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Abstract 

We introduce the notion of realized copula. Based on assumptions of the marginal 

distributions of daily stock returns and a copula family, realized copula is defined as the 

copula structure materialized in realized covariance estimated from within-day high-

frequency data. Copula parameters are estimated in a method-of-moments type of fashion 

through Höffding's lemma.  Applying this procedure day by day gives rise to a time series of 

copula parameters that is suitably approximated by an autoregressive time series model. This 

allows us to capture time-varying dependency in our framework. Studying a portfolio risk-

management application, we find that time-varying realized copula is superior to standard 

benchmark models in the literature. 

Keywords 

Realized variance, realized covariance, realized copula, multivariate dependence. 

JEL Classification 

G12, C13, C14, C22, C50. 

 



1 Introduction

Realized variance (RV) and realized covariance (RC) estimated from high-frequency intraday data
have proved to be accurate ex-post measures for conditional variance and conditional covariance
of daily returns. Being nonparametric in nature, RV and RC permit the econometrician to obtain
proxies for �nancial (co)volatility without having to specify a priori an explicit (and potentially
misspeci�ed) model. An inherently latent variable, such as volatility, can thus be treated as an ob-
servable (Andersen, Bollerslev, Diebold and Ebens; 2001; Andersen, Bollerslev, Diebold and Labys;
2001). These insights spurred intensive research in the �eld and lead to widespread use of measures
of RV and RC in numerous applications in �nance, such asset pricing, portfolio optimization, risk
management, and volatility forecasting.

The present article continues this agenda. We estimate RC matrices from high-frequency intraday
data and take them as valid ex-post proxies for daily conditional covariance. Unlike previous
studies, we complement these estimates by making assumptions on the marginal distributions
of daily returns and the copula associated with their joint multivariate distribution. Based on
these assumptions, we estimate the copula shape parameters by means of the covariance moment
condition provided by Hoe�ding's lemma. The procedure yields daily estimates of copula shape
parameters as materialized in daily RC. We therefore call it realized copula (RCop) . The resulting
time series of RC-implied copula shape parameters is subsequently modeled by standard time series
techniques thereby allowing the dependence structure to be time-varying with the business cycle.

For risk-management purposes at the daily frequency, the bene�ts of using copulae to capture
salient features of multivariate dependence, such as tail-dependence and other attributes of non-
normality like skewness and fat-tailedness, are widely recognized (Jin; 2009, and references therein).
Yet RV-based models often work with a (conditional) Gaussian structure. RCop allows to drop
the rather restrictive Gaussian assumption and o�ers a more realistic description of the joint tails
of the daily return distribution. It may therefore yield more accurate estimates of the quantiles of
a portfolio's pro�t and loss distribution. Our empirical analysis con�rms this expectation.

In this research, we combine two strands of literature. The �rst strand is a series of studies
in the RV literature extending the univariate heterogeneous autoregressive (HAR) model to the
multivariate level. The HAR model, originally suggested by Corsi (2009), is a stationary, restricted
AR(22) model and captures long-range dependence in RV data by means of a cascade of volatility
components that are interpreted as a daily, weekly and monthly volatility component. It nowadays
is a standard benchmark model for modeling RV with unraveled forecasting performance.1 A
nontrivial challenge in constructing a multivariate HAR model is to ensure positive-de�niteness
of predicted covariance matrices. One therefore considers modeling nonlinear transformations of
RC such as the Cholesky factorization (Chiriac and Voev; 2011) or the matrix log transformation
(Bauer and Vorkink; 2010), or direct modeling by means of a Wishart autoregressive process
(Gouriéroux et al.; 2009; Jin and Maheu; 2010; Bonato et al.; 2011). Our RCop approach is in
the spirit of this research, since the copula parameter, which we imply from RC and subsequently
describe by a HAR model, de�nes � together with the assumptions on the marginals � an entire

1See Corsi, Audrino and Renò (2012) for a review. As an alternative to HAR models pure long-memory models
belonging to the ARFIMA class have been considered for modeling the variance processes, see e.g. Baillie (1996),
Baillie et al. (1996), Andersen et al. (2003) among others. The forecasting performance of ARFIMA models for RV
is very close to that of HAR-type models, but comes at the cost of a higher technical burden.
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distribution and in consequence a well-posed covariance matrix.

The second stream of research our work is related to is the growing literature of dynamic copula
models, such as Dias and Embrechts (2004) and Patton (2004, 2006), Chen and Fan (2006), Jondeau
and Rockinger (2006), Giacomini et al. (2009), Jin (2009), Hafner and Manner (2010), Härdle et al.
(2010), Christo�ersen et al. (2011). All these approaches share in common the notion of a copula
structure that has time-varying parameters driven by past realizations of the underlying data
generating process or by additional exogenous variables, such as latent state factor. By exploiting
intra-day data, we uncover a daily series of RCop parameters which we subsequently model by
formulating a time series model. We thus obtain a dynamic copula model for daily returns, where
time-variation is governed by the underlying dynamics of RC measures.

Remarkably, the literature using copulae to model dependency in the context of high-frequency
data is scarce. To the authors' knowledge Breymann et al. (2003) and Dias and Embrechts (2004)
appear to be the only work. In this study, however, the copula model is directly applied to analyze
realized intraday returns. This is not the purpose of the present investigation. Our aim is to exploit
intraday information as condensed in the RV measure to improve on modeling daily returns. In
this sense we follow recent suggestions by Engle and Gallo (2006), Shephard and Sheppard (2010),
Hansen, Huang and Shek (2011) and Hansen, Lunde and Voev (2011) that combine both low and
high-frequency observations in a model framework at daily frequency.

The paper is organized as follows. In Section 2 we introduce the notion of RCop, discuss estimation
and suggest a forecasting framework for RCop for risk-management purposes. The competitor
models of RCop are presented in Section 3. In Section 4 we explore the empirical properties of
RCop and its competitors on two portfolios of heavily traded NYSE stocks using two years of
high-frequency data. Section 5 concludes.

2 Realized copula

2.1 Notion and estimation of realized copula

Copulae have emerged as a convenient way for constructing multivariate distributions since they
allow to strictly separate the marginal distributions from cross sectional dependence, which is
captured by the copula function, see Nelsen (2006) for an introduction on copulae. The main
result due to Sklar (1959) states that if F is an arbitrary d-dimensional continuous distribution
function of the random variables X1, . . . , Xd, then the associated copula is unique and de�ned as
a continuous function C : [0, 1]d → [0, 1] satisfying the equality

C(u1, . . . , ud) = F{F−11 (u1), . . . , F
−1
d (ud)}, u1, . . . , ud ∈ [0, 1],

where F−11 (·), . . . , F−1d (·) are the quantile functions of the corresponding marginal distributions
F1(x1), . . . , Fd(xd). If F belongs to the class of elliptical distributions, this results in a so called
elliptical copula. Most elliptical copulae, however, cannot be given explicitly, because the distri-
bution function F and the inverse marginal distributions Fi usually have integral representations.

One class of copulae that overcomes this drawback is the class of Archimedean copulae

C(u1, . . . , uk) = φθ{φθ−1(u1) + · · ·+ φθ
−1(ud)}, u1, . . . , ud ∈ [0, 1], (1)
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where φθ : [0,∞) → [0, 1], with φθ(0) = 1, φθ(∞) = 0. The function φθ is called the generator
of the copula and usually depends on a single parameter θ. The generator φθ is required to be
d-monotone, i.e. di�erentiable up to the order d − 2, with (−1)jφθ

(j)(x) ≥ 0, j = 0, . . . , d − 2 for
any x ∈ [0,∞) and with (−1)d−2φθ

(d−2)(x) being nondecreasing and convex on [0,∞), see McNeil
and Ne²lehová (2009). We give some examples of Archimedean copulae and their generators in
Table 1, see Joe (1996) and Nelsen (2006) for more details.

