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Abstract 

In this paper we propose a smooth transition tree model for both the conditional mean and 

the conditional variance of the short-term interest rate process. Our model incorporates 

the interpretability of regression trees and the flexibility of smooth transition models to 

describe regime switches in the short-term interest rate series. The estimation of such 

models is addressed and the asymptotic properties of the quasi-maximum likelihood 

estimator are derived. Model specification is also discussed. When the model is applied to 

the US short-term interest rate we find (1) leading indicators for inflation and real activity 

are the most relevant predictors in characterizing the multiple regimes' structure; (2) the 

optimal model has three limiting regimes, with significantly different local conditional mean 

and variance dynamics. Moreover, we provide empirical evidence of the strong power of the 

model in forecasting the first two conditional moments of the short rate process, in 

particular when it is used in connection with bootstrap aggregating (bagging). 

Keywords 

Short-term interest rate; Regression tree; Smooth transition; Conditional variance; Bagging; 

Asymptotic theory. 
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1 Introduction

The relevance of the short-term interest rate is directly related to the fact that, from a macroe-

conomic point of view, the rate is a policy instrument under the control of the central banks to

maintain economic stability. Moreover, from a finance perspective, the short rate is the essential

quantity needed to construct the whole yield curve, given that yields at other maturities are just

risk adjusted averages of expected future short rates. Therefore, it is not surprising that in the

last two decades a number of different models have been proposed for the conditional dynamics

of the short-term interest rate process.

One important stylized fact that must be taken into account when constructing a model for

the short rate dynamics is that the short rate is subject to regime-shifts; see, for example, Gray

(1996), Hansen and Poulsen (2000) and Audrino (2006). The empirical studies of Gray (1996)

and Audrino (2006), in particular, confirmed that regime-switching models for the conditional

mean and variance dynamics of the short rate process yield more accurate short rate forecasts. As

a direct consequence, regime-switching models also yield more accurate predictions of the whole

yield curve, with important implications for the pricing of interest-rate-sensitive instruments

and for risk management; see, among others, Bansal and Zhou (2002), Bansal et al. (2004), and

Audrino and De Giorgi (2007).

Besides the statistical properties of a proposed model for the short rate (that is, asymptotic

results, in- and out-of-sample performances), the model must also offer some insight into the

nature of the underlying economic forces that drive the short rate movements. In several studies

published in the last five years, researchers incorporated macroeconomic variables as predictors

or latent factors in models for the short rate and, more generally, the whole yield curve. For

example, Diebold et al. (2006) used three observable macroeconomic variables (that is, real

activity, inflation, and a monetary-policy instrument). In Ang and Piazzesi (2003) and Ang et

al. (2007) the macroeconomic variables used are measures for inflation and real activity. In

particular, Ang and Piazzesi (2003) constructed the measures for inflation and real activity as

the first principal component of a large set of candidate macroeconomic series for inflation and

real activity, respectively. Rudebusch and Wu (2004) provided an example of a macro-finance

model that employs more macroeconomic structure and includes both rational expectations

and inertial elements. Finally, a whole set of macroeconomic variables for real activity and

inflation were used in Audrino (2006). In his model, Audrino (2006) chose the most important

macroeconomic series for the estimation and prediction of the short rate process dynamics via
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information criteria.

We propose a generalization of the Audrino (2006) tree-structured model that is able to take

into account regime-shifts in the conditional dynamics of the short rate process, and to exploit

all possible information coming from macroeconomic and other relevant exogenous variables for

estimation and interpretation as well as for prediction. The most important difference between

the Audrino (2006) model and the model we propose here is that we allow regime-shifts to be

smooth. Our model is a compromise between the Markovian regime-switching model introduced

by Gray (1996), where regime-shifts are driven by an unobservable state variable with associated

transition probabilities and a consequent loss of interpretation, and the Audrino (2006) tree

model, where regime-shifts are drastic: at a given time, the short rate process is driven exactly

by the local dynamics of one limiting regime (that is, the probabilities associated with the

regimes are of the type 0-1). The degree of the smoothness is determined endogenously when

estimating the model.

The model we propose is also a generalization of the smooth transition regression tree (STR-

tree) model introduced by Medeiros et al. (2005) and da Rosa et al. (2008). In this study,

we expand the STR-tree model to allow not only the conditional mean dynamics, but also

the conditional variance dynamics to be non-linear and regime-dependent as in Audrino and

Bühlmann (2001) and Medeiros and Veiga (2008). We derive the asymptotic theory for our

model based on the assumption that the model structure is correctly specified apart from the

error distribution, which is left unspecified.

Since one of our goals is to investigate the appropriateness of our model for forecasting the

short rate process, as with Inoue and Kilian (2005) and Hillebrand and Medeiros (2007) we

use bootstrap aggregating (bagging, introduced by Breiman, 1996) to improve predictions. In

fact, tree-based procedures are known to be highly unstable. Bagging is a statistical procedure

effective, in most cases, in alleviating such a problem.

We test the estimation and forecasting ability of our model on the time series of the US

short-term interest rate process. First, similarly to previous studies, we find that leading in-

dicators for inflation and real activity are the most relevant predictors in characterizing the

regimes’ structure. The optimal model has three limiting regimes, with significantly different lo-

cal conditional mean and variance dynamics. We also find some correspondence between NBER

expansions/recessions and our limiting regimes.

Second, we provide empirical evidence that our model is the one yielding the most accurate
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predictions, in particular when used in connection with bagging, and also when compared with

several competitors introduced in the literature. By performing a series of superior predictive

ability (SPA) tests (Hansen, 2005), we conclude that such improvements are in most cases

statistically significant.

The remainder of the paper is organized as follows: In Section 2 we introduce the double

smooth transition tree (DST-Tree) model. Asymptotic properties and the estimation procedure

are discussed in Section 3. Bagging is introduced and discussed in Section 4. Section 5 presents

the empirical application to the US short-term interest rate series. Section 6 summarizes and

concludes.

2 Model

In this paper we consider a general version of the Smooth Transition Regression Tree (STR-Tree)

model of Medeiros et al. (2005) and da Rosa et al. (2008). The novelty of our model is to allow

a similar tree-structured nonlinearity in conditional variance of the model. First, consider the

following assumption regarding the data generating process (DGP):

Assumption 1. The observed sequence of real-valued vector of variables Yt = {yt,xt}T
t=1 is a

realization of a stationary and ergodic stochastic process on a complete probability space generated

as

yt = f (xt;ψ0) + εt, t = 1, . . . , T, (1)

where f (xt;ψ0) is a (nonlinear) function of the real-valued random vector xt ∈ X ⊆ Rq, which

has distribution function F on Ω, a Euclidean space. ψ0 is a vector of unknown (true) parame-

ters. The sequence {εt}T
t=1 is formed by random variables drawn from an absolutely continuous

(with respect to a Lebesgue measure on the real line), positive everywhere and symmetric distri-

bution such that E[εt] = 0 and E[ε2
t ] = σ2 < ∞, ∀ t. In addition, assume that E [εt|xt,Ft−1] = 0,

where Ft−1 is the filtration with respect to all past information. Finally, we allow the conditional

variance to be time-varying, such that E
[
ε2
t |xt,Ft−1

]
= ht(ψ0) < ∞, and ht(ψ0) > 0, ∀ t.

