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Abstract 

We propose a new methodology to estimate the empirical pricing kernel implied from 

option data. In contrast to most of the studies in the literature that use an indirect approach, 

i.e. first estimating the physical and risk-neutral densities and obtaining the pricing kernel in a 

second step, we follow a direct approach. Departing from an adequate parametric and 

economically motivated pricing kernel, we apply a functional gradient descent (FGD) 

algorithm based on B-splines. This approach allows us to locally modify the initial pricing 

kernel and hence to improve the final estimate. We empirically illustrate the estimation 

properties of the method and test its predictive power on S&P 500 option data, comparing it 

as well with other recent approaches introduced in the empirical pricing kernel literature. 
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1 Introduction

The pricing kernel or stochastic discount factor is a key component of any

asset pricing model. It summarizes investor preferences for payoffs over

different states of the world and represents an important link between eco-

nomics and finance. Given its high information content, it is not surprising

that several attempts have been undertaken in the past to infer such a kernel

from observed (option) market prices.

Seminal papers in the empirical pricing kernel estimation literature include

Jackwerth (2000) and Aı̈t-Sahalia and Lo (2000). Both of them adopt a so-

called indirect approach, i.e. they first estimate the physical and risk-neutral

densities and then obtain the pricing kernel in a second step. Alternatively,

it is also possible to estimate the pricing kernel directly using the fundamen-

tal asset pricing equation (see Rosenberg and Engle (2002)).

According to classical finance models, one would expect to find a fitted pric-

ing kernel that is a decreasing function of aggregate resources. However,

this is contrary to many recent empirical studies (including those mentioned

above). The empirical pricing kernel does not seem to be a monotonically

declining function, but exhibits instead an upward-sloping region. This phe-

nomenon is known as the pricing kernel puzzle.

In the last ten years, several other estimation methodologies have been pro-

posed. A majority of them rely on the indirect approach: see, among oth-

ers, Barone-Adesi et al. (2008), Grith et al. (2009), Detlefsen et al. (2010),

Barone-Adesi and Dallo (2010) and Fengler and Hin (2011). In addition,

Yang (2009) and Grith et al. (2011a) also present some modified versions

of the direct method originally introduced in Rosenberg and Engle (2002).

The studies have produced mixed results. A large number of them con-

firm the pricing kernel puzzle. However, Barone-Adesi et al. (2008) and

Barone-Adesi and Dallo (2010) find the overall shape of their estimates to

be generally decreasing. Furthermore, there are also recent contributions

supporting U-shaped pricing kernels (e.g., Bakshi et al. (2010) and Christof-

fersen et al. (2011)).

Besides the introduction of the above-mentioned estimation techniques, some

researchers have performed formal tests to verify the monotonicity of the

pricing kernel (see for example Golubev et al. (2008), Härdle et al. (2010)

and Beare and Schmidt (2011)). They provide evidence in their empirical
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applications that the null-hypothesis of non-increasing kernels can typically

be rejected. Consequently, several attempts have been made to explain the

puzzle. Chabi-Yo et al. (2008) and Grith et al. (2011b) for example consider

state-dependent preferences as possible explanations, whereas others such as

Shefrin (2005), Ziegler (2007), De Giorgi and Post (2008), Polkovnichenko

and Zhao (2010) and Hens and Reichlin (2011) focus on results coming from

the behavioral finance literature to solve the puzzle.

In this paper, we propose a new direct estimation methodology. Departing

from an adequate and economically motivated power pricing kernel, we ap-

ply a customized functional gradient descent (FGD) algorithm based on

B-splines. This approach allows us to locally modify the initial pricing

kernel by means of an additive expansion of some relevant B-Spline ba-

sis functions and therefore produces an improved final estimate. The FGD

algorithm (Friedman (2001)) belongs to the class of boosting procedures,

which are very popular in the area of machine learning. It can be inter-

preted as a functional analog of the gradient method applied for parameter

optimization. However, our algorithm has some peculiarities not present in

the generic FGD procedure. It depends on a set of simulated future returns

and must be combined with numerical integration or Monte Carlo methods

to compute an expectation, which makes our approach particularly chal-

lenging. Recently, FGD or slightly modified versions of it have already been

successfully applied to financial function estimation. In particular, Audrino

and Bühlmann (2009) have shown that FGD in connection with B-splines

yields good results in volatility estimation and forecasting.

Our study contributes to the existing literature along two different lines.

First, we bring the idea of boosting into the field of pricing kernel estima-

tion by suggesting a new and rather flexible direct fitting approach that is

able to provide accurate estimates. Second, in contrast to almost all studies

presented in the literature so far, we also investigate the predictive power of

our pricing kernel estimates. Having such accurate forecasts is interesting.

They contain helpful information regarding investors’ future beliefs and risk

behavior and can be used for example to improve option valuation or the

performance of option trading/hedging strategies.

In our empirical analysis, we consider S&P 500 option data from 2005 un-

til 2010 to empirically illustrate the estimation properties of our algorithm.

Although departing from an initial pricing kernel conforms to classical eco-
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nomic theory, we often observe final estimates showing the puzzling behavior.

In agreement with several previous studies, we find that the increasing com-

ponent is usually located in the area of zero return and resembles a bump.

However, the fitted kernel is time-varying and we also get estimates con-

forming to some other recent contributions supporting the claim that the

pricing kernel looks U-shaped. In order to evaluate the accuracy of the fitted

kernels, we investigate the in-sample and out-of-sample pricing performance

of our methodology. Interestingly, we find that the FGD algorithm based on

splines consistently outperforms the parametric specifications introduced in

Rosenberg and Engle (2002), which are considered benchmark approaches.