In the following we will specialize our presentation to a setting with a single copula shape parameter
such as the Archimedean copulae. We emphasize that the notion of RCop is not limited to this class
of copulae: for instance the survival copula derived from an Archimedean copula by Crot(u, v) =
C(1− u, 1− v) + u+ v− 1, such as the rotated Gumbel copula which we will use in our empirical
part, is not Archimedean.

Suppose there are two random variables Xi and Xj with marginal distributions Fi and Fj and
joint distribution Fij and �nite second moments. Hoe�ding's lemma (Hoe�ding; 1940) together
with Sklar's theorem states that the covariance between Xi and Xj is a function in the copula
parameter θ, the marginals and the joint distribution function:

σij(θ) =

∫ ∞
−∞

∫ ∞
−∞

{
Fi,j(xi, xj, θ)− Fi(xi)Fj(xj)

}
dxidxj

=

∫ ∞
−∞

∫ ∞
−∞

[
Cθ{Fi(xi), Fj(xj)} − Fi(xi)Fj(xj)

]
dxidxj . (2)

Usually this integral has no explicit form, but e.g. for the multivariate normal distribution, in
which case one gets σij = θ. In other cases it can be approximated by numerical integration.

For our notion of RCop, we equate (2) with a measure of RV, i.e. we de�ne the copula shape
parameter θ implicitly through the equation

hij,t = fij(θt) =

∫ ∞
−∞

∫ ∞
−∞

[
Cθt{Fi,t(xi), Fj,t(xj)} − Fi,t(xi)Fj,t(xj)

]
dxidxj , (3)

where hij,t denotes an element of the RC matrix measured at day t. We then exploit Hoe�ding's
lemma in a method-of-moments type of fashion to estimate θt.

Consider the case d = 2, with one o�-diagonal element h12,t in the RC available. An estimate of
θt is given by

θ̂MMt = f−112 (h12,t) , (4)

where f−112 denotes the inverse function of (2). In the general case for d > 2, de�ne the moment
condition gij(θ) = hij,t − fij(θ), where i < j and i, j = 1, . . . , d. Stacking all gij into a vector g of
size d(d− 1)/2, we de�ne the estimator as

θ̂MMt = arg min
θ

g>(θ)Wg(θ) , (5)

where W is a positive de�nite weight matrix. A typical choice would be W = In with In denoting
the n-dimensional unit matrix and n = d(d − 1)/2. For d = 2, (5) coincides with (4). We point
out that these two estimators bear much similarity with method-of-moments approaches where the
copula parameter of an Archimedean copula is estimated from Kendall's tau or Spearman's rho
(Genest and Rivest; 1993).
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Finally, we suggest an ad hoc estimator. This estimator is based on the transformation of the
linear correlation coe�cient of the normal distribution to Kendall's tau, and the consequent trans-
formation of Kendall's tau to the copula parameter. Assuming a Gaussian setting, it is well known
that the linear correlation coe�cient ρij translates into Kendall's tau by

τGij,t =
2

π
arcsin ρij,t . (6)

As stated in Genest and Rivest (1993) Kendall's tau has the following representation fτ in the terms
of the generator function and the shape parameter of a two-dimensional Archimedean copula

fτ (θ) = 4

∫ 1

0

φθ
−1(v)/(φθ

−1)′(v) dv + 1 .

For many Archimedean copulae this leads to an explicit and invertible relationship between
Kendall's tau and their shape parameter, see Table 1. Then the ad hoc estimator is de�ned
by

θ̂ad hoct =
2

d(d− 1)

∑
i<j

f−1τ (τ̂Gij,t) . (7)

Interestingly, despite being based on shaky theoretical grounds, the simulation results and our
empirical �ndings show that for settings with small and moderate dependence this ad hoc estimator
performs similarly to the estimator based on Hoe�ding's lemma. It is, however, severely biased in
situations with strong dependence.

Given the assumptions on the copula family and the marginal distributions, the structure

Cθ̂t{F1,t(x1), . . . , Fd,t(xd)} , (8)

where θ̂t is any estimator presented above, fully characterizes the (ex-post) multivariate distribution
as materialized in the RV measure in date t. We therefore call it realized copula (RCop).

2.2 A forecasting framework for realized copula

For our portfolio risk management problem, we consider a model framework which combines daily
and within-day modeling frequencies. The purpose is to exploit intra-day high-frequency data as
an auxiliary source of information to improve on the 1-day ahead VaR forecasts. In this sense,
our approach is close to the MIDAS approach by Ghysels et al. (2006), the multiplicative error
model suggested by Engle and Gallo (2006) and Shephard and Sheppard (2010), and it can be
embedded into the extensions thereof recently proposed by Hansen, Huang and Shek (2011) and
Hansen, Lunde and Voev (2011), and Noureldin et al. (2011).

For the daily level, denote the log-prices of a d-dimensional vector of assets by P = (P1, . . . , Pd)
>

and the associated daily returns by ∆Pt = Pt − Pt−1 = rt, t = 1, . . . , T . We assume that the
conditional distribution of daily returns rt can be approximated by

rt+1 ∼ Frt+1|Ft(Ĥt+1|t) ,

where Frt+1|Ft(Ĥt+1|t) denotes a conditional distribution function parametrized by Ĥt+1|t which is
an Ft-measureable forecast of the RC matrix of rt. This forecast will be derived from a sequence of
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the RC matrices obtained from past within-day high-frequency data. When replacing Ĥt+1|t by a
known function of past daily returns, this framework is identical to the one formalized in standard
volatility models of the multivariate GARCH type as suggested by Bollerslev (1990), Engle (2002),
and Tse and Tsui (2002). However, rather than taking an a priori stand on an underlying model
for Ht as a function of past daily returns, this approach relies on a �ner information structure
accumulated by intraday high-frequency returns for the VaR forecast.

By Sklar's theorem and following the notion of a conditional copula outlined in Patton (2006),
we replace Frt+1|Ft by Frt+1|Ft(Ĥt+1|t) = Cθ̂t+1|t

{F1,t(ĥ1,t+1|t), . . . , Fd,t(ĥd,t+1|t)}, where Cθ denotes a
copula belonging to some parametric family C = {Cθ, θ ∈ Θ} which is speci�ed in the following.
Furthermore, Fj,t(ĥj,t+1|t), j = 1, . . . , d, denote the marginal conditional distributions of daily
returns depending on variance forecasts ĥj,t+1|t. As reported in Andersen, Bollerslev, Diebold and
Ebens (2001), returns standardized by ex post RV are close to standard normal. We therefore
assume that Fj,t(ĥj,t+1|t) is normal with variance ĥj,t+1|t, i.e. N(0, ĥj,t+1|t). Finally, θ̂t+1|t is a
forecast of the associated RCop parameter θ̂t which is estimated day by day from RC as outlined
in Section 2.1.

We complete the model by specifying the forecasting rules:
log ĥ1,t+1|t

...
log ĥd,t+1|t

θ̂t+1|t

 = Et


log h1,t+1

...
log hd,t+1

θt+1

 =


β1
0 + β1

D
log hDt + β1

W
log hWt + β1

M
log hMt

...
βd0 + βd

D
log hDt + βd

W
log hWt + βd

M
log hMt

α0 + αDθ
D

t + αWθ
W

t + αMθ
M

t

 , (9)

where βj = (βj0, β
j
D, β

j
W, β

j
M)>, for j = 1, . . . , d, and α = (α0, αD, αW, αM)> are parameter vectors,

and xDt = xt are daily, xWt = 1
5

∑4
i=0 xt−i weekly, and xMt = 1

21

∑20
i=0 xt−i monthly averages of

past realizations of xt. This forecasting rule, which is motivated from the idea of heterogeneous
agents with di�ering investment horizons, is due to Corsi (2009). It has found wide application
in the RV literature as it approximately captures the long-memory patterns typically observed in
RV data.2 We extend this idea here also for the copula parameter θ. This extension, together
with the assumptions on the marginals, allows us to predict the entire multivariate distribution.
Moreover, since the copula parameter parametrizes in some sense the covariance matrix, this
setting (implicitly) provides well-de�ned covariance matrices. From this perspective, it is similar
in spirit to Bauer and Vorkink (2010) and Chiriac and Voev (2011) who subject RC to nonlinear
transformations, such as the matrix logarithm or the Cholesky decomposition, to ensure positive-
de�niteness of the predicted RC, see Section 3 for further details. Our modeling approach can
therefore be interpreted as another multivariate extension of the univariate HAR model.

