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Abstract 

We propose a general robust semiparametric bootstrap method to estimate conditional 

predictive distributions of GARCH-type models. Our approach is based on a robust 

estimator for the parameters in GARCH-type models and a robustified resampling method 

for standardized GARCH residuals, which controls the bootstrap instability due to influential 

observations in the tails of standardized GARCH residuals. Monte Carlo simulation 

showsthat our method consistently provides lower VaR forecast errors, often to a large 

extent, and in contrast to classical methods never fails validation tests at usual significance 

levels. We test extensively our approach in the context of real data applications to VaR 

prediction for market risk, and find that only our robust procedure passes all validation tests 

at usualconfidence levels. Moreover, the smaller tail estimation risk of robust VaR forecasts 

implies VaR prediction intervals that can be nearly 20% narrower and 50% less volatile over 

time. This is a further desirable property of our method, which allows to adapt risky 

positions to VaR limits more smoothly and thus more efficiently. 
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1 Introduction

Large portfolios of traded assets held by many financial institutions have made the measurement

of market risk, i.e. the risk of losses on the trading book due to adverse market movements, a

primary concern for regulators and internal risk managers. The Basel Committee (1996) requires

that financial institutions hold a certain amount of capital against market risk. This capital is

called Value at Risk (VaR) and must be sufficient to cover losses on the trading book over a ten

days holding period 99% of the times. In practice, VaR measures are computed for several holding

periods and confidence levels. For internal purposes, for instance, most banks use VaR at a 95%

confidence level and a horizon of one day. From a statistical viewpoint, VaR is the quantile of the

profit and loss (P&L) distribution of a portfolio over a certain holding period. Hence, a key issue

in implementing VaR and related risk measures is to obtain accurate estimates for the tails of the

conditional P&L distribution at the relevant horizons. In the financial literature two main direc-

tions have been followed to estimate P&L conditional distributions for market risk management:

fully nonparametric historical simulation methods and semiparametric/nonparametric bootstrap

methods based on dynamic models for asset returns; see Duffie and Pan (1997) for an overview.

Fully nonparametric methods are easy to implement, but unfortunately do not provide accurate

VaR predictions. Semiparametric methods have been found to work well and are commonly called

Filtered Historical Simulation (FHS) methods; see, among others, Pritsker (1997), Hull and White

(1998), Diebold, Schuermann, and Stroughair (1998), Barone-Adesi, Giannopoulos, and Vosper

(1999), McNeil and Frey (2000), Pritsker (2001), and Kuester, Mittnik, and Paolella (2006).

In these papers, parametric GARCH-type models for returns are fitted using pseudo maximum

likelihood (PML). Then standardized GARCH residuals are resampled using either (i) a fully non-

parametric bootstrap or (ii) a semiparametric bootstrap based on PML estimations of generalized

Pareto distributions for the tails of GARCH residuals. Therefore, semiparametric methods allow

for time varying conditional moments of returns (via parametric GARCH-type models) and non-
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parametric structures in conditional distribution of returns (as GARCH residual distributions are

estimated nonparametrically). The last feature is crucial in applications and avoids too simplistic

assumptions on return conditional distributions, such as normality; see for instance JP Morgan’s

RiskMetrics (1995). In contrast to a fully nonparametric method, the semiparametric approach

resamples approximately iid standardized GARCH residuals without relying on resampling pro-

cedures for non iid data and the necessary assumptions for those to hold; see for instance Künsch

(1989).1

In this paper we propose a class of robust semiparametric bootstrap methods to estimate con-

ditional predictive distributions of asset returns in GARCH-type volatility models. This approach

can account for general parametric specifications of time varying conditional mean and variance

of asset returns. As an application, we use the proposed robust method to compute Value at

Risk predictions over different forecasting horizons. Our robust approach combines a robust esti-

mator for parametric GARCH-type volatility dynamics and a robustified resampling method for

standardized GARCH residuals. Hence, robustness is achieved in two steps. In the first step,

we estimate a parametric GARCH-type model using the optimal bounded influence estimator in

Mancini, Ronchetti, and Trojani (2005). In the second step, we fit the robust generalized Pareto

density estimator in Dupuis (1999) and Juárez and Schucany (2004) to the tails of the GARCH

residuals distribution and we resample from this distribution. In order to ensure robustness of the

whole bootstrap procedure, both robustification steps are necessary. It is well-known that outliers

1A potentially alternative way to estimate risk measures for P&L distributions is to apply directly statistical tools

designed to estimate regression quantiles and conditional distributions; see for instance Koenker and Bassett (1978),

Foresi and Peracchi (1995), Peracchi (2002), and Engle and Manganelli (2004). From a robustness perspective,

drawbacks of regression quantiles are their behavior under heteroscedasticity and the non robustness to “bad”

leverage points; see Koenker and Bassett (1982). Moreover, regression quantile methods are naturally applied to

one day ahead VaR predictions, as illustrated in Engle and Manganelli (2004). Their efficient extension to the

estimation of risk measures for longer horizons is, however, not straightforward.
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or influential points in the data can strongly bias and highly inflate PML parameter estimates of

GARCH-type models; see for instance Sakata and White (1998) and Mancini et al. (2005). In

our semiparametric bootstrap context, this feature can induce inaccurately estimated GARCH

residuals and unreliable bootstrap distributions. In addition, standard bootstrap procedures suf-

fer from an intrinsic robustness problem, especially when bootstrapping fat tailed distributions.

A small number of outliers in the data can cause the breakdown of quantile estimates based on

nonparametric bootstrap distributions of residuals; see for instance Singh (1998), Davidson and

Flachaire (2005), Gagliardini, Trojani, and Urga (2005) and Camponovo, Scaillet, and Trojani

(2006). The robust extreme value estimator in our approach controls the bootstrap instability

deriving from outliers or influential points in the tails of GARCH residual distributions. We show

that the standard nonparametric bootstrap procedure has a low breakdown point, meaning that

VaR forecasts can be heavily affected by a few influential points, especially when long forecast

horizons are considered. Robustness can be enhanced by fitting a generalized Pareto distribution

to the tails of the residual distribution and sampling tail residuals from this density. Sampling

from a parametric density can circumvent the robustness problem of nonparametric bootstrap

procedures. However, to ensure a sufficiently large breakdown point for the estimator of the gen-

eralized Pareto tails, a robust extreme value estimator is needed. Such an estimator is not subject

to the instability problem of PML estimators for generalized Pareto distributions as noted, among

others, in Cowell and Victoria-Feser (1996).

Extreme or outlying observations—due for instance to abnormal liquidity conditions or market

crashes—are a fundamental component of data generating processes of financial returns and, in

particular, of the riskiness we aim to measure. Therefore, they cannot be simply disregarded when

estimating measures of market risk. However, such observations are typically caused by relatively

rare market conditions that are very difficult to anticipate using historical return information and

almost impossible to model conveniently in a simple parametric model for asset returns, such
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as a GARCH-type model. To avoid biased GARCH estimates that are not representative for

the typical volatility dynamics in the data, we estimate a parametric GARCH model with the

bounded influence estimator proposed in Mancini et al. (2005). To ensure the stability of the

GARCH residual bootstrap procedure we fit the robust generalized Pareto estimator in Dupuis

(1999) and Juárez and Schucany (2004) to the tails of the GARCH residual distribution.

We study the accuracy of VaR predictions at 5% and 1% confidence levels for one day and ten

days ahead forecast horizons by performing Monte Carlo simulation and in real data applications.

Monte Carlo simulation shows that compared to the non robust counterparts our robust proce-

dure suffers very moderate efficiency losses, when estimating a GARCH model with conditionally

Gaussian innovations. At the same time, it offers substantial improvements in accuracy under sev-

eral forms of departure from conditional normality, which are likely to be present in financial data.

Procedures based on classical methods imply less reliable VaR predictions under conditionally non

Gaussian data, especially for several days ahead horizons. In particular, in the presence of outlying

observations, robust VaR predictions at 1% confidence level have mean square prediction errors

several times smaller than those of classical procedures. In nearly all Monte Carlo experiments

and for all VaR confidence levels and forecast horizons, our robust bootstrap procedure has the

lowest mean square prediction errors, often by a large extent. Moreover, in contrast to classical

methods our procedure never fails validation tests based on VaR violations at 10% level.

The simulation evidence is confirmed by the real data application. We backtest VaR predic-

tion methods using about twenty years of S&P 500, Dollar-Yen, Microsoft and Boeing historical

returns. Overall, robust VaR predictions are found to be more accurate than classical ones: in

our backtesting exercises the robust VaR forecasting method is the only one that passes all valida-

tion tests at a 10% significance level, both for all VaR confidence levels and all forecast horizons.

Moreover, the robust procedure implies a smaller tail estimation risk, which is reflected by robust

VaR prediction intervals that are more accurate and more stable over time. For instance, in the
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case of S&P 500 and Boeing, robust VaR prediction intervals are nearly 20% narrower and 50%

less volatile than classical ones. In risk management, the stability over time of VaR predictions is

a desirable feature, because financial institutions cannot adjust rapidly the capital base. At the

same time, stable VaR profiles over time allow to adapt outstanding portfolio risk exposures to

VaR limits more smoothly and thus more efficiently. Therefore, the time stability of VaR predic-

tions estimated by robust semiparametric bootstrap methods is a further desirable property of our

approach.

Section 2 introduces semiparametric bootstrap and extreme value estimation methods for VaR

predictions, along with their robust versions. Section 3 presents Monte Carlo simulation com-

paring the performance of classical and robust, nonparametric and semiparametric, bootstrap

VaR prediction methods, under different forms of conditional non normality of returns. Section 4

presents the real data application to VaR prediction and backtesting for four financial time series.

