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Abstract 

This study investigates loss aversion when the reference point is a state-dependent random 

variable. This case describes, for example, a money manager being evaluated relative to a 

risky benchmark index rather than a fixed target return level. Using a state-dependent 

structure, prospects are more (less) attractive if they depend positively (negatively) on the 

reference point. In addition, the structure avoids an inherent aversion to risky prospects and 

yields no losses when the prospect and the reference point are the same. Related to this, the 

optimal reference-dependent solution equals the optimal consumption solution (no loss 

aversion) when the reference point is selected completely endogenously. Given that loss 

aversion is widespread, we conclude that the reference point generally includes an important 

exogenously fixed component. For example, the typical investment benchmark index is 

externally fixed by the investment principal for the duration of the investment mandate. We 

develop a choice model where adjustment costs cause stickiness relative to an initial 

exogenous reference point. 

 

Keywords 

Reference-dependent preferences, stochastic reference point, loss aversion, disappointment 

theory, regret theory. 

 

JEL Classification 

D81, C23, C91, C93. 

 

 



1 Introduction

A key problem of reference-dependent choice theories is the specification of the relevant

reference point. Traditionally, the reference point is interpreted as an exogenously fixed and

constant value, for example, the current wealth level of the decision maker. Recent studies

have examined risky choice with an endogenous and/or stochastic reference point. Shalev

(2000) allows the reference point to be determined endogenously as part of the decision-

maker’s optimization problem. Sugden (2003) allows the reference point to be a random

variable rather than a constant; see also Schmidt, Starmer, and Sugden (2008). Using

a stochastic reference point is reminiscent of measuring the investment performance of a

money manager relative to a risky benchmark portfolio like the S&P 500 index rather than a

fixed target return. Köszegi and Rabin (2006, 2007) combine both ideas and use a reference

point that is both endogenous and stochastic. This paper analyzes an alternative model of

stochastic reference points. To simplify the exposition and discussion, and for the sake of

comparison, we largely adhere to the assumptions and terminology of Köszegi and Rabin

(2006, 2007), but our conclusions apply more generally.

The Köszegi and Rabin (2006) model basically builds on disappointment theory (see,

for example, Bell 1985, Loomes and Sugden 1986, Gul 1991, Cillo and Delquié 2006). It

assumes that the decision maker compares every possible outcome of a given prospect with

every possible outcome of the reference point. The decision maker therefore experiences loss

(disappointment) when the outcome of the prospect in a given state-of-the-world falls below
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the outcome of the reference point in other states. By contrast, the Sugden (2003) model

builds on regret theory (Loomes and Sugden 1982, Bell 1982, 1983). The decision maker

compares the prospect and the reference point only in the same state and not across states

and experiences loss (regret) only if the outcome of the prospect falls below the outcome

of the reference point in the same state. For many applications, the latter, regret-based or

state-dependent preference structure seems more plausible than the former, disappointment-

based structure. For example, for the money manager who benchmarks against the market

index, the most relevant reference point for the realized portfolio value in a given period

seems to be the realized value of the market index in the same period, and the value in other

states-of-the-world seems less relevant. This study therefore examines loss aversion with a

state-dependent reference point and the endogenous selection of the reference point. The

analysis yields a number of surprising insights.

First, the disappointment-based structure implies that the decision maker is indifferent

to the statistical dependency between the prospect and the reference point. A prospect that

is positively correlated with the reference point is seen as equally risky as an uncorrelated

or negatively correlated prospect. Intuitively, it seems that a prospect is more attractive if

it depends positively on the reference point and is less attractive in case of negative depen-

dence. For example, for the money manager who benchmarks against the market index, long

positions in stocks generally will feel safer and entail smaller gains and losses than holding

short positions in the same stocks, although the two positions yield a comparable univariate

risk profile. In fact, perfectly replicating the market index creates a perfectly positive de-

2



pendence with the reference point and avoids all possible losses. The state-dependent model

captures this intuition, and a prospect that is positively correlated with the reference point

will appear to be safer and causes smaller losses, while a negative correlation will feel riskier

and yield larger losses.

Second, across-state comparison introduces an aversion to risky prospects, which will

yield losses even when the prospect and the reference point are the same. In many cases,

the reference point is exogenously fixed (in part or in whole). For example, the reference

point may be set by an external principal, as is true for a benchmark index in an external in-

vestment mandate. Alternatively, the decision maker may adjust slowly to new information

or surprise events, for example, an unexpected change in the composition of the benchmark

index. In these cases, it seems natural that loss aversion influences behavior and leads to

different behavior than a reference-independent model. By contrast, when the reference

point is completely endogenous, we may expect that it equals the optimal solution to the

reference-independent choice problem and therefore loss aversion does not influence behav-

ior. However, this is not true for the disappointment-based model: reference-dependent

behavior generally deviates from reference-independent behavior, even if the reference point

is completely endogenous. By contrast, the optimal solution in the state-dependent model

equals the reference-independent solution if the reference point is fully endogenous. Loss

aversion influences behavior only if the reference point includes an exogenous component

and the decision maker is not entirely free to select the reference-independent solution as

her reference point. Our model captures this exogenous component using costly adjustment
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from an initial, exogenous reference point.

Like Köszegi and Rabin (2006), our analysis does not account for subjective probabil-

ity weighting. Since probability weighting is known to be strong even for simple fifty-fifty

gambles with a constant reference point, it seems unlikely that a model with a stochastic

reference point is complete without accounting for this phenomenon. Fortunately, our argu-

ments in favour of a state-dependent reference point structure do not critically depend on

probability weighting.

The outline of this paper is as follows. Section 2 discusses the stochastic reference point

model proposed by Köszegi and Rabin (2006). Section 3 introduces the state-dependent

stochastic reference point model and discusses its properties. Section 4 applies the two

stochastic reference point models to US investment benchmark data. Section 5 concludes.

The Appendix includes our formal proofs.

2 The Stochastic Reference Point Model

Throughout the text, we will use Ω for the state-space, P [A] for the probability that event

A ⊆ Ω occurs, and X is the collection of feasible prospects X : Ω→ R (for instance, budget

feasible portfolio payoffs).

Köszegi and Rabin (2006) define the reference-dependent utility of X ∈ X given the ref-

erence point Y ∈ X as follows:
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Definition 2.1.

(2.1) U(X|Y ) =

∫ ∫
u(x|y) dFY (y) dFX(x)

where FX(x) = P [X ≤ x] and FY (y) = P [Y ≤ y] are the distribution functions of X and Y ,
respectively, and

(2.2) u(x|y) = η1m(x) + η2 µ(m(x)−m(y)),

m : R → R is a continuously differentiable, strictly increasing “consumption” utility func-
tion, and µ : R → R is a “universal” gain-loss utility function which satisfies the following
properties:

A0. µ(x) is continuous for all x and twice differentiable for x 6= 0;

A1. µ(x) is strictly increasing;

A2. If y > x > 0, then µ(y) + µ(−y) < µ(x) + µ(−x);

A3. µ′′(x) ≤ 0 for x > 0 and µ′′(x) ≥ 0 for x < 0;

A4. limx→0 µ′(−|x|)
limx→0 µ′(|x|) = λ > 1.

The parameters η1, η2 ∈ R+ give the weights between consumption utility m and gain-

loss utility µ. Köszegi and Rabin (2006) assume η1 = 1. Our analysis will also use the

expected consumption utility M(X) =
∫
m(x) dFX and the consumption certainty equivalent

C(X) = m−1(M(X)). If m(x) = x for all x and η1 = 0, the piecewise-power value function

of Tversky and Kahneman (1992) arises as a special case of Equation (2.1). Note that

for this specification of gain-loss utility, the curvature in the domain of losses should be

equal to the curvature in the domain of gains in order to obey Assumption A2, as shown

by Köbberling and Wakker (2005). As discussed by Köszegi and Rabin (2007), the model

allows for consumption utility to dominate gain-loss utility for large-stake prospects. Hence,

the model can reconcile loss aversion for modest stakes with risk aversion for large stakes.
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Definition 2.1 does not account for subjective probability weighting. Since probability

weighting is known to be strong even for simple fifty-fifty gambles with a constant reference

point, it seems unlikely that the model is complete without accounting for this phenomenon.