As is discussed in Bauer and Vorkink (2010) and Chiriac and Voev (2011), an unbiased prediction
of the variables parameterizing the covariance matrix, will generally not yield unbiased forecasts
of covariance when the transformation between both is nonlinear. This issue also applies to the
present estimator, since the relationship between the copula parameter and covariance as presented
by Hoe�ding's lemma is nonlinear. However, since we consider 1-day VaR forecasts, only, we

2Further re�nements of this base line model have been suggested by Andersen et al. (2007), Corsi et al. (2008),
Bollerslev et al. (2009), Corsi et al. (2010), and Audrino and Hu (2011), see Corsi, Audrino and Renò (2012) for an
overview.
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conjecture these biases to be small (see also Halbleib and Voev (2011) for corroborative evidence).
As in Chiriac and Voev (2011), we therefore renounce on a bias adjustment.

2.3 Simulation Study

In order evaluate the performance of the moment based estimator we subject it to the following
simulation study. Given an assumption on a copula family (e.g. Clayton, Gumbel), we draw 1000
vector-valued random variates from the copula based on standard normal margins (we consider
dimensions d = 2 and d = 3). From these draws, the sample covariance matrix is estimated
by the unbiased covariance estimator. Afterwards the method-of-moment estimators outlined in
Section 2.1 are applied. This procedure is repeated 1000 times.

In Figure 1, we present the di�erences of the estimates from the true parameter value along with
the mean (red) and the median (blue) di�erence as functions of the underlying Gumbel copula
parameter.3 We also contrast the results with a maximum likelihood (ML) estimator, namely
with the method of inference functions for margins due to Joe and Xu (1996). The shaded areas
are the 95% pointwise con�dence intervals computed from the 1000 repetitions of the exercise.
As is apparent from Figure 1, the moment-based estimators are unbiased and only slightly less
e�cient than the ML estimator. The linear correlation estimator is strongly biased in settings of
strong dependence. For instance, in the two-dimensional Gumbel case for copula parameters larger
than three, which corresponds to Kendall's tau larger than 2/3, the estimates start to be severely
downward biased.

2.4 Portfolio risk-management and backtesting

Computing risk measures for portfolios of stocks followed by a subsequent backtesting analysis
are standard procedures in applied risk management, see e.g., Berkowitz and O'Brien (2002),
Giacomini et al. (2009), Jin (2009), Berkowitz et al. (2010) among others. Closest to our research
is Giot and Laurent (2004) who appear to be among the �rst to simultaneously include both low
and high-frequency data for such an analysis.

For portfolio risk-management, the aggregate portfolio and loss (P&L) distribution must be de-
termined. Consider a portfolio, where at = {a1,t, . . . , ad,t} with ai,t ∈ Rd denoting the number of
shares in the portfolio. The market value Vt of this portfolio is given by

Vt =
d∑
j=1

aj,tSj,t , (10)

where Sj,t is the asset price. In this study, we will consider only portfolios which are equally
weighted in terms of wealth allocation. This implies that aj,t = wjVt/Sj,t where wj = 1/d, j =
1, . . . , d. Hence absolute portfolio weights are adjusted on a daily basis in order to keep the relative
contributions constant.

3Simulation results for the Clayton copula are similar and are therefore not reported.
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The daily trading P&L on this portfolio is given by

Lt+1 = (Vt+1 − Vt) =
d∑
j=1

ajSj,t {exp(rj,t+1)− 1} , (11)

where rj,t denotes the log-return on asset j. Denote the conditional distribution function of L by

FLt+1|Ft(x) = P(Lt+1 ≤ x|Ft) . (12)

As the practically most important risk measure, we employ the Value-at-Risk (VaR) at level α
de�ned as the α-quantile of FLt+1|Ft :

VaRt+1|Ft(α) = F−1Lt+1|Ft(α) . (13)

It follows that FLt+1|Ft is determined by the d-dimensional distribution of log-returns Frt+1|Ft de-
scribed by the general framework in Section 2.2. The accuracy of the VaR estimates therefore
depends on how well the RCop model and the alternative approaches presented in Section 3 cap-
ture the unknown multi-dimensional conditional distribution of daily returns.

A variety statistical criteria have been suggested in the literature to measure the quality of esti-
mated VaR, see e.g. Campbell (2006) and Christo�ersen (2009) for overviews. Let {lt} be the
true realizations of the respective P&L distribution. Unconditional coverage testing focuses on the
exceedances ratio of the respective VaR. The exceedances ratio α̂ is de�ned by

α̂ =
N

T

N =
T∑
t=1

I{lt < V̂aRt(α)}

where N denotes the number of observed exceedances. A natural likelihood ratio test based on
binomial theory for H0 : α̂ = α is

LRuc = 2 log
α̂N(1− α̂)T−N

αN(1− α)T−N

which has asymptotically a χ2(1) distribution under H0. This test is due to Kupiec (1995). We
also considered a simple t-test based on the normal approximation for the binomial distribution
and independence testing as suggested by Berkowitz et al. (2010). Both alternative tests did not
yield additional insights, which is why these results will not be reported.

3 Competitor models

As competitor models, we choose four classical representatives. As models, which only exploit daily
data, we consider a naïve rolling window approach and a locally adaptive estimation algorithm to
capture time-varying dependency. As alternatives for RV models, which make use of high-frequency
data, we employ another two approaches. Similarly to the RCop approach, both methods use linear
time series models of nonlinear transformations of RC: the matrix logarithm and the Cholesky
decomposition, respectively.
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3.1 Rolling window and local change point detection

The rolling window approach estimates the time-varying copula parameter on a �xed window of size
w, while the locally adaptive change point (LCP) detection algorithm4 allows for a time-varying
window width. We sketch the LCP algorithm here. Corresponding theory and further applications
in volatility modeling and risk management may be found in Spokoiny (1998), Mercurio and
Spokoiny (2004), Chen et al. (2008), �ìºek et al. (2009), Giacomini et al. (2009), Spokoiny (2009),
Chen et al. (2010), and Härdle et al. (2010).

In both cases, in the rolling window case and for LCP detection, the estimator is the maximum
likelihood estimator

θ̃t = arg max
θ
L(θ) = arg max

θ

nt∑
i=1

log
[
c{F1,t(x1,i), . . . , Fd,t(xd,i); θt}

d∏
j=1

fj,t(xj,i)
]
, (14)

where nt denotes the sample size of the respective window width, on which estimation is carried
out, c{·; θt} the copula density and fj,t(x), j = 1, . . . , d the marginal densities. The marginal
densities are assumed to be N(0, σ̂2

t ), where σ̂
2
t is the variance estimated from the (daily) returns

of respective homogeneous time interval. The estimator can be obtained by exact maximum-
likelihood estimation, i.e. directly by a one-step maximization of (14), or by a two-step procedure,
the method of inference functions for margins (IFM) due to Joe and Xu (1996). In the latter case
one �rst estimates the parameters of the marginals and � given these estimated parameters � those
of the copula function. Through all this work we will use the less e�cient, but computationally
more benign IFM-method, see Härdle et al. (2009) for an comprehensive discussion of alternative
estimation strategies for copula-based models.