Section 5 concludes.

2 Setting

This section introduces the different semiparametric bootstrap procedures for GARCH-type mod-

els relevant for our analysis.

2.1 Return Dynamics and Measures of Market Risk

Let Y := (Yt)t∈Z be a strictly stationary time series process on probability space (R∞,F ,P∗),

modelling the daily rate of return on a financial asset with price Pt at time t, i.e. Yt := Pt/Pt−1−1.

We assume that P∗ can be “approximated” by some parametric model P := {Pθ, θ ∈ Θ ⊆ R
p}.

Precisely, P∗ ∈ U(Pθ0
) for some θ0 ∈ Θ, where U(G) denotes a nonparametric neighborhood of

7



distribution G. Under Pθ0
, process Y satisfies the dynamic model

Yt = µt(θ0) + σt(θ0)Zt, (1)

where µt(θ0) and σ2
t (θ0) parameterize the conditional mean and conditional variance of Yt, given

information Ft−1 up to time t − 1. Under probability Pθ0
, innovations Zt’s are a strong white

noise, i.e. Zt ∼ IIN(0, 1). We denote by F the distribution function of Zt under P∗. Given Y m
1 :=

(Y1, . . . , Ym), denote by P
m
∗ (Pm

θ0
) the m-dimensional marginal distribution of Y m

1 under P∗ (Pθ0
).

Ft,t+h is the conditional distribution function of h days returns Yt,t+h := Pt+h/Pt − 1 under P∗,

given information Ft. For 0 < α < 1 and horizon h days, lower quantile yα
t,t+h of Ft,t+h is defined by

yα
t,t+h := inf{y ∈ R : Ft,t+h(y) ≥ α}.

The Value at Risk (VaR) at time t of an institution investing in a portfolio of assets with market

price Pt is V aRα
t,t+h = Pt +Rα

t,t+h, where Rα
t,t+h is the reserve amount such that the probability of

a loss over the next h days is not above some level α:2

α = P∗(Pt+h +Rα
t,t+h < 0 |Ft) = P∗(Pt+h − Pt < −V aRα

t,t+h |Ft). (2)

In other words, −V aRα
t,t+h = Pt y

α
t,t+h is the α-quantile of the conditional profit and loss (P&L)

distribution under P∗ over the next h days, given Ft. In contrast to historical simulation techniques,

V aRα
t,t+h reflects current available information such as high or low volatility periods, which is

important to achieve accurate VaR forecasts.3 Another measure of market risk is the Expected

Shortfall (ES) Sα
t,t+h (Artzner, Delbaen, Eber, and Heath (1999)), defined by

Sα
t,t+h := E∗[Yt,t+h |Yt,t+h < yα

t,t+h , Ft],

where E∗[·] denotes expectation with respect to P∗.
4 For horizon h = 1 day,

yα
t,t+1 = µt+1(θ0) + σt+1(θ0) zα , Sα

t,t+1 = µt+1(θ0) + σt+1(θ0)E∗[Z |Z < zα],

2To simplify the exposition, equation (2) is based on a continuous profit and loss distribution under P∗.
3See for instance Gouriéroux, Laurent, and Scaillet (2000) for a general discussion on conditional VaR, and

Aı̈t-Sahalia and Lo (2000) for an economic interpretation of VaR in a general equilibrium model.
4See for instance Scaillet (2004) for nonparametric estimation of Expected Shortfall.
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where zα is the α-quantile of the distribution of Zt. Hence estimation of VaR or ES can be

obtained by (i) estimating model (1) for daily conditional moment dynamics and (ii) estimating

the tail distribution of daily standardized residual Zt. For longer horizons h ≥ 2, estimated

daily dynamics are only the starting point to estimate Ft,t+h. Joint conditional distributions

of (Zt+1, . . . , Zt+h), (µt+1, . . . , µt+h) and (σt+1, . . . , σt+h) have to be estimated, a task which is

considerably more difficult. Filtering Historical Simulation (FHS) methods estimate Ft,t+h by

applying a semiparametric bootstrap to dynamic model (1) over horizon [t, t+ h].

Our goal is to develop robust semiparametric bootstrap methods for estimating Ft,t+h. In this

setup, underlying distribution P∗ is unknown and belongs to some nonparametric neighborhood

of parametric reference model Pθ0
. Hence Pθ0

has to be regarded as an “approximate” description

of the true data generating process P∗.

2.2 Estimations of GARCH-type Dynamics

We use pseudo maximum likelihood (PML, Gouriéroux, Monfort, and Trognon (1984)) estimators

for the parameters of dynamic model (1) and bounded influence, conditionally unbiased, optimal

versions of such PML estimators (Mancini, Ronchetti, and Trojani (2005)).

2.2.1 Pseudo Maximum Likelihood Estimation

Typically, model (1) is estimated by a PML approach, under the nominal assumption of Gaussian

innovations. The functional PML estimator (PMLE) a(·) is implicitly defined by the asymptotic

estimating equation

E∗[s(Y
m
1 ; a(Pm

∗ ))] = 0,

where

s(Y m
1 ; θ) =

1

σ2
m(θ)

∂µm(θ)

∂θ
εm(θ) +

1

2σ2
m(θ)

∂σ2
m(θ)

∂θ

(

ε2
m(θ)

σ2
m(θ)

− 1

)

(3)
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and εm(θ) := σm(θ)Zm. Under model Pθ0
, PMLE and MLE coincide, implying an asymptotically

optimal covariance matrix

V (s; θ0) = Eθ0
[s(Y m

1 ; θ0) s(Y
m
1 ; θ0)

⊤]−1 =: I(θ0)
−1,

where I(θ0) is the information matrix. However, if Pθ0
is slightly different from the true data

generating process for Y , PML estimators can induce highly biased and inefficient inference results

on θ0; see for instance Sakata and White (1998) and Mancini et al. (2005). In Section 3, we

investigate by Monte Carlo simulation how such estimates affect Value at Risk forecasts under

several realistic forms of local departures from conditional normality in model (1).

2.2.2 Optimal Robust Estimation

As a robust estimator for conditional moment dynamics in model (1) we use the optimal condi-

tionally unbiased bounded-influence estimator for GARCH-type models developed in Mancini et

al. (2005). Such a robust estimator is efficient and computationally feasible for highly nonlinear

models, and compares therefore favorably with other robust estimators, such as robust GMM es-

timators (Ronchetti and Trojani (2001)) or robust EMM estimators (Ortelli and Trojani (2005))

for time series. It is defined as follows. Let

ψc(s(Y
m
1 ; θ)) := A(θ)

(

s(Y m
1 ; θ)− τ(Y m−1

1 ; θ)
)

w(Y m
1 ; θ),

where s(Y m
1 ; θ) is the PML score function defined in (3) and the weighting function

w(Y m
1 ; θ) := min(1, c ‖A(θ)

(

s(Y m
1 ; θ)− τ(Y m−1

1 ; θ)
)

‖−1).

Define a robust functional M -estimator a(·) of θ implicitly by

E∗[ψc(s(Y
m
1 ; a(Pm

∗ )))] = 0, (4)
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where non singular matrix A(θ) ∈ R
p ×R

p and Fm−1-measurable random vector τ(Y m−1
1 ; θ) ∈ R

p

are determined by the implicit equations

Eθ0
[ψc(s(Y

m
1 ; θ0)) ψc(s(Y

m
1 ; θ0))

⊤] = I, (5)

Eθ0
[ψc(s(Y

m
1 ; θ0))|Fm−1] = 0. (6)

The estimating function ψc is a truncated version of PML score (3) and can be interpreted as a

weighted PML score because by construction ‖ψc(s(Y
m
1 ; θ))‖ ≤ c. Constant c ≥ √p is selected by

the researcher and controls the degree of robustness of the estimator a. It can be chosen according

to an estimator’s efficiency criterion (as in Mancini et al. (2005)) or based on a more inference

oriented principle (see Ronchetti and Trojani (2001)). As in this paper we are interested in efficient

estimates of GARCH-type models (the preliminary step in our robust semiparametric bootstrap

method), we apply an efficiency criterion in Section 2.4 to select c. Note that when c = ∞, a is

the PMLE of θ0 under P∗.

Formally, optimality results in Mancini et al. (2005) hold for Markovian estimating functions,

which encompass ARCH-type, but not GARCH-type processes. As in Sakata and White (1998),

however, we can realistically expect that our robust estimator performs satisfactorily also under

well-behaved GARCH models with sufficient memory decay. Moreover, we can use a Markovian

estimating function implied by an approximating ARCH-type process with a sufficient number of

lags in the corresponding conditional variance function. For instance, in the standard GARCH(1,1)

model we can rewrite the conditional variance σ2
t (θ0) as an invertible ARMA process,

σ2
t (θ0) = α0 + α1ε

2
t−1(θ0) + α2σ

2
t−1(θ0)

=
+∞
∑

j=0

αj
2

(

α0 + α1ε
2
t−1−j(θ0)

)

=
l−1
∑

j=0

αj
2

(

α0 + α1ε
2
t−1−j(θ0)

)

+ αl
2σ

2
t−l(θ0) =: σ2

t (θ0)trunc + αl
2σ

2
t−l(θ0)

≈ σ2
t (θ0)trunc,

and use the approximation in the last row, as for a sufficiently large lag l we can expect αl
2σ

2
t−l(θ0) ≈
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0. Of course, the bounded-influence estimator atrunc based on σ2
t (θ0)trunc is slightly biased, but

such a bias can be expected to be negligible for a sufficiently large l. In our Monte Carlo simulation

(Section 3), we compare robust procedures based on both non Markovian GARCH-type estimating

functions and Markovian ARCH-type estimating functions based on a truncated GARCH volatility

function. We find that for the lag l = 30 estimation results under these two methods are virtually

identical. These results are discussed in Section 3.1.