To the best of our knowledge, the only model that includes probability weighting with a

stochastic reference point is by Schmidt, Starmer, and Sugden (2008), who define cumulative

decision weights as in Cumulative Prospect Theory of Tversky and Kahneman (1992), i.e.,

they apply a weighting function to the cumulative and decumulative distribution of gains and

losses, respectively. However, to us it is not immediately clear how probability weighting

would enter in our model. Is consumption utility affected in the same way as gain-loss

utility? Are the probabilities of the evaluated prospect, FX , affected in the same way as the

probabilities of the reference point, FY ? Since our arguments do not critically depend on

probability weighting, we leave these questions for further research.

It will be useful for our analysis to consider a stronger version of assumption A3:

A3′. µ′′(x) = 0 for x 6= 0.1

This assumption does not allow for the piecewise-power function of Tversky and Kahne-

man (1992). However, it does allow for a piecewise-linear gain-loss function. Note that a

piecewise-linear gain-loss utility µ does not imply piecewise-linear reference-dependent utility

u, because consumption utility m is not restricted.

In case of discrete distributions with S states of nature, i.e., Ω = {1, . . . , S} and ps =
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P [{s}], reference-dependent utility corresponds to:

(2.3) U(X|Y ) =
S∑
s=1

S∑
s′=1

u(X(s)|Y (s′)) ps ps′ .

The model combines every possible outcome of the prospect with every possible outcome

of the reference point and evaluates every combination at the product of the two marginal

probabilities. The double summation implies that the decision maker considers a total of

S2 combinations of outcomes for every pair of evaluated prospect and reference point. As

in disappointment theory, the decision maker experiences a loss (disappointment) when the

outcome of the prospect in a given state falls below the outcome of the reference point in

another state. The decision maker is therefore predicted to be indifferent to the statistical

dependence between the prospect X and the reference point Y :

(2.4) U(X|Y ) = U(X̃|Ỹ )

for any X̃ and Ỹ which have the same marginal distributions as X and Y , irrespective of the

dependence structure. However, our intuition says that a prospect would appear less risky in

case of positive dependence and more risky in case of negative dependence, in the same way

as an investment portfolio with a positive market beta appears less risky than a negative-beta

portfolio to an investor who benchmarks against a market index. Indeed, indifference to the

dependence structure can lead to counterintuitive choices, as shown in the following example:

Example 2.1. Let Ω = {1, 2} and P [{1}] = 1/2. We define the risky prospects X and Y as
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follows:

X(1) = 0, X(2) = 101

Y (1) = 0, Y (2) = 100.

Suppose that m(x) = x, µ(x) = x if x ≥ 0 and µ(x) = λx, λ > 1, if x < 0, and η1 =
η2 = 1. The decision maker faces the exogenous stochastic reference point Y . Faced with this
reference point, she faces a choice between the two risky prospects, Y and X. In this case,
X strictly dominates Y and the preference for X is obvious. Indeed, the relevant values for
expected reference-dependent utility are

U(Y |Y ) = 50 +
1

2

1

2
(0− 0) +

1

2

1

2
(100− 0) +

1

2

1

2
λ (0− 100) +

1

2

1

2
(100− 100) =

100

4
(3− λ)

U(X|Y ) =
101

2
+

1

2

1

2
(0−0)+

1

2

1

2
(101−0)+

1

2

1

2
λ (0−100)+

1

2

1

2
(101−100) =

100

4
(3−λ)+1

and the decision maker is predicted to prefer X to Y . In this case, X and Y have a perfectly
positive dependence. Now assume that a perfectly negative dependence:

X ′(1) = 101, X ′(2) = 0,

Equation (2.3) does not account for dependencies and hence the decision maker is still pre-
dicted to prefer X ′ to Y . However, it seems that a loss-averter would want to avoid the
situation (Y (2), X ′(2)) = (100, 0) by choosing Y .

Indifference to dependence structure is particularly difficult to understand when one eval-

uates a risky prospect that is also used as the reference point – “auto-evaluation”. In this

case, a perfectly positive dependence arises and the decision maker will not experience any

losses in the sense of negative deviations from the reference point. For example, an investor

who benchmarks against a market index experiences no losses when she perfectly replicates

the index. However, the model predicts that the joint probabilities are not relevant and the

decision maker experiences losses (disappointment), even in case of auto-evaluation. This

contrasts with the original interpretation of the reference point as a “neutral” prospect, ac-

cording to which the decision maker experiences no gains or losses when she would selects this
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prospect; see Kahneman and Tversky (1979, Page 274). In general, auto-evaluating a risky

prospect yields losses and implies negative gain-loss utility. By contrast, auto-evaluating a

riskless prospect always avoids losses and yields zero gain-loss utility. This introduces an

inherent aversion to risky prospects and implies, among other things, that auto-evaluating a

risky prospect is always less favorable than auto-evaluating its consumption certainty equiv-

alent:

Lemma 2.1. For any Y ∈ X we have

U(Y |Y ) ≤ η1M(Y ), and(2.5)

U(Y |Y ) = η1M(Y ) if and only if Y is riskless.(2.6)

Consequently, if Y is stochastic and η2 > 0 then

U(Y |Y ) < U(C(Y )|C(Y )).

Thus far, the reference point was exogenously given. Köszegi and Rabin (2006) develop

a framework to endogenously determine the reference point. They introduce the following

definitions:

Definition 2.2. A personal equilibrium (PE) is a prospect Y ∈ X such that

U(Y |Y ) ≥ U(X|Y )

for all X ∈ X . We denote by XPE ⊂ X the set of personal equilibria.
A preferred personal equilibrium (PPE) is a personal equilibrium with maximal reference-
dependent utility:

X ∈ arg max{U(Z|Z) : Z ∈ XPE}.

If Y /∈ XPE is taken as reference point, the decision maker will find a prospect X that

is preferred to Y , and will use X as the new reference point. Under assumption A3′ on the
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gain-loss function, the change of reference point does not cause a preference reversal, i.e.,

X is preferred to Y also with respect to the new reference point (Köszegi and Rabin 2006,

Proposition 1.3). Therefore, the decision maker will replace the reference point with the

preferred prospect as long as a personal equilibrium has not been reached. The preferred

personal equilibrium is the personal equilibrium with maximal reference-dependent utility.

The aversion to risky prospects implies that any riskfree personal equilibrium is also a

preferred personal equilibrium:

Proposition 2.1. Let X ∈ XPE be deterministic. Under assumption A3′, X is a PPE.

This result demonstrates the counterintuitive implications of cross-state comparisons. It

also implies that a preferred personal equilibrium need not maximize consumption utility,

not even on the set of personal equilibria. Consider the following example:

Example 2.2. We assume the same setup of Example 2.1. Consider the choice between the
fifty-fifty gamble Y for 0 or 100, and a sure thing Z that pays z ∈ [0, 100] with full certainty.

Because consumption utility is assumed to be linear, Y is the consumption optimum if
z ≤ 50 and Z is the optimum if z ≥ 50. The first step to implement the stochastic reference
point model is to compute the relevant expected reference-dependent utilities:

U(Y |Y ) =
100

4
(3− λ)

U(Z|Y ) = z +
1

2
(z − 0) +

1

2
λ (z − 100) =

1

2
(3 z + λ z − 100λ)

U(Y |Z) = 50 +
1

2
λ (0− z) +

1

2
(100− z) =

1

2
(200− λ z − z)

U(Z|Z) = z + (z − z) = z.

