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Abstract 

We study first- and second-order subjective expectations (beliefs) in strategic decision-

making. We propose a method to elicit probabilistically both first- and second-order beliefs 

and apply the method to a Hide-and-Seek experiment. We study the relationship between 

choice and beliefs in terms of whether observed choice coincides with the optimal action 

given elicited beliefs. We study the relationship between first- and second-order beliefs 

under a coherence criterion. Weak coherence requires that if an event is assigned, according 

to first-order beliefs, a probability higher/lower/equal to the one assigned to another event, 

then the same holds according to second-order beliefs. Strong coherence requires the 

probability assigned according to first- and second-order beliefs to coincide. Evidence of 

heterogeneity across participants is reported. Verbal comments collected at the end of the 

experiment shed light on how subjects think and decide in a complex environment that is 

strategic, dynamic and populated by potentially heterogeneous individuals. 
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1 Introduction

Sherlock Holmes: ‘My dear Mr Watson, you evidently did not realize my meaning when I said that this
man may be taken as being quite on the same intellectual plane as myself. You do not imagine that if I
were the pursuer I should allow myself to be baffled by so slight an obstacle.’
Mr Watson: ‘What will he do?’
Sherlock Holmes: ‘What I should do.’
Mr Watson: ‘What would you do then?’

from ‘The Final Problem’ in ‘The Memoirs of Sherlock Holmes’ by Arthur Conan Doyle (1894)

Sherlock Holmes, pursued by his opponent, Moriarty, leaves London for Dover. The train stops at a station
on the way, and he alights there rather than traveling on to Dover. He has seen Moriarty at the railway
station, recognizes that he is very clever and expects that Moriarty will take a faster special train in order
to catch him in Dover. [...] But what if Moriarty had been still more clever and had foreseen his actions
accordingly? Then, obviously, he would have traveled to the intermediate station. Holmes, again, would
have had to calculate that and he himself would have decided to go on to Dover. Whereupon, Moriarty
would again have reacted differently.

from ‘Economic Prediction’ by Oskar Morgenstern (1928)1

In his first book, published in 1928, Oskar Morgenstern turns to the adventures of Sherlock Holmes
for a vivid description of the ‘chain of reciprocally conjectural reactions and counter-reactions’ that
arises in a strategic decision problem. Within the chain, subjective beliefs play a crucial role. Sherlock
Holmes holds subjective beliefs about the behavior of his opponent Moriarty and chooses his best
course of action based on his conjectures. Conjectures are reciprocal. Acknowledging that Moriarty
(i) holds beliefs about his (i.e. Sherlock Holmes’s) behavior and (ii) chooses his best course of action
based on those beliefs, Sherlock Holmes holds in turn beliefs about Moriarty’s beliefs. Restricting
attention to the first two steps of the chain, we refer to Sherlock Holmes’s conjectures about Moriarty’s
behavior as his first-order beliefs and to his conjectures about Moriarty’s conjectures about his behavior
as his second-order beliefs. Higher-order beliefs are likely to play a role in virtually all strategic
situations. Examples include situations involving deception, social preferences, and more generally
any environment with asymmetric information.

This paper studies first- and second-order subjective beliefs in a strategic decision-making experi-
ment. Experiment participants play in pairs a simple Hide-and-Seek game, in which the hider needs
to choose between two hiding places and the seeker needs to guess the hiding place chosen by the
hider. While they play, their first- and second-order beliefs are elicited probabilistically. We have
three main objectives. First, we assess the feasibility of eliciting both first- and second-order beliefs
probabilistically. Given that decision makers are likely to feel some uncertainty about their own con-
jectures, being aware that they may or may not turn out to be correct, first- and second-order beliefs
should be treated and elicited probabilistically. Second, we examine the relationship between ob-
served choice and elicited first- and second-order beliefs. Finally, we investigate heterogeneity among
decision-makers in terms of choice behavior and stated beliefs.

Probabilistic vs non-probabilistic belief elicitation. Throughout the paper, we distinguish
probabilistic (or distributional) forecasts from non-probabilistic (or deterministic, or point) forecasts.

1Original full title ‘Wirtschaftsprognose, Eine Untersuchung ihrer Voraussetzungen und Möglichkeiten’, translated as
‘Economic Prediction: An Examination of its Conditions and Possibilities’.
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While a probabilistic forecast allows the forecaster to express any uncertainty she may perceive about
her own forecast, a non-probabilistic forecast does not allow for it. If beliefs are reported as proba-
bilistic forecasts, we refer to beliefs as being elicited probabilistically (in short, probabilistic beliefs).
Analogously, if beliefs are reported as non-probabilistic forecasts, we refer to beliefs as being elicited
non-probabilistically (in short, non-probabilistic beliefs).

The formats to be employed to elicit beliefs depend on whether the variable to be forecasted
is discrete or continuous. To illustrate this point, we describe in turn the probabilistic and non-
probabilistic forecasts of a binary discrete variable and of a continuous variable. Consider forecasting
which of two mutually exclusive and jointly exhaustive binary events {A,B} will occur. A non-
probabilistic forecast is either of the statements ‘I believe that A will occur’ or ‘I believe that B will
occur’. A probabilistic forecast, instead, is a statement such as ‘I believe with probability x percent
that A will occur and with probability 100− x percent that B will occur’, with x ∈ [0, 100].

Consider now forecasting the value taken by a continuous variable a. A non-probabilistic forecast
is a statement such as ‘I believe that a will equal a∗’. A probabilistic forecast, instead, is a statement
such as ‘I believe that a cannot be smaller than a nor larger than a and that, for any subset A of
the support, the probability that a lies in A is P (A). Thus, when forecasting a continuous variable, a
non-probabilistic forecast is a specific and unique number, while a probabilistic forecast is a probability
distribution over a support.

Table 1 summaries the above discussion illustrating probabilistic and non-probabilistic elicitation
of first- and second-order beliefs in a two-player game such as the Hide-and-Seek game, in which player
i chooses one action in {C,D} and player j chooses one action in {A,B}.

Contributions The main contribution of this paper is to show that elicitation of probabilistic
second-order beliefs, along with first-order beliefs, is feasible and to propose a methodology to achieve
the elicitation. The proposed method consists of two steps. In the first step, which serves as an
introduction for participants to better understand the second step, subjects report a point forecast (i.e.
non-probabilistic), stating what they think the most likely value is for their opponent’s probabilistic
first-order beliefs. In the second step subjects report a probabilistic forecast, stating the probabilities
with which they think their opponent’s probabilistic first-order beliefs fall within several intervals.
As discussed in Section 3, the appropriate information about second-order beliefs beliefs, in order to
analyze players’ decision-making, is provided by the probabilistic responses collected in the second
step, but not by the non-probabilistic responses collected in the first step. The question format
we designed allows us to elicit the appropriate (albeit still partial) information about probabilistic
second-order beliefs, by collecting several values of P ([aj , aj+1]) for a series of aj ∈ [0, 100] percent.

The feasibility of eliciting second-order beliefs as a probabilistic forecast would be undermined were
the point and the probabilistic forecasts not coherent, in the sense that the point forecast is not some
measure of central tendency for the probabilistic forecast. It is reasonable to expect that, if subjects
were unable to state their second-order beliefs as a probabilistic forecast while they found it quite
natural to state them as a point forecast, requiring them to submit both types of forecast would likely
result in incoherent answers.2 Evidence from both nonparametric and parametric analysis suggests
that the point and probabilistic forecasts exhibit coherence.

2While surveys are often plagued by nonresponse, the experiment conducted in this study is not subject to nonresponse,
since experiment participants were required to complete all forecast tasks. Therefore, we refer to subjects being possibly
‘unable’ to state second-order beliefs probabilistically, and don’t refer to them being possibly ‘unwilling’.
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Table 1: Probabilistic vs non-probabilistic beliefs elicitation of first- and second-order beliefs.

agent i’s variable beliefs elicitation
beliefs to be forecasted probabilistic non-probabilistic

agent j’s discrete. prob. distr. over yj yij = {A,B}
1st-order binary action: Probi(yj = A) and Probi(yj = B)

yj = {A,B}
Bellemare et al 2011 Bhatt and Camerer 2005

agent j’s continuous prob. distr. point-forecast
probabilistic over Probj(yi = C) of Probj(yi = C)

1st-order beliefs:
Probj(yi = C) this paper Bellemare et al 2011

2nd-order

agent j’s discrete. prob. distr. over yji yji
i

= {C,D}
non-probabilistic Probi(yji = C) and Probi(yji = D)

1st-order beliefs:

yji = {C,D} Bhatt and Camerer 2005

Notes to Table 1. Consider a simultaneous two-player game in which player i chooses between {C,D} and player j
between {A,B}. It is not necessary to define payoffs. Consider player i’s 1st- and 2nd-order beliefs. Player i’s 1st-order
beliefs are her beliefs about player j’s action. Player i’s 2nd-order beliefs are her beliefs about player j’s 1st-order beliefs,
i.e. about what player j believes player i’s action itself to be. With yj we denote player j’s chosen action. With yij
we denote player i’s non-probabilistic 1st-order beliefs about the action chosen by player j. With Probi(yj = A) we

denote player i’s probabilistic 1st-order beliefs about A being the action chosen by player j. With yji
i

we denote player
i’s non-probabilistic 2nd-order beliefs about player j’s non-probabilistic 1st-order beliefs yji . With Probi(yji = C) we
denote player i’s probabilistic 2nd-order beliefs about player j’s non-probabilistic 1st-order beliefs yji being equal to C.

We study the relationship between observed choice and elicited beliefs in terms of whether choice
coincides with the optimal action given beliefs. While verifying whether choice coincides with the
optimal action given beliefs is straightforward when considering 1st-order beliefs, it becomes more
involved and subtle when considering 2nd-order beliefs. This occurs because, in order to engage in
second-order conjectures, a player needs to put herself in the shoes of the opponent and think about
how the opponent thinks and behaves. This requires thinking about the decision rule which the
opponent employs. Throughout the paper we maintain the assumption that a player is certain that
the opponent uses her beliefs to make an optimal choice. Allowing player i to be uncertain about the
nature of player j’s decision rule would require the support of player i’s 2nd-order beliefs to consists
of pairs Rj× [0, 100], where Rj is the set of player j decision rules that player i thinks feasible, further
complicating the elicitation of 2nd-order beliefs. The maintained simplified view corresponds to what
is also reflected in the fictional quote reported at the beginning of this section. Sherlock Holmes
thinks that Moriarty ‘may be taken as being quite on the same intellectual plane as myself’, therefore
believing (with certainty) that his opponent does choose the optimal action given his beliefs.

We study the relationship between first- and second-order beliefs under the following criterion
of coherence. Strong-coherence requires that an event’s probability evaluated according to 1st-order
beliefs and 2nd- order beliefs coincides. Weak-coherence instead only requires that if an event is
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assigned, according to 1st-order beliefs, a probability higher/lower/equal to the one assigned to another
event, then the same also holds according to 2nd-order beliefs.

The investigation uncovers a high degree of heterogeneity across experiment participants, in terms
of both observed choices and elicited beliefs. In fact, it is reasonable to think that participants are
far from being a homogeneous pool of individuals, in terms of the subjective beliefs they hold and the
decision rules they employ. The collection of written verbal comments, which participants reported at
the end of the experimental session, provides a rare opportunity to shed light on how subjects reason
about and deal with concepts such as randomness, indifference, heterogeneity/homogeneity, aggre-
gation, and learning/dynamics. Throughout the analysis, we devote attention to the interpretation
of indifference, which occurs when a decision maker feel indifferent between two alternatives she can
choose from. Although the evidence collected through the verbal comments is anecdotal, we believe
that the use of final questionnaires/interviews may prove useful to improve our understanding of how
subjects think and decide in a complex environment, which is strategic, dynamic and populated by a
potentially heterogeneous population.

Implications and limitations The results of this paper provide encouraging evidence in favor of the
feasibility of measuring second-order beliefs probabilistically. Moreover, while the proposed elicitation
method is implemented within a lab experiment, we believe that its format and wording could prove
useful also outside the lab. The feasibility of measuring second-order beliefs probabilistically represents
a step forward in understanding the process of thinking that subjects experience when facing a strategic
situation, and in turning the game-theoretic concept of higher-order beliefs into an observable variable.

Some reader may perceive as a limitation the fact that the paper focuses uniquely on decision-
making under uncertainty, and does not extend in an obvious way to decision-making under ambiguity.
In fact, throughout the paper, we work under the assumption that subjects hold a unique subjective
probabilistic forecast for an unknown event, not allowing subjects to possibly hold a set of such
forecasts. We certainly consider exploring the elicitation of beliefs under ambiguity an interesting
topic for further research.

Related literature This paper is closely related to the literature on elicitation of probabilistic first-
order beliefs. Researchers have elicited probabilistic beliefs for over a century and the practice has
become common in survey research since the early 1990s. See the review article of Manski (2004).
Elicitation of first-order beliefs in experimental economics is much more recent. Nyarko and Schotter
(2002) studied a 2x2 normal-form game and show how the elicitation of first-order probabilistic beliefs
can improve the prediction of choice behavior compared to the use of unverifiable proxies for beliefs.
Manski (2002) showed how probabilistic beliefs data enable one to overcome the identification problem
that arises when choice data alone are used to make inference about decision rules. Since then,
elicitation of first-order beliefs in experiments has grown rapidly.3

3A rapidly-growing literature analyzes the relation between choice behavior and beliefs. Rutström and Wilcox (2009)
and Palfrey and Wang (2009) focus on the effects that the elicitation of beliefs may have on choice behavior, including
the possibility of more strategic behavior, lower risk aversion and overconfidence. Fehr, Kübler and Danz (2011) focus on
the role that participants’ matching mechanism, feedback about previous outcomes and information about opponent’s
payoff may have on the relation between choice behavior and beliefs, arguing that feedback about previous outcomes
is the driving force of learning. Costa Gomes and Weizsacker (2008) study one-shot games with no feedback about
outcomes nor opponent’s behavior and find that choices are often not best response to first-order beliefs. Most of this
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While elicitation of first-order beliefs has received growing attention, attempts to elicit second-
order beliefs have been limited. Not only have the attempts been limited, but, as far as we are aware,
previous research has measured second-order beliefs non-probabilistically, even though probabilistic
elicitation of first-order beliefs has become standard practice. Bhatt and Camerer (2005) and Vanberg
(2008) elicit 2nd-order beliefs non-probabilistically (along with non-probabilistic 1st-order beliefs),
while Bellemare, Sebald and Strobel (2011) elicit 1st-order beliefs probabilistically and 2nd-order
beliefs non-probabilistically.4 Table 1 lists the above-mentioned papers according to whether they
employed probabilistic or non-probabilistic elicitation and Table 2 reports the exact wording used.
Finally, we mention also the unpublished version which preceded Costa Gomes and Weizsacker (2008)
as also containing elicitation of second-order beliefs, albeit as point forecasts.5 To our knowledge, our
paper represents the first attempt to measure second-order beliefs probabilistically.

Plan of the paper The remainder of the paper is organized as follows. Section 2 presents the
experimental design and the method used to elicit subjective first- and second-order beliefs probabilis-
tically. Section 3 describes the decision problem and defines the relevant beliefs variables, together
with the concepts of strong-coherence and weak-coherence. Section 4 presents the main discussion.
Finally, Section 5 concludes, suggesting directions for further research.