To implement a semiparametric bootstrap for VaR estimation, conditional mean and condi-

tional volatility dynamics of model (1) have to be specified. A substantial amount of empirical

evidence suggests that financial asset return volatility is stochastic and mean reverting, return

innovations are non-normal, and equity return volatility responds asymmetrically to positive and

negative returns; see for instance Ghysels, Harvey, and Renault (1996). In discrete time settings,

the stochastic volatility is often described using GARCH model introduced by Engle (1982) and

Bollerslev (1986). Comprehensive surveys of the GARCH and related models are Bollerslev, Chou,

and Kroner (1992) and Bollerslev, Engle, and Nelson (1994). Several different GARCH-type mod-

els for asset returns have been proposed in the financial literature. Our robust bootstrap method

can accommodate quite general parametric specifications for conditional mean and conditional

variance of asset returns. The different specifications imply different estimating functions, but do

not change the overall procedure. In our simulations and empirical applications, we adopt a fairly

flexible semiparametric model for asset returns. We assume an AR(1) model for the conditional

mean µt(θ0) and an asymmetric GARCH(1,1) model for the conditional variance σt(θ0) (Glosten,

Jagannathan, and Runkle (1993)),

µt(θ0) = ρ0 + ρ1Yt−1, (7)

σ2
t (θ0) = α0 + α1ε

2
t−1(θ0) + α2σ

2
t−1(θ0) + α3ε

2
t−1(θ0)It−1(θ0), (8)

where α0, α1, α2 > 0, |ρ1| < 1, α1 + α2 + α3/2 < 1, It−1(θ0) = 1 when εt−1(θ0) < 0, and

It−1(θ0) = 0 otherwise. The AR(1) model for µt captures potential autocorrelations in daily
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returns, for instance due to nonsynchronous transactions in different index components. α3 > 0

accounts for the leverage effect,5 that is the stronger impact of “bad news” (εt−1(θ0) < 0) than

good “good news” (εt−1(θ0) ≥ 0) on conditional variance σ2
t (θ0). Compared to symmetric GARCH

models, asymmetric GARCH models are better able to fit volatility dynamics of equity and index

returns; see for instance Engle and Ng (1993) and Engle and Rosenberg (2002). To our knowledge,

however, robust estimators of asymmetric GARCH processes have not yet been applied in the

statistics and econometrics literature.

2.3 Robust Semiparametric Bootstrap of GARCH-type Processes

We study semiparametric bootstrap methods for GARCH-type processes consisting of two steps:

1. A preliminary estimation of the AR(1), asymmetric GARCH(1,1) model (7)–(8).

2. A bootstrap procedure for estimated scaled residuals in model (7)–(8).

In the first step, we use the PML and the optimal robust estimators in Section 2.2. Given observed

daily rate of returns y1, . . . , yT , we denote by θ̂ = (ρ̂0 ρ̂1 α̂0 α̂1 α̂2 α̂3)
⊤ the estimated parameter

vector in model (7)–(8), obtained either by PML or optimal robust estimator. In the second step,

we apply bootstrap estimators of FT,T+h, based on different bootstrap procedures for estimated

scaled residuals in model (7)–(8). Estimated scaled residuals from the asymmetric GARCH(1,1)

model are defined by

ẑt =
yt − µt(θ̂)

σt(θ̂)
, t = 1, . . . , T,

5The name leverage effect was introduced by Black (1976) who suggested that a large negative return increases

the financial and operating leverage, and rises equity return volatility; see also Christie (1982). Campbell and

Hentschel (1992) suggested an alternative explanation based on the market risk premium and volatility feedback

effects; see also the more recent discussion by Bekaert and Wu (2000). We shall use the name leverage effect as it

is commonly used by researchers when referring to the asymmetric reaction of volatility to positive and negative

return innovations.
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where conditional means and conditional volatilities {µt(θ̂), σt(θ̂)}T
t=1 are computed recursively

from (7)–(8) after having substituted sensible starting values. We denote by PT the empirical

distribution of estimated scaled residuals ẑ1, . . . , ẑT . Engle and Gonzalez-Rivera (1991) introduce

and investigate the theoretical properties of semiparametric GARCH models driven by empirical

innovations ẑt. Applying the robust estimator (4) extends the estimation of such GARCH models

to the robust setting.

Accurate parameter estimates θ̂ are of critical importance as they determine the dynamics of

conditional means and conditional volatilities as well as the estimated scaled residuals ẑt. Optimal

robust estimator a(·) can provide accurate parameter estimates of model (7)–(8) under conditional

non normality of general form and in the presence of outliers or other influential points. In

contrast, classical PML estimates can be highly biased and inefficient in such a setting. Monte

Carlo simulation (Section 3) investigates these issues.

2.3.1 Nonparametric Residual Bootstrap and VaR Estimation

Nonparametric residual bootstrap relies on the nonparametric empirical estimator PT as an esti-

mator of the innovation distribution F . Estimation of one day ahead VaR forecast ŷα
T,T+1 for

horizon h = 1 day is easily obtained by means of the empirical quantile ẑα of PT , yielding

ŷα
T,T+1 = µT+1(θ̂) + σT+1(θ̂) ẑα.

Estimation of VaR measures for horizons h ≥ 2 days is more involved and obtained as follows.

Select randomly with replacement scaled innovations z⋆
1 , . . . , z

⋆
h from PT . Compute recursively

bootstrap daily returns y⋆
T+1, . . . , y

⋆
T+h and portfolio prices p⋆

T+1, . . . , p
⋆
T+h as follows.

• For y⋆
T+1 and p⋆

T+1:

y⋆
T+1 = ρ̂0 + ρ̂1yT + σT+1z

⋆
1 , p⋆

T+1 = pT (1 + y⋆
T+1).
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• For y⋆
T+j and p⋆

T+j, j = 2, . . . , h:

y⋆
T+j = ρ̂0 + ρ̂1y

⋆
T+j−1 + σ⋆

T+jz
⋆
j , p⋆

T+j = p⋆
T+j−1(1 + y⋆

T+j),

where

σ⋆
T+j = (α̂0 + α̂1σ

⋆2
T+j−1z

⋆ 2
T+j−1 + α̂2σ

⋆2
T+j−1 + α̂3σ

⋆2
T+j−1z

⋆ 2
T+j−1I

⋆
T+j−1)

1/2,

with I⋆
T+j−1 = 1 if z⋆

T+j−1 < 0, and I⋆
T+j−1 = 0 otherwise.

Using B = 10,000, say, bootstrap samples {z⋆ (b)
1 , . . . , z

⋆ (b)
h }B

b=1 compute an estimate of FT,T+h as the

bootstrap distribution F ⋆
T,T+h of h days ahead simulated returns y⋆

T,T+h := p⋆
T+h/pT−1. The h days

ahead VaR forecast at 1% level, say, is given by the 1% empirical quantile of distribution F ⋆
T,T+h.

The bootstrap method provides an estimate of the entire conditional predictive distribution FT,T+h

and other risk measures, such as Expected Shortfall, can be readily computed.

2.3.2 Breakdown Analysis of Nonparametric Residual Bootstrap

Bootstrap estimate F ⋆
T,T+h is obtained by nonparametric bootstrap of estimated scaled innovations

ẑ1, . . . , ẑT . Such innovations can well include a certain amount of outliers or influential points. Via

the resampling procedure, such observations can heavily affect the estimated quantiles of F ⋆
T,T+h

and hence the corresponding VaR forecasts. To investigate this issue, we compute the bootstrap

breakdown point of quantile estimates implied by F ⋆
T,T+h; see also Singh (1998). Let bα denote the

breakdown point of VaR forecast ŷα
T,T+h implied by F ⋆

T,T+h. That is, Tbα is the smallest number of

scaled innovations in the original sample that need to go to −∞ in order to force ŷα
T,T+h to go to

−∞. In practice, scaled innovations do not go to −∞ and ŷα
T,T+h could be unreliable well before

reaching −∞. The asymptotic definition of the breakdown point is a convenient tool to assess the

robustness property of an estimator. By definition, Tbα is an integer between 1 and T . Without

loss of generality, we assume the outliers causing the breakdown of ŷα
T,T+h to be in the lower tail

of the empirical distribution PT .
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Proposition 1

bα = 1− (1− α)1/h.

Proof. See Appendix A.

Hence the breakdown point bα → 0 when h→ +∞. That is, for a longer horizon h fewer outliers

are sufficient to carry ŷα
T,T+h to −∞. For h = 1 day, bα = α as the α-quantile is estimated by

the corresponding empirical quantile of PT . Table 5 presents numerical values of bα for different

horizons h. Given the very low breakdown point prevailing for longer horizons, such as ten days,

we can expect a quite bad performance of bootstrap estimates ŷα
T,T+h implied by nonparametric

residual bootstrap, already under a moderate number of outliers or influential points in the data.

Our Monte Carlo simulation in Section 3.4 confirms this conjecture.