In what follows, let θt denote the time varying but otherwise unknown copula parameter. Locally
adaptive estimation selects for each time point t0 an interval I during which θt is reasonably well
approximated by a constant θ∗. A possible measure of discrepancy between two copulae C(·; θ)
and C(·; θ′) is the Kullback-Leibler divergence K{C(·; θ′), C(·; θ)} = E θ′ log{c(·; θ′)/c(·; θ)}, where
c(·) is the copula density. The aim is to select I as close as possible to the so-called �oracle� choice
interval Ik∗ , de�ned as the largest interval I = [t0 − mk∗ ; t0], for which the small modeling bias
condition

4I(θ) =
∑
t∈I

K{C(·; θt), C(·; θ)} ≤ 4, for some 4 ≥ 0, θ , (15)

is ful�lled. The LCP is based on sequentially testing the hypotheses of homogeneity on intervals
Ik. We select Ik with k = −1, 0, 1, . . . as the sequence of intervals Ik ⊂ Ik+1, starting with k = 1.
If there are no change points in Tk ⊂ Ik \ Ik−1, we accept Ik as an interval with a constant copula
structure. At the next step we take Tk+1 and test it for homogeneity. We repeat these steps until
rejection or until the largest possible interval IK is accepted, leading to an interval Ik̂.

Testing for local homogeneity works as follows. Fix some t0 and let I = [t0 −m, t0] be an interval
candidate and TI be a set of interval points within I. We estimate the copula parameter θ by
the ML estimator from observations in I, assuming a homogeneous model within I. Thus the H0

4Alternative change point methods for copulae have been developed by Dias and Embrechts (2004) and Guégan
and Zhang (2010).
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hypothesis and H1 alternative can be formulated as:

H0 : ∀τ ∈ TI , θt = θ, ∀t ∈ I = J ∪ J c = [τ, t0] ∪ [t0 −m, τ)

H1 : ∃τ ∈ TI , θt = θ1, ∀t ∈ J = [τ, t0], and θt = θ2 6= θ1, ∀t ∈ J c = [t0 −m, τ).

Denote by LI(θ) and LJ(θ1) + LJc(θ2) the log-likelihood functions corresponding to H0 and H1,
respectively. Then the likelihood ratio test for the single change point with known �xed location
τ is given by

TI,τ = max
θ1,θ2
{LJ(θ1) + LJc(θ2)} −max

θ
LI(θ).

Since the point τ is unknown, one de�nes the test statistic:

TI = max
τ∈TI

TI,τ .

TI tests the homogeneity hypothesis in I against a change point alternative with unknown location
τ (in the set TI). The decision rule of the test requires to compare TI with the critical value zI .
The critical value depends on the interval I, the dimension and the parameter of the copula. We
reject the hypothesis of homogeneity if TI > zI .

For running the tests, several parameters have to be speci�ed. This includes the choice of the
interval candidates Ik and internal points TIk for each of these intervals and the choice of the
critical values zIk . One possible example of the implementation is based on the choice of the
interval candidates Ik in form of a geometric grid. We �x m0, which is the smallest possible
interval of homogeneity, and then de�ne mk = [m0c

k−1] for k = 1, 2, . . . , K and c > 1, where [x]
means the integer part of x. Furthermore, we set Ik = [t0−mk, t0] and Tk = [t0−mk−1, t0−mk−2]
for k = 1, 2, . . . , K. For the empirical results these parameters are set to c = 1.25, m0 = 40, K = 10
which corresponds to the settings found in Giacomini et al. (2009) and Härdle et al. (2010).

In this work, we use the sequential choice of critical values zk discussed in Spokoiny (2009). Con-
sidering the situation after k steps of the algorithm, we may distinguish two cases. In case one,
a change point has been detected at some step ` ≤ k; in the second case, no change point has
been detected. Following notation in Spokoiny (2009), let B` = {T1 ≤ z1, . . . , T`−1 ≤ z`−1, T` > z`}
be the event meaning the rejection of the null hypothesis at step ` and (θ̂k) = (θ̃`−1) on B` for
` = 1, . . . , k. By Monte-Carlo simulations from �xed parametric models, we sequentially �nd a
minimal value of zl which ensures the inequality

max
k=l,...,K

E θ∗|L(θ̃k)− L(θ̃`−1)|1/2I(B`) ≤ ρR(θ∗) k/(K − 1) ,

where I is the indicator function and R(θ∗) = maxk=l,...,K |L(θ̃k) − L(θ∗)|1/2. For ` = 1 this
inequality depends only on z1 in B1 = {T1 > z1}. For every ` ≥ 2 we take z1, . . . , z`−1 being �xed
from previous steps, which means that B` is controlled by z`, only. The parameter ρ plays the
role of the level of signi�cance and in�uences the sensitivity of the procedure to inhomogeneity.
For large values of ρ, small critical values are obtained which makes the procedure more sensitive;
decreasing ρ makes the procedure more conservative. We set ρ = 0.5, following the detailed
robustness analysis for various choices of ρ in Giacomini et al. (2009).

To obtain forecasts of the estimated parameters in the rolling window and LCP approach we do
not apply a forecasting rule as for the RV models. We simply extrapolate the current estimates to
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the following day (i.e. hold them constant). The logic of this �degenerated prediction� is that both
approaches assume that the parameters involved are estimated on a local interval of homogeneity.
It therefore appears natural to assume that this interval of homogeneity continues to hold at the
following day. As another bene�t we avoid �tting time series models on estimates obtained from
overlapping return data which is likely to invalidate the statistical analysis.

3.2 Realized variance models

While at the univariate level the HAR formulation as described in Section 2.2 has emerged as
an undisputed base-line model (Corsi, Audrino and Renò; 2012), the literature has yet not found
agreement on its most competitive multi-variate extension. This is because at the multi-variate
level, it has remained challenging to maintain positive-de�niteness of predicted covariance matrices.
Two recent contributions addressing this issue are the matrix logarithm model due to Bauer and
Vorkink (2010) and the Cholesky decomposition model due to Chiriac and Voev (2011).

In Bauer and Vorkink (2010), RC are modeled by means of the matrix exponential and its inverse
function, the matrix logarithm. The matrix exponential is a function on a square matrix A and
given by the series representation

H = expm(A) =
∞∑
k=0

1

k!
Ak . (16)

As a most important property of (16), if A is a real, symmetric, and positive-de�nite matrix,
so is H = expm(A). With the converse being true as well, the inverse function of the matrix
exponential, the matrix logarithm,

A = logm(H) , (17)

is a useful device for guaranteeing predicted covariance matrices to be positive-de�nite.

Given a time series of RC matrices Ht, t = 1, . . . , T , of size d × d, Bauer and Vorkink (2010)
suggest to apply the matrix logarithm, At = logm(Ht). Now, At, t = 1, . . . , T , forms a time series
of symmetric d× d matrices. As a next step, the vech-operator is applied

at = vech(At) , (18)

which stacks the upper triangular of At columnwise into a 1
2
d(d + 1)× 1 vector. The vector time

series at is now modeled along the lines of the univariate HAR model, i.e. by forming elementwise
weekly and monthly aggregates of daily components. The resulting forecasting rules for these
(averaged) aggregates take exactly the same form as presented in (9). By �rst applying the reverse
vech-operator and then the matrix exponential to the predictions derived from this model, the
respective predicted covariance matrix is obtained as Ĥt+1|t = expm(Ât+1|t), which is positive-
de�nite as long as the elements in ât+1|t are real.

A similar approach is followed by Chiriac and Voev (2011), but the series of covariance matrices
is decomposed into a series of Cholesky factors, i.e. now (17) is replaced by

AA> = H , (19)

where A is a real upper triangular d×d matrix with positive diagonal elements. As before, applying
�rst (19) and subsequently the vech-operator to a time series Ht gives rise to the vector-valued
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time series at. Then weekly and monthly aggregates are derived and modeled along the forecasting
rules in (9). Predictions ât+1|t are converted to positive-de�nite predicted covariance matrices
by applying the reverse vech-operator, which yields an upper triangular matrix Ât+1|t, and by
computing the matrix product Ĥt+1|t = Ât+1|tÂ

>
t+1|t.

4 Empirical part

4.1 Data description, data �ltering, and realized variance estimation

The empirical part of this work is based on stock price data obtained from NYSE's Trades and
Quotes (TAQ) database, for the period from 2 January, 2009, to 31 December, 2010. It covers a
total of 470 days and contains the daily transaction data observed between 9:30 till 16:00 local
time. The stocks we consider are IBM, Google, Oracle, P�zer (PFE), Exxon (XOM), which are
among the most heavily traded names at NYSE.