2 Experimental Procedure

The experiment was conducted in the Computer Laboratory of the Main Library at Northwestern
University in Evanston, IL. Participants were undergraduate students from Northwestern University.
Subjects were recruited using the online recruitment system ORSEE (Greiner (2004)) and the exper-
iment was programmed and conducted with the software Z-Tree (Fischbacher (2007)).

Each experimental session lasted for approximately 30 minutes, including the time for reviewing
the instructions, and was identically administered by the same experimenter. When the subjects first
arrived at the Computer Lab, they were randomly assigned to one of the 30 computer terminals in
the Lab. A welcoming speech was then given, describing the structure and timing of the experiment.
Finally, a three-page copy of the instructions was distributed to all participants, who then had 5
minutes to read the instructions and ask questions. Students who wished to ask questions would raise
their hand and their questions would be answered privately. Students were allowed to keep a copy of
the instructions during the entire session.

The participants play a Hide-and-Seek game. The game is played in pairs: one subject is given
the role of Hider and the other subject the role of Seeker. Henceforth, the Hider and Seeker are called
agents H and S respectively. The Hider has to hide a prize (a $10 banknote) in one of two locations.
The Seeker has to guess where the prize has been hidden. If the Seeker guesses correctly, she wins the

literature has focused on normal-form games. Belief elicitation in extensive-form games is implemented by Dominitz
and Hung (2004) and Ziegelmeyer, Bracht, Koessler and Winter (2010) in order to study social learning in information
cascade games.

4We restrict our attention to quantitative statements and consider purely verbal ones (such as ‘very likely’, ‘likely’,
‘somewhat likely’, ‘somewhat unlikely’, ‘unlikely’, ‘very unlikely’) as non-probabilistic forecasts. Therefore, we consider
the elicitation of 1st-order beliefs in Vanberg (2008) as non-probabilistic.

5Costa-Gomes and Weizsäcker (2008) state that they ‘elicited point estimates of players’ second-order beliefs, and
not unrestricted probabilistic second-order beliefs.’
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Table 2: First- and second-order beliefs elicitation methods used in previous works.

Bhatt and Camerer (2005)

1st-order beliefs: ‘What do you think the other player will choose?’

A B

2nd-order beliefs: ‘What do you think the other player believes you will choose?’

A B

Vanberg (2008)

1st-order beliefs: ‘What do you think the other player will choose?’

certainly A probably A unsure probably B certainly B

2nd-order beliefs: ‘What do you think the other player believes you will choose?’

certainly A probably A unsure probably B certainly B

Bellemare et al. (2011)

1st-order beliefs (of type-1-person):
How many type-2-persons out of 100 will choose A and how many B?

Number of type-2-persons out of 100 that will choose A: . . .
Number of type-2-persons out of 100 that will choose B: . . .

2nd-order beliefs (of type-2-person):
What do you think about type-1-person’s beliefs about the behavior of type-2-persons?

Type-1-person believes that . . . type-2-persons out of 100 choose A.
Type-1-person believes that . . . type-2-persons out of 100 choose B.

prize. Otherwise, the Hider keeps the prize. The two locations are two zones in which a square field
has been divided. The two zones have the same area, while they differ in shape and labeling. There
is an inner square field, labeled A, and an outer contour-shaped field, labeled B. The instructions in
Appendix D contain the figure representing the two zones.

Several designs of Hide-and-Seek games have been studied in situations with nonneutral payoffs
and/or framing of locations. In the design used by Rubinstein, Tversky and Heller (1996), the Hider
has to choose to hide a prize in one of four identical boxes, lined one next to each other and labeled,
from left to right, as box A, B, A, A. In the game studied by Ayton and Falk (1995), “hide a treasure
in a 5X5 table”, the Hider has to hide a treasure in one of the table’s 25 boxes. The game used in this
paper, by having a design with only two alternatives (A and B), simplifies considerably the elicitation
of probabilistic beliefs. At the same time, as in the design with more than two alternatives, the game
preserves a nonneutral framing: the inner region is the focal location, despite the fact that the inner
and outer regions have the same area.
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Six different treatments were implemented. The treatments are labelled C-1-2, C-2-1, 1-C-2, 1-2-C,
2-1-C and 2-C-1. Each treatment differs from the others in the order in which subjects are asked to
report their choice (task ‘C’), first-order beliefs (task ‘1’) and second-order beliefs (task ‘2’). Each
treatment is assigned randomly to one session. Every other element, except the order of decisions, is
identical among treatments.

At the beginning of each round, subjects were matched randomly into pairs and roles were assigned
randomly within each pair. Each participant was informed of the role assigned to him/her for that
round: information would appear on the computer screen for the entire duration of the round. At the
end of each round, each subject received feedback information consisting of: (i) whether or not she
won the prize, (ii) the sum of the money earned in forecasting her opponent’s choice plus the money
earned in forecasting her opponent’s first-order beliefs. The scoring rules used to reward forecasts are
presented in Sections 2.1.1 and 2.1.2.

The subjects played for 4 rounds. When the last round ended, the computer randomly drew one
of the rounds and the participants were paid according to their performance in that round only. Once
the experiment was over, subjects filled in a questionnaire while waiting to be paid. The questionnaire
consisted of questions about each participant’s gender, age, major, year of graduation, familiarity with
the game, and number of classes taken in (i) economics, finance or accounting, (ii) mathematics, and
(iii) psychology. The participants were also given the option to leave specific comments about the way
they played the game and/or general comments about the experimental session. Subjects were paid
individually in a sealed envelope. Payments included $5 for attending the session, plus the amount
earned in the experiment itself. On average, subjects earned approximately $13 for their participation
($5 from the show-up fee, $5 from the choice task and $2.93 from the first- and second-order beliefs
tasks).

2.1 Beliefs Elicitation

In this section we describe the methods used to elicit first- and second-order beliefs.

2.1.1 First-Order Beliefs Elicitation

The wording of the question used to elicit first-order beliefs is reported below. Question 1H elicits
what the Hider believes to be the probability that her opponent will choose A and B. Question 1S,
not shown here, is the analogous question presented to the Seeker.

QUESTION (1H)

What do you think the percent chance is that the Seeker will look for the prize in A? And in B?
Write your answers in the spaces provided below.
You can choose values between 0 and 100.
The values you choose should sum to 100.

Percent chance that the Seeker will look for the prize in A: . . .

Percent chance that the Seeker will look for the prize in B: . . .

The answers to questions 1H and 1S are remunerated using a quadratic scoring rule. The reward
is paid in dollars. In order to illustrate the rule, consider a subject with the role of Hider who has
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reported probabilities PH and 1− PH as the probabilities with which the Seeker will choose A and B
respectively. Then, the Hider’s reward according to the quadratic scoring rule will be:

SH(PH , IA) = 2−
{

[IA − PH ]2 + [(1− IA)− (1− PH)]2
}

(1)

where IA is an indicator function equal to 1 if the Seeker chooses A and 0 if the Seeker chooses B.
Therefore, if the Seeker chooses A, then the Hider would earn the highest reward by assigning all

the probability weight on A, i.e. PH = 1. If the Hider assigns PH < 1 to alternative A and 1−PH > 0
to alternative B, then she will be penalized for both mistakes: for assigning a probability smaller
than 1 to A and for assigning a probability larger than 0 to B. The first mistake will cause a penalty
of [1 − PH ]2 and the second mistake will cause a penalty of [0 − (1 − PH)]2. Both penalties will be
subtracted from the maximum possible reward of $2. The minimum possible reward is $0.

2.1.2 Second-Order Beliefs Elicitation

A player’s second-order beliefs are her forecast of her opponent’s first-order beliefs. Since the Hider’s
and Seeker’s probabilistic first-order beliefs are represented by probabilities, PH and PS respectively,
the Hider’s and Seeker’s probabilistic second-order beliefs are to be represented by continuous proba-
bility distributions, which we label qH and qS respectively. We denote QH and QS the corresponding
subjective cumulative distributions. Thus, QH(x) denotes the subjective probability that the Hider
assigns to the event that the Seeker’s first-order beliefs PS are smaller or equal than x. Similarly,
QS(x) denotes the subjective probability that the Seeker assigns to the event that the Hider’s first-
order beliefs PH are smaller or equal than x. We opt for eliciting only partial information about
QH and QS , which are therefore only partially identified. The procedure has the advantage of being
simple, while still providing us with the data necessary to the analysis of decision-making conducted
in Section 3.

The elicitation of second-order beliefs is divided into two steps, of which the first is meant only
as an introduction for participants to better understand the second step. In the first step, sub-
jects report a point forecast (i.e. non-probabilistic), stating what they think the most likely value
is for their opponent’s first-order beliefs. In the second step, subjects report a probabilistic fore-
cast, stating what they think are the probabilities with which their opponent’s first-order beliefs fall
within several intervals. The intervals are: [0, 5], (5, 20], (20, 50], (50, 80], (80, 95] and (95, 100] per-
cent.6 If an experiment participant playing as a Hider assigns to the above intervals the probability
vector p = (p[0,5], p(5,20], p(20,50], p(50,80], p(80,95], p(95,100]), she is interpreted as reporting second-order
beliefs characterized by QH(5) = p[0,5], QH(20) = p[0,5] + p(5,20], QH(50) = p[0,5] + p(5,20] + p(20,50],
QH(80) = p[0,5] + p(5,20] + p(20,50] + p(50,80], and QH(100) = p[0,5] + p(5,20] + p(20,50] + p(50,80] + p(95,100].
Since the experimental software checks whether the assigned probabilities sum to 100 percent, and
reports an error message until the condition is satisfied, QH(100) = 100 percent always holds.

The wording of each question used in the experiment is reported below. Questions 2H and 3H
elicit the Hider’s second-order beliefs and questions 2S and 3S, not shown here, elicit the Seeker’s
second-order beliefs.

6Notice that what a subject reports as point forecast (the ‘most likely value’) does not influence the definition of the
intervals over which she is later asked to place probabilities, which are fixed.

10



QUESTION (2H)

You are the Hider.

For sure your opponent wants to find the prize, so he or she must be trying to guess where you will hide it.

We’ve just asked your opponent to tell us what he or she thinks. The question we asked was: What do you
think the percent chance is that the Hider will hide the prize in A?

Your opponent has answered this question. You don’t know the answer. How do you think your opponent
has answered?

Tell us what you think the most likely value is for the answer given by your opponent.

I think the most likely value for the Seeker’s answer is: . . .

QUESTION (3H)

Now tell us something more. Please complete the following sentences.

I think that the percent chance that the Seeker’s answer is not larger than 5 is: . . .

I think that the percent chance that the Seeker’s answer is larger than 5 and not larger than 20 is: . . .

I think that the percent chance that the Seeker’s answer is larger than 20 and not larger than 50 is: . . .

I think that the percent chance that the Seeker’s answer is larger than 50 and not larger than 80 is: . . .

I think that the percent chance that the Seeker’s answer is larger than 80 and not larger than 95 is: . . .

I think that the percent chance that the Seeker’s answer is larger than 95 is: . . .

The answers to questions 2H and 2S are remunerated using a zero-one scoring rule7. The reward is
paid in dollars. The zero-one scoring rule rewards an agent if her reported ‘most likely value’ coincides
with the first-order beliefs stated by her opponent. In order to illustrate the rule, consider a subject,
with the role of Hider, reporting m as the ‘most likely value’ for the Seeker’s first-order beliefs PS .
Then, the Hider’s reward according to the zero-one scoring rule will be:

SH(m,PS) =
{

2 if PS = m
0 otherwise

(2)

The answers to questions 3H and 3S are remunerated using a quadratic scoring rule. In order
to illustrate the rule, consider a subject, with the role of Hider, assigning the probability vector
p = (p[0,5], p(5,20], p(20,50], p(50,80], p(80,95], p(95,100]) to the intervals [0, 5], (5, 20], (20, 50], (50, 80], (80, 95],
and (95, 100]. Then, the Hider’s reward will be:

7A zero–one scoring rule rewards a point forecast if the mode of the underlying probabilistic forecast materializes.
We don’t intend to stress the linkage between the point forecast and the mode, since we don’t make any argument that
subjects are in fact expressing the mode of their probabilistic beliefs. We chose the zero–one scoring rule mainly for its
simplicity.
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SH(p, I) = 2−

 6∑
j=1

(I[xj ,yj ] − p[xj ,yj ])
2

 (3)

where I[l,r] is an indicator function that takes value 1 if the Seeker has reported as her first-order
belief a percentage chance which lies in the interval [l, r] and 0 otherwise, and p[l,r] is the Hider’s belief
that the first-order belief reported by the Seeker lies in the interval [l, r]. The score ranges between
$0 and $2. The worst possible guess, i.e. assigning 100% chance to an interval while the correct value
lies in another interval, yields a payoff of $0. The best possible guess, i.e. assigning 100% chance to
the interval where the correct value lies, yields a payoff of $2.

2.1.3 Remarks

As mentioned above, the feedback information provided to each participant i at the end of each round
consists of: (a) whether or not she won the prize, (b) the sum of the money earned in forecasting her
opponent j’s choice plus the money earned in forecasting her opponent j’s first-order beliefs Pj . The
sum corresponds to Si(Pi, IA) + Si(mi, Pj) + Si(pi, I).

By learning (a), subject i can immediately infer j’s choice, without any need of back-engineering
from knowledge of the scoring rules and of (b). Subject i simply needs to remember her own choice.
On the contrary, subject i usually cannot exactly infer j’s first-order beliefs Pj .8 Even if subject i
recovered Si(Pi, IA) by remembering her own first-order beliefs Pi, inferring j’s choice from (a), and
using scoring rule (1), and then tried to back-engineer j’s first-order beliefs Pj from knowledge of
scoring rules (2)-(3) and of (b), different values of Pj would be possibly consistent with the same
combination of i’s forecasts mi and pi and her forecast earnings.9

Finally, since third-order beliefs are not elicited, no feedback information is provided on one’s
opponent’s second-order beliefs.

3 Beliefs and Choices

In this section we illustrate the Hider’s and Seeker’s decision problem and the relationship between
choices, first-order beliefs and second-order beliefs. Given the beliefs PH , the Hider’s optimal decision
is to choose A if PH < 0.5 and B if PH > 0.5. If instead PH = 0.5, then the Hider’s optimal decision
is undefined since she is indifferent between A and B. Analogously for the Seeker: given the beliefs
PS , the Seeker’s optimal decision is to choose A if PS > 0.5 and B if PS < 0.5. If instead PS = 0.5,
then the Seeker’s optimal decision is undefined since she is indifferent between A and B. Therefore,
we can denote the Hider’s and Seeker’s optimal response (or reaction) to second-order beliefs, denoted
r∗H(PH) and r∗S(PS) respectively, as:

8An exception consists of when subject i learns that Si(Pi, IA) + Si(mi, Pj) + Si(pi, I) equals $6. Given scoring rules
(1)-(3), this situation corresponds to the maximum total forecast earnings and to perfectly accurate forecasts of both j’s
choice and j’s first-order beliefs.

9Recall that Si(Pi, IA) is only one of the components of (b).
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r∗H(PH) =


A if PH < 0.5
B if PH > 0.5
A or B if PH = 0.5

(4)

r∗S(PS) =


A if PS > 0.5
B if PS < 0.5
A or B if PS = 0.5

(5)

Notice that saying that a subject is indifferent between A and B does not allow us to expect any
specific likelihood of A or B actually been chosen. Attaching a likelihood of 0.5 to A and 0.5 to B
would be arbitrary, since an indifferent subject can randomize between A and B with any probability
weights. Section 4 will assess the experimental evidence of occurrence of first- and/or second-order
beliefs that imply indifference.

