,4"2/.-*,+E$/,6$5.#,6$.#&#/.4"B$?'5#&$(.'2$/$5#/2$2#2I#.$*,$]/&#$
:$&122/.*T#$5"#$@/D1#$'($5"#&#$/45*@*5*#&S$HE)$(*.&;(,3',6.!((:&.(C;5%*',6.$"(.;*%25(0M.
',$(*-'(!',6.#,3.$#5:',6.$%.;#$'(,$&.#,3.%$"(*&M.P.6%$.#.074".45(#*(*.;'4$7*(.%).!"#$.RF.
'&M.$"(.4%0;5(C.;*%25(0.#,3.3'0(,&'%,&.!(.#*(.3(#5',6.!'$"M.#,3M.)',#55/M.P.4#,.&((.!"#$.
!(.,((3.$%.#33*(&&.$"('*.4"#55(,6(&LO$V#$'I&#.@#6$5"/5$5"#$5#/2&$H#.#$,'5$4',&5./*,#6$
IA$ 5"#$;.#4',4#;5*',$ '($ &'(5H/.#$ &'D15*',&$ *,$ 5"#$ #/.DA$ &5/+#B$!"*&$ #,/ID#6$ 5"#2$ 5'$

38

discover unknown solutions, which, if best for the user, might not have even been digital
ones. Overall, we found that most solutions in our cases require an integration of
software, service, and/or hardware components to create a compelling user experience.
In our case, all solutions combined software and service components and some included
a hardware component. The final system of Case C comprised an application for mobile
devices, an online platform, and a physical device for doctors’ desks. Summing up, we
see the potential of Design Thinking in supporting established requirements elicitation
practices by looking beyond the system and domain context in order to generate
solutions with a comprehensive user experience in a broader service and product
environment. We expect a positive influence, mainly for elicitation challenges regarding
the lack of creativity, (C2) tacit knowledge extraction (C5), and invented requirements
(C7). However, similar to finding 6, this also requires a mindset.

3.4 Discussion

The aim of this research is to investigate the learning potential of Design Thinking to
boost requirements elicitation in software-intensive projects. Empirical findings on
challenges in requirements elicitation practices guided the analysis of 12 cases, which
used Design Thinking to elicit requirements. The key findings of this study reveal
challenges regarding process guidance, stakeholder communication, and requirements
quality. First, Design Thinking offers support for the requirements elicitation process
that many researchers criticize to be insufficiently guided (e.g. Browne and Rogich
2001). The guiding framework supports the practical application of methods, which
might even compensate for the lack of an analyst’s experience. However, as Design
Thinking is a team-oriented approach, which strongly relies on the individual expertise
of people, limited capabilities can be seen as a critical success factor of Design Thinking
as well.

Second, low-resolution prototypes are considered an effective way to ease
communication with and expose tacit knowledge of stakeholders and thus, to address
cognition- and communication-related challenges that have been raised in various
studies (e.g. Zowghi and Coulin 2005).

Third, Design Thinking faces quality challenges, as do current elicitation practices, in
terms of the traceability, correctness, completeness, and consistency of requirements.
Yet, it emphasizes the discovery of user requirements to derive a comprehensive user

39

experience. Continuous interaction with stakeholders supports dealing with changing
requirements and decreases invented requirements that are not based on user needs. All
of this might then lead to generating a solution completely different from what was
originally intended. To that effect, Design Thinking can be considered particularly
supportive for addressing complex problems as Brown (2008) mentioned. For well-
defined problems, i.e. when the real-world problem is known, the application of the
entire Design Thinking process might be “over-engineered”. Even so, an enhanced
mindset for a more human-centered way of requirements elicitation might still prove to
be beneficial and “minimizes the risk of delivering a system that does not meet its
stakeholders’ needs” (Glinz 2014, p.12).

3.4.1 Implications for Theory

From a theoretical perspective, this study contributes novel insights to both research on
Requirements Engineering and Design Thinking. With regard to research on
Requirements Engineering, the understanding of how Design Thinking can support
problem solving in Requirements Engineering is advanced. This study answers the calls
from various scholars for improving challenges in requirements elicitation (e.g. Zowghi
and Coulin 2005; Karlsson et al. 2002; Davey and Parker 2015). Existing literature in
this field mostly looked into individual challenges, for example challenges in the context
of privacy requirements (Levy and Hadar 2018) or requirements for health care
applications (Carroll and Richardson 2016). This study is the first to provide robust
empirical evidence about the application of Design Thinking for addressing a
comprehensive set of requirements elicitation challenges. Researchers have followed
and built on this study to further evaluate challenges in Requirements Engineering in
general (Kahan et al. 2019) and elicitation in particular (Martins et al. 2019).

With regard to research on Design Thinking, scholars have been increasingly interested
in connecting Design Thinking to software engineering processes and practices (e.g.
Lindberg et al. 2011; Corral and Fronza 2018). While related studies have made great
strides to develop process models to connect it with SCRUM (e.g. Häger et al. 2015;
Przybilla et al. 2018), a structured assessment in the context of requirements elicitation
as a crucial step in every development project is still scarce. The findings of the study
address this gap in two ways. First, multi-facetted opportunities and benefits of using
Design Thinking in early phases of Requirements Engineering are revealed. With

40

confidence it can be stated that this study contributes to the general understanding
around aligning Design Thinking with later staged software development approaches.
Second, and more importantly, this study provides evidence suggesting that (methods
of) the two approaches might be best applied complementarily in an iterative dialogue
to inform and influence each other. Other researchers should feel encouraged to evaluate
such an integrated approach.

3.4.2 Implications for Practice

The findings can be used as guidelines for companies proposing to adopt Design
Thinking and for managers responsible for software-intensive development projects.

A valuable contribution is made for practitioners to avoid aforementioned challenges
and gain improved appreciation for eliciting requirements with Design Thinking.
Specifically, the findings can act as an aid for using Design Thinking to elicit
requirements. Design Thinking provides an approach for eliciting needs and
requirements by applying qualitative research methods and producing fast and simple
prototypes that converge in innovative solutions. In this regard, Design Thinking not
only provides new structures and methods to enhance elicitation efforts but also induces
a mind-shift to a more human-centered and explorative way of requirements elicitation.

3.4.3 Limitations and Outlook

Despite the careful design of this study, this paper is not without limitations. Biased
selectivity should be acknowledged as one limiting factor for document analysis (Yin
2011). Although the analysis was conducted in a near real life setup (real problems
provided by real corporate sponsors), it can be argued that the sources of evidence are
closely aligned with the specific Design Thinking approach of the University, including
its particular assessment policies and Design Thinking philosophy. In addition, all
project teams were composed of students being novices in Design Thinking.

Therefore, scholars should investigate project teams in actual organizational settings as
organizational factors like resource allocation, organizational stability, or organizational
implementation of Design Thinking can be expected to influence the activities of
requirements elicitation. Further research should build on our results by deriving
concrete propositions from each key finding and quantify their effects. As this study has
mainly focused on discussing the what of each finding, future research should also

41

consider the concrete how. The distinction of Design Thinking as a process, toolbox,
and mindset (Brenner et al. 2014) provides a differentiated guideline to follow.

In general, the access to the vast amount of confidential and detailed data in this study
should outweigh its limitations because it led to a first profound understanding of the
role of Design Thinking for requirements elicitation.

3.5 Conclusion of the Chapter

Effective requirements elicitation is perceived to be one of the most crucial activities in
software-intensive development projects. While many scholars and practitioners have
pointed out and agreed upon its numerous challenges, others consider the increasingly
popular approach of Design Thinking to be the promising ‘cure.’ This paper provides
robust empirical evidence of the role of Design Thinking for requirements elicitation
and helping overcome its challenges. Specifically, this paper presents findings in terms
of process guidance, stakeholder communication, and requirements quality based on
insights from a multiple-case study. In summary, Design Thinking introduces new
structures and methods to enhance elicitation efforts and inspires a mind-shift towards
a more human-centered and creative way of requirements elicitation. This work provides
a better understanding of the multi-faceted potential of Design Thinking for
Requirements Engineering in general and requirements elicitation in particular, for both
scholars and practitioners.

42

43

4 Challenges when Specifying Requirements with Design Thinking

Together with chapter 3, this chapter addresses the first research question of the
dissertation and is concerned with understanding the challenges to specify requirements
with Design Thinking. The chapter presents the results of a multiple case study3 that
investigated such challenges. Section 4.1 provides the motivation of the multiple-case
study in more detail. Section 4.2 explains the methodology of the study and offers a
description of the data collection and analysis. Section 4.3 reveals the results of the
study. Section 4.4 discusses the implications for both theory and practice and points at
the study’s limitations and an outlook for future research. Section 4.5 concludes the
chapter.

4.1 The Need to study Challenges in Design Thinking

Many digital and non-digital artifacts evolve during a Design Thinking project. They
express the identified user needs, insights, learnings, and design decisions. For time-
saving reasons, the project teams capture and specify the mentioned artifacts in a mainly
unstructured form, e.g. through post-its, pictures, and low-fidelity prototypes during the
process and text documentations on the occasion of specific milestones. This
predominantly informal and unstructured mode of specifying requirements can be
critical for two reasons, which are strongly interlinked: First, it can hinder the team’s
ability to reflect and build on intermediate outputs and make decisions for further
activities. Thus, it might result in a less desired prototype and, eventually, in a less
desired product on market. Second, it also decreases the quality of the outcome when
the final prototype is insufficient in explaining (1) certain design decisions made for the
prototype and (2) the contextual details, in particular, when handed over to other teams
for implementation (often software engineers) that are not able to revisit activities of the
Design Thinking team. The lack of information might then lead to the creation of a less
desirable product not fulfilling all relevant needs (Beyhl et al. 2014; Beyhl and Giese
2015, 2016). As a consequence, the innovative vision might not be able to develop its
full potential because its realization does not conform to the elicited requirements of the
Design Thinking team.

3 Parts of this chapter have been published in: Hehn, J., Uebernickel, F., Stöckli, E., Brenner, W. 2018. “Towards
Designing Human-Centered Information Systems: Challenges in Specifying Requirements in Design Thinking
Projects,” Proceedings of the Multikonferenz Wirtschaftsinformatik (MKWI 2018). Lüneburg, Germany: AIS.

44

This study focuses on understanding the challenges of Design Thinking teams
concerned with specifying requirements. It does not address the specific handover
challenges from Design Thinking teams to software engineers, which have been
discussed in prior research (Beyhl et al. 2014; Beyhl and Giese 2015, 2016, Häger et al.
2015), but rather focuses on the challenges within Design Thinking. The handover
challenge can then (partially) be a result of the aforementioned one. Our research is
based on a multi-case study and analyzes the data of five project teams. They approach
a problem statement given by a corporate sponsor with the use of Design Thinking in a
university context. We investigate the activities of specifying requirements to create
solutions and the challenges that the teams face in doing so within the Design Thinking
project setup. In this context, requirements are understood as “the descriptions of
services that a software system must provide and the constraints under which it must
operate.” (CS Software Engineering) Requirements can be seen on different abstraction
levels, from very high-level statements of service descriptions to detailed specifications
of certain functions or algorithms. There is a common understanding to differentiate
requirements according to their nature. User requirements reflect the needs, desires, and
stated functionalities of a software system. System requirements express services
needed for the system to operate successfully from a technological view. And lastly,
software requirements specify the architecture of the software system in detail. On a
more granular level, the Requirements Engineering community demands requirements
that are unambiguous, correct, complete, concise, feasible, understandable, and
consistent (Bahill and Madni 2017).

4.2 Research Methodology

Our research adopts a multiple-case study approach according to the guidelines of Yin
(2011) to address the exploration of the research question: What are the challenges when
specifying requirements within Design Thinking projects? The cases derive from a one-
year university course where teams take on a design challenge provided by a corporate
sponsor and guided by a Design Thinking framework (see Figure 3) as part of the course.
All corporate sponsors were either long-standing partners of the university or undertook
a comprehensive onboarding process into the Design Thinking program to build up trust
with the teaching team. We chose a multiple-case study approach as the cases we present
are mainly replications of each other. This way, we expect better generalizable and more
robust results for our findings (Eisenhardt 1989).

45

4.2.1 Data Collection

We analyzed five cases referring to five Design Thinking project teams (Table 6). We
selected five out of nine projects following the criterion that all the projects had to
address digital challenges. All teams consisted of business master students and,
depending on the corporate challenge, included students from design, business
informatics, and engineering. The students had no or little prior experience in applying
the presented Design Thinking framework. However, they shared the experience of the
same course content as a common background. To evaluate our research question, we
collected multiple sources of evidence consisting of (1) project documentations, (2)
physical artifacts, and (3) participant observations (see Table 7).

Case A B C D E

Team size
Corporate Sponsor
Type of Industry
of employees
of prototypes
Final prototype

6
Alpha, GER
Pharma
∼ 50’000
33
Chatbot

3
Beta, FRA
Pharma
∼ 110’000
32
Smartwatch
App and CRM
Plug-in

7
Gamma, GER
Pharma
∼ 48’000
32
Platform and
Hardware

3
Delta, GER
Financial
∼ 142’000
28
Smartphone
App

7
Epsilon, COL
Financial
∼ 50’000
22
Service,
Smart-watch,
and App

Table 6: Overview Cases

(Source: own illustration)

4.2.2 Data Analysis

We examined project documentations (SoE1) with the help of document analysis which
is the “systematic procedure for reviewing or evaluating documents – both printed and
electronic.” (Bowen 2009, p. 27) We chose this approach because our topic is concerned
with specifying requirements and we see all documentation produced within the project
as an indicator for evaluating our case question. Our available data has a broad coverage
over the entire project time in multiple settings and scenarios, which makes analyzing
documents advantageous for our purpose (Yin 2014). We reviewed 45 documentations
and more than 1000 pictures across all cases. We especially looked at the following
questions: Which requirements are specified and how? How understandable and
complete are they? Are context requirements captured? In addition, we leveraged
prototypes as a complementary data source (SoE2). In Design Thinking, prototypes are
expressions of elicited requirements and design decisions, which makes them a vital part
in the evaluation within our research. To this purpose, we evaluated how and which

46

requirements were expressed as prototypes. Third, we leveraged participant
observations to gain insights about possible challenges (SoE3). The data sources we
used were mainly notes and observations from review meetings about process struggles,
team dynamics, and content discussions. Three of the authors were lecturers and coaches
in this course drawing from multiple years of experience in applying Design Thinking
in university-level projects and corporate settings.

Name Type Short Description Number Audience

Source of Evidence 1 (SoE1): Text and Visual Documentations

One-page Summary
(“One Pager”)

Intermediate
Documentation I

Intermediate
Documentation II

Final
Documentation

Pictures

Videos

Text and
pictures

Text and
pictures

Text and
pictures

Text and
pictures

Photos

Video

Short description of project
status after each milestone

Insights and learnings from
first two milestones (35-120
pages)

Learnings from Darkhorse and
Funky phases in the form of a
booklet

Guidelines to understand the
final prototype (40-140 pages)

Photos of prototypes and other
outputs

Video shows the final
prototype

6 per case

1 per case

1 per case

1 per case

>1000 (all)

1 per case

Corporate
Liaison
Teaching
Team

Source of Evidence 2 (SoE2): Physical Artifacts

Prototypes Physical
and
digital

Low- to high-resolution
representations of ideas

147
(all cases)

Corporate
Liaison

Source of Evidence 3 (SoE3): Participant Observations

Weekly Review
Meetings

Weekly Lectures

Regular Performance
Reports

Lecturer
Notes

Lecturer
Notes

One page
from
lecturer

Weekly one-hour review with
each team on progress and
content

Weekly 2-3 hour lectures

Assessment of each team with
an evaluation of their
performance

28 per case

32 (all cases)

6 per case

Design
Thinking
Teams

Table 7: Sources of Evidence

(Source: own illustration)

47

We chose to draw on multiple SoE with the aim of data triangulation to support construct
validity for our findings (Yin 2014). Subsequently, we followed a structured procedure
for each SoE. We applied content analysis to identify findings and used cross-case
synthesis to retain the challenges to specify requirements. In particular, two of the
authors derived the challenges independently from each other by examining the
documents. They identified relevant passages and deduced the overarching themes in
the topic of requirements specification. Then, the two engaged in discussions about the
challenges to iterate and merge their first set of challenges. The third author acted as a
sparring partner in the process of shaping the final set of challenges to provide quality
assurance and objectivity. Figure 4 visualizes the above described procedure and
provides the transition to the next chapter that will conclude the observed practices and
challenges in capturing requirements.

Figure 4: Convergence of Multiple Sources of Evidence

(Adapted from Yin 2014, p. 117)

4.3 Key Challenges

In all cases the teams captured and specified requirements throughout the course. Each
team used different ways of specification all of which were generally understandable in
form and expression. An explicit listing of requirements can be found in Case A and D,
e.g. the final documentation of A states: “Requirements are derived from Alpha’s initial
brief, legal constraints in the industry, user interviews, Alpha staff interviews, and
various kinds of testing.” The requirements were structured into functional, experiential,
and physical requirements. Each specification was further divided into (1) requirement,

48

(2) metric, and (3) rationale as the example shows: (1) “The solution must be available
in the user’s native language,” (2) “The solution should be translated to the native
language of Alpha’s main target markets,” and (3) “Our user tests showed us that
patients have immense difficulty using a service if it’s not offered in the language they’re
used to.” Furthermore, in Case D pictures of the prototype were used to show
functionality and user requirements. The specification structure looks as follows: (1)
issue description, (2) user quote, (3) need, (4) requirements derived. The other cases (B,
C, E) use expressions like “features”, “functions”, “experiences” and “implications”
to address the topic of requirements. In addition, prototypes served as a useful way to
express requirements. A prototype can take the form of a visual documentation and,
thus, should be able to make them explicit in a concise and understandable manner. Not
all prototypes were self-explanatory though, and several needed further explanations to
comprehend their purpose.

4.3.1 Output-Related Challenges

Challenge 1 (Coverage): Strong focus on user requirements while neglecting software
and system requirements. The better and clearer the requirements, the easier it is to
implement them for the intended purpose. During our analysis, we found a strong focus
on specifying user requirements, which was one of our questions for SoE1 and SoE2
(“Which requirements are specified?”). Across all cases we see that at least 80% of
requirements address users, their needs, insights, and learnings from prototype testing.
This finding is supported by notes from review meetings where discussions mainly
revolved around user needs and how to transfer them into solutions. For example, a
protocol of Case C includes the question: “How can we transfer the need for trustworthy
information sources into a product feature? I don’t know how to do that in the best
way.” Cases C and E address user requirements only, while documentations of Cases
A, B, and D also show implications for software requirements, mainly in the appendix
of such documentations. These make up the other 20% of the requirements
documentation. The specification of system requirements is neglected completely. This
finding is not surprising as the paradigm of human-centric design is the foundation of
all activities in design thinking, putting the (potential) user in the role as a recurring
sparring-partner for prototype testing. Still, feasibility and viability should be considered
as well (Brown 2008). The lens of feasibility demands an exploration of organizational
capabilities and technological options to translate the human-centric requirement into

49

actual products and services. We see potential for Design Thinking to increase the focus
on this topic when evaluating prototype options for next steps in the process.

Challenge 2 (Traceability): Weak links between needs, insights, learnings, and
requirements. Being able to trace requirements back to insights, needs, and learnings
from testing helps to revisit previous decisions and to better understand the intended
purpose of a solution. All sources of evidence (SoE1-SoE3) point out that achieving
traceability seems to be a challenge in design thinking projects. Across all cases, the
final documentations showed the most specific and traceable connection between need
and (iterated) requirement, however, not always comprehensibly. We want to highlight
the following evaluation notes from one lecturer with regard to the final documentation
of Case E: “The final prototype comes a bit out of the blue. [...] Which needs are
addressed by which feature of the prototype is unclear.” Notes from review meetings
show similar uncertainties when asking: “Where does this idea come from?”, “What is
the need?” (Case B, C) A good example provides Case A, which matches detailed
requirements descriptions of a step by step journey of the user going through all screens
of the prototype. Links to previous prototypes show the rationale for changing
requirements. Case C provides another good example, where the team visualizes the
evolution from intermediate to final prototype for a better traceability between need and
solution (Figure 5). The team adds descriptions to explain which elements are
transferred further and deducts implications for the final prototype. Traceability from
final documentation to intermediate project results appears to be an important issue with
varying results. We have seen good examples in our cases that can serve as benchmarks
in the future. Nevertheless, notes from review meetings of the project have shown the
teams’ struggle and confusion in the attempt to recap and build on previous findings and
specified requirements. We will pick this up again when discussing our observations of
Challenge 6.

!
)."

"

"#$%&'!R)!C;-6%+#-3!.&-B!\3+'&B'E#2+'!<&-+-+UM'1!+-!2!"#326!<&-+-+UM'!!

4?E2M+'E!.&-B!.#326!E-,%B'3+2+#-3!-.!>21'!>7!

\"#55(,6(. V. S\%,$(C$TD. _#4:. %).)%*0#5'A',6. 4%,$(C$. *(<7'*(0(,$&L.]',5#P51/D$
,('.2/5',$ /,6$.#81*.#2#,5&$ "#D;$ 5'$ 4.#/5#$ /$ "'D*&5*4$ @*#H$ '($ 5"#$ #,5*.#$ &A&5#2l&$
D/,6&4/;#$h#B+B$*,$5#.2&$'($4',&5./*,5&$'.$&A&5#2$+'/D&iB$)#&*+,$!"*,-*,+$D#@#./+#&$/$
bdO36#+.##$ /;;.'/4"$ hIA$21D5*;D#$;#.&;#45*@#&i$ 5'$ /66.#&&$ 5"#$;.'ID#2$/,6$ &'D15*',$
&;/4#$'($ 5"#$6#&*+,$4"/DD#,+#$/,6E$ 5"1&E$ /*2&$ 5'$+#,#./5#$/,$ *,5#+./5#6$@*&*',$'($ 5"#$
4"/DD#,+#$/,6$*5&$4',5#P5B$]/&#&$:$/,6$9$1$;#.&',/&$/,6$#2;/5"A$2/;&$5'$$5"#$
1&#.l&$4',5#P5$'($5"#$&'D15*',E$#B+B$*,$]/&#$N$/,$#D#2#,5$'($5"#$;D/5('.2$&'D15*',$*&$/$
&5/51&$(1,45*',$('.$6'45'.&$*,$H"*4"E$&*2*D/.$5'$/$(.#81#,5$(DA#.$;.'+./2E$5"#A$+#5$;'*,5&$
5"/5$5./,&D/5#$*,5'$I#,#(*5&B$!'$;15$5"*&$*,5'$4',5#P5E$5"#$5#/2$"/&$&;#4*(*#6$5"#$.#/&',S$
H1(.4"%&(.$"'&.&%57$'%,.#44%*3',6.$%. $"(.;*()(*(,4(&.%). $!%.$#*6($.4%7,$*'(&M.!"(*(M.
7,5':(.',.F!'$A(*5#,3M.$"(.-'&'$.%).(&.*(;*(&(,$#$'-(&.'&.#;;*(4'#$(3.#&.;(*&%,#5.#,3.
',3'-'37#5. #$$(,$'%,. %). 4%0;#,/. `($#L. 9"7&M. ,%-(5. 3'6'$'A#$'%,. ())%*$&. #*(. "#*3(*. $%.
#*67(L. 9"'&. '&. !"/. !(. !#,$(3. $%. ',4(,$'-'A(. $%. 7&(. %7*. ;5#$)%*0LO$ V"*D#$)#&*+,$
!"*,-*,+$ *&$ @*.51/DDA$;.#6#&5*,#6$ 5'$ #D*4*5$ /,6$ &;#4*(A$ 4',5#P5$.#81*.#2#,5&E$ H#$ 4/,$
6#5#.2*,#$/$D/4-$'($('.2/D*T#6$4',5#P5$.#81*.#2#,5&$*,$/DD$4/&#&B$:$4',&*&5#,5$H/A$*,$
&;#4*(A*,+$ 5"#&#$.#81*.#2#,5&$ /44'.6*,+$ 5'$ 5"#$ 4',5#P5$ '($ 5"#$ 5".##$ 6*2#,&*',&$ '($
6#&*./I*D*5AE$@*/I*D*5AE$/,6$(#/&*I*D*5A$ *&$ D/4-*,+B$!"*&$2*&&*,+$2#5"'6'D'+*4/D$&1;;'.5$
4/1&#&$/$D/4-$'($*,('.2/5*',$*,$D/5#.$*2;D#2#,5/5*',$&5/+#&B$:+/*,E$5"*&$(*,6*,+$4/,$I#$
.#D/5#6$5'$5"#$&5.1451./D$6*&41&&*',&$*,$]"/DD#,+#dB

$

51

4.3.2 Process-Related Challenges

Challenge 4 (Motivation): Lack of motivation to specify requirements systematically.
Although discovering needs and eliciting requirements is part of the Design Thinking
process, documenting them in a systematic manner is found to be challenging. The
deeply explorative approach of Design Thinking demands a multitude of sources and
tools to create a multitude of artifacts, not yet knowing which ones will be the most
relevant in later stages. But relying on implicit knowledge in a sea of analog and digital
artifacts may lead to the risk of losing information. In general, the teams in our cases
saw less value in specifying the requirements for themselves than for the teaching team
and their corporate sponsor. The main motivational factor was the fact that a part of the
grading in the course was based on the quality of the prototypes and their written
deliverables. In addition, they also mentioned a feeling of obligation towards their
corporate sponsor to specify findings for their later usage (A, B, C). To tackle this issue,
three teams assigned a specific documentation role within their team. The teams that did
not do this (B, E) showed particular weaknesses in the completeness and
understandability of requirements specifications.

Challenge 5 (Time): Lack of time to specify requirements systematically. The element
of available time is a crucial factor in all Design Thinking projects. Evidence of
challenges with regard to time is mainly derived from weekly review meetings with the
teams. One team member, for example, stated that “the Design Thinking project is a
marathon in the speed of a sprint.” According to sources from review meetings (A-E),
team members stated that they were aware that someone should document continuously
but failed to do so due to a permanent lack of time. The teams reported to prioritize time
for “real work like conducting user research or building the next prototype” over
specifying requirements in a systematic manner. This triggers a similar observation to
Challenge 4 (motivation) where specifying requirements is seen as a timely activity that
gets de-prioritized under time pressure for “more important things.” However, an
indication that a more systematic approach could be beneficial, shows the following
reflection statement from Case A: “The fact that we had eight whole months to burn,
often allowed us to slip into sluggishness, which really showed in our lackluster results
in the winter period, and I feel that our indecisiveness cost us the chance to develop a
proof of concept that actually validated ALL, not just most, of our claims and theories
about the potential of chatbots in patient support.”

52

Challenge 6 (Structure): Knowledge is implicit or captured on Post-its while adequate
tool support is missing. In Design Thinking projects, there is no pre-defined structure
on how, when, and which requirements to specify. Hands-on activities like building,
testing, and experimenting are the preferred choices to gain insights and feedback from
users. In all cases, observed practices for specifying requirements take a multitude of
forms: working artifacts are mainly post-its, sketches, pictures, low resolution
prototypes, digital shared notes (e.g. on Trello), and a loose collection of word
documents in a team share storage. Official documentation purposes are usually
addressed by natural language in text form, a high-fidelity prototype, and a final video
to provide context. Creating prototypes is an evolving process and a way of “thinking
with hands,” where the team can reflect on an idea. However, decisions on changes are
often not made explicit. This supports the finding that much knowledge stays implicit.
Frameworks like personas, service blueprints, and empathy maps are commonly used to
synthesize data from field research. However, adequate tools for deriving and specifying
requirements are missing. The “informal world of Design Thinkers” (Beyhl et al. 2014,
p. 167) (and, in the long-term, also the more formal world of software engineers) might
benefit from a non-intrusive tool that fits to the “rough and dirty,” explorative working
mode of Design Thinkers. The combination of a prototype, showing links to previous
prototypes and findings together with natural language specifications of requirements
could serve as a first idea into this direction.

4.4 Discussion

Prior literature has acknowledged the challenges when specifying requirements with
Design Thinking (Beyhl et al. 2014; Beyhl and Giese 2015, 2016). This paper advances
the understanding of this problem with data from a multi-case study of five Design
Thinking projects. The results of this study show that some of the challenges can be
considered as generic problems that also occur in other project related teamwork
(especially Challenges 4 and 5). The other challenges, however, suggest a strong
association with the specific Design Thinking methodology. In this context, we find
Challenge 1 as very IS-specific, whereas the other challenges (2, 3, 6) could also be
transferred to other project setups that don’t deal with creating and designing IS. Since
this study set out to create a holistic picture of the challenges to specify requirements in
Design Thinking projects to create human-centric IS, all of the findings can be
considered relevant for scholars and practitioners alike.

53

4.4.1 Implications for Theory

The findings contribute to the body of knowledge for Design Thinking in the context of
IS development in the following ways. First, this study provides empirical evidence
about the challenges to specify requirements with Design Thinking. The paper builds on
previous work of Beyhl and Giese (2016) and Häger et al. (2015), who raised
documentation or knowledge transfer problems in Design Thinking, and expands these
concerns with a more comprehensive set of empirically derived challenges. Several
authors call for a sustainable integration of Design Thinking into (early) software
development practices (e.g. Przybilla et al. 2018; Vetterli et al. 2013). To achieve this,
such a holistic view on the diverse challenges needs to be done.

Second, Yoo suggests that “IS scholars can help Design Thinking practice by inventing
new constructs, models, methods, and instantiations.” (2017, p. v) This research points
to a specific area of future research, i.e. to enhance existing or creating new methods
and tools for specifying requirements in such explorative approaches as Design
Thinking. The informal way of information gathering can be disadvantageous. A lot of
knowledge stays implicit and the decisions by the Design Thinking team are often hard
to recap by other parties, e.g. software engineers in the quest of implementing the
envisioned prototype (Häger et al. 2015). Methodological support from the more mature
discipline of Requirements Engineering, also in terms of classifications and
documentation practices, is one promising direction for further research.

4.4.2 Implications for Practice

Three main practical implications from our findings can be derived for professionals.
Avoiding, or at least being aware of, the aforementioned challenges can be important
for successfully applying Design Thinking.

The findings regarding output-related challenges provide an overview of what can be
expected when (only) using Design Thinking to specify requirements. The tendency to
exclusively elicit and specify user requirements (while neglecting software and system
requirements) indicates a specific scope for a suitable application of Design Thinking,
i.e. project settings with a strong user-orientation. Thus, project managers in software-
intensive development projects receive guidance when to use Design Thinking best,
when not to use it all, and what should be done complementarily to Design Thinking.
Some of the introduced challenges offer opportunities for common Requirements

54

Engineering practices and classification techniques to define a comprehensive set of
requirements. To reach out to Requirements Engineers to learn from might be a valuable
suggestion for Design Thinking teams.

The findings regarding process-related challenges support project managers in
balancing resources, time, and activities in software-intensive development projects.
The advantages to learn quickly in the early phases with the rapid working style of
Design Thinking should be balanced wisely with the demand for more structure and
documentation in the later stages connecting to system design and implementation.

In addition, just being aware of all aforementioned challenges, might already help the
project team and manager to foresee potential hurdles when using Design Thinking,
which, in turn, might result in a more diligent way of working and/or avoiding some of
them.

4.4.3 Limitations and Outlook

The paper is not without limitations. Yin (2014) stresses biased selectivity as one flaw
of analyzing documents for research. Although it can be considered advantageous that
our cases were conducted in the same setting, it can also be argued that the available
documents are strongly aligned with the university’s Design Thinking approach and its
specific assessment policies for the course. In addition, the specific team staffing
(students from different backgrounds and universities), the form of the corporate
briefing, and the teaching team’s coaching support should be considered as influencing
factors on the derived challenges when transferring our findings to other (corporate)
settings. Nevertheless, the entire course setup is crafted in a way that creates conditions
that are as “real” as possible. Taking Sun and Kantor’s (2016) “three realities”-paradigm
(real users, real problems, and real systems) for a naturalistic evaluation in IS projects
as a reference, the course does address real problems from corporations (and not
fictional ones) and applies real systems (i.e. the Design Thinking methodology with
conducting real field research and user testing to create real solutions). “Real users” can
be seen as debatable, since the project teams are composed of students who can be seen
more as external consultants than internal project members of an organization. The latter
ones for instance, often face internal politics or stakeholder management issues that we
believe influencing Design Thinking projects in “real corporate settings” to a great
degree. Therefore, scholars should feel encouraged to analyze teams in actual

55

organizational settings, which allows the identification of organization specific
challenges. Overall, the access to confidential data in the study should outweigh the
limitation because it led to a deeper understanding of the output- and process-related
challenges.

4.5 Conclusion of Chapter

Design Thinking provides a guiding yet not rigid framework for exploring and
specifying requirements in the context of software-intensive development projects.
Nevertheless, our research revealed six challenges for specifying requirements, three of
them related to the output of Design Thinking: (1) Design Thinking teams focus on the
specification of user requirements, while software and systems requirements are widely
neglected; (2) the central artifacts of design thinking projects are insufficiently linked
with each other and, therefore, traceability is limited or even impossible for further use;
and (3) the lack of formalized context requirements is limiting the use of project results
in later implementation stages. Furthermore, we discovered three challenges relating to
the process of Design Thinking itself: (4) Team members are hardly motivated to specify
requirements systematically, (5) perceive the specification of requirements as an extra
effort that shortens the already limited work time, and (6) lack adequate tool support for
specifying and structuring (implicit) team knowledge. The purpose of this study was to
lay the groundwork for creating solutions to these challenges.

56

57

5 A Combined Artifact-based Reference Model

This chapter addresses the second research question of the dissertation. Based on the
previous insights it discusses a model that combines the artifacts of Design Thinking
and Requirements Engineering. The chapter presents the results of a study inspired by
the design science research paradigm4 to develop the combined artifact model. Section
5.1 explains the motivation for an artifact-oriented model in the context of this
dissertation. Section 5.2 describes the development of the model. Section 5.3 introduces
the combined artifact model including a detailed description of the model and the
individual artifact types. Section 5.4 analyzes the results and illustrates the implications
for researchers and practitioners. Finally, section 5.5 concludes the chapter with a
summary of the main findings.

For better readability the terms ‘Design Thinking artifact’ and ‘Requirements
Engineering artifact’ are abbreviated into ‘DT artifact’ and ‘RE artifact’.

5.1 The Need for an Artifact-based Reference Model

Empirical evidence indicates that a combination of Design Thinking and Requirements
Engineering appears to be beneficial (see chapters 3 and 4). However, little is still known
about how to holistically integrate Design Thinking into Requirements Engineering
(Vetterli et al. 2013; Kahan et al. 2019). One difficulty to be taken into account is that
there are different views on Design Thinking, ranging from a set of methods, tools, and
principles (Brenner et al. 2014). Requirements Engineering in turn is treated as a holistic
engineering discipline encompassing various approaches, principles, tools, and even
more methods – all to be selected and adopted in dependency to the project situations
faced and the software process models chosen (Nuseibeh and Easterbrook 2000). A
better understanding of how Design Thinking can be properly integrated into such an
environment (and when making use of it makes sense) is essential to leverage the full
potential of Design Thinking in such a context. A classification is necessary that allows
distinguishing the different facets of both approaches and that explains the occurring
combination opportunities.

4 Parts of this chapter have been published as a preprint and are accepted for publication in: Hehn, J., Mendez,
D., Uebernickel, F., Brenner, W., Broy, M. 2020. “On Integrating Design Thinking for a Human-centered
Requirements Engineering,” IEEE Software, Special Issue Design Thinking.

58

An artifact-oriented reference model that integrates Design Thinking into a holistic
engineering context seems appropriate to accommodate the variety of processes and
methods of both approaches. Artifacts determine what has to be accomplished (the work
products and their interdependencies) instead of how it has to be accomplished (the steps
that have to be taken) (Berenbach et al. 2009). An artifact is defined by its content,
structure, and its notation (syntax and semantics) (Méndez Fernández and Penzenstadler
2014a). Defining a comprehensive view of the “desired” system and its key
functionalities and features is an important objective of both Requirements Engineering
and Design Thinking. Their produced artifacts are used to support product design and
project management decisions throughout the development process and product life
cycle (Berenbach et al. 2009). The quality and appropriateness of these artifacts is a key
factor for a successful software-intensive system. A model that encompasses the
relevant artifacts of Design Thinking and Requirements Engineering can outline the
synergies and differences between both approaches. While keeping a consistent
structure and terminology, this condensed view focuses on the created work products,
their contents, and dependencies and allows to abstract from their particularities of
various processes and methods, which would otherwise render a comparison difficult.

The artifact model is supposed to act as a reference model according to Winter and
Schelp (2006). Reference models are well-known in IS and Requirements Engineering
research. Such a model is a means to capture a conceptual blueprint that can be used as
a draft for system design and development (Fettke and Loos 2007). It contains and
structures all the artifacts referenced, modified, or created in Requirements Engineering
and Design Thinking in software-intensive development projects. In order to be useful,
the model should support the re-use of knowledge and should be adaptable to certain
situations in an efficient manner (Becker et al. 2007). The aim is to integrate DT and RE
artifacts in order to simplify the adaption and configuration (i.e. usage schemes) of
Design Thinking for Requirements Engineering.

This study contributes an artifact model, which emerged from several iterations with
practitioners and academics. The goal is to establish a reference model that should (1)
support the integration of both approaches, Design Thinking and Requirements
Engineering, respecting their different “flavors”, (2) provide flexibility in the way of
working to cope with the various influences in individual project environments and for

59

organizational needs, and (3) enable a reproducible creation of work products in the
context of innovative software-intensive development projects.

5.2 Research Methodology

5.2.1 Research Design

The development and design of the artifact-based reference model for Design Thinking
and Requirements Engineering follows the process as suggested for empirically
grounded reference modeling based on Ahlemann and Gastl (2007). The authors have
examined a variety of process models and synthesized them to a core basic structure
(e.g. Schütte 1998; Fettke & Loos 2004). Figure 6 provides an overview of the five
development phases that have been undertaken for the development of the combined
artifact model. In analogy with systems engineering and the principles of the Design
Science Research (DSR) paradigm, the overall design process is based on a cyclic
structure to allow for iterations via feedback loops. At its core, DSR is a well-established
research approach that is concerned with the rigorous construction of useful IS artifacts,
i.e. constructs, models, methods, or instantiations (Hevner et al. 2004; Peffers et al.
2007).

Figure 6: Development Steps for the Combined Artifact-based Reference Model

(Adapted from Ahlemann and Gastl 2007)

For the purpose of this study, the development process consists of the following five
phases (Ahlemann and Gastl 2007):

(1) Problem Definition: As outlined in the previous section, a systematic comparison
of the concepts of Design Thinking and Requirements Engineering is still
missing despite first evidence regarding complementary benefits. This makes the

60

definition of appropriate usage schemes of Design Thinking for Requirements
Engineering inherently difficult. This is both supported by literature (e.g.,
Vetterli et al. 2013; Kahan et al. 2019) as well as by empirical studies in the
context of this dissertation (chapters 3 and 4). Therefore, the development of a
combined artifact-based reference model to be applied in innovative software-
intensive development projects is regarded as a promising means to solve the
problem.

(2) Construction of a frame of reference: In the context of this study the frame of
reference is defined by an existing and evaluated artifact model for domain-
independent Requirements Engineering (also called AMDiRE) (Méndez
Fernández and Penzenstadler 2014a). This model has been empirically validated
in various academic-industry collaborations over six years of research.
Moreover, relevant RE- and DT-related artifacts were identified to assure a
comprehensive set of elements in the reference model as Schlagheck (2000)
suggests. For a detailed description about this phase see the following sections
5.2.2 and 5.2.3.

(3) Core Construction: The initial combined artifact-based model is constructed by
mapping the artifacts for Design Thinking and Requirements Engineering. The
definition of complementary or overlapping artifacts provides a first version of
the model. The construction is based on an exchange between Requirements
Engineering and Design Thinking experts as well as on existing literature and
research results. For a detailed description about this phase see section 5.2.4.

(4) Validation: The reference model is refined with regard to consistency,
completeness, and comprehensibility based on feedback from practitioners and
academics. The same researchers, who participated in the core construction
phase, were involved. For a detailed description about this phase see section
5.2.4. For a detailed description of the resulting artifact model refer to section
5.3.