The paper is organized as follows. Section 2 contains a review of basic as-

set pricing theory (mainly to set up notations) and formally introduces the

pricing kernel puzzle. Section 3 provides a detailed description of our new

estimation method using a FGD algorithm based on B-splines. Section 4

presents the empirical results and Section 5 concludes the paper.

2 The role of the pricing kernel in asset pricing

theory and its puzzling behavior

2.1 Review of some asset pricing theory

Given some general non-arbitrage conditions (see Hansen and Richard (1987)),

the time t price πt(Xt+1) of an asset with payoff Xt+1 ∈ Xt+1 (the set of

payoffs at time t+ 1) can be written as

πt(Xt+1) = Et[Mt,t+1Xt+1], (1)

where Et[·] denotes the conditional expectation given investors’ information

Jt at time t and Mt,t+1 is the one-period stochastic discount factor (SDF)

or pricing kernel. Hence, the price of an asset equals the expected pricing-

kernel weighted payoff.

The SDF is a state-dependent function that discounts payoffs using time

and risk preferences. Generally, it can depend on many (possibly unknown)

state variables. Since there is a considerable debate among researchers about

the state variables that enter into the pricing kernel, it is quite common to

consider a projected pricing kernel. More precisely, among the admissible

SDFs in (1), there exists only one that is a function of available payoffs. It is
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the orthogonal projection of any admissible SDF on the set of payoffs. If we

now consider as payoff space Xt+1 the set of all squared integrable functions

h(Jt, Xt+1) of some primitive payoff Xt+1, we obtain the projected pricing

kernel as

M∗t,t+1 = Et[Mt,t+1|Xt+1]. (2)

Although this projected pricing kernel is not necessarily identical to the

original one, it has exactly the same pricing implications for assets with

payoffs that depend on Xt+1 (see for example Cochrane (2005) for a discus-

sion). Moreover, this projected pricing kernel, which is a univariate function

of Xt+1, can vary over time, reflecting time variation in the pricing kernel

state variables.

Hansen and Richard (1987) show that it is sufficient that there exists a par-

ticular admissible SDF which is almost surely positive in order to deduce

that there are no arbitrage opportunities on Xt+1. Conversely, no arbitrage

implies that the SDF in (2) is positive with probability one. Therefore,

without making any assumptions about market completeness, the absence

of arbitrage in the set of contingent claims leads to the existence of a unique

positive SDF which is a function of the primitive payoff Xt+1. As a con-

sequence, we can define a risk-neutral probability measure Q such that the

price of any contingent claim with payoff Ht+1 = h(Jt, Xt+1) is given by

πt(Ht+1) = Et[M
∗
t,t+1Ht+1] = Et[M

∗
t,t+1]EQt [Ht+1]

with

EQt [Ht+1] = Et

[
M∗t,t+1

Et[M∗t,t+1]
Ht+1

]
.

Thus, pricing is reduced to a riskless discounting using the price at time t

of a zero-coupon bond which pays one dollar at time t + 1 and a distorted

(risk-neutral) conditional expectation of the asset payoff Ht+1. It is called

risk-neutral pricing since it determines prices as if agents were risk neutral.

Furthermore, the pricing kernel M∗t,t+1 can be seen as the transformation

between the risk-neutral and historical measure, that is

M∗t,t+1 = Et[M
∗
t,t+1]

q

p
= e−rt,t+1

q

p
, (3)
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where rt,t+1 is the (continuously compounded) yield on the zero-coupon bond

and q and p designate the risk-neutral or the historical density function. The

density q is often also referred to as state price density since it represents

the continuous-state counterpart of the so-called Arrow-Debreu securities.

2.2 The pricing kernel puzzle

In order to formally introduce the pricing kernel puzzle, let us now consider

a representative agent model in which the investor’s preferences satisfy the

expected utility theory of von Neumann and Morgenstern (1944). A famous

example is Lucas’ (1978) consumption-based asset pricing model. In this

case, the pricing kernel corresponds to the investor’s intertemporal marginal

rate of substitution, i.e.

Mt,t+1 =
u′(Ct+1)

u′(Ct)
, (4)

where Ct and Ct+1 are consumption in period t and t + 1, respectively,

and u′ is the first derivative of the investor’s utility function. Based on

assumptions present in many classical finance models that investors satisfy

the non-satiation property and are risk averse, we obtain an increasing and

concave utility function u. Consequently, the pricing kernel in equation (4)

should be a decreasing function of aggregate consumption. Similarly, one

would also expect that the projected pricing kernel M∗t,t+1 (which coincides

with the projection of u
′(Ct+1)
u′(Ct)

on the set of payoffs) is a decreasing function.

However, this is in contrast with empirical observations. Among others,

Jackwerth (2000) and Rosenberg and Engle (2002) find that the pricing ker-

nel is not an overall decreasing function. In other words, they observe a

locally increasing pricing kernel, implying a locally increasing marginal util-

ity and convex utility function. We refer to this as the pricing kernel puzzle.

Various attempts have been made to explain the puzzle. Chabi-Yo et al.