2.3.3 Semiparametric Residual Bootstrap and VaR Estimation

Semiparametric residual bootstrap with Extreme Value Theory (EVT) relies on a different esti-

mator of the innovation distribution F . Instead of using nonparametric estimator PT , the basic

idea is to approximate the lower and upper tail of F by means of a parametric generalized Pareto

distribution (GPD) whose distribution function Gξ,β is

Gξ,β(x) =















1− (1 + ξx/β)−1/ξ, ξ 6= 0,

1− exp(−x/β), ξ = 0,

where the support of Gξ,β is [0,+∞) for ξ ≥ 0, and [0,−β/ξ] for ξ < 0. To estimate the upper

tail of F with a GPD, fix a “high” threshold u (such as the 90th percentile of {ẑj}T
j=1). Then for

any k > u

P∗(Zt > k) = P∗(Zt > u) P∗(Zt > k|Zt > u) = P∗(Zt > u) P∗(Zt − u > k − u|Zt > u). (9)

In (9), P∗(Zt > u) is easily estimated nonparametrically by estimator
∑T

j=1 1{ẑj > u}, where

1{z > u} = 1 when z > u. Excess distribution Fū(k − u) := 1− P∗(Zt − u > k − u|Zt > u) above

16



threshold u can be approximated with a generalized Pareto distribution using the limit result (see

Balkema and de Haan (1974) and Pickands (1975))

lim
u→x

sup
0≤x<x−u

|Fū(x)−Gξ,β(u)(x)| = 0,

where x is the (finite or infinite) right endpoint of F and β(u) is a positive measurable function.

To estimate lower tail of F with a GPD, fix a “low” threshold u < 0 (such as the 10th percentile

of {ẑj}T
j=1) and apply for every k < u the above procedure to excess losses x = −(k − u) using a

GPD with distribution function Gξ,β(−u).

Given GPD parameter estimates ξ̂(1), β̂(1) and ξ̂(2), β̂(2) for the lower and the upper tail of F ,

scaled innovations z⋆
1 , . . . , z

⋆
h are sampled from PT and adjusted as follows. For j = 1, . . . , h:

a) If z⋆
j < u, sample a GPD(ξ̂(1), β̂(1)) distributed excess loss x1 and return u− x1.

b) If z⋆
j > u, sample a GPD(ξ̂(2), β̂(2)) distributed excess gain x2 and return u+ x2.

c) If u ≤ z⋆
j ≤ u, return scaled residual z⋆

j itself.

Using adjusted scaled residuals, semiparametric bootstrap methods apply the same procedure as in

Section 2.3.1 for nonparametric residual bootstrap in order to estimate the conditional predictive

density FT,T+h.

2.3.4 Pseudo Maximum Likelihood and Robust Estimations of Generalized Pareto

Distribution

Sampling scaled innovations from a parametric GPD tail can circumvent the robustness problem

of standard nonparametric residual bootstrap procedures. However, GPD parameters ζ := (ξ, β)⊤

have to be estimated and also it can be important to ensure the robustness of the GPD(ξ̂(1), β̂(1))

and GPD(ξ̂(2), β̂(2)) tails. In our Monte Carlo simulation and empirical application, we use the

PML and the robust estimators of GPD parameters ζ := (ξ, β)⊤.
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Let q(·) denote the PML estimator for the GPD parameters and G∗ the true tail distribution

of threshold exceedances X, q(·) is defined by the asymptotic estimating equation

EG∗
[sgpd(X; q(G∗))] = 0,

where sgpd(x; ζ) is the GPD score function

sgpd(x; ζ) =









sξ(x; ζ) = ξ−2 log(1 + ξx/β)− (1 + 1/ξ)(1 + ξx/β)−1x/β

sβ(x; ζ) = −β−1 + (1 + 1/ξ)β−1(1 + ξx/β)−1ξx/β









. (10)

As the score function sgpd(x; ζ) is unbounded in x, this estimator is not robust. Given positive

constant cgpd ≥
√

2, optimal bounded influence estimator of GPD parameters, noted q, is implicitly

defined by the estimating equation (see Dupuis (1999))

EG∗
[ψc(sgpd(X; q(G∗)))] = 0, (11)

where sgpd(x; ζ) is the GPD score function (10) and

ψc(sgpd(X; ζ)) := A(ζ) (sgpd(X; ζ)− τ(ζ))w(X; ζ),

w(X; ζ) := min
(

1, cgpd ‖A(ζ) (sgpd(X; ζ)− τ(ζ))‖−1
)

.

Matrix A(ζ) and vector τ(ζ) are solutions of the equations

Eζ0

[

ψc(sgpd(X; ζ0))ψc(sgpd(X; ζ0))
⊤
]

= I

Eζ0 [ψc(sgpd(X; ζ0))] = 0.

The GPD is the natural limiting distribution of a large class of tail distributions; see Embrechts,

Klüppelberg, and Mikosch (1997) for details. Hence it is reasonable to assume that the true tail

distribution of the data, G∗, can be approximated by a GPD distribution Gζ0 , say. However,

several authors have emphasized the instability of PML estimator for GPD distribution when

a moderate number of influential points is present in the sample; see for instance Cowell and

Victoria-Feser (1996) and references therein. Optimal robust estimator q in (11) can provide

18



accurate GPD parameter estimates also in such problematic settings. Furthermore, as shown in

Juárez and Schucany (2004), estimator q compares favorably also with respect to more involved

robust extreme value estimators when the true distribution has support [0,+∞), which is the

relevant case for our application.

2.4 Choices of Threshold Levels and Robustness Tuning Constants

The choice of thresholds u and u in EVT applications determines the trade-off between bias and

variance of the estimator for GPD parameters. Based on Monte Carlo evidence, McNeil and Frey

(2000) suggest to use the empirical 10th and 90th quantiles of {zj}T
j=1, i.e. u = z0.10 and u = z0.90,

for estimating lower and higher quantiles in risk management applications.6 In our Monte Carlo

experiments and empirical applications we select such thresholds for PML and robust estimators

of GPD.

An important choice in the application of robust estimators for GARCH models and for GPD

is the tuning constants c and cgpd in (4) and (11), respectively. Such constants control the degree of

robustness of estimators. Following Mancini et al. (2005), we set the levels of c and cgpd to achieve

a given asymptotic efficiency under the reference models Pθ0
and Gζ0 . To our knowledge, this

approach has not yet been applied in models with highly nonlinear dynamics as those studied here.

Figure 5 illustrates the relative efficiency of estimators a and q with respect to the corresponding

ML estimators under the reference models Pθ0
and Gζ0 , as a function of constant c and cgpd.

For example the relative efficiency of a is measured as trace(V (s; θ̂n))/trace(V (ψc;
ˆ̄θn)), where

asymptotic covariance matrices V are estimated using n = 20,000 observations simulated under

the reference model Pθ0
, s is the ML score function in (3), θ̂n the ML estimate, ψc the estimating

function of the robust estimator in (4) and ˆ̄θn the optimal robust estimate. In our Monte Carlo

6McNeil and Frey (2000) find that the resulting quantile estimates are rather insensitive to threshold levels for

wide ranges of u and u; see also Gonzalo and Olmo (2004) for a related study.
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simulation, the choice c = 11 for robust estimator a implies approximately 98% asymptotic relative

efficiency (see the left plot in Figure 5). The relative efficiency for q is computed analogously and

the choice cgpd = 8 implies an asymptotic relative efficiency of about 98% (see the right plot in

Figure 5).

3 Monte Carlo Simulation

We compare the performance of semiparametric bootstrap for GARCH processes based on (i) PML

or robust estimators for GARCH-type models, introduced in Section 2.2, and (ii) nonparametric

or semiparametric residual bootstrap methods, introduced in Section 2.3.

PML GARCH Robust GARCH

Empirical dist. fhs fhs rob

PML GPD evt —

Robust GPD — evt rob

For brevity, we call the VaR prediction method based on nonparametric residual bootstrap fhs;

see the above panel. When GARCH dynamics are estimated with the robust estimator (4) we

call this method fhs rob; evt rob uses robust estimators both for GARCH dynamics and for GPD

tail estimations, while evt uses standard PML estimators at both stages. Comparing fhs and fhs

rob VaR predictions allows to assess the potential improvement of VaR forecasts due to robust

instead of PML estimation of the GARCH model. In Section 3.4 we compare VaR forecasts of

previous methods based on the true GARCH parameters. In that context comparing evt and evt

rob allows to assess the potential improvement of VaR forecasts due to robust instead of PML

estimation of tail distributions. Hence the simulation design allows to evaluate the contribution

of each robustification step to the accuracy of VaR predictions.7

7Considering the two hybrid cases PML GARCH/Robust GPD and Robust GARCH/PML GPD in the above

panel is therefore unnecessary.
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To study the accuracy of the different methods, we compute out-of-sample VaR forecasts at

1% and 5% confidence levels for horizons h = 1 day and h = 10 days, under an AR(1), asymmetric

GARCH(1,1) model for daily returns. Precisely, we simulate the following dynamics for Y .

1. Student t5 innovation model. In this experiment, scaled innovation in model (1) is given by

Zt = ((ν − 2)/ν)1/2 Tν , (12)

where random variable Tν has a Student-t distribution with ν = 5 degrees of freedom. Hence

Zt ∼ IID(0, 1) and model (1) is dynamically correctly specified.

2. Laplace innovation model. Scaled innovation in (1) is given by

Zt = 2−1/2 L, (13)

where random variable L has a Laplace (or Double exponential) distribution. Such a dis-

tribution has a symmetric convex density and displays fatter tails than the t5 distribution.

Also in this experiment Zt ∼ IID(0, 1) and model (1) is dynamically correctly specified.

3. Replace-innovative model. Under such a model observed process Y := (Yt)t∈Z is generated

according to the data generating process

Yt =















ρ0 + ρ1Yt−1 + εt, with probability 1− κ,

Y̌t, with probability κ,

(14)

where Y̌t ∼ N(0, ̺2), εt ∼ N(0, σ2
t ) and σ2

t is given by (8). Hence at time t there is a

probability κ that observation Yt is not generated by the GARCH dynamics. The possible

“shock” Y̌t will affect future realizations of the process, mainly by “inflating” the conditional

variance on subsequent days. In this experiment, model (1) is “slightly” misspecified as

the dynamic equations (7)–(8) are not satisfied for every t. We set κ = 0.2% and ̺ = 10.

