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Abstract

This paper proposes sequential matching and inverse selection probability weighting

to estimate dynamic casual effects. The sequential matching estimators extend simple,

matching estimators based on propensity scores for static causal analysis that have

been frequently applied in the evaluation literature. A Monte Carlo study shows that

the suggested estimators perform well in small and medium seize samples. Based on

the application of the sequential matching estimators to an empirical problem - an

evaluation study of the Swiss active labour market policies - some implementational

issues are discussed and results are provided.
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1 Introduction 

The sample selection problem in its static version has received considerable attention in the microecono-

metrics and statistics literature concerned with uncovering causal effects of interventions (e.g. Heckman, 

1979, Heckman and Robb, 1985, Holland, 1986, Roy, 1951, Rubin, 1973, 1974, 1977). The fundamental 

problem is that we desire a comparison of two (or more) different states of the world (with one outcome 

for each state) and have to perform this comparison using the units (individual, firms, etc.) that actually 

are observed in that state. If there are factors that jointly influence selection into the different states and 

the variables used to measure the (causal) effect of being in one state or the other, then a (unadjusted) 

comparison of means of these outcome variables in the different states do not estimate causal effects. In 

this case different methods of adjustment may be used to recover the causal effects. Which of those meth-

ods is appropriate depends on the specific ‘nature’ of the connection of the outcome process to the selec-

tion process that may differ from one application to the other. The surveys by Angrist and Krueger (1999) 

and Heckman, LaLonde, and Smith (1999) give comprehensive overviews.  

The ‘good data case’ (all variables that jointly influence selection and outcomes are observable) received 

considerable attention in applied as well as methodological studies. This case is at issue in this paper as 

well. In particular matching methods, which implicitly or explicitly form comparison groups to adjust for 

the difference in observable characteristics related to the selection process, are popular (e.g. Rubin, 1973, 

Rosenbaum and Rubin, 1985, Deheija and Wahba, 1999, 2002, Heckman, Lalonde, and Smith, 1999, 

Smith and Todd, 2001, Lechner, 1999, 2002a). There are recent advances to improve the understanding of 

the asymptotic properties of various estimators used in applications (Abadie and Imbens, 2002, Hahn, 

1998, Heckman, Ichimura, and Todd, 1997, Heckman, Ichimura, Smith, and Todd, 1998, Hirano, Imbens, 

and Ridder, 2003, Ichimura and Linton, 2001, among others). 

However, the static model may not be able to address all selection issues that occur in applications. Sup-

pose, for example, one is interested in the effect on female labour supply of giving birth to two children 

(sequence 2) compared to giving no birth (sequence 1) in a given period of time. Apparently, selection 
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occurs with respect to the first and second fertility decision (ignore twins). However, the second decision 

may well depend on the effect of the first birth on subsequent labour supply (an intermediate outcome). 

Since even in the ‘good data case’ selection cannot be ‘controlled’ for in the beginning of the sequence 

(because plans may be changed depending on the intermediate outcomes), the static model is not flexible 

enough to handle selection biases in such situations. Similar problems occur in other fields, too, for exam-

ple, when evaluating the effects of sequences of training programmes.  

There are several ways of handling such dynamic selection problems in observational studies. When the 

outcome variable is a duration variable, like months of unemployment, Abbring and van den Berg (2003) 

suggest modelling the hazard rate into unemployment with a selectivity correction. However, duration 

modelling has the disadvantage that usually a key identifying assumption is the multiplicative proportional 

hazard rate condition that is in many cases hard to motivate from substantive considerations about the 

selection process. Furthermore, taking account of intermediate outcomes (others than those coming di-

rectly from duration dependence) is not trivial.1 

Other candidates of parametric models that allow intermediate outcomes to some extent are classical dy-

namic panel data models with sample selection (e.g. the survey by Arellano and Honoré, 2001). Besides 

the sensitivity with respect to misspecification, another issue is that such models provide only indirect 

estimates of the causal effects, and in many cases the connection between the estimated coefficient and the 

causal parameters of interest is not straightforward.2 

Another approach to dynamic selection problems is to ignore intermediate outcomes and treat the se-

quence participation as being determined from the start. The problem is considerably simplified. Thus, this 

approach allows using the estimation methods available for the static causal model. For example, Arulam-

palam and Booth (2001) analyse the effects of multiple training events within 10 years by modelling them 

                                                           
1  For the use of duration models analysing experiments see Ham and LaLonde (1996). 
2  The work by Heckman and Robb (1985) and Heckman and Hotz (1989) address the issue of how to use panel data 

to correct for selection effects and thus identify causal effects. However, with respect to the definition of the 

treatments their approach is static. 
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as outcomes of a count data process. In such a process there is no role for any intermediate outcomes to 

determine selection.  

Much of the literature on (static) causal effects in the ‘good data case’ is devoted to reduce the role of 

functional form assumptions and to leave the heterogeneity of the effects across units unrestricted. To 

exploit these advantages of the static evaluation literature for the dynamic selection problem some papers 

‘twist’ the static causal model by defining effects in a way that avoids most of the dynamic selection 

problems. Then standard matching techniques are used for estimation. For example, evaluating pro-

grammes of the active labour market policy Gerfin and Lechner (2002) circumvent the problem of a single 

individual participating in several programmes sequentially by estimating the effect of the first programme 

only. Similarly, Li, Propert, and Rosenbaum (2001) and Sianesi (2001) are estimating the effect of a delay 

of a treatment. Both papers are based on matching approaches for binary treatments. Although the actual 

implementation of the matching algorithms used are fairly different, both papers estimate the effect of 

‘waiting’ by matching those people who at a given time ‘face the risk’ of treatment but do not participate 

to those joining the treatment, and then averaging over the distribution of the start dates of the treatment. 

However, ‘waiting’ essentially defines a dynamic treatment sequence if ‘leaving the queue’ is allowed 

during waiting. Bergemann, Fitzenberger, and Speckesser (2001) analyse the effect of programme se-

quences using a combination of a matching and difference-in-difference estimator. Again, their approach 

consists in sequentially using the static evaluation model. Since the causal effects of interest cannot be 

formally defined using the static framework, the conditions required for identification remain unclear.3 

Robins (1986) suggests an explicitly dynamic causal framework that is subsequently used in applications 

in epidemiology and biostatistics. Although he focuses on specific sequences and identifying conditions 

that would be unconventional in econometrics (as well as using a parametric estimation framework), he 

seems to be the first who explicitly formalises causal effects of dynamic sequences using potential out-

                                                           
3  Recently, Miquel (2003) discussed identification by IV and differences-in-differences in an explicitly dynamic 

model of treatment sequences. 
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comes and allowing for intermediate outcomes to determine the next state of the sequence. His approach is 

extended by Gill and Robins (2001) to the case of continuous covariates and treatments. 

Recently, Lechner and Miquel (2001, LM01 further on) extend Robins’ (1986) framework to allow com-

parisons of more general sequences and selection processes. They establish notation and assumptions that 

are more common in econometrics. Focussing on the ‘good data case’ (selection on observables, including 

intermediate outcomes), LM01 discuss identification conditions, denoting them as the weak and strong 

dynamic conditional independence assumptions (W-DCIA, S-DCIA). They show that under S-DCIA no 

specific problems arise. For W-DCIA the endogeneity problem stemming from the endogeneity of inter-

mediate outcomes leads to a loss of identification even if all selection variables are observable, but inter-

esting causal parameters are still identified.  

This paper proposes estimators for the model of LM01 that retain the flexible properties of the estimators 

commonly used in the static evaluation literature, namely that they are robust to functional form assump-

tions, do not restrict effect heterogeneity, and are fairly easy to compute. They are a sequential version of 

matching-on-the-propensity score estimators. Furthermore, a particular variant of inverse probability 

weighted estimators is discussed as well. In a Monte Carlo study some finite sample properties of these 

estimators are exemplified and compared to other variants of matching estimators. Furthermore, they are 

applied to the evaluation of the Swiss active labour market programmes. This empirical part illustrates 

several issues concerning the implementation of sequential matching estimators. 

Section 2 outlines the dynamic causal framework suggested by LM01: The notation is introduced and the 

basic identification conditions are restated. To focus ideas the basic model only is presented (an initial 

period, two subsequent periods, and two treatments each period). In Section 3 the estimation problem is 

explained and sequential matching as well as sequential inverse probability weighted estimators are pro-

posed. The Monte Carlo study in Section 4 contains simulations for two data generating processes, one 

fulfilling S-DCIA and one fulfilling W-DCIA only. Section 5 presents the application and Section 6 con-

cludes. Appendix A addresses issues that arise with sequential propensity score methods with multiple 
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treatments as used in the empirical part. Appendix B details the sequential matching protocol used in the 

application and Appendix C discusses some properties of the inverse-probability weighted estimators. 

2 The dynamic causal model 

This section introduces the dynamic causal model proposed by LM01 and rephrases their identification 

conditions based on sequential selection on observables. Since it is sufficient to use a three-periods-two-

treatments model to discuss all relevant issues that distinguish the dynamic from the static model, this 

section shows the results only for this basic version of the model.4 

2.1 The variables and the definition of the effects to be estimated 

Time periods indexed by t and τ  ( , {0,1,2}t τ ∈ ). The vector of random variables 0 1 2( , , )S S S S=  de-

scribes the treatment received by a member of the population.5 In period 0 everybody receives the same 

treatment, i.e. is in the same state 0 0S = . From period 1 tS  can take two values. A particular realisation 

of tS  is denoted by {0,1}ts ∈ . Furthermore, denote the history of variables up to period t by a bar below 

a variable, e.g. 2 1 2( , )s s s= .6 In period 1 a member of the population can be observed in exactly one of 

two treatments (0, 1). In period 2 she participates in one of four treatment sequences 

( (0,0),(1,0),(0,1),(1,1) ). Therefore, every individual ‘belongs’ to exactly one ‘short’ sequence defined by 

1s  and another ‘long’ sequence defined by 2s . To sum up, in the three-periods-two-treatments example 

LM01 consider 6 different overlapping potential outcomes corresponding to 2 mutually exclusive states 

                                                           
4  For the finite-number-of-periods-finite-number-of-treatments model the reader is referred to LM01 instead. 
5  The notation follows the spirit of Rubin (1974) and Robins (1986). The terms treatment and state are used 

interchangeably. In the following members of the population are sometimes called individuals for simplicity. 

Capital letters usually denote random variables and small letters denote specific values of the random variable. 

6  To differentiate between different sequences a letter (e.g. j) may be used to index a sequence like j
ts . Further-

more, the initial period is ignored when denoting different sequences. 
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defined by treatment status in period 1, plus 4 mutually exclusive states defined by treatment status in 

period 1 and 2 together.  

Variables used to measure the causal effects of the treatment, i.e. the potential outcomes, are indexed by 

treatments and denoted by 0 1 2( , , )t t t ts s s sY Y Y Y= . Potential outcomes are measured at the end of each pe-

riod, treatment status is measured in the beginning of each period. For each length of a sequence, one of 

the potential outcomes is observable and denoted by tY . The observation rules are defined in equation (1): 

1 0 1,1 1,0 0,1 0,0
1 1 1 2 1 2 1 2 1 2(1 ) (1 ) (1 ) (1 )(1 )t t t t t t tY S Y S Y S S Y S S Y S S Y S S Y= + − = + − + − + − − . (1) 

Next, variables that may influence treatment selection and potential outcomes, often called attributes or 

confounders, are defined and denoted by X. Because treatment status may influence the realisations of 

these variables (introducing some endogeneity), there are potential values of these variables as well 

( 1 1 1
0 1( , )s s sX X X= ). 1

1
sX  may contain 1

1
sY  or functions of it. The K dimensional vector tX  is observable 

at the same time as tY  (thus it is observed only after the selection tS  is realised7). The observation rule for 

tX  is analogous to the one for the potential outcomes given in equation (1). 

Interest is in the estimation of the mean causal effect of a sequence of treatments defined up to period 2 

( 2
ks ) compared to another sequence of the same length ( 2

ls ) for a particular population and for outcomes 

of period 2 (or later). This effect is denoted by 2 2,
2

k ls sθ .8 2 2,
2

k ls sθ  may be of interest for several subpopula-

tions: Mean causal effects can be constructed for subpopulations defined by variables not influenced by 

the treatment, because causal statements that are conditional on the effects of the treatments usually do not 

have useful interpretations. Thus, conditioning the effects on X requires ‘exogeneity’ assumptions that are 

discussed below. However, conditioning on treatment status is interesting, because it allows similar com-

                                                           
7  Therefore, there is no role for 2X  in a two period model. 

8  Causal effects of sequences of length 1 can be analysed within the static model of potential outcomes.  
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parisons like comparing the well-known effects of treatment on the treated (ATET) and treatment on the 

nontreated of the static framework. The definition of such average causal effects is given in equation (2): 

2 2 2 2,
2 2 2( ) : ( | ) ( | )

k l k ls s s sj j js E Y S s E Y S sτ τ τ τ τθ = = − = , 0 2τ≤ ≤ , k l≠ , , {1,2,3,4}k l∈ , {1,..., 2 }j τ∈ . (2) 

To consider 2 2,
2 ( )

k ls s jsτθ  a causal effect the standard assumptions of the Rubin (1974) model are necessary, 

like the Stable Unit Treatment Value Assumption (SUTVA), implying that the effects of treatment on one 

person do not depend on the treatment choices of others. 2 2,
2

k ls sθ  [= 2 2,
2 0( 0)

k ls s sθ = ] is called the dynamic 

average treatment effect (DATE). Accordingly, 2 2,
2 2( )

k ls s ksθ  is termed DATE on the treated (DATET). 