(5) Documentation: The documentation of the research results is done in this chapter
of the dissertation. As documentation is a prerequisite for inter-subjective
comprehension and validity, it follows the suggested structure of (1) description
of the construction process (sections 5.2.1 to 5.2.4), (2) clarification and

61

description of the model elements with annotations that include theoretical and
empirical references (sections 5.3 and 5.4), and (3) documentation of case studies
(chapters 6 and 7).

5.2.2 Identification of RE Artifacts

The steadily growing interest in artifact-oriented Requirements Engineering approaches
(e.g. Méndez Fernández and Penzenstadler 2014a) and the development of respective
artifact-based models (e.g. Silva et al. 2009; Friedrich et al. 2008) has been discussed in
section 2.2.3. Based on the evaluation of existing research and literature, an evaluated
and domain-independent Requirements Engineering artifact model (AMDiRE) was
selected as the frame of reference for further modeling activities in the context of this
dissertation (Méndez Fernández and Penzenstadler 2014a). AMDiRE is built up of three
basic components: (1) the artifact model (in form of a content and structure model), (2)
a role model, and (3) a process model. The structure model (Figure 7) provides a logical
positioning of the single artifacts in a simplified manner and acts as a connection to the
role and process model (Figure 8).

Figure 7: AMDiRE Model

(Méndez Fernández and Penzenstadler 2014a, p. 20)

Context Layer

System Layer

Requirements Layer

Stakeholder Model Objectives
& Goals

Constraints
& Rules

!

!

!

!

!

Data Model

E
A

A A
E

System Vision

Functional
Hierarchy

Architecture Overview

System

Function Model
Fun 1

Fun 2

Component Model

C C

Data Model

E
A

A A
E

Behaviour Model

Business Cases

Deployment Requirements

System Constraints

Domain Model

Service ModelUsage Model

Quality Requirements

Risk List

Project Scope

Process Requirements

Glossary

Glossary

Glossary

!
*&"

$

"#$%&'!I)!:;'&;#'5!-.!?&+#.2,+!8UM'1J!@-6'1J!23E!L#6'1+-3'1!#3!?L0#@C!!

4L_3E'T!"'&3`3E'T!23E!<'3T'31+2E6'&!=H(Q2J!MP!(R7!

!"#$&5.1451.#$2'6#D$ *&1/&$ 5"#$.#(#.#,4#$I/&*&$ ('.$4'2;/.*,+$/,6$ *,5#+./5*,+$)!$
/.5*(/45&E$H"*4"$*&$H"A$5"#$&5.1451.#$2'6#D$*&$#P;D/*,#6$*,$6#5/*D$*,$5"#$('DD'H*,+B$!"#$
2'6#D$ 6#5#.2*,#&$ 5".##$ #&&#,5*/D$ /.5*(/45$ 5A;#&E$ H"#.#$ #/4"$ 4/;51.#&$ /$ 4'DD#45*',$ '($
6*((#.#,5$/.5*(/45&B$U*.&5E$5"#$4',5#P5$D/A#.$&"'H&$5"#$*,('.2/5*',$.#D#@/,5$('.$6#(*,*,+$
5"#$ 4',5#P5$ '($ 5"#$ &A&5#2$ 1,6#.$ 4',&*6#./5*',E$ *,4D16*,+$ 5"#$ '@#./DD$;.'Y#45$ &4';#E$
&5/-#"'D6#.$*,('.2/5*',E$6'2/*,$2'6#DE$/,6$1,6#.DA*,+$+'/D&$/,6$4',&5./*,5&B$=#4',6E$
5"#$.#81*.#2#,5&$D/A#.$4/;51.#&$5"#$*,('.2/5*',$.#D#@/,5$('.$6#(*,*,+$h1&#.i$.#81*.#2#,5&$
IA$5/-*,+$/$ID/4-3I'P$@*#H$',$5"#$&A&5#2E$*B#B$;.*2/.*DA$.#81*.#2#,5&$(.'2$/,$#,6$1&#.&l$
;#.&;#45*@#$ H*5"'15$ 4',&5./*,*,+E$ H"#.#$;'&&*ID#E$ *,5#.,/D$.#/D*T/5*',$ 4',4#;5&$ '($ /$
&A&5#2B$!"*.6E$ 5"#$ &A&5#2$ D/A#.$ 4'2;.*&#&$ /$ +D/&&3I'P$ @*#H$ ',$ *,5#.,/D$ &A&5#2$
.#/D*T/5*',$4',4#;5&E$*,4D16*,+$/$D'+*4/D$4'2;',#,5$/.4"*5#451.#$/,6$/$&;#4*(*4/5*',$'($
5"#$ 6#&*.#6$ I#"/@*'.E$ #B+B$ @*/$ (1,45*',$ 2'6#D&B$!"#$ 4',5#P5$ /,6$.#81*.#2#,5&$ D/A#.$
*,4D16#$ 5"'&#$ /&;#45&$ 5A;*4/DDA$ ('1,6$ *,$793.#D/5#6$ /.5*(/45&E$H"*D#$ 5"#$ &A&5#2$ D/A#.$
,4D16#&$5"'&#$/&;#45&$5"/5$/66.#&&$H"/5$&$-,'H,$/&$5"#$&'D15*',$&;/4#$/,6$;.'@*6#$5"#$
,5#.(/4#$I#5H##,$7#81.#2#,5&$9,+*,##.*,+$/,6$6#&*+,$/45*@*5*#&$hFo,6#T$U#.,p,6#T$
/,6$J#,T#,&5/6D#.$MOQK/iB$$

!"#$2'6#D$&;#4*(*#&$4',5#,5$*5#2&$*,$5"#$;.'ID#2$&;/4#$/,6$&'D15*',$&;/4#$/&$H#DD$/&$
5"#*.$*,5#.6#;#,6#,4*#&B$!"#$;.'ID#2$&;/4#$;.'614#&$5"#$6'412#,5$5A;#&$'($4',5#P5$/,6$
.#81*.#2#,5&$ &;#4*(*4/5*',$ /&$ 5H'$ 2/*,$ 4'/.+./*,#6$ /.5*(/45&B$!"#$ &'D15*',$ &;/4#$
;.'614#&$5"#$&A&5#2$&;#4*(*4/5*',$h*,4D16*,+$6'2/*,$&;#4*(*4$/,6$*,6#;#,6#,5$4',5#,5iB$$

!"#$/.5*(/45$2'6#D$'($:F)*79$#,4'2;/&&#&$MK$/.5*(/45$5A;#&E$H"#.#$5"#$r+D'&&/.Al$/,6$
r6/5/$2'6#Dl$/.#$.#;D*4/5#6$*,$5"#$2'6#DB$9/4"$#D#2#,5$'($5"#$2'6#D$*&$6#&4.*I#6$*,$6#5/*D$
,$-',$cBbBbB$

Role Model Process Model

Project Scope
defined

System
Specification
accepted

Business
Analyst

Requirements
Engineer

System
Architect

Architecture
Overview
defined

Requirements
Specification
accepted

System Vision
defined

Context
Specification
accepted

Context
Specification

System
Specification

Requirements
Specification

63

AMDiRE can be considered particularly suitable as a reference model because it
provides a domain-agnostic view on the relevant artifacts in Requirements Engineering.
We take the same view for identifying the DT artifacts and developing the combined
artifact-based model. In addition, AMDiRE provides a robust basis as it synthesizes
several artifact models and evaluates them in different industrial case studies in various
socio-economic contexts. According to the authors, the results have been incorporated
into the daily Requirements Engineering practices of the companies with whom they
have collaborated (Méndez Fernández and Penzenstadler 2014a). This is also the goal
of the combined artifact-based reference model – to provide usefulness in practice. In
addition, the connection to relevant roles and processes, which can be considered helpful
for interpreting the results, is an advantage to other comparable work.

5.2.3 Identification of DT Artifacts

In contrast to determining RE artifacts, no artifact model exists for Design Thinking.

However, a multitude of practitioner compendia present and summarize Design

Thinking-specific methods (e.g. Doorley et al. 2018; IDEO.org 2015; Uebernickel et al.

2015). Gutzwiller (1994) attributes five constituent elements to a method, i.e. activities,

roles, results (i.e. artifacts), techniques, and a metamodel. In this sense, specific results

that are in line with a DT-specific artifact can be assigned to each method. A method

can produce more than one artifact as output. This definition provides the foundation

for determining, synthesizing, and summarizing the artifacts in a DT-based artifact

model. Figure 9 presents the development steps.

Figure 9: Development Steps of DT-based Artifact Model

(Source: own illustration)

64

Identification of DT artifacts: Three sources of evidence provide data triangulation and

construct validity to identify relevant DT artifacts (Yin 2014). First, the results of a

Delphi study about the most commonly used methods in Design Thinking are leveraged

(for a detailed discussion of the results see Hehn et al. 2018). After three evaluation

rounds and out of an initial collection of 172 Design Thinking methods, the study

identified the 52 most relevant ones for designing innovative digital solutions and

services. Each method was ranked by its importance and assigned a phase in the Design

Thinking process model (i.e. define, needfinding, synthesis, ideation, prototyping,

testing). In the context of identifying relevant DT artifacts, the prioritized method list

provides a solid foundation to understand which artifacts (as results of each method) are

considered highly relevant and how to structure them. The output yielded 47 DT-related

artifacts.

Second, data and empirical findings from the multiple-case study presented in chapter 3

are used. This source of evidence can be considered as particularly relevant as the

multiple-case study has investigated the benefits of using Design Thinking for eliciting

requirements. Similar to the data analysis as described in section 3.2.2, document

analysis was performed based on the available data sources (Bowen 2009). This

approach is particularly suitable because the topic is concerned with identifying DT-

related artifacts and all documentation produced within the project can be seen as a

relevant indicator for this endeavor. Accordingly, the analysis yielded 15 DT artifacts

on top of the 48 ones from the Delphi analysis. The additional artifacts were mainly

related to elicitation activities, for example, ‘hot reports’, ‘field research plan’, ‘testing

plan’, ‘constraints’, or ‘need classification’. Eventually, the analysis concluded with 63

DT-related artifacts.

Third, for the purpose of comprehensibility, existing academic literature and practitioner

catalogs were examined to not miss out on any important DT-associated artifacts. Two

additional artifacts that had not been considered before, were added: the ‘UX model’

and ‘source code’ as part of the method of high-fidelity prototyping. The final set

included 65 DT-related artifacts.

65

Construction and evaluation of an initial artifact-based DT model: Figure 10 provides
an overview of the initial set of 65 DT artifacts. The artifacts are structured according
to the Design Thinking phases from top to bottom. The color assigns each artifact to a
Design Thinking phase (green = define, blue = needfinding & synthesis, yellow =
ideation, purple = prototyping, red = testing).

The model shows the artifacts in relation to each other, either by denoting dependencies

(black arrowhead) or by classifying sub-artifacts (white arrowhead). An example for the

former is the artifact ‘stakeholder map’ that is dependent on the ‘design

challenge/problem statement’. An example for the latter is the artifact ‘secondary

research report’ that is composed by the artifacts ‘trend report’ and ‘benchmarking

report’.

The artifact model was evaluated in unstructured interviews with four Design Thinking

experts from academia and industry. All of the experts were required to have either

applied or researched Design Thinking methods for a considerable amount of time.

Specifically, people were chosen when they had a proven track record of using Design

Thinking in the context of innovative software-intensive projects for the past three years.

During the conversations with experts some incremental adaptions were made

immediately, others were discussed iteratively. Based on the feedback three main

findings evolved: First, the completeness of relevant artifacts and their attributions to

the Design Thinking phases have been confirmed by all experts. Second, due to initial

confusion of the experts, the original structure was adapted for better readability and

comprehensibility (as presented in Figure 10). The artifacts were arranged from top to

bottom according to the chronological order in which they typically appear in a project.

Third, it became apparent that the model was perceived as rather complex, especially in

comparison to the reference frame from Requirements Engineering (Figure 7).

Accordingly, the model was refined to fit to the frame of reference in terms of

granularity of the artifacts.

!
**"

$

"#$%&'!(H)!b'&1#-3!(!-.!+/'!?&+#.2,+W921'E!0'1#$3!8/#3G#3$!L-E'6!!

4*-%&,')!-53!#66%1+&2+#-37!

" !

!
*+"

$

"#$%&'!(()!b'&1#-3!=!-.!+/'!?&+#.2,+W921'E!0'1#$3!8/#3G#3$!L-E'6!

4*-%&,')!-53!#66%1+&2+#-37!

" !

�������������������

���������������������������

�������������������������

�������

���������

����������

���������

�������

���������

������������

���

��������������

�����������

������

�������

���������

��������

���������

����

��������

������

���������

�������

�������� ������������

�����

���������

�����

�������������

����������

����������������

����������

��������������

����������

���������������

������������

��������������

���������

�����

����

�����������������

������������

�������������������

������������

68

The second version of the model is shown in Figure 11 and encompasses 21 artifacts.

With the intent to reduce the number of artifacts, some of the DT artifacts in the initial

model were aggregated, for example, the ideation artifacts (including ‘ideation

questions’, ‘idea napkins’, ‘ideas’, ‘prioritization frameworks’, ‘scribbles’) were

synthesized into one single DT artifact named ‘solution ideas’. In addition, the

aggregation of 23 prototype artifacts into three different content types (i.e. low-,

medium-, and high-fidelity) and their respective ‘test results’ resulted in a significant

reduction of complexity as compared to the initial artifact model. The arrows denote

input-output relationships between the artifacts. For reasons of simplicity not all

interdependencies are depicted in the model.

Construction of the final artifact-based Design Thinking model: The revised and final

version of the artifact-based Design Thinking model is visualized in Figure 12. It

encompasses 24 DT artifacts structured into problem-oriented artifacts (sub-classified

into define, needfinding, and synthesis) and solution-oriented artifacts (sub-classified

into ideation and prototype & test).

Compared to the second version, the following changes were made: (1) Separation of
the artifact ‘assumptions and constraints’ into two distinct artifacts because each artifact
specifies different content; (2) elimination of ‘research plan’ and ‘test plan’ as their
output was considered more important than the actual plan itself; (3) renaming of
selected artifacts for more consistency within the model, for example, ‘persona cosmos’
was re-phrased as ‘personas’.

69

Figure 12: Final Artifact-based Design Thinking Model

(Source: own illustration)

DT Phase DT Artifact
Selected relations between artifacts

Explanation

í ƨ

8 ß

6

ï

?

ú

0

ô

ƭ

Ŕ

Ź

/

*

d

ƚ

¸

#

p

Ê B

½

Ý

System
Vision

/PNO�ÄKLSP[`�
Prototype

Usage
Model

Usability-
oriented
Test Results

Service
Model

Design
Challenge/
Project Scope

Thematic
Clusters

3V^�ÄKLSP[`�
Prototypes

Secondary
Research

Solution
Ideas

Design
Space Map

Constraints
& Rules

Personas

Scope-oriented
Test Results

Field
Studies

Objectives
& Goals

Opportunity
Areas

Assumptions

Business
Case

Customer
Journey

Stakeholder
Map/Model

Insights

4LKP\T�ÄKLSP[`�
Prototypes

Feature-
oriented
Test Results

D
EF

IN
E

SY
N

TH
ES

IS
P

R
O

TO
TY

P
E

&
 T

ES
T

N
EE

D
FI

N
D

IN
G

ID
E

AT
IO

N

70

5.2.4 Core Construction and Validation

The steps of the core construction and evaluation of the final combined artifact-based

reference model for Design Thinking and Requirements Engineering are presented in

Figure 9.

Figure 13: Construction and Evaluation of Combined Artifact Model

(Source: own illustration)

Mapping DT- and RE-related artifacts: The process of mapping artifacts from Design
Thinking and Requirements Engineering was performed by two researchers, including
one Design Thinking expert and one Requirements Engineering expert. Both experts
possessed practical and academic experience (> 5 years) in their respective area of
expertise. The mapping process included two main activities. First, all DT artifacts were
discussed and assigned to one of the three abstraction layers (context, requirements,
system) from the AMDiRE structure framework. Second, the content of artifacts from
both Design Thinking and Requirements Engineering was compared and, then either
attributed to only one of the two approaches or to both. The comparison was performed
with 24 DT artifacts and 24 RE artifacts. Based on these activities an initial combined
artifact-based model for Design Thinking and Requirements Engineering was created.

!
+%"

$

"#$%&'!(Q)!\3#+#26!b'&1#-3!-.!>-B9#3'E!?&+#.2,+W921'E!@'.'&'3,'!L-E'6!

4*-%&,')!-53!#66%1+&2+#-37!

\%,&$*74$'%,.#,3.(-#57#$'%,.%).#,. ','$'#5.4%02',(3.0%3(5D.!"#$ *,*5*/D$@#.&*',$'($ 5"#$
2'6#D$*&$6*@*6#6$*,5'$)!3/&&'4*/5#6$/.5*(/45&$',$5"#$D#(5$&*6#$/,6$793/&&'4*/5#6$/.5*(/45&$
',$5"#$.*+"5$&*6#B$!"#$4'D'.#6$/.5*(/45&$*,6*4/5#$5"/5$5"#$4',5#,5$'($5"#$/.5*(/45&$4/,$I#$
4.#/5#6IA;#.('.2*,+$#*5"#.$)#&*+,$!"*,-*,+$'.$7#81*.#2#,5&$9,+*,##.*,+$/45*@*5*#&B$
!"#$;'&*5*',$'($5"#$)!$/.5*(/45&$*,6*4/5#&$H"*4"$',#&$I#D',+$5'$5"#$4',5#P5$D/A#.$h(.'2$
5';$5'$I'55'2$/DD$1,5*D$5"#$.'H$'($D'H3(*6#D*5A$;.'5'5A;#&E$&4';#3'.*#,5#6$5#&5$.#&1D5&E$/,6$

�������������������

����������� �����������

�����

�������
���������

������������������������

���

�������
���������

���������
�������

�����������������
������

�������������
����������

��������������

��������������
����������

����

����������������
����������

������

���������
�����

������

�������

����������������������

���������

��������

�������� ������������
�����

�����������������
������������

�������������������
������������

���������

�����������������

���������������
������������

�����

�������������

������������������

�����������
�������

�����������
�������

������������
�����

�������
�����

�������
�����

�������
�����

����

����

������
�����������

�����������������
�����

������������

��������

����������
���������

��������

��������

��������
����

������

������

�����
�����

����
�����

��������

�����

��������
�����

������������

�������
������������

����������
������������

�������
������������

����

�����

���������

�������������

�������������

72

test plan) and which ones to the requirements layer. There are no DT artifacts that can
be assigned to the system layer.

The initial model was evaluated in the form of semi-structured interviews with four
Design Thinking experts and three Requirements Engineering experts. Regarding the
selection of Design Thinking experts, the recommendation of Ahlemann and Gastl
(2007) was followed, i.e. to involve the same persons who participated in the first
interviews. As interview partners with knowledge in building software-intensive
systems were included in the first round, this knowledge was considered as adequate
enough to also evaluate the combined artifact-based model for Design Thinking and
Requirements Engineering. One of the advantages of including the same interview
partners is that they are already known and their respective statements can be more
easily qualified with respect to each other. Regarding the selection of Requirements
Engineering experts, it was made sure that they possessed the required knowledge and
experience for evaluating the combined artifact model (Ahlemann and Gastl 2007). In
this case, expertise in applying Requirements Engineering methods in practice as well
as in building artifact-oriented Requirements Engineering models was required. In
addition, basic knowledge in Design Thinking was a prerequisite.

The experts were confronted with the artifact model and were asked for feedback
regarding the strengths and weaknesses of the model. Furthermore, possible
improvements were discussed. Following the suggestions of the experts, the model was
reconstructed. For example, feedback regarding (1) structure and (2) artifacts was
considered and integrated into a new version of the model. First, in terms of structure,
the model was perceived as confusing because it still felt like two models next to each
other without clear connections. Therefore, the artifacts were integrated into one clear
structure. Second, in terms of artifacts, the number of artifacts was reduced. For
example, eight artifacts that can be related to Design Thinking and Requirements
Engineering were merged into one artifact while keeping their respective names (e.g.
the ‘stakeholder map’ from Design Thinking was merged with the ‘stakeholder model’
from Requirements Engineering and aggregated in one artifact labeled ‘stakeholder
map/model’).

Based on the feedback from experts, the initial model was refined and a second version
was created that closely resembled the final artifact model as presented in Figure 15.

73

Subsequently, the previous interview partners were consulted for feedback with the
objective to validate, refine, and stabilize the model construction. Following the
approach by Lincoln and Guba (1985), this cyclic process was terminated when no more
insights could be gained by new interviews. It was concluded that consent was reached
among the experts regarding the model's propositions. Eventually, confirming feedback
was received to validate the model, especially regarding completeness and
comprehensibility.

Controversial feedback was provided about the DT-related prototype artifacts. Some of
the experts also regarded them as RE-related artifacts as they can also be created in
traditional Requirements Engineering approaches. Finally, the artifacts regaring
prototypes were kept as DT-specific in order to highlight their heavy usage as a typical
Design Thinking practice in comparison to commonly applied Requirements
Engineering practices.

Final combined model: Figure 15 illustrates the final version of the combined artifact-
based reference model that integrates 40 DT- and/or RE-related artifacts. The model is
described and discussed in detail in the next section 5.3. The practical application of the
model is indicated in chapters 6 and 7. For instance, the model was used to decide
between different operationalization strategies that combine Design Thinking and
Requirements Engineering for innovative software-intensive development projects.

5.3 The Combined Artifact-based Reference Model

In the following, the combined artifact model is described. It results from the
consolidation of the conceptual and empirical contributions that were introduced in the
previous sections. In this section, the basic structure of the model is presented first, then
the distribution of DT and RE artifacts is elaborated, and at the end a detailed description
of each artifact and its relations to other artifacts in the model is provided. The combined
artifact model serves to

(1) understand the different abstraction levels (context, requirements, system) in
which artifacts can be created, refined and/or decomposed

(2) permit progress control by means of completion levels

(3) enable quality assurance in terms of the artifacts’ content for solution-orientation.

74

Figure 15: Final Combined Artifact-based Reference Model

(Source: own illustration)

5.3.1 Overall Structure

The overall structure of the model consists of three layers (context, requirements,
system) each capturing a collection of relevant artifacts from Design Thinking and/or
Requirements Engineering. All artifacts are denoted in rectangles including the name of
the artifact and a number. Associations depict relations between the artifacts, however
not exhaustive, for reasons of reducing visual complexity. The Design Thinking phases
are integrated into the overarching structure of three layers to provide a sub-structure
for organizing the DT artifacts. The phases are marked through a dotted line and can be
found in the context and requirements layer. Table 8 summarizes the elements used to
compose the artifact model.

DT Phase DT Artifact

RE Artifact DT and RE Artifact

Selected relations between artifacts

Explanation

22

24

25

23

26

8

6

í

ß

ƨ
27
ż

30
ż

31
ż

29
Ĉ

28ĩ

34
¼

33
ż

32
ż

36
ę

39
ĭ

35
T

38
÷

37
Ĉ

40
¼

01

12

18

10

17

04

15

20

07

02

13

19

11

05

16

21

08

03

14

06

09

ï

?

ú

0

ô

ƭ

Ŕ

Ź

/

*

d

ƚ

¸

#

p

Ê

B

½

Ý

Ç

¼

P
R

O
TO

TY
P

E
&

 T
ES

T

System
Vision

Quality
Requirements

Functional
Hierarchy

/PNO�ÄKLSP[`�
Prototype

Usage
Model

Usability-
oriented
Test Results

Service
Model

Design
Challenge/
Project Scope

Thematic
Clusters

3V^�ÄKLSP[`�
Prototypes

Secondary
Research

Solution
Ideas

Design
Space Map

Constraints
& Rules

Personas

Scope-oriented
Test Results

Field
Studies

Objectives
& Goals

Opportunity
Areas

Assumptions

Business
Case

Customer
Journey

Domain
Model

Glossary

Stakeholder
Map/Model

Insights

4LKP\T�ÄKLSP[`�
Prototypes

Feature-
oriented
Test Results

Process
Requirements

Deployment
Requirements

Risk
List

Data
Model

GlossarySystem
Constraints

Function
Model

Behavior
Model

Architecture
Overview

Component
Model

Data
Model

Glossary

D
EF

IN
E

SY
N

TH
ES

IS
P

R
O

TO
TY

P
E

&
 T

ES
T

N
EE

D
FI

N
D

IN
G

ID
E

AT
IO

N

REQUIREMENTS LAYER

SYSTEM LAYER

CONTEXT LAYER

75

Visual
Representation Description

The folder box denotes the layers context, requirements, and system as the
overarching structure of the artifact model

The dotted line indicates the Design Thinking phases (Define, Needfinding,
Synthesis, Ideate, Prototype, Test) for means of comprehensibility

The dark rectangle denotes a DT artifact including the artifact name, a number
in the artifact model and an icon.

The grey rectangle denotes an RE artifact including the artifact name, a number
in the artifact model and an icon.

The white rectangle denotes a combined artifact (DT and RE artifact) including
the artifact name, a number in the artifact model and an icon.

The arrow denotes a unidimensional relation between artifacts. It expresses an
input-output relationship.

Table 8: Overview of Elements in the Artifact Model

(Source: own illustration)

The context layer describes why the system is needed. The context is the part of the “real
world” that affects the requirements for the system and, thus, the system itself. This
comprises the business context as well as the operational context that (physically)
surrounds the system under consideration (Braun et al. 2014, p. 26). Context artifacts
cover the information relevant to define the context and include, for example, the overall
project scope, stakeholder information, a domain model, and assumptions of the project
team, and underlying goals and constraints. Information within this layer is mainly
documented via natural language.

The requirements layer encompasses what is necessary to operate in this context. On
this level, the interaction between users and the system is specified by taking a black-
box view without constraining internal realization concepts (Méndez Fernández and
Penzenstadler 2014a, p. 14). Requirements artifacts capture the information relevant to

Design
Space Map07

/
Glossary09

¼
Design
Challenge/
Project Scope

01
ï

Design
Space Map07

/
Glossary09

¼
Design
Challenge/
Project Scope

01
ï

Design
Space Map07

/
Glossary09

¼
Design
Challenge/
Project Scope

01
ï

Design
Space Map07

/
Glossary09

¼
Design
Challenge/
Project Scope

01
ï

Design
Space Map07

/
Glossary09

¼
Design
Challenge/
Project Scope

01
ï

Design
Space Map07

/
Glossary09

¼
Design
Challenge/
Project Scope

01
ï

76

define the conditions or capabilities the system should exhibit at its interface (Braun et
al. 2014, p. 26). They include, for example, the system vision, high-fidelity prototypes,
a usage and behavior model, and the function hierarchy as entry point for the system
layer. Information within this layer is documented using both natural language and
conceptual models (data, function, goals, scenario).

The system layer includes information on how the system is to be realized. On this level,
a glass-box view on the system is described in terms of structure and behavior. System
artifacts include, for example, a logical component architecture and a specification of
the desired behavior, e.g. via function models. (Méndez Fernández and Penzenstadler
2014a, pp. 14-15). Information within this layer is documented using both natural
language and conceptual models (data, function, behavior).

5.3.2 Distribution of Artifacts

The combined artifact model consists of three artifact types that encompass 40 content
items with various relations. Out of all artifacts, 16 can be associated with Design
Thinking, 16 with Requirements Engineering, and 8 with both (see Figure 16). The latter
can be further distinguished into artifacts with similar semantics but different purpose
(3 out of 8). These include the design challenge/project scope (#01), the business case
(#03), and the objectives and goals (#05). The main reason for their different purpose is
that in Requirements Engineering these artifacts have a convergent nature while in
Design Thinking they can be considered as open because they provide the opportunity
for a broad context exploration. Detailed information about all content items and the
underlying concepts and differences are provided in Section 5.3.3.

Figure 16: Overall Distribution of Artifacts

(Source: own illustration)

Different purpose:
(#01) (#03) (#05)

Similar purpose:
(#02) (#04) (#24) (#25) (#26)

16 16
5

3

DT ARTIFACTS RE ARTIFACTS

77

The distribution of artifact types according to the specific layers in the artifact model is
depicted in Table 9.

Layer DT DT and RE RE Total

Context 14 5 2 21

Requirements 2 3 8 13

System 0 0 6 6

Table 9: Layer-related Distribution of Artifacts

(Source: own illustration)

The model positions the majority of artifacts within the context layer (21). The majority
of DT-related artifacts can also be found here (14 DT only and 5 DT & RE artifacts).
Next to the data model (#29, #37) the glossary (#09, #34, #40) is an RE-only artifact
that can be found in all layers. This artifact type is revised based on the specific layer
objectives. Starting in the context layer, the design challenge/project scope (#01) defines
the relevant problem and primary scope of a project. Within this realm, the stakeholder
map/model (#04) captures the most relevant stakeholders and their relationships. They
provide one important rationale for the requirements and goals of the system (#05). The
domain model (#06) contains context information and constraints (#02) about the
operational environment connecting it to the requirements layer. DT artifacts
complement and expand these mainly RE-related artifacts with a broad and human-
centered perspective. For example, field study results (#11) and insights (#15) help to
frame the project scope (#01) and inform specific use cases and scenarios (#25, #26) as
defined in the requirements layer. Low- and medium-fidelity prototypes (#18, #20) are
mainly leveraged to better understand stakeholder needs and system context.

The requirements layer contains five DT-related artifacts (two DT only and three DT &
RE artifacts) and eight RE artifacts. The system vision (#24) denotes the general concept
and idea of the intended system. High-fidelity prototypes (#22) are a way to visually
enrich the system vision (#24) and to illustrate the key functionalities and general form
of interaction (app, desktop solution etc.). Agreed upon by the relevant stakeholders, a
system scope, i.e. major features and use cases as well as its constraints (#32), is
specified. A service model (#26) defines the services the system shall offer
complementary to the use cases defined through a use case model (#25). User-visible

78

system functions are structured in a functional hierarchy (#28) which is the entry point
into the system layer.

The system layer holds six RE artifacts and none of them are related to DT. While the
context and the requirements layers include the information aspects that are typically
found in DT- and RE-related artifacts, the system layer includes the items addressing
what is known as the solution space and providing the interface for Requirements
Engineering into design activities. In the system layer the functions of the functional
hierarchy (#25) are related to components (#38), a functional model (#36), and their
internal behavior (#39), which also provides the basis to identify the data model (#37).

5.3.3 Description of Artifacts

The structure and information of the description of each artifact type are illustrated in
the following overview:

• Artifact Name: Captures the name of the artifact type and references the assigned
number (#) within the artifact model. If the artifact can be attributed to both
Design Thinking and Requirements Engineering, different descriptions for both
approaches (e.g., Design Challenge and Project Scope) are marked by a slash (/).
In this case, the description for the Design Thinking-related artifact is provided
first and the Requirements Engineering expression second.

• Description: Describes the content, main elements, and the structure of each
artifact type (e.g. the individual slots of a use case description or the types of
elements in a context model).

• Purpose: Contains a brief description of the purpose of each artifact type. This
description includes the rationale why artifacts of this type have to be created and
why they are relevant in the problem analysis or development processes. For the
artifacts that relate to both Design Thinking and Requirements Engineering, an
additional paragraph is included to highlight similarities and/or differences.

• Interdependencies: Summarizes the relationships between the artifacts with
regard to their content within the artifact model. The description differentiates
between the input that artifacts receive from the content of other artifacts and the
output that they provide for other artifacts in the artifact model.

79

• Notation: Suggests appropriate documentation and specification techniques for
each artifact (e.g. natural language, Unified Modeling Language (UML) class
diagrams, model-based documentation).

• Example: Provides a picture and short example case from practice to complement
the description. Additional information in the text box can contain exemplary
process steps to create the artifact or evaluation criteria for checking the quality
of the created artifact.

5.3.3.1 Design Challenge / Project Scope (DT and RE Artifact #01)

Description: The ‘design challenge / project scope’ describes the business problem that
defines the starting point in every design process for eliciting needs and requirements
(IDEO LLC. 2012, p. 20).

Purpose: It provides direction and guidance for all further problem analysis tasks and
development efforts. Although the semantics of this artifact type are similar to both
Design Thinking and Requirements Engineering, their purpose can differ significantly.
In Design Thinking, the design challenge provides a direction, but not yet an intended
solution (Uebernickel et al. 2005, p. 88). It rather inhabits an exploratory character, i.e.
to open the problem space and leave room for unpredicted discoveries that might even
lead to a potential re-definition of the challenge at later project stages. In Requirements
Engineering, the project scope pursues a convergent objective, i.e. to set a clear
statement of intent of a potentially resulting project (Méndez Fernández and
Penzenstadler 2014a, p. 37).

Interdependencies: The design challenge / project scope is the starting point of each
project and, thus, provides input for project-related objectives and goals (#05),
assumptions (#08), process requirements (#27), and deployment requirements (#30).

Notation: This artifact is usually specified by natural text.

80

Example: Design Challenge / Project Scope

Figure 17: Example of a Design Challenge

(Source: University of St.Gallen, DT@HSG 2014)

Example of a template for a design challenge. The formulation usually starts with the
phrase “How might we”, the primary target group, and the context or pre-conditions.
Two examples from two different energy companies in Germany: “How might we
design future service offerings for residential customers considering the growing
digitization of the industry?” and “How might we design a smart meter based added
value product or service for households and business customers?”

5.3.3.2 Constraints and Rules (DT and RE Artifact #02)

Description: ‘Constraints and rules’ are restrictions and fixed design decisions that have
an effect on the system design and implementation and must be obeyed or satisfied.
Constraints might be interdependent and can be of legal, cultural, technical, physical,
and environmental nature (Méndez Fernández and Penzenstadler 2014a, p. 37).
Constraints do not provide any additional capability to an intended system; they rather
control the way in which one or more capabilities are to be delivered.

Purpose: Constraints and rules limit decision-making in projects. Establishing them
helps to run and manage the project within the intended business and technical
restrictions (IDEO LLC. 2012, p. 19). However, too many constraints, all of them
reasonable, can also make a development impossible (Hull et al. 2011, p. 111), which is
why they should be examined carefully. The limiting factor of constraints and rules in
Design Thinking is often explicitly challenged, for example via low-fidelity Dark Horse

future service offerings
How might we design

for

considering/in a world where

residential customers

the growing digitization of the
industry

Description of the situation/object/experience
that shall be redesigned

Description of the user (group) who shall be the
primary target of the solution

Description of the conditions, problems, changes
or settings which affect the situation /experience,
persona or the potential solution. Establish
constraints if necessary.

81

prototyping (Uebernickel et al. 2005, pp. 36-37) to challenge those constraints and think
beyond the given limitations.

Interdependencies: Constraints and rules are closely associated with the solution’s
objectives and goals (#05) and can provide input for the creation of low-fidelity
prototypes (#18).

Notation: Constraints and rules are usually specified by natural text.

Example: Constraints and Rules

Figure 18: Connecting Constraints and Capabilities

(Source: Hull et al. 2011, p. 111)

Constraints are often related to safety, comfort, availability, ease-of-use, and running
costs that affect the capability of a system. Business constraints are for example
related to the project schedule (“the final deliverable needs to be finished by…”), the
team setting (“we need these areas of expertise in the project”), or the human and
financial resources available (“we have to run this project with a budget of …”).
Technical constraints are for example related to a specific programming language
(“Java has to be used”), operating system (“It must work on Linux”), or specific (open
source) libraries. (Hull et al. 2011)

5.3.3.3 Business Case (DT and RE Artifact #03)

Description: The ‘business case’ provides the argumentation for a design project and
typically includes an executive summary, a problem analysis, several solution options,
a project description (timeline, resources, budget), a cost-benefit analysis for all

!
,&"

;.';'$ ';5*',&$ h*,4D16*,+$ 5"#$ 4/D41D/5*',$ '($,'$ /45*',$ /5$ /DDiE$.*&-&E$ /,6$ 6#614#6$
.#4'22#,6/5*',&$hJ#,T#,&5/6D#.$MOQe/iB$$

@C#0;5(D.`7&',(&&.\#&(.

$
"#$%&'!(a)!CK2BM6'!-.!2!O%1#3'11!>21'!0-,%B'3+!

4*-%&,')!-53!#66%1+&2+#-37!

:$ I1&*,#&&$ 4/&#$ 4/,$ "/@#$ 6*((#.#,5$ ('.2&$ /,6$ 6#+.##&$ '($ 6#5/*DB$!"#$ ('DD'H*,+$
#D#2#,5&$/.#$4',&*6#.#6$#&&#,5*/D$&'$5"/5$/DD$5"#$.#D#@/,5$*,('.2/5*',$*&$*,4D16#6S$hQi$
5"#$.#/&',&$H"A$5"#$;.'Y#45$H/&$*,*5*/5#6EhMi5"#$';5*',&$5'$/66.#&&$5"#$;.'ID#2$h5"*&$
4/,$*,4D16#$&;#4*(*4$&'D15*',&$I15$/D&'$';5*',&$',$"'H$5'$/66.#&&$5"#$;.'ID#2iEhbi5"#$
#P;#45#6$ I#,#(*5&$ /,6$ D*2*5/5*',&E$ hKi$ 5"#$;.'Y#45#6$ 5*2#D*,#$ /,6$ I16+#5$,##6#6$ 5'$
4'2;D#5#$ 5"#$;.'Y#45E$ /,6$ hci$ 2/Y'.$ ';;'.51,*5*#&$ '.$.*&-&$ H"#,$ 1,6#.5/-*,+$ 5"#$
;.'Y#45B$

b7*;%&(S$!"#$I1&*,#&&$4/&#$*&$1$5'$./5*',/D*T#$5"#$6#&*+,$;.'Y#45$/,6$1$5'$4',@*,4#$
/$6#4*&*',32/-#.$'.$;'5#,5*/D$;.'Y#45$&;',&'.B$=*2*D/.$5'$5"#$6#&*+,$4"/DD#,+#t;.'Y#45$
&4';#$h}OQiE$5"#$/.5*(/45$#P*&5&$*,$I'5"$)#&*+,$!"*,-*,+$/,6$7#81*.#2#,5&$9,+*,##.*,+B$
0'H#@#.E$*5&$;1.;'&#$/,6$.#/D*T/5*',$2/A$6*((#.B$!"#$2/*,$'IY#45*@#$'($5"#$rI1&*,#&&$

83

case’ in Design Thinking is to evaluate the available budget regarding project execution,
i.e. resources and timeline. As the actual outcome is usually not specified when applying
Design Thinking, it more or less recommends whether to use Design Thinking or not.
The project scope in Requirements Engineering can be much narrower and may have
concrete solution options in mind.

Interdependencies: The business case is usually intended to satisfy the statement of
intent from the design challenge/project scope (#01) and rationalize the goals stated
under objectives and goals (#05) (Méndez Fernández and Penzenstadler 2014a, p. 37).

Notation: The business case is usually specified by natural text in a business case
document.

5.3.3.4 Stakeholder Map / Stakeholder Model (DT and RE #04)

Description: A ‘stakeholder map/model’ is a list of all relevant stakeholders (internal
and external) for the project (Glinz and Wieringa 2007, p. 18). A stakeholder is defined
as “an individual, group of people, organization or other entity that has a direct or
indirect interest (or stake) in a system” (Hull et al. 2011, p. 7). The respective interest
can stem from using the potential system, developing it (the project team), having a
financial interest in the solution (in terms of revenue, costs, sales), being negatively
affected it (in terms of cost or potential harm), being responsible for the system (manage,
introduce, operate, or maintain), or constraining the system (as regulators). The types of
stakeholders are frequently expressed via the roles they inhabit in a project. They
typically include the project sponsor or client, the project manager, the product manager,
other (senior) decision-makers, investors, end users, customers, operators, product
disposers, sales and marketing, or regulatory authorities (Hull et al. 2011, p. 96; Glinz
and Wieringa 2007, p. 19). Each stakeholder group can be assessed according to their
impact on the project (high, medium, low) or the risk incurred by neglecting a specific
group (critical, major, minor). In complex cases, the ‘stakeholder map/model’ can be
complemented with each of the stakeholder group’s goals, their relationships, and
dependencies including conflicts and information flows.

