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Abstract 

We suggest a joint analysis of ex-post intra-day variability in an option and its associated 

underlying asset market as a means of validating an option pricing model. For this purpose, 

we contrast option realized variance with the realized variance that would be implied from  

the underlying asset price path under certain model assumptions. In the empirical analysis, 

we first focus on the implied volatility compensated Black-Scholes model and the Heston 

model. Corroborating findings presented in the literature for first-order moments and 

option data of lower frequency, we find substantial deviations between both markets. 

Options second-order moments are significantly closer to the realized ones, after controlling 

for the presence of jumps and after recalibrating the Heston model every day. This highlights 

the relevance of jumps and more sophisticated underlying's stochastic volatility dynamics also 

from an option's second-order moment perspective. 

Keywords 

Option pricing, high frequency data, realized variance, stochastic volatility. 

JEL Classification 

C52, C58, G13, G17. 



1 Introduction

There are two basic tenets in option pricing theory: (i) the risk-neutral expectation of

the underlying asset’s integrated variance is a key determinant of an option’s price; (ii)

the efficacy of an option’s hedge critically depends on the variance of the underlying as-

set realized along its path, i.e. its so-called realized variance. Since high-frequency data

first became available, much research has consequently been devoted to characterizing,

modeling, and forecasting realized variance as measured in major underlying asset classes

such as stocks, indices, futures and foreign exchange rates.1 Insights from this research

substantially improved our understanding of these markets and ultimately lead to the de-

velopment of more refined option pricing models. For option pricing, for instance, a typical

approach would be to employ realized variance estimated from intra-day sampled returns

on the underlying asset to improve on the state recovery of latent volatility at a daily fre-

quency; see Bollerslev and Todorov (2011), Andersen et al. (2012), Christoffersen et al.

(2012), and Corsi et al. (2013).

In the present work, rather than using intra-day data as a tool for an analysis at a lower

frequency, we study high-frequency dynamics in the underlying asset and its associated

option market in concert. For this purpose, we introduce the notion of option realized

variance. Like the usual concept, option realized variance is the cumulative variance

realized by the sample path of successive option price observations. We then relate the

observed option realized variance on the one hand with the realized variance that would

be implied from the underlying asset price path under certain model assumptions on the

other. Ideally, both quantities should yield similar estimates. Any mismatch therefore

allows conclusions to be drawn on misspecification of the option pricing model from the

perspective of option second-order moments. A joint analysis of realized variance in

underlying asset and option markets therefore serves as a novel means of validating an

1See, among others, Andersen, Bollerslev, Diebold and Ebens (2001),

Andersen, Bollerslev, Diebold and Ebens (2001), Andersen et al. (2003), Barndorff-Nielsen and Shepard

(2001a), Barndorff-Nielsen and Shepard (2001b), Barndorff-Nielsen and Shepard (2002), and more

recently, Todorov and Tauchen (2011) and Todorov et al. (2011).
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option pricing model.

Options are a nonlinear function of the underlying asset price. Unlike realized variance

of delta-one instruments, such as stocks and futures, option realized variance therefore

is a complicated functional of the underlying asset’s realized path. Moreover, aside from

the underlying itself, option realized variance may involve realized variance contributions

from additional risk factors, such as latent volatility factors. These facts may render such

a study intricate, but are not necessarily prohibitive. Here, we demonstrate the potential

of this analysis by focusing on the two primary workhorses of the financial literature: the

implied volatility compensated Black and Scholes (1973) model and the Heston (1993)

model.

For our study we use high-frequency intra-day transaction records of put and call op-

tions written on the EURO STOXX 50 R⃝ index sampled between 2003-2011. The EURO

STOXX 50 R⃝ is the leading financial market indicator in the Eurozone. Options and

futures written on this index belong to the most heavily traded derivatives in Europe.

Thanks to the liquidity of this market, we are able to compute accurate and reliable

measures for the daily second-order moments of option prices. We then ask whether and

under which circumstances these classical one- and two-factor models for the underlying

asset price are able to reproduce the variance dynamics observed in the option market.

