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Abstract

Non-random item nonreponse makes identification if parameters problematic. Such nonresponse can

occur with respect to both dependent and conditioning variables. A method often used to reduce

nonresponse is that of adding unfolding brackets as follow up to open-ended questions. With these,

initial non-respondents can provide additional (incomplete) information on the missing values.

However, recent studies suggest that responses to unfolding brackets can lead to a type of bias as a

result of the Achoring Effect. In this paper, bounding intervals of the tzpe as presented in Horowitz and

Manski (1998) are extended to incorporate information provided by bracket respondents while

allowing for different types of anchoring, and, therefore, accounting for significant nonresponse in the

conditioning set. The theoretical framework is illustrated with empirical evidence based on the 1996

wave of the Health and Retirement Study (HRS, 1996).
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1. Introduction 
Lets assume that you are interested on testing if there is a significant difference between the 

smoking habits of males and females, relative to their position in the income distribution. That is, your 

interest is to test if the absolute value between ∈P(smoking | income B,male) and 

∈P(smoking | income B, female)  is significantly different than zero in the target population. One 

problem we might face when performing such exercise is that of (nonrandom) nonresponse in the 

conditioning set. In the above example, this implies income nonresponse, a problem often encounter in 

household surveys. Since the seminal work by Heckman on sample selection issues (for example, see 

Heckman, 1979), it is well known that ignoring non-respondents (i.e., assuming exogeneity), is often 

unrealistic and can lead to severe selection bias on the estimated measures. A possible solution is to 

impose a particular distributional assumption on the missing values, for example, the use of selection 

models to jointly model the response behaviour and the variable of interest, conditional on a set of 

covariates (see Vella (1998) for a survey on this topic). Both parametric and semi-parametric selection 

models avoid the assumption that item nonresponse is random conditional on a set of variables, but 

require alternative assumptions such as a single index assumption or independence between covariates 

and error terms. 

Since the early 1990s a new approach has emerge which aims at estimating the parameter of 

interest without imposing any assumptions or very weak data assumptions. Manski (1989, 1990, 1994, 

1995) has shown how bounds on either the distribution function or conditional quantiles of the 

distribution can be derived while imposing no assumptions and allowing for any type of nonrandom 

nonresponse. Manski’s framework is intuitively appealing, empirically easy to apply and very flexible. 

The result of this approach is to estimate an upper and lower bound on the measure of interest, where such 

bounds allow for both sampling error as well as error due to nonresponse. The implication is that the 

flexibility of the method is at the expense of increased uncertainty.  

 Before the estimation process begins, a solution often used in household surveys to reduce the 

problem of missing data is to give initial non-respondents the choice to provide partial information 

classifying the missing value into a particular category. When such questioning strategy is available, it is 

often the case that a significant percentage of initial non-respondents will provide some information, even 

if incomplete. Juster and Smith (1997) suggest cognitive factors (e.g., confidentiality issues, or an initial 

lack of accurate information and/or the realisation from respondents that the interviewer does not require 

precise information) to explain why people might prefer to provide information in the form of a category. 

One of the possible types of categorical questions often used in household surveys is that of an unfolding 

bracket design. The reason why data collectors might prefer such type is because it is easier to administer 

over the telephone, thus becoming less costly than other types of categorical questioning (e.g., range 

cards). In an unfolding bracket design initial non-respondents to an open-ended question are routed to an 
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ordered sequence of bids the result of which is a set of categories. For example, if respondents who are 

asked to declare their annual income (an amount) answer ‘don’t know’ or ‘refuse’, they can be routed to a 

second question where they are given a bid, say B1, and asked if their income exceeds such bid. 

According to their answer (‘yes’, ‘no’ or ‘don’t know’), they might be further routed to a second bid B2k, 

for k=0,1 (with B21>B1 if ‘yes’ to B1, or B20<B1 if ‘no’ to B1). Faced with this second bid they might 

be asked to declare, again, if income is greater than B2k. The number of bids in a sequence is defined by 

the data collectors, and although it can vary according to the variables in question, it is often no greater 

than 2 or 3 bids. The number of categories formed by the unfolding bracket design is endogenously 

defined by respondent’s answers.1  

One problem with an unfolding bracket design is that partial information provided by bracket 

responses is subject to ‘the anchoring effect’, a phenomenon well documented in the psychological 

literature. The idea is to think that the bid creates a fictitious belief in the respondent’s mind: faced with a 

question related to an unknown quantity, the respondent treats the question as a problem solving situation, 

and the given bid becomes an anchor with respondents using it as a cue to solve the problem. This can 

result in responses that are influenced by the design of the unfolding sequence. A leading example of the 

phenomena is found in Jacowitz and Kahneman (1995). In their study they use experimental data to show 

that uninformative anchors (with respect to the true answer) given arbitrarily can have large significant 

effect on subject responses. Another example is that of Hurd et al. (1998). In their study the use of an 

experimental module with randomised bids shows that the distribution of partial responses is biased 

towards the categories closed to the initial bid. Other parametric models of the anchoring effect are 

introduced by Cameron and Quiggin (1994) and Herriges and Shogren (1996).  

 In general, the message sent by studies on the anchoring effect from both the psychological and 

economic literature tell us that answers given in a sequence of unfolding brackets might be wrong, that is, 

they provide incorrect information with respect to the true distribution of information from partial 

respondents. Thus, whereas bracket respondents might reduce nonresponse considerably, estimates based 

on such data (in the presence of both nonresponse and unfolding bracket response) need to account for the 

possible bias created by the anchoring effect.  

 This paper extends the paper by Horowitz and Manski (1998) in that it further allows for a sub-

population of bracket respondents (rather than full and non-respondents only) to derive bounds in the 

presence of covariate nonresponse.2 Because information from bracket responses can be subject to the 

                                                 
1 As opposed to a situation where individuals are faced with a range card. A range card shows each respondent a set 
of possible categories in which to classify the missing value. The categories are exogenous defined.  
 
2 In Horowitz and Manski (1998), as well as exploring the case of regressor nonresponse, they also derive bounds in 
the presence of joint nonresponse (of dependent and conditional variables) and the mixed case where nonresponse 
affects some but not all the variables in the estimation process. Appendix A summarises similar arguments as in 
Section 2 for the cases of either joint or mixed nonresponse. 
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anchoring effect, the extension draws from Vazquez-Alvarez, R., B. Melenberg and A. vanSoest (2000) to 

incorporate the possibility of bias due to the anchoring effect. Such derivations draw from three 

competing models of anchoring, namely, Jacowitz and Kahneman (1995), Herringes and Shogren (1996) 

and Hurt et al. (1998).3 The theoretical framework is applied to the 1996 wave of the Health and 

Retirement Study, to test for any significant difference in the smoking behaviour or males versus females 

at different levels of the income distribution, where income is defined as annual labour income. We 

compare bounds which allow with those which do not allow for bias due to anchoring. When ignoring 

anchoring effects but accounting for bracket response information, the data suggests a significant 

difference in the smoking habits between genders, with the probability of smoking been significantly 

higher for males than for females at all intervals of income. Once the possible existence of bias due to 

anchoring is incorporated, the horizontal distance for each pair of estimated bounds in each sub-sample 

widens, thus increasing the overlap of the identification regions for the unknown probabilities of smoking 

between sub-populations. This results in a statistical test of no difference between gender’s smoking 

probabilities that is weaker in power than the test performed assuming no anchoring effects, since, for all 

income intervals, a wider overlapping region implies that the null of equality between gender’s smoking 

probability cannot be rejected. In fact, once anchoring is allowed for, and relative to estimates of worst 

case bounds without bracket information, the result of adding partial information from bracket 

respondents does not help to improved the identifying power of the bounds. 

 The reminder of the paper is organised as follows. Section 2 sets forth the theoretical framework 

deriving bounds under unfolding brackets and three sub-populations of individuals, namely full 

respondents, bracket respondents and full non-respondents. Section 3 describes the Health and Retirement 

Study data used in the empirical illustration. Section 4 explains the estimation procedure and presents the 

empirical results. Section 5 concludes. 

 

2. Theoretical framework 
2.1 Regressor censoring without bracket respondents 
 

First we consider identification with regressor censoring without bracket respondents. Suppose 

that we have a representative sample of the target population, and we want to make inferences about the 

distribution of an outcome RyY ∈= , conditional on RxX ∈= , where the conditional variable suffers 

from non-negligible item nonresponse4, while the outcome variable Y  is observed for the full sample of 

                                                                                                                                                        
 
3 Sections 2 and 4 use the interpretation of anchoring as in Jacowitz and Kahneman (1995). Appendix B draws from 
Vazquez-Alvarez, R., B. Melenberg and A van Soest (2000) to show how bounds can also be derived with 
alternative models of anchoring. 
4 For simplicity of exposition it is assumed there is only one variable in the conditioning set. Similar arguments 
apply to a situation with more than one variable in the conditioning set. Appendix A further looks at the situation 
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size n . Let FR  indicate that x  is observed while NR  indicates that x  is missing, such that 

1)()( =+ NRPFRP . Drawing from Horowitz and Manski (1998), we can apply Bayes Theorem to 

partition the measure of interest ]|)([ AxygE ∈ : 

 

)()|()()|(
)()|(],|)([

)()|()()|(
)()|(],|)([]|)([

NRPNRAPFRPFRAP
NRPNRAPNRAygE

NRPNRAPFRPFRAP
FRPFRAPFRAygEAygE

+
×+

+
×=

   (1) 

 

where the left hand side of (1) is not identified since neither )|( NRAP  or ],|)([ NRAygE  are 

identified by the sampling process. With respect to )|( NRAPp = , the only knowledge we have is that 

]1,0[∈p . On the other hand, although covariate nonresponse precludes identification of 

],|)([ NRAygE , the sampling process allows for identification of ]|)([ NRygE . Drawing from 

Horowitz and Manski (1998) and applying Proposition 1 in Horowitz and Manski (1995), expression 

]|)([ NRygE  can be partition as: 

 

)1](,|)([],|)([]|)([ pANRygEpANRygENRygE −+=      (2) 

 

where A  is the complement space of A . Assuming that p  is known, a sharp restriction on 

],|)([ NRAygE  is given by 

 

)],(),([],|)([ 10 pgpgNRAygE ∈         (3) 

with )](:inf[)(0 pGhhpg ∈= , )](:sup[)(1 pGhhpg ∈=  and )](,)([)( pdygpG Ψ∈∫= ψψ  

where )( pΨ  denotes the set of all distributions of Y , for a given ]1,0[∈p . For example, if 

]1[)( == yIyg , ]1,0[)( =Ψ p  and ),|(],|)([ NRAyPNRAygE = , so that using (2) expression (3) 

becomes:5 

 

                                                                                                                                                        
where nonresponse affects both the dependent and the conditioning set.  
 
5 This example anticipates the empirical illustration in Section 4, where we treat the case where ( ) [ ]g y I y t= ≤  and 

( ) [ 1]g y I y= = . Expression (4) provides also the interpretation for the first case where the aim is to bound the 
conditional distribution function of a continuous variable y. This is because in the continuous case the numerators 
inside the min and max expression in (4) would be substituted by [ ( | ) ]P y t A p≤ − . 
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






















 −−
∈

p
NRyP

p
pNRyPNRAyP )|(,1min,)1()|(,0max),|(     (4) 

 

whereas for ][)( tyIyg ≤= , ),|(],|)([ NRAyYPNRAygE ≤= , such that: 

 









Ψ∈≤=

−−≤
∩Ψ∈≤ )(),|(,)1()|()(),|( pNRAyYP

p
pNRyYPpNRAyYP ψψ

 (5) 

 

However, the sampling process does not identify the measure ),|( NRAyYP ≤ . The only thing we know 

is that for any Yy∈  the measure falls in the [0,1] interval. Therefore, (5) can also be expressed as: 

 
















 ≤







 −−≤
∈≤

p
NRyYP

p
pNRyYPNRAyYP )|(,1min,)1()|(,0max),|(   (6). 

