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Abstract 

Lechner and Miquel (2001) approached the causal analysis of sequences of interventions 

from a potential outcome perspective based on selection on observable type of assumptions 

(sequential conditional independence assumptions). Lechner (2004) proposed matching 

estimators for this framework. However, many practical issues that might have substantial 

consequences for interpretation of the results have not been thoroughly investigated so far. 

This paper discusses some of these practical issues. The discussion is related to estimates 

based on an artificial data set for which the true values of the parameters are known and 

that shares many features of data that could be used for an empirical dynamic matching 

analysis. 

 

Keywords 

Dynamic treatment regimes, nonparametric identification, causal effects, sequential rando-

misation, programme evaluation, treatment effects, dynamic matching, panel data. 

 

JEL Classification 

C31, C41 



 

 

1111    IntroductionIntroductionIntroductionIntroduction****    

The goal of the paper is to address practical issues that come with the non- or semiparametric 

estimation of dynamic treatment models that are identified by sequential selection-on-observables (or 

conditional independence) assumptions.  

While the effects of dynamic selection bias and the impact of sequential interventions received little 

attention in the applied econometrics literature so far, there is a substantial literature about the 

estimation of average ‘causal effects’ of interventions using large micro data based on a static causal 

model. Angrist and Krueger (1999) and Heckman, LaLonde, and Smith (1999) provide a comprehensive 

overview over this vast literature. Robins (1986) is the first one who suggests an explicitly dynamic 

causal framework based on potential outcomes that allows to define causal effects of dynamic 

interventions and to systematically address this type of selection problem. His approach was applied 

subsequently in epidemiology and biostatistics. The estimators used in these applications typically involve 

parametric assumptions not required for identification, like parametric duration modelling. Gill and 

Robins (2001) extend his approach to the case of continuous covariates and treatments. Recently, 

Lechner and Miquel (2001, LM01 further on) extend Robins’ (1986) framework to comparisons of more 

general sequences, different parameters and selection processes, and to identifying assumptions that are 

more relevant in typical microeconometric studies. Focussing on the case when all elements that 

influence selection and outcome at each stage of the sequence are observable, LM01 discuss different 

identification conditions required for particular dynamic causal effects. Since the assumptions used in 

LM01 bear some similarity to the selection on observables or conditional independence assumption 

                                                           
* I have further affiliations with CEPR, London, ZEW, Mannheim, IZA, Bonn, and PSI, London. This paper 

benefited considerably from previous work with Ruth Miquel about sequential treatment models, as well as from 

the consistency checks she performed with the artificial data. I thank Conny Wunsch for careful prove reading of 

a previous version of this paper.  
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(CIA) that is prominent in the static evaluation literature, Lechner (2004, L04 further on) proposed 

matching and inverse probability weighting estimators that are dynamic extensions of similar estimators 

used in the static model. These estimators retain most of the flexible and convenient properties of the 

static methods that made them the workhorse in empirical evaluation studies (see the excellent survey 

by Imbens, 2004).  

Since there are no experiences so far with this type of estimation for these models (other than the two 

illustrative examples in LM01 and L04), this paper discusses several issues that come up when the 

dynamic approach is applied in practice. To begin with, three examples are chosen to show that the 

dynamic model can be fruitfully used to address questions that surface in applied evaluation studies and 

that are hard to address within a static framework, because the latter is not able to handle selection 

problems that occur while a particular treatment is in operation.  

The first example concerns the effects of sequences of programmes. The breakdown of the static model 

occurs when selection into the second and any subsequent programme is influenced by the outcome of 

the previous programmes, thus particular control variables become endogenous in particular ways with 

respect to the complete sequence. This is called an intermediate outcome for which the static model 

does not provide any way to handle it. 

The second example concerns the effects of earlier or later starts of the programme. Although there 

have been attempts to estimate such effects in the evaluation literature by Sianesi (2004),
1
 her adjusted 

static framework does not allow to clearly spell out the causal contrasts estimated as well as to explicitly 

define the exogeneity conditions required for the control variables to identify the underlying causal 

effect. The latter deficiency is also shared by papers that try to mitigate the problem of different starting 

dates in evaluation studies by randomly drawing start dates (see Lechner, 1999, Gerfin and Lechner, 

2002, and the critique of this procedure by Fredriksson and Johansson, 2003). 

                                                           
1
  See also the related approach by Li, Rosenbaum, and Propert (2001) that appeared in the statistics literature. 



2 

The third example is the effect of the actual duration of the programme. The problem with the actual 

duration of a programme is that it could be endogenous in the following sense: For example, if the effect 

of the programme comes from the signal that participation sends, then it is very likely that people leave 

the programme while it is under way. This attrition is, however, an effect of beginning and staying up to 

that point in the programme. So far, empirical evaluation studies circumvented this problem by 

considering the effects of planned duration only (e.g. Lechner, Miquel, and Wunsch, 2004), which 

estimates a different parameter that may or may not be of interest in the particular situation. 

The conditional independence assumption that justifies matching estimation in the static context is 

sometimes called a data hungry identification and estimation strategy. To remain in this picture, if static 

matching is data hungry, then dynamic matching is starving for data. This relates to the number of 

observations necessary in the particular sequences to obtain precise inference, to the time-varying 

variables required to obtain identification, and to the heterogeneity of the characteristics observed in the 

particular treatments. Taken together, this could lead to the undesirable situation that the price to pay 

for using the much more informative dynamic approach is that the resulting parameters are very noisy 

estimates on a common support that has no policy relevance. Therefore, these issues are considered in 

more depth from different perspectives: (i) a comparison to static matching;
2
 (ii) the relation of the 

common support and the length of specified sequences; (iii) the number of regressors included in the 

propensity score estimation. 

This paper does not derive new analytical results. The discussion is based on known properties of the 

estimators, as well as on the performance of the estimation procedures in the data. This data comes 

from a rather elaborate attempt to generate artificial data that might have found in true evaluation 

studies of European type active labour market programmes (many covariates, 40 periods with 

autocorrelation, 4 programmes with different start dates and lock-in effects, etc.). Since in terms of 

                                                           
2  There is a bias issue in the comparison to static matching as well. However, Lechner (2004) discusses this topic 

extensively. Therefore, this paper does not take it up again. 
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computing time, its generation is far too expensive for a Monte Carlo study, only one replication is used. 

For the limited illustrative goals of this paper, this suffices. 

The paper proceeds as follows: Section 2 outlines the dynamic causal framework suggested by LM01 and 

L04. The notation is introduced and the basic identification conditions are restated. The estimation 

problem is explained in Section 3 and sequential matching as proposed by L04 is reviewed. Section 4 

details the data. Section 5 presents the three empirical examples. Section 6 covers the brief comparison 

to static matching. The issues of additional variables and the relation between length of sequence and 

common support are discussed in Section 7. Section 8 concludes and Appendix A contains some 

descriptive statistics concerning the distribution of the true values of the potential outcomes. 

2222    TTTThe dynamic causal mhe dynamic causal mhe dynamic causal mhe dynamic causal modelodelodelodel    ---- notation, effects, and identification notation, effects, and identification notation, effects, and identification notation, effects, and identification    

This section briefly repeats the definition of the dynamic causal model as well as the identification results 

derived by Lechner and Miquel (2001) for the case of sequential selection on observables. To ease the 

notational burden, I use a three-period-two-treatments model to discuss the most relevant issues that 

distinguish the dynamic from the static model, although in the application more periods and more 

treatments are considered. As usual in the econometric  evaluation literature, I use the standard 

statistics terminology based on treatments and potential outcomes to define causal effects. 

2.12.12.12.1    Basic structure of the modelBasic structure of the modelBasic structure of the modelBasic structure of the model        

Suppose that there is an initial period in which everybody is in the same treatment, plus two subsequent 

periods in which different treatment states are realised. The periods are indexed by t or τ  

( , {0,1, 2}t τ ∈ ). The treatment defined over all periods is described by a vector of Bernoulli random 

variables (RV), 1 2( , )S S S=
. For notational convenience, the RV of the initial period ( 0S ) is not 

mentioned explicitly. A particular realisation of tS  is denoted by 
{0,1}ts ∈ . Denote the history of 
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variables up to period t by a bar below a variable, i.e. 2 1 2( , )s s s= .3
 Since we are not restricting effect 

heterogeneity over time, it makes sense to define potential outcomes in terms of sequences of potential 

states of the world. Thus, in period one, an individual (or a firm, country, or any other unit of interest) is 

observed in exactly one of two treatments. In period two, the same treatment in period 2 will be 

captured by two potential outcomes depending on what happened in period 1. Therefore, she 

participates in one of four treatments, defined by the sequences (0,0),(1,0),(0,1),(1,1) . Thus, every 

individual participates in exactly one sequence defined by 1s  and another sequence defined by the same 

value 1s  and a value of 2S . To sum up, in the two (plus one)-period-two-treatments example we 

consider six different overlapping potential outcomes corresponding to two mutually exclusive states 

defined by treatment status in period 1 only, plus four mutually exclusive states defined by treatment 

status in period 1 and 2 together.  

Variables used to measure the effects of the treatment in period t, i.e. the potential outcomes, are 

indexed by treatments and denoted by 
1s

tY  ( 1t ≥ ) or 
2s

tY  ( 2t ≥ ). They are measured at the end of 

each period, whereas treatment status is measured in the beginning of each period. For each length of a 

sequence (1 or 2 periods), one of the potential outcomes is observable and denoted by tY . The resulting 

two observation rules are defined in equation (1): 

1 0 11 10 01 00

1 1 1 2 1 2 1 2 1 2(1 ) (1 ) (1 ) (1 )(1 )t t t t t t tY S Y S Y S S Y S S Y S S Y S S Y= + − = + − + − + − −
; 0,1,2.t =  (1) 

Finally, variables that may influence treatment selection and (or) potential outcomes are denoted by X. 

The K-dimensional vector tX  may contain functions of tY  and is observable at the same time as tY . 

