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Abstract

Tests for stationarity are routinely applied to highly persistent time series. Following

Kwiatkowski, Phillips, Schmidt and Shin (1992), standard stationarity employs a rescaling by

an estimator of the long-run variance of the (potentially) stationary series. This paper

analytically investigates the size and power properties of such tests when the series are

strongly autocorrelated in a local-to-unity asymptotic framework. It is shown that the

behavior of the tests strongly depends on the long-run variance estimator employed, but is

in general highly undesirable. Either the tests fail to control for size even for strongly mean

reverting series, or they are inconsistent against an integrated process and discriminate only

poorly between stationary and integrated processes compared to optimal statistics.
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1. Introduction

Discrimination between stationary and integrated series is a cornerstone of current time series

analysis. Popular procedures for this purpose come in two distinct forms: On the one hand,

there is a huge literature on ’tests for a unit root’ with the null hypothesis of integration and

the alternative hypothesis of stationarity. On the other hand, attempts have been made to

derive tests that start from the null hypothesis of stationarity and that reject for integrated

series – so-called ’tests for stationarity’. The only difference between unit root tests and tests

for stationarity is the role of the null and alternative hypothesis. At first sight, it might hence

seem surprising that the suggested test statistics differ between the two classes of tests: If, say, a

certain unit root test statistic discriminates well between integrated and stationary series, then

surely it must also discriminate well between stationary and integrated series.

The two types of tests rely on different test statistics because they are motivated by very

different forms of ’stationary’ and ’integrated’ series. Tests for stationarity were originally derived

to test the null hypothesis of a constant mean in a sample of independent Gaussian random

variables. In fact, Nyblom (1989) has proved the local optimality of the test statistics against

changes in the mean that form a martingale. Under the null hypothesis the mean is constant,

and the series is Gaussian white noise. Under the local alternative the process is a sum of a small

integrated component and Gaussian white noise. Loosely speaking, these statistics direct their

power at testing whether a strongly mean reverting series reverts to either a constant mean (null

hypothesis) or a slowly varying mean (alternative hypothesis).

In contrast, tests for unit roots assume a ’pure’ integrated series under the null hypothesis,

and consider highly autocorrelated, yet stationary series under the alternative. Efficient unit root

tests (cf. Dufour and King (1991) and Elliott, Rothenberg and Stock (1996)) direct their power

at detecting whether there is mean reversion in the series, not at checking whether the series

reverts to a constant mean. Tests for stationarity and tests for unit roots are hence naturally

suited for very different circumstances: While the former require strong mean reversion and try

to detect a slowly varying component, the latter question the mean reversion itself.

Despite this theoretical background, tests for stationarity are routinely applied to what are at

best slowly mean reverting series. Researchers justify the applicability of tests for stationarity

to such series by referring to a correction suggested by Kwiatkowski, Phillips, Schmidt and Shin

(1992), abbreviated KPSS in the following. The idea of KPSS is to account for the strong

autocorrelation by dividing the statistic by an estimator of the so called long-run variance λ

of the stationary component. Intuitively, this rescaling has to accomplish a delicate task: On

the one hand, it has to compensate the change in the test statistic induced by a strong, but

stationary autocorrelation in order to control size under the null hypothesis of stationarity. On

the other hand, its presence must not compromise the ability of the test statistic to correctly

reject the null hypothesis when the strong autocorrelation is in fact the result of an integrated

process.
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And indeed, the literature contains some evidence that various estimators of the long-run

variance, λ̂, yield unsatisfactory results. Caner and Kilian (2001) demonstrate by means of a

Monte Carlo study that the tests massively overreject in the presence of strong autocorrelation.

Lee (1996) investigates different estimators of the long-run variance and finds that some lead to

acceptable size control, but at the cost of dramatically reduced power. The Monte Carlo results

of Hobijn, Franses and Ooms (1998) corroborate this picture.

This paper develops a deeper understanding of the issues involved by analyzing size and power

of tests for stationarity under local-to-unity asymptotics. The idea of analyzing the distribution

of tests for stationarity under such non-standard asymptotics was already briefly mentioned in

the survey article of Stock (1994, p. 2826), but no special attention is given there to λ̂. The

local-to-unity framework, developed by Chan and Wei (1987) and Phillips (1987), provides the

asymptotic representation of processes that arise in unit root testing, i.e. integrated and slowly

mean reverting series. From the above discussion, one would not expect tests for stationarity

to do particularly well for such series, even when they are rescaled by λ̂. But local-to-unity

asymptotics give much more accurate approximations to small sample distributions compared to

standard asymptotics when the largest autoregressive root ρ of a series is such that T (1− ρ) is

a constant between zero and 30, where T is the sample size. Stock and Watson (1998) estimate

values for T (1−ρ) in the region of 3 to 15 for U.S. annual series of GDP, consumption, investment,
government purchases, 10-year Treasury Bond interest rates and 90-day Treasury Bill interest

rates with T = 44 (OLS estimates of Tables 6 and 7). Analyses of real exchange rate data find

half-lives of deviations from Purchasing Power Parity of about three to five years (cf. Rogoff

(1996)), implying a T (1 − ρ) in the region of 14 to 23 for 100 years of data. An analysis in

a local-to-unity framework reveals the behavior of tests for stationarity when applied to such

series, which in turn helps the applied econometrician to understand and correctly interpret the

test outcomes.

The paper shows that the behavior of tests for stationarity crucially hinges upon the estima-

tor of the long-run variance in local-to-unity asymptotics. There are three key results: First,

estimators of the long-run variance that employ a bandwidth that goes to infinity more slowly

than the sample size lead to tests for stationarity that reject even highly mean reverting series

with probability one for a large enough sample size. Second, if the true long-run estimator was

known and used in the test statistic, then the rejection rate of the tests is below the level and in-

creases in the rate of mean reversion. A desired rejection profile of more rejections for less mean

reversion must therefore stem from inaccurate estimators of λ. Third, for some estimators of λ

that employ a bandwidth of the same order as the sample size, the resulting tests for stationarity

do reject more often for less mean reverting series, but the exact properties depend crucially on

which estimator λ̂ is used.
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It is well understood that there cannot exist a statistic that perfectly discriminates between

stationary and integrated processes in the local-to-unity framework – in fact, much of the ap-

peal of this asymptotic device stems precisely from the fact that discrimination remains difficult

even as the sample size increases without bound. The failure of tests for stationarity to reliably

discriminate between the two alternatives under local-to-unity asymptotics hence does not come

as a surprise, and is per se no compelling argument against their usage. The question is, how-

ever, how inefficient tests for stationarity are in a local-to-unity framework compared to optimal

statistics. If there are tests that reject an integrated process as often as the test for stationarity,

but that have much lower rates of rejections for strongly autocorrelated but stationary series,

then the appropriateness of tests for stationarity for highly autocorrelated series is put in doubt.