Note that there are cases in-between, like 2 2,
2 1( )

k ls s lsθ , when the population is defined by participating in a 

sequence shorter than the one evaluated. Furthermore, the effects are symmetric when defined for the 

same population in the sense of 2 2,
2 ( )

k ls s jsτθ  = 2 2,
2 ( )

l ks s jsτθ− , but that 2 2,
2 ( )

k ls s ksτθ  2 2,
2 ( )

l ks s lsτθ≠ − , otherwise. 

Table 1 summarises the notation introduced so far.  

Table 1: Summary of notation and definitions  

Symbol Meaning Timing within 
period 

0,1,2t =  time periods -- 
1 2(0, , )S S S=  RV: treatment  beginning 

1s ,  2 1 2( , )s s s=  specific sequence of treatments until period 1 or 2 beginning 
{0,1}ts ∈  2 exclusive treatments in each period beginning 

1 2( , )t t ts s sY Y Y=  RV: potential outcomes end 

1 2( , )Y Y Y=  RV: observable outcomes end 

0 1( , )t t ts s sX X X=  RV: potential confounders end 

0 1( , )X X X=  RV: observable confounders end 
2 2,

2 ( )
k ls s jsτθ  mean causal effect of 2

ks  compared to 2
ls  for those participating in jsτ  end 

RV: Random variable.  
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2.2 Identification of the effects of dynamic treatments  

Suppose there is an infinitely large random sample ( 1 2 0 1 1 2 1,...,{ , , , , , }i i i i i i i Ns s x x y y = ) from the population 

0 0S =  that is defined by the corresponding random variables ( 1 2,S S , 0 1,X X , 1 2,Y Y ). LM01 explore the 

identifying power of assumptions that may be termed ‘good data’, ‘selection on observables’ or ‘condi-

tional independence’ assumptions. More precisely, they assume that out of the variables that determine 

treatment status in each period the sample contains those that are related to the relevant potential out-

comes. If they are not influenced by the treatment in a static model conditioning the observed outcomes on 

these variables removes all selection bias (see Rubin, 1977). The difference between the static model and 

the dynamic causal model is that the latter allows for a second type of selection bias, because intermediate 

outcomes might influence the decision to continue a sequence, in other words, the intermediate outcomes 

may not be considered exogenous anymore.  

Assume that in the beginning of each period the researcher has sufficient knowledge to assume that as-

signment to treatment is independent of potential outcomes conditional on that information.9 This informa-

tion may be influenced by intermediate outcomes. Assumption W-DCIA of LM01 formalises what LM01 

call the WEAK DYNAMIC CONDITIONAL INDEPENDENCE ASSUMPTION.10 

Assumption W-DCIA (weak dynamic conditional independence assumption) 

a) 0,0 1,0 0,1 1,1
2 2 2 2 2 1 1 1 1, , , | ,Y Y Y Y S S s X x= = ;11 

                                                           
9  The following assumptions relate to identification of all treatment effects defined in Section 2. Hence, all potential 

outcomes are involved. If the comparison desired involves fewer potential outcomes, or is based on a sub-

population defined by a specific treatment sequence of interest, then fewer potential outcomes need to appear in 

the following assumptions. For the sake of brevity, we do not mention this issue below anymore, but the required 

changes will be obvious (as they are in the static framework). 
10  Note that the assumptions WDCIA and SDCIA (below) are somewhat stronger than necessary, but have the virtue 

of being easily explained in terms relating to the selection process (see LM 04 for details). 
11  |A B C c=  means that each element of the vector of random variables B is independent of the random variable 

A conditional on the random variable  C  taking a value of  c. ( ) |A B C c=  means that the joint distribution of 

the elements of A is independent of B conditional on C = c. 
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b) 0,0 1,0 0,1 1,1
2 2 2 2 1 0 0, , , |Y Y Y Y S X x= ; 

c)    1 0 01 ( 1| ) 0P S X x> = = > , 2 1 1 1 11 ( 1| , ) 0P S X x S s> = = = > ;   1 1x χ∀ ∈ , 1 1: {0,1}s s∀ ∈ . 

Part a) states that conditional on the previous treatment, observable outcomes and confounding variables, 

the potential outcomes are independent of selection in period 2 ( 2S ). Part b) states that conditional on 

some exogenous variables 0X  potential outcomes are independent of assignments in period 1 ( 1S ). These 

assumptions are valid for all values of 0x  and 1x  in a given set of interest 1χ . Part c) is the usual common 

support requirement (CSR), basically stating that all sequences to be evaluated must have a positive prob-

ability of occurring in all strata defined by the values of 0x  and 1x  that are in the set of interest 1χ . Obvi-

ously, only sequences that are feasible can be evaluated. If W-DCIA is combined with an initial condition 

for the confounding variables ( 0X = 0 1
0 0X X=  = 1,1 1,0

0 0X X=  = 0,1 0,0
0 0X X= ) and some regularity, then 

THEOREM 1 of LM01 shows that 2 2,
2

k ls sθ , 2 2,
2 1( )

k ls s jsθ  and 1 2 1 2( , ),( , )
2 1 2( , )

k k k ls s s s k js sθ  ( 1 2,k ks s∀ , 1 2,l ls s , 

1 2, {0,1}j js s ∈ ) are identified. In plain words, pair-wise comparisons of all sequences are identified, but 

only for groups of individuals defined by their treatment status in period 1, or on average in the popula-

tion. The relevant distinction between the populations defined by treatment state in the first and subse-

quent periods is that in the first period treatment choice is random conditional on exogenous variables (the 

result of the initial condition for 0S , 0X ), whereas in the second period, randomisation into these treat-

ments is conditional on variables already influenced by the first part of the treatment. Specific 

comparisons are identified for populations defined by treatment status in both periods, if populations and 

treatment sequences are the same in the first period.  

To identify the effects of two different sequences defined for a subpopulation given by treatment status in 

both periods, additional ‘exogeneity’ assumptions are required. The strong conditional independence as-

sumption (S-DCIA) states that conditional on 0X , knowing 1S  does not help to predict the potential out-
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comes given a value of the observed 1X . The direct and testable implication of this assumption is 

1 1 0 0|X S X x= . Hence, implies that the confounders are not Granger-caused by previous treatments. 

Assumption S-DCIA (strong dynamic conditional independence assumption) 

a) 0,0 1,0 0,1 1,1
2 2 2 2 2 1 1 1 1, , , | ,Y Y Y Y S S s X x= = ; 

b) 0,0 1,0 0,1 1,1 0,0 1,0 0,1 1,1
2 2 2 2 2 1 2 1 2 1 2 1 1 0 0, , , , ( , ), ( , ), ( , ), ( , ) |Y Y Y Y Y X Y X Y X Y X S X x= ; 

c) 2 1 1 1 11 ( 1| , ) 0P S X x S s> = = = > , 1 0 01 ( 1| ) 0P S X x> = = > ;    1 1x χ∀ ∈ , 1 1: {0,1}s s∀ ∈ . 

ASSUMPTION S-DCIA allows for outcomes of previous treatments (predetermined endogenous variables) 

to appear in the conditioning set, and is still strong enough to identify all effects. However, these variables 

have to fulfil a strong exogeneity requirement in the sense that if they are influenced by the treatment in 

period 1, this influence must not have an impact on the potential outcomes of interest in period 2. 

3 Estimation  

Presuming identification by ASSUMPTIONS W-DCIA or S-DCIA this section discusses the general struc-

ture of the estimation problem and proposes matching estimators that are fairly close to the estimators 

frequently used in static evaluation studies based on models with selection on observables (e.g. Dehejia 

and Wahba, 1999, 2002, Heckman, LaLonde, and Smith, 1999, Smith and Todd, 2001, Lechner, 1999, 

2002a). Estimators based on (sequential) reweighting using the inverse selection probabilities are dis-

cussed as well. It is shown how the general structure of adjustments to the estimators of the static model 

looks like. The focus on those classes of estimators is for simplicity only. All the usual estimators avail-

able could be adjusted to the dynamic context in the same way the sequential matching and inverse prob-

ability weighted estimators are adjusted.12 

                                                           
12  The so-called regression imputation estimators as discussed for example by Frölich (2001, 2004), Hahn (1998), 

and Heckman, Ichimura, and Todd (1998) are efficient but suffer from the unsolved problem of optimally 

choosing the ‘tuning’ parameters, like bandwidths in the nonparametric regression steps. The estimators proposed 

here avoid these problems. 
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This section concentrates on the crucial ingredients of the effects to be estimated, namely the respective 

counterfactual expectations and their relation to the observable outcomes. Given this connection, the con-

struction of estimators for the effects is straightforward. The first subsection reviews estimation of 

counterfactuals that can be analysed within the usual static framework, whereas the second subsection 

addresses issues concerning counterfactuals that require a dynamic framework. 

3.1 Same treatment and conditioning sequences in period 1 – a static problem 

The complexity of the estimation problem depends on the similarity between the sequences used to index 

the potential outcomes and those defining the population of interest. If the sequences coincide 

( 1
2 1 1 2 1 1( | ) ( | )sE Y S s E Y S s= = = , 1 2,

2 1 1 2 2 2 1 1 2 2( | , ) ( | , )s sE Y S s S s E Y S s S s= = = = = ), the sample 

mean in the corresponding subsample is a natural nonparametric estimator.13  

The estimation of counterfactuals defined for sequences identical to the conditioning set in period 1 is a 

well-known estimation problem and is extensively discussed in the literature about static causal models. 

As shown by LM01 the typical estimands have the following form:  

1 2,
2 1 1 2 2[ | , 1 ]s sE Y S s S s= = − =

1
1 1 2 2 1 1 1 2 2[ ( | , , ) | , 1 ]tX

E E Y S s S s X S s S s= = = = −  = 

                                  = 2 1

|2 1
12

|
1 1 2 2 2 1 1 1 2 2

( )
[ ( | , , ( ) | , 1 ]

s s

s s
t

p X
E E Y S s S s p X S s S s= = = = − ,  

 2 1|
2 1 2 2 1 1 1 1( ) : ( | , )s sp x P S s X x S s= = = = , 1 2, {0,1}s s ∈ . (3) 

For this type of estimand with a binary treatment many different estimators are suggested in the literature 

and applied in empirical studies. Such estimators exploiting the conditional independence assumption 

(CIA) are termed matching methods in the survey by Heckman, LaLonde, and Smith (1999), because they 

are based on comparing different observations with different treatment status but similar values of 

                                                           
13  Without loss of generality we consider the potential outcomes of period 2 only. However the outcome 1 2,s s

tY  may 

be evaluated in any period after the treatment (t > 2) as long as those potential outcomes do not influence 2 1,S S . 
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0 1( , )X X  or the respective conditional selection probabilities 2 1|
2 1( )s sp x .14 Rosenbaum and Rubin (1983) 

introduced the frequently applied principle to condition on the conditional participation probabilities (so-

called propensity scores) instead of the control variables directly as a way to reduce the dimension of the 

estimation problem. Abadie and Imbens (2002), Hahn (1998), Heckman, Ichimura, and Todd (1998), and 

Ichimura and Linton (2001) investigate the asymptotic distributions of different types of matching esti-

mators. Hirano, Imbens, and Ridder (2003) and Hernan, Brumback, and Robins (2001) focus on the as-

ymptotic distribution of particular variants of inverse probability-weighting estimators. Among others, 

Frölich (2001, 2004) and Smith and Todd (2001) discuss practical and small sample issues for different 

types of such estimators.15 

3.2 Different treatment and conditioning sequences in period 1 – the dynamic problem 

3.2.1 Relation between potential and observable outcomes 

If the sequences of interest differ in the first period, then LM01 show that the estimand identified by S- 

W-DCIA is given by equation (4): 

2

0 1
2 1 1 2 2 2 1 1 1 1 0 0 1 1( | ) { [ ( | , ) | , ] | }

ks j k k j

X X
E Y S s E E E Y S s X x S s X x S s= = = = = = =  =  

                            = 2 1 1 1

|1 2 1
0 11 2

| ,
2 2 2 2 1 1 1 1 0 1 1

( ) ( )
{ [ ( | , ( ) | , ( )] | }

k k k k

k k ks s s

s s s sk k j

p X p X
E E E Y S s p x S s p X S s= = = ,  

 1
1 0 1 1 0 0( ) : ( | )sp x P S s X x= = = , 2 1 1 2 1 1| , |

2 1 2 1 1 0( ) : [ ( ), ( )]
k k k ks s s s s sp x p x p x= , 1 2 1 1, , , {0,1}k k js s s s ∈ . (4) 

                                                           
14  Note that the statistics literature uses the term matching estimation in a more restrictive way. It includes only 

estimators that actually form comparison groups based on similarity of treated and controls with respect to 

0 1( , )X X , or the corresponding probabilities (e.g. Rosenbaum and Rubin, 1983). 

15  For more details see the excellent survey by Imbens (2003). 
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The previous estimation principles can be applied here as well. However, the reweighting has to be per-

formed sequentially. In a first stage a regression of 2Y  on 1X  (or 2 1 1| ,
2 1( )

k k ks s sp x ) in the subsample of 

2 2
kS s=  is performed, leading to 2 2 2 1 1( | , )kE Y S s X x= =  (or 2 1 1| ,

2 2 2 2 1( | , ( ))
k k ks s skE Y S s p X= . Within each 

strata of 0X  (or 1
1 0( )

ksp x ) in the subpopulation 1 1
kS s= , this regression function is averaged according to 

the distribution of 1X  (or 2 1|
2 1( )

k ks sp x ) in each such stratum. These averages are functions of 0X  only. Fi-

nally, this function is averaged over the distribution of 0X  (or 1
1 0( )

ksp x ) in 1 1
jS s= , leading to a sequen-

tial matching estimator to be discussed in greater detail later on. 