Purpose: The stakeholder map/model helps to identify key internal and external
stakeholders as sources of requirements. Based on the list of stakeholder roles and their
identified priorities, the project team can determine concrete interview partners

84

(Stickdorn and Schneider 2012). In addition, the stakeholder overview provides
guidance for effective project management and communication. The purpose and
realization of the stakeholder map/model is similar for both Design Thinking and
Requirements Engineering.

Example: Stakeholder Map/Model

Figure 20: Example of a Stakeholder Map

(Source: University of St.Gallen, DT@HSG 2016)

The stakeholder map in Figure 20 depicts the relevant stakeholder groups around a
patient as a target user of a pharmaceutical company for designing a new patient
support program (PSP). The map included anyone with a significant input such as the
personal support network of the patient (family, friends, care-givers, and support
groups) or the medical support network like nurses, doctors and specialists and
rehabilitation facilities. Each of the stakeholder group was assessed in terms of
potential input and impact on the project (e.g. “personal support network: further input
about patients, also possible users; large impact on project outcome”).

Interdependencies: The stakeholder map/model receives input from the design
challenge/project scope (#01) and provides input for phrasing the objectives and goals
(#05) and for the creation of the design space map (#07). The user groups defined in the
stakeholder map/model are particularly relevant for designing the specific user

85

interaction with the intended system (e.g. as part of the usage model (#25) (Méndez
Fernández and Penzenstadler 2014a, p. 37).

Notation: The stakeholder map/model can be specified by natural text in form of a list
or a diagram or via a UML actor hierarchy.

5.3.3.5 Objectives and Goals (DT and RE Artifact #05)

Description: ‘Objectives and goals’ are prescriptive statements of intent regarding
business, usage, or system goals issued by a stakeholder (van Lamsweerde 2009, p. 260).
Goals are related to each other in terms of conflicts, constraints, or support and can be
phrased on different abstraction levels from high-level (e.g. strategic results) to low-
level (e.g. specific technical aspects of the target system). Types of goals can be quality-
related (non-functional goals like usability, performance, security, accuracy, reliability,
e.g. “serve the customer quickly”), optimization-specific (increase/decrease of
measurable items), behavioral (functional goals, e.g. “provide cash”), and also anti-
goals (e.g. safety hazards, security threats) (Rolland and Salinesi 2005). As opposed to
requirements that are objectively measurable/decidable (e.g. “The user interface must
support the languages…”), goals are often hard to measure (e.g. “easy to use”).

Purpose: Objectives and goals can provide direction for problem analysis and system
development tasks. In addition, they offer early identification and resolution of conflicts
and they justify the rationale of a requirement. The artifact can exist in both Design
Thinking and Requirements Engineering. If given in Design Thinking, the list contains
mainly high-level business goals and objectives provided by the project sponsor to keep
outcome and specifics open for exploration. In Requirements Engineering they can be
much more precise according to the mentioned modeling and description techniques.

Interdependencies: The artifact objectives and goals gains its input from the content of
the design challenge/ project scope (#01), from defined constraints and rules (#062),
from the analysis in the business case (#03), and the stakeholder groups in the
stakeholder map/model (#04). And it provides the foundation for developing a domain
model (#06), system vision (#24), and usage model (#25).

Notation: Objectives and goals’ can be specified by natural text in diagrams or via goal
graphs like KAOS (keep all objectives satisfied).

!
,*"

@C#0;5(D.[2B(4$'-(&.#,3.f%#5&.

$
"#$%&'!=()!CK2BM6'!-.!:9c',+#;'1!23E!Y-261!

4?E2M+'E!.&-B!L_3E'T!"'&3`3E'T!23E!<'3T'31+2E6'&!=H(Q97!

U*+1.#MQ &"'H&$/,$#P/2;D#$'($ /$+'/D$2'6#D$ 5.##$ ('.$ /,$/15'2/5*4$ 5#DD#.$2/4"*,#$
h:!Fi$*,4D16*,+$I1&*,#&&E$1&/+#E$/,6$&A&5#2$+'/D&B$9/4"$&A&5#2$+'/D$*&$4',,#45#6$
5'$/$1&/+#$+'/D$/,6$#/4"$1&/+#$+'/D$5'$/$I1&*,#&&$+'/DB$:$"*#./.4"*4/D$6#4'2;'&*5*',$
'($+'/D&$*,5'$&1I3+'/D&$*&$1,6#.5/-#,$H*5"$&A&5#2$+'/D&B$!"#$2'6#D$/D&'$&"'H&$5".##$
;'&&*ID#$6#;#,6#,4*#&$I#5H##,$5"#$+'/D&ShQi!'$&7;;%*$$#/4"$'5"#.$ *,$/4"*#@*,+$/$
+'/D$h#B+B$Z/DD$D/H&$21&5$I#$'I#A#6[$*&$&1;;'.5#6IA5"#$&A&5#2$+'/D$ZH*5""'D6$4/.6$
/(5#.b(/1D5A$J<?$/55#2;5&[iEhMi5'$I#$*,$4%,)5'4$$H*5"$#/4"$'5"#.$h#B+B$Z).#$1&/+#[$
/,6$Z&*2;D#$1&/+#[iE$/,6$hbi$5'$/45$/&$/$4%,&$*#',$$('.$/,'5"#.$+'/D$h#B+B$5"#$&A&5#2$
+'/D$ZD'H#.$/@#./+#$,12I#.$'($4D*4-&t*,5#./45*',&[$*&$4',&5./*,#6$IA$5"#$1&/+#$+'/D$
Z@*&1/DDA$*2;/*.#6$;#';D#$21&5$I#$/ID#$5'$1&#$:!F[i$hJ#,T#,&5/6D#.$MOQeIE$;B$bQ3
KMiB$

�������� ��������������������������������

8(&4*';$'%,D$!"#$ r6'2/*,$2'6#Dl$ *&$ /$ 4',4#;51/D$2'6#D$ 4'2;'$ '($ /DD$ 5"#$ 5';*4&$
.#D/5#6$ 5'$ /$ &;#4*(*4$;.'ID#2B$!"#$ 6'2/*,$ 'IY#45&$ /.#$,'5$ &'(5H/.#$ 'IY#45&$ I15$ /$
.#;.#&#,5/5*',$ '($.#/D3D*(#$ 4',4#;51/D$ 'IY#45&B$!"#$ 2'6#D$ 4/;51.#&$ 5"#$ (1,6/2#,5/D$
I1&*,#&&$ #,5*5*#&E$ 5"#*.$ /55.*I15#&E$.'D#&E$ /,6$.#D/5*',&"*;&E$ /,6$ 5"#$ 4',&5./*,5&$ 5"/5$
,(D1#,4#$5"#$;.'ID#2$6'2/,$h:2ID#.$MOQRm$J#,T#,&5/6D#.$MOQe4E$;B$biB$$

Objectives and goals

<<business_goals>>
All laws must be obeyed

<<business_goals>>
High security standards

<<business_goals>>
High cust. satisfaction

<<usage_goals>>
Secure usage

<<usage_goals>>
Simple usage

<<usage_goals>>
Visually impaired people
must be able to use ATM

<<system_goals>>
Withhold card after 3 faulty PIN attempts

<<system_goals>>
Newest security software to prevent fraud

<<system_goals>>
Lower average number of clicks/interactions

<<system_goals>>
Visually impaired people must be able to

enter information

##JVUÅPJ[Z%%

<<supports>>

<<constraints>>

!
,+"

b7*;%&(D$!"#$ 6'2/*,$2'6#D$ #,&1.#&$ /,$ 1,6#.&5/,6*,+$ '($ 5"#$ D/,6&4/;#$ '($ I1&*,#&&$
#,5*5*#&$*,$5"#$;.'ID#2$/.#/$/,6$4/,$I#$1$5'$&'D@#$;.'ID#2&$.#D/5#6$5'$5"/5$6'2/*,B$<5$
4',5/*,&$5"#$@'4/I1D/.A$'($5"#$6'2/*,E$5"1&E$/DD'H*,+$5"#$2'6#D$5'$I#$4'221,*4/5#6$5'$
,',35#4",*4/D$&5/-#"'D6#.&$h:2ID#.$MOQRiB$

P,$(*3(;(,3(,4'(&D.<,$5"#$/.5*(/45$2'6#DE$5"#$6'2/*,$2'6#D$.#4#*@#&$*5&$*,;15$(.'2$5"#$
I1&*,#&&$ 4/&#$ hOb}i$ /,6$ 5"#$'IY#45*@#&$ /,6$+'/D&$ hOc}iB$ <5$;.'@*6#&$ 5"#$ I/&*&$ ('.$ 5"#$
+D'&&/.A$h}OLE$}bKE$}KOiE$5"#$&A&5#2$@*&*',$h}MKiE$/,6$1&/+#$2'6#D$h}MciB$

d%$#$'%,D$!"#$6'2/*,$2'6#D$4/,$I#$&;#4*(*#6IA%FG$/45*@*5A$6*/+./2&$'.$N1&*,#&&$
J.'4#&&$F'6#D$/,6$?'5/5*',$hNJF?iB$$

@C#0;5(D.8%0#',.R%3(5.

$
"#$%&'!==)!CK2BM6'!-.!2!0-B2#3!L-E'6!

4?E2M+'E!.&-B!L_3E'T!"'&3`3E'T!23E!<'3T'31+2E6'&!=H(Q97!

U*+1.#MM&"'H&$/$&*2;D*(*#6$6'2/*,$2'6#D$('.$/,$:!FB$<5$@*&1/D*T#&$/&&'4*/5*',&$
I#5H##,$ 5"#$6'2/*,$4D/&&#&$Z:!F$&'(5H/.#[$/,6$'5"#.$6'2/*,$4D/&&#&$ D*-#$Z'5"#.$
I/,-$&A&5#2&[$'.$Z*,5#.,/5*',/D$5./,&/45*',$&A&5#2[B$<,$/66*5*',E$5"#$(*+1.#$&"'H&$/$
I1&*,#&&$;.'4#&&$2'6#D$('.$2',#A$H*5"6./H/D$(.'2$/,$:!FB$$

�������� ������������������������������������

8(&4*';$'%,D$!"#$ r6#&*+,$ &;/4#$2/;l$ 6#;*45&$ /,$ '@#.@*#H$ '($H"/5$ 5"#$;.'Y#45$ 5#/2$
-,'H&$/,6$H"/5$5"#A$6'$,'5$A#5$-,'H$*,$5"#$4',5#P5$'($5"#$;.'Y#45$h<)9>$GG]$MOQME$
;;B$Md3MeiB$W,'HD#6+#$+/;&$;.'@*6#$.#&#/.4"$6*.#45*',&$',$H"*4"$ 5"#$ 5#/2$,##6&$ 5'$

Domain Model

International transaction system Bank software system

Customer accounts

ATM software

Other bank systems

Choose withdrawal Insert card Enter PIN Choose amount Take money Take card

Card PIN Money Card

input input output output

88

focus, get answers, and do primary research in the needfinding phase. The ‘design space
map’ is usually created in an analog form with sticky notes on the wall.

Purpose: The design space map helps to structure the exploration phase. It provides a
common understanding of the design challenge in a multidisciplinary team and sparks
relevant discussions about the project dimensions at the beginning of a project. The
design space map acts as a navigator for further activities and evolves over the duration
of a project in which new knowledge is added.

Example: Design Space Map

Picture 7: Example of a Design Space Map

(Source: University of St.Gallen, DT@HSG 2015)

The design space map of a project with a German insurance provider is shown in
Picture 7. The design challenge (“revolution in CIO dialog”) is put in the middle of
the wall, while the green post-its provide an overview of the relevant dimensions to
be looked at (e.g. motivation, communication, CIO, reporting structures, trends). This
design space map also included an overview of the organizational structure as an
indication for performing further elicitation and needfinding activities.

Interdependencies: The design space map derives input from the design
challenge/project scope (#01) and the stakeholder groups depicted in the stakeholder
map/model (#04). Its output informs the elicitation efforts that result in secondary
research reports (#10) and field studies (#11).

!
,-"

d%$#$'%,D$!"#$6#&*+,$&;/4#$2/;t;.'Y#45$&4';#$*&$1&1/DDA$&;#4*(*#6$*,$,/51./D$5#P5$/,6$
-#;5$*,$('.2$'($;'&53*5&$@*&*ID#$',$/$;.'Y#45$.''2l&$H/DDB$$

�������� ������������������������������

8(&4*';$'%,D$!"#$;.'Y#45$ 5#/2$ 4'DD#45&$ 5"#*.$ r/&&12;5*',&l$ /I'15$ 5"#$ +*@#,$;.'Y#45B$
!"#&#$5A;*4/DDA$*,4D16#$"A;'5"#&#&$5"/5$&'2#5"*,+$*&$;'&&*ID#$5'$/4"*#@#$hH*5"*,$4#.5/*,$
4',&5./*,5&$ &14"$ /&$ 5*2#$ /,6$ 4'&5iE$ 5"/5$ &'2#5"*,+$ H'.-&$ I#4/1&#$ '($;/.5*41D/.$
4',6*5*',&E$/,6$5"/5$;#';D#$5.1&5E$5"*,-$'.$/&;*.#$4#.5/*,$5"*,+&$h)/2$/,6$=*/,+$MOQeiB$$

b7*;%&(D$:&$/$6#D*@#.*,+$/.5*(/45$5"#$5#/2$+/*,&$/$D*&5$'($/&&12;5*',&$/,6$"A;'5"#&#&$
5"/5$5"#A$4/,$#P;D'.#$/,6$5#&5B$!"#$D*&5$/D&'$;.'@*6#&$/$(*.&5$'@#.@*#H$'($;'&&*ID#$5#/2$
I*/&#&B$F/-*,+$5"#&#$#P;D*4*5$4/,$"#D;$5'$@/D*6/5#$5"#2$*,$.#&#/.4"E$I15$/D&'$5'$4"/DD#,+#$
5"#2$*,$*6#/5*',B$!"#$('.2#.$"#D;&$5'$.#(D#45$',$H"/5$5"#A$&5*DD$,##6$5'$-,'H$/I'15$5"#$
5';*4$/,6E$5"1&E$&;#4*(*#&$/$&5/.5*,+$;'*,5$5'$I./*,&5'.2$H/A&$5'$.#614#$5"#$.*&-$5"#A$;'&#$
h<NF$]'.;'./5*',$MOQRiB$!"#$D/55#.$;.'@*6#&$/$4"/,4#$5'$.#34',&*6#.$4',4#;5&$/,6$4'2#$
1;$H*5"$&'D15*',&$5"#$5#/2$"/&$,#@#.$4',&*6#.#6$;'&&*ID#$h)/2$/,6$=*/,+$MOQeiB$$

@C#0;5(D.E&&70;$'%,&.

$
"#$%&'!=N)!CK2BM6'!-.!23!?11%BM+#-31!0-,%B'3+!

4*-%&,')!-53!#66%1+&2+#-37!

U*+1.#$ Mb$ &"'H&$ 5"#$ /&&12;5*',&$ 5"/5$ /.#$ /&&'4*/5#6$ H*5"$ &;#4*(*4$ &5/-#"'D6#.&B$
:44'.6*,+DAE$5"#$5#/2$D*&5&$5"#&#$/&&12;5*',&E$#B+B$Z%D5./30*+"$?#5$V'.5"$<,6*@*61/D&$
.#81*.#$;#.&',/D*T#6$ &#.@*4#&[$ '.$ ZN1&*,#&&$ 5./@#D#.&$H'.-$ *,$ (D*+"5$ 5'$ &/@#$ 5*2#[B$
!"#&#$#P;D*4*5$"A;'5"#&#&$4/,$I#$5#&5#6$5'$&##$*($5"#A$/.#$.*+"5$'.$H.',+B$$$

.

Project

Stakeholder 1
Ɔ

Stakeholder 2
ƆAssumption...

Assumption...

Assumption...

Assumption...

Assumption...

Assumption...

Stakeholder 3
Ɔ

Stakeholder 4
ƆAssumption...

Assumption...

Assumption...

Assumption...

Assumption...

Assumption...

90

Interdependencies: Assumptions are derived from the design challenge/project scope
(#01) and the stakeholder groups in the stakeholder map/model (#04). They influence
and inform the generation of solution ideas (#17) and low-resolution prototypes (#18).

Notation: ‘Assumptions’ are usually specified by natural text and put into a list.

5.3.3.9 Glossary (RE Artifact #09)

Description: The glossary is a list of all relevant business or technical domain-specific
terms (including abbreviations, synonyms, and descriptions) to which project members
may refer to. The key elements of a glossary are terms (typically nouns), definitions (in
an unambiguous way), aliases (interchangeably with the primary term), and related
terms (references to similar terms) (Méndez Fernández and Penzenstadler 2014a, p. 37).

Purpose: A well-defined glossary ensures consistent usage of project-relevant terms
throughout the entire development life cycle (Yilmaztürk 2005, p. 394). This artifact
can, thus, facilitate learning about a new domain, enable clear communication among
stakeholders when used consistently, and prevent unnecessary misunderstandings.

Example: Glossary

Figure 24: Example of a Glossary Structure

(Source: own illustration)

Figure 24 shows an exemplary structure for a glossary including the term, its
abbreviation, a concise description, possible synonyms, and additional comments.
Unlike a dictionary, a glossary contains only the expressions and terms that are unique
to the respective business domain. However, it is also recommended to specify terms
like “customer” as it can be understood differently by different business stakeholders.

Term Abbreviation Description Synonym Comment
Glossary

91

Interdependencies: The glossary can receive its input from the stakeholder map/model
(#04), the domain model (#06) and the design space map (#07). It recurs in the
requirements layer (#34) and system layer (#40) as more terms are added over the course
of the project.

Notation: The glossary is usually specified by structured natural text.

5.3.3.10 Secondary Research Report (DT Artifact #10)

Description: The ‘secondary research report’ summarizes various sources of
information, insights from existing market research, and other knowledge about the
given subject domain. Common information sources are market and benchmarking
reports (internal and external), sales reports, internal databases, government statistics,
and different media such as articles from newspapers, journals, or research studies from
universities. To find out what is new, this can also include reports about innovations in
a particular area or inspirations from similar settings in other industries (IDEO.org
2015).

Purpose: The secondary research report supports the project team to clarify research
questions and gain an initial understanding of the context of the challenge (Collins
2010). It provides a solid foundation of knowledge and helps to focus on the right
questions to be asked during any subsequent primary research (needfinding) (IDEO.org
2015).

Interdependencies: The secondary research report receives input from the design space
map (#07). It mainly provides input for thematic clusters (#12) and insights (#15) in the
context of the problem space.

Notation: The secondary research report is usually specified by natural text in a text
document.

!
-&"

@C#0;5(D.F(4%,3#*/.?(&(#*4".?(;%*$.

$
"#$%&'!=R)!CK2BM6'!-.!2!*',-3E2&U!@'1'2&,/!@'M-&+!*+&%,+%&'!

4?E2M+'E!.&-B!F3#;'&1#+U!-.!*+PY266'3J!08ZD*Y!=H([7!

!"#$#P/2;D#$*,$U*+1.#$Mc$*DD1&5./5#&$/$&5.1451.#$('.$',6/.A$.#&#/.4"$.#;'.5&$/I'15$
5"#$ 5';*4S$ H>%!. 3%(&. $"(.)7$7*(. ;#$'(,$. &7;;%*$. ;*%6*#0.)%*. R75$';5(. F45(*%&'&.
;#$'(,$&. 5%%:. 5':(=O$9P*&5*,+$ *,('.2/5*',$/I'15$Z;/5*#,5$&1;;'.5[$h#B+B$ 5.#,6&E$/&3*&$
;/5*#,5$ Y'1.,#AE$;/5*#,5$ 5A;#&E$ D#+/D$I'1,6/.*#&i$/,6$Z21D5*;D#$&4D#.'&*&[$ h&5/5*&5*4&E$
5A;#&E$ 4'1.&#$ '($ 6*&#/&#E$ 5.#/52#,5&i$ H#.#$ 1B$ U'.$ #P/2;D#E$ "#/D5"4/.#$ 2/.-#5$
,;15&E$21D5;D#$&4D#.'&*&$.#&#/.4"$.#;'.5&E$/,6$6'412#,5/5*',&$/I'15$ 5#4",'D'+*4/D$
,,'@/5',&$h#B+B$<'!$*,$"#/D5"4/.#E$H#/./ID#$&#,&'.&E$/45*@*5A$5./4-#.&i$H#.#$.#D#@/,5$
,('.2/5',$&'1.4#&B$

��

8(&4*';$'%,D$ rU*#D6$ &516*#&l$ /.#$ /$ 4'DD#45*',$ '($./H$ 6/5/$ h*,4D16*,+$ 1&#.$ &5/5#2#,5&E$
'I&#.@/5*',&E$;*451.#&E$ @*6#'&i$ (.'2$ *,5#.@*#H##&$ H*5"$ *6#,5*(*#6$ &5/-#"'D6#.$ +.'1;&$
h<)9>B'.+$MOQciB$!./,&4.*I*,+$*,5#.@*#H&$',$;'&53*5&$4.#/5#&$/$4'2;.#"#,&*@#$;*451.#$
'($ 5"#$.#/D$ &5'.*#&$ '($ 1&#.&$ 5"#$ *,5#.@*#H#.$ H/&$ #,+/+#6$ H*5"B$ <5$ @*&1/D*T#&$ 5"#$ -#A$
4',4D1&*',&E$81'5#&$/,6$'I&#.@/5*',&$(.'2$/,$ *,5#.@*#H$*,$/H/A 5"/5$/DD'H&$ *5$ 5'$I#$
#/&*DA$&"/.#6$H*5"$'5"#.$;#';D#$/,6$5'$I#$1$/45*@#DA$*,$2/,A$'($5"#$&1IQ#,5$&5#;&$
*,$5"#$;.'Y#45B$

b7*;%&(D$ U*#D6$ &516*#&$ "#D;$H*5"$ &"/.*,+$ 5"#$ *,5#.@*#H$/2',+$ 5"#$;.'Y#45$ 5#/2B$!"#$
@*&1/D$&5'.A$+*@#&$5"#$5#/2$/$4'22',$1,6#.&5/,6*,+$'($5"#$./H$6/5/$/,6$#2;/5"*T#$H*5"$
5"#$*,5#.@*#H##&B$<,$/66*5*',E$*5$5./,&('.2&$/,$*,5#.@*#H$*,5'$&*,+D#$I1*D6*,+$ID'4-&$h2*,$
Mc$;'&5$*5&i$H"*4"$4/,$I#$1$('.$/,/DAT*,+E$(*D5#.*,+E$+.'1;*,+E$/,6$'5"#.$&1IQ#,5$

Consultancy reports

Subject Domain: Patient support for Multiple Sclerosis

<Information source>
Healthcare market input

ʌ
<Information source>
Technology review

ʌ

<Information source>
Existing Multiple

Sclerosis Research

ʌ
<Information source>
Multiple Sclerosis

Community Websites

ʌ

WHO MS Atlas

Governmental studies

University studies

Pharma studies

Society studies

IOT

Wearables and tracking

Web MD

MS society

Facebook groups

93

methods of data processing. This usually leads to an exchange of opinions in the team
fostering the ability to define patterns and relationships between single user stories.

Example: Field Studies

Picture 8: Examples of Transcribed Field Studies

(Source: ITMP 2018)

Picture 8 illustrates two field studies from a project for a German software provider
(left) and a railway company (right). The boards summarize key information about
the interviewees and their key statements in a way that allows for easy sharing with
other people. All team members can approach and discuss the collected data points in
order to gain empathy and share findings from different interviews. The field studies
provided the basis for analyzing needs, pain points, requirements, and insights of the
target stakeholder groups.

Interdependencies: Field studies are guided by the identified stakeholder groups in the
stakeholder map/model (#04) and the knowledge gaps in the design space map (#07).
They provide input for defining thematic clusters (#12) and creating personas (#13) and
customer journeys (#14).

Notation: ‘Field studies’ are usually specified by natural text (on post-its) and
complemented with pictures and videos.

!
-("

��

8(&4*';$'%,D$r!"#2/5*4$4D1&5#.&l$/.#$/$+.'1;$'($1&#.$&5/5#2#,5&E$'I&#.@/5*',&E$'.$'5"#.$
(*,6*,+&$(.'2$;.*2/.A$/,6$',6/.A$.#&#/.4"$5"/5$.#;.#&#,5$/$&;#4*(*4$&1I5';*4$'($5"#$
;.'Y#45$4',5#,5$h<)9>$GG]$MOQME$;B$KbiB$$

b7*;%&(D$!"#2/5*4$4D1&5#.&$;.'@*6#$/$(*.&5$'@#.@*#H$'($.#D#@/,5$5';*4&$H*5"*,$/$+*@#,$
&1IY#45$6'2/*,B$!"#A$"#D;$5"#$;.'Y#45$5#/2$5'$.#4'+,*T#$;/55#.,&$/,6$&5.1451.#$.#&#/.4"$
6/5/$ h#B+B$ D*,-$ &*2*D/.*5*#&E$ 1,4'@#.$ 4',5./6*45*',&E$ (*,6$ #P4#;5*',&iB$!"#$;.'4#&&$ '($
+.'1;*,+$6/5/$#,/ID#&$&"/.#6$1,6#.&5/,6*,+$/,6$&5.#,+5"#,&$5#/2$-,'HD#6+#B$$

@C#0;5(D.9"(0#$'4.\57&$(*&.

$
<#,+%&'!a)!CK2BM6'!-.!8/'B2+#,!>6%1+'&1!

4*-%&,')!\8L<!=H(R7!

:b$&"##5&$'($;/;#.$;.'@*6#$5"#$(./2#$('.$4D1&5#.*,+$6/5/$;'*,5&$*,$('.2$'($&5/5#2#,5&$
/,6$'I&#.@/5*',&$',$;'&53*5&B$J*451.#L *DD1&5./5#&$ 5"#2/5*4$4D1&5#.&$ (.'2$*,5#.@*#H&$
H*5"$&516#,5&$/I'15$,#H$I/,-*,+$&#.@*4#&B$!'$6./H$1;$5"#$4D1&5#.&E$#/4"$5#/2$2#2I#.$
&#D#45&$&5/5#2#,5&$/,6$;'&53*5&$ (.'2$5"#$ (*#D6$&516*#&$ 5"/5$/;;#/.$2'&5$ *2;'.5/,5$ 5'$
5"#2BNA+.'1;*,+$5"#2$5"#$5"#2/5*4$4D1&5#.&$/.#$6#(*,#6B$9/4"$4D1&5#.$*&$/&&*+,#6$/$
5*5D#$#P;D/*,*,+$5"#$5"#2#$'($5"#$4D1&5#.$h#B+B$ZN/,-$'($F12$/,6$)/6[iB$

.

95

Interdependencies: Thematic clusters are composed by the data from field studies (#11)
and the content of secondary research reports (#10). They inform the generation of
insights (#15).

Notation: Thematic clusters are usually specified by structured, natural text.

5.3.3.13 Personas (DT Artifact #13)

Description: ‘Personas’ are archetypes of people that represent a specific stakeholder
group relevant to the project (Uebernickel et al. 2015, p. 125). They are fictional
characters that are derived from the interviewees’ behavior and attitudes representing
the different types that might use the intended service or product in a similar way. The
description of a persona should be focused on the specific project context and include
information like behavioral patterns, attitudes, goals, needs, pain points, and a
demographic profile (Cooper et al. 2014, pp. 82ff).

Purpose: Personas help to design solutions from a user point of view. They facilitate the
understanding of (potential) users’ needs, behaviors, motivations, and frustrations and
provide alignment for discussing design decisions. The narrative structure of personas
and their resemblance to real people supports empathy within the project team so that
the goals and tasks of personas help to determine what a product should do and how it
should behave (Cooper et al. 2014, p. 79).

Interdependencies: Personas are mainly derived from the data of field studies (#11).
They provide input for defining customer journeys (#14) and developing opportunity
areas (#16) for generating new solution ideas (#17).

Notation: Personas are usually specified by natural text.

!
-*"

@C#0;5(D.b(*&%,#&.

$
"#$%&'!=[)!CK2BM6'!-.!2!<'&1-32!8'BM62+'!

4*-%&,')!-53!#66%1+&2+#-37!

)*((#.#,5$;#.&',/&$.#;.#&#,5$6*((#.#,5$5A;#&$'($1&#.&$H*5"$/$4#.5/*,$$'($2'5*@/5*',&E$
I#"/@*'.&E$/55*516#&E$+'/D&E$/,6$(.1&5./5*',&$5'H/.6$/$41..#,5$;.'6145$'.$&A&5#2B$U*+1.#$
Md$&"'H&$/$5#2;D/5#$('.$6#&4.*I*,+$&14"$/$;#.&',/B$!"#$('DD'H*,+$&5#;&$/.#$1,6#.5/-#,$
5'$ 4.#/5#$ /$;#.&',/S$ hQi$ &;#4*(*4/5*',$ '($ I#"/@*'./D$ /,6$ /55*516*,/D$ @/.*/ID#&$ 5"/5$
#2#.+#6$(.'2$5"#$*,5#.@*#H&E$hMi$2/;;*,+$'($ *,5#.@*#H##&$/D',+$5"#&#$6*2#,&*',&E$
hbi$*6#,5*(*4/5*',$'($&*+,*(*4/,5$I#"/@*'.$/,6$/55*516*,/D$;/55#.,&E$hKi$&A,5"#&*&$'($-#A$
4"/./45#.*&5*4&$ (.'2$.#D#@/,5$ *,5#.@*#H##&E$ hci$ 4"#4-$ ('.$.#61,6/,4A$ /,6$
4'2;D#5#,#&&Ehdi6#5/*D#6$6#&4.*;5*',$'($5"#$6#&*+,/5#6$;#.&',/$5A;#$h]'';#.$#5$/DB$
MOQKE$;B$eLiB$

��

8(&4*';$'%,D$:$ r41&5'2#.$ Y'1.,#Al$ *&$ /$ @*&1/D$.#;.#&#,5/5*',$ '($ 5"#$ #P;#.*#,4#$ '($ /$
41&5'2#.$h#B+B$5"#*.$&;#4*(*4$/45*@*5*#&E$5/&-&E$/,6$5'14";'*,5&i$H"#,$*,5#./45*,+$H*5"$/,$
'.+/,*T/5*',E$;.'6145E$ '.$ &#.@*4#$ h)''.D#A$ #5$ /DB$ MOQRE$;B$ e(iB$ U.'2$ 5"#$ 41&5'2#.l&$
,6@*61/D$ &5/,6;'*,5E$ 5"#$ Y'1.,#A$6#;*45&$ 5"#$6#5/*D#6$ &5#;&E$-#A$2'2#,5&E$ /,6$ 5"#*.$
4',,#45*',&$'($/,$#P;#.*#,4#E$1&1/DDA$*,$/$4".','D'+*4/D$'.6#.B$$

b7*;%&(D$]1&5'2#.$Y'1.,#A&$"#D;$5"#$;.'Y#45$5#/2$5'$D''-$I#A',6$5"#$#P*&5*,+$&'D15*',$
/,6$4',&*6#.$5"#$41&5'2#.l&$#,5*.#$#P;#.*#,4#$5'$*6#,5*(A$/.#/&$('.$*2;.'@#2#,5$'.$H*5"$
,,'@/5',$;'5#,5*/D$ h)''.D#A$#5$/DB$MOQRE$;B$e(iB$!"#A$'((#.$/$ &A&5#2/5*4$/,/DA&*&$'($
4"/DD#,+#&E$;/*,$;'*,5&E$H"/5$5"#$41&5'2#.$D*-#6$/,6$D'@#6$61.*,+$5"#$#P;#.*#,4#B$!"#A$

!
-+"

/D&'$+*@#$/$6##;#.$1,6#.&5/,6*,+$'($*,5#./45*',$;'*,5&$I#5H##,$6*((#.#,5$#4'&A&5#2&B$<,$
/66*5*',E$ 5"#$4.#/5*',$'($/$ Y'1.,#A$4/,$"#D;$ 5"#$;.'Y#45$ 5#/2$5'$+/*,$#2;/5"A$('.$ 5"#$
&5#;&$/$41&5'2#.$+'#&$5".'1+"B$$

P,$(*3(;(,3(,4'(&D.]1&5'2#.$ Y'1.,#A&$ +#5$ 5"#*.$ *,;15$ (.'2$ (*#D6$ &516*#&$ h}QQi$ /,6$
;#.&',/&$h}QbiB$!"#*.$'15;15$*,('.2&$5"#$4.#/5*',$'($*,&*+"5&$h}QciE$';;'.51,*5A$/.#/&$
h}QdiE$/,6$1&#$4/&#&$('.$5"#$&'D15*',$6#;*45#6$*,$5"#$1&/+#$2'6#D$h}MciB$.

d%$#$'%,D$]1&5'2#.$ Y'1.,#A&$ /.#$ 1&1/DDA$ &;#4*(*#6$ IA$,/51./D$ 5#P5$ /,6$ Q#,4#$ /,6$
/45*@*5A$6*/+./2&B$

@C#0;5(D.\7&$%0(*.g%7*,(/.

$
"#$%&'!=])!CK2BM6'!-.!2!>%1+-B'&!X-%&3'U!!

4*-%&,')!F3#;'&1#+U!-.!*+PY266'3J!08ZD*Y!=H(a7!

]1&5'2#.$Y'1.,#A&$4/,$5/-#$6*((#.#,5$('.2&$6#;#,6*,+$',$5"#$&;#4*(*4$;.'Y#45$,##6&$
/,6$#P*&5*,+$Y'1.,#A&B$U*+1.#$Me$&"'H&$/$&*2;D*(*#6$41&5'2#.$Y'1.,#A$H"#,$I1A*,+$/$
;.#2*12$4/.B$V"#,$4.#/5*,+$/$Y'1.,#AE$5"#$;.'Y#45$5#/2$2/;&$5"#$&5/+#&$/,6$/45*',&$
/D',+$/$5*2#D*,#$h#B+B$Z+#55*,+$5'$-,'H$5"#$I./,6[E$Z'.6#.$4/.[E$Z4',5/45$H*5"$6#/D#.[iB$
!"#$5#/2$5"#,$2/.-&$5"#$;/*,&$/,6$5"#$,##6&$'($5"#$41&5'2#.$*,$#/4"$*,6*@*61/D$&5/+#$
I/$',$5"#$(*,6*,+&$(.'2$'I&#.@/5*',&$/,6$*,5#.@*#H&B$9/4"$&5/+#$*&$D''-#6$/5$/,6$
;.*'.*5*T#6$(.'2$I'5"$/$&1;;DA$/,6$/$6#2/,6$;'*,5$'($@*#H$h)''.D#A$#5$/DB$MOQRE$;B$e(iB$

�

"

DT@HSG 2018/2019

Customer journey

1

Getting in contact
with the brand

Thinking of
buying a Super
Premium car

Purchase process After Purchase experience

Awareness Consideration Acquisition Service Loyalty

Getting to
know Brand

Falling
in love

Getting
exposed

to Car
directly

Buying
Decision

Model
Decision

Negotiating
price

Order
car

Car is
manufactured

Car is
delivered

Carshop Clubs Contact
with dealer

Client
becomes

loyal

!
-,"

�������������������������������������

8(&4*';$'%,D$r<,&*+"5&l$hZ/"/$2'2#,5&[i$/.#$(*,6*,+&$5"/5$'441.$H"#,$5"#$;.'Y#45$5#/2$
4/,$&166#,DA$D*,-$/,6$*,5#.;.#5$4#.5/*,$'I&#.@/5*',&$2/6#$h<)9>$GG]$MOQME$;B$KciB$!"#$
5#/2$H*DD$5"#,$1,6#.&5/,6$H"/5$D*#&$/5$5"#$"#/.5$'($5"#$I#"/@*'.$/,6$&5/5#2#,5&$5"#A$"/@#$
'I&#.@#6B$:,$*,&*+"5$*&$1&1/DDA$#P;.#&$*,$',#$&#,5#,4#$5'$#P;D/*,$H"A$&'2#5"*,+$*&$
"/;;#,*,+B$$

b7*;%&(D$<,&*+"5&$#P5./;'D/5#$*,6*@*61/D$1&#.$&5'.*#&$*,5'$'@#./.4"*,+$Z5.15"&[B$!"#A$/.#$
;.'614#6$/&$/$.#&1D5$'($&A,5"#&*&$/,6$*,5#.;.#5/5*',$/,6$;.'@*6#$5"#$I/&*&$('.$+#,#./5*,+$
,#H$&'D15*',$*6#/&B$<,&*+"5&$4/,$&5#2$(.'2$6*((#.#,5$(*,6*,+&E$('.$#P/2;D#$5"#$;.'Y#45$
5#/2$&166#,DA$6#5#45&$&'2#5"*,+$&1.;.*&*,+$5"/5$"/&$/DH/A&$I##,$2*&&*,+E$'.$5"#A$(*,/DDA$
1,6#.&5/,6$H"A$;#';D#$/.#$I#"/@*,+$*,$/$4#.5/*,$H/AE$'.$5"#A$4/,$&166#,DA$#P;D/*,$/$
4',5./6*45*',B$$

@C#0;5(D.P,&'6"$&.

$
<#,+%&'!(H)!CK2BM6'!-.!\31#$/+1!!

4*-%&,')!\8L<!=H(I7!

J*451.#$ QO$ *DD1&5./5#&$ &#@#./D$ *,&*+"5&$ /I'15$ "#/D5"A$ (''6B$!"#$ *,&*+"5&$.#D/5#$ 5'$
5"#2/5*4$4D1&5#.&$/&$5"#A$6#&4.*I#$5"#$(*,6*,+$I#"*,6$/$4#.5/*,$5"#2#$h#B+B$Z9/5*,+$*&$
,'5$/I'15$(''6E$I15$/I'15$5"#$D'4/5*',[$'.$Z0#/D5"$*&$/,$*,6*@*61/D$.#/D*5A[iB$!"#A$/.#$
;"./$/&$/,$'@#./.4"*,+$ 5.15"$4',,#45*,+$6*((#.#,5$ 5"#2/5*4$4D1&5#.&$'.$/&$/$,##6$
&5/5#2#,5$(.'2$5"#$1&#.l&$;'*,5$'($@*#H$h#B+B$Z0#/D5"34',&4*'1&$&516#,5$,##6&$/$H/A$
5'$.#614#$;D/&5*4$H"#,$&"';;*,+$I15$"*&$(*,/,4*/D$I16+#5$6'#&$,'5$/DH/A&$/DD'H$*5[iB$

.

99

Interdependencies: Insights get their input from field studies (#11) and thematic clusters
(#12). They provide the basis to define opportunity areas (#16) and create new solution
ideas (#17).

Notation: Insights are usually specified by structured natural text.

5.3.3.16 Opportunity Areas (DT Artifact #16)

Description: ‘Opportunity areas’ describe “fields”, in which the team sees the potential
for innovation based on the insights and needs found in primary research (IDEO LLC
2012, p. 46-47). It is rare that only one opportunity area would be identified; instead it
is usually a group of areas.

Purpose: Opportunity areas are the catalyst for generating new ideas as they define
specific directions for next steps. At the same time, they offer high strategic value
because they indicate the innovation potential for the future. Those opportunity areas
often go beyond the project assignment itself.

Interdependencies: Opportunity areas are formulated on the basis of thematic clusters
(#12) and insights (#15) as well as personas (#13) and customer journeys (#14). They
provide the basis for generating new solution ideas (#17). The boundaries between the
formulated insights (#15) and the opportunity areas are often blurred. The actual
difference consists mainly in the way they are articulated, i.e. the formulation of
opportunity areas is rather action-oriented, while the insights describe the status quo or
a desired future state.

Notation: Constraints and rules are usually specified by natural text.

100

Example: Opportunity Areas

Figure 28: Example of an Opportunity Area

(Source: ITMP 2015)

Figure 28 shows an exemplary formulation of an opportunity area in the context of
enhancing decision-making for employees of an agricultural company. The project
team took a holistic perspective on all the thematic clusters and insights to define
opportunity areas. The team askes themselves: “Where do we see opportunities for
innovation?” and aggregated some of the insights into opportunity areas. The
formulation should sound like an appeal and a call for action. It can be useful to
provide a description of the exact pains, needs, and goals for each opportunity area as
shown above. The opportunity areas are complemented with so called “How might
we”-questions, in order to offer concrete directions for ideating solutions in the
specific opportunity area (Berger 2012).