We now turn to defining what the optimal response to second-order beliefs should be. We illustrate
the Hider’s case only, since the Seeker’s case is analogous. In order to engage in second-order conjec-
tures, the Hider needs to put herself in the shoes of the opponent and think about how the opponent
thinks and behaves. Specifically, the Hider needs to think what decision rule her opponent employs.
If the Hider thinks that the Seeker chooses the optimal response to beliefs PS (i.e., that she follows
decision rule (5)), then, whenever the Hider believes that the Seeker’s first-order beliefs PS are larger
than 0.5, the Hider also believes that the Seeker chooses A.10 Given the definition of second-order
beliefs QH in Section 2, the Hider’s second-order beliefs that the Seeker’s first-order beliefs PS are
larger than 0.5 is 1−QH(0.5). Thus, the Hider’s optimal response to her second-order beliefs is A if
1 − QH(0.5) < 0.5, i.e. QH(0.5) > 0.5. We can rewrite the Hider’s and Seeker’s optimal response to
second-order beliefs, denoted r∗H(QH) and r∗S(QS) respectively, as:

r∗H(QH) =


A if QH(0.5) > 0.5
B if QH(0.5) < 0.5
A or B if QH(0.5) = 0.5

(6)

r∗S(QS) =


A if QS(0.5) > 0.5
B if QS(0.5) < 0.5
A or B if QS(0.5) = 0.5.

(7)

When assessing how experimental choice data compare with the behavior prescribed by optimal
response to the elicited first-order beliefs and optimal response to the elicited second-order beliefs, we

10Notice that we wrote ‘If the Hider thinks that the Seeker chooses optimally’ because we maintain the simplifying
assumption that a player does not doubt if the opponent chooses the best action given her beliefs. A different approach,
which we do not pursue in this paper, would allow a player to hold also subjective beliefs about the nature of the
opponent’s decision rule. Allowing for this further source of uncertainty would then require that the support of player
i’s 2nd-order beliefs consists of pairs Rj × [0, 100] where Rj is the set of player j’s decision rules. Such an approach
could not be followed if Player i’s 2nd-order beliefs only conveyed information about player i’s beliefs about player j’s
1st-order beliefs. See Siniscalchi (2008) for a related discussion.
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employ the following concept of consistency. We define the Hider’s observed choice CH as consistent
with the optimal response to elicited first-order beliefs PH if CH = r∗H(PH) and the Seeker’s observed
choice CS as consistent with the optimal response to her elicited first-order beliefs PS if CS = r∗S(PS).
Analogously, we define the Hider’s observed choice CH as consistent with the optimal response to
elicited second-order beliefs QH if CH = r∗H(QH) and the Seeker’s observed choice CS as consistent
with the optimal response to her elicited second-order beliefs QS if CS = r∗S(QS). Given the definition
of optimal response in (4)-(7), probabilistic belief elicitation, is necessary to measure variables PH , PS ,
QH and QS and to compare experimental choice data to the behavior predicted by optimal response
to beliefs.

In order to investigate how the Hider’s first-order beliefs PH are related to her second-order beliefs
QH (and analogously how the Seeker’s first-order beliefs PS are related to her second-order beliefs
QS), we define coherence of first- and second-order beliefs as follows. Strong coherence requires that
an event’s probability evaluated by 1st-order beliefs and 2nd-order beliefs coincides.

Definition

• A Hider’s first- and second-order beliefs are strongly-coherent if PH = 1−QH(0.5).

• A Seeker’s first- and second-order beliefs are strongly-coherent if PS = QS(0.5).

Thus, the Hider holds strongly coherent first- and second-order beliefs if the probability PH , which
the Hider assigns to the event that the Seeker chooses A, coincides with the probability 1−QH(0.5),
which the Hider assigns to the event that the Seeker considers A more likely to be chosen by the
Hider (PS > 0.5) and thus chooses A (since A is the optimal response to PS > 0.5). The Seeker holds
strongly coherent first- and second-order beliefs if the probability PS , which the Seeker assigns to the
event that the Hider chooses A, coincides with the probability QS(0.5), which the Seeker assigns to
the event that the Hider considers A less likely to be chosen by the Seeker (PH < 0.5) and thus chooses
A (since A is the optimal response to PH < 0.5).

Weak coherence instead only requires that if an event is assigned, according to 1st-order beliefs, a
probability higher/lower/equal to the one assigned to another event, then the same also holds according
to 2nd-order beliefs.

Definition

• A Hider’s first- and second-order beliefs are weakly-coherent if any of these conditions holds:

(i) PH ≥ 0.5 and QH(0.5) ≤ 0.5,

(ii) PH ≤ 0.5 and QH(0.5) ≥ 0.5.

• A Seeker’s first- and second-order beliefs are weakly-coherent if any of these conditions holds:

(I) PS ≥ 0.5 and QS(0.5) ≥ 0.5,

(II) PS ≤ 0.5 and QS(0.5) ≤ 0.5.

14



Notice that strong-coherence implies weak-coherence, but not vice versa. Also notice that verifying
weak-coherence coincides with verifying whether first- and second-order beliefs lead to best-response
prescriptions that are non-contradictory.11 Table 3 summarizes the cases that can arise empirically
when assessing the relationship between an Hider’s observed choice and elicited beliefs, in terms of
whether (a) the observed choice is consistent with optimal response to elicited 1st-order beliefs, (b)
the observed choice is consistent with optimal response to elicited 2nd-order beliefs, and (c) 1st- and
2nd-order beliefs are weakly coherent.

Table 3: Possible cases for the relationship between and Hider’s observed choice and her elicited 1st- and 2nd-order
beliefs, in terms of whether (a) the observed choice is consistent with optimal response to elicited 1st-order beliefs, (b)
the observed choice is consistent with optimal response to elicited 2nd-order beliefs, and (c) 1st- and 2nd-order beliefs
are weakly coherent. An X stands for a possible case.

coherence of 1st- and 2nd-order beliefs
observed choice
consistent with: weak coherence no weak coherence

strong coherence

neither optimal response B, PH < 0.5, QH(0.5) > 0.5 B, PH = 1−QH(0.5) < 0.5
to 1st-order beliefs A, PH > 0.5, QH(0.5) < 0.5 A, PH = 1−QH(0.5) > 0.5
nor to 2nd-order beliefs

optimal response to A, PH = 0.5, QH(0.5) < 0.5 A, PH < 0.5, QH(0.5) < 0.5
1st-order beliefs only B, PH = 0.5, QH(0.5) > 0.5 B, PH > 0.5, QH(0.5) > 0.5

optimal response to A, PH > 0.5, QH(0.5) = 0.5 B, PH < 0.5, QH(0.5) < 0.5
2nd-order beliefs only B, PH < 0.5, QH(0.5) = 0.5 A, PH > 0.5, QH(0.5) > 0.5

both optimal response A, PH ≤ 0.5, QH(0.5) > 0.5
to 1st-order beliefs and B, PH ≥ 0.5, QH(0.5) < 0.5 A, PH = 1−QH(0.5) ≤ 0.5
to 2nd-order beliefs A, PH < 0.5, QH(0.5) ≥ 0.5 B, PH = 1−QH(0.5) ≥ 0.5

B, PH > 0.5, QH(0.5) ≤ 0.5

We conclude this section highlighting the major differences between our approach and previous
experimental work. While comparing methods, we intentionally avoid comparing results, given that
the interpretation of each set of results is affected by the different manner in which beliefs are defined
and elicited. First, both Bhatt and Camerer (2005) and Costa-Gomes and Weizsäcker (2008) use terms
such as ‘x and y are consistent’ or ‘x coincides with the best response to y’ both when investigating
the relationships between choice and beliefs (either first- or second-) and when investigating the
relationship between first- and second-order beliefs.12 We instead use only the term ‘x is/is not equal
to the optimal response to y’ uniquely when referring to the observed choice coinciding or not with the
optimal action given the elicited beliefs. We do not use phrases such as ‘first-order beliefs are a best

11For example, 1st-order beliefs PH = 0.5 and 2nd-order beliefs 1 − QH(0.5) > 0.5 lead to two non-contradictory
best-response prescriptions: the optimal response to 1st-order beliefs PH = 0.5 is A or B and the optimal response to
2nd-order beliefs 1−QH(0.5) > 0.5 is B.

12Terms used include: ‘consistency between actions and beliefs’, ‘actions are best response to stated beliefs’, ‘first-order
beliefs are a best response to second-order beliefs’.
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response to second-order beliefs’, given that we intend the concept of ‘best response to’ as applicable
uniquely to an action possibly being a best action given the held beliefs. Therefore, we view coherence
of 1st- and 2nd-order beliefs as unrelated to ‘first-order beliefs being a best response to second-order
beliefs’.

Secondly, by eliciting second-order beliefs as a probabilistic forecast we overcome the limitations
that would otherwise arise in verifying whether observed choice coincide with the optimal response to
elicited second-order beliefs and whether first- and second-order beliefs are coherent. Costa-Gomes
and Weizsäcker (2008) seem to refer to this kind of limitations when they acknowledge (referring to the
unpublished version of their paper) the difficulties they encountered having elicited second-order beliefs
non-probabilistically.13 Moreover, non-probabilistic belief elicitation provides no way for respondents
to express uncertainty. As a result, respondents cannot express indifference between choosing one
action or the other and empirical researchers cannot detect whether any choice is generated by in-
difference. With indifference undetected, whether the choice made by a subject, who is indifferent
between alternative actions, is labeled or not as best response depends on the non-probabilistic be-
liefs actually reported. Since respondents could use any rule to ‘translate’ probabilistic beliefs into
non-probabilistic ones, it would be impossible to identify correctly the occurrence of a best response.

Finally, by eliciting second-order beliefs as a probabilistic forecast we can address questions that
previous work cannot address unequivocally. Allowing for uncertainty would have enabled Bhatt
and Camerer (2005) to address their conjectures that ‘as players reason further up the hierarchy from
choices, to beliefs, to iterated beliefs, their beliefs become less certain’ and that, 2nd-order beliefs being
more uncertain than 1st-order beliefs, 2nd-order beliefs should be less consistent with 1st-order beliefs
than 1st-order beliefs are with choices, and 2nd-order beliefs and choices should be least consistent.14

Neither of their conjectures can be addressed unequivocally using non-probabilistic beliefs.
Throughout this paper we argue in favor of probabilistic elicitation as it allows for expressing

uncertainty and we view the uncertainty inherent in 2nd-order belief as the spread of the elicited
subjective distribution. An alternative formal meaning of uncertainty of 2nd-order beliefs can be the
presence of ambiguity. Allowing for ambiguity would mean viewing respondents as holding not a
unique subjective distribution for an unknown event but possibly a set of subjective distributions, and
asking them accordingly to report some information about those distributions.

13Costa-Gomes and Weizsäcker (2008) state that ‘a limitation of the analysis of these second-order belief statements is
that we elicited point estimates of players’ second-order beliefs, and not unrestricted probabilistic second-order beliefs.’

14Contrary to the conjecture, they find that consistency of choice with 2nd-order beliefs occurs more often than
consistency of 1st-order beliefs with 2nd-order beliefs. Over all games, they find that condition (i) holds in 66% of the
trials, condition (ii) in 63% of the trials, condition (iii) in 75% of the trials and all conditions hold simultaneously in
23% of the trials. They interpret consistency of choice with 2nd-order beliefs occurring more often than consistency of
1st-order beliefs with 2nd-order beliefs as suggesting that ‘the process of generating a [...] iterated belief might be similar
to the process of generating a choice, rather than simply iterating a process of forming beliefs to guess what another
player believes about oneself’. They report evidence from functional magnetic resonance imaging (fMRI) showing that
forming 2nd-order beliefs, compared to forming 1st-order beliefs, activates the anterior insula region of the brain, which
previous studies have shown to be activated by a sense of agency and self-causation. They interpret this as consistent
with people anchoring on their own likely choice and then guessing whether other players will figure their choice out.
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4 Discussion

In this section we present the main results. Section 4.1 is an overview of the participants and the
treatments. In Section 4.2 we describe the observed choices and in Section 4.3 and 4.4 the elicited first-
and second-order beliefs. In Section 4.5 we turn to describe the relationship between choice, first- and
second-order beliefs. Finally, Section 4.6 presents a discussion on participants’ heterogeneous decision
rules.

4.1 Participants and Treatments

The experiment was conducted under 6 treatments, each one with a different order in which questions
about choice, first- and second-order beliefs were asked. Each session corresponds to a treatment. Each
session was initially scheduled to have about 26 students signed up, expecting about 18-20 students
to show up on time and participating. As Table 4 reports, the sessions turned out to have 20, 16, 18,
16, 26, 18 participants respectively, for a total of 114 participants and 456 observations.

Table 4: Participants and Treatments.

Session Number Number Number Task Order
Name of Participants of Rounds of observations

C 1 2 20 4 80 choice, 1st-order beliefs, 2nd-order beliefs
C 2 1 16 4 64 choice, 2nd-order beliefs, 1st-order beliefs
1 C 2 18 4 72 1st-order beliefs, choice, 2nd-order beliefs
1 2 C 16 4 64 1st-order beliefs, 2nd-order beliefs, choice
2 C 1 26 4 104 2nd-order beliefs, choice, 1st-order beliefs
2 1 C 18 4 72 2nd-order beliefs, 1st-order beliefs, choice

all 114 4 456

Table 22 in Appendix B reports the sample distribution of participants in each treatment according
to their field of studies and gender.15 Females make up 60% of all participants. Participants with
a major in the Social Sciences make up 44% of the participants, while participants with a major in
the Sciences or in the Humanities make up 26% of the participants respectively. These ratios are
stable across treatments, except for treatment 2C1, which has a lower ratio of female participants
(38% vs. 60%) and a lower ratio of social-sciences-major participants (27% vs. 44%) compared to
other treatments.

15Fields of studies are categorized as social sciences, humanities, or sciences. Majors in the social sciences include:
economics, social policy, human development and psychological services, learning and organizational change, political
science, psychology, sociology, education. Majors in the humanities include: art history, art theory, theatre, art theory
and practice, classics, english, spanish, philosophy, legal studies, anthropology, gender studies, history, communication
studies, journalism, comparative literary studies, middle eastern language and civilization, european studies, international
studies, religious studies, music. Majors in the sciences include: biology, biochemistry, chemistry, environmental studies,
mathematics, statistics, material science, chemical/civil/electrical/mechanical/computer/industrial engineering.
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4.2 Choices and Outcomes

Table 5 pools all observations together and reports the empirical frequency, in percentages, of alter-
native A being chosen, distinguishing between choices made by Hiders and choices made by Seekers.
Across all periods, the frequency of A being chosen is 60% among Hiders and 41% among Seekers.16

The frequency is stable around 60% for choices made by Hiders. For choices made by Seekers, however,
there is an increase from 35-39% in period 1-3 to 54% in period 4.

Table 5: Frequency of choice A, choice outcome, and occurrence of Seeker’s wins. (X,Y)=(Hider’s choice, Seeker’s

choice).