There is no need to develop a new theory of efficient tests for stationarity to carry out this

comparison. Efficient unit root test statistics, pioneered by Elliott et al. (1996) in the local-to-

unity framework and further studied by Elliott (1999) and Müller and Elliott (2001), are derived

as point-optimal tests that optimally discriminate between a given rate of mean reversion and no

mean reversion. Usually, of course, these test statistics are used in hypothesis tests with the null

hypothesis of integration. But the optimality of the discrimination of these statistics also holds

when the hypotheses are reversed, making them ideally suited to assess the relative merits of the

rejection profile of tests for stationarity. It turns out that the optimal unit root test statistics

have much more discriminating power than the tests for stationarity. In this sense, the properties

of most tests for stationarity are much worse than they need to be in highly autocorrelated time

series.

The remainder of the paper is organized as follows. The next section introduces the test

statistics and the local-to-unity asymptotic framework, and derives the size and power properties

of tests for stationarity for various estimators of the long-run variance. Section 3 compares the

performance of the tests for stationarity which employ the most promising estimators of the long-

run variance with tests based on optimal unit root test statistics. Section 4 concludes. Proofs

are collected in an appendix.

2. Tests for Stationarity under Local to Unity Asymptotics

The Data Generating Process tests for stationarity are build upon is given by

yt = dt + wt + ψt (1)

wt = wt−1 + υt

where yt, t = 1, · · · , T , is the observed sample, dt is a deterministic component and {ψt} and
{υt} are independent stationary series. Under the null hypothesis of stationarity, the variance of
υt is zero, such that the disturbances ψt + w0 are stationary. Under the alternative hypothesis,

E[υ2t ] > 0, so that wt is an integrated series, and the disturbances wt + ψt are a sum of an

integrated component (wt) and a stationary component (ψt).
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The test statistic of KPSS is constructed as follows: Regress yt on deterministic components

which consist either of a constant (indicated by a superscript µ throughout the paper) or of a

constant and time trend (indicated by a superscript τ) by ordinary least squares. Denote the

resulting residuals with yit, where i = µ, τ , and compute

Sit =
tX

s=1

yis. (2)

The test statistic is then given by

Li(λ̂) =
T−2

PT
t=1(S

i
t)
2

λ̂
(3)

where λ̂ is an estimator of the long-run variance of ψt, λ =
P∞
j=−∞E[ψtψt−j ],

1 and the null

hypothesis of stationarity is rejected for large values of Li(λ̂). KPSS show that under some

regularity conditions and an appropriate choice of λ̂ the asymptotic distribution of Li(λ̂) under

the null hypothesis of stationarity of ψt is given by

Li(λ̂)⇒
Z
W i(s)2ds (4)

where ’⇒’ denotes weak convergence as T → ∞, W (s) is a Wiener process, Wµ(s) = W (s) −
sW (1), W τ (s) =W (s)− (2s− 3s2)W (1) + 6(s2 − s) R W (l)dl and for notational simplicity, the
limits of integration are understood to be zero and one, if not indicated otherwise. The asymptotic

critical values of Li(λ̂) can be calculated from these expressions and are given by KPSS for the

5% level by 0.463 and 0.146 in the mean and mean and time trend case, respectively.

In contrast to the assumptions in KPSS, we analyze the behavior of Li(λ̂) when yt is generated

by a Data Generating Process which is standard in the unit root testing literature. Specifically,

let

yt = dt + ut (5)

ut = ρut−1 + νt

where, if |ρ| < 1, u0 =
P∞
s=0 ρ

sν−s, u0 is arbitrary for ρ = 1 and dt consists either of a mean

or of a mean and time trend. Throughout the paper we assume that if a time trend is present

in (5), then the τ -version of Li(λ̂) is used; in this sense the deterministics are assumed to be

correctly specified. Note that Li(λ̂) is then independent of the particular value of dt in the Data

Generating Process.

If ρ = 1, then different values of u0 induce mean shifts of {yt}. But the residuals yit are
independent of the mean of {yt}, so that no additional assumption concerning u0 is necessary if
ρ = 1. If |ρ| < 1, the assumption of the generation of u0 leads to a stationary series {ut} as long

1KPSS define the long-run variance λ (which is σ2 in their notation) as limT→∞ T−1E[S2T ] (p. 164). ST
is identical zero, however. One obtains the asymptotic distributions derived by KPSS when λ̂ is a consistent

estimator of the long-run variance of ψt, which is the definition employed in this paper.
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as {νt} is stationary. While somewhat natural, this assumption might considerably affect the
asymptotic distributions derived below. See Müller and Elliott (2001) for a detailed discussion.

The innovations {νt} that underlie the autoregressive process {ut} have not yet been given any
structure. For most of the asymptotic derivations below, we only need to impose the following,

rather weak condition:

Condition 1. The zero mean process {νt} is covariance-stationary with finite autocovariances
γ(k) = E[νtνt−k] such that

(a) ω2 =
P∞
k=−∞ γ(k) is finite and nonzero

(b) the scaled partial-sum process T−1/2
P[sT ]
t=1 νt ⇒ ωW (s).

In contrast to the reasoning of KPSS, the following derivations employ local-to-unity asymp-

totics, i.e. ρ in (5) is made a function of the sample size such that ρ = ρT = 1 − γT−1, where

γ ≥ 0 is a fixed number. Lemma 2 in Elliott (1999) shows that under Condition 1, the process
ut can then be asymptotically characterized by

T−1/2(u[Ts] − u0) ⇒
(

ωW (s) for γ = 0

ωζ(e−γs − 1)(2γ)−1/2 + ω
R s
0
e−γ(s−l)dW (l) else

(6)

= ωM(s)

where ζ is a standard normal variable independent of W (·).
The relationship between (5) and the Data Generating Process (1) assumed by KPSS is

straightforward: For |ρ| < 1, (5) is a special case of (1) under the null hypothesis of E[υ2t ] = 0
with ψt = ut, and for ρ = 1 (5) is a special case of (1) with υt = νt and wt = 0. KPSS

have derived the properties of Li(λ̂) under the null hypothesis of stationarity with standard

asymptotics, which corresponds to an asymptotic reasoning with a fixed |ρ| < 1 in (5). As we

shall see, Li(λ̂) has radically different properties in a local-to-unity framework. This raises the

question which asymptotic reasoning inference should be based upon.