High frequency data is known to be noisy such that the accuracy of the RV and RC estimates can
be seriously impaired. We therefore subject the data to the �ltering procedure established in by
Barndor�-Nielsen et al. (2009) for TAQ data comprising the following steps:

1. Delete entries outside 9:30-16:00 and with zero transaction price.

2. Delete entries with corrected trades or abnormal sale condition.

3. Replace multiple trades for the same time stamp by the median price.

4. Delete entries with prices above ask plus bid-ask spread or below bid minus bid-ask spread.

After applying this cleaning procedure we estimate RC matrices by the realized kernel estimator
due to Barndor�-Nielsen et al. (2011), see Appendix A for all relevant details on the procedure. The
realized kernel estimator warrants a positive-de�nite estimate of RC and is robust to market micro
structure noise, such as non-synchronous trading and the bid-ask-bounce. Descriptive statistics on
estimated RC are displayed in the upper panels of Tables 3 and 4.5 They are well in line with those
reported on stock market data in general (Andersen, Bollerslev, Diebold and Ebens; 2001) or for
realized kernel estimators speci�cally (Barndor�-Nielsen et al.; 2009). In Figure 2 we display the
series of realized correlations of the two portfolios. As is visible for the �rst portfolio containing
Google-IBM-Oracle, all realized correlations track each other very closely. This is natural given all
stocks come from the information and communication technologies sector. The second portfolio,
IBM-PFE-XOM, which is a mixed sector portfolio, comprises one pair of stocks (IBM-XOM) that
in the �rst part of the sample period is slightly stronger correlated that the other two pairs.

5Note that entries for RV of IBM are di�ering between the two tables. This is due to refresh time sampling
of the realized kernel estimator. Since both covariance matrices are estimated separately, refresh time sampling
for both RV series di�ers for the two portfolios implying slightly di�ering estimates. An alternative would be to
increase dimension and to directly estimate the six-dimensional RC. However, as a consequence of refresh time
sampling, fewer data observations would be used in the resulting estimator. We therefore prefer to compute the
smaller dimensional estimates. An estimator for RC overcoming this issue is suggested by Corsi, Peluso and Audrino
(2012).
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Aside from high-frequency intraday data, we also employ a sample of daily closing prices from
9 July 2007 to 31 December 2010, see Table 2 for the descriptive statistics. These data will be
used for backtesting the out-of-sample VaR computations. The history is larger than the one for
intraday data, since the competitor models based on daily data (rolling window and the LCP
method) require a data history prior to the one which is under scrutiny in the VaR investigation.

4.2 Empirical results

Before looking at the out-of-sample VaR results it is instructive to study the in-sample estimates
of the copula parameters and of the forecasting rules as outlined in Section 2.2. The discussion of
the out-of-sample backtesting results follows.

4.2.1 In-sample results

For our empirical application we consider an Archimedean copula, the Clayton copula, and the
rotated Gumbel (rGumbel) copula, which is not Archimedean. Both copulae exhibit lower tail-
dependence, which is likely to be crucial for modeling risk measures for stock portfolios. In-sample
results for the estimated copula parameters are displayed in the lower panels of Tables 3 and 4.

In the �rst portfolio, the estimated parameters of the rotated Gumbel �uctuates between one (in-
dependence case) and quite substantial dependence of around two (i.e. Kendall's tau of around 0.5)
with the mean estimate being θMM

rGum
≈ 1.4. Similar �ndings apply to the Clayton copula whose

parameter estimates are between zero (independence case) and two. Necessarily, the estimates
for both copulae agree on the implied dependence expressed by Kendall's tau. For the second
portfolio estimated copula shape parameters are somewhat lower, as is to be expected comparing
the upper and the lower panel in Figure 2. Here estimates are on average around 1.3 in the rotated
Gumbel and 0.58 in the Clayton case. As suggested by the �ndings of the simulation study in
Section 2.3, for both portfolios, due to dependence being moderate overall, the ad hoc estimator
provides estimates which are quite close to those in the exact case.

In the top panels of Figures 3 and 4 we plot the time series of the RCop shape parameters based
on Hoe�ding's lemma (red line, rotated Gumbel), which is estimated from high-frequency intraday
data, against the time series of the copula parameters of the naïve rolling window (black line,
window size 250 days) and the adaptive LCP method (blue line), both obtained for daily data. As
is visible, the RCop structure di�ers markedly from the one recovered for the latter two approaches.
First the copula parameters obtained for the daily data appear to be higher on average than is
suggested from intraday data. Second, they are less noisy, but their reaction to fundamental
changes in the economy is more inert than for RCop, as can be well discerned in the second half
of the sample period (May to Sep. 2010). The reason becomes apparent in the lower panels
of Figures 3 and 4 where we plot the estimated interval lengths of the rolling window and the
LCP method. For both portfolios, also the LCP method tends to identify rather long intervals of
homogeneity, which is why both approaches deliver very close estimates for these periods. It is
�rst in September that LCP identi�es much smaller intervals of homogeneity. In consequence the
estimated copula parameter jumps up. In contrast RCop reacts already between May and July to
higher levels of dependence and by September has already returned to usual levels.
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In the lower panels of Tables 5 and 6 we provide in-sample estimates for the RCop forecasting rules.
Estimation is accomplished by ordinary least squares.6 Size of estimates for the log-RV models
are as reported elsewhere in the literature (Corsi; 2009): dynamics of RV is mainly driven by
yesterdays realization. The in�uence of the weekly component is only half as big, followed by the
monthly RV aggregate being smallest in magnitude, but signi�cant. Interestingly, this contrasts
sharply with the covariance dynamics as implied by the copula parameters. The shape parameter
of RCop appears to be mainly driven by the daily and the weekly aggregate, with the latter even
outweighing the �rst. The monthly component is not signi�cant at all. These �ndings suggest
that the dynamics of spillovers and (lower) tail-dependence as re�ected by the time-varying copula
parameter are more sluggish than those of RV: after some initial shocks cross-sectional dependence
tends to subside more slowly than RV, allowing the system to still maintain high coe�cients of
tail-dependence and thus a high probability to incur simultaneous price deteriorations in all stocks,
even when individual variances might have calmed down already.

4.2.2 Out-of-sample VaR backtesting results

Since it appears di�cult to subject a given copula assumption to a speci�cation test, an out-of-
sample study, for instance by backtesting VaR, is a vital means of model validation.

The backtesting proceeds as follows. We shrink the relevant time frame for backtesting to 19
October 2009 to 31 December 2010 taking the initial sample of 200 days to estimate the HAR-type
prediction rules for all RV-based models: RCop (Hoe�ding's lemma and ad hoc estimator), the
matrix log transformation, and the Cholesky factorization. Given the linear prediction rules, a
forecast is made for RC, RV and the RCop parameter. To achieve high accuracy of the relevant
quantiles of the future P&L distribution, we simulate it with 100 000 random draws. We then
check whether the following day's P&L realization is an exceedance or not. For the next VaR
computation, the initial learning sample is shifted to include the new day with the initial day
from the previous learning sample being dropped. We thus iterate through the entire sample. As
described in Section 2.4 the portfolio weights are always adjusted to preserve the same relative
weights within the portfolio.

As was explained in Section 3.1, the rolling window and the LCP method work with a degenerated
forecasting rule: the current copula parameter, which is estimated on the current interval of
homogeneity (either �xed at 250 days or locally adaptive in the LCP method), is extrapolated as
a constant to the next following day. To initialize the LCP, we start at 2 January 2009 and go into
the past until the smallest interval of a constant parameter is found by rejecting the homogeneity
test. The relevant variances of the rolling window and the LCP method are computed from the
daily returns on the respective intervals of homogeneity. We then iterate through the backtesting
sample as described above.