Period
1 2 3 4 all
% % % % %

Choice A 60 60 61 60 60
among Hiders

Choice A 35 39 37 54 41
among Seekers

Choice outcome
(A,A) 18 23 26 32 25
(A,B) 42 37 35 28 36
(B,A) 18 16 11 23 17
(B,B) 23 25 28 18 23

Seeker wins 40 47 54 49 48

Table 5 also reports the frequency of the possible choice outcomes. The most common outcome,
occurring in 36% of the Hider-Seeker matched observations, is (A,B), which corresponds to a Hider
choosing A and a Seeker choosing B. The least common outcome, occurring in 17% of the observations,
is (B,A). Across all periods, the frequency with which the game is won by a Seeker, by successfully
matching the opponent’s choice, is 48%. Changing the order in which the tasks are presented seems
to have no discernible effect. Results are omitted for brevity.

4.3 First-Order Beliefs

The experimental design elicits participants’ first-order subjective beliefs (i.e., beliefs about opponent’s
choice) by eliciting the probability that a player assigns to the event that her opponent chooses A.
Table 23 in Appendix B pools all observations together and reports the empirical distribution of the
answers given in the first-order beliefs elicitation task. Responses are most often multiples of 5 percent

16In their hide-and-seek experiment with four identical boxes labeled, from left to right, A, B, A, A, Rubinstein,
Tversky and Heller (1996) finds that the distribution of seekers’ answers (13%, 31%, 45%, 11%) is strongly biased
towards the central A box, avoiding the edges. Similarly, the distribution of hiders’ answers (9%, 36%, 40%, 15%) is
biased toward the central A box. See Crawford and Iriberri (2007) for a nonequilibrium model based on ‘level-k’ thinking
that can explain the distribution of answers. The strong tendency to avoid the edges was also observed by Ayton and
Falk (1995) in their experiment ‘hide a treasure in a 5X5 table’, where the subject hides a treasure in one of the table’s
25 boxes.
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and common values are 0, 25, 40, 50, 60, 75, 100 percent. The most common answer is 50 percent
(P = 0.50), which occur in 46% of all observations.

A subject reporting first-order beliefs P = 0.50 can be interpreted as reporting indifference between
choosing A or choosing B. Since one of the objectives of this paper is to cast light on the relation-
ship between the choices participants make and the beliefs they report, we also plan to specifically
investigate the empirical occurrence of indifference between alternatives and the corresponding choice
behavior. A more general analysis of the relationship between choices and beliefs will be conducted
in Section 4.5.

Table 6: Frequency of 1st-order beliefs P = 0.50 among Hiders and among Seekers in the pooled dataset.

frequency
of 1st-order
beliefs P=0.5 Period

1 2 3 4 all
% % % % %

Hiders 39 53 53 49 48

Seekers 49 51 39 40 45

any role 44 52 46 45 46

Table 6 uses the pooled dataset and reports the empirical frequency of first-order beliefs P = 0.50,
distinguishing according to the role played by the subject reporting P = 0.50 and according to the
round when P = 0.50 is reported. The empirical frequency does not appear to change across roles or
periods. Pooling all observations together does not allow us to uncover possible heterogeneity across
subjects, specifically the possibility that some subjects reported P = 0.50 most of the time while other
subjects reported P 6= 0.50 most of the time. In order to explore heterogeneity across subjects, in
Table 7, instead of pooling all observations together, we consider each individual subject as the unit of
observation. For each subject, we compute the number of periods (out of the total of four rounds) in
which the subject reported first-order beliefs P = 0.50. Two main groups stand out, each consisting
of approximately 1/3 of all participants. One group consists of subjects always reporting P = 0.50,
and the other group consists of subjects never doing so.

Table 7: Distribution of the individual subjects according to the number of periods when the subject reports 1st-order

beliefs P = 0.50.

No. rounds
4 3 2 1 0 all

always never

No. 38 6 12 18 40 114

% 33 5 11 16 35 100
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Because of the high occurrence of first-order beliefs P = 0.50 in the pooled data (46% of all
observations) and the existence of a large group of participants who report first-order beliefs P = 0.50
in all rounds (33% of all subjects), we turn to investigate the choices made by subjects reporting such
first-order beliefs. Table 8 uses the pooled dataset and reports the empirical frequency of choice A
when first-order beliefs P = 0.50, distinguishing according to the role played by the subject choosing A
and reporting P = 0.50 and according to the round when such choice and beliefs occur. The frequency
of choice A among players with the role of Hider is in all periods approximately 60%. The analogous
frequency among players with the role of Seeker is instead approximately 40% in all periods.

Table 8: Choice made by subjects holding 1st-order belief P = 0.50 (i.e., assigning 50 percent probability to the event

of the opponent choosing A).

frequency
of choice A
(if P=0.50) Period

1 2 3 4 all
% % % % %

Hiders 68 63 57 64 63

Seekers 39 38 45 52 43

any role 52 51 52 59 53

4.4 Second-Order Beliefs

The experimental design elicits participants’ second-order subjective beliefs (i.e., beliefs about oppo-
nent’s beliefs) by asking two types of questions. First, participants are asked what they expect to be
the most likely value of their opponent’s answer to the first-order beliefs task. In other words, they are
asked what they expect their opponent to report as the probability that they themselves will choose
alternative A. As already argued in the previous sections, this is a point forecast (or non-probabilistic
forecast). Second, participants are asked to place probabilities to the intervals [0,5], (5,20], (20,50],
(50,80], (80,95] and (95,100] percent, where each interval represents a possible range of values for the
opponent’s answer to the first-order beliefs task. This is a probabilistic forecast.

In this section we describe the elicited probabilistic forecasts and omit a description of the elicited
point forecasts. We do this not only for brevity, but also because, as argued in Section 3, probabilistic
forecasts are the appropriate beliefs variable when analyzing the relationship between observed choice
and optimal choice with respect to second-order beliefs. In Appendix A we perform both a nonpara-
metric and a parametric analysis to compare elicited point and probabilistic forecasts. We refer to
Engelberg, Manski and Williams (2009) for an introduction to how point forecasts and probabilistic
forecasts compare.17

17While Engelberg, Manski and Williams (2009) studied the first-order subjective beliefs elicited in a survey, the
parametric and nonparametric analysis, which they proposed, can be readily extended to the present analysis of second-
order beliefs elicited in a laboratory experiment.
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Since reporting probabilistic second-order beliefs requires subjects to assign probabilities over six
intervals which span the range [0,100] percent, subjects can potentially assign probability zero to one
or more intervals. Table 9 reports the empirical distribution of the number of intervals assigned with
positive probability. When applicable (i.e., for a number of intervals larger than 1 and not larger than
5), the table also distinguishes whether the intervals assigned with positive probability are adjacent
to one another or not. The most common answers consist of assigning positive probability to six, four
or two intervals (28%, 26% and 18% of observations). Moreover, probability is mostly assigned to
adjacent intervals rather than to non adjacent intervals.

Table 9: Empirical distribution, over the pooled dataset, of the number of intervals assigned with a positive probability

and whether those intervals are adjacent to one another or not.

Intervals non adjacent adjacent all
No. % No. % No. %

1 43 9
2 20 4 64 14 84 18
3 17 4 33 7 50 11
4 13 3 107 23 120 26
5 3 1 28 6 31 7
6 128 28

all 53 232 456 100

As illustrated in Section 3, the decision taken by a subject who chooses the optimal alternative
given her second-order beliefs should be based on the value of Q(0.5). Q(0.5) is the probability that
a subject assigns to her opponent’s first-order beliefs being not higher than 50 percent. Being ‘50
percent’ the right endpoint of one of the intervals presented to the subjects in the elicitation task
(interval (20,50] percent), the value of Q(0.5) is readily available from participants’ responses, by
simply summing the probabilities that a subject assigned to the intervals [0,5], (5,20] and (20,50]
percent. Using the pooled dataset, Table 10 report summary statistics for Q(0.5) and Table 24 in
Appendix B reports its empirical distribution. Both tables reveal the preponderance of second-order
beliefs for which Q(0.5) = 0.5, which occur in approximately 40 percent of the observations.18

As illustrated in Section 3, a subject reporting second-order beliefs such that Q(0.5) = 0.5 can
be interpreted as reporting indifference between choosing A or choosing B. As we reported about
indifference generated by first-order beliefs P = 0.50 in Section 4.3, we report here about indifference
generated by second-order beliefs for which Q(0.5) = 0.5. Table 11 uses the pooled dataset and reports
the empirical frequency of second-order beliefs for which Q(0.5) = 0.5, distinguishing according to the
role played by the subject reporting Q(0.5) = 0.5 and according to the round when Q(0.5) = 0.5 is
reported. The empirical frequency does not appear to change across roles or periods.

In order to explore heterogeneity across subjects, in Table 12, instead of pooling all observations
together, we consider each individual subject as the unit of observation. For each subject, we compute
the number of periods (out of the total of four rounds) in which the subject reported second-order
beliefs such that Q(0.5) = 0.5. There is evidence of heterogeneity. While the largest group, making

18Table 25 in Appendix B reports the empirical distribution of the answers reporting the most likely value of one’s
opponent’s 1st-order beliefs. The value of ‘50 percent’ is the most commonly reported answer, reported in approximately
half of all observations.
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Table 10: Summary statistics, over the pooled dataset, of Q(0.5): the probability that a subject assigns to her

opponent’s first-order beliefs being not higher than 50 percent.

No 456
min 0
mean 0.45
10th percentile 0
25th percentile 0.35
median 0.50
75th percentile 0.50
90th percentile 0.70
max 1

Table 11: Frequency of 2nd-order beliefs Q(0.5) = 0.5 among Hiders and among Seekers in the pooled dataset.

frequency of
2nd-order beliefs
Q(0.5)=0.5 Period

1 2 3 4 all
% % % % %

Hiders 33 40 44 56 43

Seekers 40 46 39 37 40

any role 37 43 41 46 42

up approximately 39 percent of all participants, consists of participant whose second-order beliefs
are never such that Q(0.5) = 0.5 the second largest group, making up approximately 23 percent
of all participants, consists instead of participant whose second-order beliefs are always such that
Q(0.5) = 0.5.

Table 12: Distribution of individual subjects according to the number of periods when subject reports 2nd-order beliefs

such that Q(0.5) = 0.5.

No. rounds
4 3 2 1 0 all

always never

No. 26 15 14 14 45 114

% 23 13 12 12 39 100

Because of the high occurrence in the pooled data of second-order beliefs for which Q(0.5) = 0.5
(42% of all observations) and the existence of a sizable group of participants who report in all rounds
second-order beliefs for which Q(0.5) = 0.5 (23% of all subjects), we investigate the choices made
by subjects reporting such second-order beliefs. Table 13 uses the pooled dataset and reports the
empirical frequency of choice A when second-order beliefs Q(0.5) = 0.5, distinguishing according to
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the role played by the subject choosing A and reporting Q(0.5) = 0.5 and according to the round
when such choice and beliefs occur. The frequency of choice A among players with the role of Hider
is in all periods approximately 60%. The analogous frequency among players with the role of Seeker
is instead approximately 40% in all periods. Both percentages are similar to the ones found for the
choice frequency of players with first-order beliefs P = 0.50, reported in Section 4.3.

Table 13: Choice made by subjects holding a second-order belief Q(0.5) = 0.5 (i.e., assigning a equal probability mass

to the event of the opponent having a first-order belief lower or higher than 50 percent).

frequency
of choice A
if Q(0.5)=0.5 Period

1 2 3 4 all
% % % % %

Hiders 63 65 60 53 60

Seekers 39 42 41 48 42

any role 50 53 51 51 51

4.5 Choice, First- and Second-Order Beliefs

In this section we present descriptive evidence on the relationship between choice, 1st- and 2nd-order
beliefs. When assessing the relationship between 1st- and 2nd-order beliefs, we proceed according to
the criteria of strong coherence and weak coherence introduced in Section 3. We relabel the original
definition of strong coherence as 0%-strong coherence, in order to emphasize that it requires an exact
equivalence: PH = 1 − QH(0.5) or PS = QS(0.5). The requirement being very stringent, 0%-strong
coherence can fail not because of beliefs lacking coherence, but simply because of participants rounding
their beliefs up or down. For this reason, we introduce two less stringent definitions of strong coherence,
which do not require an exact equivalence: 5%-strong-coherence requires |PH − (1 − QH(0.5))| ≤
0.05 or |PS − QS(0.5)| ≤ 0.05, and 10%-strong-coherence requires |PH − (1 − QH(0.5))| ≤ 0.10 or
|PS − QS(0.5)| ≤ 0.10. Notice that while 0%-strong coherence implies weak coherence, 5%- and
10%-strong coherence don’t.

Throughout this section, we inspect the empirical percentage frequencies of observations for which:
(i) the observed choice is consistent with optimal response to 1st-order beliefs, (ii) the observed choice
is consistent with optimal response to 2nd-order beliefs, (iii) 1st- and 2nd-order beliefs are coherent
(according to 0%-, 5%-, 10%-strong coherence or weak coherence), (i)-(iii) hold simultaneously. Along
with empirical frequencies, we also inspect the theoretical percentage probabilities with which con-
ditions (i), (ii), and/or (iii) would hold under the assumption that participants’ choice, 1st- and
2nd-order beliefs are submitted randomly and independently the one of the others. Thus, theoretical
probabilities are computed assuming that:

• choice over {A,B} is drawn from the distribution Prob(A) = Prob(B) = 0.5,

• 1st-beliefs P are drawn from the uniform distribution over support [0, 100] percent,
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• 2nd-order beliefs Q(0.5) are drawn from the uniform distribution over support [0, 100] percent.19

Comparing empirical frequencies with theoretical probabilities allows us to assess whether and to what
extent empirical frequencies reveal something about the participants’ decision-making process which
would not be equally generated by randomness.

In Section 3 we showed how a subject, choosing the best action given her beliefs, is indifferent
between A and B whenever her 1st-order beliefs P or her 2nd-order beliefs Q(0.5) equal 0.5. Thus,
any choice made by a participant reporting P = 0.5 trivially satisfies condition (i) and any choice
made by a participant reporting Q(0.5) = 0.5 trivially satisfies condition (ii). Whether P = 0.5 and/or
Q(0.5) = 0.5 also affects whether condition (iii) holds. If P = Q(0.5) = 0.5, then weak coherence and
0%-, 5%-, 10%-strong coherence are all trivially satisfied. If P = 0.5 and Q(0.5) 6= 0.5 (and analogously
if Q(0.5) = 0.5 and P 6= 0.5), then weak coherence is trivially satisfied, 5%- and 10%-strong coherence
can possibly hold, but 0%-strong coherence cannot hold. Throughout this section, when we present
either empirical frequencies or theoretical probabilities, we compare results obtained over the entire
sample with results obtained over several subsamples which rule out P = 0.5 and/or Q(0.5) = 0.5.
Therefore, theoretical probabilities for each of these subsamples are conditional on 1st- and 2nd-order
beliefs falling in each of the categories: P 6= 0.5 and Q(0.5) 6= 0.5, P 6= 0.5 and Q(0.5) = 0.5, P = 0.5
and Q(0.5) 6= 0.5, P = 0.5 and Q(0.5) = 0.5. The comparison allows us to assess whether and to
what extent empirical frequencies and theoretical probabilities are affected by indifference.