                                                           
3  To differentiate between different sequences, sometimes a letter (e.g. j) is used to index a sequence like 

j

ts . As 

a further convention, capital letters usually denote random variables, whereas small letters denote specific values 

of the random variable. When we deviate from this convention, it will be obvious. 
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2.22.22.22.2    Average causal effectsAverage causal effectsAverage causal effectsAverage causal effects    

As in the static model, the potential outcomes are used to define several average causal effects (for 

period t) of a sequence of treatments defined up to period 1 or 2 ( , 'τ τ ) compared to an alternative 

sequence of the same or a different length for a population defined by one of those sequences or a third 

sequence is defined in equation (2): 

' ',
( ) ( | ) ( | )

k l k ls s s sj j j

t t ts E Y S s E Y S sτ τ τ τ
τ τ τ τ τθ = = − =ɶ ɶ ɶ ɶ ɶ ,    

     0 ; 1 , ' 2, ', ;τ τ τ τ τ τ≤ ≤ ≤ ≤ɶ ɶ
 k l≠ , , (1,..., 2 )k l τ∈ , (1,..., 2 )j τ∈ ɶ

. (2) 

LM01 call 
',k ls s

t
τ τθ

 the dynamic average treatment effect (DATE). Accordingly, 
',
( )

k ls s k

t sτ τ
τθ

, as well as 

',

'( )
k ls s l

t sτ τ
τθ

 are termed DATE on the treated (DATET) and DATE on the nontreated. There are cases 

in-between, like 
2 2;

1( )
k ls s l

t sθ
 for which the conditioning set is defined by a sequence shorter than the ones 

defining the causal contrast. Note that the effects are symmetric for the same population (
',
( )

k ls s k

t sτ τ
τθ

 = 

' , ( )
l ks s k

t sτ τ
τθ−

), which, however, does not restrict effect heterogeneity across individuals 

(
',
( )

k ls s k

t sτ τ
τθ ',

'( )
k ls s l

t sτ τ
τθ≠

). 

2.32.32.32.3        Identification Identification Identification Identification     

Assume that a large sample 1 2 0 1 2 1 2 1:{ , , , , , , }i i i i i i i i Ns s x x x y y =  of size N is available, randomly drawn from 

a very large population of interest. The latter is characterised by the corresponding random variables 

1 2 0 1 2 1 2( , , , , , , )S S X X X Y Y
.
4 
Furthermore, assume that all conditional expectations that are of interest in 

                                                           
4  To simplify the notation further, we consider period 2 as the only period relevant for the outcome of interest. 

However, for all what follows X2 and Y2 should be considered as measured at some point in time after treatment 
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the remainder of this paper exist. LM01 show that if we can observe the variables that jointly influence 

selection at each stage as well as the outcomes some average treatment effects are identified (weak 

conditional independence assumptions):
5
 

Weak dynamic conditional independence assumption (W-DCIA) 
6 

a) 
00 10 01 11

2 2 2 2 1 0 0, , , |Y Y Y Y S X x=∐
; 

b) 
00 10 01 11

2 2 2 2 2 1 1 1 1, , , | ,Y Y Y Y S X x S s= =∐
; 

c)      1 0 01 ( 1| ) 0P S X x> = = >
, 2 1 1 1 11 ( 1| , ) 0P S X x S s> = = = > ; 1 1x χ∀ ∈

, 1 1: {0,1}s s∀ ∈ . 

Part a) of W-DCIA states that potential outcomes are independent of treatment choice in period 1 ( 1S ) 

conditional on 0X . This is the standard version of the static CIA (e.g. Rubin, 1974). Part b) states that 

conditional on the treatment in period 1, on observable outcomes of period 1 (which may be part of 

1X ) and on confounding variables of period 0 and 1 ( 1X ), potential outcomes are independent of 

participation in period 2 ( 2S ). 

To see whether such an assumption is plausible in a particular application, we have to ask which variables 

influence potential changes in treatment status as well as outcomes and whether they are observable. If 

the answer to the latter question is yes, and if there is common support (defined in part c) of W-DCIA), 

then we have identification, even if some or all conditioning variables in period 2 are influenced by the 

outcome of the treatment in period 1. LM01 show that, for example, quantities like 
11

2( )E Y
, 

                                                                                                                                                                                              

2 occurred. The exact timing is determined by the substantive interest of the researcher conducting the 

empirical study. 

5  The following assumptions relate to identification of all treatment effects that could possibly be defined by the 

notation in Section 2. If the desired comparison involves fewer periods, the required changes are obvious. 

6  |A B C c=∐  means that each element of the vector of random variables B is independent of the random 

variable A conditional on the random variable  C  taking a value of  c in the sense of Dawid (1979). 
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11

2 1( | 0)E Y S =
, 

11

2 1( | 1)E Y S =
, or 

11

2 2[ | (1,0)]E Y S =
 are identified, but that 

11

2 2[ | (0,0)]E Y S =
 or 

11

2 2[ | (0,1)]E Y S =
 are not identified. Thus, 

2 2;

2

k ls sθ , 
2 2;

2 1( )
k ls s jsθ  are identified, 

1 2 1 2 1 2, , , , , {0,1}k k l l j js s s s s s∀ ∈ , but 
2 2,

2 2( )
k ls s jsθ

 are not identified if 1 1

l ks s≠
. This result states that pair-

wise comparisons of all sequences are identified, but only for groups of individuals defined by their 

treatment status in period 0 or 1. The relevant distinction between the populations defined by treatment 

states in the first and subsequent periods is that in the first period, treatment choice is random 

conditional on exogenous variables, which is the result of the initial condition stating that 0 0S =
 holds 

for everybody. However, in the second period, randomisation into these treatments is conditional on 

variables already influenced by the first part of the treatment. W-DCIA has an appeal for applied work as 

a natural extension of the static framework.  

LM01 show that to identify all treatment parameters, W-DCIA must be strengthened by essentially 

imposing that the confounding variables used to control selection into the treatment of the second 

period are not influenced by the selection into the first-period treatment. This can be summerised by an 

independence condition like 
2

2 2 1|
s
Y S X∐

 (LM01 call this the strong conditional dynamic independence 

assumption, S-DCIA). Note that the conditioning set includes the outcome variables from the first 

period. This is the usual conditional independence assumption used in the multiple treatment framework 

(with four treatments). In other words, when the control variables are not influenced by the previous 

treatments, the dynamic problem collapses to a static problem of four treatments with selection on 

observables.  

Finally, in the applied static matching literature balancing scores are a popular device to reduce the 

dimension of the estimation problem (see Rosenbaum and Rubin, 1983). LM01 show that similar 

properties hold for the dynamic model as well.  
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Balancing score property for W-DCIA 

If the conditions of W-DCIA hold, then:  

a) 
00 10 01 11

2 2 2 2 1 1 0 1 0, , , | ( ) ( )Y Y Y Y S b X b x=∐
 holds for all 1 0( )b x

 such that  

1 1

0 1 0 1 0 0[ ( ) | ( ) ( )] ( )
s s

E p x b X b x p x= =
;  

1

0 1 0 0( ) : ( 1| )
s
p x P S X x= = =

. 

b) 
00 10 01 11

2 2 2 2 2 2 1 1 2 1 1, , , | ( , ) ( , )Y Y Y Y S b X S b x s=∐
 holds for all 2 1 1( , )b x s  such that 

2 1 2 1| |

1 2 1 1 2 1 1 1[ ( ) | ( , ) ( , )] ( )
s s s s

E p x b X S b x s p x= =
;  

2 1|

1 2 1 1 1 1( ) : ( 1| , )
s s
p x P S X x S s= = = =

. 

A low-dimensional choice for balancing scores suggested by LM01 are the conditional transition 

probabilities in combination with the variable indicating the selection in the previous period (which of 

course can be ignored in the first period): 
1

1 0 0( ) ( )
s

b x p x=
, 

2 1|

2 1 1 1 1( , ) [ ( ), ]
s s

b x s p x s=
. 

3333    EstimationEstimationEstimationEstimation    

3333.1.1.1.1    Structure of sequential estimatorsStructure of sequential estimatorsStructure of sequential estimatorsStructure of sequential estimators    

Lechner (2004) shows that these scores are convenient for constructing sequential propensity score 

matching estimators to correct for selection bias under W-DCIA. The focus on this particular estimator 

is because of its simplicity and because it is the workhorse of empirical evaluation studies. Other static 

matching-type estimators can be adapted to the dynamic context in a similar way (see Imbens, 2004, for 

an overview of available estimators). I refrain from discussing estimation based on the S-DCIA explicitly, 

because estimation under S-DCIA is essentially a static problem, with an increased number of 

treatments. Such estimation problems for multiple treatments are discussed by Imbens (2000) and 

Lechner (2001, 2002) and need not be explained here. Nevertheless, the suggested estimators are 

consistent under S-DCIA as well. Thus, a comparison of estimators that are consistent under both DCIA 

(sequential matching) and those that are consistent under S-DCIA (static matching) only could be a basis 
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for checking the plausibility of S-DCIA (or the endogeneity of some covariates). However, this issues is 

not developed further in this paper. 

Using the balancing scores suggested above the following estimand (quantity to be estimated by sample 

analogues of observables) results for quantities identified under W-DCIA: 

2 2 1 1 1

|
1 2 1

0 1

| ,

2 1 1 2 2 2 1 1 1 0 1 1

( ) ( )

( | ) [ ( | , ( )) | , ( )] |
k k k k k

k k ks s s

s s s s sj k k j

p X p X

E Y S s E E E Y S s p X S s p X S s
 

= = = = = 
  , 

                                 
2 1 1 2 1 1| , |

1 1 0( ) : [ ( ), ( )]
k k k ks s s s s s

p X p X p X=
,        1 2 1 1, , , {0,1}k k js s s s ∈ .

 (3) 

To learn the counterfactual outcome for the population participating in 1

js
 (the target population) had 

they participated in sequence 2

ks
, we need to reweight the participants in 2

ks
 to make them comparable 

to the target population ( 1

js
). The dynamic, sequential structure of the causal model restricts the 

possible ways to do so. Intuitively, for the participants in the target population, we should reweight 

participants in the first element of the sequence of interest ( 1

ks
) such that they have the same 

distribution of 
1

0( )
ks

p X
 as the target distribution. Call this artificially created group comparison group 

1. Yet, to estimate the effect of the full sequence, the outcomes of participants in 2

ks
 instead of 1

ks
 are 

required. Thus, an artificial subpopulation of participants in 2

ks
 that has the same distribution of 

characteristics of 
1

0( )
ks

p X
 and 

2 1|

1( )
k ks s

p X
 as the artificially created comparison group 1 is required. 

The same principle applies for average dynamic treatment effects in the population (DATE). 
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All proposed estimators in L04 have the same structure, in the sense that they are computed as 

weighted means of the outcome variables observed in subsample 2 2

kS s= . The weights depend on the 

specific effects of interest and are functions of the balancing scores. 