Of course, if S-DCIA holds, then (4) holds as well, but S-DCIA also implies the following simpler expres-

sion: 

2

0 1
2 1 1 2 2 2 1 1 1 1,

( | ) [ ( | , ) | ]
ks j k j

X X
E Y S s E E Y S s X x S s= = = = =  =  

                            = 2 1 1

| ,2 1 1
12

| ,
2 2 2 2 1 1 1

( )
[ ( | , ( ) | }

k k k

k k ks s s

s s sk j

p X
E E Y S s p x S s= = ,  

 1
1 0 1 1 0 0( ) : ( | )sp x P S s X x= = = , 2 1 1 2 1 1| , |

2 1 2 1 1 0( ) : [ ( ), ( )]
k k k ks s s s s sp x p x p x= , 1 2 1 1, , , {0,1}k k js s s s ∈ .    (5) 

This expression gives raise to a one matching procedure as in static models. In principle, comparing esti-

mators based either on (4) or (5) can form the basis of a test for additional exogeneity assumptions implied 

by S-DCIA. 

For the average effect in the population the same principle applies (equation (6)): 

2

0 1
2 2 2 2 1 1 1 1 0 0( ) { [ ( | , ) | , ]}

ks k k

X X
E Y E E E Y S s X x S s X x= = = = =  = 

              = 2 1 1 1

|1 2 1
0 11 2

| ,
2 2 2 2 1 1 1 1 0

( ) ( )
{ [ ( | , ( )) | , ( )]}

k k k k

k k ks s s

s s s sk k

p X p X
E E E Y S s p X S s p X= = ;  1 2, {0,1}k ks s ∈ . (6) 
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Finally, when S-DCIA holds, 2
2 2 2( | )

ks jE Y S s= , 1 1
k js s≠ , is identified as well: 

2
2 2 2( | )

ks jE Y S s=
1 0

2 2 2 1 2 2,
{ ( | , ) | }k j

X X
E E Y S s X S s= = = = 

        = 2 2 2 2 2 1 2 2 2 2 2( )
{ [ | , ( | , { , }] | }k k k j j

P
E E Y S s P S s X S s s S s
⋅

= = ∈ = ; 1 2 1 2, , , {0,1}k k j js s s s ∈ . (7) 

Again, this estimation problem has the same structure as the typical static estimation problem based on 

CIA. The only difference is that it is of the multiple treatment type, because four different sequences are 

involved (cf. Imbens, 2000, Lechner, 2001a). Note that if S-DCIA is valid, then the results for the coarser 

conditioning sets 1 1
jS s=  and 0 0S =  can either be obtained by a weighted mean of the effects for popula-

tions defined by period 2 treatment (e.g. 2
2 1 1( | )

ks jE Y S s=  = 2
2 1 1 2( | , 1)

ks jE Y S s S= =  2 1 1( 1| )jP S S s= =  

+ 2
2 1 1 2( | , 0)

ks jE Y S s S= =  2 1 1[1 ( 1| )]jP S S s− = = , or by ‘matching’ directly (or weighting the regres-

sion function) according to the redefined target distribution ( 1 1
jS s=  or 0 0S = ). 

Appendix A discusses some issues that come up for non-binary 1S  and 2S . However, since the general 

structure of the estimation problem does not change, the main part of the text focuses on the binary case. 

3.2.2 Sequential estimators of 2
1 1( | )

ks jE Y S s=  and 2( )
ksE Y  under W-DCIA 

In this section estimation of the counterfactuals that cannot be estimated by the usual ‘static’ matching 

methods, namely 2
1 1( | )

ks jE Y S s= and 2( )
ksE Y  under W-DCIA (see equations (4) and (6)) is discussed.16 

The focus is on estimators conditioning on propensity scores, but the same principles apply to estimators 

that condition directly on the respective control variables. The Monte Carlo study below runs both types of 

estimators. All proposed estimators have a similar structure, because they are computed as weighted 

                                                           
16  Estimators consistent under W-DCIA are consistent under the stronger assumption S-DCIA, but not conversely. 
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means (with weights iw , iw ) of a function of the outcome variables ( 2 2 1 1| ,
2 2 1,( ( ))

k k k ks s s s
ig p x ) observed in 

subsample 2 2
kS s=  (the treated population): 

2 2 22 1 2 2 1 1 1 1

2 2

, , ,| ,
2 1 1 2 2 1,( | ) ( ( )); 0; 1

j j jk k kk k k k k

k k

s s s s s ss s s s sj
i i i i

i s i s

E Y S s w g p x w w
∈ ∈

= = ≥ =∑ ∑ ; (8) 

2 2 2 1 1

2

| ,
2 2 1,( ) ( ( ));

k k k k k

k

s s s s s
i i

i s

E Y w g p x
∈

= ∑                    2 2

2

0; 1
k k

k

s s
i i

i s

w w
∈

≥ =∑ . (9)   

2 2 1 1| ,
2 2 1,( ( ))

k k k ks s s s
ig p x  is constructed to have mean 2 1 1 2 1 1| , | ,

2 2 2 1, 2 1,[ | , ( ) ( ))]
k k k k k ks s s s s sk

i iE Y S s p X p x= = , at least 

asymptotically. The weights reweight this function towards the target distribution 1, 1 1( | )j
if x S s=  for 

equation (8) and 1, 0 1,( | 0)[ ( )]i if x S f x= =  for equation (9). Two types of weights are considered accord-

ing to whether they are estimated by sequential matching or by sequential inverse choice probabilities. 

Common choices for 2 2 1 1| ,
2 2 1,( ( ))

k k k ks s s s
ig p x  in the matching literature would be either iy   (‘direct’ or ‘pair’ 

matching) or a (kernel) regression estimate of iy  on 2 1|
2 1,( )

k ks s
ip x  and 1

1 0,( )
ks

ip x . The latter has the advan-

tage of leading to an asymptotically more efficient estimator if the bandwidth is chosen appropriately. 

This gain should be particularly large when many of the weights are zero using the direct approach. It has 

however the disadvantage that it is subject to the course of dimensionality (the number of conditioning 

variables increases linearly with the number of periods) and that there appears to be no generally applica-

ble theory of optimally choosing the bandwidth. 

Note that there are related estimators known from the matching literature for the weights as well as for 

2 2 1 1| ,
2 2 1,( ( ))

k k k ks s s s
ig p x  that can be adjusted to the dynamic framework, like ‘blocking’ or stratification estima-

tors (Rosenbaum and Rubin, 1984, Dehejia and Wahba, 1999, see again Imbens, 2003, for a comprehen-

sive discussion). For the sake of brevity they are ignored. 
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3.2.2.1  Sequential matching estimators (SM) 

The idea of the matching estimators is to sequentially adjust the covariate distribution of the treatment 

population towards the target population so as to mimic the sequential conditional expectations appearing 

in expressions (8) and (9). The first step is the same for both effects and consist in finding for every mem-

ber of 1 1
kS s=  a member of 2 2

kS s=  with very similar (the same) values of 2 1|
2 1,( )

k ks s
ip x  and 1

1 0,( )
ks

ip x . 

Note that one observation in the treatment population may be matched to many or to none of the interme-

diate target population 1 1
kS s=  (matching with replacement). In the second step every member of 1 1

jS s=  

((8)) or 0 0S =  ((9)) is to be paired with a member of 1 1
kS s=  with very similar (same) values of 

1
1 0,( )

ks
ip x . The positive weights that are attached to some or all members of 2 2

kS s=  coming from step 1 

are then updated depending on how often an observation in 2 2
kS s=  is matched to an observation of the 

target population via the intermediate matching step. This procedures leads to the following estimators: 

2 1 1 1 2 1 1 2 1 1

1
11

, , | , | ,
1 1 0, 1 0, 2 2 1, 2 1,

1 [ ( ), ( ); ] [ ( ), ( ); ]
jk k k k k k k k k

j
j k

s s SM s s s s s s s s
i n m m is

m sn s

w v p x p x v p x p x
N ∈∈

= ⋅ ⋅∑ ∑ ; 2 2
ki S s∀ ∈ = ;  (10) 

2 1 1 2 1 1 2 1 1

1

, | , | ,
1 1 0, 1 0, 2 2 1, 2 1,

1

1 [ ( ), ( ); ] [ ( ), ( ); ]
k k k k k k k k k

k

N
s SM s s s s s s s s
i n m m i

n m s

w v p x p x v p x p x
N = ∈

= ⋅ ⋅∑ ∑ ;     2 2
ki S s∀ ∈ = . (11) 

1
jsN  denotes the number of observations for which 1 1

jS s= . The function 1 1
1 1 0, 1 0,[ ( ), ( ); ]

k ks s
n mv p x p x ⋅  is 

defined to be one if 1
1 0,( )s

mp x  is closest to 1
1 0,( )s

np x  of all observations belonging to the subsample de-

fined by 1 1
kS s= , and zero otherwise. Similarly 2 1 1 2 1 1| , | ,

2 2 1, 2 1,[ ( ), ( ); ]
k k k k k ks s s s s s

m iv p x p x ⋅  is one if observation i is 

closest to observation m in terms of 2 1|
2 1,( )

k ks s
ip x  and 1

1 0,( )
ks

ip x , and zero otherwise. Similarity could for 

example be defined by the Mahalanobis metric. Note that the weight of observation i is 0 if it is not 

matched to any member of the target population (even if it is matched in the first step). On the other ex-

treme, if observation i would be matched to every member of the target population then its weight would 
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be 1. Particular issues on how to implement such an estimator (for example on how to insure that the 

common support conditions are satisfied) are discussed in Sections 4 and 5. A specific variant of this es-

timator that is used in the empirical part (Section 5) is detailed in Appendix B. 

One of the special features of this estimator is that the number of propensity scores to match on increases 

linearly with the number of periods. Abadie and Imbens (2002) show that in static models a matching 

estimator with up to two continuous variable is N − consistent and asymptotically normally distributed. 

However, if it is based on a fixed number of matches (not increasing with sample size), then it does not 

reach the semiparametric efficiency bound derived by Hahn (1998). If the number of continuous covari-

ates is larger than 2 (as for T > 2), then matching estimators remain consistent, but because the bias van-

ishes at a lower rate than N , they are not asymptotically normally distributed (around the true value). 

Abadie and Imbens (2002) suggest a correction based on nonparametric regressions of the conditional 

mean function of the outcome to eliminate the bias and show that the bias corrected estimate is asymptoti-

cally normally distributed independent of the number of continuous covariates.17 In our framework it is 

clear how the bias correction procedures could be implemented in the last matching step. However, it is 

not straightforward how to address biases resulting from mismatches in intermediate steps.18 

                                                           
17  These results are obtained for ‘direct’ matching estimators without using the propensity score. However, one 

could conjecture that matching on the propensity score is approximately like matching on a continuous variable if 

the dimension of the independent variables in the propensity score is large enough; even if all independent 

variables are discrete (the problems of matching occur because with continuous variables exact matches have 

probability zero). 
18  The bias adjusted estimators suffer from the additional problem that they must be based on the same consistent 

estimates of the nonparametric regression functions as the regression imputation estimators. However, Abadie and 

Imbens (2002) argue that due to the local nature of the bias correction when combined with matching, the results 

are not sensitive to bandwidth choices, whereas the regression imputation estimators are. 
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3.2.2.2 Sequential inverse probability weighting estimators (SIPW) 

Reweighting by the inverse selection probabilities is another way to obtain the appropriate weights.19 The 

weights have the general structure such that every observation of the treatment population 2
ks  is divided 

by its conditional probability of being selected into treatment and multiplied by its conditional probability 

of being in the counterfactual state. The weights for quantities identified under the different DCIA as-

sumptions are given in equations (12) to (15). Note that common scale factors - covering relative sample 

sizes such the weights sum up to one - are omitted. 

2

2 1 1

,
|

2 1, 1 0,

1
ˆ ˆ( ) ( )

k

k k k
s IP
i s s s

i i

w
p x p x

= ;                       2 2
ki S s∀ ∈ = ; (12) 

2 1

2 1

, ,
|

2 1,

1
ˆ ( )

k k

k k
s s IP
i s s

i

w
p x

= ;                                    2 2
ki S s∀ ∈ = . (13) 

1

2 1

2 1 1

, , 1 0,
|

2 1, 1 0,

ˆ ( )
ˆ ˆ( ) ( )

j

jk

k k k

s
s s IP i
i s s s

i i

p x
w

p x p x
= ;                     2 2

ki S s∀ ∈ = ; (14) 

2 1 1

2 2

2 1 1

|
, , 2 1, 1 0,

|
2 1, 1 0,

ˆ ˆ( ) ( )
;

ˆ ˆ( ) ( )

j j j

jk

k k k

s s s
s s IP i i
i s s s

i i

p x p x
w

p x p x
= ;                    2 2

ki S s∀ ∈ = ;  (15) 

The derivations of the weights as well as the scale factors are given in Appendix C.20 

4 A Monte Carlo study 

As a small sample check for the above suggested estimators a Monte Carlo study is conducted. It is based 

on two different data generating processes (DGP) fulfilling the weak and the strong DCIA. The design 

                                                           
19  See for example Hirano, Imbens, and Ridder (2003) and Rosenbaum (1987). 
20  Similar estimators can be found in the literature on attrition and sample selection (e.g. Horvitz and Thomson, 

1952, Nevo, 2003, Robins and Rotnitzky, 1995, Robins, Rotnitzky, Zhao, 1995, and Wooldridge, 2003). 
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aims at a very stylised image of typical DGP’s to be found in potential applications while keeping it as 

simple as possible to keep computation time manageable.  