In Table 14, Panel 1 presents the empirical percentage frequencies and Panel 2 the theoretical
percentage probabilities. The first row of each panel reports frequencies computed over the entire
sample, while the remaining rows divide the data in subsamples according to whether 1st and/or
2nd-order beliefs imply or not indifference.

We start by comparing, over the entire sample, the empirical frequencies in Panel 1 with the
corresponding theoretical probabilities in Panel 2. Observed choice is consistent with optimal response
to 1st-order beliefs in 89% of the observations and consistent with optimal response to 2nd-order beliefs
in 75% of the observations. The corresponding theoretical probabilities are 73% and 71%, respectively.
Thus, while observed choice is more likely to be consistent with optimal response to 1st-order beliefs
than what would be simply due to random answers (89% > 73%), the same cannot be said for
observed choice being consistent with optimal response to 2nd-order beliefs (75% ∼ 73%). Assessing
coherence of 1st- and 2nd-order beliefs, the empirical frequencies for 0%-, 5%-, 10%-strong coherence
or weak coherence are only slightly higher than the corresponding theoretical probabilities. When
assessing joint occurrence of (i)-(ii)-(iii), only slight differences exist between empirical frequencies
and theoretical probabilities when 0%-, 5%-, or 10%-strong coherence is employed as criterion. When
instead weak coherence is employed, empirical frequencies of the joint occurrence of (i)-(ii)-(iii) are
higher than the theoretical probabilities (68% > 54%).

Comparing, for Panel 1 and Panel 2 separately, the subset of observations with P 6= 0.5 and
Q(0.5) 6= 0.5 with the entire sample, we can assess how the exclusion of observations corresponding to
participants who are indifferent affects both the empirical frequency and the theoretical probability
with which conditions (i), (ii) and/or (iii) hold. Not surprisingly, both empirical frequencies and
theoretical probabilities are lower for the subset compared to the entire sample.

Focusing on the subset of observations with P 6= 0.5 and Q(0.5) 6= 0.5 and comparing empirical
frequencies (Panel 1) with theoretical probabilities (Panel 2), we assess if and to what extent conditions

19See Appendix C for the computation of theoretical probabilities.
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(i), (ii) and/or (iii) hold more often that what would be implied by random answers. Over the subset,
condition (i) holds in 81% of the observations and condition (ii) in 57% of the observations. The
corresponding theoretical probabilities are both 50%. Thus, while observed choice is more likely to
be consistent with optimal response to 1st-order beliefs than what would be simply due to random
answers (81% > 50%), the same cannot be said for observed choice being consistent with optimal
response to 2nd-order beliefs (57% ∼ 50%). For condition (iii), the empirical frequencies of 0%-, 5%-,
10%-strong coherence are all higher than the corresponding theoretical probabilities (19%, 28%, 37%
versus 0%, 9.75% 19%), while the empirical frequency of weak coherence is only slightly higher than
the theoretical probability (55% ∼ 50%). For joint occurrence of (i)-(ii)-(iii), both under 0%-, 5%-, or
10%-strong coherence and weak coherence, the empirical frequencies are higher than the corresponding
theoretical probabilities (17%, 25%, 32%, 47% versus 0%, 2.4375%, 4.75%, 25%).

Summing up, the above evidence suggests that there are behavioral reasons that lead choices to
coincide with the optimal response to 1st-order beliefs, and also simultaneously lead choices to coincide
with the optimal response to 2nd-order beliefs and lead 1st- and 2nd-order beliefs to be weakly and
strongly coherent. While this is suggested for the entire dataset as well as for the subsample with
P 6= 0.5 and Q(0.5) 6= 0.5, the extent to which empirical frequencies are higher than theoretical
probabilities is stronger for the subset than it is for the entire dataset. For example, while for the entire
dataset the empirical frequency with which condition (i) holds is approximately 15 percentage points
higher than the theoretical probability (89% vs 73%), in the subset with P 6= 0.5 and Q(0.5) 6= 0.5
the empirical frequency is up to 30 percentage points higher than the theoretical probability (81%
vs 50%). Differences between empirical frequencies and theoretical probabilities with which condition
(iii) or conditions (i)-(ii)-(iii) hold are also substantially larger in the subset than in the entire sample.

For the subsample of observations with P 6= 0.5 and Q(0.5) = 0.5, condition (i) holds in 79%
of the observations, which is a higher frequency than what would be simply due to random answers
(79% > 50%). On the contrary, condition (ii) is satisfied trivially and thus both empirical frequency
and theoretical probability with which (ii) holds are 100%. For joint occurrence of (i)-(ii)-(iii) under
weak coherence, the empirical frequency is 79% and higher than the 50% theoretical probability.

For the subsample of observations with P = 0.5 and Q(0.5) 6= 0.5, condition (i) holds in 59%
of the observations, which is only slightly higher than what would be simply due to random answers
(59% ∼ 50%). Similarly, the empirical frequency with which conditions (i)-(ii)-(iii) jointly hold under
weak coherence is 59% and only slightly higher than the 50% theoretical probability.

The comparison between empirical frequencies and theoretical probabilities has allowed us to de-
tect that the relationship between choice and 1st-order beliefs is stronger-than-random, while the
relationship between choice and 2nd-order beliefs is not. Moreover, a stronger-than-random relation-
ship between choice and 1st-order beliefs appears to correlate not only with 1st- and 2nd-order beliefs
being strongly coherent but also, jointly with coherence, with choice coinciding with the optimal
response to 2nd-order beliefs too.

4.6 Heterogeneous Decision Rules

The discussion in Section 4.5 and the results reported in Table 14 pool participants together. It is
reasonable to think that participants are far from being a homogeneous pool of individuals, in terms
of the beliefs they hold and the decision rule(s) they employ. The approach of this section is to treat
each participant as a unit of observation, in order to provide descriptive evidence of how individuals
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differ in terms of the relationship between choice, 1st- and 2nd-order beliefs.
Table 15 reports the distribution across subjects of the frequency with which choice coincides with

the optimal response to 1st-order beliefs or with the optimal response to 2nd-order belief. Out of
the 114 participants, 38 subjects always report P = 0.5 and their choice therefore always trivially
coincide with the optimal response to 1st-order beliefs, and 26 subjects always report Q(0.5) = 0.5
and their choice therefore always trivially coincide with the optimal response to 2nd-order beliefs. For
subjects who report P 6= 0.5 in at least one period, Table 15 reports the fraction of periods out of
those with P 6= 0.5 when choice coincides with the optimal response to 1st-order beliefs. Analogously,
for subjects who report Q(0.5) 6= 0.5 in at least one period, Table 15 reports the fraction of periods
out of those with Q(0.5) 6= 0.5 when choice coincides with the optimal response to 2nd-order beliefs.

Both columns of Table 15 report a distribution across participants: from subjects who are indif-
ferent in all rounds, to subjects who are non-indifferent in most rounds and to subjects who in all
rounds not only are non-indifferent but also make a choices that coincides with the optimal action
given their beliefs. With regard to how often the observed choice coincides with the optimal response
to 1st-order beliefs, the distribution is clustered across two large groups: subjects who are indifferent
in all rounds and subjects who in most rounds are non-indifferent and whose choice in those rounds
coincides with the optimal action given their beliefs. If we define the latter group as those subjects
who are non-indifferent in more than half of the rounds and whose choice coincides with the optimal
response to 1st-order beliefs in more than half of those rounds, then we can count 5+12+15+18=
50 participants in this cluster. The second column of Table 15 presents a less clustered distribution.
There are 4+3+15+7 = 29 subjects in the cluster of those who are non-indifferent in more than half
of the rounds and whose choice coincides with the optimal response to 2nd-order beliefs in more than
half of those rounds.

How can we interpret heterogeneity across participants? In order to address this question we
turn to inspect the data collected in the questionnaire at the end of the experimental session. The
questionnaire, which participants filled out at the end of the session, consisted not only of questions
about personal background, but also questions about the decision rule(s) employed in the course of
the experiment20. The specific questions were:

• How did you choose your actions in the game? Please describe briefly.

• How did you choose your forecasts in the game? Please describe briefly.

• Do you have any comments about this experiment?21

We found that the answers, especially to the first question, provide an insight into the decision rules
employed by the participants. As far as we know, we are the first to explore the possibility and
the usefulness of asking directly participants to explain how they reached decisions. We believe

20Question about personal background included questions about gender, age, major, year of graduation, familiarity
with the game, classes taken in specific fields such as economics/finance/accounting, mathematics, and psychology.

21Answering these three questions was not mandatory. However, the response rate was extremely high. All subjects
except one (113 out of 114) answered both first and second questions, and more than half of the subjects (61 out of 114)
answered also the third question. The answers to the third question were mainly comments about enjoying participating
in the experiment. No participants expressed concerns about not understanding the instructions or the tasks (either
choice or forecast tasks). This is encouraging evidence that participants felt comfortable enough with the format/wording
used to elicit subjective beliefs.
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that including questions of this nature at the end of experiment questionnaires can provide valuable
information to researchers.

Making decisions in the Hide-and-Seek game requires taking decisions in an unknown complex
environment that is strategic and dynamic and that consists of possibly heterogeneous agents. Table
16 helps visualize the complexity of the environment according to how subjects deal with strategy,
dynamics, and heterogeneity. The environment is unknown because each participant does not know
whom she is randomly paired with in each round, nor does she know the characteristics of the popu-
lation of all same-session participants, from which her opponent is drawn.

The environment is strategic because the outcome of the interaction of two players is determined
by the decision that each of them makes, which leads each player to think ahead to what the decision of
her opponent is likely to be. Subject 66, for example, mentions thinking that there are reasons why the
most likely decision made by her potential opponent playing as Seeker would be B and that therefore
the best action for herself as Hider is A. We could loosely interpret the differences across participants’
strategic arguments as differences in ‘levels of thinking’, as the growing literature of ‘level-k’ models
does.

The environment is dynamic not simply because interaction is repeated over several rounds and
subjects can change their beliefs and behavior from one round to the next, but also because at the end
of each round information about the interaction which just took place is provided to subjects, who
may react to the information by changing their beliefs and behavior. A subject that acknowledges the
environment dynamics may or may not think that, as much as she might change beliefs and behavior
across time, other individuals in the population can change their beliefs and behavior too. While the
environment is inherently non-stationary, a subject can reason and behave as if the environment were
stationary. Learning in a non-stationary environment is an extremely demanding task. Therefore,
in our review of participants’ comments we did not expect to find mention of specific (nor let alone
optimal) rules to deal with learning in a non-stationary environment. Our aim was simply to verify
whether participants acknowledge the complexity of the decision task and whether they the decision
rules they describe implicitly assume a stationarity condition. Subject 98, for example, mentions
changing her behavior in any round based on the results experienced in the previous round, thinking
that other participants do not changes their behavior across time (while she does!).

Granted that all participants belong to the same student community, it is reasonable to think that
such community is not perfectly homogeneous in terms of decision rules, as Table 15 revealed in terms of
beliefs and behavior and as Table 17 reveals (for a selection of participants) also in terms of comments.
A subject may or may not think that the pool of subjects from which her opponent is drawn consists
of heterogeneous individuals, who hold different beliefs, follow different decision rules and update
their beliefs and behavior differently. If heterogeneity is considered, then a subject may think about
a way in which to reason about a heterogeneous population in an aggregate manner. Subject 111, for
example, mentions that the likely result of aggregating the behavior of many heterogenous potential
opponents is very random. Subject 105 mentions behaving as if playing against the same opponent,
implicitly implying the existence of a sort of ‘representative agent’. Subject 66 ’s comments that she
would choose A when playing as Seeker because she would choose A when playing as Hider implies
that she reasons as if other participants would behave as she behaves herself when playing as Hider.

The collected comments also provide an insight into how widely subjects differ in the way in
which they perceive indifference and make decisions when indifferent. Subject 9, 111 and 75 are three
participants who report indifference in the form of 1st-order beliefs P = 0.5 and/or 2nd-order beliefs
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Q(0.5) = 0.5. In their comments they report always choosing the same action in face of indifference and
motivate indifference as due to no ‘background knowledge necessary to accurately ascertain’ how other
participants act, or due to facing a ‘very random’ aggregate process of other participants’ decisions,
or due to facing independent ‘draws’ from two alternatives assumed to have ‘equal probability’.

5 Conclusion

In this paper we proposed a method to elicit probabilistic 2nd-order beliefs, along with 1st-order
beliefs, and we examined choices and 1st- and 2nd- beliefs among participants to a Hide-and-Seek
experiment. Throughout the paper we highlighted how eliciting second-order beliefs as a probabilistic
forecast helps overcome the limitations that would otherwise arise in interpreting the relationship
between observed choices and elicited beliefs in terms of best-response and coherence requirements.
Thus, we view measuring second-order beliefs probabilistically as a step forward in understanding
the process of thinking that subjects experience when facing a strategic situation, and in turning the
game-theoretic concept of higher-order beliefs into an observable variable. In addition to choice and
beliefs data, the collection of participants’ written comments provided us with a rare further glimpse
into how subjects think and decide in a complex environment and how they deal with concepts such
as randomness, indifference, heterogeneity/homogeneity, aggregation, and learning/dynamics.

While this paper documents the ability of subjects to report their subjective beliefs in probabilis-
tic form, we are aware that an alternative to the study of decision under uncertainty, and to the
corresponding focus on subjective beliefs, is represented by the study of decision under ambiguity. In
decision under ambiguity subjects do not hold a unique subjective distribution for an unknown event
but may hold a set of subjective distributions. We consider exploring the elicitation of beliefs under
ambiguity an interesting topic for further research.
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Table 14: Relationship between choice, 1st- and 2nd-order beliefs, according to whether: (i) the observed choice is
consistent with optimal response to 1st-order beliefs, (ii) the observed choice is consistent with optimal response to
2nd-order beliefs, (iii) 1st- and 2nd-order beliefs are coherent (according to 0%-, 5%-, 10%-strong coherence or weak
coherence), (i)-(ii)-(iii) hold simultaneously. Panel 1 presents the empirical percentage frequencies of observations for
which conditions (i), (ii), and/or (iii) hold. Panel 2 presents the theoretical percentage probabilities of observations for
which conditions (i), (ii), and/or (iii) would hold, computed under the assumption that participants’ answers (choice,
1st- and 2nd-order beliefs) are random. The first row of each panel reports frequencies computed over the entire sample,
while the remaining rows divide the data in subsamples according to whether 1st and/or 2nd-order beliefs imply or not
indifference.

(i) (ii) (iii) (i)-(ii)-(iii)
choice choice
and and
1st- 2nd- 1st- and 2nd- choice, 1st- and 2nd-

order order order beliefs order beliefs obs
beliefs beliefs

strong-coherence weak strong-coherence weak
0% 5% 10% coherence 0% 5% 10% coherence

Panel 1: Empirical percentage frequencies
% % % % % % % % % % no. %

all obs 89 75 34 40 52 83 33 38 46 68 456 100

P 6= 0.5, Q(0.5) 6= 0.5 81 57 19 28 37 55 17 25 32 47 173 38

P 6= 0.5, Q(0.5) = 0.5 79 100 0 10 39 100 0 10 32 79 71 16

P = 0.5, Q(0.5) 6= 0.5 100 59 0 9 26 100 0 5 12 59 92 20

P = 0.5, Q(0.5) = 0.5 100 100 100 100 100 100 100 100 100 100 120 26

Panel 2: Theoretical percentage probabilities assuming participants’ answers to be random
% % % % % % % % % % no. %

all obs 73 71 26 34 41 81 26 29 32 54 456 100

P 6= 0.5, Q(0.5) 6= 0.5 50 50 0 9.75 19 50 0 2.4375 4.75 25 173 38

P 6= 0.5, Q(0.5) = 0.5 50 100 0 10 20 100 0 5 10 50 71 16

P = 0.5, Q(0.5) 6= 0.5 100 50 0 10 20 100 0 5 10 50 92 20

P = 0.5, Q(0.5) = 0.5 100 100 100 100 100 100 100 100 100 100 120 26
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Table 15: Distribution across subjects of the frequency with which choice coincides with the optimal response to
1st-order beliefs or with the optimal response to 2nd-order belief.