(2008) and Grith et al. (2011b) for example consider state-dependent pref-

erences as possible explanations whereas others like Shefrin (2005), Ziegler

(2007), De Giorgi and Post (2008), Polkovnichenko and Zhao (2010) and

Hens and Reichlin (2011) focus on results coming from the behavioral fi-

nance literature to try to understand this puzzling behavior of the pricing

kernel.
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3 Empirical pricing kernel estimation

In this section, we will present our FGD method based on splines to esti-

mate an empirical pricing kernel. As opposed to most of the studies in the

literature that use an indirect approach, i.e. first estimating the physical

and risk-neutral densities and obtaining the pricing kernel in a second step,

we follow a direct approach originally introduced in Rosenberg and Engle

(2002). Therefore, we start by presenting the general idea of the direct es-

timation method before continuing with a detailed description of the FGD

estimation methodology.

3.1 An introduction to the direct estimation approach

The goal is to estimate a projected pricing kernel onto the underlying asset

returns using S&P 500 option data and historical returns. Let us now briefly

summarize this approach.

3.1.1 Estimation technique

Using the fundamental pricing equation, one can write the price of a deriva-

tive with a payoff that depends on the return of the underlying asset rt+1

as

Pi,t = Et[M
∗
t,t+1(rt+1)gi(rt+1)] =

∫
M∗t,t+1(rt+1)gi(rt+1)ft(rt+1) drt+1,

where Pi,t is the price of the ith asset with payoff function gi(rt+1) and

ft(rt+1) designates the probability density of one-period underlying asset

returns.

Using an estimate of the projected kernel M̂∗t,t+1(rt+1) together with an

adequately estimated return density f̂t(rt+1), we get the fitted model price

P̂i,t as

P̂i,t = Et[M̂
∗
t,t+1(rt+1)gi(rt+1)] =

∫
M̂∗t,t+1(rt+1)gi(rt+1)f̂t(rt+1) drt+1. (5)

Whereas the kernel M̂∗t,t+1(rt+1) is the object of interest that we have in

mind to estimate, we need a model specification of the underlying return

process in order to get the conditional density ft. This question will be

addressed in Subsection 3.1.2 below.
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The empirical pricing kernel is then defined as the function that makes fitted

prices closest to observed prices, using the estimated return density. This is

basically a function estimation/optimization problem. But it includes some

additional complexity since it must be combined with Monte Carlo methods

or numerical integration to calculate the expectation in each step of the op-

timization procedure. However, the problem can be simplified by assuming

a parametric representation M∗t,t+1(rt+1; θt) of the projected pricing kernel,

where θt is an N -dimensional parameter vector.

This leads to a parameter optimization problem and we call empirical pricing

kernel the one that solves

min
θt

L∑
i=1

(Pi,t − P̂i,t(θt))2/V ega2
i,t,

where L represents the number of asset prices, P̂i,t(θt) is the fitted model

price as a function of the pricing kernel parameter vector and V egai,t is the

BS-vega of the option at the market implied level of volatility.

Such vega-weighted pricing errors are an approximation to implied volatility

errors, which have desirable statistical properties. In particular, implied

volatility errors are proportional to bid-ask spreads and yield a better scaling

of the cost functional. Unlike implied volatility errors, they do not require

Black-Scholes inversion of model prices at every step in the optimization

algorithm, which is therefore favorable from a computational point of view.

We refer to Cont and Tankov (2004) and Christoffersen et al. (2011) among

others for more details on applications of vega-weighted option valuation

errors.

3.1.2 Modeling the underlying return process and numerical ap-

proximation of the conditional expectation

As suggested in Rosenberg and Engle (2002), we use an asymmetric GARCH

model with empirical innovations to approximate the physical density of

S&P 500 returns. More specifically, we model the underlying return process

with a GJR-GARCH (Glosten et al. (1993))1 including a linear autoregres-

1Rosenberg and Engle (2002) fit a number of GARCH models to daily S&P 500 index
returns and find that the GJR-GARCH model describes the data best. Since then, this
model or similar asymmetric GARCH specifications have been widely used in the empirical
pricing kernel literature to model the underlying return process.
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sive term for estimating a conditional mean, i.e.,

rt = ln(St/St−1) = µrt−1 + εt, εt ∼ h(0, σ2
t ) (6)

and

σ2
t = ω + βσ2

t−1 + αε2t−1 + γmax(0,−εt−1)2. (7)

This model specification allows it to capture the most important stylized

facts of financial return series. The conditional volatility is stochastic and

mean-reverting and when γ > 0 the model also accounts for the leverage

effect.2 The empirical innovation density h is separated into a time-varying

component σt and the time-invariant distribution of standardized innova-

tions zt = εt/σt. This standardized innovation density incorporates skew-

ness and excess kurtosis that are not captured in a normal density.

We estimate the model using a pseudo maximum likelihood approach with a

normal innovation density. Bollerslev and Wooldridge (1992) show that con-

sistent parameter estimates can be obtained under certain conditions even

if the true innovation density is not normal.

Using the estimated model parameters, the conditional variance and the

standardized innovations, we are able to simulate return paths. For a given

time point t such a path is obtained by randomly selecting an estimated

standardized innovation z[1], updating the conditional variance σ2
t+1, draw-

ing a second innovation z[2], updating the conditional variance σ2
t+2, and

continuing up to the desired time horizon. Repeating this procedure many

times, we obtain a set of simulated returns and apply a kernel density esti-

mator to get an estimate of the future return density ft. This method, first

introduced in Barone-Adesi et al. (1998) to compute portfolio risk measures,

is now widely used and generally called filtered historical simulation (FHS)

in the financial econometrics literature (see, for example, Barone-Adesi et al.

(2008)).

Finally, we obtain a fitted model price by using the classical midpoint nu-

merical integration rule in order to calculate the integral in equation (5).