The probability of contamination, κ, is very low and implies (on average) 4 contaminated

observations out of 2,000 observations. The choice for ̺ allows us to compare the accuracy
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of the different VaR estimators under very infrequent, but dramatic, (symmetric) shocks.

Such shocks could occur over short time periods in real data, as for instance in daily equity

returns.

We simulate an AR(1), asymmetric GARCH(1,1) model for the following parameter choice ρ0 =

ρ1 = 0.01, α0 = 0.03, α1 = 0.02, α2 = 0.8, and α3 = 0.2, under the above distributions for Yt

and for a sample size T = 2,000. This parameter choice reflects somehow parameter estimates

typically obtained for daily percentage index or exchange rate returns; see for instance Bollerslev

et al. (1994). At the reference model Pθ0
, annualized volatility of Yt is about 12%. The tuning

constants for the robust GARCH estimators a and atrunc are c = 11. The one for the robust

GPD estimator q is cgpd = 8. Each model is simulated 1,000 times. For each simulated sample

path, we estimate the model (7)–(8) using classical and robust estimators and we apply the four

VaR prediction methods (fhs, fhs rob, evt, evt rob) to compute conditional VaR forecasts (as

a percentage of pT ) at confidence levels α = 5%, 1% and horizons h = 1 day, 10 days ahead.

In the financial industry, virtually only out-of-sample VaR forecasts are required and in-sample

measurements of VaR are by far less important. In our simulations and empirical applications, all

VaR forecasts are out-of-sample ones.

3.1 GARCH Dynamics Estimation

Table 1 presents bias and mean square error (MSE) (in percentage) of PML, robust and “trun-

cated” robust parameter estimates, a and atrunc, for the AR(1), asymmetric GARCH(1,1) model

(7)–(8); see also Figures 1–4. Under reference model Pθ0
, PMLE (which is indeed MLE) is only

slightly more efficient than the robust estimators of GARCH models. In all other experiments,

robust estimators always outperform classical PML estimator in terms of mean square errors. In

particular, under the contaminated replace-innovative model, both robust estimators largely out-

perform the PML estimator. Under all considered models, the overall performances of the two
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robust estimators a and atrunc are very close, although a has somewhat lower mean square errors.

We interpret the last finding in support of the application of a to dynamic models with estimating

functions depending on an infinite number of process coordinates, such as GARCH models.

3.2 VaR Violations

Table 2 shows the number of violations of fhs, fhs rob, evt and evt rob VaR forecasts for horizons

h = 1 day, 10 days, and confidence levels α = 5%, 1%. In the i-th simulation, a violation occurs

when the actual loss is larger than the predicted VaR, i.e. I(i) := 1{yT,T+h(i) < ŷα
T,T+h(i)} = 1 and

zero otherwise. Under the null hypothesis that the proposed method estimates the VaR correctly,

the test statistic
∑1000

i=1 I(i) is binomially distributed, Bin(1000, α), as the 1,000 simulations are

independently drawn. Hence for α = 0.05 and 0.01 the expected number of violations are 50

and 10, and two-side confidence intervals at 95% level are [37, 64] and [4, 17], respectively. For all

horizons and VaR confidence levels, Table 2 shows that all methods exhibit numbers of violations

within such intervals. Hence apparently all methods are rather accurate in forecasting VaR, when

relying only on violation tests. Indeed, it is known that FHS-type VaR forecasts tend to display

the proper number of violations; see for instance Kuester, Mittnik, and Paolella (2006) for a recent

comparison of these methods. However, Table 2 also hints some differences among VaR prediction

methods. In the first two Monte Carlo experiments (Student t5 and Laplace innovation models),

only evt rob never exhibits test p-values below 0.10, even though estimated GARCH models are

correctly specified. These results suggest that evt rob can outperform other approaches even in

setups relatively favorable to classical methods, but this aspect is not clearly detected by violation

tests. In the next section we study the precision of VaR forecasts, which, of course, plays a key

role in measuring market risk.

In our simulation study VaR violations both at horizons h = 1 day and 10 days are all mutually

independent as the different sample paths are independently drawn. Hence this approach allows
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to test for VaR violations accurately. In empirical applications, VaR violations are not necessarily

independent and it is standard practice to apply the independence test proposed by Christoffersen

(1998).8 In the empirical application (Section 4) we apply also the independence and other tests.

3.3 VaR Prediction

Left panel in Table 3 shows bias and MSE of fhs, fhs rob, evt and evt rob in predicting VaR at

h = 1 day ahead horizon and α = 5%, 1% confidence levels. The true VaR is computed under the

true data generating process. In all experiments the robust versions of FHS and EVT methods

outperform the corresponding classical versions in terms of MSE. The reduction in VaR forecast

MSE is small in the Laplace innovation model, but reaches about 80% in the contaminated replace-

innovative model. In particular, fhs rob provides more accurate VaR forecasts than fhs because

relies on more accurate estimates of volatility dynamics; see Table 1. In all but one case, evt rob

has the lowest VaR forecast MSE.

Right panel in Table 3 shows the accuracy of VaR predictions at h = 10 days horizon. The

true VaR is obtained by simulating 100,000 times true dynamics for Y over the ten days horizon

[T, T + h]. In the first two experiments the dynamic model (1) is correctly specified and all

VaR prediction methods tend to perform similarly in predicting VaR at 5% level, although evt

rob outperforms all other methods in predicting VaR at 1% level. In the third experiment the

dynamic model (1) is misspecified and both FHS methods perform very poorly, with fhs rob having

the largest MSE for VaR prediction at the 1% level. At first sight, the last finding might appear

puzzling given the higher accuracy of robust GARCH estimates documented in Table 1. The result

is explained by the very low breakdown point of VaR predictions based on nonparametric residuals

bootstrap and the larger absolute residuals produced by robust estimation in this case.9 This

8The independence test would be trivially verified in the present simulation setup.
9To raise the breakdown point of nonparametric bootstrap quantiles, Singh (1998) suggests to winsorize the

data before bootstrapping. We winsorized scaled innovations at 0.5% and 1% levels, respectively, and then we
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point is discussed in more detail in Section 3.4 below. In terms of MSE, robust EVT predictions

largely outperforms all other methods, often by several orders of magnitude. These findings put

in perspective the results based on violation tests discussed in the previous section. Even though

the estimated GARCH model is misspecified and evt rob provides more accurate VaR predictions,

violation tests have a quite low power in discriminate among the different VaR prediction methods;

see Table 2. Measuring the precision of VaR forecasts reveals that evt rob largely outperforms all

other methods. In our empirical application (Section 4), we report common violation test results

and measure, in addition, the precision of VaR forecasts by investigating model estimation risk.

3.4 Residual Bootstrap Breakdown Point and Quantile Estimates

Accuracy

The accuracy of above bootstrap procedures for GARCH-type processes depends on the accu-

racy of (i) GARCH parameter estimates and (ii) quantile estimates implied by GARCH residuals

bootstrap. We showed above that robust GARCH parameter estimators have higher accuracy

under different forms of conditional non normality of returns. To deepen the analysis of the rel-

ative accuracy between residual nonparametric bootstrap and residual semiparametric bootstrap

using EVT, we repeat the previous Monte Carlo simulation using true GARCH parameters in

the estimation of scaled residuals ẑ1, . . . , ẑT . In this way, we eliminate estimation errors due to

GARCH parameter estimation and we can disentangle the contribution of nonparametric, classical

and robust EVT methods to VaR predictions. We also investigate the theoretical predictions of

Proposition 1 on breakdown points of bootstrap quantiles.

We estimate 5% and 1% quantiles (VaR) of ten days ahead return distribution. As GARCH

parameters are not estimated classical and robust FHS methods coincide and we call them simply

computed VaR predictions using classical and robust FHS over ten days horizon. MSE’s of the winsorized VaR

predictions did decrease, but only by a small amount and the results are not reported.
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“resampling” in this section. We also consider different ways of implementing semiparametric

bootstrap methods using EVT. We make an additional distinction depending on whether the

quantile of simulated ten days ahead distribution is estimated empirically or using a GPD (PML

or robust) estimator. This distinction highlights the additional contribution of parametric GPD

over nonparametric tail estimations in producing accurate VaR forecasts.10 Summarizing, we

compute VaR predictions using the following five approaches:

1. Resampling (FHS),

2. EVT applied to both daily returns and to simulated ten days ahead returns,

3. Robust EVT applied to both daily returns and to simulated ten days ahead returns,

4. EVT applied to daily returns, and empirical quantile estimation applied to ten days ahead

returns,

5. Robust EVT applied to daily returns, and empirical quantile estimation applied to ten days

ahead returns.

Table 4 presents simulation results for the five bootstrap methods under the previous three Monte

Carlo experiments. As expected, all MSE’s of VaR forecasts in Table 4 are lower than the corre-

sponding ones in Table 3, as variability deriving from estimation of GARCH parameters is absent

now. In the first two experiments (Student t5 and Laplace innovations), the data generating

processes do not produce “outliers”. Resampling procedures and robust EVT perform satisfac-

torily for quantiles at the 5% level. Classical EVT method is the least precise in this case, by a

large amount for the Laplace innovations case. For 1% quantiles, robust EVT methods have a

uniformly higher accuracy.