It follows directly that Y is a personal equilibrium (U(Y |Y ) ≥ U(Z|Y )) if z ≤ 50 and Z is
a personal equilibrium (U(Z|Z ≥ U(Y |Z)) if z ≥ 200/(3 + λ). Thus, for z < 200/(3 + λ)
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and z > 50, there exists a unique personal equilibrium, which is the preferred personal
equilibrium and is equal to the consumption optimum. However, for z ∈ [200/(3+λ), 50], both
alternatives are equilibria. Interestingly, the riskless equilibrium Z is then always preferred
to the risky equilibrium Y , because U(Y |Y ) < U(Z|Z) for z ∈ [200/(3 + λ), 50]. This result
is surprising, because Y rather than Z is the consumption optimum for z ∈ [200/(3 +λ), 50].
This result reflects bias of the model against risky alternatives. The risky personal equilibrium
yields negative gain-loss utility because the decision maker is assumed to derive negative gain-
loss utility from the situation where Y pays 0, while the reference point pays 100, a situation
that has zero probability of occurring since the reference point equals Y .

The purpose of this example is to demonstrate the divergence between the preferred

personal equilibrium and the consumption optimum under simplifying assumptions. In a

real-life choice experiment, many subjects would deviate from the consumption optimum in

the example by choosing the riskless alternative even if it has the lowest expected outcome

(for example, z = 45). One possible explanation for these choices is that the subjects do

not endogenously select their reference point, but simply fix it at, for example, their normal

hourly wage, introducing loss aversion. An alternative explanation is probability weighting,

which generally is strong even for fifty-fifty gambles and introduces a “certainty effect”.

To account for this effect, we may use a rank-dependent consumption utility model as the

benchmark. Using the same reasoning as in the example, the reference-dependent model

would then predict a stronger aversion to the risky alternative than the consumption model.

The preferred personal equilibrium characterizes risk preferences before making an an-

ticipated risky choice. Köszegi and Rabin (2007) also introduce the concept of choice-

acclimating personal equilibrium (CPE) to describe risk preferences after the choice has

been made. The CPE maximizes reference-dependent utility U(Z|Z) over all risky prospects
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rather than over personal equilibria (as in Definition 2.2), that is, the CPE corresponds to

X ∈ arg max{U(Z|Z) : Z from X}. This paper focuses on pre-choice risk preferences and

the preferred personal equilibrium. However, it follows directly from Proposition 3.2 below

that the post-choice CPE in our framework simply reduces to the consumption optimum,

that is, X ∈ arg max{M(Z) : Z from X}.

3 The State-dependent Reference Point Model

We deviate from Köszegi and Rabin (2006) in two ways: (i) we use a more general set of

admissible reference points and (ii) we replace the disappointment-based preference structure

with a state-dependent, regret-based structure. The analysis deviates from Sugden (2003)

model with a fixed state-dependent reference point, be allowing the reference point to be

selected endogenously.

Thus far, it was assumed that all feasible prospects are admissible reference points,

and vice versa. We now consider a more general specification where the set of admissible

reference points is a subset of all feasible prospects, Y ⊆ X. In our analysis, there is no

need to consider non-feasible prospects X /∈ X . However, for other purposes, it may be

useful to allow for, for example, an optimistic “utopia prospect” or a pessimistic “dystopia

prospect” as the reference point. It seems plausible that Y would depend on the decision

maker’s initial subjective valuation of the prospects and therefore the specification of Y will

be discussed after introducing our preference structure.

In the spirit of regret theory, we consider the following alternative, state-dependent struc-

12



ture:

Definition 3.1. Let Y ⊆ X . For a risky prospect X ∈ X and an admissible reference point
Y ∈ Y, the state-dependent reference-dependent utility of X given Y is defined as

(3.7) Ũ(X|Y ) =

∫ ∫
u(x|y) d2HX,Y (x, y).

where HX,Y (x, y) = P [X ≤ x, Y ≤ y] is the joint cumulative distribution function of X and
Y , and u is defined as in Equation (2.2).

The state-dependent model evaluates the outcome of the prospect and the reference point

at their joint probabilities, rather than the product of the marginal probabilities, and thus

also incorporates the statistical dependence between the prospect and the reference point.

In case of a discrete probability distribution with S states of nature, this boils down to

comparing the outcomes of the prospect with those of the reference point in the same state

of nature and not with outcomes in other states:

(3.8) Ũ(X|Y ) =
S∑
s=1

u(X(s)|Y (s)) ps.

Using a state-dependent reference point, the decision maker does not experience negative

gain-loss utility (disappointment) from the fact that bad states yield worse outcomes than

good states, as Equation (2.3) would predict. Rather, she derives negative gain-loss utility

(regret) when the chosen prospect falls below the reference point in the same state.

If two random variables X and Y are independent, then the joint cumulative distribution

function of X and Y is the product of the corresponding marginal distributions:

HX,Y (x, y) = FX(x)FY (y).
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In this case, the two specifications of reference-dependent utility coincide:

(3.9) Ũ(X|Y ) =

∫ ∫
u(x|y) dFY (y) dFX(x) = U(X|Y ).

However, the two models generally diverge if the prospect and the reference point are de-

pendent. Compared to the state-dependent model, the Köszegi and Rabin (2006) model

generally overestimates the true joint probabilities of gains or losses in case of positive de-

pendence between X and Y and underestimates the joint probabilities in case of negative

dependence. In fact, the decision maker may even experience illusionary gains and losses

that have a zero probability of occurring. In contrast to the disappointment specification, the

regret specification is not invariant with respect to the dependence structure. We formalize

this observation using the concept of positively and negatively associated random variables.

Definition 3.2. Two random variables X and Y are said to be positively associated if

Cov(f(X), g(Y )) ≥ 0

for every pair of non-decreasing functions f and g such that the above covariance exists.2

Negative association holds if the above inequality is reversed.

Using the state-dependent function, decision makers generally have a preference for

prospects that are positively associated with the reference point and an aversion to prospects

with a negative association:

Proposition 3.1. Let (X, Y ) ∈ X × Y be a pair of prospects and consider a second pair
of prospects (X̃, Ỹ ) with same marginal distributions as the first pair, i.e., FX̃ ≡ FX and
FỸ ≡ FY , and such that X̃ is independent from Ỹ . If u satisfies assumption A3′ then
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(i) Ũ(X|Y ) ≥ Ũ(X̃|Ỹ ) if X and Y are positively associated.

(ii) Ũ(X|Y ) ≤ Ũ(X̃|Ỹ ) if X and Y are negatively associated.

The following example illustrates the implications of Proposition 3.1:

Example 3.1. We assume the same setup of Example 2.1. Assuming a perfectly positive
dependence, the relevant values of expected reference-dependent utility are

Ũ(Y |Y ) = 50,

Ũ(X|Y ) =
101

2
+

1

2
(0− 0) +

1

2
(101− 100) = 51

and X is preferred to Y . However, assuming a perfect negative correlation, expected state-
dependent reference-dependent utility for X ′ given Y is

Ũ(X ′|Y ) =
101

2
+ λ

1

2
(0− 100) +

1

2
(101− 0) =

100

2
(2− λ) + 1

and the loss averter prefers Y to X ′ in order to avoid the loss situation (Y (2), X ′(2)) =
(100, 0).

By accounting for the dependence structure, the inherent aversion to risky prospects dis-

appears:

Proposition 3.2. Ũ(Y |Y ) = η1M(Y ) for all Y ∈ Y and therefore Ũ(Y |Y ) = Ũ(c(Y )|c(Y )).

Similar to Proposition 1.3 in Köszegi and Rabin (2006), but under more general condi-

tions, if a prospect is preferred to the reference point, then the same preference relationship

holds if the prospect is taken as reference point:
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Proposition 3.3. Let X, Y ∈ Y with P [X 6= Y ] > 0. If Ũ(X|Y ) ≥ Ũ(Y |Y ) then Ũ(X|X) >
Ũ(Y |X).