The ultimate goal of all asymptotic reasoning is to provide useful small sample approximations.

It was shown elsewhere (cf., for instance, Nabeya and Tanaka (1990) or Perron and Vodounou

(2001)) that local-to-unity asymptotics provide much more accurate small sample approximations

when the largest autoregressive root of the sample is such that T (1 − ρ) is smaller than, say,

30 than standard (|ρ| < 1fixed) asymptotics. The following results may hence be interpreted as
more useful small sample descriptions of the behavior of tests for stationarity when applied to

highly autocorrelated series.

The local-to-unity process M(s) with γ > 0 is an asymptotic representation of a series that

slowly reverts to a constant mean. As long as γ > 0 we thus analyze the behavior of tests for

stationarity under the null hypothesis of stationarity. It is possible to extend the analysis to

asymptotics representing highly autocorrelated series reverting to a varying mean by including

an additional unit root process {wt} in (5), where {wt} is defined just as in (1). Many results
derived in the following then continue to hold withM(·) replaced byM(·)+κWw(·), whereWw(·)
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is a Wiener process independent of W (·) and κ is the ratio of the long-run variances of {υt} and
{νt}. But prior to considering asymptotic power of tests for stationarity in such a manner, it
is arguably more important to analyze their size control in such a framework. We hence stick

to the simpler formulation (5), where the alternative of nonstationarity only arises when ρ = 1

(which corresponds to γ = 0).

From (6), straightforward calculations reveal (cf., for instance, Stock (1994), p. 2772) that the

residuals yit satisfy

T−1/2yi[Ts] ⇒ ωM i(s) (7)

where Mµ(s) =M(s)− R M(l)dl and Mτ (s) =M(s)− (4− 6s) R M(l)dl − 6(2s− 1) R lM(l)dl.
The asymptotic distribution of the (scaled) numerator of Li(λ̂) now follows from an application

of the Continuous Mapping Theorem (CMT):

T−4
TX
t=1

(Sit)
2 ⇒ ω2

Z ·Z s

0

M i(l)dl

¸2
ds (8)

Note that under local-to-unity asymptotics, the numerator of Li(λ̂) must be divided by an

additional T 2 in order to obtain a stable and nondegenerate asymptotic distribution. For this to

happen, λ̂ must hence be of order Op(T 2).

Following KPSS, we first consider estimators of λ that are a weighted sum of sample covari-

ances: Let

η̂(j) = T−1
T−jX
t=1

yity
i
t+j (9)

and define

λ̂k(BT ) = η̂(0) + 2
TX
j=1

k(
j

BT
)η̂(j). (10)

The even and continuous function k : [0,∞) → [−1; 1] serves as the weighting function of the
sample autocovariances and is assumed to satisfy k(0) = 1,

R∞
0 |k(s)|ds <∞ and lims→∞ k(s) =

0. The bandwidth BT is, for now, a deterministic function of the sample size. The larger BT
the more weight is attached in (10) to higher order sample autocovariances. These assumptions

on the form of spectral density estimators are very similar to those made in Andrews (1991)

and encompass all usual weighting schemes. The popular Bartlett estimator with lag truncation

parameter m, for instance, can be represented in this notation with k(x) = kB(x) = 1 − |x| for
|x| < 1, kB(x) = 0 for |x| ≥ 1 and BT = m+ 1.
In a standard asymptotic framework it can usually be shown that long-run variance estimators

of the form (10) are consistent when BT = o(T 1/2) or BT = o(T )– see Andrews (1991). KPSS,

for instance, employ a Bartlett weighting with BT = o(T 1/4) in their simulations, and such a

choice is also popular in applied work. Finally, while making BT dependent on the sample, the

long-run estimators suggested by Hobijn et al. (1998) satisfy BT = op(T ), too.
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The following proposition establishes the behavior of Li(λ̂k(BT )) in a local-to-unity asymptotic

framework when BT = op(T ).

Proposition 1. Under Condition 1 and for any γ = T (1 − ρT ) ≥ 0, if BT = op(T ), then for

any critical value cv ∈ R, P (Li(λ̂k(BT )) > cv) converges to one as T →∞.
In other words, tests based on Li(λ̂k(op(T ))) reject the null hypothesis of stationarity with

probability one under local-to-unity asymptotics. To demonstrate the relevance of this result,

imagine that the observations yt stem from a discrete sampling on the [0, 1] interval of the

realization of a continuous time process M(s) with γ = 70. This process is highly stationary,

the half-life period of a deviation from the mean is less than 1% of the sample size. It might be

that a test based on Li(λ̂k(BT )) with a choice of bandwidth of order o(T ) does not reject the

null hypothesis of stationarity when the frequency of the observations is, say, 1/100 (such that

T = 100 and y1 = M(.01), y2 = M(.02), · · · , y100 = M(1)). But Proposition 1 implies that, as
the continuous time process is sampled more and more frequently (which leads to a larger sample

size T ), there must be a point where the test rejects. As a real-world example, imagine that real

exchange rates are mean reverting with a half-life of one year. If 100 years of exchange rate data

are employed in a test for stationarity with BT = op(T ), then the test is bound to reject the

stationarity hypothesis as the sampling frequency increases from yearly data to monthly data to

daily data etc.

Proposition 1 also implies consistency of Li(λ̂k(BT )) with BT = op(T ) in the sense that an

integrated process (γ = 0) will be rejected with probability one. This is the reason that the above

mentioned authors promote bandwidths that are of order op(T ). But Proposition 1 reveals the

steep price which has to be paid for this consistency result: Tests for stationarity with BT = op(T )

control size arbitrarily badly in the sense that for any amount of mean reversion measured by

γ = T (1− ρT ), a high enough sample frequency will lead to rejection with probability one.

Taking the asymptotic result of Proposition 1 as an approximation for finite samples, one

would expect frequent rejections of Li(λ̂k(BT )) with BT = o(T ) for highly autocorrelated, but

stationary series. And this is precisely what Caner and Kilian (2001) find in a Monte Carlo study

with a Bartlett weighting and BT = [12(T/100)1/4]. At a 5% nominal level and in a Gaussian

sample with T = 100, for instance, the rejection rates are 55.4% for ρ = .95 in the mean case

and 38.0% in the trend case (Caner and Kilian (2001), Table 1).