Our results can be summarized as follows. First, option realized volatility predictions

obtained assuming the implied volatility compensated Black-Scholes or the Heston model

are systematically inconsistent with the observed option realized volatilities. The richer

flexibility allowed by stochastic volatility, although generally improving the Black-Scholes

predictions, is not enough to obtain variance predictions that are in line with the observed

ones. This result is irrespective of whether we consider put or call options with different

characteristics (i.e., moneyness and time to maturity), different frequencies, different time

periods, or whether we exclude days in which fundamental model assumptions are vio-

lated. Moreover, differences between the realized volatility series are significantly larger

than those we obtain in simulations. As a consequence, they may not be (completely)

ascribed to numerical errors unavoidably related to the approximations. Second, regress-

4



ing observed second-order moments on model-based ones, we show that the predictions

based on the Heston model are on average too high, yielding an overestimation of the true

risk (associated with second-order moments) realized in the option market. In contrast,

predictions obtained assuming the Black-Scholes model for the underlying index price are

on average too large (small) for call (put) options. Third, in analyzing the time series of

differences between observed and model-based second-order moments, and in particular

looking at the different time periods, the sign of the differences is systematically different

for call and put options when assuming the Heston model for the underlying index dy-

namics: During periods characterized by low uncertainty and stable market conditions,

second-order moments of call (put) options are underestimated (overestimated). The op-

posite holds true during highly volatile periods (mainly during and after the financial

crisis). Fourth, we find a distinct segregation in the approximation quality between put

and call markets. In particular, we find that second-order moments of calls are captured

markedly more poorly than those of puts.

In conclusion, both models fail to reproduce observed option second-order moments, with

the Heston model moderately outperforming the Black-Scholes model. Our results provide

a rationalization from the viewpoint of ex-post intra-day variability of option prices for

the deficiencies of those models that have been previously documented in the literature.

In particular, they point to the existence of additional relevant pricing factors that affect

option second-order moments. We thus add from an intra-day perspective to similar

findings that were discovered in option data at lower frequencies, as discussed e.g. in

Poteshman (2001), Bollen and Whaley (2004), or Han (2008).

Our research of option second-order moments is related to the option pricing literature in

various ways. Perhaps closest in spirit is Bakshi et al. (2000a). In that study, intra-day

dynamics of quoted option prices are studied in order to discriminate between one- versus

two-dimensional factor models as a description of the underlying asset price dynamics.

Furthermore, the examination of option second order moments can be understood as a spe-

cial type of hedging analysis, such as in Bakshi et al. (1997) and Dumas et al. (1998), with

the important qualification that the joint analysis of option and underlying-based realized
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variance considers only first-order intra-day effects. This is because higher-order effects

on option prices, such as gamma, or smooth effects, including time decay, are necessarily

ignored by a realized variance analysis. Moreover, it may only focus on short-term aspects

of the performance, since only options with the highest liquidity may enter the analysis.

It will usually not be possible to track a distinct option with a fixed strike and expiry date

over a period longer than a single trading day as one would typically do when studying

the hedging performance. And finally, one may read this work as adding a second-order

moment perspective to the asset pricing literature exploring the cross-sectional distribu-

tion of option returns. Examples of this analysis of first-order moments of option returns

include Coval and Shumway (2001), Jones (2006), and Constantinides et al. (2011).

The rest of the paper is organized as follows. Section 2 develops the theory and provides

the main formulas needed to compute option second moments. In Section 3 we sketch the

theory on realized volatility and discuss its properties as an estimator of the unobservable

option quadratic variation. Monte Carlo simulations are provided. In Section 4, we

describe the data and construct the different (i.e., observed and model-based) realized

variance series under investigation. Sections 5 and 6 present the main empirical results.

Concluding remarks are offered in Section 7.

2 Options second-order moments

In this section, we derive the second-order properties of the option price dynamics. We

consider the case in which the underlying asset price follows a one-dimensional diffusion

process. As an extension, we also study a two-dimensional diffusion process, in which the

second state variable is return volatility.

2.1 One-dimensional diffusion model

Consider a European-style call option with strike price K and τ years to expiration,

written on some non-dividend-paying asset whose time t (log-)price is denoted by y(t).
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To do so, we first specify the process followed by y(t) and the valuation rule for the option.

In a second step, using the mathematical theory developed for stochastic processes, we

can analytically derive the second-order properties of the options dynamics.

2.1.1 Basic model framework

On filtered probability space (Ω,F , P, (F(t))t≥0), assume that y(t) follows the one-dimensional

diffusion

dy(t) = α(t)dt+ σ(t)dw1(t), t ≥ 0, (1)

where y(0) > 0 and w1(t) is a standard Brownian motion. Throughout we assume that the

following conditions on the drift α(t) and volatility functions σ(t) hold with probability

one:

(i) α(t) is continuous (and thus predictable) and has locally finite variation paths;

(ii) σ(t) is càdlàg, locally bounded away from zero and has locally squared integrable

sample paths.

Under these assumptions y(t) is a semimartingale and volatility is allowed to display a

wide range of patterns. Many option pricing models introduced in the literature satisfy

these assumptions, such as the Black-Scholes (BS) model with a constant as volatility

function, the Cox and Ross (1976) constant elasticity of variance model, and the general

local volatility model by Dupire (1994).