 

Using the generic form in (3), bounds on (1) are given by: 

 

pNRPFRPFRAP
pNRPpg

pNRPFRPFRAP
FRPFRAPFRAygE

AygE
pNRPFRPFRAP

pNRPpg
pNRPFRPFRAP

FRPFRAPFRAygE

)()()|(
)()(

)()()|(
)()|(],|)([

]|)([
)()()|(

)()(
)()()|(

)()|(],|)([

1

0

+
+

+
×

≤≤
+

+
+

×

 (7) 

 

But (7) assumes that )|( NRAPp =  is known. For unknown )|( NRAPp =  a sharp bound on 

]|)([ AygE  is obtained from (7) by minimising and maximising the lower and upper bound, 

respectively, with respect to ]1,0[)|( ∈= NRAPp . Therefore, a computable bound on ]|)([ AygE  

given non-negligible non-random nonresponse on Ax∈ , is given by: 

 









+
+

+
×

≤≤








+
+

+
×

pNRPFRPFRAP
pNRPpg

pNRPFRPFRAP
FRPFRAPFRAygE

AygE
pNRPFRPFRAP

pNRPpg
pNRPFRPFRAP

FRPFRAPFRAygE

p

p

)()()|(
)()(

)()()|(
)()|(],|)([sup

]|)([
)()()|(

)()(
)()()|(

)()|(],|)([inf

1

0

 (8) 
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2.2 Regressor censoring with bracket respondents 
Assume the variable in question refers to a continuous variable, for example, income. Surveys are 

often designed so that initial non-respondents can provide partial information by classifying the missing 

amount into a category within a range of categories. If so, a sample of n  respondents can be partition into 

three sub-categories, namely full respondents (FR), full non-respondents (NR) and bracket respondents 

(BR). With this, expression (1) is modified such that: 

 

)()|()()|()()|(
)()|(],|)([

)()|()()|()()|(
)()|(],|)([

)()|()()|()()|(
)()|(],|)([]|)([

BRPBRAPNRPNRAPFRPFRAP
BRPBRAPBRAygE

BRPBRAPNRPNRAPFRPFRAP
NRPNRAPNRAygE

BRPBRAPNRPNRAPFRPFRAP
FRPFRAPFRAygEAygE

++
×+

++
×+

++
×=

 (9) 

 

As was the case with (1), expression (9) is not identified by the data since the sampling process provides 

no information on either E[g(y) | A, NR] or P(NR | A) . Moreover, expression (9) implies that part of 

those who were previously classified as full non-respondents are not bracket respondent. From this latter 

group we can only attain partial information on both, E[g(y) | A,BR] and P(BR | A) . Both the data 

collection method and the interpretation of such partial information determines the derivation of upper 

and lower bounds. We assume from the start that bracket respondents provide partial information using a 

follow-up unfolding bracket design. Initially, all surveyed individuals are given an open ended question. 

An unfolding bracket design consists on routing all who are initial non-respondents to the open-ended 

question towards a particular category using sequential bids. Let B1  be the initial bid, and assume that all 

initial non-respondents are given the same sequence of bids.6 The first bracket question is given by 

 

"Is the ammount $B1 or more?"        (10) 

 

to which individuals answer “yes”, “no” or “don’t know”.7 Individuals who answer “yes” receive the 

same question with a new bid B21, ( B21 B1)∞ > > , whereas those who answer “no” are faced with a 

                                                 
6 In many studies the introduction of randomised bids implies different starting values B1 for different initial non-
respondents. Although the design can be such that all respondents end up classified within similar categories, the 
advantage is that randomising the starting bid can lead to data able to test for general starting up bias. See Hurd et all 
(2000) for an example using the 1996 module from the Health and Retirement Study. 
 
7 Here the assumption is that there is no distinction between the “don’t know” and “Refuse”, and both are treated as 
“don’t know” answers. 
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new bid B20 , (0 B20 B1)< < . Although bracket respondents can face more than two bids, this is rare in 

practice, therefore, we confine our analysis to a two-bid unfolding bracket design.8 For example, if the 

covariate in question is income, and B1 $25,000= , B20 $5,000=  and B21 $50,000= , such design 

would define the following sequence of categories: 

 

Table 1: Example of derived categories according to information provided by bracket 
respondents. 

Group Anchor 1: 
B1 

Answer to 
Anchor 1 

Anchor 2: 
B20/B21 

Answer to 
Anchor 2 

Resulting Categories 

    Yes [$50,000-infinity) 
  Yes >$50,000 No [$25,000-$50,000) 
Complete Bracket 
respondent (CBR) 

 

>$25,000 

    

  No >$5,000 Yes [$5,000-$25,000) 
    No [$0-$5,000) 
  Yes >$50,000 DK/RF [$25,000-infinity) 
Incomplete Bracket 
Respondents (ICB) 

 

>$25,000 

    

  No >$5,000 DK/RF [$0-$25,000) 

 

The distinction between “complete” and “incomplete” bracket respondents is necessary because some 

bracket respondents might not complete the sequence. In the case of two bids, this implies that some 

individuals respond either “don’t know” or “refuse” when faced with the second bid. However, the 

distinction between Complete and Incomplete bracket respondents has implication only with reference to 

empirical applications, so without any loose, deriving bounding intervals with bracket information can be 

done assuming that all bracket respondents belong to the CBR sub-category.9  

 

 

 

 

                                                 
8 With it, the theoretical framework anticipates the empirical illustration, although we can generalise this 
presentation to any K number of bids (bracket categories).  
 
9 With Complete and Incomplete bracket respondents, the measure of interest E[g(y) | A, BR]  can be expressed as 
E[g(y) | A, BR] E[g(y) | A,CBR, BR]P(CBR | A, BR) E[g(y) | A, IBR, BR]P(IBR | A, BR)= + . Those who do not 
complete the sequence (IBR sub-group) provide partial information as if faced with an unfolding sequence design 
with one anchor B1, so the bounding interval is defined over two regions in the distribution of A, namely A B1<  
and A B1≥ . The difference with the sub-group of CBR is that, in the case of two anchors, the bounds are defined 
over 4 partitions on the distribution of A, i.e., [0,B20), [B20,B1),[B1,B21) and [B21,max). Therefore the distinction 
between IBR and CBR is only empirically relevant. For more detail derivation of bounds with such distinction the 
reader is referred to Vazquez-Alvarez, R., B. Melemberg and A. vanSoest, (2000). 



 
 8 

 

Case 1: Not allowing for the Anchoring Effect 
 

With reference to the first anchor, let Q1 1=  if the answer to (10) is ‘yes’, and Q1 0=  if the 

answer is ‘no’. With this, bracket respondents identify P(Q1 1| A,BR)=  such that, 

 

P(Q1 1| BR) P(Q1 1| BR,A B1)P(A B1| BR)
P(Q1 1| BR,A B1)P(A B1| BR)

= = = < <
+ = ≥ ≥

    (11) 

 

If there is no anchoring, all bracket respondents answer correctly to question (10). This implies that 

P(Q1 1| A B1,BR) 0, P(Q1 1| A B1,BR) 1= ≤ = = > = , P(Q1 1| BR) 1 P(A B1| BR)= = − ≤  and 

therefore P(A B1| BR)>  is identified by the data on bracket respondents. This leads to the following 

bounds on P(A | BR) : 

 

for A B1, 0 P(A | BR) P(Q1 0 | BR)
for A B1, P(Q1 0 | BR) P(A | BR) 1

≤ ≤ ≤ =
> = ≤ ≤

     (12) 

 

A similar argument applies to the case where we have an unfolding bracket design with two bids, rather 

than just one. Define dummy variables Q20  and Q21  for those who answer the second bracket question 

on B20  and B21 with Q1=1 and Q1=0, respectively. For example, Q20 1=  if Q1=0 and the individual 

respondent declares the amount to be greater than B20. With the introduction of Q20 and Q21, two further 

probabilities are not identified by the data, namely, P(Q20 1| BR,Q1 0)= =  and 

P(Q21 1| BR,Q1 1)= = . Again, these probabilities can be expressed as partitions with respect to the 

distribution of A such that: 

 

P(Q2k 1| BR,Q1 k) P(Q2k 1| BR,A B2k,Q1 k)P(A B2k | BR,Q1 k)
P(Q2k 1| BR,A B2k,Q1 k)P(A B2k | BR,Q1 k)

= = = = ≤ = ≤ =
+ = ≥ = ≥ =

 (13) 

 

for k 0,1= . Under the assumption of no anchoring effect, the implication is that respondents answer 

correctly to the question with the second bid. Thus, under no anchoring effect 

P(Q2k 1| A B2k,BR,Q1 k) 0= ≤ = = , such that  

 

P(Q2k 1| BR,Q1 k) P(A B2k | BR,Q1 k)= = = ≥ =      (14) 
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for both k 0,1= . Expression (14), together with (12) define a bounding interval for different regions of 

the distribution according to the range of values for the conditional variable A. In general, for the case 

where we assume no anchoring effect, the implication is that those who answer the bracket question do so 

correctly, so that for each bracket respondent it is known whether A is in 

[0,B20),[B20,B1),[B1,B21), or [B21, )∞ . The information is identical to a situation where initial non-

respondents are given a range card question and each has to choose one of the four (simultaneously given) 

categories to classify the missing value. Denoting the category containing A by j j 1[B ,B ]+
10, we have that 

 

1 j 1 j 1L (B ) P(A | BR) U (B )+≤ ≤         (15) 

 

We now turn our attention to the measure E[g(y) | A,BR] in expression (9). With partial information 

provided by bracket respondents the latter can now be identified (at least) up to an interval according to 

the categories defined by the unfolding bracket design. That is, if conditioning on A implies a range such 

that our interest is j j 1E[g(y) | A [B ,B ),BR]+∈  where both jB  and j 1B +  are identical to the given 

anchors, then j j 1E[g(y) | A [B ,B ),BR]+∈  is fully identified by the data. Likewise, if our interest is on 

jE[g(y) | A B ,BR]≤  where, again, jB  is an bid within the sequence of bids, then partial information is 

sufficiently informative to identify jE[g(y) | A B ,BR]≤ . However, conditioning on a particular value of 

the distribution (i.e., A = t ) or conditioning within a range j j+1A [C ,C )∈  with such range j j+1[C ,C )  not 

given by the bids, implies that additional information provided by bracket respondents does not help to 

improve the informative power of the bounds. In this case, bound on E[g(y) | A,BR] are attained in a 

similar manner as bounds on E[g(y) | A, NR], thus, 

 

                                                 
10 Is straight forwards to show that for A [0, B20)∈ , L(a) 0=  and U(a) P(Q20 0 | BR,Q1 0)= = = , for 
A [B20, B1)∈ , L(a) P(Q20 0 | BR,Q1 0)= = =  and U(a) P(Q1 0 | BR)= = , for A [B1, B21)∈ , 
L(a) P(Q1 0 | BR)= =  and U(a) P(Q21 0 | BR,Q1 1)= = =  and finally, for A [B21, )∈ ∞ , 
L(a) P(Q21 0 | BR,Q1 1)= = =  and U(a) 1= . 
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b
b b

b

b

j j+1 j j j+1

for  A = t and t , or,  A  t,    t ,  t B1 and t B2k,  for  k = 0,1,

E[g(y) | BR]- (1- p )ψ
E[g(y) | A, BR] (p ,ψ Ψ(p )

p
where p = P(A | BR)

Otherwise, for A [B B ] or A B where B and B are bids,

E[g(y)

)

(0,1)

,

Ψ

∈ ≤ ∈ ≠ ≠

 
∈ ∩ ∈ 

 
∈

∈ ≤

b

| A, BR]  is  identified. 
In this case, p = P(A | BR) j j 1[ L( B ),U( B )].+∈

  (16) 

 

As in section 2.1, the interpretation of ( )g y  determines the shape of the bounds in (16), so that if 

( ) [ ], ,g y I y t t= = ∈  bounds on [ ( ) | , ]E g y A BR  are analogous to (4) – in case that the measure is not 

identified – and if ( ) [ ], ,g y I y t t= ≤ ∈ then the appropriate interpretation is that given in (6). Lets 

assume a generic form for (16) such that 0 1[ ( ) | , ] [ ( ), ( )]b b b bE g y A BR g p g p∈ , where 

0 1( ) ( )b b b bg p g p=  if A is fully defined by the sequence of anchors. With this, and following a similar 

argument for [ ( ) | , ]E g y A NR  as in section 2.1, a set of computable bounds on [ ( ) | ]E g y A  is given 

such that, 

 

1 1

0,

0

[ , ], 0,

( | ) ( )[ ( ) | , ]
( | ) ( ) ( ) ( )

( | ) ( )inf ( )
( | ) ( ) ( ) ( )

( | ) ( )( )
( | ) ( ) ( ) ( )

+ +∈ ≥ < ∞


× + +

 + ×
+ +


+ ×

+ +

b

j j j j

b

b bp p
b

b

for any partition A C C C C

P A FR P FRE g y A FR
P A FR P FR P BR p P NR p

P A BR P BRg p
P A FR P FR P BR p P NR p

P A NR P NRg p
P A FR P FR P BR p P NR p

1
,

1

[ ( ) | ]

( | ) ( )[ ( ) | , ]
( | ) ( ) ( ) ( )

( | ) ( )sup ( )
( | ) ( ) ( ) ( )

( | ) ( )( )
( | ) ( ) ( ) ( )









 
 

≤ ≤

 
× + + 

  + × 
+ + 

 
+ × 

+ +  

b

b

b b
p p b

b

E g y A

P A FR P FRE g y A FR
P A FR P FR P BR p P NR p

P A BR P BRg p
P A FR P FR P BR p P NR p

P A NR P NRg p
P A FR P FR P BR p P NR p

  (17) 
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If 1[ , )j jC C +  is a range identified by the sequence of anchors so that 1 1[ , ) [ , )j j j jC C B B+ += , then 

0 1( ) ( )b b b bg p g p=  and 1 1 1[ ( ), ( )]+∈b j jp L B U B . Otherwise, 0 1( ) ( )b b b bg p g p≤  and (0,1)bp ∈ . 