In the practical application of Section 5, yt ≡ ∆rt = rt − rt−1 is the first difference of the short

rate process at time t, rt is the short rate process at time t, and xt = (∆rt−1, rt−1, (x
ex
t−1)

′)′ is

the vector of all relevant information for prediction at time t, with x
ex
t−1 denoting the vector of

exogenous variables, like indices for inflation and real activity.
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To mathematically represent a complex regression-tree model, we introduce the following

notation. The root node is at position 0 and a parent node at position j generates left- and

right-child nodes at positions 2j+1 and 2j+2, respectively. Every parent node has an associated

split variable xsjt ∈ xt, where sj ∈ S = {1, 2, . . . , q}. Furthermore, let J and T be the sets of

indexes of the parent and terminal nodes, respectively. Then, a tree architecture can be fully

determined by J and T. The proposed model follows from the following definition.

Definition 1. Set x̃t = (1,xt)
′. A parametric model M defined by the function HJT (xt;ψ0) :

Rq+1 → R, indexed by the vector of parameters ψ0 ∈ Ψ, a compact subset of the Euclidean

space, is called a double smooth transition tree model (DST-Tree), if

yt = HJT(xt;ψ0) + εt =
∑

i∈T

β′
ix̃tBJi (xt;θi) + ht(ψ0)

1/2ut, (2)

where

ht(ψ0) ≡ ht =
∑

i∈T

(
aiε

2
t−1 + biht−1 + λ′

ix̃t

)
BJi (xt;θi) , (3)

BJi (xt;θi) =
∏

j∈J

G(xsj ,t; γj , cj)
ni,j (1+ni,j )

2
[
1 − G(xsj ,t; γj , cj)

](1−ni,j)(1+ni,j )
, (4)

G(xsj ,t; γj , cj) =
1

1 + e−γj(xsj ,t−cj)
, (5)

and

ni,j =





−1 if the path to leaf i does not include the parent node j;

0 if the path to leaf i includes the right-child node of the parent node j;

1 if the path to leaf i includes the left-child node of the parent node j.

(6)

Let Ji be the subset of J containing the indexes of the parent nodes that form the path to leaf i.

Then, θi is the vector containing all the parameters (γk, ck) such that k ∈ Ji, i ∈ T. Finally,

{ut} is a sequence of independent and identically distributed zero-mean random variables with

unit variance, ut ∼ IID(0, 1).

Remark 1. The functions BJi, 0 < BJi < 1, are known as the membership functions. Note that
∑

j∈J
BJi (xt;θj) = 1, ∀xt ∈ Rq+1.

Remark 2. Note that the same tree structure is considered in the conditional mean and con-

ditional variance. This simplifies estimation, avoids possible “curse of dimensionality”, and

facilitates the final interpretation of the model.
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Remark 3. Although the notation in (2) may seem a bit complicated at first sight, it has the

main advantage of being capable of mathematically representing any tree-structure.

For simplicity, and to be consistent with other models introduced in the literature (see, for

example, Gray, 1996, or Audrino, 2006), in our real data investigation of Section 5 on the short

rate process {rt}t∈N, we restrict the general local conditional mean and variance dynamics given

in (2) and (3) to follow:

yt = ∆rt = HJT(xt;ψ0) + εt =
∑

i∈T

(αi + βirt−1)BJi (xt;θi) + ht(ψ0)
1/2ut, (7)

and

ht(ψ0) =
∑

i∈T

(
aiε

2
t−1 + biht−1 + σ2

i rt−1

)
BJi (xt;θi) . (8)

Note that there are no constant terms in the variance equation. According to Gray (1996),

the lower bound on the variance equation, such that variance is strictly positive, is given by the

level effects of interest rates.

3 Estimation and asymptotic theory

In this section we discuss the estimation of the DST-Tree model and the corresponding asymp-

totic theory. As the true distribution of ut is unknown, the parameters of model (2) are estimated

by a quasi-maximum likelihood estimator (QMLE). The quasi-maximum likelihood function of

(2) is

LT (ψ) =
1

T

T∑

t=1

ℓt(ψ),

=
1

T

T∑

t=1

[
−1

2
ln(2π) − 1

2
ln(ht) −

ε2
t

2ht

]
.

(9)

Note that the processes yt, xt, and ht, t ≤ 0, are unobserved, and hence are only arbi-

trary constants. Thus, LT (ψ) is a quasi-log-likelihood function that is not conditional on the

true (y0,x0, h0), making it suitable for practical applications. However, to prove the asymp-

totic properties of the QMLE, it is more convenient to work with the unobserved process

{(εu,t, hu,t) : t = 0,±1,±2, . . .}.
Conditional on F0 = (y0,x0, y−1,x−1, y−2,x−2, . . .), the unobserved quasi-log-likelihood
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function is given by

Lu,T (ψ) =
1

T

T∑

t=1

ℓu,t(ψ),

=
1

T

T∑

t=1

[
−1

2
ln(2π) − 1

2
ln(hu,t) −

ε2
u,t

2hu,t

]
.

(10)

The main difference between LT (ψ) and Lu,T (ψ) is that the former is conditional on any initial

values, whereas the latter is conditional on an infinite series of past observations. In practice,

the use of (10) is not possible.

3.1 Asymptotic theory

Let

ψ̂T = argmax
ψ∈Ψ

LT (ψ) = argmax
ψ∈Ψ

[
1

T

T∑

t=1

ℓt(ψ)

]
,

and

ψ̂u,T = argmax
ψ∈Ψ

Lu,T (ψ) = argmax
ψ∈Ψ

[
1

T

T∑

t=1

ℓu,t(ψ)

]
.

Define L(ψ) = E [ℓu,t(ψ)]. We proceed to discuss the existence of L(ψ) and prove the

consistency of ψ̂T and ψ̂u,T . We first prove the strong consistency of ψ̂u,T , and then show that

sup
ψ∈Ψ

|Lu,T (ψ) − LT (ψ)| a.s.→ 0,

so that the consistency of ψ̂T follows. Asymptotic normality of both estimators is considered

in sequence. We prove the asymptotic normality of ψ̂u,T . The proof of ψ̂T is straightforward.

Detailed proofs of the following theorems are given in Appendix B.

The following theorem proves the existence of L(ψ). It is based on Theorem 2.12 in White

(1994), which establishes that under certain conditions of continuity and measurability of the

quasi log-likelihood function, L(ψ) exists.

Theorem 1. Under Assumption 1, L(ψ) exists and is finite.

Consider the following assumption.

Assumption 2. The true and unique parameter vector ψ0 ∈ Ψ is in the interior of Ψ, a compact

subset of finite dimensional Euclidean space.
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Assumption 3. The DST-Tree model is identifiable, in the sense that, for a sample {yt,xt}T
t=1

and for ψ1, ψ2 ∈ Ψ,

LT (ψ1) = LT (ψ2)

with probability 1 is equivalent to ψ1 = ψ1.

Assumption 2 is standard while Assumption 3 guarantees the identification of the model.

The consistency result is given in the following theorem.

Theorem 2. Under the Assumptions 1–3 the QMLE ψ̂T is weak consistent for ψ0, i.e., ψ̂T
p→

ψ0.