4.1 Data generating processes 

The DGP’s are constructed so that they exhibit nonlinearities, heterogeneous effects, dynamics and selec-

tivity problems to highlight the general approach of the dynamic treatment effect literature. The main in-

gredients into the data generating process (detailed in Table 2) are specifications of the potential outcome 

and selection equations. The potential outcomes in the first period are generated by functions of an exoge-

nous regressor and an error term. The potential outcomes in the second period are functions of the poten-

tial outcomes of the first period plus error terms. The functions chosen differ for the different potential 

outcomes. The error terms of the potential outcomes are all mutually correlated, so that the error terms of 

the second period potential outcome equations are correlated with the regressors of these equations. The 

selection equation in the first period is given by an indicator function of the exogenous confounder that 

appears in the potential outcome equation for period 1 plus a white noise normal error. 

Table 2: Specification of the data generating processes 

Selection equation t = 1       1 0 71(2 0)S X U= + + > ,  
0 ~ (2,1)X N  

Outcomes equations t = 1 1 2 0.75
1 0 1[( ) ]Y X U= + , 0

1 0 2Y X U= +  
Outcomes equations t = 2                       111

2 1 3Y Y U= + , 110 2 0.75
2 1 4[( / 4) ]Y Y U= + , 001

2 1 5ln(| |)Y Y U= + , 000
2 1 6| |Y Y U= +  

Selection equation t = 2: DPG 1 (S-DCIA) 2 1 1 81( 0.5 0.5 0);S S X U= − − + + >  1 ~ (2,1)X N  
Selection equation t = 2: DGP 2 (W-DCIA)                           2 1 1 81( 1 0.5 0)S S Y U= − − + + >     
Distribution of error terms 

1 8( ,..., ) ~ (0, )U U N ⋅ , 
1 8( ,..., ) (1,...,1)Var U U = ,  

1 8

.3 .2 .2 .2 .2 0 0
.2 .2 .2 .2 0 0

.3 .3 .3 0 0
( ,..., ) .3 .3 0 0

.3 0 0
0 0

0

Corr U U

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Note:  If not explicitly stated otherwise, the specification relates to both DGP’s. All draws of random numbers (using Gauss 
3.2.32) are independent across observations and replications. 

While all other equations are the same for both DGP’s the selection equation in the second period differs. 

For DGP 1 it is modelled as a probit indicator function with the realised selection in period 1 and an ex-
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ogenous variable as explanatory variables. DGP 2 substitutes the exogenous variable by the observed out-

come after period 1. The error terms of the selection equations are independent of the error terms of the 

potential outcome equations, so that both DGP’s are based on selection on observables. Because all vari-

ables determining selection are not related to outcomes of the treatment DGP 1 fulfils W-DCIA and S-

DCIA. The crucial difference between the weak version and the strong versions of DCIA is that the strong 

version requires 1 2,
2 1 1 1 0( | , , )

ks s lF Y X S s X=  = 1 2,
2 1 0( | , )

ks sF Y X X  to hold. It is fulfilled by DGP 1, be-

cause 1X  is a regressor that is independent of all potential outcomes. In DGP 2 1X  becomes the outcome 

of period 1, 1Y , which is related to potential outcomes of period 2 by the chosen autoregressive specifica-

tion of the outcome equations and the period 1 selection rule. Therefore, DGP 2 violates the strong version 

of DCIA, because of the endogeneity of one of the variables determining selection in period 2. Neverthe-

less, DGP 2 satisfies the conditions for W-DCIA (all variables influencing selection and potential out-

comes are observable). 

Functional forms and coefficients in the outcome equations of both DGP’s have been chosen such that 

treatment effects exhibit heterogeneity and state dependence. The coefficients of the selection equations 

are tuned to produce marginal participation probabilities 1( 1)P S =  and 2( 1)P S =  of about 50%. 

Tables 3 and 4 give basic unconditional descriptive statistics for both DGP’s. The mean of the potential 

outcomes differ substantially from each other and thus from the observed outcomes. They exhibit consid-

erable individual heterogeneity leading to heterogeneity of the effects. Unconditionally, potential out-

comes, effects and observed outcomes are highly correlated with both selection variables, the correlation 

for 2S  being higher for DGP 2 due to the different specification of the selection equation in period 2. Note 

that although 1X  is uncorrelated with potential outcomes, it is correlated with observed outcomes and 

thus exhibits the classical features of an instrumental variable. 



23 

Table 3: Some descriptive statistics for the data generating process for DGP 1 

 Mean Std. Correlations (x 100) 
   10

2Y  01
2Y  00

2Y  11,10
2θ  11,01

2θ  11,00
2θ  2Y  1Y  2S  1S  0X  1X  

11
2Y  3.1 2.6 68 43 49 86 89 83 62 84 -15 45 78 0 
10

2Y  .84 1.3 - 43 45 23 54 49 60 62 -10 29 51 0 
01

2Y  1.4 1.2  - 53 28 -2 15 48 38 -6 16 27 0 
00

2Y  .45 1.5   - 35 28 -8 48 47 -8 22 37 0 
11,10
2θ  2.3 1.9    - 82 77 42 70 -14 40 69 0 
11,01
2θ  1.7 2.3     - 84 45 74 -14 42 73 0 
11,00
2θ  2.7 2.3      - 40 66 -13 37 66 0 

2Y  1.5 2.0       - 63 33 34 49 16 

1Y  2.9 2.3        - -22 62 85 0 

2S  .50 .50         - -35 -20 32 

1S  .50 .50          - 57 0 

0X  2.0 1.0           - 0 

1X  2.0 1.0            - 
Note:  Sample statistics based on one sample of N = 200.000. 2 1( 1, 1)P S S= =  = .17; 2 1( 0, 1)P S S= =  = .33; 

2 1( 1, 0)P S S= =  = .34; 2 1( 0, 0)P S S= =  = .16. 

Table 4: Some descriptive statistics for the data generating process for DGP 2 

 Mean Std. Correlations (x 100) 
   10

2Y  01
2Y  00

2Y  11,10
2θ  11,01

2θ  11,00
2θ  2Y  1Y  2S  1S  0X  

11
2Y  6.1 6.8 83 4 14 98 83 96 29 32 17 17 30 
10

2Y  1.4 1.8 - 8 24 70 66 75 43 45 23 21 37 
01

2Y  4.4 4.5  - 75 3 -53 -17 16 10 10 4 7 
00

2Y  1.4 1.9   - 10 -30 -15 40 36 22 16 28 
11,10
2θ  4.7 5.4    - 82 95 21 25 13 15 25 
11,01
2θ  1.7 8.1     - 91 16 21 9 12 21 
11,00
2θ  4.7 6.9      - 17 22 10 13 22 

2Y  3.9 3.7       - 76 81 39 62 

1Y  2.9 2.3        - 47 62 85 

2S  .50 .50         - 14 39 

1S  .50 .50          - 57 

0X  2.0 1.0           - 
Note:  Sample statistics based on one sample of N = 200.000. 2 1( 1, 1)P S S= =  = .28; 2 1( 0, 1)P S S= =  = .22; 

2 1( 1, 0)P S S= =  = .21; 2 1( 0, 0)P S S= =  = .28. 

The sample sizes considered in the simulations are N = 400, 1600, and 6400, respectively. They cover a 

reasonable range given recent labour market applications of matching methods (e.g. Gerfin and Lechner, 

2002, or Sianesi, 2001). Furthermore, given the few confounding variables the sample sizes should be 

large enough to observe convergence properties of the estimators. 
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4.2 Estimators 

Five different estimators are considered in the simulations. Four of them are nearest-neighbour type 

matching estimators, two of them sequential and two of them one-step estimators; two of the matching 

estimators that match on an estimated propensity score, two estimators match directly on the confounding 

variables.21 When there is more than one variable to match on, the distance metric is the Mahalanobis dis-

tance with weight matrix computed in the sample of the particular target population. The remaining esti-

mator uses estimated sequential probabilities – as defined in the previous section - to directly reweight the 

treated observations towards the target population. 

The sequential matching estimators (SM) using propensity scores as well as the inverse probability-

weighted estimator (SIPW) are based on conditional probabilities estimated by a probit model 

( 2 1 1( 1| 1, )P S S X= = , 2 1 1( 1| 0, )P S S X= = , 1 0( 1| )P S X= ) in the respective subsample defined by 

treatment status.22 Both one-step-matching estimators are based on binary probits for the probability of 

being in the particular subsample conditional on being either in the subsample for which outcomes are 

observed or in the target population (for example 2 1 1 0( 1, 1| , )P S S X X= =  for estimating 11
2EY , or 

}{2 1 2 1 0( 1, 1| (0,0), (1,1) , , )P S S S X X= = ∈  for estimating 11
2 2 1( | 0, 0)E Y S S= = ). All variables 

explaining both selection steps are included in these specifications. Thus, we generally expect the one-step 

estimators to be inconsistent for DGP 2 (with the exception of 11
2 2 1( | 0, 1)E Y S S= = , 11

2 1( | 1)E Y S = , 

etc.), because they have the same structure as the propensity score estimators proposed for the static mul-

tiple treatment model that assumes exogenous confounders. Furthermore, to check the effects of estimat-

ing the (higher dimensional) balancing scores in situations in which the dimension of X is actually small 

                                                           
21  11

2 2 1( | 1, 1)E Y S S= =  is estimated only by one estimator, the (unweighted) sample mean, and thus has some ‘ideal’ 

properties that we would like the matching estimators to have as well (unbiasedness, efficiency, consistency and 

N − convergence). 
22  X1 denotes the ‘regressor’ in the probit model that would either be 1Y  (DGP 1) or 1X  (DGP 2). 1X  needs not to be 

included in the probit estimation because it is not a confounding variable. Nevertheless, it is included to keep the 

dimension of the estimation problem the same for both DGP’s. 
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enough to match directly on the X variables, the two direct matching estimators proceed exactly as the 

propensity score matching estimators, but instead of using the scores, they use the explanatory variables of 

the scores directly.  

A detailed matching protocol for 2
1 1( | )

ks lE Y S s=  - 2
1 1( | )

ls lE Y S s=  can be found in Appendix B (with 

obvious extensions when other effects are of interest or the one-step or direct matching estimators are 

used). However, to speed up computation checks for common support - which should not be necessary 

because the variables explaining selection are continuous - have not been performed for the SM estima-

tors, neither have very small or very large probabilities been trimmed for the SIPW estimator. Some re-

marks about this protocol are warranted: 

First, note that matching is with replacement. Every step of the matching sequence is like matching in a 

static framework, so that all the different estimators discussed in the literature with their merits and draw-

back are potential candidates. Note that here matching involves several probabilities so that there is the 

question about how to define ‘closeness’. It seems to be common practise in the propensity score matching 

literature to use the Mahalanobis distance.  

Next, some issues arise from the sequential nature of matching for example to obtain 2
1 1( | )

ks lE Y S s= : By 

choosing observations as matches with similar values of the probabilities instead of the same values, it 

may happen that the probabilities attached to observations in early matching steps change over different 

sequential matching steps due to imprecise matching. To prevent this happening every matched compari-

son observation in period 2 could be recorded with the values 1
1ˆ

lsp  of the observation it is matched to, 

instead of its own. Hence the ‘history’ of the match, or in other words the characteristics of the reference 

distribution, does not change when the next match occurs in the subsequent period. 
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Furthermore, to compute 2
1 1( | )

ks lE Y S s=  the only information that is needed for the 1
lsN  participants in 

1
ls  is 1

1,ˆ
ks
ip . Similarly, for participants in 2

ks , all probabilities of the type 2 1 1| ,
2,ˆ

k k ks s s
ip  are required. For partici-

pants in 1
ks  but not in 2

ks  only 1
1,ˆ

ks
ip  is needed, and so on. 

To estimate 2
1 1( | )

ls lE Y S s=  instead of 2
1 1( | )

ks lE Y S s=  (part B in Table B.1) the only change in the 

previous matching protocol is that the initial matching step on 1,ˆ l
ip  is redundant in this case. When interest 

is in the average effect in the population ( 2( )
ksE Y ), then the whole population plays the role of the first 

reference group (instead of 1
ls ). In this case in the matching step based on 1,ˆ k

ip  all participants in 1
ks  will 

also be matched to themselves, as well as selected participants in 1
ks  will be matched to the participants in 

the remaining treatments in the first period. 

When matching is on the propensity score instead of matching directly on the confounding variables there 

is the issue of selecting a probability model. It seems that so far even in the static model the literature has 

not addressed this thoroughly. There are some results for specific nonparametric approaches as in Hirano, 

Imbens, and Ridder (2003), but the general consensus seems to be that a flexibly specified (and exten-

sively tested) parametric model, like a logit or a probit model, is sufficiently rich and that the choice of the 

model does not really matter (see for example the Monte Carlo results by Zhao, 2000). 

There is one issue, which has not been discussed so far because it is not the focus of this paper, but im-

portant in practise: estimation of the standard errors. In the applied evaluation literature there seems to be 

two common ways to estimate standard errors: First, compute the standard errors conditional on the 

weights. When the weights are based on estimated propensity scores, the uncertainty of the estimation step 

is typically ignored. Alternatively naïve bootstraps are used (including the estimation step of the propen-

sity scores) and standard errors (or confidence intervals) are computed from the bootstrap distribution. 

However, there appears to be no proof available that indeed the conditions for the consistency of the boot-

strap (it is also not clear that the standard error is the best quantity for which to perform the bootstrap, 
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because it is not asymptotically pivotal). In the Monte Carlo study the standard errors are computed using 

these two methods. However, due to computing time restrictions the bootstrap (200 replications) is used 

for the smallest sample only. 