Tables 7 and 8 summarize the results for 1-day ahead quantiles of 1%, 5% and 10%. For the �rst
portfolio, which is reported in Table 7, the RCop approaches are best performing, with rotated
Gumbel and Clayton being hardly distinguishable from each other. In particular the smallest
quantiles are very well captured. Unconditional coverage testing based on the Kupiec test con�rms
this observation. In the second portfolio (Table 8) rolling window and LCP perform slightly better
than RCop at the 1% quantile, but at the 5% and the 10% quantiles it is RCop that is superior.

6The estimation problem could also be treated in a seemingly unrelated regressions framework.
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As before rotated Gumbel and Clayton are very similar.

As a result, the RV approaches based on the matrix log transformation and the Cholesky factor-
ization, which work with a Gaussian structure, appear to be dominated by the methods allowing
for a non-Gaussian multivariate distribution. This is particularly evident for the small quantiles.
It is important to note that at the margins all methods assume normality. The strikingly bet-
ter performance of the copula-based methods need therefore be attributed to non-trivial forms of
tail-dependence relevant for VaR-computations.

In Figures 5 and 6 we present the exceedances plots for the 1%-VaR risk for both portfolios.
Both �gures elucidate the �ndings of the previous tables. As is visible in the top panels of both
�gures, the rolling window and the LCP method exhibit a much smoother quantile history than
the RV-based approaches. In contrast, RCop (middle panel) responds very quickly to shocks in
the economy and quantiles widen accordingly. In Figure 5, this is nicely visible in the mid of
the sample (June 2010), where many exceedances occur. While rolling window and LCP do not
detect these outbursts, RCop does and only few exceedances are recorded. Like RCop, also the two
other Gaussian RV approaches are very sensitive to these events, but having zero tail-dependence
their quantiles are not su�ciently fat-tailed, which leads to a number of exceedances. The same
de�ciency inherent to Gaussian RV approaches is observed in Figure 6, where many exceedances
occur during the �rst days of the backtesting period.

Finally, as is also apparent from Tables 7 and 8 and Figures 5 and 6, for the moderate dependence
in our sample, RCop based on the ad hoc estimator essentially delivers the same results as the
accurate estimator using Hoe�ding's lemma. In many circumstances, we therefore expect the ad
hoc estimator to be a suitable practical replacement for the exact estimator, making computations
even more straight forward.

5 Conclusion

Based on assumptions of the marginal distributions of daily stock returns and a copula family, we
introduce realized copula as the copula structure materialized in realized covariance estimated from
within-day high-frequency data. We estimate the copula parameters in a method-of-moments type
of fashion using Hoe�ding's lemma. The resulting time series of copula parameters is captured using
a heterogeneous autoregressive model which is well established in the realized variance literature.

Realized copula allows to move beyond the usual Gaussian structure which realized variance mod-
els typically adopt. In an out-of-sample VaR backtesting analysis, we demonstrate the relevance
of this feature. Comparing our approach with a rolling window and an adaptive change point
algorithm (both estimated for daily data) and two classical multivariate realized variance based
benchmark models (matrix log transformation, Cholesky factorization), we �nd that models adopt-
ing a multivariate Gaussian structure are dominated by copula models. On the other hand, models
that are only based on daily data appear to be too sluggish to respond to structural shifts in the
economy. Realized copula unites advantages of both modeling approaches in being highly re-
sponsive to shocks in the economic system, but at the same time allowing for non-trivial forms
of tail-dependence. Both features are most crucial for accurate risk-management and portfolio
optimization.
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Our empirical results demonstrate that judicious combinations of low and high frequency informa-
tion, as pioneered by Engle and Gallo (2006) and Ghysels et al. (2006), can generate substantial
improvements in the out-of-sample forecasting accuracy, see also Hautsch et al. (2011) for a recent
account in portfolio allocation. It would therefore be desirable to carry the approach to larger
dimensions than the two- and three-dimensional cases considered. While technically possible, such
a model would still have a single copula parameter and thus come at the cost of a very strong
homogeneity assumption, which presumably one does not want to maintain in a high-dimensional
setting. This issue could be addressed by using richer, yet still parsimoniously parametrized copu-
lae, such as hierarchical Archimedean copulae (Whelan; 2004; Härdle et al.; 2010; Savu and Trede;
2010) or vine copulae (Joe; 1996; Bedford and Cooke; 2002). As a critical challenge of such a
realized copula framework, one would not only need to estimate the copula shape parameters, but
also has to simultaneously identify the embedded copula structure. We therefore suggest this topic
for future research.
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A Estimation of realized variance

On the intra-day level, we adopt the model framework used in the realized variance literature
described e.g. in Barndor�-Nielsen et al. (2011). We suppose that during the trading day [t− 1; t]
the log-price process follows a Brownian semimartingale (BSM) which is superimposed by market
micro structure noise. More precisely, denote the d-dimensional e�cient equilibrium price process
by

Yt = Yt−1 +

∫ t

t−1
σu dWu

where σt càdlàg is a volatility matrix process and Wt is a d-dimensional vector of independent
Brownian motions. At observation times t − 1 = τ0 < τ1 < . . . < τN = t, we record the e�cient
price plus a covariance stationary additive component

Pτi = Yτi + Uτi ,

where E(Uτi) = 0 and
∑

h |hΩh| < ∞ with Ωh = Cov(Uτi , Uτi−h) for h > 0. The purpose is
to estimate the quadratic variation of Y , i.e. [Y ]t,t−1 =

∫ t
t−1 Σudu with Σ = σσ>. An ex-post

estimate of integrated covariance [Y ]t,t−1 =
∫ t
t−1 Σudu will be called realized covariance and was

denoted by Ht in Section 2.1. For the estimation of [Y ] from discrete, non synchronous, and noisy
price observations, we use the realized kernel estimator, which is described in the following.

The multivariate realized kernel method introduced by Barndor�-Nielsen et al. (2011) yields con-
sistent, positive semi-de�nite estimates of the covariation of equity prices in the presence of noise
and non-synchronous trading. Data synchronization is accomplished via refresh time sampling
(RTS), see also Harris et al. (1995) and Hautsch et al. (2009). The refresh times are de�ned as
the times needed for all the assets in the portfolio to trade or to refresh posted prices. After
all assets being traded, the most recent price is used to form the RTS time scale. Formally, the
�rst refresh time is de�ned as τ ∗1 = max{τ1,1, . . . , τd,1}. All subsequent refresh times are de�ned
as τ ∗i+1 = arg min{τj,kj |τj,kj > τ ∗i , ∀kj = 1, . . . , Nj; j ∈ 1 . . . d}, where Nj denotes the number of
price observations made for asset j. This synchronization leads to a new high-frequency vector of
returns pi = Pτ∗i −Pτ∗i−1

, where i = 1, . . . , n, and n is the number of RTS observations. With RTS,
the sample size n of retained data depends on the degree of non-synchronicity between assets.

The multivariate realized kernel estimator is de�ned as

K(P ) =
H∑

h=−H

k

(
|h|

H + 1

)
Γh,

with Γh being a matrix of autocovariances given by

Γh =

{ ∑n
j=|h|+1 pjp

>
j−h, h ≥ 0∑n

j=|h|+1 pj−hp
>
j , h < 0

,

and k(x) being the Parzen kernel

k(x) =


1− 6x2 + 6x3 0 ≤ x ≤ 1/2
2(1− x)3 1/2 ≤ x ≤ 1
0 x > 1

.