How often choice coincides
with optimal response to ... ... 1st-order beliefs ... 2nd-order beliefs

No. subjects No. subjects

always 38 26
(subject is always indifferent)

fraction of periods out of those
when the subject is not indifferent

0/1 3 5
1/1 3 10

0/2 4
1/2 4 5
2/2 8 5

0/3 1 1
1/3 6
2/3 5 4
3/3 12 3

0/4 4
1/4 4 6
2/4 3 13
3/4 15 15
4/4 18 7

all subjects 114 114

Note: For both 1st- and 2nd-order beliefs, the table distinguishes between subjects who report to be indifferent in all
four periods (and for whom therefore choice always coincides with the optimal response to beliefs), and subjects who
report being non-indifferent in at least one period. For the latter, the table reports the fraction of periods, out of those
characterized by non-indifference, when choice coincides with the optimal response to beliefs.
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Table 16: A complex environment requiring participants to handle strategy, dynamics and heterogeneity.

how	
  to	
  handle	
  strategy	
   how	
  to	
  handle	
  dynamics	
  

does	
   she	
   think	
   strategically:	
  
does	
  she	
  think	
  about	
  what	
  the	
  
beliefs/choice	
   of	
   the	
   possible	
  
opponent	
  could	
  be?	
  	
  

does	
   she	
   consider	
   changing	
   her	
  
beliefs/choice	
   a:er	
   observing	
  
the	
   outcome	
   of	
   a	
   previous	
  
interac<on?	
  	
  

does	
   she	
   think	
   that	
   other	
  
subjects	
   may	
   also	
   think	
  
strategically?	
  

does	
   she	
   think	
   that	
   other	
  
subjects	
   may	
   also	
   change	
   their	
  
beliefs/choice	
  dynamically?	
  

does	
   she	
   think	
   that	
   other	
  
subjects’	
   way	
   of	
   thinking	
  
strategically	
   may	
   differ	
   	
   from	
  
hers?	
  

does	
   she	
   think	
   that	
   other	
  
subjects’	
   way	
   of	
   changing	
   their	
  
beliefs/choice	
   dynamically	
   may	
  
differ	
  from	
  hers?	
  

how	
  	
  	
  to	
  	
  	
  handle	
  	
  heterogeneity	
  

homogeneous	
  popula<on	
  

how	
  is	
  the	
  representa<ve	
  agent:	
  	
  
like	
  oneself	
  or	
  different?	
  

heterogeneous	
  popula<on	
  

how	
  can	
  aggrega<on	
  	
  
be	
  performed?	
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Table 17: A selection of participants’ comments.

subject How did you choose your actions in the game?
ID Please describe briefly. interpretation

66 I figured people would be most likely to look in B for thinking strategically, as if
the prize because it looks smaller and is a better hiding reacting to someone similar to oneself
place, so I hid in A. I looked in A because I would hide
in A

9 I clicked B each time because I didn’t want to try to choosing always the same action,
overthink how people act in this game, knowing that I stating no knowledge
don’t have the background knowledge necessary to
accurately ascertain that.

111 I think people end up doing a lot of reverse psychology on choosing always the same action,
the decisions and will probably ends up very random when stating an aggregate random process
aggregated. Therefore I just stuck with choosing A all
along.

75 I knew that B and A had equal area, so I assumed that choosing always the same action,
there were equal probability of being chosen. Thus, I as if facing an equal probability event
chose A every time because all the draws are independent.

98 I based them on the results of my last period, because I based on previous round, thinking
thought in general people choose the same way. others are similar/don’t change behavior

105 Chose my first round randomly. Then based subsequent based on previous round, as if
choices on the first round, as if I were playing the same playing against the same opponent
person. who does not change behavior
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Appendix A
Comparison of point and probabilistic 2nd-order beliefs

In this appendix we compare the two measures for 2nd-order beliefs elicited in the experiment: the
point forecast expressed by means of the ‘most likely value’ and the probabilistic forecast expressed
by means of probabilities over intervals. We refer to Engelberg, Manski and Williams (2009) for an
introduction of how point forecasts and probabilistic forecasts compare. While Engelberg, Manski
and Williams (2009) studied 1st-order beliefs, the parametric and nonparametric analysis, which they
proposed, can be readily extended to the present analysis of 2nd-order beliefs.

As argued in the paper, we can interpret the coherence of the point forecast and the probabilistic
forecast as the elicited ‘most likely value’ being a measure of central tendency for the probabilistic
forecast. Which measure of central tendency? The mode, the mean or the median? While the actual
wording used in the experiment (the ‘most likely value’) may suggest that the mode of a subjective
probability distribution is in fact the measure elicited from the experimental subjects, we argue that
we cannot make any inference on the subjective mode.

The limitation stems from the way the data for the subjective probability distribution was elicited.
The experimental setting constrained to elicit probabilities only within certain intervals. Being the
mode a local concept, we cannot tell which interval it is in. On the one hand, assuming that the
mode is in the interval assigned with the highest probability is not a reasonable assumption, because
the intervals have different widths. On the other hand, assuming that the density is uniform within
each interval is not a reasonable assumption either, because the middle intervals have a large width.
Therefore, we cannot make any inference on the subjective mode, and focus instead on inference on
the subjective mean and median.

Nonparametric Analysis

In this section we use the elicited probabilities assigned to each interval [0,5], (5,20], (20,50], (50,80],
(80,95] and (95,100] percent to compute bounds on the mean and median of the subjective distribution
representing a subject’s 2nd-order beliefs.

Suppose that a subject assigns probability 0.30 to interval (20,50]%, 0.60 to interval (50,80]%,
0.05 to interval (80,95]%, 0.05 to interval (95,100]% and zero probability to all other intervals. Then
we can conclude that the subjective median lies in the interval (50,80]%. Lower and upper bounds
on subjective means are computed by placing the probability mass assigned to each interval at the
interval’s lower and upper endpoints respectively. In our example the lower bound is 0.30 × 20% +
0.60× 50% + 0.05× 80% + 0.05× 95% = 44.75% and the upper bound is 0.30× 50% + 0.60× 80% +
0.05× 95% + 0.05× 100% = 72.75% The resulting bounds are (44.75, 72.75]%.

Table 18 reports the 25th, 50th and 75th percentiles of the sample distribution of the width of the
bounds. The width of the bounds is closely dependent on the specific definition of the intervals used in
the experiment. Specifically, the width of the bounds on the subjective median is usually 30 because
the lower and upper bounds are usually 20 or 50 and 50 or 80, respectively. No stark difference stands
out either across periods or across treatments. Results are omitted for brevity.

Table 19 reports the percentage of observations for which the elicited ‘most likely value’ lies within
the bounds on the subjective mean (69%) or within the bounds on the subjective median (79%). For
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Table 18: Percentiles of the width of the bounds on

the subjective mean and on the subjective median.

percentiles of the width
25th 50th 75th

bounds on 0.21 0.25 0.28
subj. mean

bounds on 0.30 0.30 0.30
subj. median

Table 19: Percentage of observations for which the

elicited ‘most likely value’ lies within the bounds on

the subjective mean or the subjective median.

within the bounds on
subj. mean subj. median obs.

% %

all obs. 69 79 456

by treatment
12C 75 81 64
1C2 75 86 72
21C 60 67 72
2C1 66 76 104
C12 79 81 80
C21 61 83 64

21C and 2C1 64 72 176
all others 73 83 280

most observations, the elicited ‘most likely value’ is consistent with the hypothesis that subjects report
their subjective mean or median belief. The fact that the elicited ‘most likely value’ lies more often
within the bounds on the subjective median than within the bounds on the subjective mean (79%
versus 69%) is possibly due to the bounds on the subjective median being wider than the bounds on
the subjective mean. Therefore, we cannot interpret this result as evidence in favor to the argument
that subjects report their subjective median versus their subjective mean.

Third, the treatments in which subjects are asked to report their 2nd-order beliefs as their first
task, labeled 21C and 2C1, correspond to the treatments in which coherence with respect to the
bounds on the subjective mean and median occurs less compared to all other treatments. (64% vs
73% for the subjective mean and 72% vs. 83% for the subjective median).

This result could be due to a difference in the width of bounds in treatments 21C and 2C1 compared
to all other treatments. A less spread-out subjective distribution, characterized by narrower bounds
on subjective mean and median, could make it less likely for the ‘most likely value’ to fall inside the
bounds. This explanation however can be ruled out, since we find that the width of the bounds does
not vary significantly across treatments. Thus, it could be the case that treatments other than 21C
and 2C1 lead to a more thoughtful response of the 2nd-order beliefs task because this is not the first
task, and subjects have already gone through a choice task or a forecast task (or both). In turn, a
more thoughtful response of the 2nd-order beliefs task could make it more likely for the elicited ‘most
likely value’ to fall inside the bounds.

Finally, the percentage of observations for which the elicited ‘most likely value’ lies within the
bounds on the subjective mean or median does not vary significantly across periods nor across player
roles (hider and seeker). Results are omitted for brevity.
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Parametric Analysis

In this section we use the elicited probabilities assigned to each interval [0,5], (5,20], (20,50], (50,80],
(80,95] and (95,100] percent to fit the subjective cumulative distribution functions (CDF) Qs that
represent subjects’ 2nd-order beliefs. From the knowledge of the probabilities assigned to each interval,
the value of the subjective CDF at the right endpoints of the six intervals can be inferred.

In what follows, instead of using percentage points between 0 and 100, we use values between 0 and
1. Therefore, lets relabeled the right endpoints of the six intervals as r1 = 0.05, r2 = 0.20, r3 = 0.50,
r4 = 0.80, r5 = 0.95 and r6 = 1. Lets denote the values of the subjective CDF at these points as
Q(r1), ..., Q(r6). Finally, lets denote the lower bound of the first interval and the upper bound of the
last interval over which a subject places positive probability as L and R, respectively. Therefore, we
denote the support of the subjective distribution as [L,R].

Following Engelberg, Manski and Williams (2009), we maintain the assumption that the subjective
distribution is a member of the generalized Beta family, provided that it is possible to fit a unique
Beta distribution to the data. It is possible to fit a unique Beta distribution to the data only when
a subject assigns positive probability to at least three intervals. As reported in Table 9 (see Section
4), this occurs in 329 out of 456 observations (72%)22. In the remaining 127 observations, positive
probability is assigned to one or two intervals. In the cases with one interval (43 observations, 9%
of the total), we assume that the subjective distribution has the shape of an isosceles triangle whose
base coincides with the interval. In the cases with two intervals (84 observations, 18% of the total),
the two are adjacent to one another in 64 observations and non-adjacent in 20 observations.

Consider the case of two adjacent intervals being assigned with positive probability. Suppose that
a subject assigns probability a and 1 − a to the intervals [x, y) and [y, z) respectively, where the
intervals have possibly different width. Denote with b and 1 − b the probability mass that interval
[x, y) and [y, z) respectively would have, were the probability mass of each interval proportional to
their width. Therefore b = y−x

z−x and 1 − b = z−y
z−x . In the case of intervals of equal width, b = 1/2.

We assume that the subjective distribution has the shape of an isosceles triangle whose base includes
all of the interval with a probability mass more than proportional to its width and part of the other
interval. If a < b (i.e., interval [x, y) has a probability mass less than proportional to its width), then
we assume that the subjective distribution has the shape of an isosceles triangle whose base includes

all of the interval [y, z) and part of the interval [x, y). Letting t =
(z−y)

√
a
2

1−
√

a
2
)

, it is straightforward to

show that the isosceles triangle with height h = 2
z−y+t and endpoints y − t and z defines a subjective

probability density function that is consistent with the subject’s reported beliefs.23 This procedure
generalizes Engelberg, Manski and Williams (2009) to the case of positive probability being assigned
to two adjacent intervals that have unequal width.24

22Notice that in 33 out of 329 observations the intervals are not all adjacent to each other.
23If instead a > b (i.e., interval [x, y) has a probability mass more than proportional to its width), then we assume that

the subjective distribution has the shape of an isosceles triangle whose base includes all of the interval [x, y) and part of

the interval [y, z). Letting t =
(y−x)

q
1−a
2

1−
q

1−a
2 )

, it is straightforward to show that the isosceles triangle with height h = 2
y−x+t

and endpoints x and y+ t defines a subjective probability density function that is consistent with the subject’s reported
beliefs.

24Out of the 64 observations with two adjacent intervals, only 6 observations have two intervals with unequal width.
This case is not present in the dataset analyzed by Engelberg, Manski and Williams (2009), where all (bounded) intervals
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Finally, if the two intervals assigned with positive probability are non-adjacent, then fitting a Beta
distribution is not possible and assuming that the subjective distribution has the shape of a isosceles
triangle ranging over both intervals does not seem reasonable. This occurs in 20 out of 456 observations
(4%).25 We decide to exclude these observations from the analysis.

When fitting a Beta distribution, the CDF defined over [L,R] and evaluated at x is denoted
Beta(x, α, β, L,R), where α and β are the shape parameters and L and R are the location parameters.
We put no constraint on the value of α and β, thus allowing for unimodal, uniform, U-shaped, strictly
increasing or strictly decreasing distributions. For each subject i and period t, we use the elicited
Qi,t(rj) to find the parameters αi,t and βi,t that solve the least-squares problem:

min
α,β


6∑
j=1

[Beta(rj , αi,t, βi,t, Li,t, Ri,t)−Qi,t(rj)]2
 . (8)

There is inevitably some arbitrariness in using a specific criterion to fit the experimental subjects’
answers to a distribution, but the obtained beta CDFs fit the answers well: the 25th, 50th and 75th
percentiles of the sample distribution of the minimized objective function are 0, 0.0013 and 0.0045,
respectively. The sample average is 0.0052 and the largest value is 0.0654.

Table 20 reports summary statistics of the empirical distribution of the absolute differences |Ai,t−
Mi,t| and |Ai,t −Mei,t|, distinguishing between the cases in which a Beta distribution or a triangle
distribution is fitted to the data. As mentioned above, we compute the fitted mean M and the fitted
median Me for all observations except those in which positive probability is assigned to two non-
adjacent intervals.26 The empirical distributions of both |Ai,t−Mi,t| and |Ai,t−Mei,t| have 25th, 50th
and 75th percentiles equal to 0, 5 and 15 percent respectively.27 Therefore, both the fitted mean and
the fitted median seem to provide a good proxy for the elicited most likely value.

One observation that was made under nonparametric analysis holds in an analogous way under
parametric analysis too. As table 21 reports, the treatments in which subjects are asked to report
their 2nd-order beliefs as their first task, labeled 21C and 2C1, are associated with a larger absolute
difference between the elicited Ai,t and the fitted mean Mi,t and a larger absolute difference between
the elicited Ai,t and the fitted median Mei,t, compared to all other treatments.