This result motivates the following definitions of state-dependent personal equilibrium

and state-dependent preferred personal equilibrium:

Definition 3.3. A element Y ∈ Y is a state-dependent personal equilibrium given Y (SPE)
if

Ũ(Y |Y ) ≥ Ũ(X|Y )

for all X ∈ Y. We denote the set of state-dependent personal equilibria in Y by YSPE.
A state-dependent preferred personal equilibrium given Y (SPPE) is a risky prospect Y ∈
YSPE such that

Y ∈ arg max{Ũ(Z|Z) : Z ∈ YSPE}.

Note that for a SPE we restrict the condition Ũ(Y |Y ) ≥ Ũ(X|Y ) to hold only for

prospects X in Y , i.e., only for admissible reference points. Therefore, in our setting, the

(S)PPE generally differs from the optimal prospect, while in Köszegi and Rabin (2007) the

decision maker selects a PPE as both the reference point as well as the optimal prospect

given the reference point.

Recall that the disappointment-based model and the regret-based model generally differ,

even if Y = X , unless the prospect and the reference point are statistically independent.

Therefore, the stochastic model and the state-dependent model generally yield different sets

of personal equilibria and different preferred personal equilibria. This occurs even when all

prospects are statistically independent, because the definition of personal equilibrium re-

quires auto-evaluation – a case with perfectly positive dependence. The following example
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shows that not every state-dependent personal equilibrium is a personal equilibrium:

Example 3.2. We assume the same setup of Examples 2.1 and 2.2 (thus we also assume
Y = X ). The state-dependent model computes the reference-dependent utilities as follows:

Ũ(Y |Y ) = 50 +
1

2
(0− 0) +

1

2
(100− 100) = 50

Ũ(Z|Y ) = U(Z|Y ) = z +
1

2
(z − 0) +

1

2
λ (z − 100) =

1

2
(3 z + λ z − 100λ)

Ũ(Y |Z) = U(Y |Z) = 50 +
1

2
λ (0− z) +

1

2
(100− z) =

1

2
(200− λ z − z)

Ũ(Z|Z) = U(Z|Z) = z.

Therefore Y is a state-dependent personal equilibrium (Ũ(Y |Y ) ≥ Ũ(Z|Y )) if Ũ(Z|Y ) ≤
50, or z ≤ 100 (1 + λ)/(3 + λ). Similarly, Z is a state-dependent personal equilibrium
(Ũ(Z|Z) ≥ Ũ(Y |Z)) if Ũ(Y |Z) ≤ z, or z ≥ 200/(3 + λ). Thus, for z < 100 (1 + λ)/(3 + λ)
and z > 200/(3+λ), there exists a unique state-dependent personal equilibrium, which equals
the state-dependent preferred personal equilibrium and the consumption optimum. However,
for z ∈ [200/(3 + λ), 100 (1 + λ)/(3 + λ)], we have two state-dependent personal equilibria
and the state-dependent preferred personal equilibrium is the consumption optimum. By
contrast, Example 2.2 shows that for z ∈ [50, 100 (1 + λ)/(3 + λ)] the risky prospect Y is
not a personal equilibrium. In contrast to Proposition 2.1, the example also shows that a
riskfree state-dependent personal equilibrium is not necessarily a state-dependent preferred
personal equilibrium. Indeed, for z ∈ [200/(3 + λ), 50] the riskfree prospect Z is a state-
dependent personal equilibrium, but not a preferred personal equilibrium. Table 1 summarizes
the comparison given in Examples 2.1, 2.2 and 3.2 between the stochastic reference point
model and the state-dependent model.

Under the general assumptions about risk preferences used thus far, we can also find

examples where not every personal equilibrium is a state-dependent personal equilibrium.3

However, if we impose more structure on risk preferences, such examples are excluded, and

every personal equilibrium is a state-dependent personal equilibrium:

Proposition 3.4. Suppose that m is bounded and µ satisfies assumption A3′. Then every
personal equilibrium in Y is a state-dependent personal equilibrium, i.e., YPE ⊂ YSPE.
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While comparison across states of nature generally moves the PPE away from the op-

timal solution to the reference-independent choice problem, the SPPE generally equals the

consumption optimum:

Proposition 3.5. Let Y ∈ Y be a state-dependent preferred personal equilibrium and let
η1 > 0.

(i) Y ∈ arg max{M(Z) : Z ∈ YSPE}.

(ii) Under assumption A3′, Y ∈ arg max{M(Z) : Z ∈ Y}. Moreover, any prospect in
arg max{M(Z) : Z ∈ Y} is a SPPE.

Loss-aversion in our model generally does not affect choice behavior if the reference point

is completely endogenous and adjusts immediately to new information or unexpected events

(i.e., Y = X ). The decision maker is then free to select any choice alternative and reference

point, and she may select the consumption optimum for both. This combination maximizes

both components of expected reference-dependent utility: (i) the consumption optimum by

definition maximizes expected consumption utility and (ii) expected gain-loss utility achieves

its maximal value of zero in case of auto-evaluation. Thus, the reference-dependent solution

equals the consumption optimum when the reference point is completely endogenous. Given

the wealth of evidence showing that loss aversion affects choice behavior, this finding suggests

that the reference point generally includes an important exogenous component. In our model,

this means that only a subset of the feasible prospects is considered as a candidate reference

point (i.e., Y ⊂ X ).

We now turn to the specification of the set of admissible reference points, Y . Without
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claims to generality, the following specification is sufficiently flexible for our purposes:

(3.10) Y = {X ∈ X : c(X,X0) ≤ c0}.

In this specification, X0 ∈ X is an external reference point that may reflect, for example,

a past reference point or a past solution from a previous decision problem, in case of repeated

decision making. For an investor who considers rebalancing her portfolio, the current port-

folio composition, or the solution to her previous rebalancing problem, could represent an

external point of reference. Alternatively, X0 may be an external benchmark that is imposed

by a principal or an external advice or a social norm. For example, for a money manager,

the external reference point could be a general market index or a customized benchmark

portfolio specified by a client. The function c measures the subjective adjustment cost or

mental effort of deviating from X0. It seems plausible that the costs would decrease with the

experience and education of the decision maker and the available decision time and decision

support tools. For a given decision maker and decision problem, the adjustment costs would

seem to depend on the “economic distance” between a candidate reference point X and the

initial reference point X0. One possible specification is:

(3.11) c(X,X0) = Ũ(X0|X0)− Ũ(X|X0).

In this case, the adjustment costs of a candidate reference point X depends on its “initial

value,” or the reference-dependent utility given the initial reference point X0. The initial
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value captures the decision-maker’s prior subjective judgement regarding the prospects. T¡he

mental cost of considering a candidate reference point is higher if the initial value is lower.

Loss aversion lowers the initial valuation and hence increases the adjustment costs and

shrinks the admissible set. c0 measures the maximum admissible adjustment costs. Setting

c0 ≥ max{c(X,X0) : X ∈ X} yields the extreme, unrestricted case with Y = X , or the

situation that was considered by Köszegi and Rabin (2006). In the extreme case of c0 = 0,

the decision maker would consider only alternative reference points that improve the initial

valuation. Such reference points represent obvious improvement possibilities that can be

detected even without changing the reference point. Still, the decision maker would avoid all

reference points with less salient improvement possibilities – ones that can only be detected

after first updating the reference point. If X0 already maximizes the initial valuation (and

is a unique solution), then X0 is also a state-dependent preferred equilibrium in X and the

reference point is in effect completely fixed, as in the Sugden (2003) model. Apart from being

fixed, X0 could also take a non-stochastic, constant value, as in the traditional interpretation

of the reference point, for example, in Prospect Theory.