2The term leverage effect was introduced by Black (1976) and is used to describe the
asymmetric reaction of volatility in response to good and bad news (excess returns).
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We have

P̂i,t(θt) =
∆rt+1

n

n∑
j=1

M̂∗t,t+1(r̃j,t+1; θ)gi(r̃j,t+1)f̂t(r̃j,t+1), (8)

where r̃j,t+1 =
rj−1,t+1+rj,t+1

2 with j = 1, . . . , n are n equally spaced mid-

points in a partition {rj,t+1}nj=0 of the integration domain [r0,t+1, rn,t+1]

with length ∆rt+1 = rn,t+1 − r0,t+1.

Alternatively, one could also use a Monte Carlo approximation of the inte-

gral. We tried both in our empirical analysis. Since the pricing accuracy

does not seem to be very sensitive to the choice, we decided to rely on the

simple numerical approximation, as it needs less computational time.

3.1.3 Parametric pricing kernel specifications

We will now review the parametric pricing kernel specifications proposed

in Rosenberg and Engle (2002). The reason is twofold. First, they can

serve as starting models in our FGD algorithm and secondly we can take

them as benchmark models when analyzing the predictive power of our FGD

approach based on splines in the empirical analysis section.

In the first specification, the kernel is a power function of the underlying

asset’s gross return, i.e.

M∗t,t+1(rt+1; θt) = θ0,t(rt+1)−θ1,t . (9)

The first parameter θ0,t is a scaling factor and the second parameter θ1,t

determines the slope of the kernel at date t. When θ1,t is positive, the price

kernel is negatively sloped, which implies that the value of a unit payoff

increases as the underlying asset return decreases.

In the second, more flexible specification, they consider a kernel of the form

M∗t,t+1(rt+1; θt) = θ0,tT0(rt+1) exp(θ1,tT1(rt+1) + · · ·+ θN,tTN (rt+1)) (10)

with N + 1 parameters (θ0,t, . . . θN,t) and where T0, . . . , TN are Chebyshev

polynomials with terms given by Tn(x) = cos(n arccos(x)) for x ∈ [−1, 1]. To

obtain an approximation over a closed interval [a, b], we consider generalized

Chebyshev polynomials with x = (2rt+1 − a− b)/(b− a).
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Whereas the first parametric specification is rather restrictive but popular

in financial models,3 the second is rather flexible. More precisely, if there

were an infinite number of polynomial terms in our expansion, we could

theoretically approximate any continuous function accurately. However, the

number of observed asset prices at time t provides us with an upper bound

for the number of polynomial terms. This is the motivation behind using

orthogonal polynomials such as Chebyshev polynomials, which provide more

precise approximations for lower order expansions. Other reasonable choices

could be Hermite or Laguerre polynomials (see for example Yang (2009) and

Grith et al. (2011a)).

3.2 Our FGD approach based on splines

Let us now focus on our direct estimation approach using a functional gradi-

ent descent (FGD) algorithm based on splines. The FGD algorithm (Fried-

man (2001)) belongs to the class of boosting procedures, which are very pop-

ular in the area of machine learning. It can be interpreted as a functional

analog of the gradient method used for parameter optimization. The way

FGD works is quite intuitive. It takes a simple parametric or non-parametric

model as a first approximation and then modifies it in a non-parametric way

to improve a pre-specified goodness-of-fit statistic.4 In order to be able to

apply this boosting technique, we restrict our pricing kernel to be an additive

expansion of the form5

M∗(r) = M∗0 (r) +

M∑
m=1

fm(r), (11)

where M∗0 designates the starting model and each fm denotes a general,

arbitrary statistical procedure (function) called base learner in the machine-

learning context. Possible choices of the functions fm are restricted in the

following way: fm should belong to a given class of statistical procedures

that are weak in the sense that they avoid overfitting by limiting the number

of parameters involved in the estimation. In our study, we will focus on B-

3Note that we would obtain this parametric form of the pricing kernel assuming that
the stochastic process of the underlying stock follows a Geometric Brownian Motion.

4We refer to the Appendix for a short introduction of the FGD method.
5For simplicity of notation, we remove all time subscripts and just write M∗(r) in-

stead of M∗t,t+1(rt+1) for the projected pricing kernel. Where appropriate, we reuse this
notational shortcut in subsequent parts of this article as well.
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spline basis functions as base learners since B-splines in connection with

FGD have already proven to yield good results in volatility forecasting (see

Audrino and Bühlmann (2009)). More precisely, we have

fm(r) = βdmBdm(r),

where Bdm designs a B-spline basis function and βdm is the corresponding

multiplicative coefficient.6

B-splines are piecewise polynomial functions and can therefore be used to

approximate a general continuous function.7 Using B-splines will allow for

a large flexibility in the shape of the pricing kernel, depending on how we

choose the tuning parameters, i.e. the order and the number of breaks (also

called knots) of each B-spline basis function. We allow the pricing kernel

to be a cubic function of the returns and thus select a spline order of 4.

The number of knots is a measure for the approximation accuracy. The

higher the number of breaks, the better the approximation we obtain but

with a higher variability due to a larger complexity. In our application, we

choose as break points empirical α-quantiles of the simulated returns with

α = i/mesh (i=1,. . . ,mesh-1) and mesh ∈ N.8

Recently, nice asymptotical properties have been shown for L2-boosting (we

refer to Bühlmann and van de Geer (2011) and references therein for a more

detailed discussion). Thus, we consider in our FGD procedure a (slightly

modified) L2-loss function λ given by the vega-weighted squared-error loss

of observed and fitted option prices, i.e.