5.3.3.17 Solution Ideas (DT Artifact #17)

Description: ‘Solution ideas’ are a list of concrete ideas in the context of the given
project. Techniques that are often applied to achieve specific solution ideas are
brainstorming, brainwriting, six thinking hats, power of ten, and other creativity
methods to generate a large quantity of diverse ideas (Uebernickel et al. 2015, pp. 138-

101

144). A strong focus lies on listening and building on each other’s ideas to leverage
collective thinking.

Purpose: Solution ideas provide specific features and concepts on how to solve a given
problem statement.

Example: Solution Ideas

Picture 11: Example of a Solution Idea

(Source: ITMP 2017)

Example of an idea napkin for a German utility company to improve processes for
craftsmen. The idea napkin is a tool that helps to spell out each solution idea to better
understand and concretize them for better group evaluation. Ideally, all idea napkins
are stuck to a wall so that everybody can see them. The napkin prompts team members
to provide a name for the idea, to describe it in one sentence, to think of the problems
solved, and to highlight the benefits generated by the idea. The idea napkins provide
a certain level of comparability of the solution ideas, when discussing next steps.

Interdependencies: Solution ideas typically address a selected opportunity area (#09)
and provide the basis for building a variety of prototypes (#18, #20, #22) and testing
them with users and customers (#19, #21, #23) in order to define the system vision (#24).

Notation: ‘Solution ideas’ are usually specified by natural text.

102

5.3.3.18 Low-fidelity Prototypes (DT Artifact #18)

Description: ‘Low-fidelity prototypes’ are tangible and testable artifacts that
demonstrate the key functionalities of an idea rather than its visual appearance
(Shneiderman et al. 2018). They can take different forms, for example paper prototypes
to demonstrate screens, features, and functionalities, role plays and Wizard of Oz
prototypes to test interactions and behavior, or storyboards to narrate and test a user
experience through a series of images (see Uebernickel et al. 2015, pp. 156, 160-163;
Doorley et al. 2018, p. 26). The selection of different prototyping methods can be
subsumed under the common principles of right, rapid, and rough (Crai 2003).
Depending on what a team aims to achieve with the prototype, e.g. to test an experience
or certain features with customers, to convince decision-makers, or to communicate an
idea within the project team, the team should choose the right and most suitable
prototyping technique. Prototypes should never take too much effort in the early project
phase. Quickly implementing an idea or rapidly iterating it based on feedback is an
effective way of bringing ideas to life efficiently. This way of rapid implementation has
a bearing on a prototype’s level of detail which brings out crude prototypes with the
watchword “just good enough” to answer the questions at hand. Once the idea has been
tested with a couple of iteration loops, the ‘low-fidelity prototypes’ can be further
developed in more detail.

Purpose: Low-fidelity prototypes bring ideas to life and support early-stage learning by
providing the fastest-possible way to iterate ideas (Liedtka and Ogilvie 2011). Costs and
effort are extremely low, which allows the project team to explore various ideas at once.
In addition, this type of prototyping stimulates group ideation and communication
within the team and with other relevant stakeholders. Since it doesn’t require special
skills (e.g. programming or design), multiple people can be integrated into the idea-
formulation and design process. Low-fidelity prototyping is particularly suitable during
the early stages of a project, when the topic is still abstract or in the process of forming.
It finds its boundaries when visually complex and complicated operations are necessary
to convey. The further the team gets into the design process, mid- and high-fidelity
prototypes (#20, #22) are considered more suitable (Cooper et al. 2014).

!
%.'"

P,$(*3(;(,3(,4'(&D.G'H3(*6#D*5A$;.'5'5A;#&$.#/D*T#$&'D15*',$*6#/&$h}Qei$*,$/$81*4-$/,6$
#/&A$ H/AB$!"#A$;.'@*6#$ 5"#$ *,;15$ 5'$ +/*,$ &4';#3.#D/5#6$ 5#&5$.#&1D5&$ h}QRi$ 5'$ 4.#/5#$
2#6*123(*6#D*5A$;.'5'5A;#$h}MOiB$

d%$#$'%,D$G'H3(*6#D*5A$;.'5'5A;#&$4/,$I#$#P;.#&$*,$6*((#.#,5$('.2&E$2'&5$'(5#,$*,$/$
;/;#.3I/$('.2/5B$

@C#0;5(.PD._%!+)'3(5'$/.b*%$%$/;(&.

$
<#,+%&'!(=)!CK2BM6'!-.!2!S#T2&E!-.!:T!<&-+-+UM'!

4*-%&,')!F3#;'&1#+U!-.!*+PY266'3J!08ZD*Y!=H([7!

:$=H*&&$N/,-$,##6#6$5'$5#&5$1&#.$.#/45*',&$5'$5"#*.$/@/5/.$('.$',D*,#$I/,-*,+$/6@*&'.AB$
<,&5#/6$'($4'6*,+E$/$;#.&',$/45#6$/&$5"#$/@/5/.E$&5/.5*,+$5'$&;#/-$H"#,$5"#$1&#.$;1&"#6$
4#.5/*,$ I155',&$ /&$ &"'H,$ *,$ J*451.#$ QMB$!"#$V*T/.6$ '($ >T$;.'5'5A;#$ 4/,$ /D&'$ I#$
#P5#,6#6$I#A',6$;"A&*4/D$;.'5'5A;#&B$U'.$#P/2;D#E$/$@#,6*,+$2/4"*,#$4/,$I#$5#&5#6$
H*5"'15$I1*D6*,+$5"#$2#4"/,*4&$IA$1&*,+$/$;#.&',$"*66#,$*,&*6#$*5$5'$6#D*@#.$;1.4"/&#&$
h)''.D#A$#5$/DB$MOQRE$;B$MeiB$

$

104

Example II: Low-fidelity Prototypes

Picture 13: Example of a Paper Wireframe Prototype

(Source: University of St.Gallen, DT@HSG 2016)

An information provider was rethinking their services for the independent automotive
aftermarket. The prototype, as shown in Picture 13, visualized the key features of the
new service to gain access to a wider partner network of garages. This idea was
realized in form of paper wireframes with several sheets of paper (representing
different screens) fixed to an actual device. This way the prototype became interactive
by integrating a facilitator during the testing session whose task included to jump to
the right screens depending on the user’s chosen strategy.

5.3.3.19 Scope-oriented Test Results (DT Artifact #19)

Description: ‘Scope-oriented test results’ are gathered based on the feedback from users.
The basic concept of an idea is in focus of the evaluation. A feedback framework can
be used to process feedback interviews and structure test results. It helps the team to
decide what to keep, what to refine, and what to drop (Uebernickel et al. 2015, p. 210).

Purpose: Scope-oriented test results help the project team to challenge the current value
proposition and show whether customers’ needs and expectations are met appropriately.
Based on the test results the project team can refine their prototype(s) and also the
understanding of the people for whom the team designs. In these early stages, the project
team usually not only considers the feedback about the solution but also uses the
opportunity to gain more empathy for their target group. Thus, scope-oriented test
results also include new insights about users and novel inspiration for the solution scope.

!
%.)"

P,$(*3(;(,3(,4'(&D. =4';#3'.*#,5#6$ 5#&5$.#&1D5&$ /.#$ D*,-#6$ 5'$ D'H3(*6#D*5A$;.'5'5A;#&$
h}QRiB$!"#*.$4',5#,5$;.'@*6#&$*,;15$('.$2#6*12$/,6$"*+"3(*6#D*5A$;.'5'5A;#&$h}MOE$}MMiB$.

d%$#$'%,D$=4';#3'.*#,5#6$5#&5$.#&1D5&$/.#$1&1/DDA$&;#4*(*#6IA&5.1451.#6$,/51./D$5#P5B$

@C#0;5(D.F4%;(+%*'(,$(3.9(&$.?(&75$&.

!
<#,+%&'!(Q)!CK2BM6'!-.!2!"''E92,G!>2M+%&'!Y&#E!!

4*-%&,')!\8L<!=H(I7!

J*451.#QK *DD1&5./5#&$/,$#P/2;D#$'($ 5./,&4.*I#6$&4';#3'.*#,5#6$ 5#&5$.#&1D5&$ (.'2$/,$
,5#.,/5',/D$*,&1./,4#$4'2;/,AB$!"#$(##6I/4-$4/;51.#$+.*6$H/&$1$/&$/$(./2#H'.-$
5'$ 6*&41&&$ 5"#$ 5#&5$.#&1D5&$ ',$ 5"#$+#,#./D$ 4',4#;5$ /,6$ &4';#$ '($ &#@#./D$ 5#&5#6$ D'H3
(*6#D*5A$;.'5'5A;#&B$!"#$+.*6$/../,+#&$5"#$(##6I/4-$/44'.6*,+$5'$('1.$6*2#,&*',&ShQi
;57&$h+.##,$;'&53*5&iS$/&;#45&$5"/5$.#4#*@#6$;'&*5*@#$(##6I/4-E$hMi$3(5$#$hID1#$;'&53*5&iS$
4',&5.145*@#$ 4.*5*4*&2$ /,6$ 4"/,+#$ &1++#&5*',&E$ hbi$ <7(&$'%,. 0#*:$ h;*,-$;'&53*5&i$
81#&5*',&$5"/5$"/@#$4'2#$1;$/,6$&"'1D6$I#$/66.#&E$hKi$$D*+"5$I1DI$hA#DD'H$;'&53*5&iS$
6#/&$(.'2$,5#.@*#H$;/.5,#.&$61.*,+$(##6I/4-B$!"#$+.*6$"#D;#6$5"#$;.'Y#45$5#/2$5'$
6#4*6#$H"*4"$;.'5'5A;#&$ &"'1D6$ I#$ 4"/,+#6$ *,$ 5"#$,#P5$ *5#./5*',E$H"*4"$,#H$',#&$
&"'1D6$I#$I1*D5E$/,6$H"*4"$*6#/&$6*6$,'5$.#81*.#$(1.5"#.$6#@#D';2#,5B$

���

8(&4*';$'%,D$:$r2#6*123(*6#D*5A$;.'5'5A;#l$*&$/$,',35#4",*4/D$;.'5'5A;#$H*5"$5"#$-#A$
(#/51.#&$'($5"#$5/.+#5$;.'6145$'.$&#.@*4#B$=*2*D/.$5'$5"#$D'H3(*6#D*5A$;.'5'5A;#$h}QRi$*5$*&$

106

still rudimentary in order to test these features in a basic design language. A somewhat
realistic and click-through prototype can be achieved through hyperlinking PowerPoint
or Keynote slides or by connecting wireframes with specialized digital prototyping tools
such as Prott (https://prottapp.com/) or POP Prototyping (https://marvelapp.com/pop)
(Babich 2017).

Purpose: While early stage, low-fidelity prototypes (#18) are useful to inspire new
ideas, medium-fidelity prototypes are mainly used to test and refine existing solution
ideas (#17) (Hartson and Pyla 2012). In comparison to low-fidelity prototypes (#18)
they usually take more effort to build, yet also provide a much more realistic
representation of the envisioned behavior and user interface (Hartson and Pyla 2012).

Example: Medium-fidelity Prototypes

Figure 29: Example of a Medium-fidelity Prototype

(Source: University of St.Gallen, DT@HSG 2016)

Clickable wireframes for a German insurance provider are visualized in Figure 29.
The team used a combination of PowerPoint slides and Prott to interlink the slides for
interactivity and swiping functions. The app was created to improve the feedback
culture in the organization. Managers could provide short feedbacks in real-time on
the performance of their employees. As a form of visual feedback, not just text but
also emojis could be sent.

107

Interdependencies: A medium-fidelity prototype gets its input from solution ideas (#17),
low-fidelity prototypes (#18) and their respective scope-oriented test results (#19). Its
content provides the basis for generating feature-oriented test results (#21) and creating
high-fidelity prototypes (#22).

Notation: Medium-fidelity prototypes can be expressed in different forms, most often
in a digital format.

5.3.3.21 Feature-oriented Test Results (DT Artifact #21)

Description: ‘Feature-oriented test results’ encompass the aggregated feedback from
users and other relevant stakeholders regarding key features and functionalities of the
prototype. They validate the customer’s expectations of a solution and its added value
before cost-intensive implementation begins (Hartson and Pyla 2012).

Purpose: The results provide indications on where to refine the concept of the idea and
a direction for further adjustments that have to be made in upcoming iteration loops.
Feature-oriented test results also help to prioritize functionalities for the implementation
timeline. Initial obstacles can be eliminated and challenges can be identified and tackled
at an early stage.

Interdependencies: Feature-oriented test results are most often linked to medium-
fidelity prototypes (#20). Their content provides input for creating a high-fidelity
prototype (#22) and specifying usage and service models (#25, 26).

Notation: Feature-oriented test results are usually specified by natural text.

108

Example: Feature-oriented Test Results

Picture 15: Example of Feature-oriented Test Results

(Source: ITMP 2018)

Picture 15 shows an example of transcribed feature-oriented test results from an
international insurance company. The team had created and tested a clickable
medium-fidelity mockup with PowerPoint and Prott. Printing out the screens and
assigning relevant feedback to each wireframe (on post-its) helped the team to proceed
with the relevant features and revise the prototype. Color-coded post-its supported the
team in distinguishing between new ideas and positive and negative feedback.

5.3.3.22 High-fidelity Prototypes (DT Artifact #22)

Description: A ‘high-fidelity prototype’ shows how the final system will look and feel
(Walker et al. 2002). A project team usually creates such a prototype when they have a
profound understanding about the key features and functionalities, the appearance, and
user experience (Beaudouin-Lafon and Mackay 2003). A high-fidelity prototype
includes all the content in a realistic interface and interaction design. In the context of
software-intensive systems, digital prototypes are the most common used form. A
variety of specialized software allows the project team to build a visually rich and
detailed prototype with interactive effects and complex animations (e.g., InVision,
Axure, Adobe XD) (e.g. Babich 2017).

!
%.-"

@C#0;5(D.>'6"+)'3(5'$/.b*%$%$/;(&.

$
"#$%&'!NH)!CK2BM6'!-.!2!D#$/W.#E'6#+U!<&-+-+UM'!!

4*-%&,')!F3#;'&1#+U!-.!*+PY266'3J!08ZD*Y!=H(Q7!

U*+1.#bO&"'H&$/$"*+"3(*6#D*5A$;.'5'5A;#$5"/5$"#D;&$4/.$'H,#.&$2/,/+#$5"#*.$4/.&$*,$
/$ 4',@#,*#,5$ H/AB$!"#$ &'D15*',$ /DD'H&$ 41&5'2#.&$ 5'$ 2/,/+#$ 5"#*.$.#;/*.$ "*&5'.AE$
.#4#*@#$.#;/*.$.#2*,6#.&$ H*5"$ ';5*',/D$ '((#.&E$.#4#*@#$ @'14"#.&$ (.'2$;/.5,#.$
4'2;/,*#&E$ /&$ H#DD$ /&$ 1,6#.&5/,6$ 6.*@*,+$ I#"/@*'.$ /,6$ 5'5/D$ 6.*@*,+$ 4'&5&B$ NA$
,4D16,+$.#D#@/,5$&5/-#"'D6#.&u.#;/*.$&"';&E$+/&$&5/5*',&E$4/.$&#.@*4#$;.'@*6#.&$/,6$
,&1./,4#$ 4'2;/,#&$ u$ 5"#$ &'D15*',$ *&$ /$ ',#3&5';$;#.&',/D$ /&&*&5/,5$ ('.$ #@#.A$ 4/.$
'H,#.B$!"#$ (1,45*',/D$ "*+"3(*6#D*5A$;.'5'5A;#$;'.5./A&$ 5"#$ D''-$ /,6$ (##D$ '($ 5"#$
,5#,6#6$(,/D$&'D15*',B$

b7*;%&(S$0*+"3(*6#D*5A$;.'5'5A;#&$"#D;$5"#$;.'Y#45$5#/2$5'$+/*,$2#/,*,+(1D$(##6I/4-$('.$
1&/I*D*5A$5#&5*,+B$:&$5"#&#$;.'5'5A;#&$'(5#,$D''-$/,6$(##D$D*-#$.#/D$&'D15*',&E$1&#.&$/.#$
2'.#$D*-#DA$5'$*,5#./45$H*5"$5"#2$,/51./DDAE$Y1&5$D*-#$H*5"$/$.#/D$;.'6145$hN/I*4"$MOQeiB$
!"*&$-*,6$'($;.'5'5A;#$*&$/D&'$&1*5/ID#$5'$+/*,$I1A3*,$(.'2$4D*#,5&$/,6$*,5#.,/D$;.'Y#45$

110

stakeholders. The prototype offers a clear vision of how the solution is supposed to
work. However, due to the detailed work that has gone into the prototype, the project
team might also feel reluctant to change designs based on negative feedback and less
likely to fully explore the design space (Walker et al. 2002).

Interdependencies: A high-fidelity prototype gets its input from solution ideas (#17),
low- and medium-fidelity prototypes (#18, #20) and their respective scope-and feature
oriented test results (#19, #21). Its content provides the basis for generating usability-
oriented test results (#22) and specifying the system vision (#24).

Notation: High-fidelity prototypes can be expressed in different forms, most often in a
digital format.

5.3.3.23 Usability-oriented Test Results (DT Artifact #23)

Description: ‘Usability-oriented test results’ provide information about the user’s
interaction with a product with the goal of assessing the usability of that product.
Typically, a test report includes a background summary (what was tested and why), the
methodology (how was the test conducted and with whom), test results (quantitative and
qualitative metrics like satisfaction, task completion rates, average time taken, or
comments), findings (positive and negative), and recommendations on how to proceed
(Cooper et al. 2014, pp. 70-71).

Purpose: Usability-oriented test results, at their core, provide information about the
effectiveness of ideas; they do not necessarily establish completely new ideas. Usability
testing emphasizes the measurement of how well users can operate specific tasks and
the respective problems they encounter in doing so. The results provide areas for
improving issues of understandability and point at directions for refining particular
design elements and interaction mechanisms (Cooper et al. 2014, p.143).

Interdependencies: Usability-oriented test results are most often linked to high-fidelity
prototypes (#22). Their content provides input for the system vision (#24) and usage
model (#25).

Notation: ‘Usability-oriented test results’ are usually specified by structured natural
text. Visual content like screen shots or video clips can support the explanatory power
of the findings.

!
%%%"

@C#0;5(D.h'5'$/+%*'(,$(3.9(&$.?(&75$&.

$

$
"#$%&'!N()!CK2BM6'1!-.!F129#6#+UW-&#'3+'E!8'1+!@'1%6+1!

4*-%&,')!\8L<!=H(I7!

!"#$1&/I*D*5A$5#&5$.#;'.5$/I'15$/$,#H$6*+*5/D$;D/5('.2$'($/$C#.2/,$15*D*5A$'.+/,*T/5*',$
,4D16#6$/$H/D-5".'1+"IA1&#.&E$/$5./4-$/,6$5#&5$6&4'@#.A3;.'4#&&$/,6$/,$#2'5*',/D$
Y'1.,#A$'($5#&5#.&E$5./4-$/,6$5#&5$(1,45*',&$/,6$/$(1,45*',/D$Y'1.,#A$h*,4DB$1&/I*D*5A$/,6$
,/@*+/5*',iE$/,6$81/D*5/5*@#$(##6I/4-$',$1&/I*D*5A$/,6$4',5#,5$5'$*6#,5*(A$2/Y'.$I1+&$
/,6$4',4#;51/D$2*&5/-#&B$!"#$"#/5$2/;$*,$U*+1.#$bQ$D#6$5'$5"#$('DD'H*,+$(*,6*,+$/,6$
.#4'22#,6/5*',S$Z%&#.&$;/A$/$D'5$'($/55#,5*',$5'$5"#$@/D1#$;.';'&*5*',$I1IID#&$/,6$
'(5#,$/55#2;5$5'$4D*4-$5"#2$.#;#/5#6DAE$#@#,$5"'1+"$5"#A$/.#$,'5$4D*4-/ID#B$]1..#,5DAE$
5"#$',DA$;'&&*ID#$*,5#./45*',$*&$5"#$.#+*&5./5*',B$7#4'22#,6/5*',S$^/D1#$;.';'&*5*',$
I1IID#&$ &"'1D6$ I#$ *,5#./45*@#$ /,6t'.$;.'@*6#$2'.#$ *,('.2/5*',$ ',$ 5"#$ 1,6#.DA*,+$
(1,45*',/D*5A$5'$;.'@*6#$/$;D#/&/,5$#,5.A$;'*,5$5'$5"#$;D/5('.2B[$h<!FJ$MOQRi$

��

8(&4*';$'%,D$!"#$r&A&5#2$@*&*',l$*&$5"#$&;#4*(*4/5*',$'($"'H$/,$*,('.2/5*',$&A&5#2$*&$5'$
(*5$*,5'$5"#$I1&*,#&&$4',5#P5$H"*D#$&1;;'.5*,+$;.#36#(*,#6$.#&5.*45*',&$/,6$+'/D&$hFo,6#T$
U#.,p,6#T$ /,6$ J#,T#,&5/6D#.$ MOQK/E$;B$ beiB$ <5$ *&$ 1&1/DDA$ /+.##6$ 1;',$ IA$ /DD$ /45*@#$
&5/-#"'D6#.&$/,6$6#(*,#&$5"#$I*+$;*451.#$'($5"#$&A&5#2$@*&*',$hF',-$/,6$0'H/.6$QLLRiB$$

b7*;%&(D$!"#$&A&5#2$@*&*',$&#.@#&$/&$/$2#/,&$('.$/+.##*,+$',$H"/5$5"#$&'D15*',$*&$/I'15B$
<5$ #/&#&$ 4'221,*4/5*',$H*5"$ &5/-#"'D6#.&$ /I'15$ 5"#$ &4';#$/,6$ 5"#$+'/D&$'($ 5"#$ (*,/D$

!
%%&"

&A&5#2B$V"*D#$5"#$;1.;'&#$'($5"#$&A&5#2$@*&*',$*&$&*2*D/.$5'$I'5"$)#&*+,$!"*,-*,+$/,6$
7#81*.#2#,5&$9,+*,##.*,+E$*5&$.#/D*T/5*',$2*+"5$I#$6*((#.#,5B$<,$)#&*+,$!"*,-*,+$*5$*&$
1&1/DDA$4'2;.*$'($/$"*+"3D#@#D$,/51./D$5#P5$&;#4*(*4/5*',$('.$5"#$&'D15*',$*,4D16*,+$*5&$
2/*,$*,5#,5$/,6$+'/D&B$<5$*&$1&1/DDA$;"./$*,$M3b$&#,5#,4#&B<5*&$'(5#,$/44'2;/,*#6IA
/$ 2#6*123'.$ "*+"3(*6#D*5A$;.'5'5A;#$ h}MOE$ }MMi$ /,6$ /$ "*+"3D#@#D$ 6#&4.*;5*',$ '($ 5"#$
I1&*,#&&$2'6#D$'($5"#$&'D15*',$h&##$#P/2;D#$I#D'HiB$<,$7#81*.#2#,5&$9,+*,##.*,+$5"#$
&A&5#2$@*&*',$*&$'(5#,$#P;.#&$@*/$.*4"$;*451.#B$$

P,$(*3(;(,3(,4'(&D.!"#$&A&5#2$@*&*',$&122/.*T#&$5"#$I1&*,#&&$4',5#P5$(.'2$/.5*(/45&$
D*-#$I1&*,#&&$4/&#$h}ObiE$&5/-#"'D6#.&$h}OKiE$+'/D&$h}OciE$/,6$5"#$6'2/*,$2'6#D$h}OdiB$
<,$/66*5*',E$*5$5/-#&$5"#$('.2$'.$*,;15$(.'2$5"#$"*+"3(*6#D*5A$;.'5'5A;#$h}MMiB$!"#$4',5#,5$
'($5"#$r&A&5#2$@*&*',l$;.'@*6#&$5"#$*,;15$('.$5"#$1&/+#$2'6#D$h}MciE$&#.@*4#$2'6#D$h}bbiE$
/,6$.*&-&$h}bQiB$$

d%$#$'%,D$!"#$&A&5#2$@*&*',$4/,$I#$&;#4*(*#6IA.*4"$;*451.#E$;.'5'5A;#E$'.$&5.1451.#6$
,/51./D$5#P5B$

@C#0;5(D.F/&$(0.G'&'%,.',.?(<7'*(0(,$&.@,6',((*',6.

$
"#$%&'!N=)!CK2BM6'!-.!2!*U1+'B!b#1#-3!#3!@C!

4?E2M+'E!.&-B!L_3E'T!"'&3`3E'T!23E!<'3T'31+2E6'&!=H(Q97!

/01234"'&$*DD1&5./5#&$/$&A&5#2$@*&*',$'($/,$:!F$hZ:!F$&A&5#2$/,6$&'(5H/.#[i$5"/5$
6#,'5#&$5"#$&A&5#2$I'.6#.E$5"#$2'&5$4#,5./D$I1&*,#&&$;.'4#61.#&$D*-#$ZH*5"6./H/D[E$
Z2/-#$ 5./,&/45*',[E$ Z6#;'&*5$ '($ 2',#A[E$ 5"#$ /((#45#6$ &5/-#"'D6#.&E$ /,6$ I1&*,#&&$
'IY#45&B$!"#$@*&1/D*T/5*',$*&$6',#$@*/$.*4"$;*451.#$hF',-$/,6$0'H/.6$QLLRiB$

System Vision

<<System idea>>
ATM system and software

Ŕ

<<business object>>
Bank account

Ź

<<business object>>
debit Card

Ź

<<business procedure>>
Maintenance

<<business procedure>>
Withdrawal

<<business procedure>>
Make transaction

<<business procedure>>
Deposit of money

š
<<context element>>

Bank software system

<<Stakeholder>>
abc-bank customer

ƈ

<<Stakeholder>>
abc-bank employee

ƈ

!
%%'"

@C#0;5(D.F/&$(0.G'&'%,.',.8(&'6,.9"',:',6.

$

"#$%&'!NN)!CK2BM6'!-.!2!*U1+'B!b#1#-3!#3!08!

4*-%&,')!F3#;'&1#+U!-.!*+PY266'3J!08ZD*Y!=H([7!

<,$)#&*+,$!"*,-*,+$5"#$&A&5#2$@*&*',$*&$(.#81#,5DA$;"./$/&$/$@/D1#$;.';'&*5*',$/&$
/$;/.5$'($/$h"*+"3D#@#Di$I1&*,#&&$2'6#D$6#&4.*;5*',$h#B+B$ZMKte$&1;;'.5$('.$F=$;/5*#,5&$
5".'1+"$;#.&',/D*T#6$ 2'5*@/5*',$ /,6$ 5./*,*,+[iB$!"#$ N1&*,#&&$ F'6#D$]/,@/&$ /&$
&"'H,$ *,$ 5"#$ #P/2;D#$ *&$ ',#$ '($ 5"#$ 2'&5$;';1D/.$ 5''D&$ 5'$ 6#&4.*I#$ /$;'5#,5*/DDA$
&144#&&(1D$';#./5*',$'($/$I1&*,#&&$h>&5#.H/D6#.$/,6$J*+,#1.$MOQOiB$<5$4',&*6#.&$,*,#$
I1*D6*,+$ ID'4-&E$ *,4D16*,+$ @/D1#$;.';'&*5*',E$.#@#,1#$ &'1.4#&E$ 41&5'2#.$ I/&#E$ -#A$
.#&'1.4#&$/,6$/45*@*5*#&E$/,6$6#5/*D&$'($(*,/,4*,+B$

��

8(&4*';$'%,D$!"#$r1&/+#$2'6#Dl$*DD1&5./5#&$5"#$hID/4-$I'Pi$&A&5#2$I#"/@*'.$'($5"#$&A&5#2$
@*&*',$h}MKi$(.'2$5"#$1&#.l&$;'*,5$'($@*#H$5".'1+"$/,$'@#.@*#H$'($1&#$4/&#&$hFo,6#T$
U#.,p,6#T$ /,6$J#,T#,&5/6D#.$ MOQK/E$;B$ beiB$:$1&#$ 4/&#$ 4',5/*,&$ /$ $ '($ *,5#./45*',$
&4#,/.*'&$I#5H##,$5"#$/45'.&$/,6$5"#$*,5#,6#6$&A&5#2$h]'4-I1.,$MOOOiB$<5$ *,4D16#&$/$
5/&-E$ /,$ 'IY#45*@#E$ /,6$ /$ 4/1&/D$.#D/5*',&"*;$ h;.#3$ /,6$;'&534',6*5*',&i$ /,6$ 2/A$ I#$
.#;.#&#,5#6$@*&1/DDA$*,$%FGB$:5$D#/&5$',#$(1,45*',/D$&4#,/.*'$4/,$I#$6#(*,#6$('.$#/4"$
1&#$4/&#E$ *,$H"*4"$/45'.&$;/.5*4*;/5#$H"'$/.#$ 5.*++#.#6IA4#.5/*,$#@#,5&B$:$&4#,/.*'$
&5#2&$(.'2$/$.#81*.#2#,5$/,6$*&$6#&4.*I#6IA/45'.$/,6$&A&5#2$/45*',&$#/4"$;.'4#&&*,+$
6/5/$'IY#45&$hFo,6#T$U#.,p,6#T$/,6$J#,T#,&5/6D#.$MOQK/E$;B$beiB$$

!
%%("

b7*;%&(D$!"#$2/*,$;1.;'&#$'($5"#$1&/+#$2'6#D$*&$5'$;.'@*6#$/,$1,6#.&5/,6*,+$/I'15$
H"*4"$&A&5#2$(1,45*',&$/.#$;#.('.2#6$('.$H"*4"$/45'.&$h*,$5"#*.$.'D#&iB$!"#$+./;"*4/D$
'@#.@*#H$6#;*45&$/45'.&E$5"#*.$+'/D&$h.#;.#&#,5#6$/&$1&#$4/&#&iE$/,6$/,A$6#;#,6#,4*#&$
I#5H##,$5"'&#$+'/D&B$<,$7#81*.#2#,5&$9,+*,##.*,+$/$r1&/+#$2'6#Dl$5A;*4/DDA$4',&*&5&$'($
/$ 1&#$ 4/&#$ '@#.@*#H$6*/+./2E$ /$ 1&#$ 4/&#$ 5#2;D/5#E$ /,6$/$ &4#,/.*'$ 6*/+./2$ hFo,6#T$
U#.,p,6#T$ /,6$ J#,T#,&5/6D#.$ MOQK/E$;B$ beiB$ <,$)#&*+,$!"*,-*,+$ 5"#$ 1&/+#$2'6#D$ *&$
;/.5*/DDA$ 4'@#.#6$ 5".'1+"$ 5"#$ &;#4*(*4/5*',$ '($ "*+"3(*6#D*5A$;.'5'5A;#&$ h}MMi$ H"*4"$
6#&4.*I#$4',4.#5#$1&#$4/&#&B$!"#$;1.;'&#$'($5"#$/.5*(/45$5A;#&$(.'2$I'5"$/;;.'/4"#&$*&$
&*2*D/.E$"'H#@#.E$2'&5$'(5#,$5"#A$/.#$#P#415#6$',$6*((#.#,5$/I&5./45*',$D#@#D&B$

@C#0;5(D.h(.R%3(5.

$
"#$%&'!NQ)!CK2BM6'!-.!2!F12$'!L-E'6!

4?E2M+'E!.&-B!L_3E'T!"'&3`3E'T!23E!<'3T'31+2E6'&!=H(Q97!

U*+1.#bK*DD1&5./5#&$/$&*2;D*(*#6$1&/+#$2'6#D$('.$1&*,+$/,$:!F$&'(5H/.#$&A&5#2B$!"#$
/&&'4*/5*',&$ *,6*4/5#$ 5"/5$ /$ &5/-#"'D6#.$ *&$ *,@'D@#6$H*5"$/$1&#$4/&#B$!"#$ ('DD'H*,+$
5".##$1&#$4/&#&$/.#$@*&1/D*T#6ShQi=5/-#"'D6#.$#24+2#,:.47&$%0(*$H*5"6./H&$2',#AE$
hMi$ &5/-#"'D6#.$ #24+2#,:. (0;5%/(($ *&$ *,@'D@#6$ *,$ /$ 5./,&/45*',E$ hbi$ &5/-#"'D6#.$
0#',$(,#,4(.(,6',((*$*&$2/*,5/*,*,+$5"#$:!F$&'(5H/.#$&A&5#2B$$

P,$(*3(;(,3(,4'(&D.!"#$1&/+#$2'6#D$+/*,&$ *5&$ *,;15$(.'2$5"#$#D/I'./5*',$'($;#.&',/&$
h}Qbi$/,6$5"#*.$41&5'2#.$Y'1.,#A&$h}QKi$/&$H#DD$/&$(.'2$5"#$&;#4*(*4/5*',$*,$5"#$&A&5#2$
@*&*',$h}MKi$/,6$&#.@*4#$2'6#D$h}MdiB$!"#$'15;15$'($5"#$1&/+#$2'6#D$;.'@*6#&$5"#$I/&*&$
('.$5"#$(1,45*',/D$"*#./.4"A$h}MRiE$6/5/$2'6#D$h}MLiE$/,6$81/D*5A$.#81*.#2#,5&$h}bbiB$.

d%$#$'%,D$!"#$ r1&/+#$ 2'6#Dl$ 4/,$ I#$ &;#4*(*#6$ IA$ &5.1451.#6$ 5#P5$ '.$ %FG$ /45*@*5A$
6*/+./2&B$

Usage Model

<<use_case>>
Money withdrawal

Ɣ

<<stakeholder>>
abc-bank customer

ƈ

<<stakeholder>>
abc-bank employee

ƈ

<<use_case>>
Maintenance

Ɣ

<<use_case>>
Transaction

Ɣ

<<stakeholder>>
maintenance engineer

ƈ

ATM software system

115

5.3.3.26 Service Model (DT and RE Artifact #26)

Description: The ‘service model’ specifies the requirements and objectives of the
intended services of the solution. Services are understood as a representation of user-
visible functions through input/output-relations (Hummel and Thyssen 2009). The
quality of the service is described by using service parameters that correspond to metrics
from the quality requirements (#33) that inhabit particular service levels (Méndez
Fernández and Penzenstadler 2014a, p. 37).

Purpose: The service model provides a comprehensive understanding of the services
and their underlying resources and processes, whether seen or unseen by the user. For
the project team it serves as a means to structure complex scenarios with multiple
service-related offerings and often bridging cross-departmental efforts. In addition, the
model can be used to integrate experts into the analysis and development process (to
inform and gain feedback) and to orchestrate the implementation of the service (provide
guidance on how different components should be used) (Bitner et al. 2008). The service
model covers the same semantic meaning for both Design Thinking and Requirements
Engineering, however, it can be expressed through different means as described below.

Interdependencies: The service model gains its input from the specification in the
system vision (#24) and provides input for the usage model (#25), data model (#29), and
quality requirements (#33). Depending on the project, the ‘service model’ itself can be
composed by different artifacts, especially when using Design Thinking. For example,
it can be expressed through a high-fidelity prototype (#22), customer journeys (#14), or
dedicated tools like the service design blueprint (see example below). The service
blueprint depicts the relationship between different service components – customers,
objects (physical or digital evidence), and processes – that are directly tied to
touchpoints in a specific customer journey (Bitner et al. 2008). These blueprints can also
be used for problem analysis to discover weaknesses and opportunities for optimization
or redesign.

Notation: The service model can be specified by structured text or graphs. Each step in
the service experience can be enriched with drawings, pictures, or any other material
that supports the understanding.

116

Example: Service Model in Design Thinking

Figure 35: Example of a Service Model in DT

(Source: Bitner et al. 2008, p. 76)

The service design blueprint of a hotel stay is partially shown in Figure 35. It is
structured according to a horizontal axis (actions performed by a customer and
provider in chronological order) and a vertical axis (elaborates different areas of
actions) (Bitner et al. 2008). The latter is divided into five rows such as physical
evidence (touchpoints of the customer), customer actions (to reach a specific goal, e.g.
make a reservation), onstage actions performed by the service provider (human-to-
human or human-to-computer, e.g. check in), backstage actions (behind the scenes
activities, e.g. take bags to room), and support and managerial processes on different
layers (internal steps and interactions that support delivering the service, e.g.
reservation process).

!
%%+"

@C#0;5(D.F(*-'4(.R%3(5.',.?(<7'*(0(,$&.@,6',((*',6.

$
"#$%&'!N[)!CK2BM6'!-.!2!*'&;#,'!L-E'6!#3!@C!!

4?E2M+'E!.&-B!L_3E'T!"'&3`3E'T!23E!<'3T'31+2E6'&!=H(Q97!

!"#$&*2;D*(*#6$&#.@*4#$2'6#D$'($/,$:!F$*&$&;#4*(*#6IA *,;153'15;15$.#D/5*',&"*;&$
hV#)0#']!Y#'G#%CE4#00#!?+$$1#!$%;)1!@#&4$:#$!G#':#$,iB$U'.$0%,(/.!'$"3*#!#5E$
('.$#P/2;D#E$ 5"#$6#(*,#6$*,;15$@/.*/ID#&$/.#$Z6#I*5$4/.6[$/,6$ZJ<?[$/,6$5"#$'15;15$
@/.*/ID#&$/.#$Z2',#A[$/,6$Z/44'1,5$I/D/,4#[B$$

���

8(&4*';$'%,D$rJ.'4#&&$.#81*.#2#,5&l$&;#4*(A$/45*@*5*#&$5"/5$&"'1D6$I#$;#.('.2#6$IA$5"#$
6#@#D';*,+$'.+/,*T/5*',B$U'.$#P/2;D#E$5"#A$4/,$6#5#.2*,#$5"#$4'2;D*/,4#$5'$&5/,6/.6&$
/,6$;.'4#&&$2'6#D&$5"/5$21&5$I#$('DD'H#6E$5"#$2*D#&5',#&$'($/$;.'Y#45$5"/5$21&5$I#$-#;5E$
&5AD#3+1*6#&$ 5"/5$21&5$ I#$ ('DD'H#6E$ '.$ 5"#$ *,(./&5.1451.#$ 5"/5$21&5$ I#$ 1$ hFo,6#T$
U#.,p,6#T$/,6$J#,T#,&5/6D#.$MOQK/E$;B$KOiB$$

b7*;%&(D$ J.'4#&&$.#81*.#2#,5&$;.'@*6#$ 5"#$ +1*6#D*,#&$ ('.$ /$ 4',&*&5#,5$ 6#&*+,$ /,6$
2;D#2#,5/5',$'($5"#$*,5#,6#6$&A&5#2B$$

P,$(*3(;(,3(,4'(&D. J.'4#&&$.#81*.#2#,5&$ /.#$ *,(D1#,4#6$ IA$ 5"#$ &;#4*(*4/5*',&$ *,$ 5"#$
6#&*+,$4"/DD#,+#$t;.'Y#45$&4';#$h}OQiB.

d%$#$'%,D$J.'4#&&$.#81*.#2#,5&$/.#$1&1/DDA$&;#4*(*#6$IA$,/51./D$5#P5B$

Service Model

input: debit card
ŋ

input: PIN
ŋ

input: debit card
ŋ

input: money
ŋ

output: money
ŋ

output: account balance
ŋ

output: receipt
ŋ

output: account balance
ŋ

Money withdrawal

Money deposit

!
%%,"

@C#0;5(D.b*%4(&&.?(<7'*(0(,$&.

$
"#$%&'!N])!CK2BM6'!-.!<&-,'11!@'A%#&'B'3+1!!

4?E2M+'E!.&-B!L_3E'T!"'&3`3E'T!23E!<'3T'31+2E6'&!=H(Q97!