 

Case 2: Allowing for the Anchoring Effect 
 

In the case where we assume the existence of an anchoring effect on partial information provided 

by bracket respondents, assumptions in (12) and (14) are no longer valid for the cases of one and two bid 

unfolding bracket design, respectively. This is because in the presence of anchoring the measures 

( 1 1| , 1) and ( 2 1| , 2 ), forP Q BR Y B P Q k BR Y B k k = 0,1= ≤ = ≤ , can be nonzero, so that under the 

assumption of anchoring11,  

 

and
for

P(Q1= 1| BR) P(A > B1| BR),

P(Q2k = 1| BR) P(A > B2k | BR,Q1= k),  k = 0,1.

≠

≠
    (18) 

 

Deriving feasible sharp bounds on each of the expression in the right hand side of (18), thus feasible sharp 

bounds on [ ( ) | ]E g y A , requires plausible assumptions as to how the anchoring phenomena in the data 

affects information from partial respondent. The anchoring effect is a phenomena well documented in the 

psychology and economic literature (seminal examples are Jacowitz and Kahneman (1995), Rabin (1998) 

and Hurd et al. (1998)). In general it is explained by suggesting that a bid creates a fictitious belief in the 

respondent’s mind. Faced with a question which relates to an unknown quantity, the respondent treats the 

question as a problem solving situation, the given bid becomes an ‘anchor’ and it is thus used as a cue to 

solve the problem. This can result in responses which are endogenous to the design of the unfolding 

bracket. For example, in the case of a continuous variable, the result can be a significant shift in the 

distribution of the categorical answers. If one aims to study the distribution of such variables, it is 

important to account for the possible bias created by the anchoring effect. In case of bounding intervals, 

this implies a modification of expressions (12) and (14), as well as a new set of conditions with respect to 

the bounding intervals on E[g(y)| A,BR] . Hurd et al. (1998) model the anchoring effect suggesting that 

respondents to (10) compare toA B1+ ε , where ε  is the perception error. Whereas in Hurd et al. 

                                                 
11 In fact, we need to assume the possible existence of anchoring since testing for anchoring is only possible if we 
had randomised the staring bid among all partial respondents. In this case, some respondents would receive different 
bids. Testing for anchoring would consists on testing for a significant shift in the distribution of information provided 
by bracket respondents, where the shift would be shown to be a function of the starting bid. See Hurd et al (1998) for 
an example using an special module from the HRS, 1996. 
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(1998) ε  is assumed to be normally distributed with zero mean and independent of A , Vazquez-Alvarez 

et al. (2000) relax their parametric set up to a more flexible semi-parametric assumption where 

med(ε | A,BR)= 0 . Hurd et al. (1998) provide an explanation for the anchoring phenomena in the data, 

but it might not be the most intuitively appealing way to model anchoring. Perhaps a more plausible 

alternative to model anchoring is given by Jacowitz and Kahneman (1995)12. In their experimental study 

they find that, if a high anchor is used, respondents too often report that the amount exceeds the anchor. 

This can be interpreted as ≥ ≥P(Q1= 1| BR) P(A B1| BR)  if B1 is large. Jacowitz and Kahneman 

(1995) report that this finding is not symmetric for their case study, and could well be reversed if the 

amounts have a natural upper instead of lower bound. An operational version of the phenomenon 

discussed by Jacowitz and Kahneman (1995) for one-bid unfolding bracket design would be 

 

B1 if
B1 if

≥ ≥ ≤
≤ ≥ ≤

P(Q1= 1| BR) P(A | BR) P(Q1= 1| BR) 0.5
P(Q1= 1| BR) P(A | BR) P(Q1= 1| BR) 0.5

    (19) 

 

In the case of two bids the complement to (19) to model anchoring according to the Jacowitz and 

Kahneman’s (1995) assumption would be given by 

 

B2k if
B2k if

≥ ≥ ≤
≤ ≥ ≥

P(Q2k = 1| BR,Q1= k) P(A | BR,Q1= k) P(Q2k = 1| BR,Q1= k) 0.5
P(Q2k = 1| BR,Q1= k) P(A | BR,Q1= k) P(Q2k = 1| BR,Q1= k) 0.5

 (20) 

 

Thus, bounds allowing for this particular model on the anchoring effect are attained if we substitute (12) 

and (14) by a particular (data-dependent) interpretation of (19) and (20). Anticipating our empirical 

example, lets assume that in a two-bid unfolding bracket design, the data suggest that both B1 and B21 

are ‘large’ and B20 is a small bid.13 With this, bounds on P(A | BR)  are derived such that, 

 

                                                 
12 See footnote 3 and Appendix B for alternative models of anchoring. 
13 In our particular data set, where the number of bracket respondents equals 320, only 0.36 (<0.5) answer ‘yes’ 
when faced with B1, and of these only 0.26 (<0.5) answer ‘yes’ when faced with B21. With such data evidence we 
bounds will be derived assuming that B1 and B21 are ‘large’. On the other hand, 204 of the 320 answer ‘no’ to the 
initial B1, and of these, 170 answer ‘yes’ to the second bid. Then, P(Q20=1 |BR,Q1=0)= 0.83 (>0.5), suggesting that 
B20 is ‘small’.  
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furthermore
(MON) | Z) )

≤
≤
≥

≤ ≤ ≤j j

(i) P(A > B1| BR) P(Q1= 1| BR)
(ii) P(A > B21| BR,Q1= 1) P(Q21= 1| BR,Q1= 1)
(iii) P(A > B20 | BR,Q1= 0) P(Q20 = 1| BR,Q1= 0)

,
P(A B P(A B

    (21) 

where ‘MON’ refers to a monotonic assumption with respect to any sub-space defined by Z, and 

complements (21). Given (21)-(iii), 

 

since
by (21) (iii),

and
by (M

P(A B20 | BR)= P(A B20 |Q1= 1,BR)P(Q1= 1| BR)
+ P(A B20 |Q1= 0,BR)P(Q1= 0 | BR)

P(Q20 = 0 |Q1= 0,BR)P(Q1= 0 | BR)
+ P(A B20 | BR)P(Q1= 1| BR).

P(A B20 |Q1= 0,BR) P(Q20 = 0 |Q1= 0,BR)

P(Q1= 1| A B20,BR) P(Q1= 1| BR)

≤ ≤
≤

≤
≤

≤ ≤ −

≤ ≤ ON).
Therefore,

0 P(A B20 | BR) P(Q20 = 0 | BR,Q1= 0).≤ ≤ ≤

 (22) 

 

The lower bound equals zero because (21) provides no information to bound ≤P(A B20)  from below. 

With respect to ≤P(A B1) , 

 

by (21) (i),

therefore,

≤ −

≤ ≤ ≤

P(A > B1| BR) P(Q1= 1| BR)

P(Q1= 0 | BR) P(A B1| BR) 1.

     (23) 

 

In this case, (21) lacks information on the upper bound of ≤P(A B1)  so that the only thing we know is 

that it cannot exceed 1. Finally, for ≤P(A B21) , 
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by (21) (iii),

,

by (MON)

therefore,

≤ −
⇒

≤ ≥
⇒

≤ ≥

≤ ≤ ≤

P(A > B21| BR,Q1= 1) P(Q21= 1| Q1= 1)

P(A B21| BR,Q1= 1) P(Q21= 0 |Q1= 1)

P(A B21) P(Q21= 0 |Q1= 1)

P(Q21= 0 | Q1= 1) P(A B21) 1.

   (24) 

 

Expressions (22) – (24) define a bounding intervals for P(A| BR)  for regions of the distribution with 

partitions defined by the design of the unfolding brackets such that  

 

 

for
for
for
for

[0,B20), 0 P(A| BR)< P(Q20 = 0 | BR,Q1= 0)
[B20,B1), 0 P(A| BR)< 1
[B1,B21), P(Q1= 0) P(A| BR)< 1
[B21, ), P(Q21= 0 | BR,Q1= 1) P(A| BR)< 1

≤
≤

≤
∞ ≤

   (25) 

 

Expression (25) provides bounds on P(A| BR) , such that ≤ ≤2 j 2 j+1L (B ) P(A| BR) U (B ) , under the 

anchoring model according to Jacowitz and Kahneman (1995). These will change under any other 

assumption of anchoring. Appendix B summarises results as derived in Vazquez-Alvarez, R., B. 

Melenberg and A. vanSoest (2000), where expressions analogous to (25) make reference to models of 

anchoring according to Hurd et al. (1998) and Herringes and Shogren (1996). Bounds under alternative 

models of anchoring are competing bounds, that is, in theory nothing tells us that one set might be tighter 

than the other, and it is only empirically when this can be tested. On the other hand, bounds on P(A| BR)  

given by (15) derive tighter (sharp) bounds on E[g(y) | A]  than those attained by applying expression 

(25) since the assumptions behind (25) are weaker than those underlying (15).  

 The next step before attaining an expression analogous to (17) for Case 2, is to incorporate the 

assumption by Jacowitz and Kahneman (1995) on E[g(y)| A,BR] . For easiness of exposition, express 

E[g(y)| A,BR]  as P(y = 1| A,BR) , where anticipating our empirical example we can think of iy = 1  if 

individual i  smokes, and iy = 0  otherwise. As before, although bracket respondent provide only partial 

information on P(y = 1| A,BR) , the measure P(y = 1| BR)  is identified by the sampling process. With 

this bounds on P(y = 1| A,BR)  are possible applying similar arguments as with expression (2)-(6) so that 
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an interval in the distribution of A given by j j+1[B ,B ] , 

 

b
j j+1 b b

b

b 2 j 2 j+1

P(Y = 1| BR)- (1- p )ψ
P(Y = 1| BR, A [B ,B ]) Ψ p ) , ψ Ψ ( p )

p
for
p [ L ( B ),U ( B )].

 
∈ ∈ ( ∩ ∈ 

 

∈
 (26) 

 

In (26), ),ψ = ∉ ∈Ψj j+1 bP(Y = 1| BR,A [B ,B ]) (p  and, therefore, ψ  is also affected by anchoring via 

the conditioning set. However, at worst we know that (0,1)ψ∈ , thus,  

 

2 2

), max 0, ,min 1,

for
[L ( ),U ( )].

     ∈ ∈    
     

∈

b
j j+1

b b

b j j+1

P(Y = 1| BR) - (1 - p P(Y = 1| BR)P(Y = 1| BR,A [B B ])
p p

p B B
 (27) 

 

Thus, even if we have no knowledge on ψ , allowing such measure to vary over all possible values 

implies that (27) will nest the bounds which allow for anchoring. Further to having full information on 

P(Y = 1| BR) , we also know that applying Bayer’s Theorem,  

 

[ ]
[ ]

[ ]
∈

∈
∈

j j+1
j j+1

j j+1

P(A B ,B |Y = 1)P(Y = 1)
P(Y = 1| A B ,B )=

P(A B ,B )
    (28) 

 

Recall that (21) implies the model of anchoring by Jacowitz and Kahneman (1995), with such 

assumptions been equally applicable to all subspaces within the distribution of values of the covariate A, 

therefore, assumptions in (21) are equally applicable to the subspace defined by the condition (Y 1)= . 