As a next step in the analysis, we consider the behavior of Li(λ̂) when λ̂ is replaced by the

true value λ. This is a purely theoretical exercise, since λ is finite only if |ρ| < 1, so that the

knowledge of λ allows to infer whether ρ = 1 or |ρ| < 1. But it is still interesting to disentangle
the effect of estimation inaccuracy of λ̂ from the overall behavior of the test statistic.

Proposition 2. Under Condition 1, for any γ = T (1− ρT ) > 0, λ = γ−2ω2T 2 and

Li(λ)⇒ γ2
Z ·Z s

0

M i(l)dl

¸2
ds.
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Figure 1. Asymptotic rejection rates for true long-run variance

Figure 1 depicts the asymptotic rejection rates of Li(λ) as a function of γ. Strikingly, while

keeping below the nominal level of 5%, the rejection rates increase in γ. This runs, of course,

counter to the expected behavior of a test for stationarity to reject more often for less mean

reverting series.

The positively sloped rejection profiles in Figure 1 are the result of two countervailing influ-

ences. On the one hand,
R £R s

0
M i(l)dl

¤2
ds decreases in γ on average, since less mean reverting

M(s) lead to larger deviations of M i(s) from zero. On the other hand, γ2 obviously increases

in γ, and this second effect dominates the first. If tests based on Li(λ̂) are to have a rejection

profile that decreases in γ, then it must be the result of estimation error in λ̂. Intuitively, the

ratio of λ̂/λ must be increasing in γ in order to produce larger values of Li(λ̂) for smaller γ.

We now turn to the asymptotic analysis of Li(λ̂) for some classes of long-run variance esti-

mators that are of order Op(T 2). A first such class is given by λ̂k(hT ), where λ̂k(·) is defined
above and h is positive constant. A second Op(T 2) estimator arises when λ̂ is estimated by an

autoregressive long-run variance estimator. These estimators are popular in time series econo-

metrics and try to capture the correlations in {νt} by an autoregressive parametrization. λ̂AR
is computed by running the ordinary least squares regression

yit = a1y
i
t−1 + a2y

i
t−2 + · · ·+ apyit−p + et (11)

followed by the computation of

λ̂AR =
σ̂2e

(1−Pp
i=1 âi)

2
(12)

where âi and σ̂2e are the estimated parameters in (11).

A third class of estimators first ’prewhitens’ the data by a low order autoregression just like

(11) and then applies a standard spectral density estimator to the residuals – see Andrews and

Monahan (1992) for further discussion. Specifically, we consider a prewhitening scheme where

the autoregression is of order one, i.e.

yit = ρwy
i
t−1 + ew,t (13)
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and the spectral density estimator ω̂2e of the residuals êw,t is constructed in analogy to (10) with

a bandwidth bT = o(T 1/2). The long-run variance estimator is then given by

λ̂PW = (1− ρ̂w)
−2ω̂2e. (14)

Finally, we consider spectral density estimators (10) where the bandwidth is endogenously de-

termined by the data, as suggested by Andrews (1991). The computation of the bandwidth

requires the estimation of a parametric model, and we follow Andrews (1991) by estimating the

AR(1) specification (13). We concentrate the discussion on two kernels, the Bartlett kernel kB(·)
introduced above and the Quadratic Spectral kernel kQS(·) as defined in Andrews (1991), p. 821.
The endogenous bandwidths for these two kernels are given by

BB,T = 1.1447

·
4ρ̂2w

(1− ρ̂w)
2(1 + ρ̂w)

2
T

¸1/3
(15)

BQS,T = 1.3221

·
4ρ̂2w

(1− ρ̂w)
4
T

¸1/5
(16)

and the resulting estimators are denoted λ̂A,B and λ̂A,QS, respectively.2

Proposition 3. For any γ = T (1− ρT ) ≥ 0,
(i) under Condition 1

Li(λ̂k(hT ))⇒
R £R s

0
M i(l)dl

¤2
ds

2
R
k(hl)

R 1−s
0

M i(l)M i(s+ l)dlds

(ii) if {νt} is a stable autoregressive process of order p−1 where the underlying disturbances {εt}
satisfy E[εt|εt−1, εt−2, · · · ] = 0, E[ε2t ] = σ2 > 0 and E[ε4t ] <∞

Li(λ̂AR)⇒
R £R s

0 M
i(l)dl

¤2
ds
£
M i(1)2 −M i(0)2 − 1¤2

4
£R
M i(s)2ds

¤2
(iii) if in addition to Condition 1, {νt} satisfies Assumption A of Andrews (1991), bT →∞ and

bT = o(T
1/2) then

Li(λ̂PW )⇒
R £R s

0
M i(l)dl

¤2
ds
£
M i(1)2 −M i(0)2 − γ(0)ω−2

¤2
4
£R
M i(s)2ds

¤2
2For the AR(p) estimator, the prewithening estimator and the automatic bandwidth selection estimators of

the long-run variance the question arises how to treat explosive estimates of the AR processes. The probability

of such estimates is below 5% in the mean case and below 1% in the trend case even for an integrated process

(at least as long νt is uncorrelated), because of the heavily skewed distribution of the estimator of the largest

autoregressive root. In order to keep things as straightforward as possible, we chose to treat negative (1− ρ̂) just

like their positive counterparts. Alternative solutions are to trim the estimates as suggested in Andrews (1991)

and Andrews and Monahan (1992) away from zero. These authors propose a trimming at ρ̂ = .97 for T = 128,

which corresponds to a trimming of T (1 − ρ̂) at 3.84. Results not reported here but available from the author

on request show that such a trimming has very little impact on the asymptotic local rejection rates of Lτ (λ̂) for

any considered λ̂, moderately increases asymptotic local power for Lµ(λ̂AR) and Lµ(λ̂PW ) and leads to very few

rejections of Lµ(λ̂A,B) and Lµ(λ̂A,QS).
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(iv) under Condition 1, for j ∈ {B,QS}

Li(λ̂A,j)⇒
R £R s

0
M i(l)dl

¤2
ds

2
R
kj(

l
Bj
)
R 1−s
0

M i(l)M i(s+ l)dlds

where BA,QS = 1.7445
¯̄̄

2
R
Mi(s)2ds

Mi(1)2−Mi(0)2−γ(0)ω−2
¯̄̄4/5

and

BA,B = 1.1447
¯̄̄

2
R
Mi(s)2ds

Mi(1)2−Mi(0)2−γ(0)ω−2
¯̄̄2/3

.