U*+1.#beD*&5&$/$$'($;.'4#&&$.#81*.#2#,5&$('.$/$+*@#,$;.'Y#45B<5*,4D16#&$;.'4#61.#$
.#81*.#2#,5&$5'$I#$('DD'H#6$h^$F'6#DD$_!$;.'4#61.#&iE$5"#$;.'+./22*,+$D/,+1/+#$
.#&5.*45*',&$ 5'$ I#$ 'I#A#6E$ 5"#$ 5*2#5/ID#$ 5'$ I#$-#;5$ h;#.*'6*4/D$2*D#&5',#&iE$ /,6$ 5"#$
6'412#,5/5*',$5"/5$*&$.#81*.#6$/5$/DD$6#@#D';2#,5$&5/+#&B$!"#$;.'4#&&$.#81*.#2#,5&$
/.#$&;#4*(*#6$IA$,/51./D$5#P5B$

���

8(&4*';$'%,D$!"#$r(1,45*',/D$"*#./.4"Al$&;#4*(*#&$(1,45*',&$/,6$&1I(1,45*',&$/,6$5"#*.$
.#&;#45*@#$.#D/5*',&"*;&$ /,6$ 6#;#,6#,4*#&$ h#B+B$ 4'221,*4/5*',$.#D/5*',E$ 5/&-$ /,6$
&1I5/&-E$5*2#DA$'.6#.&iB$U1,45*',&$/.#$1&#.3@*&*ID#$;*#4#&$'($5"#$&A&5#2$I#"/@*'.B$!"#A$
4'..#&;',6$5'$&#.@*4#&$(.'2$5"#$&#.@*4#$2'6#D$h}Mdi$/,6$.#/D*T#$5"#$&A&5#2$/45*',&$(.'2$
5"#$1&/+#$2'6#D$h}Mci$hFo,6#T$U#.,p,6#T$/,6$J#,T#,&5/6D#.$MOQK/E$;B$KOiB$$

b7*;%&(D$!"#$;1.;'&#$'($/$(1,45*',/D$"*#./.4"A$*&$5'$I.*6+#$5"#$.#81*.#2#,5&$/,6$&A&5#2$
&;#4*(*4/5*',$/&$ *5$;.'@*6#&$/$&A,5/45*4$ *,5#.(/4#E$6#5#.2*,#&$ D'+*4/D$4'2;',#,5&E$/,6$
&;#4*(*#&$I#"/@*'.$2'6#D&B$<,$/$$'($6/5/$(D'H$6*/+./2&E$5"#$(1,45*',/D$"*#./.4"A$4/,$
I#1/&$/$+1*6#D*,#$('.$'I5/*,*,+$/,6$'.+/,*T*,+$&A&5#2$.#81*.#2#,5&B$$

P,$(*3(;(,3(,4'(&D$ <,$ 5"#$ /.5*(/45$ 2'6#D$ 5"#$ (1,45*',/D$ "*#./.4"AE$ 5'+#5"#.$ H*5"$ 5"#$
1&/+#$h}Mci$/,6$&#.@*4#$2'6#D$h}MdiE$;.'@*6#&$5"#$I/&*&$('.$ 5"#$&A&5#2$&;#4*(*4/5*',E$
,4D16,+$/$6#5/*D#6$6/5/$2'6#D$h}MLiE$(1,45*',$2'6#D$h}bdiE$4'2;',#,5$2'6#D$h}bRiE$
/,6$I#"/@*'.$2'6#D$h}bLiB$

d%$#$'%,D$!"#$(1,45*',/D$"*#./.4"A$*&$1&1/DDA$&;#4*(*#6$5".'1+"$+./;"&$/,6$*,;153'15;15$
5/ID#&B$$

Process Requirements

<<process_requirement>>
V Model XT procedures

<<process_requirement>>
Programming language restrictions

<<process_requirement>>
Periodical milestones

<<process_requirement>>
Documentation of all development stages

!
%%-"

@C#0;5(D.I7,4$'%,#5.>'(*#*4"/.

$
"#$%&'!NI)!CK2BM6'!-.!2!"%3,+#-326!D#'&2&,/U!!

4?E2M+'E!.&-B!L_3E'T!"'&3`3E'T!23E!<'3T'31+2E6'&!=H(Q97!

U*+1.#bR&"'H&$/,$#P/2;D#$'($/$(1,45*',/D$"*#./.4"A$'($1&#.3@*&*ID#$(1,45*',&$('.$/,$
:!FB$%&#.3@*&*ID#$(1,45*',&$*,4D16#E$('.$*,&5/,4#E$ZH*5"6./H/D[$h{$)7,4$'%,i$H*5"$*5&$
&72)7,4$'%,&$ Z2',#A$ '15;15[$ /,6$ Z4"''&#$ /2'1,5[B$:$.#D/5*',$ 4/,$ I#$ 6#(*,#6$
I#5H##,$ ZH*5"6./H/D[E$ /,6$ Z/15"#,5*4/5*',[$ h#B+B$ Z/$ H*5"6./H/D$ *(<7'*(&$
/15"#,5*4/5*',[iB$

���������������������������������������

8(&4*';$'%,D$!"#$r6/5/$2'6#Dl$*,$5"#$.#81*.#2#,5&$D/A#.$&122/.*T#&$/DD$6/5/$'IY#45&$/,6$
.#D/5*',&$ 5"/5$ /.#$;/.5$ '($ 5"#$ &A&5#2l&$ (1,45*',&$ /,6$ *,5#./45*',$ &4#,/.*'&$ hFo,6#T$
U#.,p,6#T$/,6$J#,T#,&5/6D#.$MOQK/E$;B$bLiB$$

b7*;%&(D$!"#$6/5/$2'6#D$&1;;'.5&$5"#$6#@#D';2#,5$'($5"#$*,5#,6#6$&A&5#2IA;.'@*6*,+$
5"#$6#(*,*5*',E$('.2/5E$/,6$&5.1451.#$'($5"#$.#81*.#6$6/5/B$$

P,$(*3(;(,3(,4'(&S$!"#$&A&5#2$(1,45*',&$('.$5"#$6/5/$2'6#D$/.#$6#.*@#6$(.'2$5"#$1&/+#$
2'6#D$h}MciE$&#.@*4#$2'6#D$h}MdiE$/,6$5"#$(1,45*',/D$"*#./.4"A$h}MRiB$!"#$#D#2#,5&$'($
5"#$6/5/$2'6#D$*,$5"#$.#81*.#2#,5&$D/A#.$;.'@*6#$*,;15$('.$.#(*,*,+$5"#$6/5/$2'6#D$h}bei$
*,$5"#$&A&5#2$D/A#.B$$

d%$#$'%,D$!"#$6/5/$2'6#D$*&$1&1/DDA$&;#4*(*#6$*,$/$6/5/$2'6#D*,+$,'5/5*',$&14"$/&$%FG$
4D/&&$6*/+./2&B$

Functional Hierarchy

<<user_visible_function>>
Withdrawal

6

<<user_visible_function>>
Money output

6
<<user_visible_function>>

Choose amount

6

<<user_visible_function>>
Money transmission

6

<<user_visible_function>>
Transm. data input

6

<<user_visible_function>>
Input receiver account

6
<<user_visible_function>>

Choose transaction

6

<<user_visible_function>>
Print receipt

6

<<user_visible_function>>
Authentication

6

<<user_visible_function>>
Insert card

6
<<user_visible_function>>

Enter PIN

6

!
%&."

@C#0;5(D.8#$#.R%3(5.

$
"#$%&'!Na)!CK2BM6'!-.!2!02+2!L-E'6!#3!+/'!@'A%#&'B'3+1!*M',#.#,2+#-3!!

4?E2M+'E!.&-B!L_3E'T!"'&3`3E'T!23E!<'3T'31+2E6'&!=H(Q97!

U*+1.#bL&"'H&$/$6/5/$2'6#D$#P4#.;5$ ('.$/,$:!F$2/4"*,#B$ <5$ *DD1&5./5#&$ 5"#$6/5/$
'IY#45&$ Z]1&5'2#.[$ 4D/&&E$ Z!./,&/45*',[$ 4D/&&E$ /,6$ Z)#I*5$]/.6[$ 4D/&&$ 5"/5$ /.#$
&;#4*(*#6$ IA$ 5"#*.$.#&;#45*@#$ /55.*I15#&B$ <,$ 5"*&$ #P/2;D#E$ 5"#$ Z]1&5'2#.[$ 4D/&&$ *&$
6#;*45#6$ @*/$ 5"#$ /55.*I15#&$ Z/44'1,5$,12I#.[E$ ZI/,-$,12I#.[E$ /,6$ Z,/2#[B$!"#$
.#D/5*',&"*;$ /2',+$ 5"#$ 4D/&&#&$ /.#$ @*&1/D*T#6$ 5".'1+"$ /..'H&B$:&$ 5"#$;*451.#$
DD1&5./5#&E$5"#$/..'H&$,6*4/5#$/$1,*6*2#,&*',/D$6#;#,6#,4A$I#5H##,$5"#$4D/&&#&$h#B+B$
ZG'+*,$J.'4#&&[$4D/&&$6#;#,6&$',$5"#$Z]1&5'2#.[$4D/&&iB$

��

8(&4*';$'%,D$r)#;D'A2#,5$.#81*.#2#,5&l$6#&4.*I#$5"#$6#2/,6&$('.$2/-*,+$5"#$&'(5H/.#$
/@/*D/ID#$ ('.$ 1&#E$ *B#B$ &;#4*(A*,+$ 5"#$;.'4#&&$ '($ 5"#$ 6#;D'A2#,5$ /,6$ 5"#$ 5#4",*4/D$
,(./&5.1451.#$ 61.,+$ 5"#$ *,*5*/D$.#D#/&#$ '($ 5"#$ &A&5#2$'.$ &;#4*(*4$;/.5&$ '($ *5$ hFo,6#T$
U#.,p,6#T$/,6$J#,T#,&5/6D#.$MOQK/E$;B$KOiB$!"#A$.#D/5#$5'$5"#$&A&5#2l&$,',3(1,45*',/D$
.#81*.#2#,5&B$$

b7*;%&(S$)#;D'A2#,5$.#81*.#2#,5&$ 4',5.*I15#$ 5'$ 5"#$ '@#./DD$ 81/D*5A$ '($ 5"#$.#&1D5*,+$
&A&5#2$hW1;(#.$/,6$0/6/.$MOORiB$!"#A$;.'@*6#$5"#$I/&*&$('.$6#4*&*',32/-*,+$/I'15$5"#$
.#&1D5*,+$&A&5#2l&$,',3(1,45*',/D$;.';#.5*#&$/,6$;'&&*ID#$6#&*+,$5./6#3'((&B$$

P,$(*3(;(,3(,4'(&D.)#;D'A2#,5$.#81*.#2#,5&$/.#$*,(D1#,4#6$IA$5"#$&;#4*(*4/5*',&$*,$5"#$
6#&*+,$4"/DD#,+#t;.'Y#45$&4';#$h}OQiB.

Data Model Requirements Spec

<<data object>>
Customer

-account_number : int
-bank_number : int
-name : string

<<data object>>
Debit Card

-customer_id : int
-PIN : int

<<data object>>
Login Process

-card_is_valid : boolean
-customer_id : int
-PIN_number : int

<<data object>>
Bank Employee

-employee_id : int
-employee_name : string

<<data object>>
Transaction

�HTV\U[�!�ÅVH[
-customer_id : int
-date : date
-receiver_id : int
-transaction_id : int

!
%&%"

d%$#$'%,D$)#;D'A2#,5$.#81*.#2#,5&$/.#$1&1/DDA$&;#4*(*#6$IA$,/51./D$5#P5B$

@C#0;5(D.8(;5%/0(,$.?(<7'*(0(,$&.

$
"#$%&'!QH)!CK2BM6'!-.!0'M6-UB'3+!@'A%#&'B'3+1!!

4?E2M+'E!.&-B!L_3E'T!"'&3`3E'T!23E!<'3T'31+2E6'&!=H(Q97!

U*+1.#$ KO$ &"'H&$ 5".##$ #P/2;D#&$ '($ 6#;D'A2#,5$.#81*.#2#,5&$ ('.$ /,$:!FB$!"#A$
,4D16#E$('.$,&5/,4#E$Z5"#$/45*@/5*',$'($5"#$:!F$"/&$5'$I#$6',#$H*5"*,bO2*,15#&[$
'.$Z5"#$&'(5H/.#$21&5$.1,$',$:!FMOO$>=[B$!"#$.#81*.#2#,5&$/.#$;"./$*,$,/51./D$
5#P5$/,6$4/,$I#$;15$*,5'$/$;.*'.*5*T#6$'.6#.B$!"#$&;#4*(*4$41&5'2#.$.#81*.#2#,5&$('.$
6#;D'A2#,5$&14"$/&$4.*5*4/D$;.'Y#45$6#/6D*,#&E$(*,/,4*/D$4',&5./*,5&E$/,6$'5"#.$.#&'1.4#$
.#&5.*45*',&$,##6$ 5'$ I#$ 5/-#,$ *,5'$ /44'1,5$ H"#,$ 6#(*,*,+$ 5"'&#$ 6#;D'A2#,5$
.#81*.#2#,5&B$

��������������������������������������

8(&4*';$'%,D$!"#$r.*&-$D*&5l$*,4D16#&$/$6#&4.*;5*',$'($/DD$.*&-&$5"/5$&5#2$(.'2$5"#$@/.*'1&$
.#81*.#2#,5$5A;#&$/,6$;'5#,5*/DDA$5".#/5#,$5"#$6#@#D';2#,5$'.$';#./5*',$'($/$&A&5#2B$
7*&-&$/.#$5A;*4/DDA$/,/DAT#6$/D',+$&5/-#"'D6#.$*,5#.#&5&$/,6$#&5*2/5#6$.#+/.6*,+$5"#*.$
;.'I/I*D*5A$/,6$;'5#,5*/D$6/2/+#$hCD*,T$MOQKE$;B$QLiB$!"#A$/.#$1$/&$/$D*,-$5'$.*&-$
2/,/+#2#,5B$

b7*;%&(D$:$4'2;.#"#,&*@#$.*&-$D*&5$"#D;&$5'$#@/D1/5#$/,6$Y16+#$5"#$4.*5*4/D*5A$'($/$&A&5#2$
h^#,-/5#&"$="/.2/$/,6$W12/.$MOQbE$;B$McOiB<5;.'@*6#&$5"#$('1,6/5*',$5'$*,5.'614#$
,#4#&&/.A$4'1,5#.2#/&1.#&B$$

P,$(*3(;(,3(,4'(&D.!"#$.*&-$D*&5$*&$*,(D1#,4#6$IA$5"#$&;#4*(*4/5*',&$*,$5"#$r&A&5#2$@*&*',l$
h}MKiB.

d%$#$'%,D$!"#$.*&-$D*&5$*&$1&1/DDA$&;#4*(*#6IA,/51./D$5#P5B$

Deployment Requirements

<<deployment_requirement>>
Activation of ATM has to be

done within 30 minutes

<<deployment_requirement>>
Installation of software

via remote access

<<deployment_requirement>>
Software must run

on ATM200 OS

!
%&&"

@C#0;5(D.?'&:._'&$.

$
"#$%&'!Q()!CK2BM6'!-.!2!@#1G!V#1+!!

4?E2M+'E!.&-B!L_3E'T!"'&3`3E'T!23E!<'3T'31+2E6'&!=H(Q97!

U*+1.#KQ@*&1/D*T#&$.*&-&$('.$/,$:!FB$!"#A$*,4D16#E$('.$#P/2;D#E$Z4',&*&5#,4A$'($
6/5/$/5$2/D(1,45*',*,+$:!F[E$Z2/*,5#,/,4#$;.'ID#2&$61#$5'$,#H$&'(5H/.#[E$'.$Z,#H$
6#&*+,$,'5$ /44#;5#6$ IA$ 41&5'2#.&[B$!"#$.*&-&$ /.#$;"./$ *,$,/51./D$ 5#P5$ /,6$ /$
.#D/5*',&"*;$I#5H##,$5"#2$*&$5A;*4/DDA$#&5/ID*&"#6B$9/4"$.*&-$*&$4/1$IA$/$.*&-$(/45'.B$
7*&-&$"/@#$5'$I#$*6#,5*(*#6E$/&&#&E$/,6$/,/DAT#6E$&'$5"/5$#((#45*@#$/45*',&$4/,$I#$
*,5.'614#6$#/.DA$',B$

���

8(&4*';$'%,D$r=A&5#2$4',&5./*,5&l$/.#$D'+*4/D$/,6$5#4",*4/D$.#&5.*45*',&$('.$5"#$&A&5#2$
/.4"*5#451.#E$*5&$(1,45*',/D*5AE$/,6$81/D*5A$hFo,6#T$U#.,p,6#T$/,6$J#,T#,&5/6D#.$MOQK/E$
;B$KOiB$!"#A$6'$,'5$,#4#&&/.*DA$.#&1D5$ (.'2$/$ (1,45*',/D$+'/DB$=A&5#2$4',&5./*,5&$/.#$
4',&*6#.#6$,',3(1,45*',/D$.#81*.#2#,5&B$$

b7*;%&(S$ =A&5#2$ 4',&5./*,5&$ D*2*5$ 5"#$ &'D15*',$ &;/4#$ I#A',6$ H"/5$ *&$,#4#&&/.A$ ('.$
&/5*&(A*,+$ 5"#$ +*@#,$ (1,45*',/D$ /,6$ 81/D*5A$.#81*.#2#,5&$ hCD*,T$ MOQKE$;B$ QQiB$!"#A$
;.'@*6#$5"#$I'1,6/.*#&$('.$6#@#D';2#,5$/,6$6#;D'A2#,5B$$

P,$(*3(;(,3(,4'(&D. =A&5#2$ 4',&5./*,5$ *,(D1#,4#$ 5"#$ &;#4*(*4/5*',&$ '($ 5"#$ 4'2;',#,5$
2'6#D$h}bRiB.

d%$#$'%,D$=A&5#2$4',&5./*,5&$/.#$1&1/DDA$&;#4*(*#6$IA$,/51./D$5#P5B$

Risk List

<<risk_list>>
Consistency of data in case of malfunctioning ATM

ĉ <<risk_list>>
Maintenance problems due to new software

ĉ

<<risk_list>>
:LJ\YP[`�ÅH^Z�K\L�[V�UL^�ZVM[^HYL

ĉ<<risk_list>>
New design not accepted by customers

ĉ

!
%&'"

@C#0;5(D.F/&$(0.\%,&$*#',$&.

$
"#$%&'!Q=)!CK2BM6'!-.!*U1+'B!>-31+&2#3+1!

4?E2M+'E!.&-B!L_3E'T!"'&3`3E'T!23E!<'3T'31+2E6'&!=H(Q97!

U*+1.#KM&"'H&$#P/2;D#&$'($&A&5#2$4',&5./*,5&$5"/5$,##6$5'$I#$5/-#,$*,5'$/44'1,5$('.$
/,$:!FB$!"#A$ 4/,$ *,4D16#$.#&5.*45*',&$ D*-#$ Z;.'+./22*,+$ D/,+1/+#$ Y/@/[E$
Z4'2;/5*I*D*5A$H*5"$#P*&5*,+$*,(./&5.1451.#[$'.$Z*,5#.,/5*',/D$/44'1,5$,12I#.$;'D*4A[B$$

���

8(&4*';$'%,S$ ra1/D*5A$.#81*.#2#,5&l$.#(#.$ 5'$ 5"#$ 6#&*.#6$ 81/D*5A$ 4"/./45#.*&5*4&$ '($ /$
&A&5#2$I#A',6$(1,45*',/D*5A$/,6$(#/51.#&$hCD*,T$MOQKE$;B$QdiB$7#D*/I*D*5AE$;#.('.2/,4#E$
).*5AE$1&/I*D*5AE$/6/;5/I*D*5A$/.#$#P/2;D#&$('.$81/D*5A$.#81*.#2#,5&B$:&$5"#A$/.#$'(5#,$
;"./$*,$81/D*5/5*@#$('.2$h#B+B$Z5"#$&A&5#2$&"/DD$I#$(/&5[iE$5"#A$.#81*.#$2#/&1./ID#$/,6$
5#&5/ID#$2#5.*4&$('.$81/,5*(*4/5*',$/,6$';#./5*',/D*T/5*',B$9P*&5*,+$81/D*5A$2'6#D&$D*-#$
<=>t<9]$McOQOSMOQQ4/,$;.'@*6#$/$+1*6#D*,#$/,6$"#D;$5'$81/,5*(A$/$&;#4*(*4$.#81*.#2#,5B�$

b7*;%&(S$a1/D*5A$.#81*.#2#,5&$"#D;$5'$@/D*6/5#$5"#$&144#&&(1D$4'2;D#5*',$'($/,$#,5*.#$
&A&5#2$'.$*5&$.#&;#45*@#$(1,45*',&$/,6$(#/51.#&B$$

P,$(*3(;(,3(,4'(&D$!"#.#$/.#$,12#.'1&$ *,;15$&'1.4#&$ ('.$81/D*5A$.#81*.#2#,5&$ *,$ 5"#$
/.5*(/45$2'6#DB$U'.$#P/2;D#E$5"#A$4/,$I#$#D*4*5#6$*,$(*#D6$&516*#&$h}QQiE$6#614#6$(.'2$
;#.&',/&$ h}QbiE$ *2;'$ IA$ 'IY#45*@#&$ /,6$ +'/D&$ hOc}iE$ /,6$ 6./H,$ (.'2$ 5"#$ &A&5#2$
@*&*',$h}MKi$'.$1&/+#$2'6#D$h}MciB$a1/D*5A$.#81*.#2#,5&$;.'@*6#$*,;15$('.$5"#$(1,45*',$
2'6#D$h}bdi$/,6$5"#$4'2;',#,5$2'6#D$h}bRiB$$

d%$#$'%,D$a1/D*5A$.#81*.#2#,5&$/.#$1&1/DDA$&;#4*(*#6$IA$,/51./D$5#P5B$

System Constraints

<<system_constraint>>
Programming language java, c# or c++

Ś

<<system_constraint>>
Compatibility with existing infrastructure

Ś

<<system_constraint>>
System conforming to the law

Ś

<<system_constraint>>
International account number policy

Ś

!
%&("

@C#0;5(D.i7#5'$/.?(<7'*(0(,$&.

$
"#$%&'!QN)!CK2BM6'!-.!d%26#+U!@'A%#&'B'3+1!!

4?E2M+'E!.&-B!L_3E'T!"'&3`3E'T!23E!<'3T'31+2E6'&!=H(Q97!

U*+1.#Kb*DD1&5./5#&$#P/2;D#&$'($"*+"3D#@#D$81/D*5A$.#81*.#2#,5&$('.$/,$:!FB$!"#A$
,4D16#$('.$,&5/,4#E$Z"*+"$&A&5#2$/@/*D/I*D*5A[E$Z(/&5$.#&;',&#$5*2#[E$'.$ZD'H$,12I#.$
'($ 4D*4-&[B$!"#$ 6#5/*D#6$ &;#4*(*4/5*',$ '($ /$ 81/D*5A$.#81*.#2#,5$ h#B+B$ Z1&/I*D*5AS$ 5"#$
&A&5#2$&"/DD$I#$#/&A$5'$1&#[i$5A;*4/DDA$*,4D16#&$/$*#$'%,#5($h#B+B$Z2/-#&$*5$2'.#$D*-#DA$
('.$1&#.&$5'$/44#;5$/$,#H$&A&5#2[iE$/$&#$'&)#4$'%,$4*'$(*'%,$h#B+B$ZLOn$'($,#H$1&#.&$
-,'H$"'H$5'$4/..A$'15$/DD$(#/51.#&$/(5#.$Qc$2*,15#&$'($1&#[iE$/$0(#&7*(0(,$$h#B+B$Z5#&5$
H*5"MOOI#5/$5#&5#.&$H"'$.#4#*@#$/$5/&-$/,6$2#/&1.#$5"#$5*2#$('.$4'2;D#5*',[iE$/,6$
'&:&$H"#,$,'5$2##5,+$5"#$81/D*5A$.#81*.#2#,5$h#B+B$Z*($5"#$&A&5#2$*&$,'5$#/&A$5'$1&#E$
*5$H*DD$I#$.#Y#45#6$IA$5"#$1&#.&$/,6$H*DD$,'5$4',81#.$5"#$2/.-#5[i$hJ#,T#,&5/6D#.$MOQe#E$
;B$QRiB$

�������������������������������������

8(&4*';$'%,. #,3. ',$(*3(;(,3(,4'(&D$!"#$ r+D'&&/.Al$ *,$ 5"#$.#81*.#2#,5&$ &;#4*(*4/5*',$
#P5#,6&$5"#$+D'&&/.A$'($4',5#P53.#D#@/,5$5#.2&$h}OLi$H*5"$.#81*.#2#,5&3&;#4*(*4$5#.2&B$
<5$H*DD$&"'H$1;$/+/*,$*,$5"#$&A&5#2$&;#4*(*4/5*',$h}KOi$/&$2'.#$5#.2&$/.#$/66#6$hFo,6#T$
U#.,p,6#T$/,6$J#,T#,&5/6D#.$MOQK/E$;B$beiB$

b7*;%&(D$U'.$6#5/*D#6$.#/&',*,+$&##$6#&4.*;5*',$'($+D'&&/.A$h}OLi$*,$=#45*',$cBbBbBLB$

d%$#$'%,D$!"#$+D'&&/.A$*&$1&1/DDA$&;#4*(*#6$IA$&5.1451.#6$,/51./D$5#P5B$

Quality Requirements

<<quality_requirement>>
High system availability

<<quality_requirement>>
High maintainability

<<quality_requirement>>
Low number of clicks

<<quality_requirement>>
Fast response time

125

Example: Glossary

Figure 44: Example of a Glossary Structure

(Source: own illustration)

See example description of glossary artifact (#09) in Section 5.3.3.9.

5.3.3.35 Architecture Overview (RE Artifact #35)

Description: The ‘architecture overview’ includes the components and their interactions
as depicted in the component overview (#38) and the major functions that encompass
the functional hierarchy (#28) (Méndez Fernández and Penzenstadler 2014a, p. 41).

Purpose: The architecture overview provides a high-level understanding of the evolving
system’s architecture and, thus, functions as a guide for defining the more intricate
functional and operational architecture (Mitra 2008, p. 2). The artifact is used to
facilitate communication between different stakeholders and developers. Based on the
architecture overview different architecture options for a particular solution idea can be
explored and evaluated.

Interdependencies: The architecture overview influences the function model (#36) and
component model (#38).

Notation: The architecture overview is usually specified by a component diagram.

Term Abbreviation Description Synonym Comment
Glossary

!
%&*"

@C#0;5(D.E*4"'$(4$7*(.[-(*-'(!.

$
"#$%&'!QR)!CK2BM6'!-.!23!?&,/#+',+%&'!:;'&;#'5!

4?E2M+'E!.&-B!L_3E'T!"'&3`3E'T!23E!<'3T'31+2E6'&!=H(Q97!

U*+1.#$ Kc$;.#&#,5&$ /$ &*2;D*(*#6$ /.4"*5#451.#$ '@#.@*#H$ '($ /,$:!FB$ <5$ 6#;*45&$ 5"#$
4'2;',#,5&$ Z:!F$ =A&5#2[$ /,6$ ZN/,-$ =A&5#2[B$!"#$ ('.2#.$ *,4D16#&$ &1I3
4'2;',#,5&$ D*-#$ ZC%<[E$ Z]',5.'DD#.[E$ /,6$ ZJ<?$ J/6[B$ ZF',#A$!./,&/45*',[E$
ZV*5"6./H/D[E$ ZF',#A$)#;'&*5[E$ /,6$ Z:15"#,5*4/5*',$ J.'4#&&[$ /.#$ 1&#$ 4/&#&$ 5"/5$
,(D1#,4#$5"#$&A&5#2$6#&+,B$

���

8(&4*';$'%,D$!"#$r(1,45*',$2'6#Dl$;.'@*6#&$/,$'@#.@*#H$6*/+./2$'($5"#$(1,45*',&$/,6$
5"#*.$ 4'221,*4/5*',$.#D/5*',&"*;&$ hN./1,$ #5$ /DB$ MOQKE$;B$ MRiB$ <5$.#/D*T#&$ 5"#$ 1&#.3
'I&#.@/ID#$ (1,45*',&$ (.'2$ 5"#$ (1,45*',/D$ "*#./.4"A$ h}MRi$ /,6$ 4',,#45&$ 5"#$;'.5&$
&;#4*(*#6$*,$5"#$4'2;',#,5$2'6#D$h}bRi$hFo,6#T$U#.,p,6#T$/,6$J#,T#,&5/6D#.$MOQK/E$
;B$KQiB$$

b7*;%&(D$!"#$(1,45*',$2'6#D$#,&1.#&$/,$'@#.@*#H$'($/DD$(1,45*',&$/,6$;.'4#&&#&$/,6E$
5"1&E$/&&*&5&$*,$6#5#.2*,*,+$5"#$&4';#$('.$*2;D#2#,5/5*',$/,6$5"#$;.'6145$/,6$&#.@*4#$
4'&5&B$$

P,$(*3(;(,3(,4'(&D.!"#$(1,45*',$2'6#D$ *&$4'2;'$'($#D#2#,5&$ (.'2$5"#$(1,45*',/D$
"*#./.4"A$h}MRiE$81/D*5A$.#81*.#2#,5&$ h}bbiE$ 5"#$/.4"*5#451.#$'@#.@*#H$h}bciE$/,6$ 5"#$

<<component>>
Bank System

<<component>>
ATM System

Money
Transaction

Money
Deposit

Authentication
Process

Withdrawal
<<component>>

GUI

Architecture Overview

<<component>>
PIN Pad

<<component>>
Proxy

<<component>>
Controller

!
%&+"

4'2;',#,5$2'6#D$ h}bRiB$!"#$'15;15$'($ 5"#$ (1,45*',$2'6#D$ (##6&$ *,5'$ 5"#$I#"/@*'./D$
2'6#D$h}bLiB$

d%$#$'%,D$!"#$(1,45*',$2'6#D$*&$1&1/DDA$&;#4*(*#6IA+./;"&$/,6$5/ID#&B$

@C#0;5(D.I7,4$'%,.R%3(5.

$
"#$%&'!Q[)!CK2BM6'!-.!2!"%3,+#-3!L-E'6!!

4?E2M+'E!.&-B!L_3E'T!"'&3`3E'T!23E!<'3T'31+2E6'&!=H(Q97!

U*+1.#$ Kd$ &"'H&$ 5"#$ (1,45*',$2'6#D$ '($ /,$:!FB$ <5$;.'@*6#&$ /,$ '@#.@*#H$ '($ 5"#$
/45*@*5*#&$ 5"/5$ /.#$ 5'$.#/D*T#$ 5"#$ 1&#.3@*&*ID#$ (1,45*',$ '($ Z:15"#,5*4/5*',[B$!"#&#$
/45*@*5*#&$*,4D16#E$('.$#P/2;D#E$Z9,5#.$J<?[$h@*/$5"#$;'.5$ZJ<?$;/6[iE$Z]"#4-$J*,[E$'.$
Z4"#4-$4/.6[$hI'5"$@*/$5"#$;'.5$ZN/,-$=A&5#2[iB$$

���������������������������������������

8(&4*';$'%,D$!"#$ r6/5/$ 2'6#Dl$ 4/;51.#&$ 5"#$ 4'/.+./*,#6$ 6/5/$ 'IY#45&$ /,6$ 5"#*.$
.#D/5*',&$ 5"/5$ /.#$.#81*.#6$ ('.$ 5"#$ #P#415*',$ '($ 5"#$ &A&5#2l&$ (1,45*',&$ hFo,6#T$
U#.,p,6#T$/,6$J#,T#,&5/6D#.$MOQK/E$;B$KMiB$$

b7*;%&(D.!"#$Z6/5/$#D#2#,5&[$'($5"#$6/5/$2'6#D$.#(*,#$5"#$Z6/5/$'IY#45&[$(.'2$5"#$6/5/$
2'6#D$h}MLi$*,$5"#$.#81*.#2#,5&$D/A#.$IA$1&*,+$/$;/.5*41D/.$6/5/$5A;#B$<5$*&$1$5'$6#(*,#$
5"#$6#5/*D&$'($*,('.2/5*',$5'$I#$&5'.#6$('.$5"#$+#,#./5*',$'($&'(5H/.#$4'6#$'.$*5$4/,$/*6$
,$2/-#3'.3I1A$6#4&*',&$'($&'(5H/.#B$!"#$6/5/$&;#4*(*4/5*',$*,$5"#$&A&5#2$D/A#.$*&$;/.5$

Function Model

<<user_visible_function>>
Authentication

6

Enter PIN

Check Card

Check PIN

Insert Card

PIN pad

Card reader

Bank system

!
%&,"

'($ /$ &5#;H*&#$ 4'2;D#5*',$ (.'2$2'@*,+$ 5"#$ ('41&$ ',$ 6#(*,*,+$ 1&#.3@*&*ID#$ (1,45*',&$
5'H/.6&$&;#4*(A*,+$5"#$6#&*+,$&A&5#2$H*5"$5"#$4'2;',#,5$6#&*+,$h}bRi$/,6$5"#$I#"/@*'.$
&;#4*(*4/5*',$h}bLiB$$

P,$(*3(;(,3(,4'(&S$!"#$6/5/$2'6#D$h}MLi$'($5"#$.#81*.#2#,5&$D/A#.$;.'@*6#&$5"#$*,;15$
('.$5"#$6/5/$2'6#D$*,$5"#$&A&5#2$D/A#.B$!"#$(1,45*',&$/.#$6#.*@#6$(.'2$5"#$I#"/@*'./D$
2'6#D$h}bLiB$

d%$#$'%,D$!"#$6/5/$2'6#D$*&$1&1/DDA$&;#4*(*#6$*,$/$6/5/$2'6#D*,+$,'5/5*',$&14"$/&$%FG$
4D/&&$6*/+./2&B$

@C#0;5(D.8#$#.R%3(5.

$
"#$%&'!Q])!CK2BM6'!-.!2!02+2!L-E'6!#3!+/'!*U1+'B!*M',#.#,2+#-3!!

4?E2M+'E!.&-B!L_3E'T!"'&3`3E'T!23E!<'3T'31+2E6'&!=H(Q97!

U*+1.#Ke *DD1&5./5#&$ 5"#$ #P4#.;5$'($ /$6/5/$2'6#D$ ('.$ /,$:!F$&A&5#2B$!"#$4'/.
+./*,#6$ 6/5/$ 'IY#45&$ *,$ 5"*&$ #P/2;D#$ /.#$ Z]1&5'2#.$ /44'1,5[$ /,6$ Z%&#.$
/15"#,5*4/5*',[B$!"#$Z]1&5'2#.$/44'1,5[$+#5&$*,;15$(.'2$5"#$6/5/$'($#/4"$*,6*@*61/D$
41&5'2#.l&$/44'1,5$h#B+B$]1&5'2#.$:E$]1&5'2#.$NiB$Z%&#.$/15"#,5*4/5*',[$*&$/4"*#@#6$
IA$4"#4-*,+$5"#$6#I*5$4/.6$/,6$5"#$J<?B$$$

��

8(&4*';$'%,S$!"#$r4'2;',#,5$2'6#Dl$6#&4.*I#&$5"#$4'2;',#,5&$h*B#B$I1*D6*,+$ID'4-&i$'($
/$&A&5#2l&$&#.@*4#&$/,6$5"#*.$.#&;#45*@#$4"/,,#D&$/,6$*,5#.(/4#&$hFo,6#T$U#.,p,6#T$/,6$
J#,T#,&5/6D#.$MOQK/E$;B$KMiB$)*((#.#,5$5A;#&$'($4'2;',#,5&$/.#$('.$#P/2;D#$/;;D*4/5*',$
4'2;',#,5&E$ &A&5#2$ &'(5H/.#$ 4'2;',#,5&E$ 5#4",*4/D$ 4'2;',#,5&E$ '.$ "/.6H/.#$
4'2;',#,5&B$!"#A$4/,$I#$I.'-#,$6'H,$*,5'$&1I34'2;',#,5&B$]'2;',#,5&$/.#$*6#,5*(*#6$

+H[H�4VKLS�:`Z[LT�:WLJPÄJH[PVU

Customer account <ZLY�H\[OLU[PÄJH[PVU

Customer A:
customer account

Customer B:
customer account

debit card ok:
\ZLY�H\[OLU[PÄJH[PVU

PIN ok:
\ZLY�H\[OLU[PÄJH[PVU

!
%&-"

I/$ ',$ 5"#*.$ 4',5.*I15*',&$ /,6$.#&;',&*I*D*5*#&$ 5"/5$ ('.2$ 5"#$ &A&5#2$ I#"/@*'.$
4'DD#45*@#DAB$$

b7*;%&(S$!"#$4'2;',#,5$2'6#D$I.*6+#&$5"#$.#81*.#2#,5&$D/A#.$H*5"$5"#$&A&5#2$D/A#.$IA$
D/A*,+$'15$ 5"#$2/*,$6#&*+,$;.*,4*;D#&$/,6$'@#./DD$&5.1451.#$'($ 5"#$&A&5#2B$!"#$2'6#D$
"#D;&$5'$6#4'2;'&#$5"#$4'2;D#P*5A$'($/$&'(5H/.#$&A&5#2$*,5'$&2/DD#.$;.'ID#2$&4';#&$
/,6$5/&-&B$9/4"$'($5"'&#$4/,$5"#,$I#$"/,6D#6$/,6$#P#415#6IA&;#4*/D*&5&B$$

@C#0;5(D.\%0;%,(,$.R%3(5.

$
"#$%&'!QI)!CK2BM6'!-.!2!>-BM-3'3+!L-E'6!!

4?E2M+'E!.&-B!L_3E'T!"'&3`3E'T!23E!<'3T'31+2E6'&!=H(Q97!

U*+1.#KR&"'H&$5"#$4'2;',#,5$2'6#D$'($/,$:!FB$<,$5"*&$#P/2;D#$5"#$4'2;',#,5&$
*,4D16#$5"#$ZN/,-$=A&5#2[$/,6$5"#$Z:!F$=A&5#2[$H*5"$*5&$&1I34'2;',#,5&$ZC%<[E$
ZJ.'PA[E$ ZJ<?$ J/6[$ /,6$ Z]',5.'DD#.[$ H"*4"$ 4'221,*4/5#$ H*5"$ #/4"$ '5"#.B$ J'.5&$
6#;*45$5"#$.#&;#45*@#$4'221,*4/5*',$#,6$;'*,5&B$

P,$(*3(;(,3(,4'(&D. !"#$ 4'2;',#,5$ 2'6#D$ +/*,&$ *,;15$ (.'2$ 5"#$ &A&5#2$ 4',&5./*,5&$
h}bMiE$81/D*5A$.#81*.#2#,5&$h}bbiE$/,6$5"#$/.4"*5#451.#$'@#.@*#H$h}bciB$<5&$'15;15$(##6&$
,5'$5"#$(1,45',$2'6#D$h}bdi$/,6$I#"/@*'.$2'6#D$h}bLiB$$

d%$#$'%,D$!"#$r4'2;',#,5$2'6#Dl$*&$1&1/DDA$&;#4*(*#6IA4'2;',#,5$6*/+./2&B$

Component Model

<<component>>
Bank System

<<component>>
ATM System

<<component>>
GUI

<<component>>
PIN Pad

<<component>>
Proxy

<<component>>
Controller

<<component>>
Database

port GUI

port Pad
port 3

port 1

port 2

!
%'."

���

8(&4*';$'%,S$:$rI#"/@*'.$2'6#Dl$6#&4.*I#&$5"#$*,5#.,/D$I#"/@*'.$'($/$&A&5#2$H*5"$5"#$
+'/D$5'$#P#415#$5"#$6#(*,#6$(1,45*',/D*5*#&B$<5$@*&1/D*T#&$5"#$.#&;',&#&$'($5"#$&A&5#2$5'$
/,$#P5#.,/D$&5*21D1&$hN./1,$#5$/DB$MOQKE$;B$MRiB$:$&5*21D1&$4/,$I#$*,4'2*,+$6/5/$5"/5$"/&$
5'$I#$;.'4#&$'.$#@#,5&$5"/5$5.*++#.$&A&5#2$;.'4#&&*,+B$!"#$.#&1D5*,+$&5/5#$2/4"*,#&$
6'412#,5$ 5"#$ I#"/@*'.$ /,6$ 1$ 6/5/$ #D#2#,5&$ '($ 5"#$ 6/5/$ 2'6#D$ h}bei$ hFo,6#T$
U#.,p,6#T$/,6$J#,T#,&5/6D#.$MOQK/E$;B$KMiB$$

b7*;%&(D$!"#$;1.;'&#$'($5"#$I#"/@*'.$2'6#D$*&$5'$6#;*45$/$6A,/2*4$@*#H$'($5"#$&A&5#2$
I#"/@*'.$ /,6$ 5'$ *DD1&5./5#$ "'H$'IY#45&$ '.$ &A&5#2$ 4'2;',#,5&$ *,5#./45$ 5'$ &1;;'.5$ 1&#$
4/&#&B$!"*&$*&$.#D#@/,5$('.$5"#$&;#4*(*4/5*',$'($5"#$.#81*.#2#,5&$*,$5"#$&A&5#2$D/A#.B$$$

@C#0;5(D.`("#-'%*.R%3(5.