4.3 Results 

Tables 5 (DGP 1) and 6 (DGP 2) present the results of the simulations. They are based on 1000 replica-

tions. Since causal effects are usually estimates as the difference of the estimated (counterfactual) means 

of the potential outcomes in the respective population of interest, the tables focus on the estimated mean 

of the counterfactual outcomes only. Reporting the results for all subpopulations would require too much 

space. Therefore, both tables consider only three populations, namely the participants in the treatment in 

both periods ( 2 (1,1)S = ), participants in the first period ( 1 1S = ), and the population. The results for other 

populations defined by treatment status are qualitatively identical.  

Detailed results are given for the sequential matching-on-the-estimated-propensity-score estimator that 

appears to be of major interest (true mean; bias of estimators for mean and standard errors; standard de-

viation, skewness, kurtosis, root mean squared error and median absolute error of mean estimator). In its 

bootstrap version shown for N=400 the respective line contains the same statistics for the estimator de-

fined to be the mean of the bootstrap distribution, with one exception. The bias of the standard error re-

lates to the bias of the standard error for the bootstrap compared to the Monte Carlo standard error of the 

non-bootstrapped sequential matching estimator given in the line above the bootstrap. For the sake of 

brevity mean squared errors only are given for the other estimators.23  

For DGP 1 all estimators are almost unbiased. Even for N = 400 the bias is very small. The sequential (as 

well as all other) matching estimators appear to be fairly close to the normal distribution for all sample 

sizes considering skewness and kurtosis observed in the Monte Carlo study. When the sample size quad-

ruples the standard errors are reduced by about half. In conclusion, the matching estimators appear to be 

N −  convergent.  
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Next, we compare the various estimators according to their mean squared errors, beginning with the 

matching estimators. In many cases the matching estimators based on the estimated propensity scores have 

lower RMSE than the corresponding matching estimators based directly on the variables determining se-

lection. This result may seem surprising, because there is only one regressor in the each probit, so that the 

propensity score does not reduce the dimension of the conditioning variables in this setting. This result is 

however in line with the findings of Hirano, Imbens, and Ridder (2003), although the latter (theoretical) 

results are obtained for a different class of estimators. Comparing the sequential and one-step matching 

estimators, no systematic differences appear for DGP 1 (they will differ drastically for DGP 2). 

Table 5: Results for DGP 1 

   Sequential propensity score matching seq. 
on X 

one 
PSM 

one 
on X 

prop. 
weight 

Pot. 
outc. 

Pop-
ulation 

N true bias std. skew. kurt. bias 
std. 

MAE x 
10 

RMSE x 10 

11
2Y  11 400 4.26 -.01 .32 .15 2.96 -.01 2.26 3.23 -- -- -- -- 
 BS 400  .01 .31 -.09 3.15 .01 2.02 3.13 -- -- -- -- 
  1600  .00 .16 -.01 3.08 .00 1.05 1.53 -- -- -- -- 
  6400  .00 .08 -.01 3.05 -.00 .54 .83 -- -- -- -- 
 1 400 4.26 -.03 .28 .06 2.86 .09 1.87 2.79 4.75 -- -- 3.23 
 BS 400  -.02 .26 -.11 2.89 -.02 1.73 2.61 3.96 -- -- 2.46 
  1600  -.02 .13 -.14 3.08 .06 .87 1.30 2.19 -- -- 1.17 
  6400  -.01 .07 .04 2.89 .02 .46 .69 1.15 -- -- .62 
 all 400 3.12 .06 .34 .20 3.35 .15 2.05 3.41 3.54 3.43 3.38 4.28 
 BS 400  .08 .28 .04 2.96 -.05 1.96 2.96 3.29 3.01 3.35 4.15 
  1600  .01 .17 .01 3.12 .10 1.16 1.75 1.84 1.77 1.71 2.52 
  6400  -.01 .09 -.00 3.13 .05 .65 .97 1.03 .98 .94 1.41 
10

2Y  11 400 1.22 .01 .21 .09 3.32 .02 1.43 2.10 2.57 -- -- 1.43 
 BS 400  -.00 .17 .12 3.02 .01 1.12 1.70 2.16 -- -- 1.36 
  1600  .01 .11 -.01 2.95 .01 .73 1.07 1.28 -- -- .70 
  6400  .00 .06 -.00 3.01 .00 .36 .54 .66 -- -- .36 
 1 400 1.22 -.00 .13 -.05 3.05 .01 .85 1.30 1.45 -- -- 1.20 
 BS 400  -.01 .12 -.04 2.98 -.01 .76 1.16 1.35 -- -- 1.11 
  1600  -.00 .06 .00 3.06 .00 .42 .63 .71 -- -- .57 
  6400  -.00 .03 .00 3.10 .00 .22 .33 .36 -- -- .30 
 all 400 .84 .00 .15 .02 3.28 .04 1.02 1.56 1.61 1.58 1.50 1.57 
 BS 400  .00 .13 -.06 2.95 -.01 .88 1.39 1.40 1.34 1.33 1.45 
  1600  -.00 .08 .07 3.20 .02 .54 .84 .86 .87 .77 .85 
  6400  -.00 .05 .04 3.15 .01 .31 .46 .47 .47 .41 .43 

Table 5 to be continued. 

                                                                                                                                                                                            
23  The complete set of results (all estimators and other subpopulations) is available on request from the author. 
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Table 5: continued 

   Sequential propensity score matching seq. 
on X 

one 
PSM 

one 
on X 

prop. 
weight 

Pot. 
outc. 

Pop-
ulation 

N true bias std. skew. kurt. bias 
std. 

MAE x 
10 

RMSE x 10 

01
2Y  11 400 1.55 -.02 .27 -.25 3.75 .00 1.78 2.71 2.56 2.96 2.56 2.31 
 BS 400  -.05 .20 .09 3.07 -.01 1.41 2.61 2.22 2.45 2.22 2.29 
  1600  -.02 .14 -.10 2.97 .01 .99 1.43 1.40 1.59 1.40 1.32 
  6400  -.00 .07 .08 3.04 .00 .52 .76 .75 .86 .75 .79 
 1 400 1.55 -.02 .25 -.15 3.54 .01 1.55 2.47 2.65 2.67 2.25 2.29 
 BS 400  -.04 .20 .14 3.28 -.03 1.30 2.04 2.23 2.20 2.06 2.27 
  1600  -.01 .14 -.20 3.15 .01 .91 1.38 1.49 1.46 1.25 1.33 
  6400  -.00 .08 -.02 3.42 .01 .52 .79 .82 .81 .71 .80 
 all 400 1.37 -.01 .15 -.17 3.27 .01 .99 1.53 1.62 1.57 1.43 1.51 
 BS 400  -.02 .14 .02 3.14 -.01 .90 1.39 1.47 1.41 1.40 1.55 
  1600  -.01 .08 -.18 3.15 .00 .56 .84 .90 .86 .78 .84 
  6400  -.00 .05 -.04 3.16 .00 .32 .46 .48 .46 .43 .51 
00

2Y  11 400 .76 -.05 .37 -.25 3.39 .08 2.35 3.70 4.43 4.10 4.43 3.44 
 BS 400  -.09 .30 -.15 3.56 -.03 1.99 3.09 3.82 3.39 3.83 3.16 
  1600  -.01 .22 .00 3.69 .04 1.37 2.18 2.51 2.35 2.51 2.06 
  6400  -.01 .12 -.05 3.31 .03 .76 1.16 1.39 1.26 1.14 1.31 
 1 400 .76 -.04 .35 -.27 3.51 .08 2.28 3.62 3.97 3.75 3.60 3.46 
 BS 400  -.09 .30 -.09 3.69 -.04 2.04 3.08 3.26 3.15 3.19 3.18 
  1600  -.01 .22 .04 3.84 .05 1.36 2.18 2.21 2.19 2.00 2.04 
  6400  -.01 .12 -.04 3.50 .04 .78 1.21 1.21 1.20 1.10 1.31 
 all 400 .45 -.02 .25 -.12 3.08 .04 1.71 2.57 2.73 2.51 2.56 2.49 
 BS 400  -.04 .21 -.09 3.40 -.03 1.48 2.22 2.39 2.22 2.35 2.34 
  1600  -.00 .14 .02 3.29 .03 .91 1.39 1.46 1.37 1.34 1.37 
  6400  -.01 .07 -.03 3.36 .02 .50 .74 .77 .74 .72 .87 

Note:  Bias: Mean of estimated effect - true effect. Std.: Standard deviation observed in Monte Carlo. Skew.: Skewness. Kurt.: 
Kurtosis. RMSE: Root mean squared error. MAE: Median absolute error. Bias std.: Mean of estimated standard devia-
tion – Std.. Seq. on X.: Sequential matching using the appropriate control variables instead of the propensity score. One 
PSM: One step propensity score matching. One on X: One-step matching using the appropriate control variables in-
stead of the propensity score. In cases when the sequential and the one-step estimators coincide, the one-step esti-
mators are not given. BS: Bootstrap estimates are based on 200 bootstrap samples of N draws (with replacement) in 
the respective sample. The bias of the bootstrap standard errors does not relate to the mean of the bootstrap distribu-
tion, but they relate to the sequential matching estimator given one line above. All other numbers given in the line BS 
relate to the estimator defined as the mean of the bootstrap distribution. 

In many cases the (untrimmed) SIPW estimator has the lowest RMSE of all estimators considered for 

N=400. When the sample size increases this advantage disappears because the estimator converges slower 

than N . In fact, the kurtosis of the estimator in the simulations increases fairly dramatically with sam-

ple size suggesting that the higher order moments (or even the RMSE) of this estimator may not exist.24 

Trimming very small and very large probabilities may be necessary to improve the convergence proper-

ties. This is also confirmed by considering the median absolute error that shows more pronounced reduc-

                                                           
24  These findings are confirmed by simulations for N=25600 which are computed for the IPW estimator only. 
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tions with increased sample size than the RMSE. A detailed investigation into this issue is however be-

yond the scope of this paper. 

For the smallest sample the mean of the bootstrap distribution dominates (with very rare exceptions) the 

non-bootstrapped estimators. Since the gains are sometimes considerable and they seem to exist for all 

estimators, further research on bootstrapping in the dynamic matching framework seems to be warranted. 

If S-DCIA is not valid as in DGP 2, 00
2 2 1( | 1, 1)E Y S S= =  and 01

2 2 1( | 1, 1)E Y S S= =  are not identified. 

Furthermore, the one-step estimators are inconsistent for 00
2( )E Y , 01

2( )E Y , 10
2( )E Y , 11( )E Y  as well as 

for 01
2 1( | 1)E Y S =  and 00

2 1( | 1)E Y S = . In Table 6 the entries of RMSE’s for inconsistent estimators are 

shaded.  

Table 6: Results for DGP 2 

   Sequential propensity score matching seq. 
on X 

one 
PSM 

one 
on X 

prop. 
weight 

Pot. 
outc. 

Pop-
ulation 

N true 
mean 

bias std. skew. kurt. bias 
std. 

MAE x 
10 

RMSE x 10 

11
2Y  11 400 8.55 .00 .22 .09 2.81 .00 1.52 2.21 -- -- -- -- 
 BS 400  .01 .23 .08 2.99 .00 1.46 2.27 -- -- -- -- 
  1600  -.01 .11 .16 2.80 .00 .75 1.11 -- -- -- -- 
  6400  -.00 .06 .01 3.04 .00 .37 .55 -- -- -- -- 
 1 400 7.27 .04 .23 .05 2.86 .13 1.64 2.40 2.39 -- -- 4.00 
 BS 400  .09 .22 .02 3.14 -.01 1.49 2.33 2.34 -- -- 3.77 
  1600  .01 .12 .-.06 3.14 .07 .79 1.23 1.23 -- -- 2.41 
  6400  -.00 .06 -.07 3.13 .04 .41 .61 .61 -- -- 1.49 
 all 400 6.08 .48 .35 -.03 3.16 .22 4.83 5.92 5.68 4.32 3.89 7.92 
 BS 400  .58 .29 -.04 2.85 -.08 5.80 6.44 6.38 4.44 4.33 7.79 
  1600  .30 .20 -.06 3.16 .16 3.05 3.59 3.42 2.08 1.82 6.34 
  6400  .18 .12 -.02 3.03 .11 1.82 2.16 2.05 1.61 1.57 4.65 
10

2Y  11 400 2.31 -.17 .35 -.03 3.40 .05 2.67 3.91 3.91 -- -- 4.51 
 BS 400  -.21 .29 -.12 3.30 -.06 2.50 3.60 3.63 -- -- 4.08 
  1600  -.10 .22 -.14 3.66 .01 1.53 2.42 2.42 -- -- 3.17 
  6400  -.07 .13 -.09 3.24 .02 .92 1.43 1.42 -- -- 2.94 
 1 400 1.82 -.09 .21 .00 3.68 .02 1.58 2.28 2.28 -- -- 3.21 
 BS 400  -.11 .18 -.08 3.04 -.03 1.42 2.13 2.13 -- -- 2.74 
  1600  -.05 .12 -.20 3.42 .01 .89 1.37 1.37 -- -- 2.17 
  6400  -.04 .07 .00 3.23 .01 .52 .80 .79 -- -- 2.21 
 all 400 1.43 -.05 .16 -.03 3.07 .02 1.22 1.72 1.68 2.33 2.27 2.46 
 BS 400  -.06 .15 -.08 2.80 -.06 1.11 1.63 1.58 2.34 2.29 2.08 
  1600  -.04 .10 -.01 3.23 .00 .67 1.02 1.00 1.86 1.84 1.50 
  6400  -.03 .05 .02 2.76 .00 .39 .57 .54 1.62 1.60 1.54 

Table 6 to be continued. 
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Table 6: continued 

   Sequential propensity score matching seq. 
on X 

one 
PSM 

one 
on X 

prop. 
weight 

Pot. 
outc. 