Before stating the asymptotically normality result, we introduce the following matrices:

A(ψ0) = E


−∂2ℓu,t(ψ)

∂ψ∂ψ′

∣∣∣∣∣
ψ0


 , B(ψ0) = E


∂ℓu,t(ψ)

∂ψ

∣∣∣∣∣
ψ0

∂ℓu,t(ψ)

∂ψ′

∣∣∣∣∣
ψ0


 ,

and

AT (ψ) =
1

T

T∑

t=1

[
1

2ht

(
ε2
t

ht
− 1

)
∂2ht

∂ψ∂ψ′ −
1

2h2
t

(
2
ε2
t

ht
− 1

)
∂ht

∂ψ

∂ht

∂ψ′

+

(
εt

h2
t

)(
∂εt

∂ψ

∂ht

∂ψ′ +
∂ht

∂ψ

∂εt

∂ψ′

)
+

1

ht

(
∂εt

∂ψ

∂εt

∂ψ′ + εt
∂2εt

∂ψ∂ψ′

)]
,

(11)

BT (ψ) =
1

T

T∑

t=1

∂ℓt(ψ)

∂ψ

∂ℓt(ψ)

∂ψ′

=
1

T

T∑

t=1

[
1

4h2
t

(
ε2
t

ht
− 1

)2
∂ht

∂ψ

∂ht

∂ψ′ +
ε2
t

ht

∂εt

∂ψ

∂εt

∂ψ′

− εt

2h2
t

(
ε2
t

ht
− 1

)(
∂ht

∂ψ

∂εt

∂ψ′ +
∂εt

∂ψ

∂ht

∂ψ′

)]
(12)

Consider the following assumption:

Assumption 4. E
[
ε4
t

]
= µ4 < ∞.

The following theorem states the asymptotic normality result.

Theorem 3. Under Assumptions 1–4

T 1/2(ψ̂T −ψ0)
d→ N (0,Ω0) , (13)

where Ω0 = A(ψ0)
−1

B(ψ0)A(ψ0)
−1. Furthermore, the matrices A(ψ0) and B(ψ0) are consis-

tently estimated by AT (ψ̂) and BT (ψ̂), respectively.
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3.2 Estimation procedure

In this section we briefly present the modeling cycle adopted in this paper. The choice of

relevant variables, the selection of the node to be split (if this is the case), and the selection of

the splitting (or transition) variable are carried out by the use of a information criterium, such as

the SBIC. An alternative procedure, which has not been used in this paper, is to use a a sequence

of Lagrange Multiplier (LM) tests following the ideas originally presented in Luukkonen et al.

(1988) and widely used in the literature. See Appendix A for further details. Our choice to use

the SBIC is motivated by the empirical evidence that such an approach works well in practice

with regression-tree models; see, for example, Audrino (2006).

Consider that yt follows a DST-Tree model with K leaves and we want to decide whether or

not the terminal node i∗ ∈ T should be split. Write the model as

yt =
∑

i∈T−{i∗}

β′
ix̃tBJi (xt;θi)

+ β′
2i∗+1x̃tBJ2i∗+1 (xt;θ2i∗+1) + β′

2i∗+2x̃tBJ2i∗+2 (xt;θ2i∗+2) + εt,

εt =

[
∑

i∈T−{i∗}

(
aiε

2
t−1 + biht−1 + λ′

ix̃t

)
BJi (xt;θi)

+
(
a2i∗+1ε

2
t−1 + b2i∗+1ht−1 + λ′

2i∗+1x̃t

)
BJ2i∗+1 (xt;θ2i∗+1)

+
(
a2i∗+2ε

2
t−1 + b2i∗+2ht−1 + λ′

2i∗+2x̃t

)
BJ2i∗+2 (xt;θ2i∗+2)

]1/2

ut

(14)

where

BJ2i∗+1 (xt;θ2i∗+1) = BJi∗ (xt;θi∗) G(xi∗t; γi∗ , ci∗)

BJ2i∗+2 (xt;θ2i∗+2) = BJi∗ (xt;θi∗) [1 − G(xi∗t; γi∗ , ci∗)] .

The approach adopted here is closely related to the one advocated in Audrino and Bühlmann

(2001). First, a growing algorithm is used until a maximum number of limiting regimes is

achieved. At each step, the idea is to select the node to be split and the transition variable

in equation (14) such that the log-likelihood is maximized. Of course, such procedure can lead

to an over-parametrized specification. The second step is to prune the model. This is carried

out by the use of information criterium: We search for a best subtree with respect to the SBIC

which is often computationally feasible since the number of regimes is not very big. For example,

in our empirical analysis we found three limiting regimes. For more details, see Audrino and

Bühlmann (2001) or Audrino (2006).
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4 Forecasting: the role of bagging

Tree-based procedures, like the one proposed in the last section, are known to be unstable (that

is, the variance of the tree procedure is high); see, for example, Hastie et al. (2001). One

way to reduce such an instability is bootstrap aggregating (bagging, for short) introduced by

Breiman (1996). Bagging is a statistical procedure designed to improve forecast accuracy of

models selected by unstable decision rules. Bagging has been shown to be a useful technique

to improve the accuracy of final forecasts based on the predictive power of potentially many

relevant predictors that, individually, have only weak explanatory power. In essence, bagging

involves fitting a given model, including all potential predictor variables to the original sample;

generating a large number of bootstrap resamples from this approximation of the data; applying

the decision rule to each of the resamples; and averaging the forecasts from the models selected by

the decision rule for each bootstrap sample. By averaging across resamples, bagging effectively

removes the instability of the decision rule. Improvements are relevant in particular when the

variance of the decision rule is high, as in the case of tree-based procedures.

Bühlmann and Yu (2002) showed that bagging has the potential to achieve dramatic reduc-

tions in forecast mean squared errors for a wide range of unstable procedures. Recently, Inoue

and Kilian (2004) extended the use of bagging to the time series framework, presented the the-

oretical arguments in favor of bagging, and characterized the conditions under which one would

expect bagging to work. In two succeeding applications, Inoue and Kilian (2005) (bagging ap-

plied to the forecast of US CPI inflation) and Hillebrand and Medeiros (2007) (bagging applied

to the forecast of S&P 500 realized volatility) found good and encouraging results. We propose

bagging to alleviate the instability problem directly related to the use of tree-based procedures,

and to improve the forecasts of short-term interest rate process dynamics obtained from the

smooth-transition tree-structured model.

Based on the bagging procedure proposed by Inoue and Kilian (2004) for the linear regression

model, the bagged DST-Tree model for the short-term interest rate dynamics is constructed as

follows.

1. Arrange the set of response and predictor variables in the form of a matrix of dimension

T × K, where K = 1+ the number of predictor variables considered:

{
∆rt,x

′

t

}
, t = 1, . . . , T

where xt =
(
∆rt−1, rt−1, (x

ex
t−1)

′
)′

.
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Construct B bootstrap samples of the form

(
∆r∗(i)1, (x

∗
(i)1)

′)
, . . . ,

(
∆r∗(i)T , (x∗

(i)T )
′)

, i = 1, . . . , B

by drawing with replacement blocks of m rows of this matrix, where the block size m is

chosen to capture the dependence in the error term.

2. For each bootstrap sample, estimate the DST-Tree model with three limiting regimes1

following the procedure proposed in Section 3. Note that for each bootstrap sample the

optimal selection of predictor variables and splitting points, as well as the optimal local

parameters will be different. Compute the forecasts of the conditional mean and variance

of the short-rate process for the out-of-sample period by using the optimal parameters

estimated from the i-th bootstrap sample, and call them

(µ∗
(i)T+t, h

∗
(i)T+t), t = 1, . . . , Tout.

3. Compute the average forecasts of the conditional mean and variance of the short-rate

process for the out-of-sample period:

(
µ̂T+t =

1

B

B∑

i=1

µ∗
(i)T+t, ĥT+t =

1

B

B∑

i=1

h∗
(i)T+t

)
, t = 1, . . . , Tout.