$
"#$%&'!Qa)!CK2BM6'!-.!2!O'/2;#-&!L-E'6!!

4?E2M+'E!.&-B!L_3E'T!"'&3`3E'T!23E!<'3T'31+2E6'&!=H(Q97!

U*+1.#KL;.#&#,5&$/$&/2;D#$/45*@*5A$6*/+./2$5"/5$6#;*45&$5"#$&5/5#&$'($&A&5#2$I#"/@*'.$
H"*D#$1&*,+$/,$:!FB$!"#$/45*@*5A$6*/+./2$;15&$*,5'$/$Q#,4#$5"#$/45*@*5*#&E$/45*',&E$
&5/.5$/,6$#,6$,'6#&E$/,6$6#4*&*',$;'*,5&B$:45*@*5*#&$*,$5"*&$#P/2;D#$*,4D16#$Z<6#,5*(A$
1&#.[E$ZJ<?$#,5#.#6[E$ZJ<?$/44#;5#6[E$Z:2'1,5$#,5#.#6[B$<($5"#$I/D/,4#$4"#4-$*&$'-E$
2',#A$*&$6*&;#,m$'5"#.H*&#$5"#$&A&5#2$+'#&$I/4-$5'$41&5'2#.$*,5#./45*',B$$

P,$(*3(;(,3(,4'(&D.!"#$I#"/@*'.$2'6#D$*&$*,(D1#,4#6$IA$5"#$(1,45*',/D*5*#&$*,$5"#$1&/+#$
2'6#D$h}MciE$(1,45*',$2'6#D$h}bdiE$/,6$4'2;',#,5$2'6#D$h}bRiB<5;.'@*6#&$*,;15$('.$
5"#$6/5/$2'6#D$h}beiB$$

d%$#$'%,D$!"#$ I#"/@*'.$ 2'6#D$ *&$ 1&1/DDA$ &;#4*(*#6$ IA$ *,5#./45*',$ 6*/+./2&$
h4'221,*4/5*',$/,6$Q#,4#i$/,6$I#"/@*'./D$&5/5#$2/4"*,#&B$$

Waiting for
debit card

Waiting for
PIN

PIN
enteredIdentify user

card_not_valid

Behavior Model (ATM)

PIN
accepted

Amount
entered

Dispense
money

card_valid user_chooses_withdrawal user_enters_PIN

PIN_correct

user_enters_amount balance_check_ok

PIN_incorrect

balance_check_not_ok

131

5.3.3.40 Glossary (RE Artifact #40)

Description and interdependencies: The ‘glossary’ in the system specification extends
the previously defined glossary artifacts (#09, #34) with technical relevant terms.

Purpose: For detailed reasoning see description of glossary (#09) in Section 5.3.3.9.

Notation: The glossary is usually specified by structured natural text.

Example: Glossary

Figure 50: Example of a Glossary Structure

(Source: own illustration)

See example description of glossary artifact (#09) in Section 5.3.3.9.

5.4 Discussion

The combined artifact-based reference model was created to provide a solid foundation
for comparing and combining artifacts from Design Thinking and Requirements
Engineering. As artifact-orientation is independent from the surrounding development
processes, this was considered appropriate due to the variability in different processes
and methods in both approaches (Méndez Fernández and Penzenstadler 2014a;
Uebernickel et al. 2015). The final artifact model offers a number of important insights
and implications for using Design Thinking in the context of Requirements Engineering.

Various commonalities between Design Thinking and Requirements Engineering can
be seen, if the latter is understood as an iterative approach. The differences should be
seen as complementary activities. The artifact model distinguishes between problem and
solution-oriented artifacts which addresses the principles of both Design Thinking and
Requirements Engineering (Braun et al. 2014; Brown 2008). Problem-oriented artifacts
contain information about the underlying problem context including the goals and needs

Term Abbreviation Description Synonym Comment
Glossary

132

of stakeholders as well as specific system conditions or constraints. Solution-oriented
artifacts contain information about the corresponding system vision and how to solve
the problem stated in the project description (Braun et al. 2014).

The findings show that Design Thinking mainly contributes to early Requirements
Engineering activities with up to 14 additional context artifacts for a comprehensive
understanding of the problem domain. Accordingly, Design Thinking expands the
toolbox for Requirements Engineering by emphasizing the creation of artifacts that
describe the relevance of the system vision. Design Thinking could even be exclusively
used as a way to perform these activities. A complementary approach of Design
Thinking and Requirements Engineering, however, seems necessary for shaping the
requirements layer. While both concepts produce overlapping artifacts (system vision,
functional requirements, usage and service models), their realization might take
different forms. Design Thinking uses mainly a high-fidelity prototype to describe the
system vision and key functionalities. Requirements Engineering specifies the same
mainly by using rich picture and class diagrams. In addition, other requirement types,
such as quality or deployment requirements are predominantly specified with common
Requirements Engineering techniques. Requirements Engineering is exclusively used to
specify system artifacts and to provide the interface to system design activities. Hence,
Requirements Engineering also expands the toolbox of Design Thinking.

Following the role model of Méndez Fernández and Penzenstadler (2014a) (see Figure
8), implications can be seen in expanding the knowledge of business analysts with
Design Thinking skills and in equipping design thinkers with Requirements Engineering
skills to gain appreciation for subsequent software design activities. A new role of a
‘human-centric requirements engineer’ who integrates both skills equally might be
incorporated.

5.4.1 Implications for Theory

The theoretical contributions of this model are intended to serve more than one purpose.
This study provides an evaluated artifact model of Design Thinking which has not been
done so far. Based on empirical evidence and a literature review the main artifacts for
Design Thinking have been distilled and put into an order to lay a terminological and
conceptual foundation. While different classifications of Design Thinking methods,
tools, and processes exist (e.g. Doorley et al. 2018; IDEO.org 2015; Uebernickel et al.

133

2015), none of them classify Design Thinking from an artifact-based view. This work
contributes to existing method compendia with a new perspective on conducting Design
Thinking activities for software-intensive systems.

This study lays a first fundamental, conceptual, and empirical basis for understanding
the different artifacts of Design Thinking and Requirements Engineering. The combined
artifact model offers a reference structure for all artifacts to be used or delivered as part
of an innovative software-intensive development project that aims to combine Design
Thinking and Requirements Engineering. This provides a basis for a systematic
comparison and combination of both concepts that others can build on. On the one side,
the combined model connects Design Thinking to the growing research area in artifact-
based Requirements Engineering and, thus, strengthens the concepts of Design Thinking
(e.g. Berenbach et al. 2009; Méndez Fernández and Penzenstadler 2014a). On the other
side, Requirements Engineering connects to the upcoming research stream of applying
Design Thinking for supporting new ways of working and contributing to agile software
engineering practices (e.g. Przybilla et al. 2018; Kahan et al. 2019).

The artifact model can be seen as a starting point for the creation of a more
comprehensive development process model, which can be defined as “a standardized
organizational reference model that abstracts from the idealized execution of a
development project, including a description of artifacts (deliverables) to be produced,
activities to be performed, and roles to be assigned.” (Gnatz 2005, p. 135) Building on
this definition, a development process model can contain the following five sub-models:
(1) The artifact model specifies what needs to be produced or exchanged; (2) the role
model describes who should produce it and which particular responsibilities are needed;
(3) the activity model describes what to do in order to create, modify, or use an artifact;
(4) the process model denotes when the artifacts, roles, and activities should be produced
or performed; and (5) standards and tools conceptualize with what all of the above
mentioned activities are performed (Méndez Fernández and Penzenstadler 2014a).

5.4.2 Implications for Practice

Our proposed artifact-based reference model offers a number of practical contributions
in the context of innovative software-intensive development projects.

134

For project managers, several major contributions can be seen. First, the model can be
considered a support system to define and distinguish responsibilities in a project.
Project roles can be directly coupled to the creation of artifacts, for which they have to
take the responsibility. Second, project managers can assign completion levels and
establish progress control for the creation of artifacts. Quality assurance metrics can
help to objectively measure the degree of completeness of an artifact in the artifact-
based reference model. Third, the model ensures flexibility for integrating processes and
customizing the reference model at project level. The combined model allows for
variations of the created artifacts in response to individual project characteristics. For
example, by defining the content-focus of the project, the creation of either DT or RE
artifacts might be of greater help as each approach emphasizes a different content type.
For example, to better understand the user and business context, the creation of DT
artifacts might be preferred. RE artifacts should be at the center of attention to better
describe the technical perspective and answer feasibility questions. Teams may also
jump back and forth between both approaches if new questions come up in one or the
other area. Fourth, the model can act as basis for effective requirements management,
whose objective is to administrate the outcome of Requirements Engineering activities
(Fleischmann et al. 2004). This administration includes, for example, progress and
traceability control, impact analyses, or risk mitigation (Jönsson and Lindvall 2005). A
structured and consistent content specification is a prerequisite to perform such
activities. Hence, the combined artifact model can enhance the effectiveness of
requirements management activities due to its defined set of interdependencies and
chosen artifacts.

For team members (i.e. requirements engineers, business analysts, or design thinkers)
the model offers a blueprint for creating syntactically consistent and complete results
with respect to the respective application domain. While not all artifacts from the model
have to be considered in every project, the overview still serves as an orientation and
connection to further design and development activities. The latter point is especially of
interest for Design Thinking as this has been continuously criticized to be insufficiently
linked to development processes (e.g. Häger et al. 2015).

For training providers, the artifact-based model can support the development of new
trainings programs and learning formats about combining Design Thinking and
Requirements Engineering. A new role with skills and talents in both approaches may

135

be fostered. Current training courses in Design Thinking or Requirements Engineering
can be enhanced by integrating the respective other approach to gain understanding
about the benefits and shortcomings of the two incorporated concepts.

5.4.3 Limitations and Outlook

As with any research, this work does have its limitations. First, the evaluation of the
combined artifact model was performed with a limited number of experts. This issue
was addressed by establishing high demands for the selection of experts in terms of their
domain expertise and knowledge. In addition, the experts reviewed the model
independently. Second, the generalizability of the findings of the combined artifact
model can be questioned. Although this study aimed for providing as much
generalizability as possible by choosing an established evaluated artifact model from
Requirements Engineering as a basis for this research, the practical application of the
model should be considered a future research opportunity. Therefore, the demand for
further validation of the model through empirical studies and evaluation needs to be
highlighted. Third, as the focus of this study was on defining an artifact-based reference
model for innovative software-intensive systems, future work may also perform further
domain-specific instantiations in different settings.

The findings presented in this study may also encourage future efforts to analyze the
combined artifact model in the context of a broader development process model as
suggested in the discussion in section 5.4. Looking at Design Thinking and
Requirements Engineering from an even broader perspective provides great potential to
ensure a sustainable combination of the two in the context of software-intensive
development projects. Further research might also look into the development of tool
support, activity, process, or designated role models. Addressing these topics would
pave the way for leveraging the full potential of using Design Thinking to achieve a
human-centered Requirements Engineering approach.

Finally, researchers and practitioners should feel encouraged to critically discuss the
combined artifact approach and to empirically evaluate an artifact-based combination
of Design Thinking and Requirements Engineering.

136

5.5 Conclusion of Chapter

This chapter provided a consolidated view on an artifact-based combination of Design
Thinking and Requirements Engineering. Various commonalities between Design
Thinking and Requirements Engineering can be seen, if the latter is understood as an
iterative approach. The differences should be regarded as complementary activities.
Both approaches aim at discovering goals and requirements. While both Design
Thinking and Requirements Engineering are very distinct when it comes to the
underlying philosophies, many artifacts are complementary or even overlapping. While
Requirements Engineering success is often measured in documented requirements as a
foundation for development and quality assurance, in Design Thinking the philosophy
of domain understanding and the learning curve leading to it is predominant – regardless
of the surrounding processes. Practitioners can apply the combined artifact model in
their own contexts with the awareness of the benefits and shortcomings of the two
incorporated concepts.

137

6 Operationalization Strategies

This chapter addresses the third research question of the dissertation. Building on the
artifact model introduced in chapter 5, three operationalization strategies for combining
Design Thinking and Requirements Engineering are investigated. This chapter presents
the results of a study5 that presented operationalization strategies with their respective
pre-requisites, benefits, and challenges. The operationalization strategies are described
as follows: Section 6.2 explains the upfront Design Thinking strategy, section 6.3
presents the infused Design Thinking strategy, and section 6.4 describes the continuous
Design Thinking strategy. Section 6.5 discusses the results and their implications for
research and practice. Section 6.6 concludes the chapter.

6.1 Customization

The combined artifact-based reference model enables a flexible creation of the
introduced DT and RE artifacts. This means that the decision when and which artifacts
should be produced can be customized according to specific project characteristics. To
provide a guideline three operationalization strategies are proposed to integrate Design
Thinking and Requirements Engineering in different ways. The strategies reflect
existing research findings about integrating Design Thinking into software development
practices (e.g. Dobrigkeit and de Paula 2019; Lindberg et al. 2012) as well as the
empirical findings from industry cases (see chapters 3 and 7).

The following strategies are suggested: (1) Run Design Thinking prior to performing
Requirements Engineering practices (upfront Design Thinking); (2) instill the existing
Requirements Engineering process ad-hoc with selected Design Thinking tools and
artifacts (infused Design Thinking); or (3) combine the previous two strategies and
integrate Design Thinking into Requirements Engineering practices on an ongoing basis
(continuous Design Thinking). The ratio between Design Thinking and Requirements
Engineering differs within the three proposed operationalization strategies (see Figure
51). The better the original problem is understood, the more activities are biased towards
straightforward design and implementation tasks (i.e. RE artifacts). The less it is
understood, the more activities are directed towards context understanding and problem

5 Parts of this chapter have been published as a preprint and have been accepted for publication in: Hehn, J.,
Mendez, D., Uebernickel, F., Brenner, W., Broy, M. 2020. “On Integrating Design Thinking for a Human-
centered Requirements Engineering,” IEEE Software, Special Issue Design Thinking.

138

exploration (i.e. DT artifacts). Thus, the defined project objective and context are the
guiding parameters for the selection of an appropriate operationalization strategy. In the
following each strategy is introduced along with their objectives, required prerequisites,
performed activities, executing roles, and expected outcome. A short case example from
practice concludes the description of each strategy.

Figure 51: Upfront, Infused, and Continuous Design Thinking Strategies

(Source: own illustration)

6.2 Upfront Design Thinking

Objective: Upfront Design Thinking is best applied when there is a high level of
uncertainty about the problem (i.e. stakeholder and user needs) and the corresponding
solution. Creating DT-related artifacts through applying Design Thinking helps to
understand the problem in depth and to define the overall concept of an idea. It is
typically used at an early project stage to provide clarity for unclear user needs and to
define a solution vision.

Prerequisites: A problem statement should have been defined as a minimum starting
point for applying upfront Design Thinking. Additional required conditions are access
to potential users and other stakeholders as well as Design Thinking training for project
members.

139

Key activities: Design Thinking activities are performed in form of a pre-project to
identify relevant features that are worth implementing. The Design Thinking process
model (define, needfinding, synthesis, ideation, prototyping, testing) guides through a
cyclical creation of context and requirements artifacts (see Figure 15: Final Combined
Artifact-based Reference Model). The outcome is used as a basis for performing further
Requirements Engineering activities that complement DT artifacts with RE-specific
ones.

Roles: Two roles during the upfront mode are required. First, the Design Thinking team
is responsible for planning and executing the activities. This team consists of four to six
people from different areas of expertise depending on what knowledge will be relevant
for the project, e.g. subject matter experts, IT, marketing, sales, design (Häger et al.
2015). Second, a person or group of people, who has defined the initial design challenge
and project scope, is the project sponsor. The person in this role typically provides
continuous feedback to the team and connects it with others to enable synergistic effects
and avoid duplicate efforts (Häger et al. 2015).

The following two roles are optional: First, an extended team of (internal) experts that
provide further domain knowledge and expertise for the Design Thinking team. Second,
a Design Thinking coach or coaches who support the project team with methodological
guidance. They introduce Design Thinking techniques, facilitate team meetings, and
ensure that the team is focused on delivering the tasks and artifacts. As such, the coach
should have a profound understanding of Design Thinking to provide useful techniques
and guidance at appropriate times (Häger et al. 2015).

Outcome: The main deliverable of the upfront strategy is a clear system vision as a basis
for performing further Requirements Engineering activities. The system vision usually
takes the form of a mockup (i.e. high-fidelity prototype). Along the way the team will
create a comprehensive set of DT artifacts (see section 5.3.3), which should make it
clear why each aspect of the prototype is intended in the way it is designed. High level
user stories and a list of usability requirements based upon test results accompany the
set of artifacts created by following the Design Thinking process.

140

Case Example

The international Alpha Insurance company wanted to develop a new service for their
new target group of “young professionals”. A project team stemming from five
different business functions (marketing, IT, actuary, product manager, claims) spent
40% of their time to follow the Design Thinking process in an iterative manner for
three months. The solution vision resulted in a tested medium-fidelity prototype for a
digital on-demand insurance that could be activated and deactivated based on the
user’s preferences. The Design Thinking team handed over the prototype to the
implementation team for further specification, testing, development, and market
introduction. Transferred artifacts included a project documentation with 20 field
studies, 2 personas, 5 opportunity areas, and 6 low-fidelity prototypes with learnings
about failures. The final solution vision (in form of a mockup) specified key features
and their usability. The implementation team performed tests to validate these
features, their usability, and their service model.

6.3 Infused Design Thinking

Objective: The main goal of this strategy is to support existing Requirements
Engineering activities with selected Design Thinking techniques. This includes, for
example, activities to clarify fuzzy requirements, foster creativity, gain new ideas, or to
better understand user needs.

Prerequisites: The prerequisites for applying this strategy depend on the specific
problem to be addressed. The problem should have a clear scope. The prerequisites as
described in section 6.2 still apply.

Key activities: An infused approach makes use of selected artifacts and leverages
selected methods from the Design Thinking toolbox and integrates them into an existing
Requirements Engineering process. In case of challenges encountered during the
Requirements Engineering process, Design Thinking tools can be initiated; hence, their
application is ad-hoc. The main activity of this strategy is the setup up of focused
workshops with a selected Design Thinking tools (Dobrigkeit et al. 2108). These
workshops can last three hours or several days depending on the objectives. For
example, the goal of a workshop to generate new solution ideas could be formulated like
this: “Create ideas to optimize the user interface of our platform, making it look and feel

141

more emotional, and letting it appear less technical.” This session used persona and
customer journey artifacts to brainstorm new ideas.

Roles: In the infused setting, the people or person performing the Requirements
Engineering activities are the addressees of receiving Design Thinking guidance in the
form of workshops. Other workshop participants with different areas of expertise may
be added, e.g. subject matter experts, IT, marketing, sales, design, depending on what
knowledge will be relevant to achieve the workshop goal. A workshop typically consists
of five to twenty participants. Similar to the upfront approach, a Design Thinking coach
introduces the selected Design Thinking techniques and moderates the workshop and
team discussions. The project sponsor can also be integrated to provide feedback and
define the context for the general direction of the workshop.

Outcome: Due to the flexible approach of the infused strategy, the outcome is situation-
dependent based on the previously defined objectives. The deliverables can be (new)
features, user requirements, or test feedback – all following the Requirements
Engineering process. In the context of the combined artifact model (Figure 15) this
means that the creation of RE artifacts is enhanced by a selected set of DT artifacts.

Case Example

Beta Enterprises is an international electronics group that wanted to evaluate the
possibilities of smartphone applications (e.g. emergency apps, task lists, maintenance
procedures) for container ships in a marine context. The main goal was to define
requirements from a user point of view and to foster creativity for solution finding. In
a highly regulated environment, a Design Thinking infusion was chosen to support
the ongoing Requirements Engineering activities with selected tools from needfinding
and prototyping. Five Design Thinking infusion sessions (one to two days) were
conducted within five months. Produced artifacts included field studies for precise
user requirements (it was the first time the team had been in close contact with marine
captains) and tested medium-fidelity prototypes to strengthen service and usage
models. According to the workshop participants, having direct user contact raised the
confidence level in the success of the intended solution. Initial concerns about not
finding interview partners in a highly sensitive B2B setting turned out as unjustified.

142

6.4 Continuous Design Thinking

Objective: The main goal of this strategy is to integrate Design Thinking principles with
Requirements Engineering activities on a continuous basis. Beyond the specific project
context (which is the main focus of this dissertation), this can also become part of an
organizational change program or corporate strategy.

Pre-requisites: Continuous Design Thinking is recommended when addressing complex
(“wicked”) problem settings, which require continuous user involvement along all
software engineering activities. In addition to the prerequisites described for the
previous two strategies (see sections 6.2 and 6.3), (selected) project members should
possess both Design Thinking and Requirements Engineering knowledge.

Key activities: Continuous Design Thinking utilizes Design Thinking as guiding
principle. On an operational level, this translates into a seamless combination of the
upfront and infused strategy and the setup of a new project role for a human-centric
requirements engineer. The activities comply with both Design Thinking and
Requirements Engineering elements to establish an end-to-end view from exploring a
user need to conceptualizing a solution vision and specifying a functional system. When
starting a project, the upfront strategy can be used to provide clarity about the problem
context and elicit (user) requirements in a structured yet creative manner. A high-
resolution prototype can help to specify the functionalities of the system vision. When
moving on to the more technical side of requirements specification, an ad-hoc usage of
Design Thinking methods can still be initiated in case features are not defined well
enough from a user point of view for example.

Roles: The instantiation of a new role incorporates Design Thinking expertise as well as
Requirements Engineering expertise and mediating between both schools of thoughts.
In this strategy it is of great importance that the new role can react quickly when
choosing methods and artifacts. The role enables the team to work towards a final
product in incremental steps. The responsibilities of the project team during this strategy
are similar to the preceding ones as the continuous strategy combines the two other
strategies. The team plans and executes the activities to define the final system. The
project sponsor has similar responsibilities as described in the previous sections.

143

Outcome: The continuous strategy results in a comprehensive set of DT and RE artifacts
as shown in Figure 15. The requirements specification and system design are based on
and traceable to customer needs derived from the context specification.

Case Example

Gamma Energy is a large energy provider with subsidiaries worldwide. A diverse
project team applied an upfront Design Thinking approach to explore the potential of
platforms in the utility sector. The outcome was a solution vision for a digital home
improvement platform to advance lead generation. To ensure a human-centered
mindset throughout specification and development, a new role was established to use
selected Design Thinking tools for enhancing the prototype and filling the backlog
with new features. Produced Design Thinking artifacts included high-fidelity
prototypes with usability- and feature-oriented test feedback and new solution ideas.
Scrum became the guiding framework for development, which enabled the entire
project team to work in sprints. During development Design Thinking prototypes were
used as boundary objects to enhance communication with relevant internal
stakeholders and to foster a human-centered mindset within the team (a detailed
explanation and analysis of this case study is provided in chapter 7).

6.5 Discussion

This chapter aimed at understanding how Design Thinking can be used for
Requirements Engineering in different ways in the context of software-intensive
development projects. The three presented operationalization strategies reflect the
ongoing discourse of describing Design Thinking at different levels in software
engineering approaches (e.g. Brenner et al. 2014; Dobrigkeit and de Paula 2019). In line
with other authors (e.g. Dobrigkeit et al. 2018), this study suggests that the way in which
Design Thinking should be used depends on the specific context and objectives of a
project. Accordingly, three different strategies with different Design Thinking formats
(e.g. phases, workshops, single methods) were suggested which are similar to other
proposed strategies in research in the context of (agile) software development.
Depending on the situation each operationalization strategy offers different benefits but
also challenges. Table 10 discusses both for each strategy.

144

Beside the project context, the existing maturity level of Design Thinking within an
organization can be considered an influencing factor when choosing the ‘right’ strategy.
While Requirements Engineering is usually an established practice in industry, Design
Thinking is still relatively new. The decision to integrate the two approaches also
depends on the level of courage, given time, and dedicated resources. As a rough
guideline, the infusion strategy provides a reasonable starting point as it applies focused
Design Thinking interventions within established practices. While the upfront strategy
also keeps existing procedures, it requires more time and resources. Finally, the
continuous strategy demands for a commitment from management to foster mindset
change in an organization or department.

Strategy Benefits Challenges

Upfront
Design
Thinking

- The full potential of Design Thinking is
leveraged while changes to
Requirements Engineering are not
necessary

- Due to the focus on problem exploration
deep context understanding is achieved

- The solution concept has traceable links
to user needs

- Resource and time intense
- Lost (implicit) knowledge and potential
starvation of results when handing over
Design Thinking results

- Little attention is paid to further
development critical artifacts such as
quality requirements, system
constraints, or data models

Infused
Design
Thinking

- Intervention character requires only
minimal changes in existing
Requirements Engineering practices

- Resource and time friendly due to ad-
hoc usage of selected tools (especially
compared to upfront approach)

- Low adoption hurdle for Design
Thinking methods

- Risk of neglecting problem
understanding (especially compared to
the upfront approach)

- No embedding of Design Thinking
mindset due to situational Design
Thinking workshops

- Little attention is paid to further
development critical artifacts such as
quality requirements, system
constraints, or data models

Continuous
Design
Thinking

- Seamless integration into existing
Requirements Engineering practices
including development critical artifacts

- High likelihood of infusing a human-
centered mindset within the project team

- Precise and traceable (user)
requirements through continuous
identification of new requirements and
testing

- Requires commitment, resources, and
time to develop continuous integration
of both approaches in an organization

- Continuous Design Thinking is highly
dependent on the staffing of the project
team

- Requires an organizational mind shift
and support, potentially even an
organizational restructuring

Table 10: Benefits and Challenges of each Operationalization Strategy

(Source: own illustration)

145

6.5.1 Implications for Theory

From a theoretical perspective, the presented operationalization strategies offer new
knowledge to emerging literature on how to combine the activities of Design Thinking
and Requirements Engineering by identifying where and how Design Thinking adds
value to the development of software-intensive systems. Specifically, the findings
advance the knowledge of how Design Thinking is actually used within the industry not
only in a pre-phase to software engineering (upfront) but also in later Requirements
Engineering stages. This study builds on work of researchers who have proposed similar
integration strategies in the context of software engineering. For example, Lindberg et
al. (2012) investigated how Design Thinking can support software development in
different ways. The upfront and infused strategies can be compared with the authors’
separation of Design Thinking and software development (so called split project model)
or the selection of single methods to overcome problems software developers cannot
solve with common IT methods (so called toolbox model). In addition, this study
proposes a continuous strategy to regularly integrate Design Thinking phases and
elements into Requirements Engineering activities. The continuous Design Thinking
strategy can be seen as an extension of the modes of Lindberg et al. (2012) by combining
them with findings from creativity research (e.g. Carlgren et al. 2016; Wölbling et al.
2012). Accordingly, authors have shown that the continuous practice of Design
Thinking can lead to the development of a Design Thinking mindset. The continuous
Design Thinking strategy claims exactly that for the context of Requirements
Engineering.

6.5.2 Implications for Practice

From an applied perspective, the findings can serve as a guide for practitioners on how
to setup and implement Design Thinking activities into their Requirements Engineering
practices. Practitioners can directly adopt the operationalization strategies in their own
contexts with the awareness of the benefits and shortcomings of each incorporated
strategy. Project managers can choose between the upfront, infused, and continuous
strategy to steer their limited resources towards applying the most appropriate one given
their individual project conditions. Beginners in the field of Design Thinking might gain
a better understanding about different conceptualizations of Design Thinking in a
software engineering context and start their learning journey guided by the application
of the three strategies.

146

6.5.3 Limitations and Outlook

The proposed strategies are mainly derived from the authors’ own practical experiences
in applying Design Thinking in industry (see chapter 7) and findings from case studies
in similar software engineering contexts (e.g. Lindberg et al. 2012). Future work will
need to expand the findings and validate the operationalization strategies in more
industry scenarios. Particularly, the following possibilities for further investigation
should be considered.

First, there is great potential for further examining general project conditions to support
decision-making in a more structured way – when to use which strategy. Exemplary
questions could be: How can problems be efficiently classified at which stage of a
project? What are typical project situations beyond the problem class which influence
the choice of a strategy? How do these situations and the class of systems influence the
choice of a strategy and/or single methods? How can these situations be characterized
and assessed in early stages of a project (and with which confidence)?

Second, on an individual level, there is the opportunity to analyze and specify the
proposed new role of a human-centric requirements engineer. Open issues to be
explored are, for example, the definition of required soft and hard skills for such a role
as well as their responsibilities in a project setting (in comparison to other roles).

Third, there is potential to quantify the effects of each operationalization strategy. A
possible question could be: “How can different ways of implementing Design Thinking
influence the team performance?” In addition, researching the influence of a person’s
Design Thinking knowledge and experience on the success of different
operationalization strategies will provide insights about how to operationalize Design
Thinking in the context of Requirements Engineering more effectively.

6.6 Conclusion of Chapter

The goal of this chapter was to understand how Design Thinking can support
Requirements Engineering on an operational project level. In order to address this aim,
research findings from literature and experience from industry projects were leveraged.
As a result, three operationalization strategies were introduced that integrate Design
Thinking into Requirements Engineering practices: (1) upfront Design Thinking, (2)
infused Design Thinking, and (3) continuous Design Thinking. Upfront Design

147

Thinking leverages the Design Thinking process to produce DT artifacts with a system
vision in form of a high-resolution prototype as an outcome. On this basis, technical
requirements are specified with the help of Requirements Engineering practices. Infused
Design Thinking leverages selected Design Thinking techniques for situational ad-hoc
support for Requirements Engineering. Continuous Design Thinking seamlessly
connects the generation of customer-centric innovative ideas and their translation into a
system design.

148

149

7 Continuous Design Thinking: A Longitudinal Case Study

This chapter addresses the third research question of the dissertation and examines the
continuous Design Thinking approach, which was introduced in chapter 6. It presents
the results of a longitudinal case study that investigated usage patterns of Design
Thinking for Requirements Engineering over a project lifecycle6. Section 7.2 provides
the motivation for the case study. Section 7.2 explains the research methodology and
offers a description of data collection and analysis. Section 7.3 reveals the results of the
study. Section 7.4 discusses the implications for theory and practice and points at the
study’s limitations and an outlook for future research. Section 7.5 concludes the chapter.

7.1 Motivation

Despite the practical and theoretical advances in confirming the potential benefits of
using Design Thinking for Requirements Engineering, little is yet known about how
such an integration could be achieved. Particularly, knowledge about the specific role
of Design Thinking in the context of Requirements Engineering practices remains still
unclear. In this context, we have conducted a study to understand how Design Thinking
is used for Requirements Engineering in a project setup for innovative software-
intensive systems. We aim to answer the following research questions:

How is Design Thinking used for Requirements Engineering in innovative software-
intensive development projects? The first research question examines the actual use of
Design Thinking for Requirements Engineering from the very beginning starting with
problem definition, the development of a proof-of-concept to market-ready
implementation in an agile development setting. This first question will generate a
comprehensive foundation for answering the second research question:

How does Design Thinking address Requirements Engineering challenges? This
question examines the learning potential of Design Thinking for Requirements
Engineering. It will generate findings, how it can complement current Requirements

6 Parts of this chapter have been published in: Hehn, J., Uebernickel, F. 2018. “The Use of Design Thinking for
Requirements Engineering – An Ongoing Case Study in the Field of Innovative Software-Intensive Systems,”
Proceedings of the 26th IEEE International Requirements Engineering Conference (RE'18). Banff, Canada:
IEEE, and in: Hehn, J., Uebernickel, F. 2019. “The Use of Design Thinking for Requirements Engineering – An
Ongoing Case Study in the Field of Innovative Software-Intensive Systems,” Lecture Notes: 49. Jahrestagung
der Gesellschaft für Informatik, Extended Abstract.

150

Engineering practices by addressing known challenges as encountered by the
Requirements Engineering community of practitioners.

To investigate our research questions, we set up a longitudinal case study. We use an
exploratory approach by analyzing the use of Design Thinking in the context of
Requirements Engineering against the background of existing scientific findings of
Design Thinking and challenges in (agile) Requirements Engineering.

7.2 Research Methodology

Our aim is to investigate how Design Thinking is used for Requirements Engineering in
software-intensive development projects and what can be learned from it. We adopt a
qualitative approach since we want to gain an in-depth understanding of Design
Thinking for Requirements Engineering as a socio-technological activity (Runeson and
Höst 2009). We believe that an exploratory case study (Yin 2011) is the best
methodology for elaborating specific challenges encountered by practitioners of the
Requirements Engineering community and theorizing potential concepts in the future.
Thus, we follow a longitudinal case study approach to gain richer and more
contextualized information of the usage of Design Thinking for Requirements
Engineering over time in a real-life project setting (Runeson and Höst 2009; Yin 2014).
In the following, we describe our case selection, data collection, and data analysis.

7.2.1 Case Selection

To identify an appropriate case, we got access from a Swiss-German consultancy to their
project portfolio from the last five years. We evaluated their projects with regard to their
suitability for our research objective and questions. In particular, we were looking for
(1) the application of Design Thinking for Requirements Engineering practices, (2) the
development of a new and innovative software-intensive system, and (3) an end-to-end
setting, from the beginning of conceptualization until market-ready implementation. In
2016 we identified the project case at hand as particularly suitable. The project is based
in the utility industry in Europe. The energy sector is currently under heavy pressure (in
Europe) because of the need to transform from nuclear and coal power generation
towards new and more sustainable ways of power generation such as solar power
(photovoltaic) using water or wind energy. In addition, this industry is attacked by
digital innovations and deals with changing customer behavior. Smart home

151

technologies like Nest or electric vehicles like Tesla demand digital solutions and
innovation from utilities.

In this context, project Falcon (anonymized) was launched in 2016 to explore and
exploit new options provided by digital platforms that could be used for the energy
sector, without knowing what the final system would be or look like. This is why the
project was set up to be highly agile, innovative, and human-centered from the beginning
on. Based on these pre-requirements, the management team decided to apply Design
Thinking and Scrum as leading methodologies for specifying requirements and
developing the system vision.

7.2.2 Data Collection

From the beginning of the project in August 2016, the data were collected via multiple
sources of evidence for the purpose of data triangulation, construct validity, and
reliability (Runeson and Höst 2009). We compiled (1) data from contextual interviews,
(2) participant-observations, (3) project documentations and presentations, and (4)
physical artifacts. First, interviews were conducted with all project team members to
gain a comprehensive understanding of each project phase and from all perspectives.
Based on the aforementioned criteria and the relevance to our research question, the
interview focus was put on the usage of Design Thinking as a mindset, process, and
toolbox and its impact on Requirements Engineering. We mainly asked questions about
the way of eliciting and capturing needs and requirements, investigating the methods as
well as perceived challenges and benefits of Design Thinking for Requirements
Engineering. Since we are still interviewing project members (as the project team is
growing), we leverage information from interviews with the project lead, the user
research and design team, the business model team, and the scrum master and software
engineering team for the preliminary results of our study. All interviews lasted between
90 and 120 minutes. For confidentiality reasons four out of our ten interviews were not
audio taped, while the rest was.

Second, our goal is to capture the actual Requirements Engineering activities in the
project, beyond self-reported practices or official processes. This is why we not only
conducted every interview in situ, but also collected participant-observations in form of
meeting protocols and memos for a more objective picture. We expected to gain mainly
process-oriented insights about applying Design Thinking for Requirements

152

Engineering. The researchers were on site every second or third week on average to
interact with the project team on a continuous basis.

Third, project documentations included mainly pictures and presentations about
intermediate results and project progress as well as access to the project’s Jira and
Confluence system (around 1200 user stories and 7 epics).

Fourth, we collected all physical and digital artifacts, i.e. prototypes ranging from low
to high resolution (13 in total). In Design Thinking elicited requirements are expressed
via (throwaway) prototypes which makes them a crucial part for our research evaluation.

7.2.3 Data Analysis

We relied on a team-based research approach and applied thematic coding as the study’s
analysis strategy (Runeson and Höst 2009). Each document was independently analyzed
by two researchers to avoid subjective interpretation and enhance the validity of our
study (Yin 2011). We applied descriptive, in vivo, as well as process coding to cover
timing aspects of the material (Runeson and Höst 2009). We examined the raw data
(interview transcripts, documentations, participant-observations, and artifacts) in
reference to the dimensions of Table 2 (see page 19 of this dissertation). We always kept
an open mind with regard to these challenges (Yin 2011). We constantly cross-examined
the constructs in different interviews. Thus, we were able to understand multiple
viewpoints as well as reconcile and integrate them. To demonstrate rigor, two
researchers in an iterative approach discussed emerging patterns and revised them to
produce themes. Furthermore, we were in constant contact with the project team to
challenge our emerging concepts.

7.3 Results

7.3.1 How is Design Thinking used to support Requirements Engineering?

This project was initiated based on an idea for creating a platform around the topic
Photovoltaic and Battery (PVB) to be used in private homes. Because the original
problem statement was rather vague, the project management decided to apply Design
Thinking to better understand the problem domain before drawing conclusions on a
possible solution and IT architecture. The general project setup and interdisciplinary
staffing was guided by ‘working streams’ according to the tripartite of desirability,
viability, and feasibility (Brown 2008), which included domain experts, IT and

153

technology experts, user researchers, business specialists, and a project lead. The project
was divided into three main phases: Exploration, alpha prototyping, and market launch.
Table 11 provides an overview of the activities in each project phase.

Phase 1: Exploration,
8 FTE

Phase 2: Alpha prototyping,
15 FTE

Phase 3: Friendly User Test and
Market launch, 22 FTE

- 35 qualitative contextual
interviews with potential users

- 55 insights, 4 personas

- 10 technology insights session
with internal experts

- 24 idea concepts

- 4 value propositions and
business model descriptions

- 5-10 customer journeys for each
value proposition

- 12 contextual interviews with
homeowners to test customer
journeys

- focus group with 5 craftsmen to
test customer journeys

- market and competitor analysis,
definition of strategic partners

- identification of potential
revenue models and first draft of
business plan

- technology screening for IT
architecture, cost estimation for
IT

- 1 high-resolution mockup
including 6 core functionalities

- 21 user tests of (iterations of)
the mockup of phase 1

- MVP defined and product alpha
produced (9 functions
identified)

- business requirements based on
advanced competitor analysis
defined

- software and system
requirements for the platform
are defined

- quantitative study with 250
customers to validate user
requirements

- development of an alpha-version
prototype in Scrum sprints (12)

- epics (7), user stories (>1000),
mockup, and flow charts are
defined

- ongoing scrum sprints (7) and
functionality testing with users

- implementation of a prioritized
scope in software

- friendly user test with 25
participants including testing of
functional journey, usability,
navigation, bug identification

Table 11: Project Falcon: Timeline and Goals per Stage

(Source: own illustration)

In the following we describe the usage of Design Thinking for Requirements
Engineering with regard to (1) objective, (2) activities, (3) roles, (4) outcome, and (5)
conclusion for each phase.

7.3.1.1 Results of Phase 1: Exploration

Objective: The goal of the exploration phase was to understand the problem and create
a clear product vision.