Conclusion

Using the answers reported by subjects in terms of probabilities over intervals, we compute nonpara-
metric bounds on the the subjective mean and the subjective median. Using the same answers, we
also fit a parametric distribution and determine the mean and the median of the fitted subjective
distribution. Thus, we have both nonparametric and parametric information about the subjective
distribution and we can answer the following question: are the answer in terms of ‘most likely value’
and the answer in terms of probabilities over intervals coherent?

have equal width.
25This case is not present in the dataset analyzed by Engelberg, Manski and Williams (2009).
26For the Beta distribution, the fitted mean is M = α

α+β
. For the fitted median there is no close form solution.

27The empirical distributions of both Ai,t −Mi,t and Ai,t −Mei,t have 25th, 50th and 75th percentiles equal to -4, 0
and 7 percent respectively.
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Table 20: Sample distribution (by fitting method) of the absolute difference between the elicited ‘most likely value’
and the fitted mean or median of the subjective 2nd-order beliefs. Percentage points.

|‘most likely value’-fitted mean|
mean 25th perc. 50th perc. 75th perc. obs.

Beta distribution 11 0 7 16 329
of which

unimodal (α > 1, β > 1) 8 0 5 12 155
uniform (α = 1, β = 1) 8 0 0 12 29

U-shaped (α < 1, β < 1) 14 0 7 23 108
strictly decreasing (α < 1, β > 1) 15 9 16 20 11
strictly increasing (α > 1, β > 1) 11 4 10 14 26

Triangle distribution 8 0 2 9 107

Beta and Triangle distr. 10 0 5 15 436

|‘most likely value’-fitted median|
mean 25th perc. 50th perc. 75th perc. obs.

Beta distribution 11 0 8 16 329
of which

unimodal (α > 1, β > 1) 9 0 5 13 155
uniform (α = 1, β = 1) 8 0 0 12 29

U-shaped (α < 1, β < 1) 16 0 9 28 108
strictly decreasing (α < 1, β > 1) 15 10 13 26 11
strictly increasing (α > 1, β > 1) 11 6 11 17 26

Triangle distribution 8 0 2 9 107

Beta and Triangle distr. 10 0 5 15 436

Table 21: Sample distribution (by experimental treatment) of the absolute difference between the elicited ‘most likely
value’ and the fitted mean or median of the subjective 2nd-order beliefs. Percentage points.

|’most likely value’-fitted mean| |’most likely value’-fitted median|
mean 25th 50th 75th mean 25th 50th 75th obs.

perc. perc. perc. mean perc. perc. perc.

all obs. 10 0 5 15 10 0 5 15 436

by treatment
12C 8 0 2 12 8 0 2 13 62
1C2 10 0 5 15 11 0 5 14 71
21C 15 4 10 24 16 5 12 25 68
2C1 11 0 4 15 12 0 7 16 102
C12 7 0 2 9 7 0 2 9 74
C21 8 0 7 15 9 0 5 13 59

21C and 2C1 13 1 7 18 13 2 8 20 170
all others 8 0 4 13 9 0 4 13 266
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Using nonparametric methods, we find that the elicited ‘most likely value’ lies within the bounds
on the mean and the median of the subjective distribution between 70% and 80% of the time. Using
parametric fitting, we find that the elicited ‘most likely value’ matches very closely both the mean and
the median of the fitted subjective distribution. Thus, evidence suggests that the answers provided in
probabilistic form by experimental subjects exhibit coherence. By conducting treatments that differ
in the order in which subjects are asked to report choices, 1st- and 2nd-order beliefs, we examine
whether task order has an impact on coherence. Both nonparametric and parametric analysis suggest
that in those treatments, in which the 2nd-order beliefs question is presented as first task, coherence
of the answer in terms of ‘most likely value’ and the answer in terms of probabilities over intervals
occurs less often than in the other treatments. In addition, we do not find that in those treatments, in
which the 2nd-order beliefs question is presented as first task, 2nd-order beliefs are characterized by
a distribution with a higher spread. In other words, we do not find evidence that subjects feel more
uncertain about their 2nd-order beliefs in those treatments compared to the others. The evidence of
lower coherence without higher uncertainty may suggest that it is inherently more difficult for subjects
to form their 2nd-order beliefs before expressing their 1st-order beliefs and choices, independently of
how uncertain 2nd-order beliefs may be.
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Appendix B. Additional tables and figures

Table 22: Sample distribution of participants according to field of studies and gender. Percentage
sample frequency in each treatment.

Treatment
12C 1C2 21C 2C1 C12 C21 all
% % % % % % %

Studies
Humanities 19 28 22 35 20 31 26
Sciences 19 17 33 35 25 25 26
Social Sciences 57 50 45 27 50 44 44
of which

Economics 38 22 39 23 45 25 32

Undecided 6 6 0 4 5 0 4

Gender
Female 62 78 61 38 55 75 60
Male 38 22 39 62 45 25 40
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Table 23: Sample distribution of 1st-order beliefs P , i.e. the subjective probability that the opponent
chooses A.

1st-order Period
beliefs P 1 2 3 4 all

(%) % % % % %

0 9 10 12 7 9
10 1
15 1
20 1 1 3 3 2
25 4 4 2 3 3
30 4 4 4 5 4
35 1 1
40 9 6 11 4 7
42 1
45 2 1 1 1
48 1 0
49 1
50 44 52 46 45 46
52 1
55 1 1 2 1
58 1
60 7 7 8 4 7
61 1
65 1 1
70 1 1 1 4 2
75 3 1 3 2 2
80 2 1 2 4 2
85 1
90 2
95 1
100 11 9 7 15 11

all 100 100 100 100 100

49



Table 24: Sample distribution of the most likely value of the opponent’s 1st-order beliefs.

most likely
value of

opponent’s
1st-order Period

beliefs 1 2 3 4 all
(%) % % % % %

0 6 2 4 7 5
1 1
10 1
20 3 3 4 2
25 1
30 4 2 3 4 3
35 1 2 1
40 4 8 2 3 4
42 1
45 1 2 1
50 50 53 55 59 54
52 1
55 1 1
60 5 9 9 7 7
65 1 2 2 1
67 1
70 4 4 5 4 4
72 1 1
75 6 4 3 2 4
80 1 2 1 1 1
90 1 1 1 1
100 16 11 9 4 10

all 100 100 100 100 100
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Table 25: Sample distribution of Q(0.5), i.e. the subjective probability that the opponent’s 1st-order
beliefs are smaller than or equal to 50%.

2nd-order
beliefs Period
Q(0.5) 1 2 3 4 all

(%) % % % % %

0 12 11 11 8 11
5 1
10 1 2 1
15 2 2 1 1
20 1 3 1 2 2
21 1
25 4 4 4 4 4
30 9 3 4 1 4
33 1 1 1 1 1
35 3 2 4 2 2
36 1
38 1
40 5 9 11 6 8
45 5 1 2 4 3
50 37 43 41 46 42
51 1 1
52 1
53 1
55 1 1 4 4 2
56 2
58 1
60 2 5 2 4 3
62 1
65 4 4 2 2
70 2 6 3 3
74 1 1
75 2 1 1 2 1
76 2
77 1
80 1 2 2 3 2
85 1
86 1 1
90 1 1 1 1 1
98 1
100 4 3 2 6 4

all 100 100 100 100 100
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Table 26: Participants’ answers to the question ‘How did you choose your actions in the game? Please
describe briefly.’

subject comments

1 went with gut
2 I chose the same outcome each time since statistically it should happen 50%
3 I thought people will be consistent in their choices
4 I chose B the first time and stuck with it every time.
5 At first randomly (1 and 2), then I based my decisions on the first two rounds, minus in the last one

I thought I was the seeker but I was the hider, or I would have hid it in B, because seemingly
everyone searches in A first.

6 picked randomly
7 I knew the areas of the regions were the same so there was a 50/50 chance.
8 I chose the same action each time.
9 I clicked B each time because I didn’t want to try to overthink how people act in this game, knowing

that I don’t have the background knowledge necessary to accurately ascertain that.
10 I didn’t expect the hider to place the object in a because even though it didn’t have more area, it

seemed to have more area and was a more likely place the seeker would look
11 More or less based on the belief that a person is equally likely to hide/seek in A or B, because

the areas are the same.
12 After the first round, I realized I didn’t forecast in the way I wanted to. I took an all or nothing

approach, and once that worked, I continued.
13 Tried to predict what the other player predicted, and then did the opposite.
14 I originally just planned to pick A and stick to it, but after I got burned twice as the hider I switched it

to B on t he third hider attempt.
15 randomly
16 I chose on the basis of rational thinking. Since the area of the two squares was equivalent I thought it

would make sense to assume that any rational person would give equal mind to each square’s possibility
as a hiding/seeking spot.

17 I guessed.
18 There wasn’t much hint, so I followed my guts.
19 I picked 50% every time because that maximized my expected payoff based on your formula. I also

assumed the hiding/seeking process was random, so I just picked A every time.
20 Predicted that most people would hide the prize in zone B, because it looks optically smaller and safer

to hide, even though the area is the same.
21 I picked section B as my answer every single time.
22 I wanted to keep my actions consistent but I found myself going closer and closer to 50/50 percent

chances towards the end.
23 think about how other people think based on each previous game played
24 I chose B to hide/seek every time and assumed that my partner would hide/seek in A.
25 Chose A consistently
26 I made the same decision each time
27 Assumed everything was 50-50, so i maintained my choice throughout the game.
28 Since A was most prominent on the paper i figured it wouldn’t be hidden there.; But on the last try

I figured they would hide the prize in A because they would expect me to chose b.
29 randomness
30 Even though areas of A and B is the same, A appeared to be larger than B. So as the seeker I chose B

consistently.
31 I tried to predict where the other participant would hide the object and stuck with that prediction.

The probability of the participant placing the object in A or B was 50%, so I thought I had a higher
chance of finding it if I stuck with the same guess in each round.

32 Randomly
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continued

subject comments

33 While the area for A was bigger, it eventually came down to a 50% chance between A or B. I just picked
one and went with it, usually B because I felt like people would expect you to pick A (because it is first
and the difference in area)

34 By putting myself in the shoes of the other people
35 Trying to predict others
36 Found success in 2nd round, repeated in 3rd round, found success, then did for 4th round.....trial and

error between 1st and 2nd rounds
37 i was always the hider. I first chose to hide in A because it looks like a larger area so people think that

others would be less likely to hide in that area. It worked the first round, so I kept on hiding it in A.
38 I chose my actions based on the fact that I thought most people would NOT choose A, since the

questions were all based around A.
39 Selecting A or B was a random choice
40 intuitively
41 I tried to think about what the other person would do and planned accordingly. As the hider, I thought

that the seeker would look in A, so I chose to hide in B, etc.
42 I chose mostly block A because it seemed like most people would choose block B.
43 I thought people would pick B, so I always picked A. Just an intuition. Stayed with it the whole time.
44 I chose my actions usually by playing it safe and trying to think like the other person and how I would

have played.
45 Completely random. Since it isn’t about area, and just based on whether someone was going to choose

between 2 different choices, it’s all just a guessing game
46 I choose the box that I thought the other person would think would be too obvious to choose.
47 Always either hid or guessed A, until round 3 when I had some random inkling that it might be B

(and I was right)
48 50/50; didn’t think much about it
49 To place the token, I made the same choice (A) each time, and I always guessed B when I was the seeker.

Since I have no information about my partner, the process was random, so switching guesses doesn’t
help.

50 I didn’t have any system to choose which box to hide/look for the prize in. I just randomly chose a box
to put the prize in when I was the hider, and when I was the seeker, I just guessed about which box it
would be in.

51 Just whatever, cause it didn’t matter. depended on another person
52 Areas of two squares were equal so I predicted 50% chance of picking either one, assumed that other

participants would act accordingly
53 Randomly choosing between A and B
54 Randomly
55 I tried to not go with the most obvious answers
56 I decided beforehand that I would always hide it in A and search in B
57 Randomly pick by heart
58 Half half
59 Expected value. There were 9 possible opponents, so despite the low sample size, it was still the

smartest move to go for par.
60 I changed where I hid it or looked for it
61 I chose based on the fact that zone a looks bigger than zone b so people would be more likely to choose

zone A even though there was no advantage over zone B in terms of hiding.
62 I decided to always hide in A, no matter what.
63 Picked b the first couple of times, but then switched for the last one because it kept losing.
64 I choose the outside blue area first because the red was more attractive to the eye. But my teammate

had the same idea. I then just alternated based on a habit of variation.
65 I chose the same actions every time, because I thought that some people would choose different answers.
66 I figured people would be most likely to look in B for the prize because it looks smaller and is a better

hiding place, so I hid in A. I looked in A because I would hide in A

53



continued

subject comments

67 I used the same numbers and box choice, because I figured that if I completed the game enough times
with the same answers, I would eventually win.

68 As a seeker for all four rounds, I thought about the thought process the hider would go through and
thus which zone they would hide the money under.

69 I thought that the hider would be more likely to hide the prize in B so I looked there.
70 i put all the eggs in one basket
71 I just wanted to maximize my earnings so I took the greatest risk.
72 Based on logic and math
73 Randomly
74 Reverse Psychology.
75 I knew that B and A had equal area, so I assumed that there were equal probability of being chosen.

Thus, I chose A every time because all the draws are independent.
76 I hid it in square B because it was less likely that the seeker would look there, since square A was so

much brighter. I looked in square B because it seemed more likely that the hider would put it there since
it seemed smaller.

77 Just made a decision and put all confidence behind it.
78 At first i just chose pretty randomly with some idea that values around 50 were a safe bet. And i just

picked A first and then B.
79 Pretty randomly. But I always matched where I thought they were hiding it with where I would look

for it.
80 I wanted to get it over with quickly
81 Picked A every time. Switching between A and B would not increase my likelihood
82 I played conservatively. I made my predictions so that they tended toward average.
83 I played conservatively rather than high risk-high gain.
84 I was consistent with my actions throughout. When I was a hider I placed the $ into the B zone

and when I was the seeker I guessed A.
85 I initially chose to hide the prize in A because even though the areas of the two spaces are the same,

psychologically it just seems ‘safer’ to hide it in B and I guessed that was what my opponent
would guess where it was. Then I decided not to change my answer.

86 I just picked randomly - overall it’s 50-50 when it comes down to it.
87 zone a is larger in area and just sticked to it since the other player’s choice is random..
88 randomly.
89 I almost always put down extreme percentages and randomly chose A or B. I didn’t put much thought

into it.
90 I decided to hit it in B for the majority of the time because there was really just a 50/50 chance that

the person would look there.
91 Randomly
92 Based everything on a 50/50 chance that the prize would be hidden in A or B pretty much.
93 I just thought about the percentages for forecasts. As for deciding which square to choose, it was pretty

much random.
94 not too greedy and consistency with my choices
95 Went 50/50 across the board and choose A twice and B twice
96 area is the same, so I just choose randomly. Plus the seeker/hider has only two choice so half-half.
97 Random
98 I based them on the results of my last period, because I thought in general people choose the same way.
99 I think although A and B are the same in size, B looks more safe to hide, and seekers are more likely

to check B too.
100 I try to make half-half decision at first, then I bet 100% decision once.
101 By the choices that put in the statements. If they said, ‘how likely do you think they’ll choose choice A?’