λ(P, P̂ ) =
1

2

(
P − P̂
V ega

)2

6No-arbitrage conditions on the coefficients of the B-spline basis functions have been
recently derived by Fengler and Hin (2011). Although in our algorithm we do not formally
restrict the parameters to satisfy those restrictions, in our empirical analysis the estimated
coefficients always lead to the absence of arbitrage and fulfill the conditions.

7We refer to de Boor (2001) for an introduction to B-splines.
8Generally, one can also use another complexity parameter (the so-called knot’s mul-

tiplicity) to control the smoothness of the approximation at each knot. So far, we impose
our approximation to be continuous and smooth at each break point. This means that we
set the knot’s multiplicity to be equal to 1 for all knots except the first and last one. For
more details refer to de Boor (2001).
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with

P̂ =
∆r

n

n∑
j=1

M∗(r̃j)g(r̃j)f̂(r̃j). (12)

This fitted model price corresponds to the approximation that has been de-

scribed in equation (8) and in which M∗ denotes the projected pricing kernel

as defined in (11).

The choice of the starting model used in the FGD algorithm is important

since FGD aims at locally improving the empirical loss of an initial model

estimate on the basis of non-parametric additive expansions. Hence, one

should start from an adequate initial estimate to obtain a satisfactory per-

formance. In our application, we take the power pricing kernel specification

introduced in (9) as a starting model. We believe that it represents a good

trade-off between adequacy and complexity. Furthermore, this pricing ker-

nel contains a solid economic motivation and conforms to classical finance

models (i.e., it does not yield to the empirical pricing kernel puzzle).

Taking all the above considerations into account, we obtain the following

estimation algorithm:

FGD algorithm with B-spline learners

Step 1 (initialization). Estimate the starting function M̂∗0 using the esti-

mated return density f̂ and some return values {r̃j}nj=1. Set m = 1.

Step 2 (projection of the negative gradient to the weak learner). Compute

the negative gradients

Ui =
1

V ega2
i

Pi − ∆r

n

n∑
j=1

M̂∗m−1(r̃j)gi(r̃j)f̂(r̃j)

 , i = 1, . . . , L.

Then, project the negative gradients onto the weak learner. More precisely,

we solve

d̂m = min
1≤d≤k

L∑
i=1

Ui − ∆r

n

n∑
j=1

β̂dBd(r̃j)gi(r̃j)f̂(r̃j)

2

,

where d is a basis index, β̂d denotes the least-squares estimated coefficient

when regressing the residuals Ui versus the new model price components
∆r
n

∑n
j=1 β̂dBd(r̃j)gi(r̃j)f̂(r̃j) and k is the degree of freedom (number of B-
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spline basis functions). It is k = (mesh− 1) + 4.

Step 3 (line search). Perform a one-dimensional optimization for the step-

length βd̂m when updating M̂∗m−1

β̂d̂m = min
ω

L∑
i=1

λ(Pi, P̂i)

with

P̂i =
∆r

n

n∑
j=1

(
M̂∗m−1(r̃j) + ωBd̂m(r̃j)

)
gi(r̃j)f̂(r̃j).

Update the current pricing kernel estimate

M̂∗m(r) = M̂∗m−1(r) + β̂d̂mBd̂m(r).

Step 4 (iteration). Increase m by one and iterate step 2, stopping when

m = M . This produces the estimate

M̂∗M (r) = M̂∗0 (r) +
M∑
m=1

β̂d̂mBd̂m(r).

The choice of the stopping value M is important and it should be carefully

selected to avoid overfitting. Usually, it is estimated by minimizing approx-

imations of the expected prediction error. In our empirical application, we

will apply a sample-splitting technique. One part of the data is used to es-

timate the model (estimation sample) and another part serves to do model

evaluation (validation sample). The optimal value M is chosen such that it

minimizes the empirical risk in the validation sample.

Furthermore, it is often desirable to make a base learner sufficiently weak

(having low complexity). A simple but effective solution to achieve this is

via shrinkage toward zero. Hence, the update in Step 2 of the algorithm is

replaced by

νβ̂d̂mBd̂m(·), 0 ≤ ν ≤ 1.

Obviously, this reduces the variance (a complexity measure) by the factor

ν2.

Finally, we would like to emphasize that our FGD-algorithm, although by

nature the same as the classical ones, possesses some additional peculiarities.

More precisely, it depends on a set of simulated future returns (and their
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empirical distribution) and it must be connected to numerical integration

or Monte Carlo methods to calculate the expectation in each step of the

optimization procedure. Thus an adequate specification of the underlying

return process and a correct evaluation of the expectation are important

in order to ensure the accuracy of the final pricing kernel estimate. These

features are not present in the generic FGD method and their necessity here

makes our approach particularly challenging.

4 Empirical analysis

4.1 Data

In our empirical analysis, we use S&P 500 index option data to derive an

empirical pricing kernel. The market for SPX options is one of the most

active index options markets in the world. Consequently, it has been the

focus of many applications in the empirical pricing kernel literature as for

example in Jackwerth (2000), Aı̈t-Sahalia and Lo (2000), Rosenberg and

Engle (2002) and many others.

We consider closing prices of SPX European options from January 2005

to October 2010. Option data and all the other necessary data including

interest rates and dividend yields are downloaded from OptionMetrics. The

averages of bid and ask prices are taken as option prices and in order to retain

only liquid options in our data sample, we apply the following standard

filtering criteria: We focus on out-of-the money put and call options and

also discard options with implied volatilities larger than 70%, average price

lower than $0.05 or volume equal to 0. Finally, we exclude observations that

violate simple non-arbitrage bounds.