For example, if (21)-(i) implied that ≥ ≤P(A B | BR) P(Q1= 1| BR)  for any B interval, the same 

assumption is applicable to the subspace of smokers in the bracket respondents, such that 

≥ ≤P(A B | BR,Y = 1) P(Q1= 1| BR,Y = 1) . Extending this to (i)-(iii) in (21), and applying a similar 

argument as with (22) – (24), it is possible to derive a set of bounds similar to those in (25) for 

≤P(A B | BR,Y = 1)on the bids-dependent intervals such that, 
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for
for
for
for

[0,B20), 0 P(A| BR,Y = 1)< P(Q20 = 0 | BR,Q1= 0,Y = 1)
[B20,B1), 0 P(A| BR,Y = 1)< 1
[B1,B21), P(Q1= 0 | BR,Y = 1) P(A| BR,Y = 1)< 1
[B21, ), P(Q21= 0 | BR,Q1= 1,Y = 1) P(A| BR,Y = 1)< 1

≤
≤

≤
∞ ≤

 (29) 

 

Applying expression (29) to the numerator in (28) leads to a bounding interval on 

[ ],∈ j j+1P(Y = 1| A B ,B BR)  such that, 

2

( (
[ ] ,

for
[L ( ) ( )]

 
∈ ∈ 

 

∈

3 j 3 j+1
j j+1

b b

b j 2 j+1

L B )P(Y = 1) U B )P(Y = 1)
P(Y = 1| BR,A B ,B )

p p

p B ,U B
  (30) 

 

Let bounds in (27) be written as [ ][ ] ( ) ( )∈ ∈j j+1 1 b 1 bP(Y = 1| BR,A B ,B ) LB p ,UB p , and those in (30) 

we written as [ ][ ] ( ) ( )∈ ∈j j+1 2 b 2 bP(Y = 1| BR,A B ,B ) LB p ,UB p . Then, under the assumption of 

anchoring as modelled by Jacowitz and Kahneman (1995), bounds on [ [ ]]∈ j j+1E g(y)| BR,A B ,B  will be 

given by 

 

{ } { }1 b 2 b 1 b 2 b[ [ ]] min LB (p ),LB (p ) ,max UB (p ),UB (p )∈ ∈  j j+1E g(y)| BR,A B ,B  (31) 

 

where 2[L ( ) ( )]∈b j 2 j+1p B ,U B . With this, which allows for anchoring in the presence of partial 

information, bound on E[g(y) | A]  have the same generic form as in (17) except that for 

1 1[ , ) [ , )j j j jC C B B+ += , we draw from (31) such that { }0 1 2( ) min ( ), ( )=b b b bg p LB p LB p and 

{ }1 1 2( ) max ( ), ( )=b b b bg p UB p UB p for 2 2 1[ ( ), ( )]+∈b j jp L B U B . Because (31) incorporates the 

anchoring assumption, bounds under (31) will be equal or wider than those under (17) which are tighter 

since the underlying assumption in (17) is stronger than that in (31), i.e., bounds in (17) assumes 

exogeneity with respect to the anchoring effect, while (31) accounts for anchoring thus leading to an 

increase in the estimated uncertainty interval due to regressor nonresponse. 

 

3. Data 
The empirical illustration in Section 3 draws from the 1996 wave of the Health and Retirement 

Survey (HRS). This is a longitudinal study conducted by the University of Michigan for the US National 



 
 17 

Institute of Ageing. It focuses mainly on aspects of health, retirement and economic status of US citizens 

born between 1931 and 1941, allowing for individuals and household information from a representative 

sample in this cohort. The data is collected every two years, starting in the summer of 1992, and is 

organised into four different sections, namely, demographics, health issues, assets & incomes, and 

employment status.  

 Initially the panel consisted on approximately 7,600 households. The 1996 wave has data from 

6,739 households, representing 10,964 individuals. The respondents are the household representatives that 

satisfy the age criteria, and their partners, regardless of their age (second household respondents). All 

household representatives are asked to provide information on the four categories within the survey for 

themselves and in some cases for their spouses. Variables in the health section of the survey are answered 

individually by each member of the household, to provide both objective and subjective information on 

their health status, as well as on a variety of health habits, such as smoking, drinking or practice of regular 

exercise. Most of these variables are either categorical or binary in nature, and item nonresponse is a rear 

event, if at all. The empirical illustration in this paper aims at understanding smoking habits of individuals 

by gender and income level, thus we draw the following question from the health section of the 

questionnaire:14 

 

'...

'...

'...

'...

'...

'Do you smoke cigarrettes now?

yes'

cigars (if  volunteered with this answer)'

pipe (if  volunteered with this answer)'

no'

Don´t know, Refuse'

 

 

Each respondent classifies the answer in one of the above categories. Out of 10,964 individuals surveyed 

in 1996, only 1 was classified as ‘don’t know/Refuse’, therefore, nonresponse is not a problem with 

respect to information on smoking behaviour. 

 The ‘Income & Asset’ section of the questionnaire is answered mostly by the household 

representative, with these amounting to 6,816 out of the total 10,964. They are asked to provide 

employment status and earned incomes for themselves and for their partners. We focus on information 

regarding household representative since this is the target population in the survey.15 Initially, each 

                                                 
14 This is the only question in the Health section which elicits information on the smoking habits of individuals. The 
question is not as complete since it is directed only to cigarette smokers. If we assume the question captures the 
smoking habits of the target population, we assume that all individuals who smoke pipe, cigars, etc., volunteer to 
defines their specific smoking habit. 
 
15 Furthermore, because responses from second household respondent (often the spouse) are not directly answered 
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household representative is asked if he or she worked for pay during the last calendar year. Of the 6,816 

individuals, 4,145 declared to have worked for pay, 2,661 declare not to have worked for pay, and only 10 

individuals (amounting to 0.2% of the weighted sample) answer with either ‘Don’t know’ or ‘Refuse’. 

With such distribution we can assume that nonresponse is not an issue at this level of information. The 

4,145 individuals who declare to have worked for pay during the last calendar year are further asked if 

any of their earnings came from either wages or salaries (as opposed to earnings from self-employment). 

Of these, 3,602 declare that their incomes are from wages and/or salaries, and only 6 of the 4,145 are 

classified as ‘Don’t know’ or ‘Refuse’. Yet again it seems as if this categorical question is not affected by 

nonresponse. In this paper the sample is defined as the 3,602 individuals who declare to have earned some 

wages or salaries.16 For these group nonresponse becomes an issue when they are asked to specify the 

exact amount of wages or salaries in an open ended question given as: 

 

'...

'...

'...

'about how much wage and/or salary income did you receive during the last

calendar year?'

any amount' (in USA dollars)

Don't known'

Refuse'

 

 

Of the 3,602, there were 3,160 individuals who answered with an exact amount in US dollars, 

ranging from $0,00 to $350,000, with a mean of $31,340 and standard deviation $28,310. The median 

was $25,370. Of the remaining, 438 individuals answered ‘don’t know’ (or ‘refuse’).17 This translated into 

a 11.6% initial (weighted) nonresponse rate. Therefore, when faced with a question which asks for an 

specific amount, nonresponse is sufficiently large for it not to be ignored. For this specific variable, the 

group of initial non-respondents were routed to a sequence of unfolding bracket questions as formulated 

                                                                                                                                                        
by them, the quality of the information on these individuals is lower than information directly relevant to the 
household representative. For example, information on second household respondents suffer more item nonresponse 
than those of the representative, while we cannot make the assumption that the reasons for nonresponse are the same. 
It might also be the case that answers to the open-ended question by respondent’s representatives on their spouses 
income is subject to large errors.  
 
16 An alternative choice of sample would be to take the full sample of household representatives (6,816), and allow 
all those who report not to work for wages and salaries to have zero wages. However, we would be making a 
distinction between participants and non-participants, which is just another arbitrary definition of a sample. On the 
other hand, we only pick up those who declare to be asalariate (out of the 4,145) because nonresponse may affect 
employees differently to self-employed, who might also be given a completely different unfolding bracket design in 
case of initial nonresponse. Thus, our choice of sample guarantees that all bracket respondents react to the same bid.  
17 There were a further 4 individuals who did declare an exact amount of wages/salaries, but the data collection 
agency decided to classify their responses as error data. These are neither non-response or full respondents and, 
therefore, we draw them out of the sample. Therefore, the final sample from which to base our illustration consists of 
3,598 household representatives. 
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in (10), with standing bid B1 $25,000= . At this initial stage of the unfolding sequence, 119 individuals 

answered ‘don’t know’ (or ‘refuse’). Thus, the full nonresponse rate is 3.3%. The remaining 329 

individuals make up the sample of bracket respondents. 

 
Table 2: Summary Statistics by different Sample definitions. 
 All sample Males Females Smokers 

Size (%) 3,602 (100) 1,177 (38.4) 2,425 (61.6) 797 (22.1) 

Age (s.d) 59.15 (3.08) 59.20 (3.04) 59.15 (3.10) 58.70 (2.9) 

% Smokers (s.e) 22.1 (0.7) 24.4 (1.3) 20.7 (0.8) -- 

Full Respondents (%) 
Mean income 

(s.d) 
Median 

Min/Max 

3,160 (88.4) 

31,240 

(28,310) 

25,370 

0/350,000 

1,065 (91.2) 

36,170 

(28,900) 

32,000 

0/300,000 

2,095 (86.6) 

28,170 

(27,450) 

23,000 

0/350,000 

706 (89.0) 

29,080 

(30,080) 

24,000 

0/350,000 

Initial Nonresponse.  

438 (11.5) 

 

110 (8.8) 

 

328 (13.20) 

 

91 (11.0%) 

 

Table 2 shows summary statistics for the selected sample of household representatives with non-zero 

wages and/or salaries. All means, standard deviations and percentages referred to the weighted sample.18 

The average age reflects the initial sample selection criteria for the HRS data set since all households 

representative are between 55 and 65 years of age. Approximately 22% of the target population smokes, 

with males showing a slightly higher probability of smoking than females. With respect to income, males 

are, on average, higher wage/salary earners than females, although such estimate takes into account only 

income from full respondents, and, therefore, might be a biased estimate. This is specially true since 

income nonresponse is higher for females than for males, both in absolute values and as respective 

percentages of their sub-populations. When analysing the population of smokers we see that these are 

slightly younger than the overall population, even if the difference is not significant, while their income 

distribution shows a significant shift to the right relative to the male’s income distribution.19 

The unfolding sequence for the wages and salaries question consists of two steps. Those who 

answer ‘yes’ to the initial bid of $25,000 were routed to a second question with bid B21=$50,000. Those 

who answered ‘no’ to the first bid were also routed to a second question, this time with bid B20=$5,000. 

                                                 
18 The use of weighs is needed since the HRS is based on various sub-samples representing different groups within 
the USA population, in particular, African American, Hispanic and other racial minorities. The use of cross-section 
weights is necessary to obtain a representative sample of the USA population using the different sub-samples. 
Appendix C examines the characteristics of these weights for the 2nd wave of the HRS (1996). 
19 Perhaps one striking fact in Table 2 is the overrepresentation of females in the sample. Since we are selecting on 
those who respond to earn wages, one could think that our selection is creating such unbalance between genders. 
However, as Appendix D in the paper shows, the distribution between males and females is similar in the original 
sample of household respondents in the survey. Since the HRS is supposed to represent the cohort of US Citizens  
born between 1931-1941, this shows that in such cohort the percentage of females dominates that of males.  
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In both cases the question was identical to (10) – only the bid changed. If an unfolding bracket design has 

more than one bid, two possible types of bracket respondents can emerge, namely complete (CBR) and 

incomplete (IBR) bracket respondents. This is because at each stage of the unfolding sequence 

respondents can choose to answer ‘Don’t know’ or ‘Refuse’.  
Table 3 shows the distribution of partial respondents, first between complete and incomplete sub-

groups, and second, with respect to gender and smoking status. Most of those who are bracket 

respondents are females, who are also the largest initial nonresponse group. 

 

Table 3: Categories for Partial Respondents, according to information provided by bracket 
respondents to the variable annual labour income. 

Group Anchor 
1: 
B1 

Answer 
to 

Anchor 1 

Anchor 2: 
B20/B21 

Answer to 
Anchor 2 

Resulting 
Categories

ALL MALE F’MALE S’MKRS 

    Yes [$50,000-

infinity) 

30 

(10.7) 

10 

(10.4) 

20 

(10.8) 

2  

(1.6) 

  Yes >$50,000 No [$25,000-

$50,000) 

86 

(27.8) 

26 

(35.5) 

60 

(25.0) 

19 

(25.8) 

Complete 
Bracket 
response 
(CBR) 

 

>$25,000 

        

  No >$5,000 Yes [$5,000-

$25,000) 

170 

(48.6) 

37 

(42.7) 

133 

(50.9) 

42 

(63.7) 

    No [$0-$5,000) 34 

 (10.0) 

6 

(4.5) 

28 

(12.1) 

6 

(8.9) 

  Yes >$50,000 DK/RF [$25,000-

infinity) 

9 

(2.8) 

3 

(6.9) 

6 

(1.3) 

0 

(--) 

Incomplete 
Bracket 
Response 
(ICB) 

 

>$25,000 

        

  No >$5,000 DK/RF [$0-

$25,000) 

0 0 0 0 

 

4. Estimation Methods and Results 
4.1 Estimation Methods 

The bounds in Section 2 are expressed in terms of population characteristics and can easily be 

estimated using the corresponding sample analogue. Section 4.2 applies bounds in Section 2 to estimate 

probabilities of the event ‘smoking’ at different points of the earnings distribution. The target population 

is a representative cohort of USA citizens born between 1931 and 1941 who claim to have been employed 

on the basis of wages/salaries during 1995. The data draws from the 1996 wave of the Health and 
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Retirement Study as defined in Section 3.  