10In all previous simulations, classical and robust EVT estimations were always applied to both daily and ten

days ahead return distributions.
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Under the replace-innovative model, nonparametric resampling method breaks down in the

estimation of the 1% quantile in the presence of 0.20% outliers in the data, whereas it produces

accurate results in estimating 5% quantiles. From Table 5, the breakdown point of VaR at 5% level

corresponds to 0.51% contamination by outliers, whereas the breakdown point of VaR at 1% level

is 0.10%. Hence as predicted by Proposition 1, 0.20% of outliers breaks down VaR predictions at

1%, but not VaR predictions at 5% obtained by nonparametric residual bootstrap.11 In predicting

VaR at 1%, robust EVT method applied both to daily and ten days ahead returns has the lowest

MSE across all simulation experiments. Overall, applying robust EVT estimators to both daily and

ten days ahead returns seems to be particulary important when forecasting VaR at low confidence

level 1% and/or data are contaminated by outliers. Given the very small percentage of outliers

generated in our simulations (0.20%) and the difficulties documented for the other methods, VaR

forecasts based on robust EVT and robust GARCH estimations can be expected to be the most

reliable ones in many realistic applications.

4 Real Data Estimation and Backtesting

We backtest VaR prediction methods on four historical series of daily rate of returns: the S&P 500

index from December 1988 to July 2003, the Dollar-Yen exchange rate from January 1986 to

January 2005, Microsoft share price from March 1986 to January 2005, and Boeing share prices

from January 1980 to January 2005. The data are downloaded from Datastream. To backtest

the four VaR prediction methods on a historical series y1, . . . , yN , where N ≫ n, we compute the

out-of-sample VaR forecast ŷα
T,T+h for each T ∈ T = {n, n + 1, . . . , N − h} using a time window

of n historical daily returns for each estimation. We set n = 2,000 and hence about eight years

of data were used for each estimation. For each day T ∈ T , we predict VaR’s at horizons h =

1 day, 10 days, and confidence levels α = 1%, 5%, using fhs, fhs rob, evt and evt rob. AR(1),

11This finding is confirmed by the results in the right panel of Table 3.

27



asymmetric GARCH(1,1) model is estimated using the PML estimator (3) and the optimal robust

estimator (4) with tuning constant c = 8, the estimates are updated every 500 days and the tuning

constant of the optimal robust GPD estimator is cgpd = 6.12

4.1 Data and GARCH Estimation

Table 6 shows summary statistics for the daily rate of returns. As expected, different assets have

different characteristics. For example, Dollar-Yen exchange rates have relatively high skewness and

Microsoft returns high kurtosis unconditionally. These different characteristics make the backtest-

ing exercise particularly interesting. Table 7 shows the AR(1), asymmetric GARCH(1,1) model

(7)–(8) estimates given by classical PML and robust a estimators. In several occasions and espe-

cially for the volatility parameters the two estimates are rather different and next sections show

how they induce different VaR forecasts. Interestingly, the asymmetry parameter a3 turns out to

be (very close to) zero for the Dollar-Yen exchange rates. This parameter controls the asymmetric

impact of positive and negative shocks on conditional variance. As negative shocks or depreci-

ations of one currency correspond to positive shocks or appreciations of the other, asymmetric

effects can be absent in exchange rates. For example, using options data Xu and Taylor (1994)

document symmetric, instead of skewed, implied volatility smiles for exchange rates, confirming

no asymmetric impact of shock returns on volatility.

4.2 Backtesting VaR Prediction

To assess the forecasting performance of the different VaR prediction methods we adopt the

testing framework proposed by Christoffersen (1998). Although this framework has become a

12Considering the “noisier” nature of real data, as opposed to simulated data, and the different characteristics of

financial time series (indexes, stocks and exchange rates) used in backtesting, we take a somewhat more conservative

viewpoint setting the robustness tuning constants c and cgpd to lower levels than in the Monte Carlo study.

28



standard theoretical framework for evaluating out-of-sample forecasts, for completeness and to

setup the notation we briefly recall it here as well; see also Christoffersen (2003). Denote by

It := 1{yt+1 < ŷα
t,t+1}, then It = 1 when the actual return is lower than the predicted VaR (i.e. a

violation occurs) and zero otherwise. If the VaR prediction method efficiently uses all the available

information, then

E[It|Ft] = α (15)

and It is uncorrelated with any function in the information set available at time t. If (15) holds,

then VaR violations will occur with the correct unconditional and conditional probability, and

neither the forecast for VaR nor that for It could be improved.

The test of unconditional coverage is based on the unconditional expectation of (15), that is

H0 : E[It] = α vs. HA : E[It] 6= α.

Under the null hypothesis, the likelihood-ratio (LR) test statistic

LRuc = −2 log[L(α)/L(α̂)]
asy∼ χ2(1),

where L(α) is the binomial likelihood and α̂ = n1/(n0 + n1) is the MLE of α, that is the ratio of

the number of violations n1 to the total number of observations (n0 + n1).

The test of independence aims at verifying possible clusterings of violations over time. This

phenomenon occurs for instance when the VaR prediction method does not account for changing

volatilities properly. Under the null hypothesis, a violation today has no influence on the probabil-

ity of a violation tomorrow. Under the alternative hypothesis {It} is a binary first-order Markov

chain with transition probability πij = P (It = j|It−1 = i) and the likelihood is

L(Π) = (1− π01)
n00 πn01

01 (1− π11)
n10 πn11

11 ,

where nij is the number of observations with value i followed by value j. The ML estimators are

π̂01 =
n01

n00 + n01

, π̂11 =
n11

n10 + n11

.
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Under the null hypothesis of independence, π01 = π11 =: π0, the likelihood is

L(π0) = (1− π0)
n00+n10 πn01+n11

0

and the ML estimate is π̂0 = (n01 + n11)/(n00 + n10 + n01 + n11). The LR test is

LRind = −2 log[L(π̂0)/L(Π̂)]
asy∼ χ2(1).

The test of independence cannot account for the exact conditional coverage (15) as π0 is estimated.

The test of conditional coverage imposes π0 = α and LR test is

LRcc = −2 log[L(α)/L(Π̂)]
asy∼ χ2(2).

The LR test statistic LRcc = LRuc + LRind allows to check in which respect the violation series

{It} does not satisfy the correct conditional coverage (15).

Tables 8 and 9 show, respectively, number of violations and p-values of unconditional, inde-

pendence and conditional coverage tests for one day ahead VaR forecasts. In all tests, backtested

assets and VaR confidence levels, only evt rob never displays p-values below 0.10. All the other

methods have some difficulties for example with the conditional coverage test in the S&P 500

backtesting, where evt has a p-value of 0.012—while evt rob has a p-value of 0.121. These empir-

ical findings confirm the previous simulation results, where only evt rob never displays p-values

below 0.10; see for instance Kuester, Mittnik, and Paolella (2006) and references therein for related

empirical studies. Left panels in Tables 11–14 report summary statistics for one day ahead out-of-

sample VaR predictions. In these tables “VaR” denotes the average VaR forecasts, ∆ the average

daily changes in VaR predictions {ŷα
T+1,T+1+h− ŷα

T,T+h}T∈T , ∆2 the corresponding empirical second

moment, and |∆|% the average absolute changes divided by the corresponding VaR forecasts in

percentage. The last three statistics describe the changes over time of VaR forecasts. In nearly all

backtested time series and VaR confidence levels, evt rob has the lowest values of ∆2 and |∆|%.

For instance, in the Dollar-Yen and Boeing backtesting and VaR forecasts at 1% level, |∆|% for
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evt is about 8.5% and 15.7% larger than the ones for evt rob, respectively. Overall, evt rob tends

to produce the most stable VaR predictions over time. Given the correct conditional coverage,

the stability over time of VaR predictions is a desirable feature. Using evt rob VaR predictions,

financial institutions can adjust outstanding portfolio risk exposures to VaR limits more smoothly

and thus more efficiently.

All the previous empirical findings are largely confirmed by the corresponding empirical analysis

of ten days ahead VaR predictions. Table 10 shows the number of violations of ten days ahead

VaR forecasts and robust two-side p-values for the null hypothesis that the given method correctly

predicts VaR.13 The lowest p-value for evt rob is 0.28. All the other methods appear to be too

conservative in predicting VaR at 5% level in Boeing backtesting, with p-values below 0.07. Right

panels in Tables 11–14 show summary statistics for ten days ahead VaR forecasts. In particular,

average levels of VaR predictions at 1% level are quite different across different methods. As in

the previous case of one day ahead VaR forecasts, in nearly all backtested time series and VaR

confidence levels, evt rob VaR forecasts are the most stable over time in terms of squared and

absolute relative changes, ∆2 and |∆|%. As an example, Figure 6 shows ten days ahead VaR

forecasts and 1% confidence level reserve amounts14 for the S&P 500 index. In several occasions

the four VaR prediction methods provide different VaR forecasts. For instance at beginning of

April and June ’03, reserve amounts estimated using evt are more than 15% higher than the ones

estimated using evt rob. A financial institutions which relies on evt would incur in substantial

opportunity costs, as interest rates earned on reserve amounts are virtually zero. These costs

could be avoided using evt rob.15

Altogether, the previous empirical findings show that evt rob provides more accurate (in terms

13Robust standard errors are computed using the Newey and West (1987) covariance matrix with h− 1 lags.
14Reserve amounts refer to a $100 long position in the S&P 500 index at the beginning of the backtesting period.
15Additional summary statistics and plots of VaR forecasts at different horizons and confidence levels for the

four VaR prediction methods are available from the authors upon request.
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of violations) and stable over time VaR predictions than the other methods. Robust VaR pre-

dictions rely on robust estimations of both GARCH models and tail distributions, which can be

quite different (and more accurate) than classical ones according to our simulation study. Hence

the different temporal profiles of VaR forecasts are certainly due to different estimates of volatility

dynamics and tail distributions. However, an additional source of variability in VaR forecasts

can be model estimation risk. In particular, tail distributions are re-estimated every day and this

procedure can affect time profiles of VaR forecasts. Different prediction methods can cope with

estimation risk differently and the next section investigates this issue.