As discussed above, loss-aversion in our model generally does not affect choice behavior if

the reference point is completely endogenous, that is, Y = X . However, more generally, loss

aversion increases the mental effort required to adjust the reference point and may exclude

some prospects from consideration. Loss aversion introduces a preference for solutions that

have a positive correlation with the initial reference point (and involve relatively low adjust-

ment costs) and an aversion to negative correlation. The decision maker generally deviates
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from the general consumption optimum in order to reduce her exposure to losses relative to

her initial reference point. Prospects that are positively correlated with the initial reference

point will look more attractive, because these involve smaller losses and lower adjustment

costs than uncorrelated or negatively correlated prospects. This is consistent with the pre-

diction of Köszegi and Rabin (2007) that a prior expectation to take on a risk will decrease

the willingness to pay for insurance against that risk.

While loss aversion generally causes deviations from the unrestricted consumption op-

timum, its effect is limited to excluding certain prospects and it does not introduce new

candidate solutions:

Proposition 3.6. Let Y ⊂ X be defined as in Equation (3.10) for some c0 ∈ R, where c is
the cost function given in Equation (3.11). Then under assumption A3′, a state-dependent
personal equilibrium given Y is a state-dependent personal equilibrium given X , i.e., YSPE ⊆
XSPE.

Thus, the preferred state-dependent personal equilibrium given Y will always be one of

the state-dependent personal equilibria of the unrestricted case.

4 Empirical application

We analyze historical returns to the one-month US Treasury bill (“bills”), the US common

stock market index constructed by the Center for Research in Security Prices (CRSP) of

the University of Chicago Booth School of Business (“stocks”) and 50/50 mixtures of bills

and bonds (“mix funds”). We consider returns with a daily, weekly, monthly and annual

frequency. The sample includes the daily, weekly and monthly returns from July 1, 1963 to
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April 30, 2010, and the yearly returns from 1963 to 2009, a total of 11,789 daily observations,

2,444 weekly observations, 562 monthly observations and 47 annual observations. Returns

are evaluated in excess of the T-bill rate, so that the bills have an excess return of zero and

are assumed to be completely risk free. The T-bill series are from Ibbotson Associates; the

stock series are from Kenneth French’ online data library.

As in the examples in the main text, we assume risk-neutral, linear consumption utility

(m(x) = x) and use a piecewise-linear gain-loss utility function (µ(x) = x if x ≥ 0 and

µ(x) = 2x if x < 0). We also considered other specifications, including risk averse, logarith-

mic consumption utility (m(x) = ln(100 + x)) and the Tversky and Kahneman (1992) value

function µ(x) = xα if x ≥ 0 and µ(x) = −λ (−x)α if x < 0, using the Tversky and Kahne-

man (1992) parameters (α = 0.88, λ = 2.25). However, the specification of the preference

parameters proved to be less important than the specification of the reference point and the

choice of the return frequency.

We use the historical returns as equally likely states-of-the-world. We estimate the ex-

pected consumption utility and gain-loss utility using the sample average over all states.

These averages are then used to identify the personal equilibriums and preferred personal

equilibriums. Given the high average excess return to stocks, it is not surprising that the

consumption optimum is to invest in stocks for every return frequency in our sample. Since

the excess returns on bills is always zero, consumption utility of bills is always zero too.

Stocks and mix funds by contrast have positive consumption utility on average.

To account for sampling error, we estimate the probability that stocks, bills and mix funds
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represent a personal equilibrium or a preferred personal equilibrium using bootstrapping.

We generate 10,000 pseudo-samples through random sampling with replacement from the

original sample, and compute average consumption utility and gain-loss utility in every

pseudo-sample. Next, we compute the fraction of the pseudo-samples where stocks, bills or

mix funds represent a personal equilibrium or a preferred personal equilibrium. The results

suggest that the full-sample results are robust to sampling variation.

The first four columns of Table 2 show results for the disappointment-based model of

Köszegi and Rabin (2006).

For daily and weekly returns, investing in bills is a personal equilibrium. When the

reference point equals the riskless rate, investing in bills looks more attractive than investing

in stocks or mix funds. Consumption utility and gain-loss utility of bills are always zero and

hence average reference-dependent utility equals zero. Stocks and mix funds have positive

consumption utility, but the large possible losses (disappointment) relative to the riskless rate

introduce negative average gain-loss utility, and reference-dependent utility takes a negative

value on average.

Investing in stocks is not a personal equilibrium for daily and weekly returns. According

to the model, stocks may cause losses even to investors who use stock returns as their

reference point. A prospective stock investor is assumed to be afraid that stocks would go

down, while the reference point goes up, a situation that will of course never occur when

stock returns are the reference point. For example, the largest weekly “loss” in the sample

occurs by comparing the stock market return of minus 18.40 percent in the week of October
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6-10, 2008 with the stock market return of plus 16 percent in the week of October 7-11,

1974. For this reason, bills and mix funds achieve a higher average reference-dependent

utility than stocks if stock returns are the reference point. Similarly, mix funds are not

a personal equilibrium, because bills look more attractive than mix funds when mix fund

returns are the reference point.

For monthly returns, all three asset classes are a personal equilibrium. Thus, every asset

class is optimal for investors who benchmark against the returns of that asset class. However,

the reference point is endogenous and the investor selects the preferred personal equilibrium,

or the personal equilibrium with the highest expected reference-dependent utility. Since bills

yield a zero expected reference-dependent utility and stocks and mix funds yield negative

values, bills are the preferred equilibrium.

Thus, for daily to monthly return frequencies, the preferred personal equilibrium is bills

and does not equal the optimal solution to the investment problem - stocks. The prefer-

ence for bills reflects the inherent aversion to risky choices that was discussed in Section

2; while bills by definition yield zero gain-loss utility when compared to the riskless rate,

auto-evaluation of stocks and mix funds yields negative gain-loss utility.

For annual returns, stocks are the only personal equilibrium. Bills and mix funds are not

personal equilibriums; stocks look more attractive than bills and mix funds when the riskless

rate or mix fund returns are the reference point.

The last four columns of Table 2 show results for the regret-based, state-dependent

model, which avoids comparing outcomes across states-of-the-world and focuses on within-
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state comparison only. We first assume full endogeneity for the reference point, or c0 = +∞

and Y = X ; we will consider binding adjustment costs below. The regret-based model is

identical to the disappointment-based model when the prospect or the reference point is

riskless; differences arise only when the prospect and the reference point are both stochastic.

Hence, the two models yield identical utility levels for bills, stocks or mix funds relative to

the riskless rate and bills relative to stock or mix fund returns. However, evaluating stocks

or mix funds relative to stock or mix fund returns now makes stocks and mix funds look

more favorable.

For daily, weekly and monthly returns, each of the three asset classes is a state-personal

equilibrium. Since holding stocks or mix funds avoids possible losses (regret) relative to

that asset class, gain-loss utility is zero and reference-dependent utility equals consumption

utility and is positive on average - in contrast to the negative values for the Köszegi and

Rabin model. The preferred personal equilibrium in this case is stocks, or the consumption

optimum. For annual returns, the preference for stocks is even stronger; bills and mix funds

are not even a personal equilibrium.

The above results illustrate that loss aversion does not affect optimal choice if the state-

dependent reference point is fully endogenous. We now turn to the case with an exogenous

initial reference point and binding adjustment costs. Table 3 summarizes the results for the

extreme case with c0 = 0, that is, the investor allows only adjustments of the reference point

that improve the initial valuation. The initial reference point X0 could be set at bills, stocks

or mix funds. We will first discuss the results for X0 =bills.
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For daily, weekly and monthly returns, bills are a personal equilibrium over X and hence

maximize the initial valuation. Therefore, bills are the only admissible reference point, or

Y = {bills}, and hence the preferred personal equilibrium. For annual returns, however,

stocks and mix funds achieve a higher initial value than bills and also represent admissible

reference points, that is, Y = {bills, stocks, mix funds}. Thus, in effect, this is the unre-

stricted case from Table 2, and stocks are the preferred state-dependent personal equilibrium.

These results show how costly adjustment can cause deviations from the consumption

optimum. If the reference point is fixed at a target rate-of-return, loss aversion will affect

investment by making bills appear more attractive to myopic investors with a relatively short

investment horizon.