In the estimation of the multivariate bandwidth parameter H we strictly follow the suggestions
outlined in Barndor�-Nielsen et al. (2009).
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B Tables and �gures

family φθ φθ
−1 domain fτ

Gumbel exp{−x1/θ} (− log x)θ θ ∈ [1,∞) 1− 1/θ

Clayton (θx+ 1)−1/θ (x−θ − 1)/θ θ ∈ (0,∞) θ/(2 + θ)

Nelsen (2006) (4.2.2) 1− x1/θ (1− x)θ θ ∈ [1,∞) (θ − 2)/θ

Nelsen (2006) (4.2.3) (1− θ)/(ex − θ) log 1−θ(1−x)
x θ ∈ [0, 1) 1− 2 θ+(θ−1)2 log(1−θ)

3θ2

Frank −1
θ log{e

−x(e−θ − 1) + 1} − log e−θx−1
e−θ−1 θ ∈ (0,∞) 1 + 4{D1(θ)− 1}/θ

Table 1: Generator function φθ, the inverse φθ−1, and Kendall's tau fτ for selected Archimedean
copulae, see Nelsen (2006), Table 4.1. D1 is the Debye function of order 1, D1(θ) =

∫∞
0
t/θ(et−1)dt.

min. median mean max. std. skewness kurtosis
Google -0.123 -0.143e-3 0.254e-3 0.182 0.022 0.331 7.192
Oracle -0.103 0.000e-3 0.743e-3 0.122 0.021 0.393 4.729
IBM -0.061 0.604e-3 0.475e-3 0.109 0.015 0.166 4.712
P�zer -0.112 -0.690e-3 -0.250e-3 0.096 0.017 -0.236 6.233
Exxon -0.150 0.290e-3 0.182e-3 0.158 0.019 0.126 12.546

Table 2: Descriptive statistics of the daily log return data of the stocks under consideration. Sample
period 9 July 2007 to 31 December 2010.
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min. median mean max. std.
RV(Google) 2.277e-05 1.714e-04 2.503e-04 0.003 0.269e-3
RV(IBM) 1.431e-05 1.048e-04 1.704e-04 0.001 0.180e-3
RV(Oracle) 5.220e-05 2.208e-04 3.082e-04 0.002 0.253e-3
RC(Google,IBM) 1.978e-06 5.758e-05 9.112e-05 0.001 0.110e-3
RC(Google,Oracle) 5.359e-06 7.628e-05 1.112e-04 0.001 0.128e-3
RC(IBM,Oracle) 2.106e-06 6.749e-05 1.015e-04 0.001 0.113e-3
θ̂MMt (rGumbel) 1.073e-00 1.353e-00 1.375e-00 1.935 0.146
θ̂ad hoct (rGumbel) 1.078e-00 1.361e-00 1.382e-00 1.937 0.144
θ̂MMt (Clayton) 1.475e-01 7.028e-01 7.538e-01 1.986 0.304
θ̂ad hoct (Clayton) 1.554e-01 7.225e-01 7.645e-01 1.875 0.288

Table 3: Descriptive statistics of the realized kernels (variances and covariances) and realized
copulae (method of moments and ad hoc for Clayton and rotated Gumbel copulae) of the Google-
IBM-Oracle portfolio.

min. median mean max. std.
RV(IBM) 1.474e-05 1.014e-04 1.704e-04 0.194e-04 1.820e-04
RV(P�zer) 2.819e-05 2.067e-04 2.837e-04 0.311e-04 2.467e-04
RV(Exxon) 2.455e-05 1.281e-04 1.810e-04 0.229e-04 1.786e-04
RC(IBM,P�zer) -1.550e-06 4.069e-05 6.553e-05 0.161e-04 9.599e-05
RC(IBM,Exxon) 4.231e-08 5.198e-05 8.442e-05 0.111e-04 1.010e-04
RC(P�zer,Exxon) -3.858e-06 4.691e-05 7.187e-05 0.112e-04 8.744e-05
θ̂MMt (rGumbel) 1.011e-00 1.264e-00 1.286e-00 1.788e-00 1.275e-01
θ̂ad hoct (rGumbel) 1.012e-00 1.284e-00 1.303e-00 1.793e-00 1.302e-01
θ̂MMt (Clayton) 2.271e-02 5.247e-01 5.724e-01 1.644e-00 2.599e-01
θ̂ad hoct (Clayton) 2.473e-02 5.672e-01 6.057e-01 1.586e-00 2.604e-01

Table 4: Descriptive statistics of the realized kernels (variances and covariances) and realized
copulae (method of moments and ad hoc for Clayton and rotated Gumbel copulae) of the IBM-
PFE-XOM portfolio.

β0 βD βW βM
Google -0.597 (0.234) 0.559 (0.054) 0.254 (0.074) 0.121 (0.054)
IBM -0.586 (0.232) 0.509 (0.055) 0.254 (0.078) 0.175 (0.059)
Oracle -0.705 (0.260) 0.505 (0.054) 0.155 (0.079) 0.259 (0.066)
θ̂MMt (rGumbel) 0.047 (0.015) 0.354 (0.056) 0.449 (0.083) 0.039 (0.073)
θ̂ad hoct (rGumbel) 0.048 (0.016) 0.354 (0.056) 0.454 (0.083) 0.036 (0.073)
θ̂MMt (Clayton) -0.068 (0.022) 0.364 (0.056) 0.444 (0.084) 0.047 (0.077)
θ̂ad hoct (Clayton) -0.063 (0.020) 0.363 (0.056) 0.450 (0.084) 0.043 (0.077)

Table 5: Parameters of the in-sample HAR models for the Google-IBM-Oracle portfolio. Standard
errors in brackets.
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β0 βD βW βM
IBM -0.599 (0.236) 0.492 (0.056) 0.255 (0.079) 0.190 (0.061)
P�zer -0.523 (0.241) 0.488 (0.055) 0.238 (0.080) 0.216 (0.065)
Exxon -0.734 (0.258) 0.418 (0.056) 0.411 (0.078) 0.092 (0.059)
θ̂MMt (rGumbel) 0.048 (0.016) 0.270 (0.056) 0.441 (0.090) 0.085 (0.088)
θ̂ad hoct (rGumbel) 0.049 (0.016) 0.280 (0.056) 0.437 (0.090) 0.084 (0.088)
θ̂MMt (Clayton) -0.139 (0.047) 0.255 (0.056) 0.466 (0.099) 0.126 (0.102)
θ̂ad hoct (Clayton) -0.124 (0.043) 0.262 (0.056) 0.468 (0.100) 0.121 (0.103)

Table 6: Parameters of the in-sample HAR models for the IBM-P�zer-Exxon portfolio. Standard
errors in brackets.

model \ α 0.01 0.05 0.1
LCP m0 = 40 (rGumbel) 0.0258 (0.028) 0.0369 (0.3003) 0.0775 (0.2002)
ROL w = 250 (rGumbel) 0.0221 (0.083) 0.0332 (0.1779) 0.0664 (0.0511)
MM (rGumbel) 0.0148 (0.462) 0.0590 (0.5062) 0.0996 (0.9838)
ad hoc (rGumbel) 0.0148 (0.462) 0.0590 (0.5062) 0.0996 (0.9838)
LCP m0 = 40 (Clayton) 0.0258 (0.028) 0.0517 (0.9007) 0.0849 (0.3953)
ROL w = 250 (Clayton) 0.0221 (0.083) 0.0443 (0.6598) 0.0738 (0.1334)
MM (Clayton) 0.0148 (0.462) 0.0554 (0.6909) 0.0959 (0.8227)
ad hoc (Clayton) 0.0148 (0.462) 0.0554 (0.6909) 0.0886 (0.5229)
Gauss (Bauer and Vorkink; 2010) 0.0406 (1e-04) 0.0738 (0.0921) 0.1218 (0.2463)
Gauss (Chiriac and Voev; 2011) 0.0369 (6e-04) 0.0812 (0.0301) 0.1255 (0.1772)

Table 7: VaR performance (α̂) for the Google-IBM-Oracle portfolio. p-values of the Kupiec test in
brackets. m0 denotes the smallest possible interval of homogeneity for the LCP method, w is the
window width for the rolling window approach.