 The bounds are estimated separately for males and females. The results are then used to test for 

significant difference in the smoking habits between genders, conducting the test at different sections of 

the income distribution. The conditioning set is composed of two discrete variables, a dummy for gender 

and a binary variable identifying the even ∈ j j+1A [B ,B ] , where [ ]j j+1B ,B  is a range of wages. Thus in 

this empirical illustration sample estimates do not require smoothing parameters which would be the case 

if the conditioning set contained continuous variables (see Haedler and Linton (1994) for a detail account 

of nonparametric regression techniques).  

 The width between estimates of upper and lower bounds, which depends on p , for 

[0,1]∈p = P(A| NR) 20 – see expression s (8) and (17) in Section 2 –, reflects uncertainty due to item 

nonresponse. The component of the bounds are simple probabilities so that for known p = P(A| NR)  it is 

straightforward to derive analytical expressions for their (pointwise) asymptotic distribution, and from 

these, estimate the sampling error. An equivalent method to estimate confidence bands is to use a naive 

bootstrap. In this paper such method is used to find confidence bands, re-sampling 500 times (with 

replacement) from the original data. The (pointwise) confidence intervals on the bounds are the 2.5% and 

95.5% percentiles of the 500 estimates. Each of the figures presented in Section 4.2 shows the lower 

confidence band for the lower bound and the upper confidence band for the upper bound. The gap 

between these reflects both the uncertainty due to sampling error and the uncertainty due to item 

nonresponse. 

 

4.2 Bounds on the Probability of Smoking 
This section presents the result of estimating bounds as defined in Section 2, on the probability of 

smoking conditional on income and gender, where income refers to annual labour income. For each of the 

sub-populations of males and females, the results show sample estimates of the probability of smoking 

grouping individuals in four sub-categories according to whether information on their annual earnings can 

be classified in [0,$5,000), [$5,000, $25,000), [$25,000, $50,000) or [$50,000, maximum]. The 

classification reflects the structure set by the unfolding bracket design answered by initial non-

respondents to wages and salaries (see Section 3, Table 3). 

 Under the assumption of exogeneity full respondents would be a representative sample of the 

population, thus one can estimate sample probabilities throwing away gender and other information on 

                                                 
20 Estimates of (8) and (17) are the result of minimising with respect to P(A|NR) and P(A|NR) & P(A|BR) 
respectively. In the case of (8) the procedure involves estimating the upper and lower bound over 100 partitions of 
the interval [0,1] which defines the range of possible values of P(A|NR). In the case of (17) the minimisation and 
maximisation of lower and upper bounds, respectively, is also over 100 partitions of the interval [0,1] for the values 
of P(A|NR), and for each of these 100 estimates, the bounds are estimated over 100 partitions of the possible values 
of the interval defined by P(A|BR).  
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non-respondents to income. Effectively this implies that P(NR | A)= 0  in (1), and, therefore, 

P(smoking | A, gender, FR)  is equivalent P(smoking | A, gender) . These estimates are shown in Table 421, 

while Table 5 provides a graphic interpretation of the same results. Table 4 (row 1), shows that for the full 

population , the probability of smoking decreases as income increases; individuals in the lowest income 

are 7% more likely to be smokers than individuals in the highest brackets. Figure 1 in Table 5 illustrates 

graphically the same conditional (on income) monotonic decrease on the probability of smoking. 

Comparing rows 2 and 3 in Table 4 (cf. Figures 2 and 3) shows that the smoking pattern for the 

population as a whole is driven by the smoking patter of females; for these, the probability of been a 

smoker decreases significantly as income increases, showing a increase difference of 12.4% on the 

probability of smoking between low and high income brackets. On the other hand, estimates in Table 4 

(row 2) show that the smoking habits of males are invariant to increasing levels of income. 

 
Table 4: Probability (s.e) of smoking by gender and income bracket: Random Nonresponse 
 Wages in 

[0-$5,000) 
Wages in 

[$5,000-$25,000) 
Wages in 

[$25,000-$50,000) 
Wages in 

[$50,000-max) 
t-test(2) 

All 
Point 

estimate 
(s.e) 

 

0.248 

(0.032) 

 

0.246  

(0.015) 

 

0.215  

(0.015) 

 

0.178 

(0.021) 

 
1.83 

Males 
Point 

estimate 
(s.e) 

 

0.210  

(0.059) 

 

0.248  

(0.026) 

 

0.251 

(0.024) 

 

0.211  

(0.032) 

 
0.015 

Females 
Point 

estimate 
(s.e) 

 

0.264 

(0.038) 

 

0.245 

(0.018) 

 

0.189 

(0.018) 

 

0.140 

(0.025) 

 
2.73 

t-test(1) 0.769 0.094 2.07 1.75  

Notes 1: All sample estimates are weighted using cross-section weights as provided by the HRS data set, 1996. 
 
Notes 2: The t-test in Column 5 refers to testing entries for significant difference between the lowest and highest income bracket 

(column 2 versus column 5), whereas the t-test in Row 5 refers to testing for significant difference between males and 
females at each wage region (bracket).  

 

With this, results in Table 4 (row 5) indicate a significant difference in the probability of 

smoking between males and females for individuals with annual earning of $25,000 and above, 

with the probability that a male smokes been at least 6% higher than for a female. For annual 

labour income below $25,000 the smoking habits of males and females is not significantly 

different, with approximately between 21% to 25% been smokers in both sub-populations.  

                                                 
21 Both test statistics in Table 4 are based on the absolute difference between two probabilities normalised by the 
corresponding standard error which equals the square root of the sum of the square of the standard errors for each 
probability (given independent samples). Under the hypothesis of zero difference between the probabilities, the test 
is asymptotically standard normal. 
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Table 5: Figures 1-4 show bounds on probabilities of smoking by gender and income 
category (wage income in 1996 USA dollars). 

 

 

 

 

 

 

 

 

 

(see Section 3, Table 3) 

 

 

 

 

 

 

Note 1:  Figures 1 to 3 show pointwise probability estimates with a solid line, and 95% confidence bands with dotted lines. 
 
Note 2:  Figure 4 compares estimates of males and females using the 95% confidence interval of Figures 2 and 3. 
 

 Results so far have assumed that initial nonresponse to income happens at random. The next set of 

estimates relaxes this exogeneity assumption and shows the consequence of estimating bounds as given in 

(8). These bounds account for the initial sample (income) nonresponse rate. Table 6 shows these estimates 

at the different intervals of the income distribution and Table 7 illustrates the same results graphically. 

Each cells in Table 6 reports estimated upper and lower bounds as well as upper and lower confidence 

bands in the bounds. For example, allowing for nonresponse in income, the probability of smoking for a 

female in the lowest income bracket ($0 to $5,000) is bounded between 11.3% and 43.3%. If we further 

allow for uncertainty due to sampling error the estimate is between 7.1% and 54.5%, with 95% 

confidence. Comparing estimates in Columns 2 and 5 for any of the sample definitions (all, males or 

females) shows that the 95% confidence bands for the lowest income bracket always overlaps 

significantly (or nests) with those in the highest income bracket. Thus, for this particular sample, and once 

we allow for nonresponse on wages, the evidence cannot reject the null of no difference in the smoking 

patters between low and high earners. This already contradicts the conclusions based on Tables 4-5, 

where the assumption of exogeneity lead to a positive and significant difference in smoking habits of low 

earners relative to high earners for both the sub-population of females and for the sample as a whole. 
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Figure 1: Exogenity, Smoking by income: ALL
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Figure 2: Exogenity, Smoking by income: MALES
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Figure 3: Exogenity, Smoking by income: FEMALES
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Estimates of bounds in Table 6 also allow to compare the smoking habits between males and females. 

Table 6 shows that the estimated bounds between males and females overlap at all levels of income, with 

the upper bound on the probability of smoking for females always above that of the lower bound on the 

probability of smoking for males. Table 7 (Figure 8) shows this same result but with 95% confidence. The 

existence of an overlapping region between the estimated bounds in the two sub-populations is due to the 

existence of income nonresponse. Under nonrandom nonresponse, the true probabilities are unknown. 

What we know is that they could fall in the overlapping region, thus inspection of this overlap between 

estimated bounds becomes an informal test for the difference in the probabilities of the two sub-

populations. This informal test suggest that the null of equality in the probabilities of smoking between 

genders cannot be rejected. This, again, contradicts the results in Table 4 which are based on the rather 

strong assumption of exogeneity. The ‘informal’ test can be formalised with what is effectively a sample 

dependent t-test, the result of which is shown in Table 6 (final row). In this particular case, since the 

estimated upper bound for the sample of females is always above the estimated lower bound on the 

probability of smoking for the sample of males, the null of no difference between the smoking habits of 

the two genders cannot be rejected if there is a positive and significant difference between pointwise 

estimates on the upper bound for females and the lower bound for males. Results in Table 6, final row, 

show that in fact the null of no difference on the probability of smoking between genders cannot be 

rejected throughout the distribution of income. Figure 8 (Table 7) further reinforces this argument by 

showing that, with 95% confidence, the bounds on the probability of smoking for males nests those of the 

estimates for the female population. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 6: Probability (s.e) of smoking by gender and income bracket: Worst Case bounds in 
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the presence of income nonresponse: No bracket response. 
 Wages in 

[0-$5,000) 
Wages in 

[$5,000-$25,000) 
Wages in 

[$25,000-$50,000) 
Wages in 

[$50,000-max) 
t-test(2) 

All 
Estimated bounds 
Confidence bands 

 

0.113 – 0.4331 

(0.071: 0.545) 

 

0.193 – 0.297 

(0.165 :0.338) 

 

0.167 – 0.272 

(0.135 : 0.320) 

 

0.114 – 0.286 

(0.110 : 0.305) 

 
Overlap 

Males 
Estimated bounds 
Confidence bands 

 
(s.e for lower 

bound) 

 

0.102 – 0.470 

(0.031 : 0.622) 

(0.025) 

 

0.204 – 0.315 

(0.145 : 0.383) 

(0.021) 

 

0.215 – 0.305 

(0.152 : 0.375) 

(0.021) 

 

0.167 – 0.295 

(0.135 : 0.367) 

(0.022) 

 
Overlap 

Females 
Estimated bounds 
Confidence bands 

 
(s.e for lower 

bound) 

 

0.117 – 0.412 

(0.079 : 0.514) 

(0.039) 

 

0.188 – 0.287 

(0.161 : 0333) 

(0.019) 

 

0.187 – 0.246 

(0.109 : 0.306) 

(0.023) 

 

0.073 – 0.274 

(0.072 : 0.283) 

(0.022) 

 
Overlap 

t-test(1) 6.692 2.93 2.66 3.44  

Note 1: See Note1, Table 4 

Note 2: The bracket number in the cells for males corresponds to the estimate of the standard error for the (underlined) 

estimated lower bound. As with the confidence intervals, this standard errors are attained using a bootstrap techniques 

which consists on re-sampling the original data 500 times. The bracketed number in the cell for females is also the 

estimate standard error, but this time corresponding to the (underlined) estimate of the upper bound. 

Note 3:  Inspection of estimated upper and lower bounds suggest an overlap between the identification regions of for the 
probability of smoking of males and females. The overlap occurs because at each point estimate (defined by the 
partition of the wage distribution), the upper bound on the probability of smoking for females, p̂ f is always above that 

of the estimates of the lower bound on the probability of smoking for males, p̂m . The one-sided sample-dependent t-

test in Row 5 is based on ˆ ˆ( ) ˆ/− σp pmf , where σ̂  refers to the pool standard error estimate between independent 

population. 
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Table 7: Figures 5-8 show Worst Case Bounds on probabilities of smoking by gender and 
income category (income in 1996 USA dollars). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note 1:  Figures 5 to 7 show estimates of upper and lower bounds with two solid line, whereas the dotted lines are the 

estimated 95% upper confidence band on the upper bound and 95% lower confidence band on the lower bound. 

Note 2:  Figure 4 compares estimated regions of identification of the unknown probabilities of males and females using the 

95% confidence interval of Figures 6 and 7. 

 

Whereas estimates in Table 6 (and Table 7) allow for any type of nonrandom nonresponse in the 

variable wages, such estimated worst case bound do not account for partial information provided by 

bracket respondents. Expression (17) allows for such information thus leading to more informative 

bounds on the conditional probability of smoking. Table 8 shows analogous results to Table 6 but with 

information from partial respondents incorporated. Table 9 illustrates the results with Figure 12 

comparing bounding intervals between genders with 95% confidence. Both Table 8 and Table 9 ignore 

the possible existence of the Anchoring effect on bracket respondents. Because estimates of (17) contain 

more information (and lower full nonresponse rate) than estimates on (8), the estimated regions between 

paired upper and lower bounds are narrower in Table 6 (Table 7) than those in Table 8 (Table 9). This 

results in bounds which are more informative with respect to the unknown probabilities of smoking for 

either the full sample, or any of the gender dependent sub-samples. For example, estimates in Table 6 

suggest that, in the presence of wage nonresponse, a female wage earner who earns between $5,000 and 

$25,000 has an estimated 16.1% to 33.3% chance of been a smoker, with 95% confidence. Once the 

bounds account for partial response information the same probability is now bounded between 19.0% and 
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28.4%, also with 95% confidence. This implies a 45% improvement in the identification region of the 

unknown probability. 