The additional assumption that is invoked in part (iii) of the proposition is technical and

requires fourth-order stationarity and certain bounds on the fourth-order cumulants of {νt} –
see Andrews (1991) for details. The condition on {νt} in part (ii) is such that the proof can rely
on the reasoning of Stock (1991).

The asymptotic distributions of Li(λ̂PW ), Li(λ̂A,B) and Li(λ̂A,QS) of Proposition 3 depend on

the ratio γ(0)/ω2, whereas this is not the case for Li(λ̂k(hT )) and Li(λ̂AR). The local-to-unity

asymptotic rejection profiles of the two former versions of Li(λ̂) are hence not only a function

of γ, but also of the correlation structure of {νt}. Furthermore, the asymptotic distribution of
Li(λ̂PW ) and Li(λ̂AR) are the same when the variance γ(0) of νt and its long-run variance ω2

coincide.

Figure 2 depicts the asymptotic rejection rates of Li(λ̂k(hT )) with a Bartlett weighting k = kB
and h = 0.05, 0.1 and 0.2, Li(λ̂AR), Li(λ̂PW ), Li(λ̂A,B) and Li(λ̂A,QS) for the 5% nominal level

as a function of γ. For Li(λ̂PW ), Li(λ̂A,B) and Li(λ̂A,QS), rejection rate are investigated when

γ(0)/ω2 is set to 1/2, 1 and 2, respectively. Overall, the rejection rates are similar but slightly

larger for the trend case than for the mean case for all considered λ̂. These similarities aside, the

asymptotic behavior of Li(λ̂) is very different for the different estimators λ̂ considered. A test

based on Li(λ̂kB (hT )) has a rejection profile that is monotonically decreasing in γ, and larger

values of h lead to fewer rejections. As the rate of mean reversion, γ, increases, the rejection

rates approach the nominal level. The behavior of Li(λ̂AR) is very much comparable to the

(infeasible) test based on Li(λ) as the rate of rejections remains consistently below the level

and is increasing in γ. This increasing slope is also found for Li(λ̂PW ), but there the frequency

of rejections depends crucially on the value of γ(0)/ω2: When this ratio is 2, the test rejects

much more often than Li(λ̂AR), and for γ(0)/ω2 = 1/2 the test practically ceases to reject. A

somewhat reversed picture can be found for Li(λ̂A,B) and Li(λ̂A,QS). Here, the smaller value of

γ(0)/ω2 leads to more rejections.

Part (i) of Proposition 3 implies that it is the ratio of the bandwidth BT to the sample size

T that determines the behavior of tests for stationarity in highly autocorrelated series. For a

sample size of T = 100 and a Bartlett weighting window, for instance, a choice of BT = 10 will

approximately yield a test for stationarity with 5% nominal level with power of 70% and 50%

against an integrated process in the mean and trend case, respectively, and size will be roughly

20% when the largest autoregressive root is ρ = 1 − 10/100 = 0.9. Caner and Kilian (2001)

simulate Gaussian first order autoregressive processes with T = 100 and a root of 0.9. They find
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Figure 2. Asymptotic rejection rates for various long-run variance estimators
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for a Bartlett window and BT = 13 that size is 17.6% in the mean case and 18.6% in the trend

case.

Part (iii) of Proposition 3 explains Lee’s (1996) results from a Monte Carlo study, in which he

find that the rejection rates of Li(λ̂PW ) against a stationary process are well within the nominal

level, but power against a pure random walk is also far below the nominal level. Furthermore, in

the light of part (iv) of Proposition 3 and Figure 2, Engel’s (2000) observation that Lµ(λ̂A,B) has

very low power in 100 years of simulated quarterly exchange rate data which consists of a slowly

mean reverting component (γ ≈ 30) and a random walk component is no longer surprising.

All of the tests considered in Proposition 3 are inconsistent in the sense that they fail to reject

an integrated process (γ = 0) with probability one. A similar point, although without provid-

ing asymptotic rejection rates, has already been made by Hobijn et al. (1998) with respect to

Li(λ̂PW ), Li(λ̂A,B) and Li(λ̂A,QS). Moreover, these authors argue by a different set of arguments

that the parametric correction suggested by Leybourne and McCabe (1994), which is not easily

analyzed in the framework considered here, suffers from the same drawback. At the same time,

even for highly mean reverting series with γ = 50, only the size of Li(λ̂kB (hT ) with h = 0.1, 0.2

and Li(λ̂AR) and, when γ(0)/ω2 = 1, Li(λ̂A,QS) and Li(λ̂PW ), are close to the nominal level of

5%. Nevertheless, when compared to the asymptotic behavior of Li(λ̂k(BT )) with BT = op(T )

revealed in Proposition 1, it still seems relatively preferable to use one of these long-run variance

estimators for highly autocorrelated time series.

3. Comparison with Optimal Unit Root Tests Statistics

One could conclude from the results of the last section that all Li(λ̂) fail to reliably discriminate

between strongly autocorrelated, but stationary and integrated series and hence should not be

used. Such a reasoning does not take into account, however, that this is true of any statistic:

The observational equivalence between models with ρ very close to unity and ρ = 1 makes it

impossible to obtain the ideal asymptotic rejection profile of no (or few) rejections for any γ > 0

and rejection with probability one for γ = 0. This impossibility has led some authors to criticize

the whole idea of trying to distinguish between the two models (cf. Blough (1992), Cochrane

(1991)). Rather than taking this all-or-nothing view, this section tries to assess the relative

merits of the asymptotic rejection profiles of Li(λ̂) compared to the optimal discrimination that

can be achieved.

For this purpose, we note that the optimal unit root test statistics derived by Elliott et al.

(1996) and further studied by Elliott (1999) and Müller and Elliott (2001) are point-optimal

statistics that, based on the Neyman-Pearson Lemma, optimally discriminate between a fixed

level of mean reversion γ = g > 0 and no mean reversion γ = 0. The (asymptotic) optimality

property of the statistics requires Gaussian disturbances, but allows for unknown and very general

correlations. The statistics of Elliott et al. (1996) and Elliott (1999) differ in how they treat

the initial disturbance u0. Elliott (1999) assumes a distribution of u0 such that {ut} becomes
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stationary if |ρ| < 1, which is also the assumption made here. Müller and Elliott (2001) give a full
account of the importance of such an assumption for unit root testing. Usually, these optimal

statistics are employed to perform a hypothesis test with integration as the null hypothesis.