Like Rosenberg and Engle (2002), we have in mind to estimate a pricing

kernel on a monthly basis. Thus we extract for each month a cross-section

of options with approximately one month (20 trading days) until expiration.

This procedure yields a sample of 70 cross-sections with a total of 3500

option prices.

Table 1 describes some characteristics of the one-month option contracts

that we use for pricing kernel estimation.

[Table 1 about here.]
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The mean number of options per cross-section is 51.1 with a standard devi-

ation of 14.5. The majority of options have moneyness (defined as K/S−1)

from −0.1 to 0.1. This particular moneyness range corresponds to the de-

fault setting and coincides with the return domain usually taken into account

in our application when estimating an empirical pricing kernel. Outside of

this domain, the pricing kernel is equal to its estimated value at −0.1 or 0.1.9

However, it happens in our sample period (especially during the recent fi-

nancial crisis) that some considerable mass of the future one-month return

distribution lies outside the interval [−0.1, 0.1]. In such cases, we consider

a larger return domain [−a, a] with a > 0.1 such that it contains at least

95% of the future returns. Consequently, we also enlarge the moneyness

range in these situations and set it equal to the return domain. Thus we

observe cross-sections with options having moneyness outside ±10%, which

is reported in the table.

The mean option price is $8.9 and the price for puts seems to be somewhat

higher than the one for calls. Finally, the table also shows average implied

volatilities that exhibit the well-known volatility smile pattern.

4.2 Empirical results

A first step towards estimating an empirical pricing kernel is to fit the under-

lying return process. We use S&P 500 daily returns from January 1980 until

December 2010 to estimate the AR-GJR-GARCH model introduced above

using a pseudo maximum likelihood approach with a normal innovation den-

sity. Note that a sufficiently long historical time series is important in order

to ensure that the empirical innovation density is adequately estimated.

[Figure 1 about here.]

[Table 2 about here.]

Figure 1 shows the S&P 500 daily log-returns, the estimated volatility σt

and the corresponding standardized innovations zt. Table 2 summarizes the

parameter estimates and provides some characteristics of the standardized

empirical innovation density. This density incorporates skewness and excess

kurtosis and is highly non-normal.

9This corresponds to the procedure suggested in Rosenberg and Engle (2002) using one
month option contracts covering the period 1991 to 1995.
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With the fitted model in hand, we can make use of a filtered historical sim-

ulation approach (FHS) to obtain a set of simulated returns and apply a

kernel density estimator to get an estimate of the future one-month return

density ft.

After that, we are able to estimate empirical pricing kernels. We use a

rolling-window procedure and always consider two consecutive cross-sections

of options for our estimation. The first one is used to fit the model whereas

the second one serves for doing model evaluation and to choose the optimal

complexity parameter M . All other tuning parameters of our algorithm are

fixed. We take cubic B-spline basis functions, mesh = 11 (10 inner knots),

a shrinkage factor nu = 0.25 and use n = 5000 mid-points to calculate the

integral. Finally, we employ a third cross-section to analyze the predictive

power.

The goal is to investigate pricing kernel estimates and to examine the pricing

performance of our approach in comparison with the parametric specifica-

tions suggested in Rosenberg and Engle (2002). We believe that these are

two fair competitors. The power pricing kernel is quite simple but econom-

ically motivated. In addition, it is used as a starting model and therefore

helps to answer the question whether our FGD algorithm can substantially

improve the final estimate. As a second benchmark, we consider the flexible

Chebyshev pricing kernel specification. We allow up to 6 parameters and

determine the optimal complexity using the same sample-splitting technique

as in our FGD procedure.

4.2.1 Estimated pricing kernels

Let us start with an inspection of the pricing kernel shape. Figure 2 shows

a selection of empirical pricing kernels obtained with our FGD methodology

as well as with the Chebyshev model. Although we depart from an overall

decreasing power pricing kernel in our FGD algorithm, we observe final

estimates that contain increasing parts. This feature is present in estimates

found with the Chebyshev method too. It is known as the pricing kernel

puzzle and has been noticed several times before (see Jackwerth (2000) and

Rosenberg and Engle (2002) among others). The increasing component is

usually located in the area of zero return and resembles a bump. However,

we also get fitted kernels that are rather consistent with another finding

recently described in the literature claiming that the pricing kernel looks
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U-shaped (see for example Bakshi et al. (2010) and Christoffersen et al.

(2011)).

[Figure 2 about here.]

An additional point visible in Figure 2 is the time-varying pattern of the

fitted kernels, reflecting time variation in the pricing kernel state variables.

We further investigate this point via Figure 3. There we show a series of

consecutively estimated pricing kernels, and regardless of the chosen method,

we again find time-dependent estimates. Obviously, the observed differences

are smaller compared to Figure 2 given the lower time frequency.

[Figure 3 about here.]

Furthermore, it might be interesting to see how sensitive these fitted kernels

are with respect to the number of inner knots used in our algorithm and

their placement. In a small robustness check, we decided to compare three

different numbers of break points (i.e. mesh ∈ {7, 11, 15}) and two distinct

placement strategies to determine their position. The corresponding results

are illustrated in Figure 4. The left plots show estimates obtained when

taking empirical quantiles of the simulated returns as break points whereas

we considered equally spaced inner knots to get the figures on the right.