�
2 2 22 1 2 1 1 1 1

2 2

, , ,| ,

2 1 1 1, 1( | ) [ ( ), ] ; 0; 1;
j j jk k kk k k k

k k

s s s s s ss s s sj k

i i i i i

i s i s

E Y S s w p x s y w w
∈ ∈

= = ≥ =∑ ∑
 (4) 

�
2 2 2 1 1 2 2

2 2

| ,

2 1, 1( ) [ ( ), ] ; 0; 1
k k k k k k k

k k

s s s s s s sk

i i i i i

i s i s

E Y w p x s y w w
∈ ∈

= ≥ =∑ ∑
. (5) 

Note that in the case of more than two treatments, the balancing scores for (4) and (5) will differ with 

respect to the probability of participating in the first period. For equation (4), the required quantity is 

{ }1 1 0 0 1 1 1( | , , )k k lP S s X x S s s= = ∈
, whereas in equation (5), in which all of the population is the target, 

1 1 0 0( | )kP S s X x= =
 is appropriate. 

3333.2.2.2.2     Sequential matching estimators (SM) Sequential matching estimators (SM) Sequential matching estimators (SM) Sequential matching estimators (SM)    

LM01 proposes to extend the simple pair-matching estimators that are highly popular in applied 

evaluation studies to the dynamic context. The idea is to perform the required adjustments by 

sequentially choosing close pairs of observations in the various steps, so as to mimic the sequential 

conditional expectations appearing in expressions (4) and (5). The first step is the same for both effects 

and consists in finding for every member of 1 1

kS s=  a member of 2 2

kS s=  with very similar (the same) 

values of 
2 1|

1,( )
k ks s

ip x
 and 

1

0,( )
ks

ip x
. Note that matching must be with replacement, because the target 

population may be larger than the treatment population. In the second step, every member of 1 1

jS s=
 

(equation (4)) or 0 0S =
 (equation (5)) is to be paired with a member of 1 1

kS s=  with very similar 

(same) values of 
1

0,( )
ks

ip x
. The positive weights that are attached to some or all members of 2 2

kS s=  
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coming from step 1 are then updated depending on how often an observation in 2 2

kS s=  is matched to 

an observation of the target population via the intermediate matching step. This procedure leads to the 

following weights: 

2 1 1 1 2 1 1 2 1 1

1

11

, | , | ,

1 0, 0, 2 1, 1, 1

1
[ ( ), ( ); ] [ ( ), ( ), ; ]

jk k k k k k k k k

j

j k

s s s s s s s s s s k

i n m m is
m sn s

w v p x p x v p x p x s
N ∈∈

= ⋅ ⋅∑ ∑
; 2 2

ki S s∀ ∈ = ;  (6) 

2 1 1 2 1 1 2 1 1

1

| , | ,

1 0, 0, 2 1, 1, 1

1

1
[ ( ), ( ); ] [ ( ), ( ), ; ]

k k k k k k k k k

k

N
s s s s s s s s s k

i n m m i

n m s

w v p x p x v p x p x s
N = ∈

= ⋅ ⋅∑∑
;       2 2

ki S s∀ ∈ = .   (7) 

1
j
s

N  denotes the number of observations for which 1 1

jS s=
. The function 

1 1

1 0, 0,[ ( ), ( ); ]
k ks s

n mv p x p x ⋅
 is 

defined to be one if 
1

0,( )
ks

mp x
 is closest to 

1

0,( )
ks

np x
 among all observations belonging to the subsample 

defined by 1 1

kS s= , and zero otherwise. Similarly, 
2 1 1 2 1 1| , | ,

2 1, 1, 1[ ( ), ( ), ; ]
k k k k k ks s s s s s k

m iv p x p x s ⋅
 is one if 

observation i is closest to observation m (with 1, 1

k

ms s=
) in terms of 

2 1|

1,( )
k ks s

ip x
 and 

1

0,( )
ks

ip x
, and zero 

otherwise. The Mahalanobis metric is a frequently used measure for similarity. Note that the weight of 

observation i is 0, if it is not matched to any member of the target population. On the other extreme, if 

observation i would be matched to every member of the target population its weight would be 1. A 

specific variant of this estimator is shown in Table 1 for the example of estimating 

1 0
2 2, 1

1( )
s s

t sθ
.  

Some remarks about this protocol that are already contained in L04 are worth repeating: First, matching 

is with replacement. Every step of the matching sequence is essentially the same as for matching in a 

static framework. However, sequential propensity score matching involves several probabilities in the 

second period matching step. Second, some issues arise from the sequential nature of matching. By 

choosing observations as matches with similar values of the probabilities instead of the same values 

(because such observations may not be available), it may happen that the probabilities attached to 
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observations in early matching steps (relating to transitions in early periods) change over different 

sequential matching steps due to imprecise matching. To prevent this from happening, every matched 

comparison observation in period 2 is recorded with the values 
1ˆ
ls

ip  of the observation it was matched 

to in period 1, instead of its own. Hence, the ‘history’ of the match, or, in other words, the 

characteristics of the reference distribution, does not change when the next match occurs in the 

subsequent period. 

Third, to compute 
2

1 1( | )
ks lE Y S s=

 the only information that is needed for the 
1
ls

N  participants in 1

ls  is 

1ˆ
ks

ip . Similarly, for participants in 2

ks
, all probabilities of the type 

2 1 1| ,ˆ
k k ks s s

ip are required. For participants in 

1

ks
 but not in 2

ks
 only 

1ˆ
ks

ip  is needed, and so on. To estimate 
2

1 1( | )
ls lE Y S s=

 instead of 

2

1 1( | )
ks lE Y S s=

, the only change in the matching protocol is that the initial matching step on 
1ˆ
ls

ip  is 

redundant. When interest is in the average effect in the population (
2( )
ks

E Y ), then the whole population 

plays the role of the first reference group (instead of 1

ls ). In this case, in the matching step based on 

1ˆ
ks

ip , all participants in 1

ks
 are matched to themselves, as well as selected participants in 1

ks
 are matched 

to participants in the remaining treatments in the first period. 
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Table 1: A sequential matching estimator for 

1 0
2 2, 1

1( )
s s

t sθ
 based on propensity scores 

Step 0Step 0Step 0Step 0: Sample reduction  
Delete all observations not belonging to 

1

1s , 
1

2s , or 
0

2s  

Step AStep AStep AStep A: Match 
0 0 0

2 1 2( , )s s s=
 to 

1

1s  
A.1.0 

Define a weight 

0
2 0
s

iw =
 for every observation in 

0

2s . 

  (

0
2 1

1 1( | )
s

tE Y S s=
) 

A.1.P 
Estimate a probit for 

0

1 1 0 0( | )P S s X x= =
 � 

0 0
1 1

0,( )s s

i ip x p=
 

 A.1.CS 
Delete all obs. of 

1

1s  with lower or higher values of 

0
1s

ip  than obs. in 
0

2s  
 A.1.M 

For every obs. in 
1

1s  not deleted in A.1.CS find the obs. in 
0

1s  that is 

closest in terms of 

0
1s

ip  (a match). 

 A.1.C 
For the matched obs. keep the value of 

0
1s

ip  of the obs. in 
1

1s  they have 

been matched to. Some obs. in 
0

1s  may appear many times in this 

matched sample.  

 A.2.R 
Define a sample of obs. in 

0

1s . 

 A.2.P 
Estimate a probit for 

0 0

2 2 1 1 1 1( | , )P S s S s X x= = =
 � 

0 0 0 0
2 1 2 1| |

1,( ) :s s s s

i ip x p=
 

 A.2.CS 
Delete all obs. of  the matched comparison sample of 

1

1s   (defined in 

A.1.C) (as well as the corresponding elements of the target  population  
1

1s ) with lower or higher values of 

0
1s

ip  and 

0 0
2 1|s s

ip  than obs. in 
0

2s . 

 A.2.M 
For every obs. in the matched comparison sample of 

1

1s  not deleted in 

A.2.CS find an obs. in 
0

2s  that is closest in terms of 

0 0
2 1|s s

ip  and 

0
1s

ip  using 

the Mahalanobis metric (covariance computed in 
1

1s ).  

Every time an obs. in 
0

2s  is matched, its weight 

0
2s

iw  is increased by 1. 

Step BStep BStep BStep B: Match 
1 1 1

2 1 2( , )s s s=
 to 

1

1s  
B.1.0 

Define a weight 

1
2 0
s

iw =
 for every obs. in 

1

2s . 

 (

1
2 1

1 1( | )
s

tE Y S s=
 

B.2.R 
Reduce sample to participants in 

1

1s  still in the common support. 

 B.2.P 
Estimate a probit for 

1 1

2 2 1 1 1 1( | , )P S s S s X x= = =
 � 

1 1 1 1
2 1 2 1| |

1,( ) :
s s s s

i ip x p=
 

 B.2.CS 
Delete all obs. of 

1

1s  with lower or higher values of 

1 1
2 1|s s

ip  than obs. in 
1

2s . 

 B.2.M 
For every obs. in 

1

1s  not deleted in B.2.CS find the member of 
1

2s  that 

is closest in terms of 

1 1
2 1|s s

ip .  

Every time an obs. in 
1

2s  is matched, its weight 

1
2s

iw  is increased by 1. 

Step CStep CStep CStep C: Joint common support C.1 
Reduce 

1
2s

iw  by 1 for every obs. i matched to an obs. in 
1

1s  deleted in 

A.1.CS or A.2.CS. 
 C.2 

Reduce 

0
2s

iw  by 1 for every obs. i matched to an obs. in 
1

1s  deleted in 

B.2.CS. 

Step DStep DStep DStep D: Estimation of 

1 0
2 2, 1

1( )
s s

t sθ
 

D.1 1 0 1 0
2 2 2 2

1 0
2 21 1

2 2

1 0
2 2

, 1

1

1 1ˆ ( )
s s s s

t i i i is s
i s i si i

i s i s

s w y w y
w w

θ
∈ ∈

∈ ∈

= −∑ ∑
∑ ∑

 
Table 1 to be continued. 



14 

Table 1: Continued 

Step EStep EStep EStep E:  

Estimation of 

1 0
2 2, 1

1
ˆ[ ( )]
s s

tVar sθ
 

D.2 
�

� �1 1 0 0
2 2 2 2

1 01 0
2 22 2

1 0
2 2

1 1
2 2

2 1 2 0

2 2

, 1

1 2 2

[( ) ( | , )] [( ) ( | , )]

ˆ[ ( )]
( ) ( )

s s s s

i t i i t i

i s i ss s

t s s

i i

i s i s

w Var Y S s w w w Var Y S s w w

Var s
w w

θ ∈ ∈

∈ ∈

= = = =

= +
∑ ∑

∑ ∑
  

� 2
2 2

2
2

2
2

2

( , )

2
( , )

( , )

1
( | , )

j
sj j
i

j
sj

ji sj
i

s I s wj

t i i
i I s w

i I s w

Var Y S s w w y y

N
∈

∈

 
 = = = −
 
 
∑

,  

 

2
2

2
2

( , )

( , )

1 ,
j
sj
i

j
sj
i

i I s w

i I s w

N
∈

∈

= ∑
             

2
2

2
2

2
2

( , )

( , )
( , )

1j
sj
i

j
sj

ji sj
i

I s w

i
I s w

i I s w

y y

N ∈

= ∑
.  