But the Neyman-Pearson Lemma is undirectional in the sense that it is the same statistic (the

likelihood ratio or a monotonic transformation thereof) that optimally discriminates between

two single hypotheses. A reversal of the null and alternative hypothesis only requires to reject

for large (small) values when the original null hypothesis was rejected for small (large) values of

the test statistic.

In the local-to-unity asymptotic framework a test for stationarity based on an optimal unit

root test statistic hence maximizes the (positive) difference of rejection rates at γ = 0 and γ = g.

While not achieving the ideal rejection profile either, such a test maximizes power at γ = 0 for a

given size at γ = g, or, equivalently, minimizes mistaken rejections at γ = g for a given power at

γ = 0. An obvious question is how to choose g; but Elliott (1999) and Müller and Elliott (2001)

find that the asymptotic properties of the optimal statistics are rather insensitive to the specific

choice of g. In other words, the optimal statistic for a specific g has also good discriminating

power for values of γ 6= g. We follow Elliott’s (1999) recommendation and set g = 10 in the

mean case and g = 15 in the trend case in the following analysis.

Following Müller and Elliott (2001) the asymptotically optimal statistic to discriminate be-

tween ρ = 1 and ρT = 1− gT−1 in model (5) is, in the notation developed here, given by

Qi(g) = qi1

³
ω̂−1T−1/2yiT

´2
+ qi2

³
ω̂−1T−1/2yi1

´2
+ qi3

³
ω̂−1T−1/2yiT

´³
ω̂−1T−1/2yi1

´
+ qi4ω̂

−2T−2
TX
t=1

(yit)
2 (17)

where large values are evidence of nonstationarity, qµ1 = q
µ
2 = g(1 + g)/(2 + g), q

µ
3 = 2g/(2 + g),

qµ4 = g
2 and, qτ1 = q

τ
2 = g

2(8+5g+g2)/(24+24g+8g2+g3), qτ3 = 2g
2(4+g)/(24+24g+8g2+g3),

qτ4 = g
2 and ω̂2 is a consistent estimator of the long-run variance ω2 of νt under local-to-unity

asymptotics. (The qji differ from those in Theorem 3 of Müller and Elliott (2001) because their

yit is defined differently.) An example for a consistent estimator of ω
2 is the spectral density

estimator ω̂2e of the residual of regression (13); see the proof of part (iii) of Proposition 3 for

details. Also see Stock (1994) for a general discussion. The local-to-unity asymptotic distribution

of Qi(g) follows directly from the CMT

Qi(g)⇒ qi1M
i(1)2 + qi2M

i(0)2 + qi3M
i(1)M i(0) + qi4

Z
M i(s)2ds. (18)

If the statistics Qi(g) are to be used as tests for stationarity, a critical value has to be chosen

such that the rejection rates under the null of stationarity do not exceed the nominal level. The

following proposition establishes that any positive critical value possesses this feature under usual

asymptotics with |ρ| < 1 fixed, provided ω̂2 is bounded away from zero. Also see Theorem 3 of

Elliott et al. (1996) for a similar argument.
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Proposition 4. If Condition 1 holds, |ρ| < 1 is fixed and P (ω̂2 > δ) = 1 for some δ > 0, then

Qi(g)
p→ 0 as T →∞.

One possible choice for a ω̂2 which has the property invoked in Proposition 4 in a very general

context is the standard autoregressive spectral density estimator; see Lemma 1 of Stock (2000).

In order to compare the asymptotic rejection rates of the more promising versions of Li(λ̂)

with a test for stationarity based on Qi(g), the critical values in Figure 3 are chosen such that

the rejection rates of Qi(g) coincide with the rejection rates of Li(λ̂) at γ = 0. All these critical

values are positive, so that Proposition 4 implies that the tests based on Qi(g) are asymptotically

undersized under standard asymptotics. In the standard terminology for tests of stationarity we

compare ’size control’ by looking at rejection rates for γ > 0. For all considered λ̂, the rejection

profile of Li(λ̂) (fine lines) is consistently above the rejection profile of the corresponding Qi(g)

(fat lines) for γ > 0. This must be true for γ = 10 in the mean case and γ = 15 in the trend case

by the optimality property of Qµ(10) and Qτ (15), but also holds for all other considered values

of γ. The relative inferiority of Li(λ̂) is most striking for Li(λ̂kB (hT )), and still considerable for

Li(λ̂A,QS) and Li(λ̂A,B).

The discriminating power of Li(λ̂) in highly autocorrelated series must hence be considered

poor compared to what can be achieved. In other words, Li(λ̂) contains much less information

about the mean reversion of a series than is available. In a ranking of the long-run estima-

tors considered here, tests for stationarity constructed with the automatic bandwidth selection

procedures suggested by Andrews (1991) do relatively best. Their awkward dependence on the

correlation structure of {νt} via γ(0)/ω2 could be avoided by either running the AR(p) regression
(11) instead of (13) and by using ρ̂p =

Pp
i=1 âi in place of ρ̂w, or by a correction in the spirit of

Phillips and Perron (1988). Nevertheless, if the mean reversion of a series is in doubt, it seems

not advisable to base inference on Li(λ̂). An application of optimal unit root test statistics yields

far superior results.

4. Conclusions

This paper has analyzed the size and power properties of KPSS-type tests for stationarity in

the presence of high autocorrelation in an asymptotic framework. The analysis reveals a strong

dependence of the behavior of such tests on the estimator of the long-run variance, and the tests

are shown to possess highly undesirable properties in such circumstances.

The undesirability of the behavior of tests for stationarity in highly autocorrelated time series

comes in two forms. On the one hand, for many estimators of the long-run variance that are

employed in practice, tests are bound to reject the null hypothesis of stationarity even if the

true process is strongly mean-reverting for a high enough sample frequency. In finite samples,

this leads at least to a very awkward dependence of the outcome of the tests on the sampling

frequency of the observations, where a higher frequency increases the probability of a mistaken

rejection. On the other hand, while preventing a degenerate behavior, other estimators of the
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Figure 3. Asymptotic rejection rates of optimal tests for stationarity

long-run variance yield tests with an undesirable rejection profile. Not only are these tests

inconsistent in the sense that they reject integrated series with probability far below one; their

discriminating power between stationary and integrated series is also much inferior compared to

optimal tests. These properties cast strong doubts on the usefulness of tests for stationarity for

(at most) weakly mean reverting macroeconomic series.