Pop-
ulation 

N true 
mean 

bias std. skew. kurt. bias 
std. 

MAE x 
10 

RMSE x 10 

01
2Y  11 400 4.80 .52 .49 .38 3.08 .02 5.00 7.22 7.17 9.07 7.17 3.45 
 BS 400  .46 .37 .07 3.29 -.02 4.59 5.92 6.11 7.60 6.11 3.39 
  1600  .71 .43 .27 3.16 .03 7.03 8.32 7.74 9.37 7.74 2.54 
  6400  .84 .34 .03 3.01 .05 8.29 9.09 8.35 9.42 8.35 2.24 
 1 400 4.59 .00 .26 -.10 3.45 .02 1.65 2.56 2.50 5.78 5.72 2.34 
 BS 400  .01 .22 -.04 3.08 -.03 1.50 2.21 2.18 5.07 5.04 2.34 
  1600  -.01 .15 .01 3.02 .01 .95 1.45 1.41 5.88 6.03 1.35 
  6400  -.00 .08 .00 3.09 .00 .55 .82 .81 6.23 6.47 .90 
 all 400 4.38 -.00 .17 -.11 3.09 .02 1.13 1.71 1.70 3.08 3.27 1.66 
 BS 400  .00 .16 -.09 2.93 -.01 1.06 1.61 1.61 2.80 3.30 1.75 
  1600  -.01 .09 -.01 2.97 .01 .64 .95 .93 2.96 3.14 .90 
  6400  -.00 .05 .13 3.04 .00 .34 .51 .50 3.11 3.30 .58 
00

2Y  11 400 1.95 .34 .58 .08 3.22 .28 4.57 6.67 6.36 9.31 6.36 4.54 
 BS 400  .26 .46 .09 3.42 -.03 3.57 5.27 5.02 7.02 5.02 4.08 
  1600  .53 .51 .06 3.32 .24 5.32 7.32 6.89 9.74 6.89 3.56 
  6400  .67 .45 .10 3.01 .26 6.61 8.06 7.40 9.55 7.40 2.74 
 1 400 1.68 -.10 .34 .01 3.26 .13 2.36 3.52 3.42 5.76 5.28 3.63 
 BS 400  -.11 .28 .04 2.84 -.06 2.09 3.01 2.99 4.76 4.32 3.41 
  1600  -.03 .20 .14 2.94 .08 1.32 1.99 1.93 5.98 5.73 2.34 
  6400  -.02 .12 .11 3.45 .05 .79 1.17 1.14 6.05 6.20 1.57 
 all 400 1.35 -.06 .21 .09 3.61 .07 1.65 2.23 2.16 3.06 3.00 2.51 
 BS 400  -.07 .18 .06 2.88 -.03 1.30 1.94 1.92 2.56 2.50 2.39 
  1600  -.02 .12 .12 3.02 .05 .79 1.17 1.14 3.04 3.06 1.56 
  6400  -.01 .07 .11 3.17 .03 .45 .67 .66 3.03 3.22 1.07 

Note:  See note below Table 5. RMSE’s relating to estimators that are inconsistent for the particular effect are shaded. 

Table 6 shows that all estimators are severely biased for the unidentified effects. For the identified effects 

for which the sequential estimators differ to the one-step estimators, the former are either unbiased or ex-

hibit a bias that is disappearing with increasing sample size. With one exception, the RMSE for the incon-

sistent one-step estimators is always larger than for the sequential ones. The single exception is the esti-

mation of 11( )E Y , for which the sequential estimators are biased, although the bias is getting smaller the 

larger the sample. The bias of the one-step estimator is smaller for these sample sizes and thus the RMSE 

is smaller. However, comparing the systematic development of the bias with increasing sample size (.48, 

.30, .18 for the sequential estimators and .22, .02, -.10 for the one-step estimators) may indicate that for 

larger sample sizes the one-step estimators are dominated by the sequential ones (the bias of the sequential 

matching estimator may eventually disappear, but its speed seems to be below N  which could be an 

indication of the problems pointed out by Abadie and Imbens, 2002, discussed in the previous section). 
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Comparing the consistent estimators does not reveal substantial differences other than those already men-

tioned in the discussion of Table 5. In conclusion, the Monte Carlo study confirms the theoretical consid-

erations and shows that in most cases the estimators have reasonable finite sample properties. 

Comparing the bias of the ‘conventional’ and bootstrapped standard errors leads to the general conclusion 

that the ‘conventional’ standard errors are systematically estimated somewhat too large (but decreasing 

with sample size), thus giving conservative inference. The bootstrapped standard errors are almost always 

too small. This finding already appeared in Lechner (2002b). Future research will show whether for ex-

ample the ‘match-to-treated-to-the-treated’ estimate for standard errors suggested by Abadie and Imbens 

(2002) performs better. However, since this is a problem that is not akin to the specifics of dynamic 

matching estimation, it is not pursued further.  

5 An empirical application 

In this section the sequential matching estimator is applied to a real world situation to show that it can 

provide useful results and to discuss issues of implementation that may arise in applications.25 

5.1 The estimation problem and the data available 

The study by Gerfin and Lechner (2002, GL02 henceforth) serves as an example for this exercise. They 

are interested in the effects of different components of the Swiss active labour market policies on subse-

quent labour market outcomes using a rich administrative individual database coming from the merged 

records of the Swiss unemployment insurance system and the public pension system. Because they lack a 

dynamic framework GL02 estimate the effects of beginning the first programme in an unemployment 

spell.26 8 different types of programmes are considered. They argue extensively that the data is informative 

enough to make the conditional independence assumption plausible.27  

                                                           
25  Different estimators lead to different issues in implementation (e. g. trimming for the SIPW estimator). Therefore, 

for the sake of brevity only the sequential matching estimator conditional on the propensity scores is discussed. 
26  The endogeneity problem of programme duration and subsequent programme participation arises because both are 

most likely influenced by the effect of beginning the first programme. 
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Using the dynamic framework it is possible to go beyond this study and take account of the endogeneity 

of programme duration and subsequent participation. The interest is in the effects of being two periods in 

different states for individuals entering unemployment in the last quarter of 1997.28 The different states 

used are unemployment (U), training courses (C), employment programmes (E) and receiving a temporary 

wage subsidy (T). The period is defined as an interval of two months.29 Therefore, the treatment occurs 

between January and April 1998. For example considering sequences like EE compared to CC allows 

assessing the effects of four months of employment programmes compared to four months of courses. 

Obviously this approach would allow investigating the effects of programme combinations as well, for 

example by comparing CE to UU or EE. As another example it would be possible to check the effect of 

waiting for participation by comparing e.g. UC or UCC to CC. For the sake of brevity only effects of the 

types CC, EE, TT and UU are considered. 

The outcome variables of interest are the probability of unsubsidised employment and monthly earnings 

between May 1998 and the end of the observation period in December 1999. Taking the identification 

arguments of GL02 for beginning the first programme for granted, S-DCIA in this context either require 

that sequence participation are determined before the start of their first component, or that the participa-

tion in the second period does essentially not depend on the outcome of the first part of the sequence. 

Since individuals may leave sequences (or are not even allocated to sequences beforehand) and because 

the labour market effects of the first part of the sequence may cause this behaviour (particularly attending 

a second short course, but also leaving programmes intended for a longer period), this assumption does 

hardly appear to be tenable. However, if the intermediate outcomes that determine the next step in the 

sequence are observable, then W-DCIA is plausible.  

                                                                                                                                                                                            
27  For all details about the programmes evaluated and the data used the reader is referred to GL02. This application 

relies on the same population as GL02 but uses the extended version of the sample described in Gerfin, Lechner, 

and Steiger (2002). 
28  Of course much longer sequences could be considered but are not discussed for the sake of brevity.  
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Table 7: Selected descriptive statistics of control variables and intermediate outcomes 

Variables Means / shares in % in subsamples 
    Subpopulations: U UU C CC E EE T TT 
 Control variables (measured in Dec. 1997 or before) 
Insured earnings in CHF 3943 3904 4008 3932 3592 3517 4023 4067 
Chances to find a job (employability): no information 9 8 5 5 8 7 11 14 
         very easy 8 8 6 5 3 4 6 6 
         easy 17 16 19 18 10 12 18 18 
         medium  55 56 59 60 58 58 56 54 
         difficult 9 10 11 10 17 15 7 7 
        special case 1 1 1 1 4 4 1 2 
Sanction days without benefits (current spell; until Dec. ’97) 3.1 3.2 3.8 3.2 3.5 3.3 2.6 2.3 
 Intermediate outcome variables (measured in February 1998) 
Employed 13 4 2 1 1 0 6 1 
Earnings in CHF 509 164 1283 51 33 0 229 30 
Chances to find a job (employability): no information 2 2 2 2 0 0 3 3 
    very easy (or some employment) 20 12 8 5 4 4 12 8 
     easy 16 16 17 16 13 14 20 21 
     medium  52 57 60 62 59 59 56 59 
     difficult 9 11 13 14 20 19 7 7 
    special case 1 2 1 1 3 4 1 1 
Sanction days without benefits Jan. + Feb. ‘98 1.2 1.3 .9 .8 .5 .4 .5 .6 
Sample size 7982 5122 573 316 118 99 790 382 
Note:  Descriptive statistics of the outcome variables after April 1998 are contained in Tables 8 and 9. The sample is based on 

the same selection criteria of GL02, but constrained to those entering unemployment in the forth quarter of 1997. 

Table 7 gives some descriptive statistics on some important control variables, treatments, and intermediate 

outcomes (see GL02, for a more complete account of the variables available) for the different subsamples 

of interest. The control variables ( 0X ) considered in this table are the monthly earnings in the previous 

job, the subjective valuation of the caseworkers as well as the number of sanction days without benefit 

(imposed by the caseworkers on unemployed violating the rules). The subjective valuation gives an as-

sessment of the employability of the unemployed. This assessment may be changed by the caseworker at 

the monthly interview of the unemployed. Comparing the descriptive statistics across subsamples defined 

by treatment status reveals that participants in employment programmes are the group having the worst a 

priori chances on the labour market whereas participants in the temporary wage subsidies appear to be the 

group with the best a priori chances. 

                                                                                                                                                                                            
29  Any bimonthly period in which an individual participates at least 2 weeks in a programme (C, E or T) is 

considered as programme participation. In the rare event of participation in 2 programmes in the same period, the 

individual is defined to participate in the longest of those programmes.  
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The lower panel in Table 7 shows results for some intermediate outcomes ( 1X ), like employment status, 

earnings, the subjective valuation of the caseworkers, and new sanction days. Comparing the variables 

across treatments confirms basically the previous conclusion. However, this part of Table 7 also shows 

that participants leaving the sequence may be markedly different than participants staying. 

The intermediate outcome variable employment points to a potential problem that might occur in an em-

pirical study using the dynamic framework: the occurrence of absorbing states violates the common sup-

port condition. In other words, if individuals experience intermediate outcomes that will prohibit them 

from future participation in the sequence, it is not possible to evaluate the effects of the longer sequences 

for such (groups of) individuals. Here it is not clearly obvious whether this is a problem or not, although 

the problem seems to be most pronounced for the group of nonparticipants: Even if somebody is em-

ployed there is in principle the possibility to participate in some programme if other conditions are satis-

fied. Furthermore, the employment variable (as well as earnings) is computed from the pension records 

and may pick up pension contributions for minor employment during the unemployment spell.30 

5.2 The sequential matching estimator in practise 

The estimator used in this empirical example follows closely the matching protocol outlined in Section 4. 

Due to the computing time necessary for bootstraps the standard errors presented are not obtained from 

the bootstrap distribution. 

5.2.1 The estimation of the conditional participation probabilities 

Conditional probabilities are estimated at each step in each subsample using binary probit models, which 

are (sequentially) subjected to specification tests. In total 6 binary probit models presented in Table 8 

cover all selection equations that are of interest for the effects of the treatments defined above. The speci-

fications follow broadly specifications by GL02 and Gerfin, Lechner, and Steiger (2002) adjusted for the 
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specifics of the dynamic framework and the different aggregation levels and sample sizes. The exclusion 

restrictions used are mainly motivated by the dynamic structure ( 1X  does not influence 1S  conditional on 

0X ). Furthermore, the sample sizes and the variation of the dependent variable in some cases require 

omitting variables from the specification. The latter problem is particularly pronounced for the transition 

from E to EE with only 19 observations leaving the sequence at this stage. 