The set 
2

2
( , )

j
sj

i
I s w

 is determined as the 2 N  closest neighbours w.r.t. 

the value of 
2
j
s

w
 of observations with same treatment as observation ‘i’ 

Note:  t > 1. Changes required for the case t=1 are obvious. The number of neighbours in the k-NN estimation of the 

conditional variance is the one used in L04. In the empirical application below, the results appear not to be sensitive to 

small deviations from this value.  

When matching is on the propensity score instead of directly on the confounding variables, there is the 

issue of selecting a probability model. It seems that so far even in the static model the literature has not 

addressed this thoroughly. However, the consensus seems to be that a flexibly specified (and extensively 

tested) parametric model is sufficiently rich and that the choice of the model does not really matter (e.g. 

the Monte Carlo results by Zhao, 2004). 

Next, there is the issue of consistent estimation of the standard errors that is not yet resolved for the 

static matching literature. Based on the simulation results presented in L04, the standard errors are 

computed conditional on the weights allowing for heteroskedasticity of the distribution of the outcomes 

conditional on the weights. 

The final remark about the matching protocol concerns the common support. The region of common 

support - defined on the reference distribution for which the effect is desired - has to be adjusted period 

by period with respect to the conditioning variables of this period. The matching estimator allows easily 

tracing back the impact of this procedure on the reference distribution.
7 
 

                                                           
7  In the application the support is defined slightly more conservatively than given in Table 1. It is the region 

between the second largest and second smallest value of the respective propensity scores in the treated sample.  
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3333.3.3.3.3    Multiple treatments and many periMultiple treatments and many periMultiple treatments and many periMultiple treatments and many periodsodsodsods    

The main issue concerns the specification of the propensity scores: For example, when specifying the 

probability of participating in 2

ks
 conditional on participating in 1

ks
, is it necessary to take account of the 

fact that not participating in 2

ks
  implies a range of possible other states in period 2? The answer is no, 

because in each step the independence assumption relates only to a binary comparison, e.g. 

2

2 2 2 1 1 1 11( ) | ,
ks k kY S s S s X x= = =∐

, and 
1

2 1 1 1 1 1 0 01( ) | { , },
ks k j kY S s S s s X x= ∈ =∐

 ( 1

js
 being the target 

population as before). Therefore, the conditional probabilities of not participating in the event of interest 

conditional on the history are sufficient.
8
 Hence, as already noted 2 2 1 1 1 1( | , )k kP S s S s X x= = =

, 

1 1 0 0[ | ,kP S s X x= =
 1 1 1{ , }l kS s s∈

] and 1 1 0 0[ | ,kP S s X x= =
 1 1 1{ , }l kS s s∈

] may be used in the matching step 

in period 1. The multiple treatment feature of the problem does not add to the dimension of the 

propensity scores. 

4444    DataDataDataData    

The artificial data are generated to look similar to individual panel data found in true evaluation studies of 

European type active labour market programmes (like in Gerfin and Lechner, 2002, or Lechner, Miquel, 

Wunsch, 2004), although the exact properties of those data sets used for static evaluation studies are 

not exactly reflected in the artificial data. In this data, a period is rationalised as a quarter. In that sense, 

there is detailed information about many employment related variables on a quarterly basis for 9 years 

(quarter 1(1) to quarter 9(4)). In addition, there are summary measures supposed to capture the events 

before the data is recorded in quarterly intervals (the quarterly records start in the first quarter of year 

1).  

                                                           
8
  Imbens (2000) and Lechner (2001) develop the same argument to show that in the static multiple treatment 

models conditioning on appropriate one-dimensional scores is sufficient. 
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The sample is selected to contain unemployed in the last quarter of year 2. Starting in the first quarter in 

year 3, individuals may participate in active labour market programmes. If not having done so before, 

they may start a programme every quarter up to and including 4(2). In addition, in 4(2) they may start a 

new programme, even if they already participated in a programme completed before 4(2).  

The programmes consist of two employment programmes (treatments '3' and '4') and two training 

programmes (treatments '1' and '2'). The main difference between those types is that employment 

programmes have a smaller lock-in effect and that the positive medium-run effects all programmes have, 

deteriorate at a faster rate than for training programmes.  

We consider (potential) outcome processes for all sequences of different programmes that relate to 

employment status (employed, unemployed, out-of-the-labour force) and earnings. All processes show 

considerable state dependence, time trends and are influenced by several covariates. Shorter 

programmes with about a mean of 5 months for training and 6 months (standard deviation 2 and 4 

months) for the employment programmes have much shorter lock-in effects than the longer 

programmes of the same category (mean duration 20, 18; std.: 2, 4), but the (positive) effects also 

depreciate faster. However, for the sake of brevity the latter two are not contained in the descriptive 

statistics given in Table 2.  

Table 2 contains both descriptive statistics as well as a characterisation of the type of variable for the 

most important time-dependent and time-independent variables. They are the usual types of variables 

with typical codings, means, and standard errors. A full set of statistics for all variables are available on 

request from the author.  
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Table 2: Descriptive statistics for selected variables and selected subsamples 

Variable Type  Subsample 

  0 000000 1 1111 2 222222 

  mean std. mean std. mean std. mean std. mean std. mean std. 

Monthly earnings in EUR 

Last 10 years C 1349 1789 1030 1089 4673 4071 4851 4074 5449 3883 5432 3895 

 1(1) C 1095 1732 786 1028 4323 4137 4386 4156 5009 4040 4953 4067 

 2(4) C 0 0 0 0 0 0 0 0 0 0 0 0 

 4(1) C 358 1034 525 832 1337 3107 722 2246 1278 3093 444 1943 

 9(4) C 1241 1933 768 1038 3964 4270 4040 4345 5229 4533 5091 4512 

Unemployment in % 

Months last 10 y. D 12 7 11 7 11 7 12 7 12 7 13 7 

 1(1) I 10 - 9 - 6 - 7 - 5 - 6 - 

 2(4) I 100 - 100 - 100 - 100 - 100 - 100 - 

 4(1) I 54 - 23 - 60 - 65 - 60 - 78 - 

 9(4) I 10 - 21 - 5 - 5 - 7 - 9 - 

Employment in % 

Months last 10 y. D 85 20 86 22 89 19 87 20 89 18 88 18 
 1(1) I 78 - 76 - 90 - 87 - 90 - 89 - 

 2(4) I 0 - 0 - 0 - 0 - 0 - 0 - 

 4(1) I 31 - 49 - 32 - 27 - 35 - 17 - 

 9(4) I 68 - 58 - 86 - 87 - 83 - 80 - 

Labour market prospects as assessed by case worker (1, 2, 3, 4) 

 2(4) D 2.8 1.1 3.1 1.0 2.7 1.1 2.6 1.1 2.4 1.2 2.5 1.2 

 3(1) D 2.3 1.1 2.7 1.1 2.0 1.1 1.9 1.1 1.9 1.0 1.9 1.0 

 4(1) D 2.6 1.1 3.4 .8 2.5 1.1 2.3 1.1 2.4 1.2 2.1 1.1 

Regional unemployment rate in %-points (85 regions) 

 2(4) D 12 5 12 5 12 5 12 5 12 5 12 5 

 3(1) D 13 5 13 5 13 5 13 5 13 5 13 5 

 4(1) D 15 27 14 5 14 5 15 5 14 5 14 5 

Other variables 

Age in 1(1), years D 40 6 39 6 41 6 41 6 40 6 40 6 

Women I 41 - 45 - 36 - 39 - 27 - 28 - 

Schooling (8-12) D 10 1.3 10 1.2 11 1.3 11 1.3 12 .9 12 .9 

Vocational 

degree (0,1, 2) 

D .8 .5 .8 .5 1.3 .7 1.4 .7 1.6 .6 1.6 .6 

Nationality (1 -5) D 1.6 1.1 1.6 1.1 1.6 1.1 1.6 1.1 1.6 1.1 1.6 1.1 

Regional share of 

service sector 

C 58 13 58 14 60 13 59 13 63 12 62 12 

Regional share of 

production 

sector 

C 30 11 29 11 29 11 30 11 28 10 28 10 

Sectoral UE rate C 12 4 12 18 12 19 12 4 13 4 13 4 

Profess. UE rate C 12 21 11 5 11 21 12 5 13 4 13 4 

Observations  69951 - 16871 - 8997 - 888 - 8665 - 3404 - 

Note: I: Binary indicator variable (0, 1); D: Discrete variable; C: Continuous variable. For indicator variables the share of ones 

in % is given. The number of observations in the complete sample is 100.000. For treatment 1 we show a subsample 

based on a sequence of 4 periods only instead of a sequences of 6 periods as for treatments 0 and 2, because for this 

short programme there would be only 34 observations in the latter group. Descriptive statistics for the variables and 

subsamples not included are available on request from the author. 

Selection is based on an index model (multinomial probit) with five alternatives. Choices depend on 

observables that also appear in the outcome processes as well as normally distributed unobservables that 

are mutually dependent but independent of the observables and unobservables appearing in the outcome 



18 

equations. With the exception of nationality, all variables appearing in Table 2 influence selection in each 

period, but only earnings, the employment states, and the assessment by the case worker are influenced 

by the treatment and are thus considered outcome variables, or intermediate outcomes for those 

variables that relate to periods in which the sequences are not yet completed. Comparing the values of 

the covariates and intermediate outcomes across sequences reveals considerable selection biases as well 

as considerable differences in the moments of the outcome variables. 

The actual probit models underlying the results presented in the next sections are subject to some 

misspecification, but one that remains largely undetected by conventional specification tests. The 

misspecification relates to the functional form (only single models instead of the underlying multiple 

index models are used) as well as to omitting some covariates that are highly correlated with covariates 

included in the sample. In this respect as well, the artificial data seem to exhibit the same problems and 

questions as real data sets usually do. 

The effects of the programmes are heterogeneous depending on type and duration of programme, as 

well as on several covariates. They show lock-in effects that depend on programme duration. The effects 

of the programmes all depreciate, but with different speeds. The autocorrelation in the outcome process 

may increase the effect of the lock-in effect and dampen the effect of the depreciation. Table A.1 in 

Appendix A, as well as Tables 6, 7 and 8, show mean and standard deviations for some outcomes of 

selected sequences and subsamples. 