One alternative is to use tests for stationarity that are based on optimal unit root statistics,

but that reject for values of the statistic that indicate stationarity. The appeal of such a solution

is limited, however, since the decision of such a test is a one-to-one mapping of the p-value of

the corresponding optimal unit root test, so no additional information is gained by separately

computing such a test for stationarity. This outcome also makes intuitive sense: If a statistic

optimally summarizes the mean-reverting property of a time series, then both a hypothesis

of mean reversion (stationarity) and a hypothesis of no mean reversion (integration) should

be decided by this statistic. Following this reasoning further leads to the (almost) optimal
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confidence intervals for the mean reverting parameter, derived by Elliott and Stock (2001), as

the best description of our knowledge about potential mean reversion.

The findings of the present paper might also have implications for higher order systems. The

multivariate analogue of tests for stationarity are cointegration tests with the null hypothesis

of cointegration, and generalizations of KPSS statistic for such cases have been derived by Shin

(1994) and Harris and Inder (1994), among others. If the stationary linear combination of the

series is only slowly mean reverting, then these methods are likely to suffer from drawbacks

similar to those found here for univariate tests for stationarity.
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APPENDIX

In the following proofs, all limits are taken as T →∞, if not indicated otherwise.

Proof of Proposition 1:

From P (Li(λ̂k(BT )) > cv) = P (T−4
PT
t=1(S

i
t)
2 > cv T−2λ̂k(BT )) and (8) it clearly suffices to

show that T−2λ̂k(BT )
p→ 0.

Now with T−1η̂(k) ≤ (supt T−1/2|yit|)2 for all k we have

T−2|λ̂k(BT )| ≤ 2(sup
t
T−1/2|yit|)2T−1

TX
j=0

|k( j
BT
)|.

From Condition 1 and the CMT, (supt T
−1/2|yit|)2 ⇒ ω2(sups |M i(s)|)2, so that (supt T−1/2|yit|)2 =

Op(1).

Furthermore, since lims→∞ k(s) = 0, for any ε > 0 there exists a N such that |k(s)| < ε for

all s ≥ N . By assumption BT = op(T ), so that the probability of the event T−1BT ≤ εN−1 can

be made arbitrarily close to one by choosing T large enough. Now in this event

T−1
TX
j=0

|k( j
BT
)| = T−1

NBTX
j=0

|k( j
BT
)|+ T−1

TX
j=NBT+1

|k( j
BT
)|

≤ 2ε

But ε was chosen arbitrarily, which implies to T−1
PT
j=0 |k( j

BT
)| p→ 0 and hence T−2λ̂k(BT )

p→ 0,

completing the proof.

Proof of Proposition 2:

Since νt is covariance-stationary, it has a spectral density function fν(·), and ω2 = 2πfν(0). It

follows that ut = (1 − ρTL)
−1νt is covariance-stationary, too, and has spectral density fu(θ) =

(1− ρT e
−iθ)−1(1− ρT e

iθ)−1fν(θ). Hence

λ = 2πfu(0) =
ω2

(1− ρT )
2

With ρT = 1−γT−1 we obtain (1−ρT )2 = γ2T−2, so that λ = γ−2ω2T 2. The weak convergence

of Li(λ) now follows immediately from (8).

Proof of Proposition 3:

(i) The result is proved along the same lines as part (iv) below and is omitted.

(ii) Part (ii) is an implication of the results of Stock (1991). The assumption made here

concerning u0 differs from Stock’s, but that does not change anything substantial in the argument.

19



We concentrate on the time trend case, the reasoning for the mean case is analogous. Consider

the least squares regression

ut = c+ δt+ b1ut−1 + b2∆ut−1 + · · ·+ bp∆ut−p−1 + εt

= X 0
tβ + εt (19)

with Xt = (1, t, ut−1,∆ut−1, · · · ,∆ut−p+1)0 and β = (c, δ, b1, · · · , bp)0.
Let Λ = diag(T 1/2, T 3/2, T, T 1/2Ip−1). Then Stock’s results imply that Λ(β̂ − β) has a non-

degenerate distribution,

T (b̂1 − 1)⇒ σ

ω

·R
M i(s)dW (s)R
M i(s)2ds

− γ

¸
and the standard error of regression (19) converges to σ in probability. We cannot directly apply

these results, however, because regression (11) does not contain a mean and a time trend, but

rather has yτt in place of ut.

Now a substitution of ut by yτt in (19) does not alter the estimated coefficient vector b̂ =

(b̂1, · · · , b̂p)0 (the Dickey-Fuller regression is invariant to such changes). Furthermore, we have
T−3/2

PT
t=p+1 y

τ
t−j(1, T

−1t)0 p→ 0 for j = 0, 1 and T−1
PT
t=p+1∆y

τ
t−j(1, T

−1t)0 p→ 0 for j =

1, · · · , p − 1, so that in the appropriate scaling, both the regressors and the explained variable
are asymptotically orthogonal to the mean and the time trend. It follows that the coefficient

vector b̂∗ = (b̂∗1, · · · , b∗p)0 of the short least squares regression

yτt = b
∗
1y

τ
t−1 + b

∗
2∆y

τ
t−1 + · · ·+ b∗p∆yτt−p−1 + ε∗t (20)

satisfies diag(T, T 1/2Ip−1)(b̂∗ − b̂) p→ 0, and the standard error of regression (20) converges to σ

in probability, too.

But the regressors in regression (11) in the trend case are a linear transformation of the

regressors in (20). By standard linear regression algebra 1−Pp
j=1 âj = 1− b̂∗1, so that

T−2λ̂AR ⇒ ω2
·R
M i(s)dW (s)R
M i(s)2ds

− γ

¸−2
= ω2

·
2
R
M i(s)2ds

M i(1)2 −M i(0)2 − 1
¸2

The result now follows from another application of the CMT.