We have thus far assumed X0=bills. If we assume that the initial reference point is

stocks, or X0=stocks, the preference for stocks is even stronger than in the unrestricted case

of Table 2, and stocks are the preferred equilibrium for every return frequency. If we set

X0 =mix funds, we find results that are comparable to those for X0 =bills; mix funds are the

preferred equilibrium for weekly to monthly returns, but stocks are the preferred equilibrium

for annual returns.

5 Conclusion

While the typical implementation of reference-dependent choice theories exogenously fixes

the reference point at a given constant, recent research has dealt with the possibility that

the reference point is a random variable and that the reference point is endogenously de-
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termined as part of the decision maker’s optimization problem. We add to this literature

by examining loss aversion with a state-dependent reference point. The model essentially

extends the Sugden (2003) model for an exogenous stochastic reference point to the case

where the reference point is endogenous (in part or in whole), and it modifies the Köszegi

and Rabin (2006) model by changing the underlying reference-dependent preference struc-

ture from “disappointment-based” to “regret-based” and allowing for exogenous component

in the reference point.

The Köszegi and Rabin (2006) model compares every possible outcome of the prospect

with every possible outcome of the reference point, as in disappointment theory. The decision

maker experiences losses when the outcome of the prospect in a given state falls below the

outcome of the reference point in other states. She is indifferent to the statistical dependency

between the prospect and the reference point. Comparing across states also introduces an

aversion to risky prospects, which yield negative gain-loss utility (disappointment), even in

the case of auto-evaluation. This aversion generally moves the preferred personal equilibrium

away from the decision maker’s consumption optimum. For example, in our empirical appli-

cation, investors are predicted to invest in riskless bills, while investing in stocks maximizes

their expected consumption utility.

The state-dependent reference point model leads to different results. The decision-maker

experiences negative gain-loss utility (regret) when the prospect falls below her reference

point in the same state. Therefore, prospects are more attractive if they depend positively

on the reference point and are less attractive in case of negative dependence. The state-
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dependent model is neutral in the sense that it avoids an inherent aversion to risky prospects

and yields no loss when the prospect and the reference point are the same. In addition,

an related to this, the model ensures that the preferred personal equilibrium equals the

consumption optimum, when the reference point is fully endogenous.

In the state-dependent model, loss aversion influences behavior only if the decision maker

is not free to select the consumption optimum as her reference point. Given that loss aver-

sion is widespread, we conclude that the reference point generally includes an important

exogenously fixed component or adjust slowly to new information or unexpected events. A

case in point is an investment benchmark index that is externally fixed by the investment

principal for the duration of the investment mandate. Our model captures this exogenous

component using costly adjustment from an initial, exogenous reference point. The fixed

state-dependent reference point of Sugden (2003) arises the special case with prohibitive ad-

justment costs, provided the decision maker cannot improve upon the initial reference point

without updating the reference point.

Further research could focus on the dynamics of a stochastic reference point - how does

it originate and how quickly does it adjust to new information or surprise events? Does

the adjustment speed depend on, for example, problem presentation, decision time and

experience? Another interesting research topic is probability weighting. Does probability

weighting affect consumption utility in the same way as gain-loss utility? Does it affect

the probabilities of the evaluated prospect, FX , in the same way as the probabilities of the

reference point, FY ?
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Notes

1Assumption A3′ implies that (x, y) 7→ u(u|y) is supermodular. A function φ : R2 → R
is supermodular if for all (x1, y1), (x2, y2) ∈ R2 we have

φ(min{x1, x2},min{y1, y2}) + φ(max{x1, x2},max{y1, y2}) ≥ φ(x1, y1) + φ(x2, y2).

On R2, supermodularity is equivalent to the property of having increasing differences, i.e.,
the function φ(·, y) − φ(·, y′) is nondecreasing for all y ≥ y′; see ?. Under assumption A3′,
the function

u(x|y)− u(x|y′) = η2


m(y′)−m(y) , x ≥ y ≥ y′

(λ− 1)m(x)− λ (m(y)−m(y′)) , y ≥ x ≥ y′

λ (m(y′)−m(y)) , y ≥ y′ ≥ x.

is nondecreasing in x for all y ≥ y′.

2Note that each random variableX is positively associated with itself (Joe 1997, Lemma 2.1).
Moreover, two random variables X and Y are positively (negatively) associated if and only
if they are positive (negative) quadrant dependent, i.e.,

HX,Y (x, y) ≥ (≤)FX(x)FY (y)

for all x, y ∈ R2 (see Joag-Dev and Proschan 1983, Property P1).

3Let Ω = {1, 2, 3} and P [{s}] = 1
3

for s = 1, . . . , 3. We define the risky prospects X and
Y as follows:

X(1) = 111.1, X(2) = 100, X(3) = 89

Y (1) = 110, Y (2) = 100, Y (3) = 90.

Suppose that m(x) = x, µ(x) = 1 − exp(−0.1x) if x ≥ 0 and µ(x) = 20 (exp(0.01x) − 1)
if x < 0 (the index of loss aversion is λ = 2), and η1 = η2 = 1. Then XSPE = {X} while
XPE = {X, Y }. The example exploits the different curvatures of the value function over gains
and losses. We use a piecewise-exponential function, since a piecewise-power function with
different powers for gains and losses violates assumption A2, as demonstrated in Köbberling
and Wakker (2005).

29



A Proofs

A.1 Proof of Lemma 2.1

Let Y ∈ X then

U(Y |Y ) =

∫ ∫
u(y|z) dFY (z) dFY (y)

= η1

∫ ∫
m(y) dFY (z) dFY (y) + η2

∫ ∫
µ(m(y)−m(z)) dFY (z) dFY (y)

= η1

∫
m(y) dFY (y) + η2

∫ ∫
z>y

µ(m(y)−m(z)) dFY (z) dFY (y)

+η2

∫ ∫
z<y

µ(m(y)−m(z)) dFY (z) dFY (y)

= η1

∫
m(y) dFY (y) + η2

∫ ∫
y>z

µ(m(z)−m(y)) dFY (y) dFY (z)

+η2

∫ ∫
z>y

µ(m(z)−m(y)) dFY (z) dFY (y)

= η1M(Y ) + η2

∫ ∫
z>y

µ(m(y)−m(z)) dFY (y) dFY (z)

+η2

∫ ∫
z>y

µ(m(z)−m(y)) dFY (z) dFY (y)

= η1M(Y ) + η2

∫ ∫
z>y

[µ(m(y)−m(z)) + µ(m(z)−m(y))] dFY (z) dFY (y)

= η1M(Y ) + η2

∫ ∫
z>y

[µ(−(m(z)−m(y))) + µ(m(z)−m(y))] dFY (z) dFY (y).

The second term vanishes if Y is riskless. If Y is stochastic, i.e., P [Y = a] < 1 for all a ∈ R,

and since m is strictly increasing, we have

∫ ∫
z>y

[µ(m(y)−m(z)) + µ(m(z)−m(y))] dFY (z) dFY (y) < 0

by property A2. This proves the statement of the Lemma.
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A.2 Proof of Proposition 2.1

Without loss of generality η2 > 0. Let

GL(Z|Y ) = (1/η2) (U(Z|X)− η1M(Z))

be the gain-loss utility. If η1 = 0 the statement is clear, since GL(Z|Z) ≤ 0 for all Z ∈ X .

Let η1 > 0. We prove the statement by contradiction. Assume that X = x is not a PPE.

Then it exists Z ∈ XPE with

U(Z|Z) > U(X|X).

It follows:

U(Z|X) = η1M(Z) + η2GL(Z|X) = η1M(Z) + η2GL(Z|Z)− η2GL(Z|Z) + η2GL(Z|X)

= U(Z|Z) + η2 (GL(Z|X)−GL(Z|Z))

> U(X|X) + η2 (GL(Z|X)−GL(Z|Z)).