Obviously, the pricing kernel shape is more flexible when the number of inner

knots is large. Comparing the knot placement strategies, we find somewhat

narrower kernels with a higher peak when considering empirical quantiles as

break points.

[Figure 4 about here.]

In another robustness check, we look at the sensitivity of the estimated pric-

ing kernels with respect to specification of the underlying return process.

Besides the GJR-GARCH model introduced above, we also consider the

standard GARCH specification without asymmetry term and the EGARCH

model (Nelson (1991)). Results for the EGARCH model are qualitatively

similar to those shown for the GJR-GARCH and therefore for the sake of

brevity not reported. A comparison of the resulting pricing kernels is illus-

trated in Figure 5. The overall shape is the same in both cases. However, the

estimated kernels obtained with the symmetric GARCH model are some-

what bumpier and we observe some differences mainly for large absolute

return values.
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[Figure 5 about here.]

4.2.2 Pricing performance

Next, we would like to see whether our flexible FGD algorithm based on

splines yields better pricing results in comparison with the chosen bench-

marks. We take the 70 cross-sections of one-month option contracts from

2005 until 2010 and apply the rolling-window estimation procedure that has

been described above. The corresponding results are summarized in Table

3.

[Table 3 about here.]

We present in-sample and out-of-sample pricing errors using the root mean

squared error loss function for implied volatilities (IV RMSE) and prices

(Price RMSE). Our new estimation methodology consistently outperforms

both competitors. In particular, we observe predictive gains over the power

pricing kernel specification and the Chebyshev model that range from 4%

to 9%, depending on the performance measure. In a robustness test, we

consider again the classical GARCH model without asymmetry term. Inter-

estingly, our novel method still performs best and consistently outperforms

the chosen benchmarks. However, the observed losses are higher than in the

setting with a GJR-GARCH model. Hence, we conclude that the presence

of the asymmetry term is necessary in order to improve the pricing accuracy

of the method.

[Figure 6 about here.]

We provide further insights into the pricing performance by means of Fig-

ure 6. The plots show relative forecasting gains of our new method over

the power pricing kernel specification and the Chebyshev model using the

IV RMSE loss. The upper part of the figure contains the time-series of

such gains whereas the lower part plots these gains versus the observed loss.

Again, the better forecasting accuracy of the Spline FGD approach is evi-

dent. Note that qualitatively equivalent results could be plotted by taking

the other performance measure too.

[Table 4 about here.]
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Finally, there is the issue of whether these gains are statistically relevant. To

explore this, we implement some Diebold and Mariano (1995) type tests to

measure the superior predictive ability. We consider a t-type test comparing

the observed IVRMSE losses of the different models and a sign-type test

based on a series of Bernoulli random variables indicating the model with

the better forecasting performance. We concentrate again on the IV RMSE

loss function but qualitatively similar results still hold for the Price RMSE

as well. The corresponding outcomes are summarized in Table 4. Positive

values of the sign-type statistic and negative values of the t-type statistic are

in favor of our Spline FGD approach. Table 4 confirms the higher predictive

ability of our method in comparison with the chosen benchmarks.

5 Conclusion

In this study, we proposed the use of a customized functional gradient de-

scent (FGD) algorithm based on B-splines to estimate the empirical pricing

kernel. Our model is flexible and computationally feasible, although it in-

volves many parameters. The estimation properties of our methodology are

illustrated empirically using S&P 500 index option data. We show that the

algorithm yields accurate estimates and we also provide evidence of the su-

perior predictive ability of our method in comparison with the parametric

specifications suggested in Rosenberg and Engle (2002).

Having accurate pricing kernel forecasts is interesting from an economic

point of view. They contain useful information regarding the investors’ fu-

ture beliefs and risk behavior and one can try to use them to improve option

valuation or the performance of option trading/hedging strategies.

Our modeling and computational framework could also be extended in order

to fit the complete pricing kernel surface. In this case, a bivariate B-spline

basis (i.e. a product of two univariate B-spline basis functions) should be

considered. One univariate B-spline basis would be a function of future re-

turns as in our algorithm whereas the other B-spline basis function would

depend on the time to maturity, representing the second dimension. More-

over, this generalization may be extended further in a straightforward way

to allow the dynamics of the pricing kernel to depend on some additional

relevant (endogenous or exogenous) explanatory factors, similarly to what

has been done in Audrino and Colangelo (2010).
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Surprisingly, the surface modeling perspective has only been considered in

the most recent literature. In fact, it is quite common in most approaches

to estimate the pricing kernel for each time to maturity separately (so-called

slice by slice). Some exceptions to be mentioned are the studies by Giaco-

mini and Härdle (2008) and Fengler and Hin (2011) that consider a two-

dimensional modeling approach for the pricing kernel. Given the high es-

timation and forecasting accuracy shown by the proposed methodology, its

extension in a multivariate setting will be the focus of future research.
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Appendices

A A short introduction to FGD

Let us present here the main idea of functional gradient descent (FGD)

in the framework of general regression. For this purpose, consider data

(X1, Y1), . . . , (Xn, Yn), where Yi ∈ R is the response variable and Xi repre-

sents a p-dimensional explanatory variable. Based on (Xi, Yi), we are looking

for a function F ∈ F = {f |f : Rp → R} which minimizes an expected loss

of the form E[λ(Y, F (X))] with an adequate loss function λ.

The FGD algorithm then estimates F by minimizing the empirical risk de-

fined as

Λ(F ) =
1

n

n∑
i=1

λ(Yi, F (Xi)).