5 Real Data Investigation

5.1 Data

The data used in this study are one-month U.S. Treasury bill rates downloaded from the Fama

CRSP Treasury bill files. The data span the time period between January 1960 and December

2006, for a total of 564 monthly observations. We split the data sample in two parts; Con-

sistent with the literature, we use the period between January 1960 and December 2001 (504

observations) as in-sample estimation period. The remaining 60 observations are left to test the

prediction accuracy of the different model specifications. Figure 1 plots the data as well as the

monthly changes in short-term interest rates. Table 1 presents some sample statistics.

FIGURE 1 AND TABLE 1 ABOUT HERE.

1We fixed the depth of the tree to be the same as the optimal tree estimated from the original data; see Section

5.2.
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Figure 1 illustrates well the dramatic changes in the short-term interest rates that occurred

during the OPEC oil crises in the 1973-75 period and the Fed experiment in the 1979-82 period.

The volatility of the monthly changes associated with the Fed experiment is striking. Volatility

is also noticeably higher than average during the 1973-75 period and immediately after the

October 1987 stock market crash. As expected, Table 1 shows that the mean change in the

short-term interest rates is close to zero, that there is significant excess kurtosis, and that the

correlation between ∆rt and rt−1 is negative. All these stylized facts have been documented in

the literature and justify the introduction of regime-switching models (of Markovian or threshold

type) as reasonable processes for the short-term interest rate dynamics.

Similarly to Ang and Piazzesi (2003), Audrino (2006) and Diebold et al. (2006), we consider

a number of term structure and macroeconomic factors as predictors in our smooth transition

tree structured model. This is done to exploit the additional information of the yield curve, real

activity, and inflation, for estimation and prediction purposes. In greater detail, we consider

the 60-month zero coupon bond rates from the Fama CRSP discount bond files, as well as the

spread between the 60-month and the 1-month yields, the CPI and the PPI of finished goods

as measures of inflation, and the index of Help Wanted Advertising in Newspapers (HELP),

unemployment (UE) and the growth rate of industrial production (IP), and GDP to capture

real activity. All the macroeconomic data have been downloaded from Datastream International

for the time period under investigation. This list of variables includes most that have been

used in the macro literature. Among these variables, HELP is traditionally considered a leading

indicator of real activity. Summary statistics of these variables are reported in Table 1.

5.2 Estimation results

We analyze the optimal regimes’ structure, transition functions, and parameter estimates of the

local conditional mean and variance of the short-term interest rate obtained using the DST-Tree

model introduced in Section 2. Local parameter estimates and optimal limiting regimes are

summarized in Table 2. They are computed for the in-sample period beginning January 1960

and ending December 2001, for a total of 504 monthly observations. The detailed specification

of the model is noted under Table 2.

TABLE 2 ABOUT HERE.

We find that the estimated DST-Tree model has three limiting regimes. Similar to the findings

of Audrino (2006), such limiting regimes are fully characterized by the two main indices for
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real activity and inflation. The first limiting regime is characterized by a low real activity,

the implied long-run mean is relatively low (3.6%), and there is strong statistical evidence of a

moderate mean reversion. Individual shocks have a negligible immediate effect on the conditional

variance, but are strongly persistent. The conditional variance is also significantly related to the

level of the short rate, although the small value of the CIR parameter renders it economically

insignificant.

The second and third limiting regimes are both characterized by high real activity, but by a

different level of inflation. In the second limiting regime, inflation is low. The implied long-run

mean is large and negative (approximately −26%). Individual shocks have neither immediate nor

persistent effect on the conditional variance. On the contrary, conditional variance is significantly

related to the level of the short rate.

In the third limiting regime, both real activity and inflation are high. There is strong evidence

of mean reversion around a high implied long-run mean (approximately 13%). The GARCH

process is not stationary (a3 + b3 > 1); individual shocks have a large (but not statistically

significant) immediate impact on the conditional variance and are strongly persistent. In this

regime, the conditional variance is not related to the level of the short rate.

To complete this section, we now analyze the optimal functions BJi(·), that is the probability

functions associated with the three different local specifications given in Table 2. The shape of

the functions is shown in Figure 2.

FIGURE 2 ABOUT HERE.

The optimal parameters are γ1 = 0.2882 and γ2 = 0.1488, with t-statistics (based on heteroskedastic-

consistent standard errors) 0.2940 and 1.2393, respectively. As Figure 2 clearly shows, the three

logistic functions are non-linear in the predictors and considerably smoother than the identity

(that is 0-1) functions used by classical trees. This renders a clear interpretation of the regimes

in terms of contractions/expansions periods difficult. Nevertheless, time periods characterized

by values of the HELP index smaller than 80 can be reasonably associated with regime 1 (the

probability of being in such a regime is very high; see again Figure 2). On the contrary, time pe-

riods characterized by values of the HELP index larger than 100 can be associated with regimes

2 and 3. A clear distinction between regimes 2 and 3 is more difficult and can lead to wrong

conclusions. In Figure 3 we overlay shaded NBER recessions to the time series of the HELP

index to illustrate recessions/expansions correspondence.
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FIGURE 3 ABOUT HERE.

Not surprisingly, Figure 3 shows that during most NBER recessions between 1960 and 2001,

the conditional dynamics of the short-term interest rate followed closely those described under

regime 1. This is consistent with the results found in Audrino (2006).

5.3 Forecasting results

Here we investigate the accuracy of the proposed models for the prediction of first and second

conditional moments of the short-term interest rate process. The out-of-sample period goes from

January 2002 to December 2006, for a total of 60 monthly observations.

We compare goodness-of-fit results of the smooth transition tree-structured (ST-tree) model

with and without using bagging with those from:

- a global CIR-GARCH-type model with level effects in conditional variances (single-regime

ST-tree model);

- a global CIR-GARCH-type model with level effects in conditional variances and all relevant

macro-variables in the conditional mean equation. The significant macro-variables in the

conditional mean are chosen using subset selection (see Hastie et al., 2001, pages 55-57).

We found that the relevant macro-variables are HELP, PPI and GDP;

- the Markovian regime-switching (RS) model with two regimes proposed by Gray (1996);

- a modification of the RS model proposed by Gray (1996), where probabilities are also

allowed to depend on macro-variables (see Audrino, 2006). We found that the most relevant

macro-variable is the HELP index;

- the standard tree-structured model proposed by Audrino (2006).

We quantify the goodness-of-fit of the different models for predicting monthly first and second

conditional moments by means of three different measures: the out-of-sample negative log-

likelihood (Loglik), and the mean squared errors (MSE) for the conditional mean and variance.

Mathematically speaking, the last two performance measures are given by:

MSE-mean =
1

60

60∑

t=1

(
∆rt − µ̂t

)2
(15)

MSE-variance =
1

60

60∑

t=1

(
ĥt − (∆rt − µ̂t)

2
)2

(16)
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where µ̂t and ĥt are computed using the optimal parameters estimated with the in-sample data

(from January 1960 to December 2001). We performed a series of the superior predictive ability

(SPA) tests for forecasting first and second conditional moments introduced by Hansen (2005)

to quantify statistical differences among the models.

The performance results are summarized in Table 3. In the bagging procedure using the

block-bootstrap of Künsch (1989), we use B = 50 replications and a block size of m = 20.

p-values of the SPA tests are reported in parentheses.

TABLE 3 ABOUT HERE.