5555    Interesting causal effects and estimation resultsInteresting causal effects and estimation resultsInteresting causal effects and estimation resultsInteresting causal effects and estimation results    

The static model of potential outcomes may also be used to define potential states of the world for 

dynamic phenomena and estimate the effects by the usual econometric methods. Using a static model, 

each possible sequence of treatments corresponds to one 'static' treatment. The limitation of the static 

models relates to the way how restrictions on the joint distribution of selection variables and potential 

outcome variables have to be formulated that can then identify some average causal effects. By the 
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nature of the static model, those restrictions cannot take into account selection effects based on 

intermediate outcomes. For example, if a conditional independence (selection on observables) 

assumption is deemed plausible, then endogenous variables should not appear in the conditioning set, 

thus ruling out intermediate outcomes. Thus, it would be straightforward to accommodate dynamic 

phenomena based on the strong dynamic conditional independence assumption (S-DCIA). This is not the 

case for the weak dynamic conditional independence assumption (W-DCIA) that allows some specific 

endogeneity of the covariates.  

The following sub-sections give some examples (sequences of programmes, waiting for the start of a 

programme, and duration of a programme) when such considerations appear to be particularly relevant, 

discuss potential set-ups of the estimation problems and present some results. A nice by-product of the 

dynamic approach compared to the static approach is that one has to be explicit about what the 

alternative treatment state is, i.e. do we compare two periods of treatments to one period of no 

treatments, or two periods of no treatment, or what else. In many empirical evaluation papers, the no-

treatment state is not clearly defined. Therefore, below there are some examples for different 

comparisons and their interpretation. 

5.15.15.15.1    Programme sequencesProgramme sequencesProgramme sequencesProgramme sequences    

Consider an example coming from the literature evaluating training programmes in which interest is not 

in the effect of one particular programme, but in a sequence of programmes. However, if the first course 

of such a sequence is very effective, many unemployed individuals may find that their employment 

chances have drastically increased afterwards and may not want to attend the next course as originally 

intended. If interest is not in the first course, but in the sequence of courses, such behaviour creates a 

selection problem that cannot be addressed in the static model. For example, controlling for pre-training 

variables does not work for obvious reasons in the static model, because an important selection variable, 

i.e. the outcome of the first participation, is missing. However, controlling for variables realised after the 
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first training course that influence selection into the second course bears the potential problem that they 

may be influenced by the first part of the training sequence. Thus, they are ‘endogenous’ in the static 

model and thus ruled out as control variables. If it is true that selection in each period is based on what 

is known about the unemployed so far, and that this information is observed, then W-DCIA holds. 

Table 3 shows some comparisons of the (monthly) earnings effects of different sequences of 

programmes. To differentiate between short-run and medium- to long-run effects, the columns of Table 

3 (as well as Tables 4 and 5) provide estimates for the periods 4(4), 7(4), and 9(4) for the different 

sequences under investigation. Whereas in period 4(4) some of the programmes of interest may still be 

running, in period 9(4) the different lengths of the sequences and programmes are not important 

anymore, because all potential outcomes are close to their long-run trends. The rows of these tables 

contain further information about the sample sizes of the target populations after common support, as 

well as for the levels of the two counterfactual outcomes and the resulting effects. The cells that contain 

the latter are shaded. Estimates of the standard errors are provided below the corresponding estimates 

of outcomes and effects (in brackets). 
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Table 3: Earnings effects of programme sequences (sequential matching) 

 Earnings in year (quarter) 

(1) (2) (3) (3)  (4)  (5)  (6) (7) (8) (9) (11) (12) (13) 

 4(4) 7(4) 9(4)  4(4)  7(4)  9(4) 4(4) 7(4) 9(4) 4(4) 7(4) 9(4) 

Sequences 
1s
 - 

0s
 

111002-000000 222001 - 000000 111002-222001 444003-000000 

Population s ( sN ) 
1 (5638) 2 (5790) 1 (7098) 4 (6434) 

1043 2597 2845 837 3746 3746 2168 4420 4950 217 897 697 1

( | )
s

tE Y S s=
 (210) (250) (315) (83) (281) (281) (288) (343) (354) (31) (70) (66) 

1505 2122 2167 1921 2341 2537 1327 4535 4757 393 621 626 0

( | )
s

tE Y S s=
 (162) (182) (182) (258) (271) (292) (106) (317) (316) (38) (61) (59) 

-462 678 678 -1084 1404140414041404    1311131113111311    840840840840    -115 192 ----175175175175    276276276276    71 0 1,
( )

s s

t sθ
 (265) (364) (364) (271) (390) (393) (307) (468) (475) (49) (92) (88) 

Population s ( sN ) 
0 (48050) 0 (49121) 2 (7732) 0 (16861) 

509 1549 1482 246 1937 1971 2668 5074 5678 284 1032 950' 1

( | )
s

tE Y S s=
 (78) (87) (99) (101) (185) (186) (377) (418) (415) (56) (105) (116) 

729 1008 1054 742 1016 1065 1608 5152 5526 601 843 875 0

( | )
s

tE Y S s=
 (29) (34) (34) (28) (32) (34) (128) (275) (302) (28) (33) (35) 

----219219219219    540540540540    427427427427    ----496496496496    920920920920    906906906906    1059105910591059    -78 152 ----317317317317    188 75 0 1,
( )

s s

t sθ
 (83) (94) (105) (104) (188) (189) (399) (501) (513) (63) (110) (121) 

Sequences 
1s
 - 

0s
 

111000-000000 222000-000000 111000-222000 444000-000000 

Population s ( sN ) 
1 (6773) 2 (5893) 1 (7844) 4 (7056) 

1080 2691 2324 771 3654 3033 2331 4125 3715 271 606 680 1

( | )
s

tE Y S s=
 (88) (152) (151) (86) (320) (289) (191) (202) (209) (30) (42) (54) 

1382 1943 1992 1869 2277 2469 1291 4064 3506 420 643 655 0

( | )
s

tE Y S s=
 (134) (146) (152) (237) (251) (272) (198) (430) (397) (39) (58) (57) 

-302 748748748748    332 -1097 1377137713771377    564 1039103910391039    60 209 ----149149149149    -37 23 0 1,
( )

s s

t sθ
 (160) (211) (214) (252) (407) (398) (275) (475) (449) (49) (72) (79) 

Population s ( sN ) 
0 (67827) 0 (56100) 2 (7219) 0 (31642) 

572 1432 1125 350 1620 1497 3085 5133 4481 383 721 859 1

( | )
s

tE Y S s=
 (34) (51) (54) (142) (285) (217) (321) (302) (320) (139) (156) (190) 

617 857 900 693 955 1001 1525 4589 3837 564 795 840 0

( | )
s

tE Y S s=
 (23) (27) (27) (25) (28) (29) (136) (327) (303) (20) (25) (26) 

-45 574574574574    225225225225    -343 665 496 1559155915591559    543 644 -180 -73 19 0 1,
( )

s s

t sθ
 (41) (58) (60) (144) (287) (219) (349) (445) (441) (140) (158) (192) 

Note:  The first element of each sequence refers to period 3(1). Standard errors in parentheses. Bold : Effect is significant at 

1% level. Italics: Effect significant at 10% level. sN  is the sample size after imposing common support. 

For the interpretation of the estimated effects and counterfactual outcomes, it is important to note that 

whenever the potential state '0' appears, it does not necessarily mean that the individual is unemployed, 

but merely that she is not participating in some programme in that period. The first practical problem 

that appears is that there are many possible comparisons. Here, we focus on different programmes of a 

length of 3 periods that may or may not be followed by a start of a further programme in period 4(2). 

The duration of the latter programme is not part of the explicit definition of the effect. To capture the 

effects of having or not having a second programme in period 4(2), all sequences have to be fully 
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specified for at least 6 periods. Thus, a sequence like 111002 should be interpreted as participating in 

programme 1 for three quarters and then starting programme 2 in 4(2). The dynamic causal model 

allows to fix the duration of the first programme (of course the duration of the second programme 

could be fixed as well, but that would lead to a too small number of remaining participants), and thus 

isolate the effects of different programme durations (see next section) from sequences of programmes.  

Table 3 shows a variety of potentially interesting comparisons for different target populations, namely 

those who participated in a programme in the first period and the non-participants in that period. Since 

W-DCIA has only limited identifying power, the reference populations are based on the treatment status 

in the first period. Compared to nonparticipation, the results show lock-in effects of different sizes, and - 

with the exception of programme 4 - considerable positive effects thereafter (although there is 

sometimes a lack of precision), a finding that is line with the true values that can be found in Appendix A. 

There is considerable effect heterogeneity across target populations (note that their effective sample 

sizes and composition after common support depend on the sequences under investigation; thus 

computing the effects of 222001 compared to 222000 for participants in 2 by using the triangular results 

of 222000 and 222001 compared to 000000 is not strictly valid). Furthermore, the estimates for the 

comparison of the different programmes are too noisy to precisely pin down any effect.  

The precision of the estimates depends on the number of 'useful' observations (i.e. observations that are 

comparable to those in the target populations) in the sequences, which is of course related to the length 

of the specified sequence - the longer the more precise the meaning of the causal contrast but the fewer 

observations. Furthermore, an increased number of observations in the target population increases 

precision as well (comparing the results for different target populations used for the comparison of the 

same sequences). 
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5.25.25.25.2    Delayed programme start Delayed programme start Delayed programme start Delayed programme start ---- the effects of waiting the effects of waiting the effects of waiting the effects of waiting    

In the previous section, the specification of the target quantity for which the causal contrast is desired 

appeared to be obvious. When interest is in the effect of waiting for the start (or delaying the start) of a 

programme, there are different ways to state the causal parameter. The first possibility is to just 

concentrate on the beginning of the programme and to take no account of the fact that programmes that 

may start at different points in time may differ for example with respect to their duration. Such a 

comparison is displayed in the upper part of Table 4. Note that the required sequences have different 

lengths. It appears that for programme 1 the long-run effects of delaying are small in this set-up, which is 

again in line with the true values. 

The alternative (or the complement) to this approach is to require some minimum programme duration, 

as is shown in the second panel for programme 3. For that programme the estimation results do not 

change much, when different minimum lengths are considered. The price to pay for specifying longer 

sequences is of course as before a reduced precision of the estimator, although since programme 3 is a 

longer programme, there is not so much attrition in the first three periods considered in Table 4 (which 

is also the reason why the results do not change much when increasing the length of the sequences). 