If we prove GL(Z|X)−GL(Z|Z) ≥ 0, then U(Z|X) > U(X|X), a contradiction to X ∈ XPE.

The following properties are satisfied:

(i) M(Z) > M(X).

(ii) There exists z′ ∈ supp(Z), such that z′ > x.

We first prove these two properties:

(i) M(Z) = (1/η1) (U(Z|Z)− η2GL(Z|Z)) ≥ (1/η1)U(Z|Z) > (1/η1)U(X|X) = M(X).
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(ii) Suppose that for all z′ ∈ supp(Z) we have z′ ≤ x. Then x ≥ Z almost surely and

therefore M(X) = M(x) ≥M(Z) since M is monotone. This contradicts property (i).

Thus property (ii) holds.

Property (i) implies:

0 ≤ M(Z)−M(X) =

∫
R
(m(z)−m(x)) dFZ(z)

=

∫
z>x

(m(z)−m(x)) dFZ(z) +

∫
z<x

(m(z)−m(x)) dFZ(z)

and thus ∫
z>x

(m(z)−m(x)) dFZ(x) ≥ −
∫
z<x

(m(z)−m(x)) dFZ .

Property (ii) implies:∫
z>z′

(m(z)−m(z′)) dFZ(z) dFZ(z′) ≥
∫
z>x

(m(z)−m(x)) dFZ(z)

Under assumption A3′ we have

GL(Z|Z) = (1− λ)

∫
z>z′

(m(z)−m(z′)) dFZ(z) dFZ(z′)

(i)

≤ (1− λ)

∫
z>x

(m(z)−m(x)) dFZ(z)

=

∫
z>x

(m(z)−m(x)) dFZ(z)− λ
∫
z>x

(m(z)−m(x)) dFZ(z)

(ii)

≤
∫
z>x

(m(z)−m(x)) dFZ(z) + λ

∫
z<x

(m(z)−m(x)) dFZ(z)

= GL(Z|X).

Therefore GL(Z|X) ≥ GL(Z|Z) and thus U(Z|X) ≥ U(X|X), a contradiction to X ∈ XPE.

This prove the statement.
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A.3 Proof of Proposition 3.1

Christofides and Vaggelatou (2004) show that if X and Y are positively associated then

E [φ(X, Y )] ≥ E
[
φ(X̃, Ỹ )

]
for every supermodular function φ : R2 → R such that the expectations exist (we say that

the pair (X, Y ) dominates the pair (X̃, Ỹ ) by supermodular order). The inequality sign is

reverted in the latter equation if X and Y are negatively associated. Under Assumption A3′

the function φ : (x, y) 7→ u(x|y) is supermodular. Consequently,

Ũ(X|Y ) = E [φ(X, Y )] ≥ E
[
φ(X̃, Ỹ )

]
= Ũ(X̃|Ỹ )

if X and Y are positively associated. Similarly,

Ũ(X|Y ) ≤ Ũ(X̃|Ỹ )

if X and Y are negatively associated.

A.4 Proof of Proposition 3.2

If X = Y , then HX,X(x, y) = FX(min{x, y}). We have:

∫ ∫
µ(m(x)−m(y)) d2H(x, y) =

∫ ∫
µ(m(x)−m(y)) d2FX(min{x, y}) = 0

since d2FX(min{x, y}) = 0 for x 6= y. Therefore, the gain-loss utility is zero and this proves

the statement.
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A.5 Proof of Proposition 3.3

Let X, Y ∈ Y , then

Ũ(Y |X) + Ũ(X|Y ) =

= η1M(X) + η1M(Y )

+η2

∫ ∫
µ(m(y)−m(x)) d2H(x, y) + η2

∫ ∫
µ(m(x)−m(y)) d2H(x, y)

Since Ũ(X|X) + Ũ(Y |Y ) = η1M(X) + η1M(Y ) by (i), it is sufficient to show that∫ ∫
µ(m(y)−m(x)) d2H(x, y) +

∫ ∫
µ(m(x)−m(y)) d2H(x, y) < 0.

We have∫ ∫
µ(m(y)−m(x)) d2H(x, y) +

∫ ∫
µ(m(x)−m(y)) d2H(x, y)

=

∫ ∫
µ(−(m(x)−m(y))) d2H(x, y) +

∫ ∫
µ(m(x)−m(y)) d2H(x, y)

Property A2 implies that µ(−(m(x)−m(y))) +µ(m(x)−m(y)) < 0 for all x 6= y (also using

that m is strictly increasing). Thus, if P [X 6= Y ] > 0, then∫ ∫
µ(−(m(x)−m(y))) d2H(x, y) +

∫ ∫
µ(m(x)−m(y)) d2H(x, y) < 0

and this proves the statement.

A.6 Proof of Proposition 3.4

Let Y ∈ YPE. If Y is riskless, than the statement is obvious since U(Z|Y ) = Ũ(Z|Y ) for

all Z ∈ Y . Therefore we assume that Y is stochastic (and thus its cumulative distribution

function is not degenerated).
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Let Z ∈ Y . If Z is riskless, then

Ũ(Z|Z) ≥ U(Y |Y ) ≥ U(Y |Y ) = Ũ(Z|Y ),

and Z is not preferred to Y if Y is the reference point. Therefore, we also assume that Z is

stochastic (and thus its cumulative distribution function is not degenerated).

Let Z∗ be a random variable with the same marginal distribution of Z, and Y and Z∗

have joint distribution min{FY (x), FZ(y)} (it corresponds to the upper Fréchet bound; see

Joe 1997). By Property (2.4), U(Z∗|Y ) = U(Z|Y ).

Let φ : (x, y) 7→ u(x|y). Since φ is continuous, bounded and supermodular, then by

Tchen (1980, Corollary 2.2)

Ũ(Z∗|Y ) = E [φ(Z∗, Y )] ≥ E [φ(Z, Y )] = Ũ(Z|Y ).

Therefore, if we prove that Ũ(Z∗|Y ) ≤ Ũ(Y |Y ) then also Ũ(Z|Y ) ≤ Ũ(Y |Y ), and the

statement follows. For the sake of simplicity, we denote Z∗ by Z.

For any function g we have∫ x1

x0

g(t) dt =

∫
R

1{x1>t} g(t) dt−
∫

R
1{x0>t} g(t) dt.

From this property and assumption A3′, for any x, y ∈ R we obtain:

φ(x, y)− φ(x0, y) =

∫ x

x0

g(t, y) dm(t) =

∫
R

1{x>t} g(t, y) dm(t)−
∫

R
1{x0>t} g(t, y) dm(t)

where g(t, y) = η1 + η2 λy(t),

λy(t) =


λ , y > t

1 , y ≤ t

,
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and λ > 1 is defined in A4.

Let Ỹ and Z̃ be independent copies of Y and Z, i.e., Ỹ and Z̃ have the same marginal

distributions of Y and Z, respectively, and are both independent from Y and Z. Using the

formula for φ(x, y)− φ(x0, y), we have:

φ(Z̃, Y )− φ(Ỹ , Y ) =

∫
R
(1{Z̃>t} − 1{Ỹ >t}) g(t, Y ) dm(t)

φ(Z, Y )− φ(Y, Y ) =

∫
R

(1{Z>t} − 1{Y >t}) g(t, Y ) dm(t).

We take the expectations and we apply Fubini’s theorem; it follows:

U(Z|Y )− U(Y |Y ) = E
[
φ(Z̃, Y )

]
− E

[
φ(Ỹ , Y )

]
=

∫
R
(FY (t)− FZ(t)) E [g(t, Y )] dm(t)

Ũ(Z|Y )− Ũ(Y |Y ) = E [φ(Z, Y )]− E [φ(Y, Y )] =

∫
R

E
[
(1{Z>t} − 1{Y >t}) g(t, Y )

]
dm(t).