Table 8: Probit specifications and estimates of the probit coefficients 

Variable 
U vs. C U vs. E U vs. T UU if U CC if C EE if E TT if T 

Age in years / 10 -.04 -.00 .02 .06 -.00 -.44 -.00 
Female -.16 .26 -.22 -.06 .05 .02 .17 
Mother tongue not German / French / Italian -.20 .31 .14 .04 .23 0 .11 
Mother tongue G / F / I, not main language in own canton  -.09 -.09 -.16 -.04 .14 .16 .19 
French mother tongue  -.26 .18 -.12 -.07 .41 -.65 .25 
Italian mother tongue  -.16 -.33 -.12 .09 .59 0 -.03 
Nationality: foreign with yearly permit -.03 .26 .08 .11 .02 .40 -.03 
Foreign Languages: other Swiss language .05 .26 .13 -.03 .30 -1.14 .06 
Job position  very low  .03 0 -.03 -.11 .16 .58 .02 
Qualification level: skilled (highest) -.17 -.13 -.03 -.04 -.00 1.11 -.22 
   unskilled (lowest) .01 -.11 .07 .04 -.19 -.62 .00 
Chances to find a job:   no information .25 -.01 -.03 -.00 -.06 0 .37 
 (reference category: medium)  very easy .11 .36 .06 -.23 .52 0 -.08 
     easy .02 .28 -.01 -.06 .22 0 .10 
     difficult .05 -.11 .13 -.00 -.05 0 .15 
    special case .07 -.14 .07 -.02 0 0 0 
Chances to find a job :  no inform. Feb ‘98 X X X .06 0 0 0 
 (reference category: medium)  very easy  Feb ‘98 X X X .19 -.61 .32 .05 
     easy         Feb ‘98 X X X .00 -.31 .71 -.09 
     difficult     Feb ‘98 X X X -.01 -.02 .32 -.19 
    special c.  Feb ‘98 X X X .05 0 0 0 
Looking for job with X % of full time job, Feb. ’98 (0-1) X X X 1.95 -.52 -.52 1.12 
Unemployment-status: full time UE -.20 -.14 -.15 -.52 -1.00 -.71 -.16 
    part time UE .15 -.11 -.04 .13 -1.43 0 .38 
No information on desired full or part time job .03 -.00 .11 1.54 -.67 0 1.14 
Desired = previous occupation, 3-digit level, Feb. ‘98 X X X -.09 .11 .44 .14 
Previous occupation: metals .26 .15 0 .06 -.76 0 0 
   painting, technical drawing  0 0 .12 0 0 0 -.33 
   entrepreneurs, senior officials, justice 0 0 .51 0 0 0 -.14 
   office and computer -.24 .14 .27 -.04 .01 0 .06 
   retail trade -.10 .44 .24 .08 -.38 0 .17 
   science -.45 .16 0 -.02 -.07 0 0 
Table 8 to be continued. 

                                                                                                                                                                                            
30  Ideally, in such an application the intermediate outcome variable one would like to observe is ‘number and quality 

of job offers received’. However, if the caseworker is aware of the job offers received she should factor this 

information into her assessment of employability. 
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Table 8: continued 

Variable 
U vs. C U vs. E U vs. T UU if U CC if C EE if E TT if T 

Monthly insured earnings (in last job) in CHF / 1000 -.02 .09 -.02 -.04 -.01 -.26 .05 
Employed Feb. ‘02 X X X -1.16 -.58 0 -1.62 
Current unemployment spell is first spell -.02 .01 .12 .07 .31 .80 -.07 
Sanction days without benefits (current spell) / 10 .01 .02 .05 .03 -.03 -.09 -.05 
Sanction days without benefits / 10 Jan. + Feb. ‘98 X X X .02 -.20 0 .17 
Duration of UE spell (days / 10) -.78 -.43 0 .12 -.13 -.05 0 
Unemployment benefits / 1000 in 1996 -.01 .00 0 .01 -.01 0 0 
     in 1997 .01 -.01 .01 .00 -.00 .00 .01 
Month of entry into social security system -.46 -.02 .18 .09 .72 -1.07 -.36 
Share of employment 1988-1997 -.35 .59 -.49 -.34 .57 0 .75 
Average duration of UE spells 1988-1997 / 10 -.80 .73 1.21 -.01 3.95 0 -.31 
Subsidized temporary job before Dec. 97 0 0 -.38 0 0 0 .19 
Size of town (previous employment) < 30.000 -.03 -.05 -.03 -.14 0 0 0 
Region of placement office in rural area .00 .11 -.07 .07 .01 -.20 -.15 
Inflow rate to long-term unemployment (by region of PO)  .53 .41 .56 .19 .37 -1.98 .25 
Region (reference Central)  west -.01 .08 -.20 -.20 -.57 0 .06 
     east  0 .67 0 0 0 0 0 
     Zurich .18 .69 .12 .24 -.24 .29 -.41 
     south-west  .55 .68 -.24 -.08 -.68 0 -.13 
     north-west  .42 .43 .21 .14 -.74 -.38 -.03 
     Ticino .56 .82 .37 .20 -1.01 0 .19 
 Additional regional effects by canton: Bern .24 .02 .14 .37 .02 0 -.21 
   French main language in canton  .11 -.15 .39 .47 -.18 0 -.13 
Subsample U or C U or E U or T U C E T 
Number of observations in subsample 8512 8100 8772 7982 574 118 790 
Dependent variable U U U UU CC EE TT 
Mean of dependent variable in subsample .94 .98 .91 .64 .55 .83 .48 
Note: Binary probit model estimated on the respective subsample. All specifications include an intercept and are subjected to 

specification tests (omitted variables, non-normality). If not stated otherwise, all information in the variables relates to 
the last day in December 1997. Exclusion restrictions: 0: Variables omitted from specification. X: Variable not temporar-
ily prior to dependent variable. Bold letters in italics denote significance at the 1% level. Bold letters denote signifi-
cance at the 5% level. Italics denote significance at the 10% level.  

5.2.2 Common support 

The next remark about the matching protocol concerns the common support. The definition of the region 

of common support - as defined on the reference distribution for which the effect is desired - has to be 

adjusted period by period with respect to the conditioning variables of this period. The matching estimator 

allows easily tracing back the impact of this procedure on the reference distribution. Suppose that for the 

choice of treatments in period 2 a lack of support is detected. Suppose furthermore that the reference dis-

tribution is defined with respect to the treatment status in period 1. By the virtue of sequential matching, 

the observations without support in period 2 are related to some specific observations in period 1, namely 
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those they are matched to in the matching steps before period 2. Therefore, the adjustment of the distribu-

tion in period 1 due to the lack of support in any other period is immediate.  

Table 9: Estimation results for gross monthly earnings (in CHF) in December 2002 

Observations de-
leted for common 

support 

Sequences 
1
2s   
0

2s  

Target 
pop. 

1s  

1
0 2 2( | )E Y S s= , 

0
0 2 2( | )E Y S s= , 

0 1 1( | )E Y S s=  

1
2s

N ,  

0
2s

N , 

1s
N  t=1 t=2 in % 

of 1s  

Mean of 
 Y0 in 

deleted 
sub-

sample 

Concen-
tration of 
weights 

in % 

1
2 2( | )tE Y S s= , 

0
2 2( | )tE Y S s= , 

1 1( | )tE Y S s=  

1
2

1 1( | )s
tE Y S s= , 

0
2

1 1( | )s
tE Y S s= , 

1 0
2 2,

1( )s s
t sθ  

          std.  std. 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 
UU  3904 5122  266   27 2171  (34) 2326 (67) 
CC  3932 316 164 268   46 2699 (135) 3014 (241) 

 U 3943 7982   12 4166  2387 (30) -688 (250) 
UU  3904 5122 0 27   24 2171 (34) 2484 (144) 
CC  3932 316  9   24 2699 (135) 2986 (161) 

 C 4012 573   6 4396  2705 (104) -502 (216) 
UU  3904 5122  238   27 2171 (34) 2307 (63) 
EE  3517 99 774 55   49 2069 (208) 2053 (380) 

 U 3943 7982   13 3009  2387 (30) 254 (386) 
UU  3904 5122 0 3   16 2171 (34) 1662 (207) 
EE  3517 99  3   21 2069 (208) 2003 (223) 

 E 3592 118   5 4019  2120 (189) -341 (304) 
UU  3904 5122  223   27 2171 (34) 2299 (64) 
TT  4067 382 55 468   39 2595 (119) 2360 (187) 

 U 3943 7982   9 4069  2387 (30) -61 (198) 
UU  3904 5122 0 27   25 2171 (34) 2243 (127) 
TT  4067 382  40   26 2595 (119) 2475 (146) 

 T 4023 790   8 3867  2676 (85) -232 (194) 
EE  3517 99  3   20 2069 (208) 2179 (233) 
TT  4067 382 1 8   30 2595 (119) 2167 (329) 

 E 3943 118   8 3757  2481 (189) 11 (404) 
EE  3517 99 133 6   45 2069 (208) 2120 (377) 
TT  4067 382  43   25 2595 (119) 2495 (148) 

 T 4023 790   23 4422  2676 (85) -375 (405) 
Note:  The sequences are defined on a bimonthly basis. U: Unemployed; C, E: Participating in a programme of the active 

labour market policy (Course or Employment programme); T: Receiving a temporary wage subsidy. Earnings are coded 
as 0 if individuals receive a temporary wage subsidy, participate in a programme, or are unemployed. 
Concentration of weights: Share of the largest weights (10%) to total weights. Y0 denotes ‘insured monthly earnings’ in 
CHF that are used by the unemployment insurance to calculate unemployment benefits. Since they are computed from 
the data coming from the UE insurance, they may not be perfectly comparable to the outcome variable that is calculated 
from the pension records. Std.: Standard error of estimated mean (conditional on the weights and without adjustment 
for estimated scores). 
Bold letters in italics denote significance at the 1% level. Bold letters denote significance at the 5% level. Italics denote 
significance at the 10% level. Estimates for the same parameter may differ across different comparisons because the 
common support is defined with respect to 

1 0
2 2,

1( )s s
t sθ . 

Table 9 contains the results of the estimation as well as descriptive statistics about the data used in the 

specific comparisons and operational characteristics of the sequential matching estimation. 
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Columns 5 and 6 of Table 9 show how many observations are deleted at each step when the common sup-

port is enforced. The total share deleted (col. 7) varies from 5% for the comparison of unemployment with 

employment programmes for the (small) population of 1st period participants in employment programmes 

and 23% for the comparison of the sequences that appear to have the most dissimilar participants, namely 

EE and TT. However, even in this case the share of observations deleted depends very much on whether 

the small (E, 8%) or the large target population is considered (T, 23%). In the latter case column 8 con-

taining the previous earnings of those deleted, suggesting that for many of the participants in T with 

higher earnings no adequate matches could be found. Therefore, enforcing the common support require-

ment redefine the underlying population for which this effect is defined considerably and thus the results 

for the original effect are not very reliably estimated for this specific comparison.31 

5.2.3 Weights, adjustments, and sample sizes 

The next remark concerns an issue arising because matching is with replacement: if few observations have 

a very large weight when computing the weighted means in the matched comparison groups, a very noisy 

estimator results. This effect can be fairly easily spotted with the type of matching used by analysing the 

weights directly. Column 9 contains the 10 % concentration ratio of the weights in the two subsamples of 

treated observations (after adjusting for common support).32 The results show systematically higher ratios 

when small treated groups are matched to large (and diverse) target populations, such as EE to U. 

Comparing the mean earnings of both treatment groups with the earnings of the target group (col. 3) gives 

a rough idea whether we expect matching to adjust mean observed post-treatment earnings upwards or 

downwards. Indeed these adjustments appear to move the estimators in the right direction in almost all 

                                                           
31  Lechner (2001b) discusses alternative methods of accounting for common support problems, in particular 

bounding the parameter of interest that could not be estimated due to the common support problem. In principle 

these suggestions can be adapted to the dynamic framework in a straightforward manner. Note also that tighter or 

less tight conditions than those appearing in the matching protocol may be imposed to define the common support. 
32  The 10% ratio shows the share of the target population covered by those 10% of the treatment population that 

have the largest weights. In case of random assignment this ratio would be about 10. If only a single observation is 

matched to all members of the target population, this ratio would be 100. 
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cases although the magnitudes appear sometimes to be surprising given the pre-treatment differences. 

However, there are differences in other confounders that are not displayed in the table. A further observa-

tion from this table concerns standard errors and sample sizes necessary for a reliable dynamic analysis. In 

fact in many cases the standard errors are so large that effects of more than 800 CHF per month would be 

needed for significance. However such large effects appear to be rather implausible for the programmes 

under investigation. 

5.2.4 Results 

To shed some light on the development of the effects over time, Table 10 presents results for outcome 

variables 1, 6, 17 months after the sequence of interest. Furthermore, since it is the ‘official’ objective for 

the active labour market policy to increase reemployment chances of the unemployed, an outcome vari-

able measuring whether an individual is employed in that particular month is considered as well. 

Table 10: Dynamics of 
1 0
2 2,

1( )s s
t sθ  

Seq. 
1
2s  - 0

2s  
Target 
pop.  

1
2 2( | )tE Y S s=  0

2 2( | )tE Y S s=  1
2

1 1( | )s
tE Y S s=  0

2
1 1( | )s

tE Y S s=  1 0
2 2,

1( )s s
t sθ  

  5/01 9/01 9/02 5/01 9/01 9/02 5/01 9/01 9/02 5/01 9/01 9/02 5/01 9/01 9/02 
  Earnings (0 if not employed) 

UU-CC U 1345 1913 2533 867 1728 2683 1504 2034 2706 964 1883 2905 539 150 -198 
 C       1260 1851 2785 1002 1861 2963 258 -10 -177 

UU-EE U    371 1112 2163 1442 1953 2619 129 1184 2243 1313 769 376 
 E       914 1447 1918 358 1041 2046 556 406 -127 

UU-TT U    1368 2124 2921 1531 2020 2653 1239 1908 2711 294 112 186 
 T       1531 2070 2680 1389 2125 2791 141 -54 -110 

EE-TT E       324 1149 2175 1386 2331 2557 -1062 -1182 -382 
 T       245 1244 2199 1490 2295 2978 -1244 -1050 -779 
  Employment 

UU-CC U 22 31 44 14 28 46 24 34 48 17 30 48 7 4 0 
 C       20 29 51 16 30 50 4 -1 1 

UU-EE U    8 25 39 23 32 46 2 27 44 21 5 3 
 E       15 21 41 7 23 36 8 -2 6 

UU-TT U    22 35 52 25 34 46 20 30 49 6 4 -2 
 T       22 32 44 22 35 52 0 -3 -8 

EE-TT E       7 25 36 24 43 45 -17 -17 -9 
 T       5 26 38 27 40 53 -21 -15 -9 

Note:  See note below Table 9. For the definition of the outcome variables individuals are considered as not employed if they 
receive a temporary wage subsidy or participate in a programme. 
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The results broadly confirm the previous findings in the sense (i) that employment programmes appear to 

be the least effective, (ii) that it is very hard to pin down effects of training courses, and (iii) that wage 

subsidies look like the only programme that seems to be somewhat successful. But again the variability of 

the estimates is a problem. It is however obvious that the negative effects of the employment programmes 

become smaller or even disappear after 17 months, which could suggest that they are basically due to 

some lock-in effect: Most employment programmes run for six months and during this time job search 

activities of participants are most likely much lower than outside a programme. 