Note that the comparisons of the different effects for the same target population is sometimes 

hampered by the fact that the common support may shrink drastically when the length of the sequence 

increases, because the participants tend to become more homogenous the longer the sequences. This 

issue that is taken up again below. 
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Table 4: The earnings effects of waiting (sequential matching) 

 Earnings in year (quarter) 

(1) (2) (3) (3)  (4)  (5)  (6) (7) (8) (9) (11) (12) (13) 

 4(4) 7(4) 9(4)  4(4)  7(4)  9(4) 4(4) 7(4) 9(4) 4(4) 7(4) 9(4) 

Sequences 
1s
 - 

0s
 

1-01 1-0001 1-00001 1-000001 

Population s ( sN ) 
1 (8833) 1 (7816) 1 (5172) 1 (3405) 

1805 3903 3862 1381 3255 3190 815 2066 1956 631 1587 1452 1

( | )
s

tE Y S s=
 (36) (43) (44) (32) (42) (44) (23) (34) (36) (20) (28) (30) 

1698 3935 3818 1963 3304 3246 1214 2019 1802 555 1198 1179 0

( | )
s

tE Y S s=
 (100) (103) (109) (220) (203) (228) (155) (140) (143) (69) (92) (101) 

106 -31 44 ----581581581581    -49 -56 -398 47 153 76 388388388388    272 0 1,
( )

s s

t sθ
 (106) (112) (118) (222) (207) (232) (157) (144) (148) (72) (96) (106) 

Population s ( sN ) 
0 (69316) 0 (69219) 0 (57471) 0 (44463) 

506 1362 1209 490 1328 1174 460 1256 1101 422 1170 1004 1

( | )
s

tE Y S s=
 (13) (17) (19) (12) (18) (19) (12) (17) (19) (12) (17) (20) 

463 1374 1212 564 1476 1313 606 1392 1257 447 1021 972 0

( | )
s

tE Y S s=
 (15) (19) (19) (33) (38) (44) (43) (61) (58) (55) (87) (91) 

43 -12 -2 -74 ----151151151151    ----139139139139    ----145145145145    -136 ----156156156156    -25 149 31 0 1,
( )

s s

t sθ
 (19) (25) (27) (35) (41) (48) (45) (63) (61) (56) (88) (93) 

Sequences 
1s
 - 

0s
 

3 - 0003 33-00033 333-000333 4-000004 

Population s ( sN ) 
3 (4902) 3 (4895) 3 (4861) 4 (4340) 

611 749 707 622 760 713 649 768 727 262 782 705 1

( | )
s

tE Y S s=
 (10) (13) (13) (10) (13) (13) (13) (15) (17) (9) (13) (14) 

516 845 728 526 867 744 541 908 749 261 624 809 0

( | )
s

tE Y S s=
 (24) (27) (37) (25) (30) (40) (30) (35) (38) (289) (295) (446) 

95959595    ----95959595    -21 96 ----106106106106    -31 108108108108    ----139139139139    -22 0 158 -104 0 1,
( )

s s

t sθ
 (26) (29) (39) (27) (33) (42) (32) (38) (42) (289) (296) (447) 

Population s ( sN ) 
0 (65673) 0 (65572) 0 (64177) 0 (20887) 

663 808 782 639 812 783 687 820 815 311 884 781 1

( | )
s

tE Y S s=
 (22) (32) (32) (23) (32) (31) (22) (31) (33) (55) (100) (100) 

544 902 792 542 912 795 557 932 788 345 599 620 0

( | )
s

tE Y S s=
 (21) (26) (28) (23) (27) (32) (25) (28) (32) (116) (116) (174) 

89898989    -93 -10 95959595    -101 -12 128128128128    -112 27 -34 285 161 0 1,
( )

s s

t sθ
 (31) (41) (42) (32) (42) (45) (33) (42) (47) (128) (153) (201) 

Note:  See note below Table 3.  

Of course, many more contrasts that are interesting could be considered, like requiring an exact length 

of both programmes, for example. However, they are beyond the illustrative nature and the space 

constraints of this paper.  

5.35.35.35.3    The effects of the duration of a programmeThe effects of the duration of a programmeThe effects of the duration of a programmeThe effects of the duration of a programme    

In this section, I take up the issue of how to measure the effects of different durations of the pro-

grammes. The comparison of interest is the effect of an extension of a programme. Table 5 shows the 

results for extension of 1, 2, or 3 periods. The results differ according to whether the extensions 
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concerns only the minimum duration (upper panel) or the actual duration (lower panel). In the long run 

there are positive effects of programme duration that are reflected in the estimates, although, as 

observed before, precision becomes an issues when the specified sequence gets longer.  

Table 5: The earnings effects of the duration of the programme (sequential matching) 

 Earnings in year (quarter) 

(1) (2) (3) (3)  (4)  (5)  (6) (7) (8) (9) (11) (12) (13) 

 4(4) 7(4) 9(4)  4(4)  7(4)  9(4) 4(4) 7(4) 9(4) 4(4) 7(4) 9(4) 

Sequences 
1s
 - 

0s
 

1-11 1-111 1-1111 11-1111 

Population s ( sN ) 
1 (8989) 1 (8957) 1 (8813) 1 (8810) 

1885 4002 3965 1885 4003 3965 1882 4006 3971 1955 4133 4036 1

( | )
s

tE Y S s=
 (36) (43) (45) (36) (44) (45) (36) (44) (45) (45) (54) (56) 

1958 4101 4002 2073 4248 4110 1948 4341 4290 2008 4349 4151 0

( | )
s

tE Y S s=
 (44) (53) (55) (71) (82) (87) (174) (205) (212) (166) (194) (199) 

-72 -99 -37 -187 ----245245245245    -144 -65 -334 -319 -53 -215 -114 0 1,
( )

s s

t sθ
 (57) (69) (71) (79) (93) (97) (178) (209) (217) (172) (201) (207) 

Sequences 
1s
 - 

0s
 

10-110 110-1110 10-11110 110-11110 

Population s ( sN ) 
1 (8973) 1 (8935) 1 (8757) 1 (8763) 

1570 3583 3767 1852 3915 3858 1628 3514 3726 1855 3950 3876 1

( | )
s

tE Y S s=
 (83) (111) (114) (68) (83) (85) (91) (112) (117) (67) (82) (83) 

1942 3936 3900 2056 4244 4135 1995 4318 4251 1973 4288 4179 0

( | )
s

tE Y S s=
 (71) (82) (84) (77) (94) (98) (174) (204) (212) (166) (198) (203) 

----371371371371    ----352352352352    -133 -203 ----328328328328    -276 -336 ----803803803803    -524 -117 -338 -302 0 1,
( )

s s

t sθ
 (109) (138) (142) (103) (125) (130) (196) (233) (243) (179) (215) (219) 

Note:  See note below Table 3. 

Note that the static evaluation literature typically refrains from estimating the effects of actual duration, 

because the programmes themselves can cause attrition and thus actual duration cannot be used to 

differentiate the programmes. As long as relevant factors are observable, so that the W-DCIA holds, this 

issue is not a problem here and effects can be estimated directly. 

6666    A comparison to static matchingA comparison to static matchingA comparison to static matchingA comparison to static matching    

Having discussed some of the questions that can be fruitfully addressed using the dynamic treatment 

approach, this section is concerned with a comparison of the sequential estimators and static 

approximations of the dynamic problem. For the latter, there are (at least) two possible imple-

mentations: The first one ignores the role of the intermediate outcomes as selection variables for the 
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reason that they are endogenous for the beginning of the sequence. The second approximation includes 

those variables in the list of covariates.  

There are two a priori reasons why static and dynamic matching estimators may deviate. First, the static 

version is biased if S-DCIA fails. Second, the estimates may be based on different populations because of 

different common supports. Different common supports become particularly an issue when the static 

approach does not use the intermediate outcomes. Since the bias of the static estimator is extensively 

documented in L04, I refrain from searching for an example for which the bias is sufficiently substantial 

on the same common support. Instead, I chose the same example that will appear below when discussing 

the common support problem. 

In Table 6 column (1) defines the relevant comparisons and the target population. Column (2) gives the 

sample sizes for the treatment groups as well as for the target populations after having imposed common 

support. The latter depends on the particular sequences under consideration. Column (3) shows the 

(unadjusted) sample means of the outcome variables in the various subpopulations. Comparing these 

sample means to the true values of the potential outcomes given in column (4) gives some indication of 

the selection bias that should be corrected for by matching. Note however that the means for the 

sequences are based on all observations, whereas the means for the target population as well as for the 

true values are based on the common support for the dynamic matching. Columns (6) to (9) contain the 

results for the static matching, whereas columns (10) and (11) contain the corresponding results for 

sequential matching. 
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Table 6: The comparison with static matching – earnings and employment in period 9 (4) 

Static matching (own support) 
1

( | )
s

tE Y S s=
 

0

( | )
s

tE Y S s=
 

0 1,
( )

s s

t sθ
 

Sample means 
1( | )tE Y S s=  
0( | )tE Y S s=

 
( | )tE Y S s=

 

True Values 
1

( | )
s

tE Y S s=
 

0

( | )
s

tE Y S s=
 

0 1,
( )

s s

t sθ
 

exogenous X endogenous X 

Dynamic 

matching 
1

( | )
s

tE Y S s=
 

0

( | )
s

tE Y S s=
 

0 1,
( )

s s

t sθ
 

Population 
1s
  

0s
 

s
 

Obs. 