154

Activities: The activities followed the Design Thinking process of empathize, define,
ideate, prototype, test (Doorley et al. 2018). The team empathized by conducting
contextual interviews with potential users of the platform, e.g. homeowners, installers,
craftsmen, and tenants to elicit their needs and requirements. The interviews addressed
their experience in daily situations and motivations behind improving or renovating the
house. From this research the team derived needs and insights (define), e.g. “Installers
prefer to involve known craftsmen to build the PV system to avoid quality issues.” For a
second round of interviews, the team created ideas and stimuli for interview partners,
mainly homeowners and craftsmen, to test initial value propositions for the platform
(ideate, prototype, test). Here the questions focused more on potential features of the
platform that could be further developed based on the testing results. Customer journeys
in form of storyboards were developed for the most promising value propositions. They
considered activity and task flows as well as contextual usage of platform features. The
creation of personas for homeowners and installers guided the process of adjusting
requirements and reflecting features when users were not available. In addition, market
and competitor research helped to define and understand the requirements of the target
market and a potential solution. Insight sessions with internal experts of the case
company helped the team to gain knowledge about technological requirements. A
sequence of framing and re-framing of the problem domain based on new learnings from
interviews and testing sessions with customers resulted in a shift from the initial problem
statement on PVB to a more generalized home improvement platform idea. Eventually,
all tested requirements and core functionalities were aggregated into a larger more
complex product scenario.

Roles: In this phase, regardless of the expertise and assigned work, each team member
was involved in the same activities while undertaking the steps of the Design Thinking
process to elicit needs and requirements from customers and gain the same level of
empathy for the problem statement.

Outcome: The final deliverable was the specification of the elicited needs and
requirements in form of (1) a mockup (InVision) that visualized six core functionalities
of the intended digital software platform, (2) customer journeys specifying the
experience and context of a future use of the platform, and (3) a video showing the
defined personas interacting with the platform.

155

Conclusion: In phase 1 Design Thinking is the leading process for all activities and team
members. The clear process framework guides a deconstruction of the complexity of the
initial problem statement with an iterative step-by-step approach. The requirements
elicitation techniques (e.g. interviews, focus groups, throwaway prototyping) are put
into a logical sequence of team-based efforts, regardless of the specific expertise of the
individual team member(s), resulting in a common understanding of the problem
domain and a product vision expressing the elicited requirements.

7.3.1.2 Phase 2: Alpha Prototyping

Objective: The goal of phase 2 was to deepen the understanding of the problem and to
develop a functional alpha version prototype based on the vision of phase 1.

Activities: Scrum was the guiding process framework that enabled the entire team to
work in sprints. While sprint zero was used to build up the programming and operational
infrastructure for the digital platform (three weeks), the user research and business
model team refined the outcome of phase 1 based on additional qualitative and
quantitative research. Starting with sprint 1, the sprint cycle time was reduced to two
weeks. In each sprint, interviews were conducted to prioritize functions and test usability
and user experience of the mockup. The team used several Design Thinking tools for
enhancing communication and ideation with stakeholders with the aim to advance the
product vision (e.g. mood boards, ideation workshops with other domains, feedback
capture grids). Based on the feedback the team translated user requirements into epics
and specified user stories, flow charts, and iterated versions of the mockup.

Roles: The team configuration was adapted to the objectives of phase 2. Scrum master
and a development team were brought on board and additional people started to work
on the business model. Four project members from the exploration phase stayed in the
project as part of the user research team. In this project phase task distribution according
to the dimensions of desirability, viability, and feasibility was intensified. However, user
researchers and business developers were still acting as a unity – the product owner in
a team-based effort.

Outcome: The goal of this phase was achieved, when the team showed the feasibility of
the platform and confirmed real interest from users and customers.

156

Conclusion: As the focus shifts from understanding the problem to designing the
solution, the guiding process model of Design Thinking makes way for the development
focused approach of Scrum. Still, the toolbox of Design Thinking may easily integrate
methods and tools into the flexible Scrum framework to elicit, refine, and specify
requirements. Similar to phase 1, this task, i.e. the role of the product owner, is seen as
a team-based approach to include various perspectives in an interdisciplinary setup.

7.3.1.3 Phase 3: Friendly User Test and Market Launch

Objective: The objective of phase 3 is the market launch of the platform.

Activities: In phase 3 every activity is focused towards implementation and market
launch. Scrum is the guiding development framework as the development continues.
Enhanced priority is giving to defining the go-to-market strategy and a suitable offering
and partnering approach. A friendly user test with participants, who match the persona
profiles, is conducted to test usability and eliminate bugs.

Roles: The software development team is extended and a clear split between the
technical team, the business model stream, and the user research team is undertaken.

Outcome: We cannot provide the final outcome at this point in time because the project
is still ongoing. A minimum viable product for a home improvement platform
introduced on the market is to be expected.

Conclusion: Selected Design Thinking tools still provide methodological support (e.g.,
for testing and ideation), yet common agile development and Requirements Engineering
practices dominate. However, we observe a manifestation of Design Thinking as the
predominant human-centered mindset advancing the market launch.

7.3.2 How does Design Thinking address Requirements Engineering challenges?

To derive some overarching findings from applying the continuous Design Thinking
approach, we analyzed the case from the perspective of challenges as outlined in Table
2 (page 19).

We found evidence that Design Thinking has the potential to solve some Requirements
Engineering challenges in an agile setting. Regarding problems with customers and
users, we found similar challenges when it comes to the availability of customers.

157

However, because of the structured process framework that Design Thinking provides,
customer interviews are relatively easily planned in advance. This might help to
overcome this challenge to a certain degree. We see a positive impact of Design
Thinking on the challenge of tacit requirements knowledge because Design Thinking
supports a team-based approach to Requirements Engineering. Knowledge is, thus,
more evenly distributed. In addition, different viewpoints foster a more comprehensive
elicitation, which may expose tacit knowledge of stakeholders and team members more
likely.

Analyzing the following three challenges revealed a mixed picture. First, we found that
Design Thinking also tends to neglect non-functional requirements such as security or
performance requirements. Nevertheless, it strongly emphasizes the elicitation of
usability requirements as part of non-functional requirements. Second, we found a high
likelihood of inappropriate architecture by using Design Thinking because of short
planning time. However, risk mitigation might be achieved through the thorough upfront
Design Thinking approach, which explores the problem domain and typically also
includes the evaluation of suitable technologies. Third, similar to the former challenge,
Design Thinking may also struggle with imprecise effort estimates. Some risk mitigation
might be achieved through the upfront approach, which helps to define a clear product
vision and scope.

We did not find supporting evidence for addressing the following two challenges. First,
minimalistic documentation is also a key characteristic (and challenge) of Design
Thinking, which is known to have difficulties with traceability (e.g. Beyhl and Giese
2016). Elicited requirements are captured on post-its or in form of prototypes, mainly in
an unstructured way to advance team collaboration and process speed. Second, Design
Thinking also faces difficulties in the prioritization of requirements. Based on our
findings, we cannot propose any solutions offered by Design Thinking for this
challenge.

7.4 Discussion

Table 12 summarizes the main activities and results of the project phase exploration,
alpha prototyping, and market launch. The aim of our study was to investigate the
continuous Design Thinking approach for Requirements Engineering in software-

158

intensive projects. As this is a new area of investigation, which has not been addressed
investigated yet, we set out to provide a first understanding by using empirical evidence.

Phase
Duration

Exploration
3 months, 8 FTE

Alpha Prototyping
7 months, 15 FTE

Market Launch
4 months, 22 FTE

Objective Understand the problem and
create a product vision

Develop a functional alpha
prototype

Market launch of the
platform

Activities Design Thinking as guiding
process: (1) empathize, (2)
define, (3) ideate, (4)
prototype, and (5) test

Scrum as guiding framework;
Design Thinking tools to
enhance communication and
ideation with stakeholders

Scrum as guiding
framework; enhanced
priority on defining the go-
to-market strategy; friendly
user tests

Roles Each team member is
involved into all activities to
elicit needs and requirements

Onboarding of development
team; business model focus;
Design Thinking team
transitions into product owner
role

Software development team
is extended; split between
technical, business model,
and product owner role

Outcome Mockup with core functio-
nalities; customer journeys
define context of use

Proof of Concept demonstrates
feasibility and viability of the
solution

Minimum Viable Product
(MVP) is ready for market
entry

Conclusion Design Thinking as a guiding
process; requirements
elicitation is a sequence of
team-based efforts

Design Thinking as a toolbox;
Scrum is guiding framework;
part of the Design Thinking
team becomes product owner

Design Thinking as a
mindset; selected Design
Thinking tools provide
support, yet agile
development practices
dominate

Table 12: Summary of Phases 1-3

(Source: Hehn and Uebernickel 2019)

The findings suggest that Design Thinking has the potential to support current
Requirements Engineering practices and vice versa. We now draw conclusions from our
findings and discuss them in the context of the findings of the previously introduced
combined artifact-based reference model (chapter 5) and the different operationalization
strategies (chapter 6).

Design Thinking supports a seamless integration of upfront and infused Design
Thinking practices. Our findings hint at a “morphing nature” of Design Thinking in
software-intensive development projects, evolving from process-guidance, via toolbox
support to the manifestation of a human-centered mindset of the project team. When
approaching “wicked” problems, Design Thinking starts with a structured, upfront
approach to define a clear product vision. Then, it transforms into a loose bundle of tools

159

and a mindset that link well to common agile practices. Figure 52 visualizes this
evolution of Design Thinking.

Figure 52: Evolution from Process, via Toolbox, to Mindset

(Source: own illustration)

Design Thinking provides a structured process for requirements elicitation for
“wicked” problems. We found Design Thinking particularly supportive in approaching
“wicked” problems and turning these problems into well-defined problems that can be
addressed with established Requirements Engineering practices. Design Thinking
provides a guideline to support the practical application of methods that are commonly
used in requirements elicitation. In addition, it fosters creativity through continuous re-
framing of the problem- and solution domain to find the best solution for the user. We
see Design Thinking as an “extended arm” for Requirements Engineering to grasp
“wicked” problems, while Requirements Engineering offers a strong framework for the
integration of Design Thinking into the software development life cycle. A specific type
of problem indicates to the type of approach that is to be taken. For well-defined
problems, i.e. when the real-world problem is known and the solution is clear, the use
of Design Thinking as a process might be ineffective and “over-engineered”. Even so,
we are convinced that an enhanced mindset for a more human-centered way of Design
Thinking proves beneficial nevertheless and reduces the risk of deploying a system that
does not meet its customers’ needs.

160

Design Thinking applies a team-based effort for requirements elicitation. In other
words, in Design Thinking the role of the product owner is performed by an
interdisciplinary team. This results in a comprehensive requirements elicitation effort
from different viewpoints to make better and more informed decisions at later stages in
the development process. However, team-orientation is, like other agile approaches,
highly dependent on the individual expertise of people, which makes it a critical success
factor in the application of Design Thinking. Within the team low-fidelity prototypes
ease communication, also with customers, which helps to expose tacit knowledge of the
former and latter. However, this action-oriented working mode also results in
minimalistic documentation efforts just like in common agile approaches.

Design Thinking emphasizes the elicitation of user requirements with a special focus on
usability. Our findings show that Design Thinking puts priority on deriving a
comprehensive user experience and, thus, on eliciting requirements in terms of usability,
workflows tasks, and user interface. This leads to a symbiosis between Requirements
Engineering and Design Thinking, as we expect higher completeness of requirements
when both methodologies are applied complementarily.

7.4.1 Implications for Theory

By conducting a field investigation, this study discerned how Design Thinking can be
combined with Requirements Engineering from the very beginning of a project until
market implementation of the solution. The study contributes empirical evidence to the
ongoing research on investigating the combination of Design Thinking and
Requirements Engineering (e.g. Kahan et al. 2019; Martins et. al. 2019). The findings
advance the understanding of how Design Thinking can support problem-solving in
Requirements Engineering and answer the calls from various scholars to improve
challenges in (agile) Requirements Engineering (e.g. Inayat et al. 2015; Heikkila et al.
2015).

Furthermore, this study uniquely addresses the different forms that Design Thinking can
have on an operational level (process, toolbox, mindset, see also Figure 2, page 21), and
investigates them together in one project context – a phenomenon that has been
overlooked in current research. Current knowledge is largely limited to the application
of one specific Design Thinking process or selected tools (e.g. Levy and Hadar 2018;
Przybilla et al. 2018). By examining a real project, the importance was underlined to

161

investigate Design Thinking at different points in time over the duration of a project.
The results of this study revealed that a continuous Design Thinking approach leads to
the evolution of using Design Thinking from a guiding process, then using it as a toolbox
and then implementing the principles in the mindset.

7.4.2 Implications for Practice

In addition to the theoretical contributions, the results of the case study present valuable
insights for practitioners. The findings can be used as guidelines for companies
proposing to adopt Design Thinking and for managers responsible for software-
intensive development projects.

First, the findings inform practitioners about how Design Thinking can be used to
support Requirements Engineering activities. An in-depth understanding of the different
application possibilities of Design Thinking helps to bridge the gap between existing
Requirements Engineering activities and Design Thinking. Acting upon these
possibilities, project managers can use the results and plan the application of Design
Thinking in software-intensive development projects more effectively.

Second, a valuable contribution for practitioners is made to gain improved appreciation
for applying Design Thinking in the context of Requirements Engineering. Project
members can use the different formats of Design Thinking to target and avoid some of
the aforementioned challenges in agile Requirements Engineering settings.

7.4.3 Limitations and Outlook

The results and implications presented in this study should be regarded in light of its
limitations. The empirical data from the single case study does not allow to make
assumptions about the generalizability of the findings in this type of research (Myers
2009). The findings refer to the use of a continuous integration of Design Thinking and
Requirements Engineering in the specific context of a utility company in Germany.
Although project Falcon represents an innovative software-intensive development
project in an agile setting, researchers should be careful about transferring the results to
other organizational or project contexts. Further research should feel encouraged to
investigate the generalizability of the findings in more detail. A positivist multiple case
study with companies in different industries could be conducted to yield hypotheses for
empirical evaluation.

162

The research focuses on the elicitation and specification of a system until market launch.
A closer look at the next phase would be fruitful. Further research should focus on
investigating Design Thinking for continuous software engineering (Bosch 2014). In
this context, future research could build on findings from Johanssen et al. (2019), who
investigated the continuous integration of user feedback to generate further ideas and
features for the deployed software.

Scholars can also extend this research to development projects of safety-critical systems.
Here, Design Thinking might help to understand the actual needs upfront, i.e. make the
problem addressable, while Requirements Engineering then provides the methods to
design the proper system architecture, safety certification requirements and so on.

7.5 Conclusion of Chapter

To empirically evaluate a continuous Design Thinking approach for Requirements
Engineering a longitudinal case study was set up in an agile development setting. The
study investigated a software-intensive development project from idea
conceptualization to market-ready implementation in a large utility company in Europe.
The results show that Design Thinking offers a prescriptive guideline to apply methods
and create artifacts that are commonly used in Requirements Engineering to elicit
stakeholder needs and requirements. The findings also indicate a seamless integration
of upfront and infused Design Thinking practices for Requirements Engineering to
foster a human-centered mindset. By doing so, Design Thinking has the ability to
address some of the known challenges in agile Requirements Engineering.

163

8 Synthesis of Findings

The overarching objective of this dissertation was to study the usage patterns of Design
Thinking for Requirements Engineering in innovative software-intensive development
projects. Based on the findings presented in the dissertation, it is possible to draw a
comprehensive picture of the benefits of eliciting requirements and the challenges of
specifying them with Design Thinking (RQ1), understand the different artifacts
produced in Design Thinking and Requirements Engineering (RQ2), and outline
adequate operationalization strategies combining both (RQ3). The following sections
integrate and discuss these findings.

8.1 Leveraging the Best of Both Worlds

With regard to the benefits and challenges of using Design Thinking for eliciting and
specifying requirements (RQ1), the dissertation reveals two important insights. First,
Design Thinking positively contributes to requirements elicitation by providing
enriched quality, enhanced communication, and a structured discovery process. Similar
to the findings of Martins et al. (2019), using Design Thinking for requirements
elicitation means integrating customers continuously, putting more focus on the early
phases of the process to determine the customer needs, requirements, and context, which
affects the system vision and product features and functionalities. Second, Design
Thinking faces output- and process-related challenges when specifying them, especially
in terms of their comprehensibility and traceability. The former indicates a sole focus
on user requirements while neglecting software and system requirements, which
narrows the scope of using Design Thinking for requirements elicitation. The latter
relates to the predominantly informal way of gathering information in Design Thinking.
The identified needs and insights are often captured and analyzed in a mainly
unstructured form, e.g. through notes, pictures, post-its, and low-fidelity prototypes,
often due to time-saving reasons. This mainly unstructured and informal mode of
specifying needs can be problematic as it might prevent the team to reflect on previously
made findings and build on them for further activities. Also, a lot of knowledge of the
team might stay implicit and gets lost when the team has to handover their results for
implementation purposes, e.g. to software engineers (Häger et al. 2015). Both cases bear
the risk of leading to a less desired outcome and, thus, to a solution that does not meet
all relevant needs of its stakeholders.

164

In existing literature, the concrete benefits and challenges of using Design Thinking for
Requirements Engineering are not well understood (Kahan et al. 2019). Taken together,
the results from the multiple-case studies offer a number of interesting insights into the
usage of Design Thinking in the context of Requirements Engineering. Thus, the first
research question of the dissertation aimed to explore the benefits and challenges of
using Design Thinking for eliciting and specifying requirements in software-intensive
development projects. The findings to answer this research question were presented in
chapters 3 and 4. Although Design Thinking has the means to go broad in eliciting
requirements (chapter 3), specifying these requirements falls short (chapter 4). Design
Thinking can positively impact requirements elicitation and can learn from
Requirements Engineering to specify requirements in a more consistent and traceable
manner. For creating a lasting impact of the system vision on the upcoming design and
implementation activities, a balance should be found between the benefits of early
experimentation as done in Design Thinking and the advantages of institutionalizing a
proper structure and documentation for subsequent software engineering activities as
achieved by Requirements Engineering.

8.2 Complementary Artifacts for a Comprehensive Blueprint

Chapter 5 provides a better understanding of the different artifacts produced in Design
Thinking and Requirements Engineering (RQ2). Building on an established artifact-
based reference model from Requirements Engineering (Méndez Fernández and
Penzenstadler 2014a) and enriching it with DT-specific artifacts, this dissertation
contributes an evaluated artifact-based reference model for Design Thinking and
Requirements Engineering that can be tailored to specific project situations. The model
is descriptive and prescriptive at the same time. It depicts the current nature of common
DT and RE artifacts used in software-intensive development projects. It is descriptive
as it provides a general understanding of the artifact landscape from both approaches.
The model can also be seen as a blueprint for designing new innovative systems, which
makes it also prescriptive as it provides a guideline and orientation for generating the
artifacts in development projects.

The artifact-based reference model addresses calls of related literature for enhancing the
understanding of how an integration of Design Thinking and Requirements Engineering
could be achieved (Kahan et al. 2019; Vetterli et al. 2013; Beyhl and Giese 2016).

165

Comparing the artifacts shows the potential of complementary synergies when
combining both approaches. Design Thinking expands the toolbox for Requirements
Engineering by emphasizing artifacts for defining the relevance of the system vision. It
fosters a holistic exploration of the problem context and defines precise user
requirements. A prototype shapes the vision of the system. These artifacts complement
the more technical-oriented artifacts from Requirements Engineering with a human-
centered perspective. In addition, Requirements Engineering expands the toolbox of
Design Thinking by connecting DT artifacts to later-staged software development
processes. In this sense, DT-related artifacts are transformed into functionalities for
technical realization. What counts in the end in Requirements Engineering is the set of
elaborated requirements, while in Design Thinking, not only the prototype is the
ultimate outcome, but the learning curve leading to it.

8.3 Three Ways to Operationalize a Combination

The first two research questions provide evidence that Design Thinking and
Requirements Engineering should be used complementarily to achieve innovative yet
feasible solutions. While the unified artifact model in chapter 5 described relevant DT
and RE artifacts to be produced, chapters 6 and 7 suggest how to actually operationalize
the combination of the two in software-intensive development projects (RQ3).

Operation modes that integrate Design Thinking into (agile) software development
approaches have been proposed before (e.g. Lindberg et al. 2012; Häger et al. 2015;
Dobrigkeit et al. 2018). Building on these findings and triangulating them with empirical
data from industry, three operationalization strategies are proposed in which
Requirements Engineering can profit from Design Thinking: (1) Run it upfront to
Requirements Engineering practices (upfront Design Thinking), (2) infuse the
Requirements Engineering process with selected Design Thinking tools (infused Design
Thinking), or (3) apply Design Thinking principles continuously by combining the first
two strategies in a flexible manner (continuous Design Thinking). The decision which
strategy to follow depends on the project context and objective. The first strategy is
recommended when the problem and solution space is unclear (e.g. “How does the
future patient support program for multiple sclerosis patients look like?”). Following
the Design Thinking process provides a guiding structure for requirements elicitation
and the specification of a solution vision. The second strategy offers requirements

166

engineers a way to make use of selected Design Thinking methods when they feel it is
necessary. Typically, these are situations in which project members face difficulties in
an ongoing Requirements Engineering process that might be addressed by Design
Thinking methods (e.g. “Create ideas to optimize the user interface of our platform,
making it look and feel more emotional and letting it appear less technical.”). The third
strategy supports a continuous yet flexible application of the Design Thinking process
and ad-hoc tools. By conducting a longitudinal case study (see chapter 7), the
importance of looking at Design Thinking at different points in time was underlined.
The results indicate that the continuous approach entails the evolution from using
Design Thinking as a guiding process to applying it as a toolbox for adaptive support up
to implementing Design Thinking principles in the mindset of project members. This
strategy should be chosen when (1) a sustainable integration of both Design Thinking
and Requirements Engineering is intended and (2) the project requires a continuous
integration of users into the development project (e.g. “How might we create the next
generation home improvement platform?”).

Another important finding is the need for a new role incorporating skills from both
disciplines: the human-centric requirements engineer. Business analysts may leverage
Design Thinking to deeply explore the system context while design thinkers may equip
themselves with Requirements Engineering knowledge to better connect their results to
subsequent software design. The findings of the dissertation address the call from
Lauenroth (2018a) to form a new profession of what he refers to as ‘digital designers.’
In a manifesto Lauenroth (2018b) specifies this role in the following way: “A digital
designer is someone who thinks about the future, someone who is capable of creating a
vision for digital products, processes, services, business models, or even entire systems,
free from technical or organizational obstacles as well as apparent reservations (outside-
in thinking). Digital designers are also capable of ultimately turning this vision into
reality. They transfer (technological) possibilities into (new) product/process/
service/business model/system design. To do all of this, digital designers must be skilled
in design and the available technologies and be capable of interacting with all
stakeholders.” (p. 8) In line with this quote, the findings of this dissertation emphasize
the great potential of combining Design Thinking and Requirements Engineering
knowledge to create and realize innovative systems in a more creative and human-
centered manner.

167

9 Theoretical Contributions

The dissertation offers theoretical contributions for research in Requirements
Engineering and Design Thinking. The following sections discuss three main
contributions.

9.1 Contributing to Artifact-based Requirements Engineering

The paradigm of artifact-orientation in Requirements Engineering research has gained
increasing attention during the last years (Méndez Fernández et al. 2019). The findings
of this dissertation contribute to the body of knowledge of artifact-based Requirements
Engineering in general and artifact-based reference models in particular, as shown in
the following.

With regard to research on artifact-based Requirements Engineering, this dissertation
provides a first conceptual and empirical basis for understanding the different artifacts
originating from Design Thinking, a concept, which has received considerable interest
from Requirements Engineering scholars over the past few years (e.g. Martins et al.
2019). Researchers have based their work on experience reports (e.g. Caroll et al. 2018),
experiments (e.g. Levy and Hadar 2018), or lessons learned from workshops (e.g. Kahan
et al. 2019) and have therefore taken an activity-oriented view to analyze and merge
practices from both Design Thinking and Requirements Engineering. The results of this
dissertation provide a complementary perspective, i.e. an artifact-oriented view, on the
topic by comparing artifacts of the two approaches. The corresponding results of each
Design Thinking and Requirements Engineering are highlighted without having to take
into account the variability of their processes or the compatibility of methods. The
findings indicate that Design Thinking can contribute 16 concrete artifacts in addition
to the Requirements Engineering approach when designing innovative software-
intensive systems from a human-centered point of view.

With regard to research around artifact-based reference models, this dissertation offers
a new reference model that combines DT and RE artifacts. This model joins in a line of
research to address the problems of neglecting artifacts and their dependencies by using
artifact-based reference models (e.g. Berenbach et al. 2009; Méndez Fernández et al.
2019; Silva et al. 2009). In this dissertation an established domain-independent artifact
model for Requirements Engineering (Méndez Fernández and Penzenstadler 2014a) is

168

used as a frame of reference to integrate DT artifacts. The resulting model provides a
result-driven view on Design Thinking and Requirements Engineering and acts as a
framework for the design of innovative software-intensive systems. The novelty of this
contribution is given by offering original insights into a new and, so far, undertheorized
phenomenon on how to harmonize Design Thinking and Requirements Engineering
(e.g. Kahan et al. 2019; Carell et al. 2018). The scientific purpose is to develop a
theoretical model that integrates the human-oriented Design Thinking approach within
the more technically oriented Requirements Engineering discipline.

9.2 Providing Prescriptive Knowledge for Problem Solving

While initial research efforts have already indicated the potential benefits of using
Design Thinking in the context of Requirements Engineering (e.g. Levy and Hadar
2018), research still lacks evidence on how to actually operationalize such an integration
(Kahan et al. 2019). To this end, Vetterli et al. (2013) argue that it is crucial to understand
how an integration can be achieved. The dissertation addresses this gap in three ways.

First, this dissertation provides prescriptive knowledge in the form of three
operationalization strategies based on industry experience and related work in software
engineering (e.g. Lindberg et al. 2012; Häger et al. 2015; Przybilla et al. 2018).
Specifically, the findings advance the body of knowledge of how Design Thinking is
used within industry not only in a pre-phase to software engineering (cf. Martins et al.
2019) but also in later Requirements Engineering stages. As an extension of the two
main existing strategies that have been used to connect Design Thinking to software
development (Lindberg et al. 2012), this dissertation proposes a third strategy, which is
based on findings from creativity research and is called continuous Design Thinking in
this dissertation (e.g. Carlgren et al. 2016; Wölbling et al. 2012). This strategy integrates
Design Thinking phases and elements throughout Requirements Engineering activities
which should eventually establish a human-centered mindset.

Second, while the distinction between different concepts of Design Thinking (process,
toolbox, mindset) is not new (e.g. Brenner et al. 2014), this dissertation advances these
perspectives by analyzing how these concepts can change over time in a project context
over a longer time period – a phenomenon that has been overlooked in current research.
The results of this dissertation show that Design Thinking evolves from a guiding
process to toolbox to a mindset. This goes beyond existing research that looks at the

169

conceptualization of Design Thinking in Requirements Engineering rather statically
(e.g. Levy and Hadar 2018; Przybilla et al. 2018) and underlines the importance of
analyzing Design Thinking in different points in time over the duration of a project.

Third, the results of this dissertation address the calls from various scholars to improve
challenges faced in Requirements Engineering (e.g. Inayat et al. 2015; Heikkila et al.
2015). The concrete benefits of using Design Thinking for Requirements Engineering
are indicated but not well understood in existing literature (Kahan et al. 2019; Vetterli
et al. 2013). So far, his topic was addressed mainly by case studies in single domains
(Levy and Hadar 2018) or by literature reviews (Martins et al. 2019). Based on cross-
case insights from multiple-case studies the results of this dissertation provide an
extended understanding of how Design Thinking can address common challenges in
Requirements Engineering. Empirical evidence suggests a positive contribution of
Design Thinking to Requirements Engineering by enhancing quality, fostering
stakeholder communication, and guiding the discovery process. Going beyond existing
research (e.g. Beyhl et al. 2016; Häger et al. 2015) the results of this dissertation also
provide a comprehensive view on challenges when using Design Thinking, especially
in terms of documentation, traceability, and scope.

9.3 Linking Design Thinking to IS and Software Engineering

While research considers Design Thinking to have “a lack of theoretical integration”
(Badke-Schaub et al. 2010, p. 40), scholars are showing increasing interest in Design
Thinking and its multi-facetted opportunities for IS research. For example, in a
commentary of the MISQ, Youngjin Yoo (2017) affirms that Design Thinking can
create new digital opportunities to “shape human experiences in a digital world” (p. v).
The findings presented in this dissertation contribute to research on Design Thinking in
IS in two main respects.

First, the understanding of how Design Thinking can support problem-solving in IS is
advanced by providing empirical evidence in the context of innovative software-
intensive development projects. Yoo (2017) encouraged IS scholars to “help Design
Thinking practice by inventing new constructs, models, methods, and instantiations”
(p.v) A contribution to increase the knowledge of problem-solving by using Design
Thinking in the context of IS is made by means of an evaluated model of DT artifacts
(Figure 11). While this model is an initial work product in the process of designing the

170

combined artifact model for Design Thinking and Requirements Engineering, it already
contributes to Design Thinking research on its own. Artifact-oriented Design Thinking
adds a new dimension to the existing body of knowledge around classifying Design
Thinking methods, tools, and processes (e.g. Doorley et al. 2018; IDEO.org 2015;
Uebernickel et al. 2015).

Second, this dissertation connects Design Thinking to the more mature research topic of
Requirements Engineering. By doing so, Requirements Engineering can provide
established tools and methods to further promote the conceptualization of explorative
approaches like Design Thinking. The artifact-based reference model provides a
common language and a connection to later-staged software design and development
activities. This has been consistently criticized to be insufficiently linked to the
development processes (e.g. Häger et al. 2015; Przybilla et al. 2018).

171

10 Practical Implications

This chapter discusses three major implications for practitioners highlighting the
practical use of the findings of the dissertation.

10.1 Avoiding Common Challenges in Requirements Elicitation

Despite significant progress in the body of research, requirements elicitation is still
considered an inherently difficult and complex task with multiple challenges. Design
Thinking provides an approach for eliciting needs and requirements by applying
qualitative research methods and producing fast and simple prototypes that converge on
innovative solutions. The results of this dissertation provide a number of
recommendations on how to address these challenges.

First, practitioners can leverage the prescriptive process framework of Design Thinking
to support the practical application of elicitation methods which has been criticized to
be insufficiently guided. Second, to avoid communication challenges, low-resolution
prototypes should be considered an effective way to ease collaboration with
stakeholders and expose their tacit knowledge. Fostering a continuous interaction with
stakeholders helps in dealing with changing requirements and decreases invented
requirements that are not based on user needs. Third, practitioners should install a team-
based effort for requirements elicitation to achieve comprehensive requirements
elicitation through various viewpoints. Finally, practitioners should consider the
benefits of Design Thinking with a differentiated view which is also indicated by the
findings of this dissertation. When implementing Design Thinking activities into their
work routines, they should also be aware of the shortcomings of Design Thinking. For
example, Design Thinking emphasizes the elicitation of user requirements with a special
focus on usability, while neglecting other requirement classes.

10.2 “Doing the Right Things Right”

Practitioners often face difficulties when it comes to grasping the potential that arises
from Design Thinking. By showing what it can do for Requirements Engineering and
how it can be used, professionals gain a better understanding of the approach. Three
main implications can be identified.

172

First, the results of this dissertation provide guidance when to use Design Thinking best,
when not to use it all, and what should be done complementarily to design innovative
software-intensive systems. The combined artifact model offers professionals a
complete and consistent set of Design Thinking and Requirements Engineering artifacts
that should be produced or at least taken into consideration when designing systems.
Although not all of them have to be produced in each project, the overview still serves
as an orientation and connection to further design and development activities. The
findings show that Design Thinking is most appropriate for defining the problem
context, i.e. to elicit needs and requirements. It could even be used exclusively for this.
A complementary approach of both Design Thinking and Requirements Engineering is
recommended when specifying the requirements layer. While some requirement types
are defined by both, other ones, such as quality or deployment requirements are
predominantly specified with common Requirements Engineering techniques.
Requirements Engineering should be exclusively used to specify system artifacts and to
provide the interface to system design activities. To summarize: Design Thinking should
design the visible (from a user point of view), Requirements Engineering should specify
the invisible.

Second, practitioners can also use the model to foster reflections and project discussions.
This might help to circumvent a Requirements Engineering process that is often
criticized to be driven solely by the subjective preconceptions of one single requirements
engineer or business analyst (Méndez Fernández and Wagner 2014). However, one risk
should be taken into account: Similar to other commonly used models or templates, the
analyst might feel the need to “tick all boxes”, which means, to force the generation of
all artifacts, regardless of whether they make sense or not in a specific project context.
This might reduce efficiency which is why the analyst should be sensitive and attentive
to this fact.

Third, training providers can use the results of this dissertation to develop new training
programs that combine Design Thinking and Requirements Engineering skills. Existing
training courses for design thinkers can be enhanced by the structured technical side of
Requirements Engineering and trainings for requirements engineers can be enriched by
the experimental human-centered ways of Design Thinking.

173

10.3 Improving the Effectiveness of Projects

As the analysis of this dissertation shows, Design Thinking and Requirements
Engineering are not mutually exclusive but rather reinforce and complement each other.
Based on the presented findings, practitioners receive recommendations on how to use
Design Thinking for Requirements Engineering in innovative software-intensive
projects. Managers can evaluate their Requirements Engineering process and, thereby,
improve its effectiveness and create solutions in a more human-centered fashion.

Project managers in the quest of making optimal decisions can take away the following:
First, the findings provide guidance to balance resources, time, and activities for
conducting more effective software-intensive development projects. Project managers
can use the differentiation between the upfront, infused, and continuous strategy to steer
their limited resources towards applying the most appropriate one depending on the
individual project conditions. The advantages to learn quickly in the early phases with
the rapid working style of Design Thinking should be weighed wisely with the demand
for more structure and documentation in the later stages connecting to system design
and implementation. Second, with help of the artifact model, project managers can
assign completion levels and establish progress control for the creation of artifacts.
Quality assurance metrics can help to objectively measure the degree of completeness
of the reference model. Third, project managers can use the model as a support for
defining and distinguishing responsibilities in a project. Specific project members can
be directly coupled to the creation of artifacts, for which they have to take responsibility.

Project members gain an in-depth understanding of the different application possibilities
of Design Thinking for Requirements Engineering. They can directly adopt the
operationalization strategies in their own contexts with the awareness of the respective
benefits and shortcomings. Beginners and professionals in the field of Design Thinking
can use the strategies combined with the artifact model as guidelines to apply Design
Thinking most effectively. Although experts are expected to intuitively do the right
things based on their profound experience, the proposed artifact model and
operationalization strategies can still help them to gain a more differentiated view on
the various layers of software-intensive systems and to deal with complex problems
more confidently. For beginners they provide a pragmatic reference to approach
unknown situations in a more self-assured way.

174

175

11 Limitations and Avenues for Future Research

Several limitations to this dissertation need to be acknowledged and this is why the
findings must be approached with appropriate caution. The following sections discuss
these limitations and outline how future research may address them or extend the
dissertation’s results.

11.1 Focus on Project Level

The dissertation focuses on schemes to use Design Thinking in Requirements
Engineering on a project level. As also emphasized by related research (e.g. Dobrigkeit
et al. 2018; Kahan et al. 2019), the project level is an important aspect of understanding
how organizations may benefit from combining Design Thinking and Requirements
Engineering. Nevertheless, there is great potential for future research to extend the
findings in the following directions: Enhance the current results on a project level by
undertaking research and investigate the topic on an individual or at an organizational
level.

On a project level, the created artifact-based reference model hides the variability of
different processes and methods that come with each Design Thinking and
Requirements Engineering. This deemed to be an appropriate foundation to compare
and combine both approaches on a similar level. Accordingly, the model provides a
common language for researchers and practitioners to further investigate, discuss,
critique, and reflect upon the integration of Design Thinking and Requirements
Engineering. However, artifact-orientation is only one important aspect when defining
a comprehensive development process model, which integrates the artifacts with
activities to be performed, roles to be taken, processes to be followed, and tools to
support execution (Gnatz 2005; Méndez Fernández and Penzenstadler 2014a).
Examining these variables and relating them to the artifact model should be addressed
by further research.

On an individual level, future attention should be paid to examining individual Design
Thinking needs of different team members/roles and how they should be trained with
regard to those needs. In addition, and more importantly, the individual attitude towards
adopting Design Thinking should be examined in the context of joining it with
Requirements Engineering. According to research with regard to adoption processes

176

(Rogers 2003), the potential adopter weighs the expected benefits of adopting against
the presumed loss of abandoning existing procedures. The successful adoption of a
combined approach depends therefore on the acceptance by requirements engineers
They are the ones, who are supposed to complement their activities with Design
Thinking and could reject or underuse Design Thinking. In a similar context, previous
authors have distinguished between Design Thinking process, toolbox, and mindset and
shown that their different operationalizations influence the willingness of team mebers
to use Design Thinking in combination with agile development techniques (Dobrigkeit
et al. 2018; Dobrigkeit and de Paula 2019). A similar exploration with the specifics of
Requirements Engineering will provide additional insights and can assist in integrating
Design Thinking into Requirements Engineering frameworks more easily. In this
context, investigating the characteristics of opinion leaders or gatekeepers who would
probably promote using Design Thinking for Requirements Engineering could also be
of interest.

On an organizational level, there have been multiple calls from scholars in the fields of
IS and management research in recent years to investigate how organizations adopt and
use Design Thinking (e.g. Engberts and Borgmann 2018; Lindberg et al. 2012). Based
on the findings presented in this dissertation, examining the topic of organizational
acceptance of a combined approach of Design Thinking and Requirements Engineering
would be of great interest. Researchers of different disciplines have identified a wide
range of organizational characteristics that they consider conducive to organizational
adoption. Contextual variables (e.g. organizational size, age, structure) and climate
variables (e.g. openness to change, external orientation, support and collaboration) have
been consistently found to influence organizational adoption (Nystrom et al. 2002).
They can also be regarded influential when adopting a combined approach of Design
Thinking and Requirements Engineering. To test variables with this objective could be
a task for future research.

11.2 Boundary Conditions of Innovative Software-intensive Systems

This dissertation examines Design Thinking and Requirements Engineering to design
innovative software-intensive systems, for which Design Thinking can leverage its
greatest potential. This makes it possible to study in detail how Design Thinking can be
leveraged for the purpose of Requirements Engineering. While these conditions are in

177

many ways ideal for studying this phenomenon, the findings are still limited to the
context of innovative software-intensive systems and should be regarded in light of the
characteristics and boundary conditions of this particular type of system. In other
contexts beyond innovative software-intensive systems, different findings may emerge
and different operationalization strategies might be necessary depending on the specific
project scope and conditions.

Thus, further research is needed to draw a more comprehensive picture of Design
Thinking and Requirements Engineering beyond innovative software-intensive systems.
Based on the findings presented in this dissertation, there are three major avenues that
would be particularly interesting for future research: (1) How may Design Thinking be
used for the development and design of safety critical systems (incl. proper system
architecture and safety certification requirements)? (2) How will use patterns of Design
Thinking look like for conducting continuous software engineering activities? (3) How
and to what extent will findings change when investigating projects that require remote
Requirements Engineering activities? Addressing these questions may help provide a
more general understanding of using Design Thinking to perform Requirements
Engineering activities.

11.3 Generalizability of Findings and Quantification

While the qualitative research design of this dissertation has the strength of providing
rich contextual insights, some of the findings lack generalizability. Although the
multiple-case studies have been conducted in a setup close to real life (real problem
statements provided by real corporate partners), it can be argued that the sources of
evidence are closely aligned with the specific project setup at the university. Due to the
nature of these academic-industry collaborations, specific organizational difficulties
(like internal politics or stakeholder management issues) might not be as apparent as
might one expect in other settings. In addition, the Design Thinking approach, as
investigated in this dissertation, is closely aligned with the specific Design Thinking
approach of the University of St.Gallen, including its particular assessment policies and
Design Thinking philosophy, which neglects the myriad of different Design Thinking
models in practice. Supplementary studies seem necessary to validate the existing results
and increase the reliability of the outcome. Therefore, scholars should build on the
findings and further investigate an integration of Design Thinking and Requirements

178

Engineering with different Design Thinking approaches and in actual organizational
settings. Interesting organizational factors to take into account could be, for example,
the maturity of Design Thinking implementation, resource availability, role distribution,
or organizational stability. Building on the qualitative findings of this dissertation,
further attention should also be paid to quantifying their effects. Future work could
derive concrete propositions from the presented operationalization strategies to validate
and measure their (positive) effects on outcome and team performance.