 
Table 8: Probability (s.e) of smoking by gender and income bracket: Worst Case bounds 

with bracket respondents. Case of No Anchoring. 
 Wages in 

[0-$5,000) 
Wages in 

[$5,000-$25,000) 
Wages in 

[$25,000-$50,000) 
Wages in 

[$50,000-max) 
t-test(2) 

All 
Estimated bounds 
Confidence bands 

 

0.183 – 0.247 

(0.114 : 0.365) 

 

0.235 – 0.262 

(0.201 : 0.286) 

 

0.197 – 0.224 

(0.169 : 0.269) 

 

0.138 – 0.154 

(0.116 : 0.273) 

 
Overlap 

Males 
Estimated bounds 
Confidence bands 

 
(s.e for lower 

bound) 

 

0.367 – 0.472 

(0.153 : 0.481) 

(0.082) 

 

0.247 – 0.283 

(0.175 : 0.320) 

(0.028) 

 

0.248 – 0.278 

(0.179 : 0.317) 

(0.027) 

 

0.158 – 0.200 

(0.155 : 0.359) 

(0.042) 

 
Overlap 

Females 
Estimated bounds 
Confidence bands 

 
(s.e for lower 

bound) 

 

0.160 – 0.207 

(0.103 : 0.380) 

(0.058) 

 

0.230 – 0.253 

(0.190 : 0.284) 

(0.018) 

 

0.160 – 0.183 

(0.144 : 0.260) 

(0.023) 

 

0.084 – 0.116 

(0.075 : 0.252) 

(0.035) 

 
Overlap 

t-test(1) -1.59 0.180 -1.83 -0.768  

See Note 1 and Note 2, Table 6 

 

The two one sided test in Table 8 are based on the same sample inspection as in Table 6. Column 6 in 

Table 8 shows that the identification region on the probability of smoking for the higher earners is nested 

in the identification region of low earners, thus, the data cannot reject the null of equality between high 

and low income earners within sub-samples. On the other hand, allowing for bracket respondents reduces 

the identification region of the unknown probabilities for each sub-sample and at each income level. The 

result is a substantial reduction of the overlapping region between the bounding intervals of males and 

females, relative to the overlap observed in the case where partial information with bracket respondents is 

ignored (i.e., estimates in Table 6). The final row in Table 8 shows the result of the sample dependent 

one-sided t-test (see Note 2, Table 6) which tests the null of no difference between males and females 

with respect to the probability of smoking. The test shows that, for all income intervals, the difference is 

either close to zero or negative, thus demonstrating that once we allow for partial information there is no 

overlapping region between the two sets of estimated bounds: the probability that a male smokes is well 

above the probability that a female smokes, and the null of no difference between the smoking habits of 

the two genders is not supported by the data. The illustration of results in Table 8 are given Table 9, 

Figures 9 to 12: comparison of these figures with those in Table 7 shows that for any of the sub-samples 

considered, the horizontal distance between sets of upper and lower bounds is narrower, thus each set 

becomes more informative with respect to the unknown probability at each income level. Figure 12, 
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relative to Figure 6, shows that the distance between the upper confidence band on the upper bound for 

females is now horizontally closer to the lower confidence band on the lower bound estimate for the sub-

sample of males. This reflects, allowing for 95% confidence, the reduced overlap between regions of 

identification for the unknown probabilities. 

 
Table 9: Figures 9-12 show Worst Case Bounds allowing for Bracket Respondents, on the 

probabilities of smoking by gender and wage income category (wage income in 
1996 USA dollars). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

See Note 1 and Note 2, Table 7. 

 

 Estimates in Table 8 (Table 9) ignore the possibility that responses from bracket respondents 

might be subject to the anchoring effect. In the final set of estimates, Table 10 shows estimates of 

expression (17) modified according to (25) and (31). Thus, these set of estimates allows for a specific 

interpretation of anchoring based on Jacowitz and Kahneman (1995).22 

 

 

 

 

                                                 
22 Refer to Appendix B for alternative interpretations of the Anchoring Effect. 
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Table 10: Probability (see) of smoking by gender and wage bracket: Worst Case bounds with 

bracket respondents. Allow for the Anchoring Effect. 
 Wages in 

[0-$5,000) 
Wages in 

[$5,000-$25,000) 
Wages in 

[$25,000-$50,000) 
Wages in 

[$50,000-max) 
t-test(2) 

All 
Estimated bounds 
Confidence bands 

 

0.171 – 0.396 

(0.119 : 0.469) 

 

0.213 – 0.295 

(0.183 : 0.338) 

 

0.173 – 0.260 

(0.142 : 0.304) 

 

0.114 – 0.231 

(0.110 : 0.261) 

 
Overlap 

Males 
Estimated bounds 
Confidence bands 

 
(s.e for lower 

bound) 

 

0.154– 0.388 

(0.052 : 0.567) 

(0.040) 

 

0.218 – 0.315 

(0.163 : 0.380) 

(0.023) 

 

0.216 – 0.296 

(0.155 : 0.353) 

(0.022) 

 

0.173 – 0.264 

(0.141 : 0.324) 

(0.023) 

 
Overlap 

Females 
Estimated bounds 
Confidence bands 

 
(s.e for lower 

bound) 

 

0.177 – 0.397 

(0.123 : 0.470) 

(0.035) 

 

0.210 – 0.286 

(0.177 : 0.336) 

(0.019) 

 

0.145 – 0.287 

(0.115 : 0.233) 

(0.020) 

 

0.075 – 0.201 

(0.061 : 0.239) 

(0.019) 

 
Overlap 

t-test(1)      

See Note 1 and Note 2, Table 6. 

 

Comparing estimates in Table 8 to those in Table 10 shows that allowing for anchoring increases 

uncertainty as it widens the distance between estimated pairs of bounds. This is because estimates which 

allow for anchoring imply a weaker assumption on the sampling process. Following a previous example, 

but allowing for anchoring effects, the probability of smoking for a female with wages in the $5,000 – 

$25,000 interval is bounded between 17.7% and 33.6%. Although this represents an 8% improvement 

with respect to the information provided by worst case bounds without partial information (see Table 6), 

relative to bounds where anchoring was ignored, the identification region has widened and the 

information on the unknown probability for this particular example is reduced by approximately 40% 

(i.e., compare bounds in Table 8 to those in Table 10). Table 11, analogous to Table 7 and Table 9, 

illustrates the information in Table 10. The effect of allowing for anchoring when estimating bounds on 

the probability of smoking is clear when we compare figures between Tables 9 and 11, since for any 

given sample definition the bounds are always wider for any of the income intervals, both in terms of 

point estimates as well as allowing for 95% confidence bands.  
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Table 11: Figures 13-16 show Worst Case Bounds allowing for Bracket Respondents and the 

Anchoring Effect, on the probabilities of smoking by gender and wage income 
category (wage income in 1996 USA dollars). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

See Note1 and Note2, Table 7. 

 

5. Conclusions 
The approach by Horowitz and Manski (1998) deals with regressor nonresponse allowing for a 

flexible and intuitive tool to estimate parameters of interests, while avoiding the often strong (and non-

testable) assumptions associated with parametric and semi-parametric methods. Their method in the 

presence of regressor (item) nonresponse allows for the identification of parameters of interest up to a 

bounding interval, as oppose to the identification of a point estimate. How informative a bounding 

interval depends on the degree of sample nonresponse. In this paper bounds in the presence of regressor 

nonresponse are extended in two directions. First, the paper shows how to derive bounds in the presence 

of partial respondents to categorical questions. These questioning strategy is often employed by survey 

designers to reduce item nonresponse that arises from an initial open-ended question. Second, the paper 

deals with a type of bias known as the anchoring effect which the psychological literature has shown to 

arise in the presence of certain types of categorical questions, namely, unfolding bracket designs.  

 The theoretical framework is illustrated by testing for significant difference in the smoking 

pattern of males and females for different levels of wages. Thus, nonresponse occurs with respect to 
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wages declared by individual who claim to have worked for wages and salaries over a particular calendar 

year. The data draws from the second wave of the Health and Retirement Study ((HRS, 1996), which has 

as target population the cohort of USA citizens born between 1931 and 1941.  

 If estimates of the probability of smoking assume random nonresponse, difference in the smoking 

behaviour between males and females is detected for those with wages equal to or above $25,000, with 

evidence suggesting that at such level of income males have a significantly higher probability of smoking 

than females. Relaxing the rather strong assumption of exogeneity leads to estimates of bounding 

intervals for each of the gender sub-samples. The bounds create a region of identification for the unknown 

probability of smoking in the presence of income nonresponse. Because the two estimated sets of bounds 

for males and females overlap, and the overlapping region is not significantly different than zero, a relax 

of the exogeneity assumption implies that the null of equality in the probability of smoking between males 

and females cannot be rejected. Such conclusion affects all income intervals. Likewise, the data cannot 

reject the equality in the probability of smoking between high and low earners for any of the sub-samples 

considered. Once bounds incorporate information from partial respondents to a categorical question the 

result changes under the null of no anchoring effects. However, if anchoring effects are allowed for, the 

presence of partial information does not imply an improvement on the identification region for the 

unknown probabilities of smoking, for either of the sub-samples considered, relative to the identification 

provided by worst case bounds without bracket respondents.  
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Appendix A 
Section 2 extends the framework in Horowitz and Manski (1998) to allow for bracket respondents 

in a bounding interval that accounts for covariate nonresponse. The paper by Horowitz and Manski (1998) 

derives bounds for a further two cases, that of joint covariates and dependent variable nonresponse, and 

the case with mixed nonresponse (i.e., only some covariates and the dependent variable suffer 

nonresponse). This appendix provides some guidelines and a summary of how to deal with joint and 

mixed nonresponse in case of the presence of a bracket response sub-population and the anchoring effect.  

 To motivate this section we look at two possible examples. Example number 1 assumes we want 

to estimate P(smoking | income,gender) , where the dependent variable is a binary outcome while the 

covariate income is continuous, and it is assumed that nonresponse can affect both. Example number 2 

would be if we want to estimate ≤ ≤w hP(income t | income t) , that is, the distribution of wife’s income 

conditional on husband’s income (‘w’ and ‘h’ stand for wife and husband, respectively). The first 

example illustrates a situation where the possibility of partial information affects only the regressor. In the 

second example bracket responses can affect both the dependent variable and the regressor.  

 

A.1 Joint censoring of outcomes and regressor 
If nonresponse is unit nonresponse, this means that a nonrandom percentage of the sample refuses 

to participate in the survey, so that nonresponse affects all questions. If the survey is at individual level, 

unit nonresponse implies nonresponse for all variables, including the binary variable ‘smoking’ and the 

variable income. If unit nonresponse is at household level information would be missing for all household 

earners, such that nonresponse for husbands/wives would automatically imply nonresponse for their 

spouses. This is the case treated by Horowitz and Manski (1998). In such case the sub-sample of initial 

non-respondents are full non-respondents, since the strategy of providing unfolding bracket designs to 

elicit partial information is not relevant to the problem of missing information. Thus, bounds as derived in 

Section 3 of Horowitz and Manski (1998) apply.  

 

A.2 The mixed case: Censoring of outcomes and regressor 
When item nonresponse affects more than one variable relevant in the estimation process, three 

possible nonresponse combinations arise within one sample. Bounds derivation need to account for all 

three possibilities. One of these might be that some individuals do not respond to the dependent variable 

of interest while regressor’s information is complete. With respect to example number 1 this would imply 

observing income for some individuals who do not declare their smoking status, whereas for the example 

number 2 it would imply to observe income for some husbands whose wives decide to provide no 

information on income. The second possibility is the reverse, with some individuals who do not respond 
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to the one or regressor while, for this same group, information on the dependent variable is fully 

observed; Section 2 assumed this was the only possible situation with respect to nonresponse. Finally, 

some individuals might be such that information is not observed either for the outcome variable or (at 

least one) regressor. Although this could mean unit nonresponse, it might also be the case that respondents 

participate in the survey but do not provide information on those particular variables of interest, for 

example, while they might declare their gender and other social-economic variables important for the 

measure of interest, they do not provide information to either income or smoking status. There is an 

important distinction between this possibility and those who are defined as unit nonresponse, since as 

long as people are willing to be active participant in the survey, and in the case of continuous variables, it 

might always be possible to get partial information for the missing value, and, therefore, bounds need to 

account for such sub-population of bracket response information. On the other hand, bracket response is 

not relevant in the case of unit nonresponse. 