I knew that just by mentioning A, it would bring more attention to that choice so I increased
the percent for that option, but knew that people would sometimes think that was too obvious so
I would alternate by which area I would hide the prize in.
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continued

subject comments

102 I went with the most psychologically expected action, hoping that people would go against it.
103 Divided percentages up equal
104 A seemed like a bigger area so I thought the hider would choose that to hide.
105 Chose my first round randomly. Then based subsequent choices on the first round, as if I were playing

the same person.
106 thought about what people would most likely choose. seeing how region b was smaller and less

noticeable, I figured many of the seekers would assume that i would hide it there. So I hid the prize
in region A.

107 Figured people wouldn’t go for A because they expected that was the obvious choice. Even though they
knew the areas were the same, they’d figure I wouldn’t guess a because it looked bigger.

108 Randomly
109 just intuition- i don’t think i’m good at these type of games
110 I thought the red square was the most obvious and it seems to have a larger area, so most people would

not choose to look for the prize there.
111 I think people end up doing a lot of reverse psychology on the decisions and will probably ends up

very random when aggregated. Therefore I just stuck with choosing A all along.
112
113 Gut reaction.
114 randomly
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Appendix C

This appendix contains the computation of the theoretical probabilities reported in the lower panel
of Table 14. The theoretical probabilities are computed conditional on first- and second-order beliefs
falling in each of the categories in which Table 14 is divided: P 6= 0.5 and Q(0.5) 6= 0.5, P 6= 0.5
and Q(0.5) = 0.5, P = 0.5 and Q(0.5) 6= 0.5, P = 0.5 and Q(0.5) = 0.5. To compute the theoretical
probabilities, we assume that choice, 1st-order beliefs and 2nd-order beliefs are submitted randomly
and independently the one of the others. Thus, it’s as if:

• choice over {A,B} is drawn from the distribution Prob(A) = Prob(B) = 0.5,

• 1st-beliefs P are drawn from the uniform distribution over support [0,100] percent,

• 2nd-order beliefs Q(0.5) are drawn from the uniform distribution over support [0,100] percent.

We compute the probabilities from the point of view of the choices and beliefs of a subject playing
as Hider. We would obtain the same values were we to compute the probabilities from the point of
view of the choices and beliefs of a subject playing as Seeker. Finally, to simplify notation, we write
QH for QH(0.5).

Prob(choice optimal wrt 1st order beliefs | PH 6= 0 .5 ) = Prob(B,PH > 0.5) + Prob(A,PH < 0.5)
= Prob(B)Prob(PH > 0.5) + Prob(A)Prob(PH < 0.5) = 1

2
1
2 + 1

2
1
2 = 1

2

(9)

Prob(choice optimal wrt 2nd order beliefs | QH 6= 0 .5 ) = Prob(B,QH < 0.5) + Prob(A,QH > 0.5)
= Prob(B)Prob(QH < 0.5) + Prob(A)Prob(QH > 0.5) = 1

2
1
2 + 1

2
1
2 = 1

2

(10)

Prob(weak coherence | PH 6= 0 .5 ,QH 6= 0 .5 ) = Prob(PH > 0.5, QH < 0.5) + Prob(PH < 0.5, QH > 0.5)
= Prob(PH > 0.5)Prob(QH < 0.5) + Prob(PH < 0.5)Prob(QH > 0.5) = 1

2
1
2 + 1

2
1
2 = 1

2

(11)

Prob(choice optimal wrt 1st and 2nd order beliefs, weak coherence | PH 6= 0 .5 ,QH 6= 0 .5 )
= Prob(B,PH > 0.5, QH < 0.5) + Prob(A,PH < 0.5, QH > 0.5)
= Prob(B)Prob(PH > 0.5)Prob(QH < 0.5) + Prob(A)Prob(PH < 0.5)Prob(QH > 0.5)
= 1

2
1
2

1
2 + 1

2
1
2

1
2 = 1

4

(12)

Prob(choice optimal wrt 1st and 2nd order beliefs, weak coherence | PH 6= 0 .5 ,QH = 0 .5 )
= Prob(B,PH > 0.5) + Prob(A,PH < 0.5) = Prob(B)Prob(PH > 0.5) + Prob(A)Prob(PH < 0.5)
= 1

2
1
2 + 1

2
1
2 = 1

2

(13)

Prob(choice optimal wrt 1st and 2nd order beliefs, weak coherence | PH = 0 .5 ,QH 6= 0 .5 )
= Prob(B,QH < 0.5) + Prob(A,QH > 0.5) = Prob(B)Prob(QH < 0.5) + Prob(A)Prob(QH > 0.5)
= 1

2
1
2 + 1

2
1
2 = 1

2

(14)

Prob(α%strong coherence | PH = 0.5, QH 6= 0.5) = Prob(|PH − (1−QH)| ≤ α
100 | PH = 0.5)

= Prob(|QH − 0.5| ≤ α
100 ) = Prob(0.5− α

100 ≤ QH ≤ 0.5 + α
100 ) = 2α

100

(15)
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Prob(choice optimal wrt 1st and 2nd order beliefs, α%strong coherence | PH = 0.5, QH 6= 0.5)
= Prob(B,QH < 0.5, 0.5− α

100 ≤ QH ≤ 0.5 + α
100 ) + Prob(A,QH > 0.5, 0.5− α

100 ≤ QH ≤ 0.5 + α
100 )

= Prob(B)Prob(0.5− α
100 ≤ QH < 0.5) + Prob(A)Prob(0.5 < QH ≤ 0.5 + α

100 ) = 1
2
α

100 + 1
2
α

100 = α
100

(16)

Prob(5%strong coherence | PH 6= 0.5, QH = 0.5) = Prob(|PH − (1−QH)| ≤ α
100 | QH = 0.5)

= Prob(|PH − 0.5| ≤ α
100 ) = Prob(0.5− α

100 ≤ PH ≤ 0.5 + α
100 ) = 2α

100

(17)

Prob(choice optimal wrt 1st and 2nd order beliefs, α%strong coherence | PH 6= 0.5, QH = 0.5)
= Prob(B,PH > 0.5, 0.5− α

100 ≤ PH ≤ 0.5 + α
100 ) + Prob(A,PH < 0.5, 0.5− α

100 ≤ PH ≤ 0.5 + α
100 )

= Prob(B)Prob(0.5 < PH ≤ 0.5 + α
100 ) + Prob(A)Prob(0.5− α

100 ≤ PH < 0.5) = 1
2
α

100 + 1
2
α

100 = α
100

(18)

Prob(α%strong coherence | PH 6= 0.5, QH 6= 0.5)
= Prob(α%strong coherence | PH > 1−QH)Prob(PH > 1−QH)
+Prob(α%strong coherence | 1−QH > PH)Prob(1−QH > PH)
= Prob(PH − (1−QH) ≤ α

100 | PH > 1−QH) 1
2 + Prob(1−QH − PH ≤ α

100 | 1−QH > PH) 1
2

= Prob(PH ≤ 1−QH + α
100 | PH > 1−QH) 1

2 + Prob(1−QH ≤ PH + α
100 | 1−QH > PH) 1

2
= [1− Prob(PH ≥ 1−QH + α

100 | PH > 1−QH)] 12 + [1− Prob(1−QH ≥ PH + α
100 | 1−QH > PH)] 12

= 1− [1− 2α
100 (1− 1

2
α

100 )] = 2α
100 (1− 1

2
α

100 ) = 2α
100 − ( α

100 )2

(19)

since

Prob(PH ≥ 1−QH + α
100 | PH > 1−QH) = Prob(PH≥1−QH+ α

100 , PH>1−QH)

Prob(PH>1−QH) = Prob(PH≥1−QH+ α
100 )

1
2

=
1
2−

α
100 (1− 1

2
α

100 )
1
2

= 1− 2α
100 (1− 1

2
α

100 )
(20)

and

Prob(PH ≥ 1−QH + α
100 ) =

∫ 1

0
Prob(PH ≥ 1−QH + α

100 | QH = x)dx
=
∫ 1

0
Prob(PH ≥ −x+ 1 + α

100 )dx =
∫ α

100
0

Prob(PH ≥ −x+ 1 + α
100 )dx+

∫ 1
α

100
Prob(PH ≥ −x+ 1 + α

100 )dx

= 0 +
∫ 1
α

100
Prob(PH ≥ −x+ 1 + α

100 )dx =
∫ 1
α

100
[1− (−x+ 1 + α

100 )]dx =
∫ 1
α

100
(x− α

100 )dx
= 1

2 (1)2 − α
1001− [ 12 ( α

100 )2 − α
100

α
100 ] = 1

2 −
α

100 (1− 1
2
α

100 )

(21)

and

Prob(PH ≥ 1−QH + α
100 | PH > 1−QH) = Prob(1−QH ≥ PH + α

100 | 1−QH > PH) (22)

Prob(choice optimal wrt 1st and 2nd order beliefs, α%strong coherence | PH 6= 0 .5 ,QH 6= 0 .5 )
= Prob(B)Prob(PH > 0.5, QH < 0.5, |PH − (1−QH)| ≤ α

100 )
+Prob(A)Prob(PH < 0.5, QH > 0.5, |PH − (1−QH)| ≤ α

100 )
= 1

2Prob(PH > 0.5, QH < 0.5, |PH − (1−QH)| ≤ α
100 )

+ 1
2Prob(PH < 0.5, QH > 0.5, |PH − (1−QH)| ≤ α

100 )
= 1

2Prob(PH > 0.5, QH < 0.5, PH − (1−QH) ≤ α
100 , PH > 1−QH)

+ 1
2Prob(PH > 0.5, QH < 0.5, 1−QH − PH ≤ α

100 , 1−QH > PH)
+ 1

2Prob(PH < 0.5, QH > 0.5, PH − (1−QH) ≤ α
100 , PH > 1−QH)

+ 1
2Prob(PH < 0.5, QH > 0.5, 1−QH − PH ≤ α

100 , 1−QH > PH)
= 1

24 1
4
α

100 (1− 1
2
α

100 ) = 1
2
α

100 (1− 1
2
α

100 )

(23)
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since

Prob(PH > 0.5, QH < 0.5, PH − (1−QH) ≤ α
100 , PH > 1−QH)

= Prob(PH > 0.5, QH < 0.5, PH > 1−QH)− Prob(PH > 0.5, QH < 0.5, PH > 1−QH , PH − (1−QH) ≥ α
100 )

= Prob(PH > 0.5, QH < 0.5, PH > 1−QH)− Prob(PH > 0.5, QH < 0.5, PH > 1−QH , PH ≥ 1−QH + α
100 )

= Prob(PH > 0.5, QH < 0.5, PH > 1−QH)− Prob(PH > 0.5, QH < 0.5, PH ≥ 1−QH + α
100 )

= 1
2

1
2

1
2 −

1
2

1
2Prob(PH ≥ 1−QH + α

100 ) = 1
8 −

1
4 [ 12 −

α
100 (1− 1

2
α

100 )] = 1
4
α

100 (1− 1
2
α

100 )

(24)

and

Prob(PH > 0.5, QH < 0.5, PH − (1−QH) ≤ α
100 , PH > 1−QH)

= Prob(PH > 0.5, QH < 0.5, 1−QH − PH ≤ α
100 , 1−QH > PH)

= Prob(PH < 0.5, QH > 0.5, PH − (1−QH) ≤ α
100 , PH > 1−QH)

= Prob(PH < 0.5, QH > 0.5, 1−QH − PH ≤ α
100 , 1−QH > PH)

(25)
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Appendix D
Instructions

Welcome! Thank you for participating in this experiment. You are going to take part in a study of decision making.
Please follow these instructions carefully. You will be paid according to your performance. In case you have questions,
please raise your hand at any time. Please do not speak to other participants during the experiment.

You are going to be randomly paired with another student in the room to play a hide-and-seek game. In the hide-
and-seek game, one person chooses a place where to hide a prize, and the other person needs to predict where the prize
is hidden. The prize is a $10 banknote.

The prize must be hidden somewhere in a field. The field is divided into two zones: an inner zone and an outer zone.
The two zones are identical in area. The figure below represents the field. In the figure, the inner zone is labelled A and
colored in red and the outer zone is labelled B and colored in blue.

The hider has to choose between hiding the prize in zone A or in zone B. The seeker has to choose between predicting
that the prize is hidden in zone A or in zone B. If the seeker does not predict correctly, then the hider wins the $10 prize.
If instead the seeker predicts correctly, then he or she wins the $10 prize.

You will play the game for four rounds. In each round you will be randomly paired with another student. Therefore,
you will not necessarily play the game every time with the same person. In each round the roles of hider and seeker will
be assigned randomly to you and the other student who is paired with you. You will see the information on the screen.
At the end of the session, the computer will randomly select one of the rounds, and you will be paid according to your
performance in that round only.

B

           A
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Additional tasks

Besides having the opportunity to earn the $10 prize, you will also be given the opportunity to earn extra money by
making forecasts. You will be asked to forecast the choice made by your opponent. You may be asked to assign a percent
chance to each possible outcome and/or you may be asked to specify what you think the most likely outcome is.

A percent chance is a number between 0 and 100 percent, where 100 percent chance assigned to an outcome means
that you are certain that such outcome is going to be the correct one, and 0 percent chance means that you are certain
that such outcome is not going to be the correct one.

You will be paid based on the accuracy of your forecasts.

When forecasts are expressed in terms of what you think the most likely outcome is, you will earn nothing is your
forecast is wrong (i.e., if the correct answer does not coincide with the one you chose), while you will earn $2 if your
forecast is correct (i.e., if the correct answer coincides with the one you chose).

When forecasts are expressed in terms of a percent chance, then the payoff is determined as follows. Suppose that
you are asked to assign a percent chance to two possible outcomes. For convenience let’s label the two outcomes X and
Y. Suppose that you assign percent chance pX to outcome X and percent chance pY to outcome Y. We will give you $2
from which we will subtract an amount which depends on how inaccurate your answer was.

If outcome X turns out to be the correct one, the amount (1− pX
100

)2 + ( pY
100

)2 is subtracted from the initial $2.
If outcome Y turns out to be the correct one, the amount ( pX

100
)2 + (1− pY

100
)2 is subtracted from the initial $2.

Lets consider an example. Suppose that the correct outcome is X. Then the worst you can do is to assign a 0
percent chance to X and a 100 percent chance to Y. In this case your payoff is:

$2− $

„
1− 0

100

«2

− $

„
100

100

«2

= $2− $(1)2 − $(1− 0)2 = $2− $1− $1 = $0

The best you can do is instead to assign a 100 percent chance to X and 0 percent chance to Y. In this case your
payoff is:

$2− $

„
1− 100

100

«2

− $

„
0

100

«2

= $2− (1− 1)2 − (0)2 = $2− $0− $0 = $2

Therefore your payoff in this task is between $0 and $2.
The same rule is applied when more than two possible outcomes exist. Your payoff in this task is always between

$0 and $2.

Note Since your forecasts are made when you don’t know what your opponent has chosen, the best thing you can
do to maximize the expected size of your payoff is to simply state what you think.

Final comments

By participating to the game you will receive a show-up fee of $5, plus the $10 prize if you are the winner in the game,
plus payment based on the accuracy of your forecasts. Payment for the forecasts ranges between $0 and $6.

Therefore, the total payment you will receive will be between $5 and $21.
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