179

12 Conclusion
It is certainly too early to consider Design Thinking a lasting contribution to
Requirements Engineering but, as the results of this dissertation indicate, it indeed has
left first traces. The human-centered approach of Design Thinking can be considered a
powerful way to complement Requirements Engineering activities when designing
innovative systems. While in recent years research has already made great strides to
indicate potential benefits of bringing Design Thinking and Requirements Engineering
together, it has remained mostly unclear how to actually realize a combination of the
two. Hence, the objective of this dissertation was to identify usage schemes of Design
Thinking in order to achieve a (more) human-centered Requirements Engineering
approach. To accomplish this goal, the dissertation was organized into three research
questions. Based on multiple-case studies the first research question aimed to understand
the value of using Design Thinking for two main activities of Requirements
Engineering, i.e. requirements elicitation and specification. The second research
question combined and compared Design Thinking and Requirements Engineering
artifacts for designing innovative software-intensive systems. Based on an exploratory
case study the third research question derived concrete operationalization strategies on
how to use Design Thinking for Requirements Engineering depending on the specific
project context. Overall, this dissertation provides a number of important theoretical
contributions. First, it offers empirically sound evidence beyond current research
findings on how to address common challenges in Requirements Engineering with
Design Thinking. Second, it contributes to ongoing research on artifact-oriented
Requirements Engineering with an evaluated reference model for the design of
innovative and human-centered software-intensive systems. Third, it offers prescriptive
knowledge on how to use Design Thinking for Requirements Engineering. In this
context the differentiated view on Design Thinking as process, toolbox, and mindset
was substantiated and expanded. For practitioners the dissertation offers
recommendations on how to improve the effectiveness of Requirements Engineering
with the help of Design Thinking depending on the specific project context and
objective. Overall, the results of this dissertation provide a solid foundation for many
researchers and practitioners because they give a better understanding of what Design
Thinking represents in the context of Requirements Engineering and how both
approaches can be combined in innovative software-intensive development projects.

180

I

References

Açar, A.E., Rother, D.S. 2011. “Design Thinking in Engineering Education and its
Adoption in Technology-driven Startups,” Proceedings of the 8th Global
Conference on Sustainable Manufacturing, Berlin, pp. 57-62.

Ahlemann, F. and Gastl, H. 2007. “Process Model for an Empirically Grounded
Reference Model Construction,” Reference Modeling for Business Systems
Analysis, P. Fettke and P. Loos (eds), Hershey, PA and London: Idea Group
Publishing, pp. 1-20.

Ambler, S. W. 2018. The Initial Domain Model (http://agiledata.org/essays/
agileDataModeling.html#InitialDomainModel, accessed 17 November 2019).

Aurum, A. and Wohlin, C. (eds) 2005. Engineering and Managing Software
Requirements. Berlin: Springer-Verlag.

Babich, N. 2017. Prototyping 101: The Difference between Low-Fidelity and High-
Fidelity Prototypes and When to Use Each. (https://theblog.adobe.com/prototyping-
difference-low-fidelity-high-fidelity-prototypes-use/, accessed 7 November 2019).

Badke-Schaub, P., Roozenburg, N., Cardoso, C. 2011. “Design Thinking: A Paradigm
on its Way from Dilution to Meaninglessness?,” in Interpreting Design Thinking,
Special Issue of Design Studies, S. Stewart (ed.) (32:6), pp. 39-49.

Bahill, A.T. and Madni, A.M. 2017. “Discovering System Requirements,” in Tradeoff
Decisions in System Design, A.T. Bahill and A.M. Madni (eds.), Cham: Springer,
pp. 373-457.

Baxter, G. and Sommerville, I. 2011. “Socio-Technical Systems: From Design Methods
to Systems Engineering,” Interacting with Computers (23:1), pp. 4-17.

Beaudouin-Lafon, M. and Mackay, W. 2003. Prototyping Tools and Techniques, The
Human-Computer Interaction Handbook. Hillsdale, NJ: L. Erlbaum Associates
Inc., pp. 1006-1031.

Becker, J., Delfmann, P., Knackstedt, R. 2007. “Adaptive Reference Modeling:
Integrating Configurative and Generic Adaptation Techniques for Information
Models,” Reference Modeling, J. Becker and P. Delfmann (eds), Heidelberg:
Physica, pp. 27-58.

Berenbach, B., Paulish, D. J., Kazmeier, J. and Rudorfer, A. 2009. Software and Systems
Requirements Engineering: In Practice. McGrawHill: New York.

Berger, W. 2012. The Secret Phrase Top Innovators Use. Harvard Business Review,
September (https://hbr.org/2012/09/the-secret-phrase-top-innovato, accessed 13
August 2019).

Beyer, H. and Holtzblatt, K. 1999. “Contextual design,” Interactions (6:1), pp. 32-42.

Beyhl, T., Berg, G., Giese, H. 2014. “Connecting Designing and Engineering
Activities,” in Design Thinking Research, Understanding Innovation, H. Plattner,
C. Meinel, and L. Leifer (eds), Cham: Springer-Verlag, pp. 153-182.

II

Beyhl, T. and Giese, H. 2015. “Connecting Designing and Engineering Activities II,” in
Design Thinking Research, Understanding Innovation, H. Plattner, C. Meinel, and
L. Leifer (eds), Cham: Springer-Verlag, pp. 211-239.

Beyhl, T. and Giese, H. 2016. “Connecting Designing and Engineering Activities III,”
in Design Thinking Research, Understanding Innovation, H. Plattner, C. Meinel,
and L. Leifer (eds), Cham: Springer-Verlag, pp. 265-290.

Bitner, M. J., Ostrom, A. L., Morgan, F. N. 2008. “Service Blueprinting: A Practical
Technique for Service Innovation,” California Management Review (50:3), pp. 66-
94.

Blomberg, J.L. 1988. “The Variable Impact of Computer Technologies on the
Organization of Work Activities,” in Computer-Supported Cooperative Work: A
Book of Readings. San Francisco, CA: Morgan Kaufmann Publishers Inc., pp. 771-
789.

Boland, R.J. and Collopy, F. 2004. “Design Matters for Management,” Managing as
Designing, R.J. Boland and F. Collopy (eds.), Stanford, pp. 3-18.

Bosch, J. 2014. Continuous Software Engineering: An Introduction. Cham: Springer
International Publisihing Switzerland.

Bostrom, R.P. and Heinen, J.S. 1977. “MIS Problems and Failures: A Socio-Technical
Perspective. Part I: The Causes,” MIS Quarterly, pp. 17-32.

Bowen, G.A. 2009. “Document Analysis as a Qualitative Research Method,”
Qualitative Research Journal (9:2), pp. 27-40.

Braun, P., Broy, M., Houdek, F., Kirchmayr, M., Müller, M., Penzenstadler, B., Pohl,
K. and Weyer, T. 2014. “Guiding Requirements Engineering for Software-Intensive
Embedded Systems in the Automotive Industry,” Computer Science - Research and
Development (29), pp. 21-43.

Brenner, W., Uebernickel, F., and Abrell, T. 2016. “Design Thinking as Mindset,
Process, and Toolbox,” in Design Thinking for Innovation: Research and Practice,
W. Brenner and F. Uebernickel (eds), Cham: Springer International Publishing
Switzerland, pp. 3-21.

Brown, T. 2008. “Design Thinking,” Harvard Business Review (86:6), pp. 84-92.

Brown, T. 2009. Change by Design, How Design Thinking Transforms Organizations
and Inspires Innovation, New York: HarperBusiness.

Browne, G. J. and Rogich, M. B., 2001. “An Empirical Investigation of User
Requirements Elicitation: Comparing the Effectiveness of Prompting Techniques,”
Journal of Management Information Systems (17:4), pp. 223-249.

Broy, M. 2006. “Requirements Engineering as a Key to Holistic Software Quality,” in
Proceedings of the 21th International Symposium on Computer and Information
Sciences, pp. 24-34.

Broy, M. 2015. “Rethinking Nonfunctional Software Requirements,” in Computer
(48:5), pp. 96-99.

III

Buchanan, R. 1992. “Wicked Problems in Design thinking,” Design Issues (8:2), pp. 5-
21.

Carell, A., Lauenroth, K, and Platz, D. 2018. “Using Design Thinking for Requirements
Engineering in the Context of Digitalization and Digital Transformation: A
Motivation and an Experience Report,” in The Essence of Software Engineering, V.
Gruhn and R. Striemer (eds), Cham: Springer, pp. 107-120.

Carlgren, L., Rauth, I., and Elmquist, M. 2016. “Framing Design Thinking: The Concept
in Idea and Enactment: Creativity and Innovation Management,” Creativity and
Innovation Management (25:1), pp. 38-57.

Carrizo, D., Dieste, O., and Juristo, N. 2014. “Systematizing Requirements Elicitation
Technique Selection,” Information and Software Technology (56:6), pp. 644-669.

Carroll, N. and Richardson, I. 2016. “Aligning Healthcare Innovation and Software
Requirements through Design Thinking,” Proceedings of the International
Workshop on Software Engineering in Healthcare Systems, Austin, Texas, pp. 1–7

Chung, L. and do Prado Leite, J. C. S. 2009. “On Non-Functional Requirements in
Software Engineering,” in Conceptual Modeling: Foundations and Applications.
Lecture Notes in Computer Science, A.T. Borgida, V.K. Chaudhri, P. Giorgini, E.S.
Yu (eds), Heidelberg: Springer, pp. 363-379.

Cockburn, A. 2000. Writing Effective Use Cases. Addison-Wesley Longman Publishing
Co., Inc.

Collins, H. 2010. The Theory and Practice of Research for the Creative Industries.
Switzerland: AVA Publishing SA.

Cooper, R. and Foster, M. 1971. “Sociotechnical Systems,” American Psychologist (26),
pp. 467-474.

Cooper, A., Reimann, R., Cronin, D., and Noessel, C. 2014. About Face: The Essentials
of Interaction Design. Indianapolis, IN: Wiley Publishing Inc.

Corral, L. and Fronza, I. 2018. “Design Thinking and Agile Practices for Software
Engineering: An Opportunity for Innovation,” Proceedings of the 19th Annual SIG
Conference on Information Technology Education, Fort Lauderdale, Florida, USA,
pp. 26-31.

Crai, L. 2003. “Right-Rapid-Rough. The Ideo Way”, The NASA Academy of Program
and Project Leadership, pp. 12-16.

CS Software Engineering Note 2: Software Requirements. http://www.inf.ed.ac.uk/
teaching/courses/cs2/LectureNotes/CS2Ah/SoftEng/se02.pdf (Accessed:
23.09.2017)

Dam, R. and Siang, T. 2017. “Learn How to Use the Best Ideation Methods: Challenge
Assumptions,” Interaction Design Foundation (https://www.interaction-
design.org/literature/article/learn-how-to-use-the-best-ideation-methods-challenge-
assumptions, accessed 15 November 2019).

IV

Davey, B. and Parker, K. R. 2015. “Requirements Elicitation Problems: A Literature
Analysis,” Issues in Informing Science and Information Technology (12), pp. 71-
82.

de Carvalho Souza, C.L. and Silva, C. 2015. “An Experimental Study of the Use of
Design Thinking as a Requirements Elicitation Approach for Mobile Learning
Environments,” CLEI Electronic Journal (18:1), pp.1-18.

Dobrigkeit, F., de Paula, D., and Uflacker, M. 2018. “InnoDev - A Software
Development Methodology Integrating Design Thinking, Scrum and Lean Startup,”
in Design Thinking – Research Looking Further: Design Thinking Beyond Solution-
Fixation, H. Plattner, C. Meinel, L. Leifer (eds), Cham: Springer-Verlag, pp. 199-
228.

Dobrigkeit F. and de Paula, D. 2019. “Design Thinking in Practice: Understanding
Manifestations of Design Thinking in Software Engineering,” in Proceedings of the
27th ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE ’19), Tallinn, Estonia: ACM, pp.
1059-1069.

Doorley, S., Holcomb, S., Klebahn, P., Segovia, K., and Utley, J. 2018. Design Thinking
Bootleg, d.school at Stanford University, CA.

Dunne, D. and Martin, R. 2006. “Design Thinking and How it Will Change Management
Education: An Interview and Discussion,” Academy of Management Learning and
Education (5:4), pp. 512-523.

Ebert, C. and Wieringa. R. 2005. “Requirements Engineering: Solutions and Trends,”
in Engineering and Managing Software Requirements, A. Aurum and C. Wohlin
(eds), Berlin: Springer-Verlag, pp. 453-476.

Eisenhardt, K. M. 1989. “Building Theories from Case Study Research,” Academy of
Management Review (14:4), pp. 532-550.

Emam, K. E., and Koru, A. G. 2008. “A Replicated Survey of IT Software Project
Failures,” IEEE Software (25:5), pp. 84-90.

Emery, F.E. and E. Trist. 1960. “Socio-technical Systems,” Management Sciences
Models and Techniques, C.W. Churchman and M. Verhulst (eds), Vol. 2, London:
Pergamon Press, pp. 83-97.

Engberts, F. and Borgman, H. 2018. “Application of Design Thinking for Service
Innovation: Current Practices, Expectations and Adoption Barriers,” Proceedings of
the Hawaii International Conference on System Sciences (HICCS), Hawaii: AIS,
pp. 1611-1620.

Fettke, P. and Loos, P. 2004. “Reference Modelling Research,” Long version of a paper
(Rep. No. 16). ISYM: Information Systems & Management. Mainz: Universität
Mainz.

Fettke, P. and Loos, P. 2007. “Perspectives on Reference Modeling,” Reference
Modeling for Business Systems Analysis, P. Fettke and P. Loos (eds), Hershey, PA
and London: Idea Group Publishing, pp. 1-20.

V

Fleischmann, A., Geisberger, E., and Pister, M. 2004. “Herausforderungen für das
Requirements Engineering eingebetteter Systeme,” Technical Report TUM-I4014,
Technische Universität München.

Forrester 2018. “The Total Economic Impact™ Of IBM’s Design Thinking Practice.
How IBM Drives Client Value and Measurable Outcomes with its Design Thinking
Framework” A Forrester Total Economic Impact™ Study, commissioned by IBM.

Fraser, H. 2011. “Business Design: Becoming a Bilateral Thinker,” Rotman Magazine,
Winter, pp. 70-76.

Friedrich, J., Hammerschall, U., Kuhrmann, M. and Sihling, M. 2008 “Das VModell
XT,” Informatik im Fokus. Berlin: Springer-Verlag.

Geisberger, E., Broy, M., Berenbach, B., Kazmeier, J., Paulish, D. and Rudorfer, A.
2006. Requirements Engineering Reference Model (REM). Technical Report TUM-
I0618, Technische Universität München.

Glinz, M. 2014. “A Glossary of Requirements Engineering Terminology,” International
Requirements Engineering Board (IREB), Version 1.6.

Glinz, M. 2007. “On Non-Functional Requirements,” Proceedings of the 15th IEEE
International Conference on Requirements Engineering (RE’ 07), IEEE Computer
Society, pp. 21-26.

Glinz, M. and Wieringa, R. J. 2007. “Stakeholders in Requirements Engineering,” IEEE
Software (28:1), pp. 18-20.

Gnatz, M. 2005. Vom Vorgehensmodell zum Projektplan. PhD thesis, Technische
Universität München.

Gutzwiller, T. 1994. Das CC RIM-Referenzmodell für den Entwurf von betrieblichen,
transaktionsorientierten Informationssystemen. Heidelberg: Physica.

Greenbaum, J. and Kyng, M. 1991. Design at Work: Cooperative Design of Computer
Systems. LEA, Hillsdale, NJ.

Häger, F., Kowark, T., Krüger, J., Vetterli, C., Übernickel, F., Uflacker, M. 2015.
“DT@Scrum: Integrating Design Thinking with Software Development Processes,”
in Design Thinking Research: Understanding Innovation, H. Plattner, C. Meinel, L.
Leifer (eds), Cham: Springer-Verlag, pp. 263-289.

Hadar, I., Soffer, P., Kenzi, K. 2014. “The Role of Domain Knowledge in Requirements
Elicitation via Interviews: An Exploratory Study,” Requirements Engineering
(19:2), pp. 143-159.

Hammerschall, U. 2008. “Flexible Methodenintegration in anpassbare
Vorgehensmodelle,” PhD thesis, Technische Universität München.

Hansen, S., Berente, N., Lyytinen, K. 2009. “Requirements in the 21st Century: Current
Practice and Emerging Trends,” in Design Requirements Engineering: A Ten-Year
Perspective, K. Lyytinen, P. Loucopoulos, J. Mylopoulos, B. Robinson (eds.),
Heidelberg: Springer, pp. 44-87.

VI

Harte, R., Glynn, L., Rodríguez-Molinero, A., Baker, P. M., Scharf, T., Quinlan, L. R.,
and ÓLaighin, G. 2017. “A Human-Centered Design Methodology to Enhance the
Usability, Human Factors, and User Experience of Connected Health Systems,”
JMIR Human Factors (4:1), e8.

Hartson, R., Pyla, P.S. 2012. The UX Book. Morgan Kaufmann.

Heath, C., Luff, P. 1991. “Collaboration and Control: Crisis Management and
Multimedia Technology in London Underground Line Control Rooms. Computer
Supported Cooperative Work (1), pp. 69-94.

Hehn, J. and Uebernickel, F. 2018a. “Towards an understanding of the Role of Design
Thinking for Requirements Elicitation – Findings from a Multiple-Case Study,” in
Proceedings of the 24th Americas Conference on Information Systems (AMCIS
2018), New Orleans, USA: AIS

Hehn, J. and Uebernickel, F. 2018b. “The Use of Design Thinking for Requirements
Engineering – An Ongoing Case Study in the Field of Innovative Software-Intensive
Systems,” in Proceedings of the 26th IEEE International Requirements Engineering
Conference (RE'18), Banff, Canada: IEEE.

Hehn, J. and Uebernickel, F. 2019. “The Use of Design Thinking for Requirements
Engineering – An Ongoing Case Study in the Field of Innovative Software-Intensive
Systems,” in Lecture Notes: 49, Jahrestagung der Gesellschaft für Informatik,
Extended Abstract.

Hehn, J., Uebernickel, F., Stöckli, E., and Brenner, W. 2018. “Towards Designing
Human-Centered Information Systems: Challenges in Specifying Requirements in
Design Thinking Projects,” in Proceedings of the Multikonferenz
Wirtschaftsinformatik (MKWI 2018), Lüneburg, Germany: AIS.

Hehn, J., Uebernickel, F., and Herterich, M. 2018. “Design Thinking Methods for
Service Innovation – A Delphi Study,” in Proceedings of the 22nd Pacific Asia
Conference on Information Systems (PACIS 2018), Yokohama, Japan: AIS.

Hehn, J., Mendez, D., Uebernickel, F., Brenner, W., and Broy, M. 2020 (forthcoming).
“On Integrating Design Thinking for a Human-centered Requirements
Engineering,” IEEE Software, Special Issue Design Thinking.

Heikkila, V.T., Damian, D., Lassenius, C., and Paasivaara, M. 2015. “A Mapping Study
on Requirements Engineering in Agile Software Development,” in 41st Euromicro
Conference on Software Engineering and Advanced Applications (SEAA’15), pp.
199-207.

Hickey, A. M. and Davis, A. M. 2004. “A Unified Model of Requirements Elicitation,”
Journal of Management Information Systems (20:4), pp. 65-84.

Hevner, A. R., March, S. T., Park, J., and Ram, S. 2004. “Essay in Information Design
Science systems,” MIS Quarterly (28:1), pp. 75-105.

Hummel, B. and Thyssen, J. 2009. “Behavioural Specification of Reactive Systems
Using Stream-Based I/O Tables,” Proceedings of the 7th IEEE International

VII

Conference on Software Engineering and Formal Methods (SEFM 09), IEEE
Computer Society, pp 137-146.

Hull, E., Jackson, K. and Dick, J. 2011. Requirements Engineering. London: Springer-
Verlag.

Kröper, M., Lindberg, T., Meinel, C. 2010. “Interrelations between Motivation,
Creativity and Emotions in Design Thinking Processes – An Empirical Study Based
on Regulatory Focus Theory”, Proceedings of the 1st International Conference on
Design Creativity, Kobe, pp. 97-104.

Kuhrmann, M. and Hammerschall, U. 2008. “Anpassung des V-Modell XT – Leitfaden
zur organisationsspezifischen Anpassung des V-Modell XT,” Technical Report
TUM-I0831, Technische Universität München.

IBM Corporation 2018: “Enterprise Design Thinking by IBM. Toolkit: Assumptions
and Questions” (https://www.ibm.com/design/thinking/page/
toolkit/activity/assumptions-and-questions, accessed 13 October 2019).

IDEO LLC. 2012. “Design Thinking for Educators,” 2nd Edition.
(http://designthinkingforeducators.com/, accessed 14 September 2019).

IDEO.org. 2015. Field Guide to Human Centered Design.
(http://www.designkit.org/resources/1, accessed 3 January 2019).

IEEE. 1998. “IEEE Recommended Practice for Software Requirements Specifications.
IEEE Std 830-1998,” Technical Standard IEEE Std 830-1998, The Institute of
Electrical and Electronics Engineers, Inc.

Inayat, I., Salim, S. S., Marczak, S., Daneva, M., and Shamshirband, S. 2015. “A
Systematic Literature Review on Agile Requirements Engineering Practices and
Challenges,” Computers in Human Behavior (51), pp. 915-929.

ISO, International Standards Organisation 2010. Ergonomics of Human–System
Interaction – Part 210: Human-centered Design for Interactive Systems. ISO,
Geneva, Switzerland.

ITMP. 2015. “Project Documentation,” Internal Report, unpublished.

ITMP. 2017. “Project Documentation,” Internal Report, unpublished.

ITMP. 2018. “Project Documentation,” Internal Report, unpublished.

Jarke, M., Loucopoulos, P., Lyytinen, K., Mylopoulos, J., Robinson, W. 2011. “The
Brave New World of Design Requirements,” Information Systems (36:7), pp. 992-
1008.

Jönsson, P. and Lindvall, M. 2005. “Impact Analysis,” in Engineering and Managing
Software Requirements, A. Aurum and C. Wohlin (eds), Springer-Verlag Berlin
Heidelberg 2005, pp. 117-142.

Johanssen, J.O., Kleebaum, A., Bruegge, B., and Paech, B. 2019. “How do Practitioners
Capture and Utilize User Feedback during Continuous Software Engineering?” in
Proceedings of the 27th IEEE International Requirements Engineering Conference
(RE’19), Jeju Island, South Korea: IEEE.

VIII

Kahan, E., Genero, M. and Oliveros, A. 2019. “Challenges in Requirement Engineering:
Could Design Thinking Help?,” Quality of Information and Communications
Technology. Communications in Computer and Information Science, Vol. 1010,
Cham: Springer, pp. 79-86.

Karlsson, L., Dahlstedt, Å., Dag, J. N., Regnell, B., and Persson, A. 2002. “Challenges
in Market-Driven Requirements Engineering,” Proceedings of the Eighth
International Workshop on Requirements Engineering, pp. 37-49.

Kolko, J. 2015. “Design Thinking Comes of Age,” Harvard Business Review (93:9), pp.
67-71.

Kupfer, M. and Hadar, I. 2008. “Understanding and Representing Deployment
Requirements for Achieving Non-Functional System Properties,” The 1st
International Workshop on Non-Functional System Properties in Domain-Specific
Modeling Languages, Toulouse, France.

Lauenroth, K. 2018a. “Softwareentwicklung braucht mehr Gestaltungkompetenz:
Digital Design als neues Rollenideal im Software Engineering,” in Software
Engineering and Software Management, Lecture Notes in Informatics (LNI),
Gesellschaft für Informatik, M. Tichy, E. Bodden, M. Kuhrmann, S. Wagner, and
J.-P. Steghöfer (eds), pp. 69-71.

Lauenroth, K. 2018b. “Digital Design Manifesto: A Self-confident Design Profession is
the Key to Successful and Sustainable Digitalization, Berlin: Bitkom,
(https://www.digitaldesign.org/content/1-home/digital-design-manifesto.pdf,
accessed 8 November 2019).

Leavitt, H.J. 1965. “Applied Organizational Change in Industry: Structural,
Technological and Humanistic Approaches,” Handbook of Organizations, pp.
1144-1170.

Leavy, B. 2010. “Design Thinking – A New Mental Model of Value Innovation,”
Strategy and Leadership, (38:3), pp. 5-14.

Levy, M. and Hadar, I. 2018. “The Importance of Empathy for Analyzing Privacy
Requirements,” Proceedings of the IEEE 5th International Workshop on Evolving
Security & Privacy Requirements Engineering (ESPRE), Banff, Canada, pp. 9-13.

Leonard, D. and Rayport, J.F. 1997. “Spark Innovation Through Empathic Design,”
Harvard Business Review (75:6), pp. 102-113.

Liedtka, J. and Ogilvie, T. 2011. Designing for Growth: A Design Thinking Tool Kit for
Managers. Columbia University Press.

Lincoln, Y.S. and Guba, E.G. 1985. Naturalistic Inquiry. Beverly Hills, CA: Sage.

Lindberg, T., Meinel, C., and Wagner, R. 2011. “Design Thinking: A Fruitful Concept
for IT Development?” Design Thinking: Understand – Improve – Apply, H. Plattner,
C. Meinel, L. Leifer (eds), Cham: Springer-Verlag, pp. 3-18.

Lindberg, T., Köppen, E., Rauth, I., and Meinel, C. 2012. “On the Perception, Adoption
and Implementation of Design Thinking in the IT Industry,” Design Thinking

IX

Research, H. Plattner, C. Meinel, L. Leifer (eds), Cham: Springer-Verlag, pp. 229-
240.

Lyytinen, K., Newman, M. 2008. “Explaining Information Systems Change: A
Punctuated Sociotechnical Change Model,” European Journal for Information
Systems (17), pp. 589-613.

Martin, R. 2009. The Design of Business. Why Design Thinking is the Next Competitive
Advantage, Boston: Harvard Business Review Press.

Maguire, M. and Bevan, N. 2002. “User Requirements Analysis,” in: Usability, J.
Hammond, T. Gross, J. Wesson, (eds), Springer, Boston, MA, pp. 133–148.

Maiden, N., Gizikis, A., and Robertson, S. 2004. “Provoking Creativity: Imagine What
Your Requirements Could Be like,” IEEE Software (21:5), pp. 68-75.

Martins, H.F, de Oliveira Junior, A.C., Canedo, E.D., Dias Kosloski, R.A., Paldês, R.A.,
and Oliveira, E.C. 2019. “Design Thinking: Challenges for Software Requirements
Elicitation,” in Information (10), pp. 1-27.

ME310. 2010. ME310 Design Innovation at Stanford University. Micro Cycle.
https://web.stanford.edu/group/me310/me310_2016/, accessed January 13, 2019.

Méndez Fernández, D. and Penzenstadler, Birgit. 2014a. “Artefact-based Requirements
Engineering: The AMDiRE Approach,” Requirements Engineering (20:4), pp. 405-
434.

Méndez Fernández, D. and Penzenstadler, Birgit. 2014b. Supplementary Material from
“Artefact-based Requirements Engineering: The AMDiRE Approach,”
Requirements Engineering (20:4), pp. 405-434
(http://www.mendezfe.org/publications/, accessed 6 October 2019).

Méndez Fernández, D. and Wagner, S. 2014. “Naming the Pain in Requirements
Engineering: A Design for a Global Family of Surveys and First Results from
Germany,” Information and Software Technology (57), pp. 616-643.

Méndez Fernández, D., Böhm, W., Vogelsang, A., Mund, J., Broy, M. Kuhrmann, M.,
Weyer, T. 2019. “Artifacts in Software Engineering: A Fundamental Positioning,”
International Journal on Software and Systems Modeling (18:5), pp. 2777-2786.

Mich, L., Anesi, C., and Berry, D. M. 2005. “Applying a Pragmatics-Based Creativity-
Fostering Technique to Requirements Elicitation,” Requirements Engineering
(10:4), pp. 262-275.

Mitra, T. 2008. “Develop the Architecture Overview. Three Complementary Views Lay
the Foundation,” Documenting Software Architecture, Part 3
(https://www.ibm.com/developerworks/library/ar-archdoc3/ar-archdoc3-pdf.pdf,
accessed 12 October 2019).

Monk, A. and Howard, S. 1998. “Methods and Tools: The Rich Picture: A Tool for
Reasoning About Work Context,” Interactions Magazine (5:2), pp. 21-30.

Mumford, E. 2006. “The Story of Socio-Technical Design: Reflections in its Successes,
Failures and Potential,” Information Systems Journal (16), pp. 317-342.

X

Myers, M. D. 2009. Qualitative Research in Business and Management, Thousand
Oaks, CA: Sage Publications.

Newman, P., Ferrario, M.A., Simm, W., Forshawz, S., Friday, A., Whittle, J. 2015. “The
Role of Design Thinking and Physical Prototyping in Social Software Engineering,”
Proceedings of the 37th International Conference on Software Engineering,
Florence, Italy, (2), pp. 487-496.

Nuseibeh, B. and Easterbrook, S. 2000. “Requirements Engineering: A Roadmap,”
Proceedings of the International Conference of Software Engineering, pp. 35-46.

Nystrom, P.C., Ramamurthy, K., and Wilson, A.L. 2002. “Organizational Context,
Climate and Innovativeness: Adoption of Imaging Technology,” Journal of
Engineering and Technology Management (19:3), pp. 221-247.

Okoli, C. and Pawlowski, S. D. 2004. “The Delphi Method as a Research Tool: An
Example, Design Considerations and Applications,” Information and Management
(42:1), pp. 15-29.

Orlikowski, W.J. 2000. “Using Technology and Constituting Structures: A Practice
Lens for Studying Technology in Organizations,” Organizational Science (11), pp.
404-428.

Osterwalder, A. and Pigneur, Y. 2010. Business Model Generation: A Handbook for
Visionaries, Game Changers, and Challengers, Hoboken, New Jersey: John Wiley
and Sons.

Paetsch, F., Eberlein, A., and Maurer, F. 2003. “Requirements Engineering and Agile
Software Development,” Proceedings of the 12th IEEE International Workshop
Enabling Technologies: Infrastructure for Collaborative, pp. 308-313.

Paré, G., Cameron, A.-F., Poba-Nzaou, P., and Templier, M. 2013. “A Systematic
Assessment of Rigor in Information Systems Ranking-Type Delphi Studies,”
Information and Management (50:5), pp. 207-217.

Peffers, K., Tuunanen, T., Rothenberger, M.A., and Chatterjee, S. 2007. “A Design
Science Methodology for Information Systems Research,” Journal of Management
for Information Systems (24:3), pp. 45-77.

Penzenstadler, B. 2017a. Lecture: Requirements Engineering: Business Case Analysis,
Requirements Engineering (CECS 590), California State University Long Beach,
delivered 2017.

Penzenstadler, B. 2017b. Lecture: Requirements Engineering: Goals and Constraints,
Requirements Engineering (CECS 590), California State University Long Beach,
delivered 2017.

Penzenstadler, B. 2017c. Lecture: Requirements Engineering: Domain Model,
Requirements Engineering (CECS 590), California State University Long Beach,
delivered 2017.

Penzenstadler, B. 2017d. Lecture: Requirements Engineering: Non-functional
Requirements, Requirements Engineering (CECS 590), California State University
Long Beach, delivered 2017.

XI

Przybilla, L., Schreieck, M., Klinker, K., Pflügler, C., Wiesche, M., and Krcmar, H.,
2018. “Combining Design Thinking and Agile Development to Master Highly
Innovative IT Projects,” in Projektmanagement und Vorgehensmodelle 2018 – Der
Einfluss der Digitalisierung auf Projektmanagementmethoden und
Entwicklungsprozesse, M. Mikuzs, A. Volland, M. Engstler, E. Hanser, and O.
Linssen, (eds), Bonn: Gesellschaft für Informatik, pp. 113-124.

Roberston, S. and Roberston, J. 2013. Mastering the Requirements Process: Getting
Requirements Right, Pearson Education Inc.

Robertson J. and Robertson, S. 2018. Volere Requirements Specification Templates -
Edition 18. (https://www.volere.org/templates/volere-requirements-specification-
template/, accessed 15 October 2019).

Rogers, E.M. 2003. Diffusion of Innovations, 5th ed., New York: Free Press.

Rolland, C. and Salinesi, C. 2005. “Modeling Goals and Reasoning with Them,” in
Engineering and Managing Software Requirements, A. Aurum and C. Wohlin (eds),
Springer-Verlag Berlin Heidelberg 2005, pp. 189-217.

Rouse, W. B. 2007. People and Organizations: Explorations of Human-Centred Design,
Hoboken: Wiley.

Runeson P. and Höst, M. 2009. “Guidelines for Conducting and Reporting Case Study
Research,” Software Engineering: Empirical Software Engineering (14: 2), pp.131-
164.

Sandino, D., Matey, L.M., Vélez, G. 2013. “Design Thinking Methodology for the
Design of Interactive Real-time Applications,” DUXU 2013. LNCS, vol. 8012, A.
Marcus (ed.), pp. 583–592. Heidelberg: Springer

Schmiedgen, J., Rhinow, H., Köppen, E., and Meinel, C. 2015. “Parts Without a Whole?
– The Current State of Design Thinking Practice in Organizations,” Technische
Berichte des Hasso-Plattner-Instituts für Softwaresystemtechnik an der Universität
Potsdam, Study Report No. 97.

Schlagheck, B. 2000. Object-oriented Reference Models for Process and Project
Controlling. Foundation—construction—fields of application. Wiesbaden:
Deutscher Universitäts-Verlag.

Schön, D.A. 1984. The Reflective Practitioner: How Professionals Think in Action, New
York: Basic Books.

Schön, E.M.; Thomaschewski, J.; Escalona, M.J. 2017. “Agile Requirements
Engineering: A Systematic Literature Review,” Computer Standards & Interfaces
(49), pp. 79-91.

Schütte, R. 1998. Grundsätze ordnungsmäßiger Referenzmodellierung, Konstruktion
konfigurations- und anpassungsorientierter Modelle. Wiesbaden: Springer.

Shneiderman, B., Plaisant, C., Cohen, M., Jacobs, S., and Elmqvist, N. 2018. Designing
the User Interface: Strategies for Effective Human-Computer Interaction. Harlow:
Pearson.

XII

Silva, M., Oliveira, T., and Bastos, R. 2009. “Software Artifact Meta-model: An
Approach to Software Artifact Authoring,” Proceedings of the XXIII Brazilian
Symposium on Software Engineering, pp. 306-316.

Simon, H. A. 1969. The Sciences of the Artificial, Cambridge, MA: MIT Press.

Soledade, M.P.; Freitas, R., Peres, S.M., Fantinato, M., Steinbeck, R., Araújo, U. 2013.
“Experimenting with Design Thinking in Requirements Refinement for a Learning
Management System,” in: Anais do Simpósio Brasileiro de Sistemas de Informação,
pp. 1-13.

Sommerville, I. and Dewsbury, G. 2007. “Dependable Domestic System Design: A
Sociotechnical Approach,” Interacting with Computers (19), pp. 438-456.

Stake, R. E. 2005. Multiple Case Study Analysis, New York: Guilford Press.

Stickdorn, M. and Schneider, J. 2012. This Is Service Design Thinking: Basics, Tools,
Cases, Amsterdam: BIS Publishers.

Sun, Y. and Kantor, P.B. 2006. “Cross-Evaluation: A New Model for Information
System Evaluation,” Journal of the American Society for Information Science and
Technology (57:5), pp. 614-628.

Taylor, F.W. 1911. Principles of Scientific Management. NY: Harper & Row, New
York.

Uebernickel, F., Brenner, W., Naef, T., Pukall, B., and Schindlholzer, B. 2015. Design
Thinking: Das Handbuch, Frankfurt: Frankfurter Allgemeine Buch.

University of St.Gallen, DT@HSG. 2012. “Final Project Documentation,” Internal
Report, unpublished.

University of St.Gallen, DT@HSG. 2014. “Final Project Documentation,” Internal
Report, unpublished.

University of St.Gallen, DT@HSG. 2016. “Final Project Documentation,” Internal
Report, unpublished.

Van Lamsweerde, A. 2009. Requirements Engineering: From System Goals to UML
Models to Software Specifications. West Sussex, England: John Wiley and Sons
Ltd.

Venkatesh Sharma, K. and Kumar, P.V. 2013. “A Method to Risk Analysis in
Requirement Engineering Using Tropos Goal Model with Optimized Candidate
Solutions,” International Journal of Computer Science Issues (10:6), pp. 250-259.

Vetterli, C., Brenner, W., Uebernickel, F., Petrie, C. 2013. “From Palaces to Yurts: Why
Requirements Engineering Needs Design Thinking,” IEEE Internet Computing
(17:2), pp. 91-94.

Walker, M., Takayama, L., and Landay, J.A. 2002. “High-Fidelity or Low-Fidelity,
Paper or Computer? Choosing Attributes when Testing Web Prototypes,”
Proceedings of the Human Factors and Ergonomics Society 46th Annual Meeting,
pp. 661-665.

XIII

Webster, J. and Watson, R.T. 2002. “Analyzing the Past to Prepare for the Future:
Writing a Literature Review,” MIS Quarterly (26:2), pp. xiii-xxiii.

Whetton, S. 2005. Health Informatics: A Socio-technical Perspective. South Melbourne,
Australia: Oxford University Press.

Wiegers, K. 2003. Software Requirements. Redmond,WA, USA: Microsoft Press.

Winter, R. and Schelp, J. 2006. “Reference Modeling and Method Construction: A
Design Science Perspective,” Proceedings of the 21st ACM Symposium on Applied
Computing (SAC 06), New York: ACM, pp. 1561-1562.

Wölbling, A., Krämer, K., Buss, C.N., Dribbisch, K., LoBue, P., and Taherivand, A.
2012. “Design Thinking: An Innovative Concept for Developing User-Centered
Software,” in Software for People: Fundamentals, Trends and Best Practices, A.
Maedche, A. Botzenhardt, and L. Neer (eds)., Berlin Heidelberg: Springer, pp. 121-
136.

Yilmaztürk, N. 2005. “Good Quality” Requirements in Unified Process,” in Engineering
and Managing Software Requirements, A. Aurum and C. Wohlin (eds), Springer-
Verlag Berlin Heidelberg 2005, pp. 373-403.

Yin, R. K. 2011. Applications of Case Study Research, Los Angeles: SAGE.

Yin, R. K. 2014. Case Study Research: Design and Methods, Los Angeles: SAGE.

Yoo, Y. 2017. “Design Thinking for IS Research,” MIS Quarterly (4:1), iii-xviii.

Zhang, Z. 2007. “Effective Requirements Development-A Comparison of Requirements
Elicitation Techniques,” in Software Quality Management XV: Software Quality in
the Knowledge Society, E. Berki, J. Nummenmaa, I. Sunley, M. Ross, and G. Staples
(eds), pp. 225-240.

Zowghi, D. and Coulin, C. 2005. “Requirements Elicitation: A Survey of Techniques,
Approaches, and Tools,” in Engineering and Managing Software Requirements, A.
Aurum and C. Wohlin (eds), Berlin, Heidelberg: Springer-Verlag, pp. 19-46.

XIV

XV

Curriculum Vitae

Personal Data
Name: Jennifer Hehn

Date of Birth: 26.06.1984

Nationality: German

Practical Experience
Since 2017 Research Associate

Institute of Information Management, University of St.Gallen

Since 2014 Senior Manager

IT Management Partner St.Gallen AG, St.Gallen

2014-2017 Executive Director Design Thinking

Institute of Information Management, University of St.Gallen

2012-2014 Teaching Team Member for Design Thinking

Institute of Information Management, University of St.Gallen

2004-2012 Various Internships

e.g. Dr. Ing. h.c. Porsche AG; Galerie Schlichtenmaier; Werbe-
Design Tauber; Career Service University of Würzburg

Education
2017-2020 Ph.D. in Business Innovation

University of St.Gallen (HSG)

2005-2012 Diploma in Business Administration (Dipl.-Kffr.)

Julius-Maximilians-University of Würzburg, Germany

2004-2010 Magistra Artium in Art History, European Ethnology, Business
Administration

Julius-Maximilians-University of Würzburg, Germany

1994-2003 Abitur

Matthias-Grünewald-Gymnasium, Tauberbischofsheim