 Together with the three nonresponse combinations above, any sample will also comprise full 

respondents. To provide guidelines on deriving bounds in the mixed case, consider the partition of the 

population into four groups, namely full respondents (G1), outcome non-respondents (G2), regressor non-

respondents (G3) and non-respondents to both outcome and regressor (G4). We assume that in (A,x) , the 

conditioning set, only one covariate (A)  is affected by nonresponse. With this, the measure of interest 

P(y | A,x) can be partition as follows: 

 

 

 

P(y | A,x) P(y | A,x,G1) P(G1| A,x) P(y | A,x,G2) P(G2 | A,x)
P(y | A,x,G3) P(G3 | A,x) P(y | A,x,G4) P(G4 | A,x)

= × + ×
× + ×

  (A.2.1) 

 

where P(y | A,x,G2) , P(y | A,x,G3) , P(y | A,x,G4) , P(G3 | A,x)  and P(G4 | A,x)  are not 

identified by the data. Without bracket respondents the anchoring effect is not relevant. In such case 

Section 5 in Horowitz and Manski (1998) provide a particular example of how to bound (A.2.1) where the 

sub-population G1 is not considered. However, if we consider a situation where initial non-respondents 

might be routed to an unfolding bracket design, bounds need to consider both the possibility of bracket 

respondents and that of the anchoring effect. In what follows we distinguish between two types of 

outcome, binary (so that y (0,1)= ) and continuous y. 
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Case 1: Binary Outcome 
When nonresponse affects the outcome but this is a binary variable, the strategy of providing 

initial non-respondents (to the outcome) with a categorical question is not relevant, so that bracket 

response is not an issue in the presence of a binary outcome (as would be the case in Example 1). For this 

reason, the only information on P(y | A,x,G2)  and P(y | A,x,G4)  allowed by the data generating 

process is that P(y | A,x,G2) (0,1)∈  and P(y | A,x,G4) (0,1)∈ .23 On the other hand, the data might 

be more informative about the measure P(y | A,x,G3)  than simply bounding it between the (0,1) 

interval, because for the sub-population G3 the problem of missing information affects the conditioning 

set and not the outcome. It is easy to see that framework of Section 2 is applicable to P(y | A,x,G3) . 

Allow for the sub-population of G3 to be partition between bracket respondents (BR) and full non-

respondents (NR), where response refers to the variable A in the conditioning set. Then P(y | A,x,G3)  

can be partition as follows: 

 

P(y | A,x,G3) P(y | A,x,G3,BR)P(BR | A,x,G3)
P(y | A,x,G3, NR)P(NR | A,x,G3)

=
     (A.2.2) 

where,  

 

P(A | BR,x,G3)P(BR | x,G3)P(BR | A,x,G3)
P(A | BR,x,G3)P(BR | x,G3) P(A | NR,x,G3)P(BR | x,G3)

and
P(A | NR,x,G3)P(NR | x,G3)P(NR | A,x,G3)

P(A | BR,x,G3)P(BR | x,G3) P(A | NR,x,G3)P(BR | x,G3)

=
+

=
+

 (A.2.3) 

 

Therefore, bounds on P(y | A,x,G3)  follow easily applying Section 2 to (A.2.2) and (A.2.3). If we 

ignore anchoring, expression P(y | NR,x,G3,A)  and P(y | BR,x,G3,A)  in (A.2.2) are given by (4) 

and (16), respectively. Likewise, P(A | BR,x,G3)  in (A.2.3) can be bounded as in (15) while the 

unknown P(A | NR,x,G3)  is in the (0,1) interval. Modification of (17) to incorporate the four sub-

populations (G1 to G4) leads to a bounding interval on the left hand side of (A.2.1). Allowing for 

                                                 
23 In this appendix the variable ‘A’ is considered to be a continuous variable where bracket response applies. In the 
case of P(y|A,x,G4), given that for this sub-group the problem of nonresponse affects both the outcome and variable 
‘A’, we can consider the case where the binary ‘y’ is missing and information on ‘A’ is in the form of bracket 
response to an unfolding bracket design, thus the data reveals A [B , B ]j j 1∈ + . In this case we still have that 

P(y|A,x,G4) (0,1)∈  because full knowledge does not change the information on the probability of the outcome. 
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anchoring bias, and assuming the Jacowitz and Kahneman (1995) model of anchoring, implies following a 

similar set of guidance but using expressions (25) and (31) instead of (15) and (16), respectively, while 

expression (4) and the interval (0,1) remain relevant for the measures P(y | NR,x,G3,A)  and 

P(A | NR,x,G3) , respectively. 

 

Case 2: Continuous Outcome 

In this case bracket response and, therefore, anchoring, can affect not just the P(y | A,x,G3) , but 

also P(y | A,x,G2) , P(y | A,x,G4) , and P(G4 | A,x) . 

The case of how to bound P(y | A,x,G2)  is extensively treated in Vazquez-Alvarez, R., B. 

Melenberg and A. vanSoest (2000), both allowing and not allowing for anchoring, and with alternative 

explanations of anchoring, including that provided by Jacowitz and Kahneman (1995). On the other hand, 

because P(y | A,x,G3)  is affected by nonresponse only in the conditioning set, the same arguments as in 

Case 1 apply to bound such expression, either allowing or not for the anchoring effect. Thus, in Case 2, it 

only remains to indicate how to provide bounds on P(y | A,x,G4)  and P(G4 | A,x) . This situation is 

the same as in example 2, where the interest was to find the distribution of a wife’s income conditional on 

the earnings of the spouse. Using this example, if income is missing for both spouses, but they remain part 

of the sample – say, they provide information on any of the other variables in x, such as gender – their 

information cannot be treated as unit nonresponse. They might provide partial information following an 

unfolding bracket design. Ignoring the anchoring effect, bounds on P(y | A,x,G4)  will be attained 

starting by expressing a partition for P(y | A,x,G4)  similar to that given in (A.2.2), although in this case 

the partition would have to account for more sub-populations than the basic bracket and full nonresponse. 

To simplify the exposition we can assume that a household respondent answers to both outcome and 

regressor, with those who provide partial information does so for all initial missing values. With this, 

 

P(y | A,x,G4) P(y | A,x,G4,BR)P(BR | A,x,G4)
P(y | A,x,G4, NR)P(NR | A,x,G4)

=
    (A.2.4) 

 

where the measure P(y | A,x,G4, NR)  is bounded in the (0,1) interval. For bracket respondents the 

probability P(y | A,x,G4,BR)  will be an estimate given by the events j j 1y [B ,B ]+∈  and 

g g 1A [K ,K ]+∈  where j j 1[B ,B ]+  ( g g 1[K ,K ]+ ) defines a possible category in as many as j (g) categories 

as defined by the unfolding bracket design for the variable y (A). In case where anchoring effects are 

accounted for, partial information needs to be incorporated allowing for a particular model of anchoring. 
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In the case of Section 2, this would imply allowing for expression estimating analogous expression to (25) 

that might take into account combined anchoring for both the covariate and the regressor. In the case 

where j j 1[B ,B ]+ = g g 1[K ,K ]+  this is simplified to be identical to (25). 

 

Appendix B 
This section draws from Vazquez-Alvarez, R., B. Melenberg and A. vanSoest (2000) to 

summarise the effect of two alternative models of anchoring to that exposed in Section 2. The two 

alternatives are from Hurd et al. (1998) and Harriges and Shogren (1996), respectively.  

In the Hurd et al. (1998) paper, the main assumption is that individuals who are driven through an 

unfolding bracket design react to the bid by comparing such ‘clue’ to the unknown amount (for which 

they have failed to provide information in the first place). However, the comparison made by individuals 

might be biased by a ‘perception error’ made when bracket respondents compare the bid to the otherwise 

unknown amount. In Hurd et al. (1998), the perception error is modelled following a normal distribution 

with zero mean and a variance which is uncorrelated over subsequent bids in the unfolding design. 

Vazquez-Alvarez, R., B. Melenberg and A. vanSoest (2000) use a zero median assumption on the 

perception error, thus allowing for a more flexible approach while making the Hurd et al. (1998) 

assumption operation within the bounding interval approach. Vazquez-Alvarez, R., B. Melenberg and A. 

vanSoest (2000) show who this semi-parametric assumption, together with a monotonic assumption 

similar to that of expression (21), can lead to the following set of bounds on P(A | BR) : 

 

[ ] [ ]
[ ]

[ ]

for 0 min min

for min

min

for max

[0,B20), P(A| BR) 1, 2P(Q20 = 0 | BR,Q1= 0) 1,2P(Q1= 0)

[B20,B1), 0,1- 2P(Q20 = 1| BR,Q1= 0)P(Q1= 0)

 P(A| BR) < 1,2P(Q1= 0), P(Q1= 0)+2P(Q21= 0 | Q1= 1)P(Q1= 1)

[B1,B21),  1- 2P(Q1= 1), P(Q1= 0){1- 2P(Q2

≤ ≤ ×

≤

[ ]
[ ]

[ ] [ ]
min

for min min

0 = 1| Q1= 0)}

P(A| BR) <  P(Q1= 0)+ 1,2P(Q21= 0 | Q1= 1)P(Q1= 1)

[B21, ),  1- 1,2P(Q21= 1| Q1= 1) 1,2P(Q1= 1) P(A| BR) < 1

≤

∞ ≤

 

            (B.1) 

 

If we substitute expression (B.1) for expression (25), and the equivalent expression in (29) for the sub-

space of smokers, the model of anchoring of Hurd et al. (1998) substitutes that of Jacowitz and Kahneman 

(1995), thus allowing for the anchoring effect in a bounding interval. 

 Another alternative model of anchoring considered in Vazquez-Alvarez, R., B. Melenberg and A. 

vanSoest, (2000) is that of Herriges and Shroges, (1996). In this case the anchoring effect is thought to 

kick in only after the first bid. They assume that response bias is only due to the effect of the first bid on 



 
 38 

subsequent bids. Thus, once the respondent faces a second bid – in our example either B20 or B21 –, their 

answer is a reflection of how they perceive B2k as compared to B1, the initial bid. Therefore, the 

respondent takes the initial bid as information on ‘A’, the unknown amount. Vazquez-Alvarez, R., B. 

Melenberg and A. vanSoest (2000) make this assumption operation with their expression (HS), Appendix 

A, to show that under the Herriges and Shogren (1996) model of anchoring, P(A | BR)  has the following 

bounds: 

 

for 0
for
for
for

[0,B20), P(A| BR) P(Q1= 0)
[B20,B1), P(Q20 = 0 |Q1= 0)P(Q1= 0)  P(A| BR) < P(Q1= 0)
[B1,B21), P(Q1= 0) P(A| BR) <  P(Q1= 0)+ P(Q21= 0 |Q1= 1)P(Q1= 1)
[B21, ), P(Q1= 0) P(A| BR) < 1

≤ ≤
≤

≤
∞ ≤

 

   (B.2) 

 

As was the case with expression (B.1), substitution of (25) (and the related (29)) by (B.2) makes the an 

alternative anchoring model, this case that of Herriges and Shogren (1996), operational within a set of 

bounding interval while allowing for anchoring. 

 

Appendix C 
All estimates in Sections 3 and 4 are based on a weighted sample using the 1996 cross section  

All estimates in Sections 4 and 5 are based on a weighted sample using the 1996 cross sectional weights 

for household level analysis, as provided by the Health and Retirement Study (see Tracker 2.0 for a full 

description of this and other sets of weights).  

 The household weights are designed to allow inference to the US population of households 

containing a not-initially-institutionalised adult born in the relevant birth cohort (in our case, for those 

born between 1931-1941). Thus, weights are set to zero for those individuals who, over time and after the 

initial wave, have become institutionalised, decease or started living in nursing homes. Weights are also 

set to zero for those who are classified as non-respondents or response errors. With this, weights are 

scaled so as to yield weight sums which correspond to the number of individuals in the US population as 

measured by the March CPS for the year of the data collection. To this extend, weights should allow for 

the sample to be representative of background characteristics such as household composition (e.g., marital 

status) or ethnicity. 

 The selection criteria applied to our sample also applies to the weights. This appendix provides 

some statistical information of the weights that apply to household representatives who declare to have 

worked for wages/salaries over the calendar year previous to the 1996 survey. 

The mean (standard deviation) for the variable weights in this selected sample of 3,598 individuals is 
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2,204 (1,492). The median is 2,108 with values ranging from 0 to 7,004. Table B2 shows the percentile 

distribution. 