1s
N

  
0s

N
 

sN  

mean (std) mean std mean (std) mean (std) mean (std) 

(1) (2) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Earnings 

1 8997 3964 (45) 3922 4045 3943 (45) 3953 (45) 3862 (44) 

01 7994 1913 (31) 3875 4128 3923 (98) 3778 (101) 3818 (109) 

1 8833 3862 (45) 53 - 20 (108) 175 (111) 44 (118) 

1 8997 3964 (45) 1590 1751 2598 (40) 1244 (27) 1452 (30) 

000001 321 1269 (88) 1513 1873 2194 (415) 1186 (188) 1179 (101) 

1 3405 1452 (31) 77 - 404 (417) 57 (190) 272 (106) 

1 8997 3964 (45) 1344 1690 1916 (41) 1729 (42) 1209 (19) 
01 7994 1914 (31) 1282 1707 1915 (31) 1804 (29) 1212 (19) 

0 69316 1250 (7) 62 - 1 (51) -78 (51) -2 (27) 

1 8997 3964 (45) 1130 1180 1339 (97) 961 (164) 1004 (20) 

000001 321 1269 (87) 1033 1222 1274 (89) 1031 (95) 972 (91) 
0 44463 1020 (6) 97 - 65 (131) -70 (190) 31 (93) 

Employment rate in % 

1 8997 86 (.4) 87 - 86 (.4) 86 (.4) 86 (.4) 

01 7994 82 (.4) 87 - 86 (.8) 84 (.9) 86 (.8) 
1 8833 86 (.4) 0 - 0 (.8) 2 (1) 0 (.9) 

1 8997 86 (.4) 84 - 84 (4) 81 (.6) 83 (.7) 
000001 321 85 (.2) 87 - 89 (4) 80 (8) 82 (3) 

1 3405 83 (.6) -3 - -4 (4) 1 (8) 1 (3) 

1 8997 86 (.4) 81 - 83 (.7) 80 (.9) 80 (.8) 
01 7994 82 (.4) 78 - 82 (.4) 82 (.4) 78 (.8) 

0 69316 69 (.2) 3 - 1 (.9) -2 (1) 1 (1) 

1 8997 86 (.5) 79 - 83 (2) 77 (6) 79 (.9) 

000001 321 85 (.3) 83 - 85 (2) 80 (3) 80 (4) 
0 44463 68 (.2) -4 - -2 (3) -3 (7) -1 (4) 

Note:  See footnote on Table 3. Standard deviation of estimator in brackets. (std) denotes the standard deviation of the 

estimator, whereas std (without brackets) denotes the standard deviation in the sample (not given for the binary 

outcome). True values and number of observations of the target population are given for the common support of the 

dynamic matching estimator.  

The first observation is that the results for static matching may differ substantially depending on whether 

the intermediate outcomes are included, or not. In the latter case, the results are typically close to those 

of the dynamic matching that in turn appear not too far away from the true values. The second 

observation is that the common support issue does play a major rule as can be seen by the changing 

number of observations, by the sample means of the outcome variable for the target population as well 

as for the different estimates for the shortest sequence '1' that is not subject to the bias due to ignored 
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dynamics. Since the common support issue resurfaces in almost every discussion of the results so far, it 

is discussed explicitly in the next section. 

7777    Some potential problemsSome potential problemsSome potential problemsSome potential problems    

7.17.17.17.1    Common supportCommon supportCommon supportCommon support    

It has already been pointed out that the comparisons of the different effects for the same target 

population may be hampered by the fact that the common support may shrink drastically when the 

length of the sequences increases, because the participants tend to become more homogenous the 

longer the sequences.  

Table 7, which has a similar structure as Table 6, addresses this issue explicitly for two comparisons. 

First, the effect of waiting by increasing waiting time (and thus the length of the comparison sequence) 

from one period to five periods is considered. It appears that the sample size of the target population 

(participants in one-period treatment) drops from 8800 to only 3400 for the sequence defined over 6 

periods. Comparing the changing values of the true potential outcomes in the target populations before 

and after imposing common support, shows that the populations are indeed very different. Whereas in 

the initial target population mean potential earnings for at least one period of programme 1 was 4022 

EUR, within the common support for the comparison of 1 to 000001 this value for the mean potential 

outcome is less than half that value (1452 EUR). 

A similar picture arises in the bottom panel of Table 7, where different minimum durations of 

participation in programme 2 are compared to spells of non-participation of the same minimum duration, 

although the drop is much less dramatic. 
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Table 7: The issue of common support– earnings in 9 (4) 

True Values 
1

( | )
s

tE Y S s=
 

0

( | )
s

tE Y S s=
 

0 1,
( )

s s

t sθ
 

Sample means 
1( | )tE Y S s=  
0( | )tE Y S s=

 
( | )tE Y S s=

 

before common sup. after common 

support 

Dynamic matching 
1

( | )
s

tE Y S s=
 

0

( | )
s

tE Y S s=
 

0 1,
( )

s s

t sθ
 

Popul. 
1s
  

0s
 

s
 

Obs. 

1s
N

  
0s

N
 

sN  

mean (std) mean std mean std mean (std) 

(1) (2) (2) (3) (4) (5) (6) (7) (8) (9) 

1 8997 3964 (45) 4022 4087 3922 4045 3862 (44) 

01 7994 1913 (31) 3975 4169 3875 4128 3818 (109) 

1 8833 3862 (45) 47 - 53 - 44 (118) 

1 8997 3964 (45) 4022 4087 3705 3938 3943 (45) 

001 5921 1597 (30) 4065 4382 3746 4239 3830 (198) 
1 8509 3643 (45) -43 - -41 - -186 (203) 

1 8997 3964 (45) 4022 4087 3256 3679 3190 (44) 
0001 4385 1392 (28) 3982 4397 3199 3992 3246 (228) 

1 7816 3190 (44) 40 - 57 - -56 (232) 

1 8997 3964 (45) 4022 4087 1590 1751 1452 (30) 
000001 321 1269 (88) 3923 4263 1513 1873 1179 (101) 

1 3405 1452 (31) 99 - 77 - 272272272272    (106) 

2 8665 5229 (49) 5151 4348 5055 4327 5134 (49) 
0 69951 1241 (7) 4672 4223 4574 4200 4777 (92) 

2 8502 5134 (49) 479 - 481 - 357357357357    (104) 

22 8359 5249 (50) 5162 4363 4855 4268 4968 (51) 
00 47265 1091 (7) 4630 4247 4376 4140 4678 (234) 

2 8177 4934 (49) 532 - 479 - 290 (240) 

222 7615 5242 (52) 5182 4392 4661 4229 4778 (57) 

000 31021 968 (8) 4555 4227 4040 4071 4198 (291) 
2 7789 4714 (50) 627 - 621 - 580 (296) 

2222 5474 4986 (61) 5232 4469 3784 3778 3972 (77) 
0000 20405 841 (8) 4507 4179 3046 3542 2818 (263) 

2 6172 3839 (50) 725 - 738 - 1154115411541154    (274) 
Note:  See footnote on Table 3. (std) denotes the standard deviation of the estimator, whereas std (without brackets) 

denotes the standard deviation in the sample (not given for the binary outcome). 

Again, these examples point out that there is a price to pay for getting a more precise definition of 

treatment and the selection effects within a nonparametric framework, because only relatively small 

parts of the sample may contain useful information for those particular dynamic sequences. The problem 

of small sample size can be remedied in the two usual ways: The first option is to change the parameter 

of interest by specifying shorter sequences. This corresponds to aggregating over some longer 

sequences. The second option is to use parametric assumptions to add additional smoothness to the 

estimation problem. This is, however, not the subject of this paper. 
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Note that these findings are fairly robust when the common support is chosen more conservatively, like 

for example to be the region between the 10th largest / smallest value of the respective scores as 

opposed to the second largest / smallest value as in the baseline estimation. 

7.27.27.27.2    Too many covariates may be needed to control selectionToo many covariates may be needed to control selectionToo many covariates may be needed to control selectionToo many covariates may be needed to control selection    

A potential drawback of the sequential matching approach is that the number of theoretically required 

covariates increases with the length of the sequence specified, because all the past intermediate 

outcomes observable at each node of a sequence should be included. When matching is on the 

propensity score, it implies that the dimension of the matching problem is increasing even if a parametric 

propensity score is used. The reason is that all past scores should be included as well. Furthermore, 

estimating a propensity score becomes more demanding when moving along the sequences, as the 

number of variables increases. Both potential problems could become more severe due to fact that the 

number of observations decreases when moving along the sequence. Finally, increasing the number of 

control variables could also potentially decrease the number of observations that remain in the target 

population and thus change the estimand considerably. 
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Table 8: The importance and danger of including a rich set of covariates – earnings and employment in 9 (4) 

True Values 
1

( | )
s

tE Y S s=
 

0

( | )
s

tE Y S s=
 

0 1,
( )

s s

t sθ
 

Dynamic matching 
1

( | )
s

tE Y S s=
 

0

( | )
s

tE Y S s=
 

0 1,
( )

s s

t sθ
 

Sample means 
1( | )tE Y S s=  
0( | )tE Y S s=

 
( | )tE Y S s=

 

few X all X few X all X 

Population 
1s
  

0s
 

s
 

Obs. 

1s
N

  
0s

N
 

sN  

mean (std) mean std mean std mean (std) mean (std) 

(1) (2) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Earnings 

1 8997 3964 (45) 3983 4071 3922 4045 3925 (45) 3862 (44) 

01 7994 1913 (31) 3936 4151 3875 4128 3663 (100) 3818 (109) 
1 (all X) 8833 3862 (45) 47 - 53 - 261261261261    (110) 44 (118) 

1 8997 3964 (45) 1852 2372 1590 1751 1745 (36) 1452 (30) 

000001 321 1269 (88) 1770 2604 1513 1873 1320 (140) 1179 (101) 
1 (all X) 3405 1452 (31) 82 - 77 - 425425425425    (144) 272 (106) 

1 8997 3964 (45) 1349 1696 1344 1690 1324 (23) 1209 (19) 

01 7994 1913 (31) 1287 1713 1282 1707 1272 (21) 1212 (19) 
0 (all X) 69316 3862 (45) 62 - 62 - 52 (31) -2 (27) 

1 8997 3964 (45) 1140 1254 1130 1180 1065 (21) 1004 (20) 
000001 321 1269 (88) 1251 1038 1033 1222 1080 (120) 972 (91) 

0 (all X) 44463 1452 (31) -111 - 97 - -15 (122) 31 (93) 

Employment rate in % 

1 8997 86 - 87 - 87 - 86 (.3) 86 (.4) 
01 7994 82 - 85 - 87 - 85 (.8) 86 (.8) 

1 (all X) 8833 86 - 2 - 0 - 1 (.9) 0 (.9) 

1 8997 86 - 84 - 84 - 83 (.5) 83 (.7) 
000001 321 85 - 86 - 87 - 78 (4) 82 (3) 

1 (all X) 3405 83 - -2 - -3 - 4 (5) 1 (3) 

1 8997 86 - 81 - 81 - 80 (.8) 80 (.8) 

01 7994 82 - 78 - 78 - 79 (.7) 78 (.8) 
0 (all X) 69316 69 - 3 - 3 - 1 (1) 1 (1) 

1 8997 86 - 79 - 79 - 79 (.9) 79 (.9) 
000001 321 85 - 83 - 83 - 77 (4) 80 (4) 

0 (all X) 44463 68 - -4 - -4 - 2 (4) -1 (4) 
Note:  See footnote on Table 3. (std) denotes the standard deviation of the estimator, whereas std (without brackets) 

denotes the standard deviation in the sample (not given for the binary outcome). Sample means and sample sizes after 

common support are those relating to the common support obtained for the estimation with the full set of covariates. 