Without considering bagging, the DST-Tree model yields the best result with respect to the out-

of-sample negative log-likelihood and is also competitive for forecasting conditional variance. It

shows some problems when the focus is the prediction of the conditional mean. As argued in

Section 4, such difficulties may be a consequence of the instability of tree-based models. Results

showed in Table 3 support this thesis. The usefulness of bagging is particularly evident. The

bagged DST-Tree yields the best results with respect to all out-of-sample performance measures

considered. It clearly outperforms all other model specifications. Such differences are in most

cases statistically significant at the 5 percent or 10 percent confidence levels, as the results of

the SPA tests show.

6 Conclusions

In this paper we propose a novel smooth transition conditional heteroskedastic model that

combines regression trees and GARCH models. Our model uses the interpretability of regression

trees and the flexibility of smooth transition models. We have applied our new model to describe

regime switches in the short-term interest rate series. We carefully address the estimation of

such models, we derive the asymptotic properties of the quasi-maximum likelihood estimator,

and we discuss the different modeling cycle strategies. When the model was applied to the US

short-term interest rate we reached several interesting conclusions. First, the leading indicators

for inflation and real activity are the most relevant predictors in characterizing the multiple

regimes’ structure. Second, the optimal model has three limiting regimes, with significantly

different local conditional mean and variance dynamics. Third, there is some correspondence

between NBER recessions/expansions and our limiting regimes. Finally, we investigate the

forecasting accuracy of the new model’s conditional mean and variance predictions, concluding
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that the new model significantly outperforms existing alternatives introduced in the literature.
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A Specifying the DST-Tree Model with Lagrange Multiplier

Tests

In this appendix we briefly discuss how the sequence of Lagrange Multiplier (LM) tests previously

discussed in Teräsvirta (1994), Van Dijk et al. (2002), or Medeiros and Veiga (2008) can be

applied to the DST-Tree model. This a generalization of the procedure advocated in da Rosa

et al. (2008).

First, write Equation (14) as

yt =
∑

i∈T−{i∗}

β′
ix̃tBJi (xt;θi)

+ φ′
1x̃tBJi∗ (xt;θi∗) + φ′

2x̃tBJi∗ (xt;θi∗)G(xi∗t; γi∗ , ci∗) + εt,

εt =

[
∑

i∈T−{i∗}

(
aiε

2
t−1 + biht−1 + λ′

ix̃t

)
BJi (xt;θi)

+
(
a2i∗+1ε

2
t−1 + b2i∗+1ht−1 + λ′

2i∗+1x̃t

)
BJi∗ (xt;θi∗)

+
(
a∗ε

2
t−1 + b∗ht−1 + λ′

∗x̃t

)
BJi∗ (xt;θi∗) G(xi∗t; γi∗ , ci∗)

]1/2

ut

(17)

where φ1 = β2i∗+2, φ2 = β2i∗+1 − β2i∗+2, a∗ = a2i∗+1 − a2i∗+2, b∗ = b2i∗+1 − b2i∗+2, and

λ∗ = λ2i∗+1 − λ2i∗+2.

In order to test the statistical significance of the split, a convenient null hypothesis is H0 :

γi∗ = 0 against the alternative Ha : γi∗ > 0. An alternative null hypothesis is H′
0 : φ2 = 0.

However, it is clear in (17) that under H0, the nuisance parameters φ2 and ci∗ can assume

different values without changing the likelihood function, posing an identification problem; see

Davies (1977, 1987).

A solution to this problem, proposed in Luukkonen et al. (1988), is to approximate the

logistic function by a third-order Taylor expansion around γi∗ = 0. After some algebra we get

yt =
∑

i∈T−{i∗}

β′
ix̃tBJi (xt;θi) +α′

0x̃tBJi∗ (xt;θi∗)

+α′
1x̃tBJi∗ (xt;θi∗)xi∗t +α′

2x̃tBJi∗ (xt;θi∗)x2
i∗t

+α′
3x̃tBJi∗ (xt;θi∗)x3

i∗t + et,

(18)
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and

εt =

[
∑

i∈T−{i∗}

(
aiε

2
t−1 + biht−1 + λ′

ix̃t

)
BJi (xt;θi) + π′

0ztBJi∗ (xt;θi∗)

+ π′
1ztBJi∗ (xt;θi∗)xi∗t + π′

2ztBJi∗ (xt;θi∗)x2
i∗t

+ π′
3ztBJi∗ (xt;θi∗)x3

i∗t + R(xi∗t; γi∗ , ci∗)

]1/2

ut

(19)

where et = εt + φ2BJi∗ (xt;θi∗)R(xi∗t; γi∗ , ci∗), R(xi∗t; γi∗ , ci∗) is the remainder of the Taylor

expansion, and zt =
(
ε2
t−1, ht−1, x̃

′
t

)′
. The parameters αk, k = 0, . . . , 3 and πk, k = 0, . . . , 3, are

functions of the original parameters of the model.

Thus the null hypothesis becomes

H0 : α1 = α2 = α3 = π1 = π2 = π3 = 0. (20)

Under H0, R(xi∗t; γi∗ , ci∗) = 0 and et = εt, such that the properties of the error process remain

unchanged under the null and thus asymptotic inference can be used.

Another possible route is to assume, in principle, that the conditional variance is constant

and derive the LM statistic as in da Rosa et al. (2008). Based on Wooldridge (1990), the test

can than be modified in order to handle conditional heteroskedasticity of unknown form; see

Medeiros et al. (2006) for a similar approach. The main advantage is that the test can be carried

out in stages by estimating simple auxiliary regressions.

B Proofs

Before proceeding to the proofs, we define our notation, as follows. First, set ψ =
(
ψ′

M ,ψ′
V

)′
,

where ψM and ψV are the parameters of the conditional mean and variance, respectively and

define, as in Section 3, zt = (ε2
t−1, ht−1, x̃

′
t)
′. In addition, let model (2)–(3) be written as

yt = g(xt;ψM ) + h(zt;ψV )1/2ut (21)

and set gt ≡ g(xt;ψM ) and ht ≡ h(zt;ψV ). Furthermore, write εt ≡ εt(ψM ) = yt − gt, let J

and K be the number of parent and terminal nodes, respectively, and define πi =
(
ai, bi,λ

′
i

)′
,

i = 1, . . . ,K. Finally, to simplify notation define Bi,t ≡ BJi(xt;θi), i = 1, . . . ,K and Gj,t ≡
G (xj,t; γj , cj), j = 1, . . . , J .
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Derivatives of the Log-likelihood Function

The first-order derivative of the log-likelihood function is given by

∂LT (ψ)

∂ψ
=

1

T

T∑

t=1

[
1

2ht

(
ε2
t

ht
− 1

)
∂ht

∂ψV

+
εt

ht

∂εt

∂ψM

]
, (22)

where

∂εt

∂ψM

= −
[
x̃
′
tB1,t, . . . , x̃

′
tBK,t,β

′
1x̃t

∂B1,t

∂θ′1
, . . . ,β′

K x̃t
∂BK,t

∂θ′K

]′
,

∂ht

∂ψV

=

t∑

k=1




t∏

j=k+1

(
K∑

i=1

biBi,t

)
wk +




t∏

j=1

(
K∑

i=1

biBi,t

)
 ∂h0

∂ψ′
V

,

wt =

[
z
′
tB1,t, . . . , z

′
tBK,t,π

′
1zt

B1,t

∂θ′1
, . . . ,π′

Kzt
∂BK,t

∂θ′K

]′
, and

∂Bi,t

∂θ′i
=

{
∑

j∈Ji

[
ni,j (1 + ni,j)

2
G

ni,j(1+ni,j)
2

−1

j,t × (1 − Gj,t)
(1−ni,j)(1+ni,j)

− (1 − ni,j) (1 + ni,j)G
ni,j(1+ni,j)

2
j,t × (1 − Gj,t)

(1−ni,j)(1+ni,j)−1

]
∂Gj,t

∂θ′i

×
∏

k∈Ji,k 6=j

G
ni,j(1+ni,j)

2
j,t (1 − Gj,t)

(1−ni,j)(1+ni,j)

}

×



∏

j /∈Ji

G
ni,j(1+ni,j)

2
j,t (1 − Gj,t)

(1−ni,j)(1+ni,j)


 .