6 Conclusion 

This paper proposed and discussed sequential matching and inverse selection probability weighted esti-

mators that can be used to estimate the causal effects defined within the dynamic causal model introduced 

by Robins (1986) and extended by Lechner and Miquel (2001). The sequential matching estimators mimic 

the simple, well known and frequently applied matching estimators based on so-called propensity scores 

that are popular among empirical researchers for the static causal model. A small Monte Carlo study re-

vealed that the suggested estimators perform well in small and medium size samples. Using an application 

of the sequential matching estimators to an empirical problem, namely an evaluation study of the Swiss 

active labour market policies, some implementational issues are discussed and results are provided. 

Future work should be directed at extending the rigours proofs of the asymptotic distribution by Abadie 

and Imbens (2002) to the sequential versions of the matching estimators. Furthermore, other nonparamet-

ric sequentially weighted regression type estimators that have been proposed for the static model can be 

developed for the dynamic context as well and compared. Finally, efforts should be spent in obtaining 

more reliable inference perhaps by adapting the ‘match-the-treated-to-treated-and-the-controls-to-the-

controls’ methods proposed by Abadie and Imbens (2002). Another option would be to develop more 

sophisticated bootstrap procedures. 
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Appendix A: Additional considerations for multiple treatments and many periods 

Since in many cases there may be more than two states in any period, this appendix informally discusses consider-

ations important in applications and that are not addressed in the main body of the text. There is the issue for the 

propensity scores whether for each period one needs to take account for example for the event of not participating in 

2
ks  conditional on participating in 1

ks  could mean any particular of the other different states. However, since in each 

step the independence assumption relates only to a binary comparison, e.g. 2
2 2 2 1 1 1 11( ) | ,

ks k kY S s S s X x= = = , 

and 1
2 1 1 1 1 1 0 01( ) | { , },

ks k j kY S s S s s X x= ∈ =  ( 1
js  being the target population as before), it is obvious that the 

conditional probabilities of not participating in the event of interest conditional on the history is enough, and the exact 

composition of the alternative does not play any role.33 This means that for the matching step in period 2 

2 2 1 1 1 1( | , )k kP S s S s X x= = = , 1 1 0 0[ | ,kP S s X x= =  1 1 1{ , }l kS s s∈ ] and the matching step in period 1 

1 1 0 0[ | ,kP S s X x= =  1 1 1{ , }l kS s s∈ ] may be used. The multiple treatment feature of the problem does not add to the 

dimension of the propensity scores. 

                                                           
33  Note that the same argument is developed by Imbens (2000) and Lechner (2001a) to show that in the static 

multiple treatment models conditioning on appropriate one-dimensional scores is sufficient. 
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Appendix B: The matching protocol used in the empirical application 

Table B.1: A sequential matching estimator for 
1 0
2 2, 1

1( )s s
t sθ  based on propensity scores 

Step 0: Sample reduction  Delete all observation not belonging to 1
1s , 1

2s , or 0
2s  

Step A: Match 0 0 0
2 1 2( , )s s s=  to 1

1s  A.1.0 Define a weight 0
2 0s

iw =  for every obs. in 0
2s . 

  ( 0
2 1

1 1( | )s
tE Y S s= ) A.1.P Estimate a probit for 0

1 1 0 0( | )P S s X x= =   0 0
1 1

0,( ) :s s
i ip x p=  

 A.1.CS Delete all obs. of 1
1s  with lower or higher values of 0

1s
ip  than obs. in 0

1s  
 A.1.M For every obs. in 1

1s  not deleted in A.1.S find the obs. in 0
1s  that is closest in 

terms of 0
1s

ip  (a match). 
 A.1.C For the matched obs. keep the value of 0

1s
ip  of the obs. in 1

1s  they have been 
matched to. Some obs. in 0

1s  may appear many times in this matched sample.  
 A.2.R Define a sample of obs. in 0

1s . 
 A.2.P Estimate a probit for 0 0

2 2 1 1 1 1( | , )P S s S s X x= = =   0 0 0 0
2 1 2 1| |

1,( ) :s s s s
i ip x p=  

 A.2.CS Delete all obs. of  the matched control sample of 1
1s   (defined in A.1.C) with 

lower or higher values of 0
1s

ip  and 0 0
2 1|s s

ip  than obs. in 0
2s . 

 A.2.M For every obs. in the matched control sample of 1
1s  not deleted in A.2.CS find 

an obs. in 0
2s  that is closest in terms of 0 0

2 1|s s
ip  and 0

1s
ip  using the Mahalanobis 

metric (covariance computed in 1
1s ).  

Every time an obs. in 0
2s  is matched, its weight 0

2s
iw  is increased by 1. 

Step B: Match 1 1 1
2 1 2( , )s s s=  to 1

1s  B.1.0 Define a weight 1
2 0s

iw =  for every obs. in 1
2s . 

 ( 1
2 1

1 1( | )s
tE Y S s=  B.2.R Reduce sample to participants in 1

1s . 
 B.2.P Estimate a probit for 1 1

2 2 1 1 1 1( | , )P S s S s X x= = =   1 1 1 1
2 1 2 1| |

1,( ) :s s s s
i ip x p=  

 B.2.CS Delete all obs. of 1
1s  with lower or higher values of 1 1

2 1|s s
ip  than obs. in 1

2s . 
 B.2.M For every obs. in 1

1s  not deleted in B.2.CS find the member of 1
2s  that is closest 

in terms of 1 1
2 1|s s

ip .  

Every time an obs. in 1
2s  is matched, its weight 1

2s
iw  is increased by 1. 

Step C: Joint common support C.1 Reduce 1
2s

iw  by 1 for every obs. i matched to an obs. in 1
1s  deleted in A.1.CS or 

A.2.CS. 
 C.2 Reduce 0

2s
iw  by 1 for every obs. i matched to an obs. in 1

1s  deleted in B.2.CS. 

Step D: Estimation of 1 0
2 2, 1

1( )s s
t sθ  D.1 1 0 1 0

2 2 2 2
1 0
2 21 1

2 2
1 0
2 2

, 1
1

1 1ˆ ( )s s s s
t i i i is s

i s i si i
i s i s

s w y w y
w w

θ
∈ ∈

∈ ∈

= −∑ ∑∑ ∑
 

 D.2 1 0
2 2

1 01 0
2 22 2

1 0
2 2

1 0
2 2

2 1 2 0
2 2

, 1
1 2 2

ˆ ˆ( ) ( | ) ( ) ( | )
ˆˆ ( ( ))

( ) ( )

s s
i t i t

i s i ss s
t s s

i i
i s i s

w Var Y S s w Var Y S s
Var s

w w
θ ∈ ∈

∈ ∈

= =

= +
∑ ∑

∑ ∑
  

2

2
2

2
2

1ˆ ( | ) ( )s
t i ts

i s

Var Y S s y y
N ∈

= = −∑ , 2

2
2

1s
t tis

i s

y y
N ∈

= ∑ , 2
2, 21( )s

i
i

N s s= =∑  

 t > 1. 
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Appendix C: The sequential inverse probability-weighted estimators  

In this appendix 3 examples show that the SIPW estimators proposed in Section 3 are indeed estimating the desired 

quantities. For simplicity, it is assumed that the probabilities are estimated consistently and with enough regularity 

such that the following exposition based on true probabilities holds asymptotically with estimated probabilities as well. 

a) The SIPW estimator for 2
2( )

ksE Y  is given great detail: 

 2, 1, 1 2, 2

1 2 2 1 1 1 1, 1 1 0 0,

1( )1( )1
( | , ) ( | )

k kN
i i i

k k k
i i i

y s s s s
E

N P S s S s X x P S s X x=

= =
= = = = =∑  = 

 = 
2

2 1 1 2 2

2 2 1 1 1 1 1 1 0 0

1( )1( )
( | , ) ( | )

ks k k

k k k

Y S s S sE
P S s S s X x P S s X x

= =
= = = = =

 = 

 = 

2

0

2 1 1 2 2
0 0

2 2 1 1 1 1

1 1 0 0

1( )1( )[ | ]
( | , )

( | )

ks k k

k k

kX

Y S s S sE X x
P S s S s X xE

P S s X x

= =
=

= = =
= =

 = 

 = 

2

0

2 2 2
1 1 0 0 1 1 0 0

2 2 1 1 1 1

1 1 0 0

1( )[ | , ] ( | )
( | , )

( | )

ks k
k k

k k

kX

Y S sE S s X x P S s X x
P S s S s X xE

P S s X x

=
= = = =

= = =
= =

 = 

 = 
2

0 1 0 1

2 2 2 1 1 1 1

| ,
2 2 1 1 1 1

[ 1( ) | , ]
( | , )

ks k k

k kX X X S

E Y S s S s X xE E
P S s S s X x

= = =
= = =

 =  

 =
2

0 1 0 1

2 2 2 1 1 2 2 1 1 1 1

| ,
2 2 1 1 1 1

[ | , ] ( | , )
( | , )

ks k k k

k kX X X S

E Y S s X x P S s S s X xE E
P S s S s X x

= = = = =
= = =

 = 

 = 2

0 1 0 1
2 2 2 1 1| ,

[ | , ]
ks k

X X X S
E E E Y S s X x= =  =  

 = 2

0 1 0 1
2 1 1 1 1| ,

[ | , ]
ks k

X X X S
E E E Y S s X x= =  = 2

0
2 1 1 0 0[ | , ]

ks k

X
E E Y S s X x= =  = 2

0
2 0 0[ | ]

ks

X
E E Y X x=  =  2

2( )
ksE Y . 

b) The SIPW estimator for 2
2 1 1( | )

ks kE Y S s=  is the same IPW estimator as for static treatment effects: 

 
1

1

2, 2, 2

2 2 1 1 1 1,

1( )1
( | , )k

k

k
i i

k ks
i s i

y s s
E

P S s S s X xN ∈

=
= = =∑  = 
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 = 
2

2 2 2
1 1

2 2 1 1 1 1

1( ) |
( | , )

ks k
k

k k

Y S sE S s
P S s S s X x
⎡ ⎤=

=⎢ ⎥
= = =⎢ ⎥⎣ ⎦

 = ... = 

 = 
2

1 1

2 2 2 1 1 2 2 1 1 1 1

|
2 2 1 1 1 1

( | , ) ( | , )
( | , )

ks k k k

k kX S

E Y S s X x P S s S s X xE
P S s S s X x

⎡ ⎤= = = = =
⎢ ⎥

= = =⎢ ⎥⎣ ⎦
 = … = 

 = 2 2 2

1 1 1 1
2 2 2 1 1, 2 1 1 1 1, 2 1 1

| |
( | , ) ( | , ) ( | )

k k ks s sk k k
i i

X S X S
E E Y S s X x E E Y S s X x E Y S s⎡ ⎤ ⎡ ⎤= = = = = = =⎣ ⎦ ⎣ ⎦

. 

c) The SIPW estimators for 2
2 1 1( | )

ks jE Y S s=  (of which 2
2 1 1( | )

ks kE Y S s=  is a special case) and 

2
2 1 1( | )

ks jE Y S s=  are obtained by using the same steps as in a) and noting that 
1
js

N
N

 and 
2
js

N
N

 converge to 

1 1

1
( )jP S s=

 and 
2 2

1
( )jP S s=

. Furthermore, Bayes law gives the connection between the conditional and 

unconditional counterfactuals. For 2
2 1 1( | )

ks jE Y S s= , for example, using 0 1 1 1 1
0

1 1 0 0

( | ) ( )( )
( | )

j j

j

f x S s P S sf x
P S s X x

= =
=

= =
 

leads to the desired result: 

 2

0

1 1 0 0
2 1 1 0 0

1 1

( | )[ | , ]
( )

k
j

s k
jX

P S s X xE E Y S s X x
P S s

⎧ ⎫= =⎪ = =⎨ ⎬=⎪ ⎭⎩
 = 

 = 2

0

1 1 0 0
2 1 1 0 0

1 1

( | )[ | , ]
( )

k
j

s j
jX

P S s X xE E Y S s X x
P S s

⎧ ⎫= =⎪ = =⎨ ⎬=⎪ ⎭⎩
 =  

 = 2

0 1 1

1 1 0 0 1 1
2 1 1 0 0

|
1 1 1 1 0 0

( | ) ( )[ | , ]
( ) ( | )

k

j

j j
s j

j jX S s

P S s X x P S sE E Y S s X x
P S s P S s X x=

⎧ ⎫= = =⎪ = =⎨ ⎬= = =⎪ ⎭⎩
 =  

 = 2 2

0 1 1
2 1 1 0 0 2 1 1

|
[ | , ] [ | ]

k k

j

s sj j

X S s
E E Y S s X x E Y S s
=

= = = = . 