Starting from an initial function estimate F̂0 (step 1 of the algorithm), the

algorithm selects the steepest descent direction in the mth iteration which

would be given by the negative functional derivative −dΛ(F̂m−1). How-

ever, due to smoothness and regularization constraints on the minimizer of

Λ(F̂m−1), one must find a function f̂m which is in the linear span of a class

of simple base learners S and is close to −dΛ(F̂m−1) in the sense of a func-

tional metric. This is equivalent to fitting the base learner h(x, θ) ∈ S to

the negative gradients

Ui = − ∂λ(Yi, Z)

∂Z

∣∣∣∣
Z=F̂m−1(Xi)

, i = 1, . . . , n.

This is often achieved with least squares fitting and we get f̂m = h(x, θ̂)

with

θ̂ = min
θ

n∑
i=1

(Ui − h(Xi, θ))
2.

This is the second step of the algorithm. In a third step (line search), one

finally has to perform a one-dimensional optimization in order to find the

best step length ω̂m for updating F̂m−1 with f̂m. We obtain

ω̂m = min
ω

n∑
i=1

λ(Yi, F̂m−1(Xi) + ωf̂m(Xi))
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and get

F̂m = F̂m−1 + ω̂mf̂m.

Iterating steps 2 and 3 until m = M produces the FGD estimate

F̂M = F̂0 +

M∑
m=1

ω̂mf̂m.
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Table 1: Summary of our option data sample used for pricing kernel esti-
mation. The dataset contains 70 cross-sections of SPX European options
from 2005 to 2010 with approximately one month until expiration and is ob-
tained after applying the filtering criteria described in the text. We report
mean and standard deviation for prices, implied volatilities and number of
observations per cross-section according to different moneyness categories.
Moneyness is the strike price divided by the spot price minus one, K/S− 1.

Moneyness # Obs. per CS Price ($) IV (%)
(K/S − 1) Mean Std. dev. Mean Std. dev. Mean Std. dev.
Less than -0.1 3.2 6.2 5.8 3.6 42.1 12.4
-0.1 to 0 22.4 4.9 10.7 9.9 21.7 9.7
0 to 0.1 20.9 4.1 8.7 10.5 17.0 10.1
More than 0.1 4.9 10.8 3.2 5.0 33.3 13.6
All 51.5 14.5 8.9 9.8 22.2 12.5
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Table 2: Panel A shows the parameter estimates obtained when fitting the
AR-GJR-GARCH model using a long historical time series of S&P 500 daily
log-returns from January 1980 until December 2010. Panel B reports some
characteristics of the standardized innovations zt.

Panel A: Parameter estimates for AR-GJR-GARCH model
µ× 102 ω × 106 β α× 102 γ

Coefficient 2.39 1.78 0.91 1.88 0.11

Panel B: Properties of standardized innovations

Mean St. dev. Skewness
Excess Normality Serial correlation

Kurtosis test p-value test p-value
0.032 1 -0.47 3.48 < 0.001 0.67
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Table 4: The table shows results of Diebold and Mariano (1995) type tests
to measure the superior predictive ability of our approach over the chosen
benchmarks. We consider a t-type test comparing the observed IVRMSE
losses of the different models and a sign-type test based on a series of
Bernoulli random variables indicating the model with the better forecasting
performance. Positive values of the sign-type statistic and negative values
of the t-type statistic are in favor of the Spline FGD approach. p-values are
reported in parentheses with *, **, *** denoting significance at the 10%, 5%
and 1% level, respectively.

Model t-type sign-type

Power kernel vs. FGD -0.571 4.345
(0.284) (≈ 0***)

Chebyshev vs. FGD -2.397 3.795
(0.008***) (≈ 0***)
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Figure 1: The figure shows daily log-returns of the S&P 500 index from Jan-
uary 1980 until December 2010 (top), the estimated conditional volatility
σt using the AR-GJR-GARCH model (middle) and the corresponding stan-
dardized innovations zt (bottom). We fit the model using pseudo maximum
likelihood based on a normal innovation density.
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Figure 2: The figure shows a selection of estimated pricing kernels using
April/May option data each year from 2005 to 2010. We apply the first
option cross-section to fit the model whereas the second one is used to do
model evaluation and to determine the optimal model complexity. The left
part shows results for the B-spline FGD approach and the right part for the
Chebyshev model.
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Figure 3: The figure shows a series of four consecutively estimated pricing
kernels starting with June/July option data from 2006. We apply a rolling-
window procedure and always consider two consecutive cross-sections for
estimation. The first is used to fit the model whereas the second one serves
as a validation sample to determine the optimal model complexity. Left:
Spline FGD approach. Right: Chebyshev specification.
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Figure 4: Results of a small robustness check concerning the number of inner
knots used in our algorithm and their placement. The left plots are obtained
using empirical quantiles of the simulated returns as break points whereas in
the right figures we considered equally spaced inner knots. The figures show
fitted kernels using June/July option data from 2006 (top) and April/May
option data from 2007 (bottom).
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Figure 5: Robustness check to explore the sensitivity of the fitted kernels
with respect to the specification of the underlying return process. The plots
show estimated pricing kernels using June/July option data from 2006 (left)
and April/May option data from 2007 (right).
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Figure 6: The plots show relative forecasting gains of our new method over
the power pricing kernel specification (left) and the Chebyshev model (right)
using the IV RMSE loss. The upper part of the figure contains the time-
series of such gains whereas the lower part plots these gains versus the ob-
served loss.
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