Using that g(t, Y ) = η1 + η2 λ 1{Y >t}+ η2 1{Y≤t} we derive the expected values of g(t, Y ) and

(1{Z>t} − 1{Y >t}) g(t, Y ):

U(Z|Y )− U(Y |Y ) = (η1 + λ η2)

∫
R

(FY (t)− FZ(t)) dm(t)

−(λ− 1)η2

∫
R
(FY (t)− FZ(t))FY (t) dm(t)

Ũ(Z|Y )− Ũ(Y |Y ) = (η1 + λ η2)

∫
R

(FY (t)− FZ(t)) dm(t)

−(λ− 1)η2

∫
R
(FY (t)−HY,Z(t, t)) dm(t)
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and therefore

Ũ(Z|Y )− Ũ(Y |Y ) =

= U(Z|Y )− U(Y |Y )− η2(λ− 1)

∫
R

[(FY (t)−HY,Z(t, t))− (FY (t)− FZ(t))FY (t)] dm(t).

The first term is negative since Y ∈ YPE; the second term is also negative since HY,Z(t, t) =

min{FY (t), FZ(t)}:

FY (t)−HY,Z(t, t)−(FY (t)−FZ(t))FY (t) =


(FZ(t)− FY (t))FY (t) , FY (t) ≤ FZ(t)

(FY (t)− FZ(t)) (1− FY (t)) , FY (t) > FZ(t)

.

Thus Ũ(Z|Y ) ≤ Ũ(Y |Y ) and since this is true for all Z ∈ Y , Y is a state-dependent

personal equilibrium, i.e., Y ∈ YSPE.

A.7 Proof of Proposition 3.5

(i) Follows directly from the definition of SPPE and Proposition 3.2.

(ii) Let Y be a SPPE and suppose that there exists W ∈ Y such that M(W ) > M(Y ).

Without loss of generality, we take W ∈ arg max{M(Z) : Z ∈ Y}. Let V ∈ Y , then

M(W ) ≥ M(V ). Under assumption A3′, the function µ is concave, thus by Jensen’s

inequality we have:

E [µ(m(V )−m(W ))] ≤ µ (E [m(V )−m(W )]) = µ(M(V )−M(W )) ≤ 0.

Therefore,

Ũ(V |W ) = η1m(V ) + η2 E [µ(m(V )−m(W ))] ≤ η1m(V ) ≤ η1M(W ) = Ũ(W |W ),
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i.e., W is a state-dependent personal equilibrium given Y . By (i), the SPPE has

maximal consumption utility over the set of SPE’s given mathcalY , which contradicts

M(W ) > M(V ). This also shows that W ∈ arg max{M(Z) : Z ∈ Y} is a SPPE given

Y .

A.8 Proof of Proposition 3.6

Assume that Y ∈ YSPE but Y /∈ XSPE. The we find X ∈ X \ Y such that

Ũ(X|Y ) > Ũ(Y |Y ).

If η2 = 0, the statement is clear.

Let η2 > 0 and

G̃L(Z|W ) =
1

η2

(Ũ(Z|W )− η1M(Z))

for all (Z,W ) ∈ X × Y .

It follows:

Ũ(X|X0)− Ũ(Y |X0) =

= η1M(X) + η2 G̃L(X|X0)− η1M(Y )− η2 G̃L(Y |X0)

= η1M(X) + (η2 G̃L(X|Y )− G̃L(X|Y ))︸ ︷︷ ︸
=0

+η2 G̃L(X|X0)− η1M(Y )− η2 G̃L(Y |X0)

= Ũ(X|Y )− G̃L(X|Y )) + η2 G̃L(X|X0)− Ũ(Y |Y )− η2 G̃L(Y |X0)

= Ũ(X|Y )− Ũ(Y |Y ) + η2 (G̃L(X|X0)− G̃L(X|Y ))− G̃L(Y |X0))

≥ η2 (G̃L(X|X0)− G̃L(X|Y ))− G̃L(Y |X0))
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The latter inequality follows since Ũ(X|Y ) > Ũ(Y |Y ).

Moreover, from Definition 3.1, it follows

G̃L(X|X0) = E [µ(m(X)−m(X0))] = E [µ(m(X)−m(Y ) +m(Y )−m(X0))] .

Under Assumption A3′, µ is super-additive, i.e., µ(x + y) ≥ µ(x) + µ(y) for all x, y ∈ R. It

follows:

G̃L(X|X0) = E [µ(m(X)−m(Y ) +m(Y )−m(X0))]

≥ E [µ(m(X)−m(Y )) + µ(m(Y )−m(X0))]

= E [µ(m(X)−m(Y ))] + E [µ(m(Y )−m(X0))]

= G̃L(X|Y ) + G̃L(Y |X0).

Therefore

Ũ(X|X0)− Ũ(Y |X0) ≥ η2 (tildeGL(X|X0)− G̃L(X|Y )− G̃L(Y |X0)) ≥ 0

and Ũ(X|X0) ≥ Ũ(Y |X0). This implies that X ∈ Y . A contradiction to Y ∈ YSPE.
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z
[
0, 200

3+λ

] [
200
3+λ

, 50
] [

50, 100 (1+λ)
3+λ

] [
100 (1+λ)

3+λ
, 100

]
CO Y Y Z Z

PE Y Y, Z Z Z

PPE Y Z Z Z

SPE Y Y, Z Y, Z Z

SPPE Y Y Z Z

Table 1: The table shows consumption optimum (CO), personal equilibria (PE), preferred
personal equilibria (PPE), state-dependent personal equilibria (SPE) and state-dependent
preferred personal equilibria (SPPE) for a risk neutral decision maker who face the choice
between a fifty-fifty gamble Y for 0 or 100, and a sure thing that pays z ∈ [0, 100].
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Daily Weekly Monthly Yearly

X0=Bills

Y = {Bills} 1.000 1.000 0.915 0.169

Y = {Bills, Stocks} 0.000 0.000 0.000 0.000

Y = {Bills, Mix Funds} 0.000 0.000 0.000 0.000

Y = {Bills, Stocks, Mix Funds} 0.0000 0.000 0.085 0.831

X0=Stocks

Y = {Stocks} 1.000 1.000 1.000 1.000

Y = {Stocks, Bills} 0.000 0.000 0.000 0.000

Y = {Stocks, Mix Funds} 0.000 0.000 0.000 0.000

Y = {Stocks, Bills, Mix Funds} 0.000 0.000 0.000 0.000

X0=Mix Fund

Y = {Mix Funds} 1.000 1.000 0.915 0.169

Y = {Mix Funds, Bills} 0.000 0.000 0.000 0.000

Y = {Mix Funds, Stocks} 0.000 0.000 0.085 0.831

Y = {Mix Funds, Bills, Stocks} 0.000 0.000 0.000 0.000

Table 3: The table shows the results from the applying state-dependent utility model to
daily, weekly and monthly excess returns of bills, stocks, and mix funds with 50% stocks
and 50% bills from July 1, 1963, to April 31, 2010, and yearly returns for 1963-2009. We
assumed a risk neutral consumption utility (m(x) = x) and a piecewise-linear value function
(µ(x) = x for x ≥ 0 and µ(x) = 2x for x < 0). The set of admissible reference points
corresponds to Y = {X ∈ X : c(X,X0) ≤ c0}, where c(X,X0) = Ũ(X0|X0) − Ũ(X|X0)
and c0 = 0. The table reports bootstrap results. We generated 10,000 pseudo-samples
through random sampling with replacement from the original sample, and computed av-
erage reference-dependent utility in every pseudo-sample. For every initial reference point
X0 ∈ {Bills, Stocks, Mix Funds} we computed the fraction of the pseudo-samples where the
set of admissible reference points corresponded to Y reported in the first column for the
corresponding values of the exogenously given reference point X0. The SPPE given Y is
bold-faced. The stock series are from Kenneth French’ online data library; the T-bill series
are from Ibbotson Associates.
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