The second order derivative is given by

∂2LT (ψ)

∂ψ∂ψ′ =

(
ε2
t

ht
− 1

)
1

2ht

∂2ht

∂ψVψ
′
V

− 1

2h2
t

(
2
ε2
t

ht
− 1

)
∂ht

∂ψV

∂ht

∂ψ′
V

+

(
εt

h2
t

)(
∂εt

∂ψM

∂ht

∂ψ′
V

+
∂ht

∂ψV

∂εt

∂ψ′
M

)
+

1

ht

(
∂εt

∂ψM

∂εt

∂ψ′
M

+ εt
∂2εt

∂ψM∂ψ′
M

)
.

Proof of Theorem 1

It is easy to see that model (21) is a continuous function in the parameter vector ψ. Similarly,

we can see that (21) is continuous in xt and zt, and therefore is measurable, for each fixed value

of ψ.

Furthermore, under the stationarity requirement in Assumption 1 and the restrictions in

Assumption 3, E

[
sup
ψ∈Ψ

|hu,t|
]

< ∞ and E

[
sup
ψ∈Ψ

|yu,t|
]

< ∞. By Jensen’s inequality, it is clear

that E

[
sup
ψ∈Ψ

|ln |hu,t||
]

< ∞. Thus, E [|ℓu,t(ψ)|] < ∞ ∀ψ ∈ Ψ.
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Let h0,t be the true conditional variance and ε0,t = h
1/2
0,t ut. In order to show that L(ψ) is

uniquely maximized at ψ0, rewrite the maximization problem as

max
ψ∈Ψ

[L(ψ) − L(ψ0)] = max
ψ∈Ψ

{
E

[
ln

(
h0,t

hu,t

)
−

ε2
u,t

hu,t
+ 1

]}
. (23)

Writing εu,t = εu,t − ε0,t + ε0,t, equation (23) becomes

max
ψ∈Ψ

[L(ψ) − L(ψ0)] = max
ψ∈Ψ

{
E

[
ln

(
h0,t

hu,t

)
− h0,t

hu,t
+ 1

]
− E

[
[εu,t − ε0,t]

2

hu,t

]

− E

[
2uth

1/2
0,t (εu,t − ε0,t)

hu,t

]}

= max
ψ∈Ψ

{
E

[
ln

(
h0,t

hu,t

)
− h0,t

hu,t
+ 1

]
− E

[
[εu,t − ε0,t]

2

hu,t

]}
,

(24)

where

E

[
2uth

1/2
0,t (εu,t − ε0,t)

hu,t

]
= 0

by the Law of Iterated Expectations.

Note that, for any x > 0, m(x) = ln(x) − x ≤ 0, so that

E

[
ln

(
h0,t

hu,t

)
− h0,t

hu,t

]
≤ 0.

Furthermore, m(x) is maximized at x = 1. If x 6= 1, m(x) < m(1), implying that E[m(x)] ≤
E[m(1)], with equality only if x = 1 a.s.. However, this will occur only if

h0,t

hu,t
= 1, a.s.. In

addition,

E

[
[εu,t − ε0,t]

2

hu,t

]
= 0

if and only if εu,t = ε0,t. Hence, ψ = ψ0. This completes the proof. �

Proof of Theorem 2

Following White (1994), Theorem 3.5, ψ̂u,T
a.s.→ ψ0 if the following conditions hold:

(1) The parameter space Ψ is compact.

(2) Lu,T (ψ) is continuous in ψ ∈ Ψ. Furthermore, Lu,T (ψ) is a measurable function of yt, xt,

and zt, t = 1, . . . , T , for all ψ ∈ Ψ.

(3) L(ψ) has a unique maximum at ψ0.
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(4) lim
T→∞

sup
ψ∈Ψ

|Lu,T (ψ) − L(ψ)| = 0, a.s..

Condition (1) holds by assumption. Theorem 1 shows that Conditions (2) and (3) are

satisfied. By Lemma 1, Condition (4) is also satisfied. Thus, ψ̂u,T
a.s.→ ψ0.

Lemma 2 shows that

lim
T→∞

sup
ψ∈Ψ

|Lu,T (ψ) −LT (ψ)| = 0 a.s.,

implying that ψ̂T
a.s.→ ψ0. This completes the proof. �

Proof of Theorem 3

We start by proving asymptotic normality of the QMLE using the unobserved log-likelihood.

When this is shown, the proof using the observed log-likelihood is immediate by Lemmas 2 and

4. According to Theorem 6.4 in White (1994), to prove the asymptotic normality of the QMLE

we need the following conditions in addition to those stated in the proof of Theorem 2:

(5) The true parameter vector ψ0 is interior to Ψ.

(6) The matrix

AT (ψ) =
1

T

T∑

t=1

(
∂2ℓt(ψ)

∂ψ∂ψ′

)

exists a.s. and is continuous in Ψ.

(7) The matrix AT (ψ)
a.s.→ A(ψ0), for any sequence ψT , such that ψT

a.s.→ ψ0.

(8) The score vector satisfies

1√
T

T∑

t=1

(
∂ℓt(ψ)

∂ψ

)
d→ N(0,B(ψ0)).

Condition (5) is satisfied by assumption. Condition (6) follows from the fact that ℓt(ψ) is

differentiable of order two on ψ ∈ Ψ, and the stationarity of the DST-Tree model. The non-

singularity of A(ψ0) and B(ψ0) follows from Lemma 4. Furthermore, Lemmas 3 and 5 implies

that Condition (7) is satisfied. In Lemma 6 below, we prove that condition (8) is also satisfied.

This completes the proof. �
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C Lemmas

Lemma 1. Suppose that yt follows a DST-Tree model satisfying the restrictions in Assumptions

1 and 3, and stationarity holds. Then,

lim
T→∞

sup
ψ∈Ψ

|Lu,T (ψ) − L(ψ)| = 0, a.s..

Proof. Set g(Yt,ψ) = ℓu,t(ψ)−E [ℓu,t(ψ)], where Yt =
[
yt,x

′
t,x

′
t−1, . . .

]′
. Hence, E [g(Yt,ψ)] =

0. Under stationarity, it is clear that E

[
sup
ψ∈Ψ

|g(Yt,ψ)|
]

< ∞. Furthermore, as g(Yt,ψ) is

strictly stationary and ergodic, then, by Theorem 3.1 in Ling and McAleer (2003), it follows

that lim
T→∞

sup
ψ∈Ψ

∣∣∣T−1
∑T

t=1 g(Yt,ψ)
∣∣∣ = 0, a.s.. This completes the proof. �

Lemma 2. Under the assumptions of Lemma 1,

lim
T→∞

sup
ψ∈Ψ

|Lu,T (ψ) − LT (ψ)| = 0, a.s..