4.3 Tail Estimation Risk

The previous Monte Carlo study points out that the VaR prediction methods behave very differ-

ently in terms of precision of VaR forecasts—as demonstrated by the widely different MSE’s in

Table 3. Accuracy of VaR forecasts cannot be measured in empirical applications as true VaR’s are

unknown. However, it is possible to quantify the precision of VaR forecasts by providing prediction

intervals for the VaR forecast itself. When a VaR prediction method behaves properly in terms of

VaR violations, the narrower the prediction interval for VaR forecasts, the more accurate the VaR

predictions.16 Christoffersen and Gonçalves (2005) suggest a resampling technique to address this

issue and we follow their methodology here. As many other resampling techniques, this procedure

can be very computationally demanding. To keep the computational burden feasible, we limit the

analysis to fhs and evt rob ten days ahead VaR forecasts. For both methods and for each day

T ∈ T , we obtain S = 199 conditional VaR predictions {ŷα (s)
T,T+h}S

s=1 at confidence levels α = 5%

and 1%, i.e. we repeat S times the forecasting procedures in Sections 2.3.1 and 2.3.3 for classical

FHS and robust EVT methods, respectively. The robust EVT method is particularly demanding

16Precisely, narrower prediction intervals imply more accurate VaR forecasts when the nominal coverage of the

prediction interval is attained and VaR forecasts are unbiased.
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because on each day and for each one of the 199 random samples GPD distributions are fitted

using the robust estimator to both tails of the bootstrap GARCH residual distribution and to the

left tail of simulated ten days ahead return distribution. Then for each day T we compute the

prediction interval at 80% confidence level for the VaR forecast ŷα
T,T+h,

[

Q0.1

(

{ŷα (s)
T,T+h}S

s=1

)

, Q0.9

(

{ŷα (s)
T,T+h}S

s=1

)]

,

where Qx(·) is the x-quantile of the empirical distribution of {ŷα (s)
T,T+h}S

s=1. Other confidence levels

are certainly conceivable but the results based on the 80% confidence level are likely to be rep-

resentative of the findings based on other confidence levels. Given the relatively low number of

random samples, S = 199, the 80% confidence level seems to be a reasonable choice.

Table 15 shows absolute and relative average widths of ten days ahead VaR prediction intervals

in the backtesting period. For all backtested assets and VaR confidence levels, evt rob has narrower

prediction intervals than fhs, both in absolute and relative terms. Therefore, evt rob provides more

accurate and reliable VaR predictions than fhs. For example, in S&P 500 and Boeing backtesting

and for VaR forecasts at 1% level, classical FHS relative prediction intervals are about 14% and

21% larger than the ones for robust EVT.

In Table 15 the columns headed var% report average variances of daily changes in prediction

intervals during the backtesting period. In all but one case, daily changes of evt rob prediction

intervals have smaller variances than daily changes of fhs prediction intervals. For example, in

S&P 500 and Boeing backtesting and for VaR forecasts at 1% level, such variances for evt rob

are nearly 50% the ones for fhs. These results largely confirm the previous empirical findings that

evt rob provides VaR predictions more stable over time than other methods. Overall, our robust

procedure appears to control estimation risk in a better way than classical procedures and this

induces more stable VaR profiles over time.
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5 Conclusion

We propose a general approach to estimate conditional predictive distributions of asset returns

based on robust semiparametric bootstrap methods for GARCH-type processes. Our approach

adopts a robust estimator for parametric GARCH-type models and a robustified resampling

method for standardized GARCH residuals. In the latter, a robust extreme value estimator

controls the bootstrap instability deriving from influential observations in the tails of GARCH

residual distributions. We show theoretically and by Monte Carlo simulation that to ensure ro-

bustness of the whole bootstrap procedure both robustification steps are necessary. We apply this

procedure to Value at Risk (VaR) predictions over different forecasting horizons. Monte Carlo

simulation shows that our robust bootstrap procedure offers large improvements in accuracy of

VaR predictions, especially for several days ahead horizons and in the presence of outlying or

influential observations. In nearly all Monte Carlo experiments, our robust bootstrap procedure

has lower mean square prediction errors, often by a large extent, and in contrast to classical meth-

ods never fails validation tests at usual significance levels. Theoretical predictions of bootstrap

breakdown points are confirmed by our simulations and non robust bootstrap procedures break

down approximately at the calculated breakdown point. The simulation evidence is confirmed

by the real data application. We backtest VaR prediction methods using S&P 500, Dollar-Yen,

Microsoft and Boeing historical returns. For all VaR confidence levels and forecast horizons, only

our robust bootstrap procedure never fails all validation tests at usual significance levels. When

accounting for tail estimation error, our robust procedure provides more accurate and more stable

over time VaR prediction intervals than other methods. Indeed, robust VaR prediction intervals

can be almost 20% narrower and 50% less volatile than classical ones. Hence robust procedures

allow to adapt outstanding risky positions to VaR limits more smoothly and thus more efficiently.

Robust semiparametric bootstrap methods have applications beyond risk management. Future

applications cover, for instance, robust bootstrap procedures for parametric estimators of GARCH-
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type models or estimation of fund performance measures using bootstrap methods.

A Proof of Proposition 1

Let η denote the fraction of outliers in the original sample of scaled innovations ẑ1, . . . , ẑT . Then

it follows

PT ( y⋆
T,T+h has at least one outlier ) = 1− (1− η)h.

By definition, ŷα
T,T+h is the α-quantile of F ⋆

T,T+h. Therefore, ŷα
T,T+h breaks down when a sufficiently

large proportion of simulated returns y⋆
T,T+h is corrupted, i.e. when

PT ( y⋆
T,T+h has at least one outlier ) ≥ α.

The probability on the left hand side gives the fraction of corrupted y⋆
T,T+h in the simulation.

When this fraction is larger than α, ŷα
T,T+h breaks down. Therefore,

bα = arg min
η
{1− (1− η)h ≥ α},

implying the result. �
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h = 1 day ahead VaR forecasts h = 10 days ahead VaR forecasts

Stud. t5 Laplace rep.-innov. Stud. t5 Laplace rep.-innov.

fhs 5% 42 (0.25) 41 (0.19) 45 (0.47) 62 (0.08) 62 (0.08) 44 (0.38)

fhs rob 5% 44 (0.38) 43 (0.31) 47 (0.66) 61 (0.11) 61 (0.11) 43 (0.31)

evt 5% 41 (0.19) 43 (0.31) 47 (0.66) 62 (0.08) 62 (0.08) 44 (0.38)

evt rob 5% 43 (0.31) 44 (0.38) 50 (1.00) 60 (0.15) 61 (0.11) 42 (0.25)

fhs 1% 14 (0.20) 15 (0.11) 10 (1.00) 15 (0.11) 13 (0.34) 8 (0.53)

fhs rob 1% 15 (0.11) 15 (0.11) 7 (0.34) 16 (0.06) 14 (0.20) 5 (0.11)

evt 1% 14 (0.20) 15 (0.11) 8 (0.53) 13 (0.34) 13 (0.34) 8 (0.53)

evt rob 1% 13 (0.34) 14 (0.20) 7 (0.34) 12 (0.53) 13 (0.34) 7 (0.34)

Table 2: Number of violations under the different simulation models. In parentheses, two-side p-values

for null hypothesis H0: number of violations equals to the expected number of violations (i.e. 50 and

10 for 5% and 1% confidence levels, respectively).
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h = 1 day ahead VaR forecasts h = 10 days ahead VaR forecasts

Student t5 innovations

VaR 5% VaR 1% VaR 5% VaR 1%

bias MSE bias MSE bias MSE bias MSE

fhs −0.0023 0.0043 −0.0041 0.0165 −0.0044 0.0831 −0.0134 0.3574

fhs rob −0.0038 0.0038 −0.0075 0.0144 0.0148 0.0831 0.0454 0.3950

evt −0.0042 0.0040 0.0046 0.0136 −0.0139 0.0835 0.0222 0.3368

evt rob −0.0067 0.0035 0.0014 0.0119 −0.0123 0.0821 −0.0235 0.2877

Laplace innovations

fhs −0.0036 0.0047 −0.0079 0.0161 −0.0132 0.0809 −0.0265 0.3357

fhs rob −0.0046 0.0046 −0.0110 0.0159 −0.0005 0.0805 0.0079 0.3463

evt −0.0088 0.0041 −0.0078 0.0128 −0.0135 0.0812 0.0476 0.3187

evt rob −0.0137 0.0040 −0.0187 0.0126 −0.0257 0.0827 −0.0347 0.2864

Replace-innovative model

fhs 0.0053 0.1283 0.0483 0.2481 0.0208 1.4550 0.2790 6.1700

fhs rob 0.0032 0.0241 0.0119 0.0535 0.0928 1.4371 0.5971 14.9516

evt −0.0189 0.1306 0.1612 0.2786 0.0310 1.4466 −0.1933 3.9456

evt rob −0.0231 0.0240 0.0818 0.0710 −0.0629 0.4249 −0.6181 1.5884

Table 3: Bias and MSE of classical and robust, FHS and EVT VaR prediction methods for h = 1 day,