Table 8 documents some of those problems by comparing two sequential matching estimators based on 

different specifications of the covariates and compares the results for a long and a short sequence: "All 

X" defines a specification in which all variables that are theoretically required are included (up to 28 for 

sequence 01 and up to 39 for 000001).
9
 "Few X" defines a specification where only the last information 

                                                           
9  For the longer sequence the intermediate outcomes of only every second period is included in the probits, 

because otherwise it would not converge for the last node in the sequence. 
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about the employment history and intermediate outcomes is included, leading to only 22 variables in 

both cases.
10
 

When considering the results for employment rates and earnings, there appears to be no significant 

differences for the employment rates. For the longer sequences and their effect on earnings, the target 

populations change to some extend in this example (compare the true values of the target population 

adjusted for the common support given by the two different estimators). However, the results for both 

specifications are still close to the true values. The fact that both specifications are close is probably 

because the observed intermediate outcomes are highly correlated and including only the last one is 

(almost) sufficient. On the other hand, the specification with all the variables included does not point to 

any problem with the estimation (indeed it seems to be preferable to the one that leaves out some 

variables), so that, in this example, it seems safe to include all variables in the specification that are 

required by theory. 

8888    ConclusionsConclusionsConclusionsConclusions    

This paper attempted to show that dynamic matching estimation can be a useful additional tool for 

empirical researchers because in many important cases it allows to define the causal parameter of 

interest more precisely and allows to address selection problems that occur while the treatment under 

consideration is in progress. 

However, there is a price for getting a more precise definition of treatment and the selection effects 

within this nonparametric framework, because only relatively small parts of the sample may contain 

useful information for the particular dynamic sequences of interest (dynamic matching is an identification 

and estimation strategy starving for data). This problem of too small sample sizes can be addressed by 

                                                           
10
  For the comparison of 1 to 01, the specification with fewer covariates captures the employment history before 

2(4) only with variables from period 2(2) as well as with the usual time-constant variables, whereas the full 

specification uses a much richer set of covariates. 
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aggregating over some longer sequences. This however changes the parameter of interest and brings the 

dynamic model closer to the static one. Alternatively, one may consider parametric assumptions to add 

additional smoothness to the estimation problem. In the future, this option may be explored in more 

depth. 
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Appendix A: Description of outcome heterogeneity 

The following Tables A.1 and A.2 contain some descriptive statistics for the true potential outcome 

variables that can be used to deduce the true effects. To avoid flooding the reader with numbers that are 

not helpful in interpreting the results that appear in the main body of the paper, we give means and 

standard deviations for earnings (A.1) and employment (A.2) only for sequences and subsamples that 

have some relation to the effects considered above. 

Table A.1a: Mean and standard deviation of potential earnings in 7(4) in selected subsamples 

Sequence Subsample 

 0 1 2 3 4 

 mean std. m. std. m std. m. std. m. std. 

000000 933 1587 3613 4108 4378 4169 624 796 542 782 
01 1432 1588 4055 3975 4815 4023 1121 877 1026 838 

001 1506 1735 4209 4321 5000 4316 1172 959 1079 941 

0001 1342 1722 4089 4320 4830 4384 1013 924 923 911 

000001 1283 1720 3936 4239 4724 4309 955 935 858 889 

1 1470 1581 4073 3968 4822 3920 1157 858 1062 828 

11 1481 1557 4105 3933 4858 3967 1164 867 1070 838 

111 1500 1588 4166 4012 4924 4042 1179 885 1084 857 

1111 1510 1617 4216 4097 4977 4128 1186 902 1089 872 

10 1432 1488 4005 3781 4683 3778 1129 832 1035 797 

110 1498 1570 4094 3905 4784 3906 1148 853 1054 822 

1110 1497 1583 4150 3995 4908 4024 1177 832 1089 872 

11110 1517 1615 4297 4176 4968 4120 1194 903 1097 872 

111000 1337 1661 4102 4208 4885 4236 1009 880 913 869 

111002 1440 1685 3781 4157 4406 4329 1173 1074 1104 1069 

2 1793 1777 4338 4214 4973 4311 1505 1152 1456 1173 

22 1795 1783 4351 4232 4989 4328 2263 2625 1457 1176 

222 1800 1796 4377 4266 5017 4359 1510 1162 1459 1183 

2222 1802 1830 4437 4361 5086 4445 1507 1179 1454 1200 

222000 1657 1723 4197 4152 4841 4252 1369 1080 1326 1107 

222001 2041 1867 4567 4304 5254 4424 1726 1186 1669 1199 

3 1056 1655 3829 4295 4593 4356 754 870 655 847 

33 1057 1661 3838 4310 4603 4371 1570 2624 655 850 

333 1065 1676 3867 4354 4635 4412 1581 2648 660 857 

0003 1067 1707 3802 4398 4589 4511 1574 2671 686 873 

00033 1068 1713 3812 4419 4601 4534 755 878 686 877 

000333 1066 1731 3830 4469 4622 4586 751 885 682 886 

4 1120 1630 3853 4292 4611 4349 824 850 748 838 

000004 1124 1673 3668 4275 4418 4381 835 874 763 837 

444000 1033 1642 3757 4320 4523 4388 735 832 662 833 

444003 1168 1658 3850 4348 4581 4430 879 865 812 844 

# of obs. 69951 8997 8665 4964 7423 

Note: m.: Mean in subsample; std.: Standard deviation in subsample.  
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Table A.1b: Mean and standard deviation of potential earnings in 9(4) in selected subsamples 

Sequence Subsample 

 0 1 2 3 4 

 mean std. m. std. m std. m. std. m. std. 

000000 990 1638 3696 4109 4487 4173 670 863 587 850 

01 1275 1707 3975 4169 4757 4219 938 981 848 961 

001 1290 1832 4065 4382 4837 4486 951 1062 851 1043 

0001 1234 1819 3982 4397 4779 4512 896 1021 800 1011 

000001 1242 1785 3923 4263 4720 4391 923 1019 814 977 

1 1337 1690 4022 4087 4786 4131 1007 967 916 955 

11 1348 1707 4054 4133 4821 4175 1015 975 924 963 

111 1362 1738 4109 4216 4883 4251 1026 993 933 978 

1111 1398 1775 4192 4314 4968 4339 1057 1022 963 1009 

10 1297 1635 3896 3940 4646 3996 980 938 886 929 

110 1331 1680 3989 4063 4752 4113 1003 960 912 952 

1110 1351 1730 4083 4194 4855 4233 1016 987 923 971 

11110 1405 1771 4186 4300 4959 4328 1065 1021 971 1008 

111000 1275 1707 3959 4321 4762 4367 816 954 729 940 

111002 1866 1856 4372 4240 5037 4355 1173 1074 1500 1215 

2 1991 1025 4502 4258 5151 4348 1661 1181 1456 1173 

22 1990 1843 4511 4274 5162 4363 2449 2664 1636 1222 

222 1889 1853 4528 4307 5182 4392 1656 1186 1633 1225 

2222 1977 1878 4567 4388 5232 4469 1639 1190 1613 1232 

222000 1791 1751 4274 4147 4934 4242 1462 1073 1444 1118 

222001 2060 1922 4559 4323 5233 4438 1734 1250 1686 1259 

3 1025 1712 3705 4341 4467 4436 697 902 617 888 

33 1026 1717 3713 4355 4477 4450 1520 2653 617 890 

333 1034 1734 3743 4399 4508 4492 1532 2677 622 899 

0003 1002 1752 3685 4446 4479 4589 1499 2706 606 931 

00033 1003 1759 3696 4466 4491 4611 755 878 607 934 

000333 1004 1774 3716 4508 4514 4653 751 885 606 939 

4 1116 1715 3913 4352 4695 4396 788 912 704 899 

000004 1041 1743 4502 4258 4464 4461 742 958 886 926 

444000 1056 1716 3830 4344 4620 4405 724 897 649 886 

444003 1047 1734 3685 4394 4413 4474 744 922 669 917 

# of obs. 69951 8997 8665 4964 7423 

Note: m.: Mean in subsample; std.: Standard deviation in subsample. 
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Table A.2a: Share of potential employment in 7(4) in selected subsamples in % 

Sequence Subsample 

 0 1 2 3 4 

000000 58 71 74 56 50 
01 96 97 97 95 95 

001 95 96 95 95 95 

0001 92 94 96 91 91 

000001 91 93 94 89 89 

1 97 98 98 97 97 

11 97 98 98 97 97 

111 97 98 98 97 97 

1111 97 98 98 97 97 

10 97 98 98 97 97 

110 97 98 98 97 97 

1110 97 98 98 97 97 

11110 97 98 98 97 97 

111000 96 98 98 95 95 

111002 90 90 89 90 91 

2 81 82 82 82 80 

22 81 82 82 81 80 

222 81 83 82 82 80 

2222 80 82 81 81 79 

222000 79 81 80 80 78 

222001 96 97 96 97 96 

3 71 81 82 67 65 

33 70 80 82 72 65 

333 71 80 82 72 65 

0003 76 83 84 77 73 

00033 76 83 84 74 73 

000333 76 83 84 74 73 

4 75 85 86 78 75 

000004 81 85 86 80 78 

444000 76 82 85 68 72 

444003 90 92 92 65 89 

# of obs. 69951 8997 8665 4964 7423 
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Table A.2b: Share of potential employment in 9(4) in selected subsamples in % 

Sequence Subsample 

 0 1 2 3 4 

Employment in 9(4) in %-points 

000000 58 72 75 56 50 

01 78 85 87 76 74 

001 79 85 86 77 76 

0001 78 85 86 77 75 

000001 84 89 90 83 81 

1 80 87 89 81 78 

11 81 87 89 81 78 

111 82 87 89 82 79 

1111 82 87 89 82 79 

10 80 86 88 80 76 

110 81 87 87 81 78 

1110 81 87 89 82 79 

11110 82 88 90 83 80 

111000 77 85 87 77 74 

111002 88 88 89 89 87 

2 86 84 83 87 86 

22 86 84 83 85 86 

222 86 84 83 87 86 

2222 86 84 83 86 85 

222000 85 83 82 86 84 

222001 95 94 94 94 94 

3 58 70 72 55 50 

33 58 70 72 59 50 

333 59 70 72 59 50 

0003 56 69 72 58 49 

00033 56 69 72 75 49 

000333 56 69 72 75 49 

4 71 80 82 70 65 

000004 69 78 80 67 64 

444000 69 79 81 68 63 

444003 66 75 77 65 61 

# of obs. 69951 8997 8665 4964 7423 

 