Proof. Set a(xt) =
∑K

i=1 aiBi,t, b(xt) =
∑K

i=1 biBi,t, λ(xt) =
∑K

i=1 λiBi,t, and write

ht = a(xt)ε
2
t−1 + b(xt)ht−1 + λ(xt)

′
x̃t

=

t∑

i=1




[
a(xi)ε

2
i−1 + λ(xt)

′
x̃t

]



t∏

j=i+1

b(xj)






+




t∏

j=1

b(xj)


h0, and

hu,t = a(xt)ε
2
t−1 + b(xt)ht−1 + λ(xt)

′
x̃t

=
t∑

i=1




[
a(xi)ε

2
u,i−1 + λ(xt)

′
x̃t

]



t∏

j=i+1

b(xj)






+




t∏

j=1

b(xj)


hu,0

(25)

Hence,

hu,t − ht = a(x1)




t∏

j=1

b(xj)


 (ε2

u,0 − ε2
0

)
+




t∏

j=1

b(xj)


 (hu,0 − h0)

and

|hu,t − ht| ≤ a(x1)




t∏

j=1

b(xj)


 ∣∣(ε2

u,0 − ε2
0

)∣∣+




t∏

j=1

b(xj)


 |(hu,0 − h0)| ,

as a(xt) > 0 and b(xt) > 0, ∀ t by assumption and, under the stationarity of the process,



t∏

j=1

b(xj)


 a.s.→ 0.

Furthermore, hu,0 and ε2
0,u are well defined, as

Pr

[
sup
ψ∈Ψ

(hu,0 > K1)

]
→ 0 as K1 → ∞, and Pr

[
sup
ψ∈Ψ

(
ε2
u,0 > K2

)
]
→ 0 as K2 → ∞.
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Thus,

sup
ψ∈Ψ

|ht − hu,t| ≤ Khρt
1, a.s., and

sup
ψ∈Ψ

∣∣ε2
0 − ε2

u,0

∣∣ ≤ Kερ
t
2, a.s.,

where Kh and Kε are positive and finite constants, 0 < ρ1 < 1, and 0 < ρ2 < 1. Hence, as

ht > δ,δ a positive and finite constant, and log(x) ≤ x − 1,

sup
ψ∈Ψ

|ℓt − ℓu,t| ≤ sup
ψ∈Ψ

[
ε2
t

∣∣∣∣
hu,t − ht

hthu,t

∣∣∣∣+
∣∣∣∣log

(
1 +

ht − hu,t

hu,t

)∣∣∣∣
]

≤ sup
ψ∈Ψ

(
1

δ2

)
Khρt

1ε
2
t + sup

ψ∈Ψ

(
1

δ

)
Khρt

1, a.s..

Following the same arguments as in the proof of Theorems 2.1 and 3.1 in Francq and Zaköıan

(2004), it can be shown that

lim
T→∞

sup
ψ∈Ψ

|Lu,T (ψ) − LT (ψ)| = 0, a.s..

This completes the proof. �

Lemma 3. Under the conditions of Theorem 3,

E

[∣∣∣∣∣
∂ℓt(ψ)

∂ψ

∣∣∣∣
ψ0

∣∣∣∣∣

]
< ∞, (26)

E

[∣∣∣∣∣
∂ℓt(ψ)

∂ψ

∣∣∣∣
ψ0

∂ℓt(ψ)

∂ψ′

∣∣∣∣
ψ0

∣∣∣∣∣

]
< ∞, and (27)

E

[∣∣∣∣∣
∂2ℓt(ψ)

∂ψ∂ψ′

∣∣∣∣
ψ0

∣∣∣∣∣

]
< ∞. (28)

Proof. As the derivatives of the transition function are bounded, if stationarity holds, the

derivatives of the likelihood function are clearly bounded. Hence, the remainder of the proof

follows from the proof of Theorem 3.2 (part (i)) in Francq and Zaköıan (2004). This completes

the proof. �

Lemma 4. Under the conditions of Theorem 3, A(ψ0) and B(ψ0) are nonsingular and, when

ut has a symmetric distribution, are block-diagonal.

Proof. First, note that the restrictions in Assumption 3 guarantee the minimality (identifia-

bility) of the DST-Tree model considered in this paper. Therefore, the results follow from the

proof of Theorem 3.2 (part (ii)) in Francq and Zaköıan (2004). This completes the proof. �
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Lemma 5. Under the conditions of Theorem 3,

(a) lim
T→∞

sup
ψ∈Ψ

∥∥∥∥∥
1

T

T∑

t=1

[
∂ℓu,t(ψ)

∂ψ
− ∂ℓt(ψ)

∂ψ

]∥∥∥∥∥ = 0, a.s.,

(b) lim
T→∞

sup
ψ∈Ψ

∥∥∥∥∥
1

T

T∑

t=1

[
∂2ℓu,t(ψ)

∂ψ∂ψ′ − ∂2ℓt(ψ)

∂ψ∂ψ′

]∥∥∥∥∥ = 0, a.s, and

(c) lim
T→∞

sup
ψ∈Ψ

∥∥∥∥∥
1

T

T∑

t=1

∂2ℓu,t(ψ)

∂ψ∂ψ′ − E

[
∂2ℓu,t(ψ)

∂ψ∂ψ′

]∥∥∥∥∥ = 0, a.s..

Proof. First, assume that h0 and hu,0 are fixed constants and write

∂

∂ψ
(hu,t − ht) =

[
∂

∂β′
1

(hu,t − ht) , . . . ,
∂

∂β′
K

(hu,t − ht) ,
∂

∂π′
1

(hu,t − ht) , . . . ,
∂

∂π′
K

(hu,t − ht) ,

∂

∂θ′1
(hu,t − ht) , . . . ,

∂

∂θ′J
(hu,t − ht)

]′
,

where

∂

∂β′
i

(hu,t − ht) = 2a(x1)




t∏

j=1

b(xj)



(

εu,0
∂εu,0

∂βi

− ε0
∂ε0

∂βi

)
,

∂

∂π′
i

(hu,t − ht) =




t∏

j=1

b(xj)



(

∂hu,0

∂πi
− ∂h0

∂πi

)
,

∂

∂θ′i
(hu,t − ht) =





∂a(x1)

∂θ′i




t∏

j=1

b(xj)


+ a(x1)

∂

∂θ′i




t∏

j=1

b(xj)







(
ε2
u,0 − ε2

0

)

+ 2a(x1)




t∏

j=1

b(xj)



(

εu,0
∂εu,0

∂θi
− ε0

∂ε0

∂θi

)

+
∂

∂θi




t∏

j=1

b(xj)


 (hu,0 − h0) +




t∏

j=1

b(xj)



(

∂hu,0

∂πi
− ∂h0

∂πi

)
.

It is clear that, under stationarity of the process, all the derivatives above are bounded. Hence,

as in Francq and Zaköıan (2004), part (a) follows trivially. The proof of part (b) follows along

similar lines. The proof of part (c) follows the same arguments as in the proof of Theorem 3.2

(part (v)) in Francq and Zaköıan (2004). This completes the proof. �

Lemma 6. Under the conditions of Theorem 3,

1√
T

T∑

t=1

∂ℓt(ψ)

∂ψ

∣∣∣∣∣
ψ0

d→ N(0,B(ψ0)).
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Proof. Let ST =
∑T

t=1 c
′∇0ℓu,t, where c is a constant vector. Then ST is a martingale with

respect to Ft, the filtration generated by all past observations of yt. By the given assumptions,

E [ST ] > 0. Using the central limit theorem of Stout (1974),

T−1/2ST
d→ N

(
0, c′B(ψ0)c

)
.