10 days ahead and confidence levels α = 5%, 1% under the different simulation models.
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Student t5 innovations

quantile 5% quantile 1%

bias MSE bias MSE

resampling 0.0025 0.0566 0.0032 0.2223

daily evt, 10 days evt −0.0145 0.0733 0.0193 0.2784

daily evt rob, 10 days evt rob 0.0135 0.0599 0.0300 0.1913

daily evt, 10 days emp. quant. −0.0047 0.0696 −0.0276 0.2706

daily evt rob, 10 days emp. quant. 0.0096 0.0554 0.0181 0.2209

Laplace innovations

resampling 0.0012 0.0594 −0.0024 0.2007

daily evt, 10 days evt −0.0354 0.1143 −0.0015 0.4107

daily evt rob, 10 days evt rob 0.0043 0.0624 0.0355 0.1889

daily evt, 10 days emp. quant. −0.0280 0.1100 −0.0305 0.4169

daily evt rob, 10 days emp. quant. −0.0012 0.0603 0.0293 0.2002

Replace-innovative model

resampling −0.0073 0.1283 0.3037 7.3803

daily evt, 10 days evt −0.0143 0.1633 −0.2485 1.2285

daily evt rob, 10 days evt rob −0.0044 0.1547 −0.3853 0.8931

daily evt, 10 days emp. quant. 0.0052 0.1588 −0.3086 1.1703

daily evt rob, 10 days emp. quant. −0.0167 0.1329 −0.3985 0.9217

Table 4: Bias and MSE of quantile estimates for resampling (first row), EVT applied to daily and 10

days ahead returns (second row), robust EVT applied to daily and 10 days ahead returns (third row),

EVT applied to daily returns and empirical quantile estimation applied to 10 days ahead returns (fourth

row), robust EVT applied to daily returns and empirical quantile estimation applied to 10 days ahead

returns (fifth row), under the different simulation models.
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h 1 2 3 4 5 6 7 8 9 10

α = 5% 5.00 2.53 1.70 1.27 1.02 0.85 0.73 0.64 0.57 0.51

α = 1% 1.00 0.50 0.33 0.25 0.20 0.17 0.14 0.13 0.11 0.10

Table 5: For different time horizons (h in days) each entry represents the minimal percentage of outliers

in estimated scaled innovations ẑ1, . . . , ẑT that is sufficient to cause breakdown of VaR estimates based

on FHS method.

Sample size Mean Std. Skew. Kurt. Min Max

S&P 500 3,799 0.034 1.029 −0.163 7.137 −7.113 5.573

Dollar-Yen 4,969 0.016 0.688 0.496 7.596 −3.505 6.795

Microsoft 4,918 0.146 2.565 −0.228 12.223 −31.111 19.552

Boeing 6,535 0.055 1.938 −0.052 8.388 −17.625 15.347

Table 6: Summary statistics for the daily rate of returns in percentage.
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h = 1 day ahead VaR forecasts h = 10 days ahead VaR forecasts

VaR ∆× 104 ∆2 × 100 |∆|% VaR ∆× 104 ∆2 × 100 |∆|%

fhs 5% 1.921 1.625 4.712 6.575 6.327 12.787 38.255 5.658

fhs rob 5% 1.925 1.335 4.328 6.435 6.455 12.709 36.673 5.562

evt 5% 1.921 1.535 4.717 6.564 6.338 13.735 37.270 5.450

evt rob 5% 1.928 1.295 4.350 6.436 6.288 10.379 33.848 5.362

fhs 1% 3.124 0.458 8.649 5.293 10.664 21.861 100.833 5.629

fhs rob 1% 3.108 0.699 8.349 5.289 10.934 22.565 99.066 5.594

evt 1% 3.285 1.389 9.572 5.190 10.725 24.678 93.707 5.162

evt rob 1% 3.261 1.057 9.097 5.184 10.470 16.365 85.725 5.098

Table 11: Averages of VaR forecasts and daily changes in VaR forecasts, ∆, for the S&P 500 index

from 12/88 to 07/03. |∆|% are ∆ in absolute values, divided by VaR forecasts and in percentage.

h = 1 day ahead VaR forecasts h = 10 days ahead VaR forecasts

VaR ∆× 104 ∆2 × 100 |∆|% VaR ∆× 104 ∆2 × 100 |∆|%

fhs 5% 1.037 −0.556 0.463 3.518 3.364 −0.861 3.979 3.291

fhs rob 5% 1.032 −0.694 0.431 3.144 3.300 −0.835 3.595 3.106

evt 5% 1.024 −0.498 0.450 3.541 3.305 −1.088 3.825 3.186

evt rob 5% 1.021 −0.554 0.413 3.128 3.262 −1.163 3.306 2.935

fhs 1% 1.653 −0.953 1.103 3.302 4.992 −2.263 9.882 3.616

fhs rob 1% 1.650 −1.189 1.075 3.065 4.880 −2.516 9.023 3.458

evt 1% 1.637 −1.351 1.111 3.320 5.012 −2.646 9.379 3.448

evt rob 1% 1.642 −1.390 1.082 3.059 4.960 −3.271 8.146 3.204

Table 12: Averages of VaR forecasts and daily changes in VaR forecasts, ∆, for the Dollar-Yen exchange

rate from 01/86 to 01/05. |∆|% are ∆ in absolute values, divided by VaR forecasts and in percentage.
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h = 1 day ahead VaR forecasts h = 10 days ahead VaR forecasts

VaR ∆× 104 ∆2 × 100 |∆|% VaR ∆× 104 ∆2 × 100 |∆|%

fhs 5% 3.209 −2.359 9.994 4.299 9.594 −3.788 56.051 4.020

fhs rob 5% 3.210 −2.451 9.301 4.297 9.669 −3.391 53.757 4.013

evt 5% 3.216 −2.266 9.968 4.287 9.479 −3.497 54.895 3.965

evt rob 5% 3.223 −2.373 9.280 4.286 9.429 −3.822 50.359 3.905

fhs 1% 5.274 −4.253 25.895 4.151 15.269 −8.646 143.345 4.347

fhs rob 1% 5.287 −4.196 24.015 4.124 15.445 −7.746 138.954 4.330

evt 1% 5.227 −4.716 25.514 4.129 15.413 −6.925 133.829 4.050

evt rob 1% 5.259 −4.751 23.633 4.101 15.229 −9.727 123.972 4.085

Table 13: Averages of VaR forecasts and daily changes in VaR forecasts, ∆, for the Microsoft stock

price from 03/86 to 01/05. |∆|% are ∆ in absolute values, divided by VaR forecasts and in percentage.

h = 1 day ahead VaR forecasts h = 10 days ahead VaR forecasts

VaR ∆× 104 ∆2 × 100 |∆|% VaR ∆× 104 ∆2 × 100 |∆|%

fhs 5% 2.780 −1.007 7.437 4.990 9.360 −2.803 27.446 3.067

fhs rob 5% 2.729 −1.396 5.264 4.822 9.605 −3.750 28.781 3.207

evt 5% 2.761 −1.037 7.385 5.003 9.258 −2.924 26.211 2.987

evt rob 5% 2.696 −1.413 5.212 4.866 8.968 −3.738 26.135 3.160

fhs 1% 4.509 −0.902 16.496 4.357 14.715 −1.070 73.233 3.571

fhs rob 1% 4.474 −1.494 11.079 3.863 15.544 −2.283 84.840 3.769

evt 1% 4.680 −0.984 17.388 4.315 14.701 −1.947 67.628 3.279

evt rob 1% 4.601 −1.582 11.654 3.816 14.118 −2.599 67.078 3.432

Table 14: Averages of VaR forecasts and daily changes in VaR forecasts, ∆, for the Boeing stock price

from 01/80 to 01/05. |∆|% are ∆ in absolute values, divided by VaR forecasts and in percentage.
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Prediction interval VaR 5% Prediction interval VaR 1%

Absolute Relative% var% Absolute Relative% var%

S&P 500

fhs 0.283 4.474 0.143 0.692 6.550 0.449

evt rob 0.257 4.115 0.097 0.589 5.727 0.278

Dollar-Yen

fhs 0.121 3.548 0.076 0.250 4.909 0.167

evt rob 0.112 3.344 0.064 0.240 4.708 0.170

Microsoft

fhs 0.393 4.056 0.101 0.807 5.387 0.202

evt rob 0.359 3.766 0.079 0.753 4.938 0.195

Boeing

fhs 0.346 3.932 0.103 0.832 5.969 0.581

evt rob 0.308 3.550 0.082 0.668 4.934 0.315

Table 15: Prediction intervals that account for tail estimation risk in ten days ahead VaR forecasts.

For each day T in the backtesting period, we obtain S = 199 ten days ahead conditional VaR forecasts

using a resampling technique applied to classical FHS and robust EVT methods. Then we compute

prediction intervals at 80% confidence level for ten days ahead VaR forecasts. Absolute is the average

width of the 80% prediction intervals (90% minus 10% percentile) of VaR forecasts; Relative% is the

average width of the 80% prediction intervals as a percentage of the VaR forecasts; var% is the average

variance of daily changes of Relative%.
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Figure 1: Estimated densities of θ̂ for the AR(1), asymmetric GARCH(1,1) model (7)–(8) under

Gaussian innovations.
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Figure 2: Estimated densities of θ̂ for the AR(1), asymmetric GARCH(1,1) model (7)–(8) under

scaled Student t5 innovations.
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Figure 3: Estimated densities of θ̂ for the AR(1), asymmetric GARCH(1,1) model (7)–(8) under

scaled Laplace innovations.
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Figure 4: Estimated densities of θ̂ for the AR(1), asymmetric GARCH(1,1) model (7)–(8) under

replace-innovative model.
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Figure 5: Relative efficiency of the optimal robust estimator a in equation (4) with respect to the

MLE under the reference model Pθ0
in the AR(1), asymmetric GARCH(1,1) model (left plot); relative

efficiency of the optimal robust estimator q in equation (11) with respect to the MLE under the reference

model Gζ0 in the GPD model (right plot).
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Figure 6: Backtesting on the S&P 500 index from 07/01 to 07/03. Ten days ahead out-of-sample

forecasts of VaR’s at 5%, 1% confidence levels (superimposed on the ten days rate of returns in

percentage) and reserve amounts at 1% level using the classical and robust FHS methods (first two

plots) and the classical and robust EVT methods (last two plots).
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