model \ α 0.01 0.05 0.1
LCP m0 = 40 (rGumbel) 0.0111 (0.8618) 0.0443 (0.6598) 0.0701 (0.0847)
ROL w = 250 (rGumbel) 0.0111 (0.8618) 0.0332 (0.1779) 0.0517 (0.0038)
MM (rGumbel) 0.0074 (0.6494) 0.0554 (0.6909) 0.1033 (0.8561)
ad hoc (rGumbel) 0.0074 (0.6494) 0.0517 (0.9007) 0.1033 (0.8561)
LCP m0 = 40 (Clayton) 0.0185 (0.2110) 0.0554 (0.6909) 0.0923 (0.6670)
ROL w = 250 (Clayton) 0.0111 (0.8618) 0.0369 (0.3003) 0.0590 (0.0157)
MM (Clayton) 0.0074 (0.6494) 0.0554 (0.6909) 0.1033 (0.8561)
ad hoc (Clayton) 0.0074 (0.6494) 0.0554 (0.6909) 0.1033 (0.8561)
Gauss (Bauer and Vorkink; 2010) 0.0369 (0.0006) 0.0738 (0.0921) 0.1107 (0.5631)
Gauss (Chiriac and Voev; 2011) 0.0406 (0.0001) 0.0738 (0.0921) 0.1144 (0.4390)

Table 8: VaR performance (α̂) for the IBM-P�zer-Exxon portfolio. p-values of the Kupiec test in
brackets. m0 denotes the smallest possible interval of homogeneity for the LCP method, w is the
window width for the rolling window approach.
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Figure 1: Monte Carlo simulation. Top panel: two-dimensional case with Gumbel copula. Lower
panel: three-dimensional case with Gumbel copula. Left plot: ML-IFM estimator. Middle plot:
moment estimator based on Hoe�ding's lemma. Right plot: ad-hoc estimator based on linear
correlation. Numbers are computed based on 1000 estimates of the respective parameters. Each
parameter estimate is based on a sample size of 1000 randomly drawn observations. Red line is the
mean of the di�erences between estimate and true value, blue the median (hardly visible). Shaded
area is the 95% interval based on the 1000 repetitions.
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Figure 2: Realized correlation estimated by means of the realized kernel estimator between 2 Jan.
2009 to 31 Dec. 2010. Top panel: Google-IBM-Oracle portfolio. Lower panel: IBM-P�zer(PFE)-
Exxon(XOM) portfolio.
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Figure 3: Estimated copula parameters for the case of the rotated Gumbel copula on the Google-
IBM-Oracle portfolio. Top panel: the naïve rolling window estimates (black line), the LCP es-
timates (blue line), and realized copula estimates based on Hoe�ding's lemma (red line). Lower
panel: estimated interval length of the LCP procedure (blue line) and (constant) interval length of
naïve rolling window approach (black line). LCP (blue) is run with m0 = 40, which is the smallest
possible interval of homogeneity.
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Figure 4: Estimated copula parameters for the case of the rotated Gumbel copula on the IBM-
P�zer-Exxon portfolio. Top panel: the naïve rolling window estimates (black line), the LCP
estimates (blue line), and realized copula estimates based on Hoe�ding's lemma (red line). Lower
panel: estimated interval length of the LCP procedure (blue line) and (constant) interval length of
naïve rolling window approach (black line). LCP (blue) is run with m0 = 40, which is the smallest
possible interval of homogeneity.

28



●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●
●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●
●

●

●

●●●

●

●●
●

●

●●

●●
●

●

●
●●

●
●

●
●

●

+

●

●
●
●

●

●

●

●
●

●

●

+

●

+

●

●

●

●

●
●

●

●
●

+

●
●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●●
●

●

●●

+

●

●
●

●

●

●●●

●

●
●

+

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●●●●

●
●

●

●

●

●

●●
●
●

●

●

●

●

●

●

rGumbel, Rolling Window

P
L 

fu
nc

tio
n

−
40

−
20

0
20

Nov 2009 Feb 2010 May 2010 Aug 2010 Nov 2010

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●
●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

+

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●
●

●

●

●●●

●

●●
●

●

●●

●●
●

●

●
●●

●
●

●
●

●

+

●

●
●
●

●

●

●

●
●

●

●

+

●

+

●

●

●

●

●
●

●

●
●

+

●
●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●●
●

●

●●

+

●

●
●

●

●

●●●

●

●
●

+

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●●●●

●
●

●

●

●

●

●●
●
●

●

●

●

●

●

●

rGumbel, LCP

P
L 

fu
nc

tio
n

−
40

−
20

0
20

Nov 2009 Feb 2010 May 2010 Aug 2010 Nov 2010

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●
●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

+

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●
●

●

●

●●●

●

●●
●

●

●●

●●
●

●

●
●●

●
●

●
●

●

+

●

●
●
●

●

●

●

●
●

●

●

+

●

●

●

●

●

●

●
●

●

●
●

●

●
●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●●
●

●

●●

●

●

●
●

●

●

●●●

●

●
●

+

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●●●●

●
●

●

●

●

●

●●
●
●

●

●

●

●

●

●

rGumbel, MM

P
L 

fu
nc

tio
n

−
40

−
20

0
20

Nov 2009 Feb 2010 May 2010 Aug 2010 Nov 2010

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●
●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

+

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●
●

●

●

●●●

●

●●
●

●

●●

●●
●

●

●
●●

●
●

●
●

●

+

●

●
●
●

●

●

●

●
●

●

●

+

●

●

●

●

●

●

●
●

●

●
●

●

●
●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●●
●

●

●●

●

●

●
●

●

●

●●●

●

●
●

+

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●●●●

●
●

●

●

●

●

●●
●
●

●

●

●

●

●

●

rGumbel, ad hoc

P
L 

fu
nc

tio
n

−
40

−
20

0
20

Nov 2009 Feb 2010 May 2010 Aug 2010 Nov 2010

●

●
●

●

●

●
●

●

●

+

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

+

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●
●●●

●

●

+

●

●

+
●

●

●●

●

●

●

●

+

●

+

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●
●

●

●

●●●

●

●●
●

●

●●

●●
●

●

●
●●

●
●

●
●

●

+

●

●
●
●

●

●

●

●
●

●

●

+

●

●

●

●

●

●

●
●

●

●
●

●

●
●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●●
●

●

●●

+

●

●
●

●

●

●●●

●

●
●

+

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●●●●

●
●

●

●

●

●

●●
●
●

●

●

●

+

●

●

Gauss (Bauer and Vorkink; 2010)

P
L 

fu
nc

tio
n

−
40

−
20

0
20

Nov 2009 Feb 2010 May 2010 Aug 2010 Nov 2010

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

+

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●
●●●

●

●

+

●

●

+
●

●

●●

●

●

●

●

+

●

+

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●
●

●

●

●●●

●

●●
●

●

●●

●●
●

●

●
●●

●
●

●
●

●

+

●

●
●
●

●

●

●

●
●

●

●

+

●

●

●

●

●

●

●
●

●

●
●

+

●
●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●●
●

●

●●

+

●

●
●

●

●

●●●

●

●
●

+

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●●●●

●
●

●

●

●

●

●●
●
●

●

●

●

●

●

●

Gauss (Chiriac and Voev; 2011)

P
L 

fu
nc

tio
n

−
40

−
20

0
20

Nov 2009 Feb 2010 May 2010 Aug 2010 Nov 2010

Figure 5: Exceedances plot for the VaR(0.01) for the rotated Gumbel copula on the Google-IBM-
Oracle portfolio. From top left to lower right: Rolling window (window width w = 250), LCP
method (smallest possible interval of homogeneity m0 = 40), realized copula (Hoe�ding's lemma),
realized copula (ad hoc), Bauer and Vorkink (2010) and Chiriac and Voev (2011). Pro�t & loss
(blue dots), the lower VaR(0.01) (green solid line), exceedances (red crosses).
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Figure 6: Exceedances plot for the VaR(0.01) for the rotated Gumbel copula on the IBM-P�zer-
Exxon portfolio. From top left to lower right: Rolling window (window width w = 250), LCP
method (smallest possible interval of homogeneity m0 = 40), realized copula (Hoe�ding's lemma),
realized copula (ad hoc), Bauer and Vorkink (2010) and Chiriac and Voev (2011). Pro�t & loss
(blue dots), the lower VaR(0.01) (green solid line), exceedances (red crosses).
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