 
Table B1: Distribution of Weights 
Percentile Value of Weight 
10th Percentile 0 
20th Percentile 0 
25th Percentile 1,272 
30th Percentile 1,444 
40th Percentile 1,713 
50th Percentile 2,107 
60th Percentile 2,844 
70th Percentile 3,238 
75th Percentile 3,426 
80th Percentile 3,605 
90th Percentile 4,024 

 

Table B1 shows an important fact: 726 of the 3,598 individuals are assigned a zero weight, thus 20.2% of 

the sample that would initially comply with our selection criteria24 do not contribute towards the final 

estimated results in Section 5. One way to see who this will affect our results is to compare a selection of 

socio-economic characteristics between those with zero weight and the full selected sample. This is done 

by comparing Table 1 (Section 4) to Table B2 where we show the same characteristics as those in Table 1 

but for individuals whose household cross-section weight has been set to zero. 

 Comparison of Tables 1 and B2 shows that those with zero weight are, on average, relatively 

much younger than the full weighted sample with at least one standard deviation in difference. Those who 

are zero weighted are also both less likely to be widows and more likely to be living with a permanent 

partner. The percentage of African American are also larger in the zero weighted than in the full selected 

(weighted) sample. Furthermore, the number of females is also much larger in the zero weighted sample. 

Finally, our interest is to understand how those who are zero weighted affect the distribution of our 

groups according to response behaviour. The first row in Table B2 shows that each group (full 

respondents, bracket respondents and full non-respondents) loose a similar % relative to their own group. 

Thus, whereas 20% of the initially selected 3,598 are lost to zero weights in the final estimates of the 

bounds, a similar percentage lose applies to the 3,160 full respondents, as well as to the 320 bracket 

respondents and 109 full non-respondents. The assignment of the weights is prior to the response 

behaviour of individuals to the variable wages and salaries, and it might be plausible to assume that the 

value of assigned weights are not correlated to response behaviour. 
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Table B2: Mean (standard deviations) and percentages (with standard errors) for 
background variables. Sample with zero weight. 

 
 

All Sample Full 
Respond. 

Bracket 
Respond. 

Full 
Non-respond. 

Sample size (% of own 
group) 726 (20.2%) 641 (20.3%) 65 

(20.3%) 
20 

(18.3%) 
Age 53.1 (8.1) 53.0 (8.0) 54.0 (8.9) 52.5 (6.0) 
Education     

%Low 4.1 (0.7) 3.5 (0.3) 7.0 (1.4) 0.3 (0.5) 
%Medium 53.0 (1.9) 51.4 (0.9) 55.1 (2.7) 51.2 (4.8) 

%High 43.0 (1.8) 45.1 (0.9) 37.9 (2.7) 48.5 (4.8) 
Race     

%White 77.0 (1.6) 81.9 (0.7) 71.1 (2.5) 82.4 (3.6) 
%Afro 14.0 (1.3) 9.6 (0.5) 20.4 (2.2) 11.7 (3.1) 

%Hispanic 7.0 (0.9) 6.3 (0.4) 7.5 (1.5) 4.4 (2.0) 
%Others 3.0 (0.6) 2.2 (0.3) 0.1 (0.6) 1.5 (1.2) 

     
% Partner 87.5 (1.2) 62.2 (0.9) 56.9 (2.7) 55.8 (4.8) 
% Widow 4.0 (0.8) 10.7 (0.6) 11.6 (1.8) 14.4 (3.4) 
% Male 19.0 (1.5) 39.6 (0.9) 27.4 (2.5) 33.9 (4.5) 
% House owners 78.0 (1.5) 75.8 (0.8) 67.8 (2.6) 81.5 (3.7) 

Note: For education variable see footnote in Table 2. 

 

 One possibility is that indirectly, weights are related to the components of income in the 

household, thus related to wages and salaries of household representatives. If so, and if response 

behaviour to income is income related, weights might have an effect on the bounds applied to the 

distribution of wages and salaries, the central issue in Section 5. To see how weight affects the 

distribution of the variable wages and salaries Table B3 compares summary statistics for various 

definitions of the sample, allowing for full respondents only. In a similar fashion, Table B4 compares the 

distribution of information provided by bracket respondents since this is also information on wages and 

salaries, even if partial, while it is also affected by the assigned cross-section weights. 

 
Table B3:  Summary statistics for the variable Wages and Salaries (USA dollars, 1996), for 

various definitions of the full respondents sample, under different use of the cross-
section weights. 

 FR, w FR, n-w FR, 0-w FR, 
+ve-w, n-w 

FR, +ve-w, w. 

Size 3,160 3,160 641 2,519 2,519 
Mean 29,900 31,300 31,300 29,600 31,400 
s.d (2,646) (28,300) (25,900) (26,600) (28,300) 
Median 25,000 25,400 25,000 25,000 25,400 
Min value 0 0 0 0 0 
Max value 350,000 350,000 350,000 350,000 350,000 

Note: ‘FR’ implies ‘Full Respondent to wages and salaries. FR, w’ stands for ‘statistics for Full Respondents using weights’, 

‘FR, n-w’ stands for ‘statistics for Full Respondents, un-weighted values’, ‘FR, 0-w’, stands for Full Respondents who are 

assigned zero as cross-section weight, ‘FR, +ve-w, n-w’, stands for Full Respondents who are assigned a positive weight, 

but shown statistics are un-weighted’ and finally, ‘FR, +ve-w, w’ stands for statistics with full respondent who have a 

positive weight, and where such weights are used. 

 

                                                                                                                                                        
24 See Section 4 



 
 41 

 

Table B4: Distribution of Bracket Respondents among categories, by definition of cross-
section weights (numbers are %). 

Type Category All BR  
(n=329) 

All BR, w>0 (n=264) All BR, w=0 (n=65) 

Complete 
BR  

 
$0 - $5,000 

 
$5,000 - $25000 

 
$25,000 - $50,000 

 
$50,000 – inf. 

 
10 (1.7) 

 
48.6 (2.8) 

 
27.8 (2.5) 

 
10.7 (1.7) 

 
11 (1.8) 

 
51.1 (3.1) 

 
26.5 (2.7) 

 
9.5 (1.8) 

 
7.7 (3.3) 

 
53.8 (6.2) 

 
24.6 (5.3) 

 
7.7 (5.3) 

Incomplete BR  
$0 - $25,000 

 
$25,000 – inf. 

 
- 
 

2.8 (0.9) 

 
- 
 

1.9 (0.8) 

 
- 
 

6.2 (3.0) 
Note1: ‘BR’ refers to ‘Bracket Respondent’, ‘w>0’ refers to all bracket respondents with positive cross section weights, and ‘w=0’ refers to 

all bracket respondents with zero weight. 

Note2: Column 4 shows un-weighted proportions. Weighted proportions would be identical to Column 3, with some slight change to the 

estimated standard errors. 
 

Table B3 suggest that the distribution of the variable wages and salaries for the selected sample is almost 

unaffected by the weights, as the weighted sample for full respondents (Column 3) and the weighted 

sample of full respondents ignoring zero weighted (Column 6) are, as expected, identical. If we were to 

ignore the weights and use all 3,160, Column 1 shows that this would have only a very small (almost 

insignificant) affect in that it would lower the estimated mean, relative to the use of weights which assigns 

zero to 20.2% of the full respondents. A similar argument applies to the small effect that weights has on 

the distribution of information provided by bracket respondents. Table B4, Column 3, shows that using 

weights most bracket respondents provide complete information in the two central categories with the 

mode answer in the category $5,000 - $25,000 which takes approximately half of the respondents to the 

unfolding bracket design. Comparing estimates in Column 4, where zero weights are ignored shows a 

similar distribution among categories by bracket respondents with a positive cross-section weight. In all, 

Tables B3 and B4 suggest that wages and salaries, and partial information to wages and salaries, are 

variables with very week correlation to assigned weights. In fact, allowing for zero weights, the 

correlation between income and weights is -0.028 (with standard error in the correlation of 0.017), while 

ignoring zero weighted incomes, the correlation between income and (positive) weights is –0.029 (0.017). 

 Finally, whereas Table B1 provides some summary statistics on background variables, we now try 

to see if this variables have any explanatory power on weights. For this we run a simple regression of 

weights on the these background variables, with results as given in Table B5. 
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Table B5: Regression of Weights on background variables (all population, n=3,598) 
N=3,598 
Dependent variable= Weight/100 
Adjusted R-square=0.241 (R-square=0.243) 
Root MSE=13.003 
F(9,3588)=127.8 

Variable Coefficient t-statistic 
Constant -33.95 -12.95 
Age 0.87 19.84 
Male=1 3.37 6.95 
Low & medium education 
level=1 

 
-1.40 

 
-3.13 

Owner of household=1  
0.08 

 
0.16 

Race White=1 12.14 20.54 
Race Hispanic=1 6.48 6.81 
Race other=1 11.08 6.94 
Has partner=1 -6.48 -11.91 
Widow=1 -3.03 -3.68 

Note: Omitted Race is Black African-American, so that  
‘Others’ groups races such as Asian, other Latin, etc. 

 

With this simple regression analysis, Table B5 shows a relatively low R-square, so that on the whole, this 

variables jointly do not explain much about the assigned weights. However, other than ownership of 

household, all variables accounted for are significantly different than zero. Based on this, Table B5 

suggest that high weights are assigned to older individuals in the cohort, to males relative to females and 

those with a higher level of education. On the other hand, those with partners, non-widows and African-

American (relative to any of the other ethnic origins) are assigned lower cross-sectional weights, implying 

that within our selected sample individuals with such characteristics are over represented 

 

Appendix D 
Section 3 showed that applying a particular sample selection criteria to the 1996 wave of the 

Health and Retirement Study lead to a sample where the percentage of females is significantly higher than 

males, where these are population estimates due to the use of (cross-section representative) weighs. It is 

possible to think that the selection criteria creates a sample imbalance between genders. To show this is 

not the case this appendix provides summary statistics of the distribution between males and females for 

the data before selection.  

 The HRS started in 1992, collecting data every two years and up to the last wave in the year 2000. 

The target population are individuals born between 1931 and 1941, thus, selected households are those 

with a member fulfilling such criteria. These individuals are called ‘household representatives’. Any other 

household member is also interviewed and referred to ‘second household respondents’, with such 

individuals been usually spouses, family relatives living in the same household or carers. The 1996 wave 

interviewed a total of 6,816 households, thus the sample representative of the target population amounted 

to 6,816 individuals. The share of these between males and females was of 2,262 and 4,554 respectively. 
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Using cross-section representative weights this share implies that the target population is distributed such 

that 36.6% are males and 63.4% are females. Therefore, this already shows that females are a significantly 

larger percentage than males. In applying our selection criteria the first step is to select those who answer 

‘yes’ to the question ‘Did you work for pay in the last calendar year (i.e., 1995)?’, a question which is 

asked to all households representatives. Based on those who answer ‘yes’, the final selection criteria 

implies selecting those who answer ‘yes’ to the question ‘Did you receive wages/salaries in the last 

calendar year (i.e., 1995)?’. Using cross-section population weights, Tables C.1 and C.2 shows the share 

between genders with respect to the possible answers to the above two questions. These estimates show 

that the distribution between genders for the final selected sample – employed for the empirical estimates 

in Section 4 – maintains a similar share between genders as that observed in the original 6,816 household 

respondents. 

 
(1)  Original sample = 6,816 household respondents representing the target population of individuals born between 

1931 and 1941. Estimates of the Population share between males and females is 36.6% and 63.4%, respectively. 
 
(2)  Selection Criteria 1: Select individuals who answer YES to the question ‘Did you work for pay during the last 

calendar year?’: 

 

 

Table C1: Distribution between genders and response to the first selection criteria. 
 All individuals Males Females 

Answer YES 
Total

Weighted percentage

 

4,145 

100.0 

 

1,405 

30.9 

 

2,740 

69.1 

Answer NO 
Total

Weighted percentage

 

2,661 

100.0 

 

850 

32.6 

 

1,811 

67.4 

Answer Don’t know 
Total

Weighted percentage

 

10 

100.0 

 

7 

68.0 

 

3 

32.0 
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(3)  Selection Criteria 2: Select individuals who, having answered YES to the first selection criteria, answer YES to the 

question ‘Did you receive pay in the form of wages/salaries during the last calendar year?’: 
 

Table C2: Distribution between genders and response to the second selection criteria. 
 All individuals Males Females 

Answer YES 
Total

Weighted percentage

 

3,602 

100.0 

 

1,177 

38.4 

 

2,425 

61.6 

Answer NO 
Total

Weighted percentage

 

706 

100.0 

 

288 

44.5 

 

418 

57.5 

Answer Don’t know 
Total

Weighted percentage

 

6 

100.0 

 

1 

24.0 

 

5 

76.0 

 