(iii) We find for the autoregressive estimator in the ’whitening’ regression

T (1− ρ̂w) =
T−1

PT
t=1 y

i
t−1∆yit

T−2
PT
t=1(y

i
t−1)2

=
T−1(yiT )

2 − T−1(yi1)2 + T−1
PT
t=1(∆y

i
t)
2

2T−2
PT
t=1(y

i
t−1)2

⇒ ω2M i(1)2 − ω2M i(0)2 − γ(0)

2ω2
R
M i(l)2dl

20



where the last line follows from ∆yit = ∆yt + Op(T
−1/2) = νt + Op(T

−1/2) and the CMT. It

hence remains to show that the estimator ω̂2e of the long-run variance of ew,t, is consistent for

ω2. We find for the estimated residuals êw,t

êw,t = yit − ρ̂wy
i
t−1

= νt + (y
i
t − ut + u0)− ρT (y

i
t−1 − ut−1 + u0)− (1− ρT )u0 + (ρT − ρ̂w)y

i
t−1

≡ νt + ξit

Let V µ(s) = γ
R
M(l)dl and V τ (s) = 4γ

R
M(l)dl−6γ R lM(l)dl+(6 R M(l)dl−12 R lM(l)dl)(γs+

1). Then from a direct calculation and the CMT

T 1/2ω−1ξi[Ts] ⇒
·
M i(1)2 −M i(0)2 − γ(0)ω−2

2
R
M i(l)2dl

− γ

¸
M i(s)− (2γ)1/2ζ/2− V i(s)

so that Ξ ≡ T 1/2 supt |ξt| = Op(1). Under the conditions of part (iii), Proposition 1 of Andrews
(1991) implies that

ω2 − T−1
TX
t=1

ν2t − 2
bTX
j=1

k(
j

bT
)T−1

T−jX
t=1

νtνt+j
p→ 0.

But ¯̄̄̄
¯̄ bTX
j=0

k(
j

bT
)T−1

T−jX
t=1

(νtνt+j − êw,têw,t+j)
¯̄̄̄
¯̄

≤
bTX
j=0

|k( j
bT
)|T−3/2Ξ

T−jX
t=1

(T−1/2Ξ+ |νt+j |+ |νt|)

≤ Ξ2bTT−1 + 2ΞbTT−3/2
TX
t=1

|νt|.

Since E[ν2t ] = γ(0), E[|νt|] < γ(0)1/2 by Jensen’s inequality, so that T−1E
hPT

t=1 |νt|
i
< γ(0)1/2

and T−1
PT
t=1 |νt| = Op(1) by Markov’s inequality. With bT = o(T 1/2) the estimator ω̂2e of the

long-run variance of ew,t hence converges to ω2, and the result follows from the CMT.

(iv) The result follows from the CMT when we can show thatX(f) = 2
R
k( s

B(f) )
R 1−s
0 f(l)f(l+

s)dlds with B(f) = b0

¯̄̄
2
R
f(s)2ds

f(1)2−f(0)2−γ(0)ω−2
¯̄̄b1
for b0, b1 > 0 is continuous in f . Since M(·) has

almost surely continuous sample paths, it suffices to show continuity of X in the space C of all
continuous functions on [0, 1] in the sup-norm. Let Q1(·) and Q2(·) be two elements of C with
the property sups |Q1(s)−Q2(s)| < ε. Then

X(Q1) =

Z ·
k(

s

B(Q2)
)−

µ
k(

s

B(Q2)
)− k( s

B(Q1)
)

¶¸
×
Z 1−s

0

[Q2(l)Q2(l + s)− (Q2(l)Q2(l + s)−Q1(l)Q1(l + s))] dlds
= X(Q2)−A1 −A2 +A3
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where

A1 =

Z
k(

s

B(Q2)
)

Z 1−s

0

(Q2(l)Q2(l + s)−Q1(l)Q1(l + s)) dlds

A2 =

Z µ
k(

s

B(Q2)
)− k( s

B(Q1)
)

¶Z 1−s

0

Q2(l)Q2(l + s)dlds

A3 =

Z µ
k(

s

B(Q2)
)− k( s

B(Q1)
)

¶Z 1−s

0

(Q2(l)Q2(l + s)−Q1(l)Q1(l + s)) dlds

We have to show that A1, A2 and A3 converge to zero as ε→ 0. Now

|A1| ≤
Z
|k( s

B(Q2)
)|
Z 1−s

0

µ
2ε sup

r
|Q2(r)|+ ε2

¶
dlds

≤ ε

µ
2 sup

r
|Q2(r)|+ ε

¶Z 1

0

|k( s

B(Q2)
)|ds

|A2| ≤ sup
r
Q2(r)

2 sup
s

¯̄̄̄
k(

s

B(Q2)
)− k( s

B(Q1)
)

¯̄̄̄
and

|A3| ≤ ε

µ
2 sup

r
|Q2(r)|+ ε

¶
sup
s

¯̄̄̄
k(

s

B(Q2)
)− k( s

B(Q1)
)

¯̄̄̄
.

But B(f) is continuous in f as long as f(1)2 − f(0)2 + γ(0)ω−2 6= 0, and k(·) is a continuous
function, so that if Qj(1)2 − Qj(0)2 + γ(0)ω−2 6= 0 for j = 1, 2, sups

¯̄̄
k( s
B(Q2)

)− k( s
B(Q1)

)
¯̄̄

converges to zero as ε→ 0. As
R |k( s

B(Q2)
)|ds ≤ 1 and, with probability one, supr |M i(r)| <∞

and M i(1)2 −M i(0)2 − γ(0)ω−2 6= 0, the CMT is applicable and yields the desired result.

Proof of Proposition 4:

From the covariance-stationarity of νt and the assumption on u0, ut is covariance-stationary,

too, and E[u2t ] = σ2u <∞. From the definition of yit

yτt = ut + (c1 + tT
−1c2)T−1

TX
s=1

us + (c3 + c4tT
−1)T−2

TX
s=1

sus

yµt = ut − T−1
TX
s=1

us

where ci = O(1) for i = 1, 2, 3, 4. With E[u2t ] = σ2u Jensen’s inequality implies E[|ut|] ≤ σu, so

that T−1E
hPT

t=1 |ut|
i
≤ σu and T−1

¯̄̄PT
t=1 ut

¯̄̄
≤ T−1PT

t=1 |ut| = Op(1) by Markov’s inequal-
ity. Similarly, T−2|PT

s=1 sus| ≤ T−1
PT
s=1 |us| = Op(1). Furthermore, T−1E

hPT
t=1 u

2
t

i
= σ2u,

so that Markov’s inequality implies T−1
PT
t=1 u

2
t = Op(1). After some straightforward algebra

these results imply T−1/2yiT
p→ 0, T−1/2yi1

p→ 0 and T−2
PT
t=1(y

i
t)
2 p→ 0, which concludes the

proof.
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