By the Cramer-Wold device,

T−1/2
T∑

t=1

∂ℓu,t(ψ)

∂ψ

∣∣∣∣∣
ψ0

d→ N (0,B(ψ0)) .

By Lemma 5,

T−1/2
T∑

t=1

∥∥∥∥∥∥
∂ℓu,t(ψ)

∂ψ

∣∣∣∣∣
ψ0

− ∂ℓt(ψ)

∂ψ

∣∣∣∣∣
ψ0

∥∥∥∥∥∥
a.s.→ 0.

Thus,

T−1/2
T∑

t=1

∂ℓt(ψ)

∂ψ

∣∣∣∣∣
ψ0

d→ N(0,B0).

This completes the proof. �
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Summary statistics of data

Central moments Autocorrelations

Mean Stdev Skew Kurt Lag 1 Lag 2 Lag 3

1 mth rates 5.2462 2.6496 1.1198 4.9472 0.9652 0.9376 0.9120

1 mth changes 0.0023 0.6953 1.0930 16.721 -0.1028 -0.0361 -0.0589

60 mth rates 6.6416 2.5365 0.9179 3.5773 0.9878 0.9739 0.9615

Spread 1.3944 1.1878 0.0353 3.8250 0.8449 0.7607 0.6774

CPI 4.0881 2.7835 1.3625 4.5441 0.9902 0.9761 0.9606

PPI 3.5130 4.4441 1.0462 4.5846 0.9761 0.9449 0.9159

HELP 83.169 25.369 0.1720 2.1040 0.9892 0.9786 0.9653

IP 3.0453 4.3952 0.7951 3.9041 0.9684 0.9178 0.8537

UE 1.3869 15.616 1.0880 4.2022 0.9550 0.9149 0.8566

GDP 6.8332 2.7445 0.0191 3.3684 0.9661 0.9324 0.8986

Table 1: The one-month yield is from the Fama CRSP treasury bill files. The 60 month yield

is the annual zero coupon bond yield from the Fama CRSP bond files. Spread refers to the

difference between long and short-term interest rates. The inflation measures CPI and PPI

refer to CPI inflation and PPI (finished goods) inflation, respectively. We calculate the inflation

measure at time t using log(Pt/Pt−12) where Pt is the (seasonally adjusted) inflation index. The

real activity measures HELP, IP, UE and GDP refer to the index of help wanted advertising in

newspapers, the (seasonally adjusted) growth rate in industrial production, the unemployment

rate, and the US gross domestic product, respectively. The growth rate in industrial production

is calculated using log(It/It−12) where It is the (seasonally adjusted) industrial production index.

The sample period is January 1960 to December 2006, for a total of 564 observations.
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DST-Tree local parameter estimates

Optimal: k = 3 regimes

Limiting Regimes Parameter Estimate t |(p-value)

HELPt−1 ≤ 90.91

α1 0.2109 3.1297∗

β1 −0.0586 −3.3020∗

a1 ≈ 0 ≈ 0
b1 0.8977 2.8193∗

σ2
1 0.0013 1.8126∗

α2 −2.1159 −1.3761
HELPt−1 > 90.91, β2 −0.0807 −0.4259
CPIt−1 ≤ 1.467 a2 ≈ 0 0.0001

b2 ≈ 0 ≈ 0
σ2

2 0.0369 2.1224∗

α3 3.5026 2.6878∗

HELPt−1 > 90.91, β3 −0.2703 −2.3732∗

CPIt−1 > 1.467 a3 0.2748 1.4551
b3 1.0015 3.6891∗

σ2
3 0.0029 0.1766

Log-likelihood −358.703

LB2
5 3.8051 (0.5778)

LB2
10 9.6482 (0.4719)

LB2
15 10.892 (0.7602)

Table 2: Local parameter estimates, limiting regimes’ structure (that is, when the slope pa-
rameters γj = ∞, j = 1, . . . , k − 1), and related statistics for the double smooth transition
tree (DST-Tree) model which uses the additional information included in the term structure
and in other macroeconomic variables for prediction (xt = (∆rt−1, rt−1, (x

ex
t−1)

′

)
′

) . The sample
period is January 1960 to December 2001, for a total of 504 monthly observations. t-statistics
are based on heteroskedastic-consistent standard errors. Asterisks denote significance at the 5%
level. LB2

i denotes the Ljung-Box statistic for serial correlation of the squared residuals out to
i lags. p-values are reported in parentheses.
In the double smooth transition tree (DST-Tree) model: yt | Ft−1 = ∆rt | Ft−1 ∼ N(µt, ht),
with

µt =
∑

i∈T

(αi + βirt−1)BJi (xt;θi) ,

ht =
∑

i∈T

(
aiε

2
t−1 + biht−1 + σ2

i rt−1

)
BJi (xt;θi) ,

where the (probability) functions BJi (xt;θi) , i ∈ T, are given in (4).
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Forecasting performances

Model Loglik MSE-mean MSE-variance

Global −5.4947 (0.0022) 0.0464 (0.0049) 0.0071 (0.0469)

Global with macro 4.7607 (0.0042) 0.0680 (0.0173) 0.0095 (0.0295)

Gray’s RS −4.1150 (0.0026) 0.0456 (0.0811) 0.0064 (0.0638)

RS with macro −4.3733 (0.0052) 0.0451 (0.0867) 0.0055 (0.0863)

Audrino’s tree −7.3686 (0.0340) 0.0475 (0.0501) 0.0057 (0.1711)

DST-Tree −8.8808 (0.0137) 0.0517 (0.0016) 0.0056 (0.1868)

Bagged DST-Tree −18.320 (0.6314) 0.0389 (0.6800) 0.0045 (0.6809)

Table 3: The models considered are: the classical global CIR-GARCH-type model, also in-

cluding macro-variables as linear predictors in the conditional mean equation; the Markovian

regime-switching (RS) model with and without macro-variables used to specify the transition

probabilities; the tree-structured model proposed by Audrino (2006); the double smooth transi-

tion tree (DST-Tree) model; and the bagged DST-Tree model. Loglik refers to the out-of-sample

negative log-likelihood, and MSE-mean and MSE-variance are the mean squared errors computed

for predicting first and second conditional moments, respectively. p-values of superior predictive

ability (SPA) tests are reported in parentheses.
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One-month T-bill rates (in %)

Time

5
1
0

1
5

01/29/1960 01/29/1969 01/29/1978 01/29/1987 01/29/1996 01/29/2005

One-month T-bill changes

Time

-6
-4

-2
0

2

02/29/1960 02/28/1969 02/28/1978 02/28/1987 02/29/1996 02/28/2005

Figure 1: The top panel contains a time series of monthly one-month treasury-bill rates (in percentages).

The first differences of this series are shown in the bottom panel. The sample period is January 1960 to

December 2006, for a total of 564 observations.
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HELP index values
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Figure 2: Probability functions associated with the three optimal limiting regimes (first regime top, sec-

ond and third regimes bottom left and right, respectively) of the double smooth transition tree (DST-Tree)

model. The in-sample period goes from January 1960 to December 2001, for a total of 504 observations.
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HELP time series

Time
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Figure 3: Help Wanted Advertising in Newspaper (HELP) time series for the period January

1960 to December 2001. Shaded NBER recession periods are overlaid to show regime correspon-

dence with recessions/expansions. For values of the HELP index smaller (larger) than 80 (100)

the dynamics of the short-term interest rate closely follow the local processes under regime 1

(regimes 2 and 3) given in Table 2.
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