Assume that the financial market admits no free lunches. By the fundamental theorem of

asset pricing there exists a measure under which the discounted underlying price process is

a martingale (Dalang et al.; 1990). This allows pricing derivatives as discounted expected

payoffs. Let C(t, S, τ,K) and P (t, S, τ,K) denote the time-t price of a call and a put

option; then

C(t, S, τ,K) = E∗
t [e

−rτ max{S(t+ τ)−K, 0}] (2)

P (t, S, τ,K) = E∗
t [e

−rτ max{K − S(t+ τ), 0}] (3)
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where the time-t conditional expectation operator E∗
t [·] is with respect to a martingale

measure equivalent to P . Furthermore, S = ey is the price of the underlying asset, and r

is the spot interest rate which will be assumed to be constant for the sake of simplicity.

We now derive the price dynamics of the logarithm of the call option (2). Similar results

can be obtained for put options. Suppressing dependence on τ and K define

X(t, y) = log(C(t, S)) = log(C(t, ey)) . (4)

By use of Ito’s lemma, we get

dX =
{
Xt +

1

2
σ2(t)Xyy

}
dt+Xydy , (5)

where the subscripts on X stand for the respective partial derivatives. Note that the

process (5) is a semimartingale and its drift and volatility functions satisfy the same

regularity conditions we stated for (1). By using the definition in (4), we get

Xy = XC
∂C

∂y
=

S

C

∂C

∂S
=

S

C
∆C =: ∆̃C , (6)

where ∆C = ∂C
∂S

is the delta of the call option, measuring the sensitivity of the option to

changes in the underlying. The delta of the log-call price ∆̃C is also known as the elasticity

of the option. Under our model assumptions and assuming that time-to-maturity of the

option is not equal to zero, elasticity is bounded. In particular, Bergman et al. (1996)

have shown that

1 ≤ ∆̃C ≤ 1 +
constant

C
.

The elasticity weight is crucial for determining option second-order moment dynamics as

will be seen presently.

2.1.2 Quadratic variation and option variance dynamics

One of the most important properties of semimartingales as introduced in (1) is that the

second order moments can be characterized by the quadratic variation process; see, for

example, Jacod and Shiryaev (1987), p. 55. It is defined as

[y](t) = p− lim
M→∞

M∑
i=1

(
y(ti)− y(ti−1)

)2
8



where p− lim denotes the limit in probability under the physical measure P and t0 = 0 <

t1 < t2 < . . . < tM = t is any sequence of partitions such that supi(ti − ti−1) → 0 when

M → ∞.

Under the general assumptions made for the process (1), the quadratic variation of y equals

the integrated variance of the instantaneous returns (see Barndorff-Nielsen and Shepard,

2004, among others), i.e.,

[y](t) =

∫ t

0

Var(dy(u) | F(u)) =

∫ t

0

Var(σ(u)dw1(u) | F(u)) =

∫ t

0

σ2(u)du , (7)

where F(u) is the natural filtration of y(u). The last equality follows by [w1](t) = t.

Applying quadratic variation theory to the log-call price process (5) we get

[X](t) =

∫ t

0

Var(dX(u) | F(u)) =

∫ t

0

∆̃2
C σ2(u)du =: I1, (8)

where ∆̃C is given in (6).

In the empirical analysis performed in the next sections we will estimate the options

(weighted) integrated variance in two ways: (i) directly from intra-day option data and

(ii) from intra-day observations of the underlying asset along with a model assumption

on the option delta. We then test their mutual compatibility. To appreciate this strategy

note that even though the options are priced under the risk-neutral measure, their sampled

returns and hence their quadratic variation in (8) are observed under the physical measure.

2.2 Extending the model: stochastic volatility

2.2.1 Basic model framework

We now extend the underlying asset price dynamics to allow for stochastic volatility.2 In

addition to the underlying log-price process given in (1), assume that its squared spot

volatility denoted by V (t) = σ2(t) follows a second diffusion process

dV (t) = m(t)dt+ θ(t)dw2(t), t ≥ 0 , (9)

2The literature on stochastic volatility models is discussed by, among others, Harvey et al. (1994),

Taylor (1994), Ghysels et al. (1996), Shepard (1996), and Kim et al. (1998).
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where the functions m(t) and θ(t) > 0 satisfy the usual regularity conditions such that the

assumptions stated for σ(t) in Section 2.1.1 are fulfilled. w2(t) denotes a second standard

Brownian motion that may be correlated to w1(t) with constant correlation parameter ρ.

This set-up includes, but is not limited to, the models by Hull and White (1987), Scott

(1987), and Heston (1993).

As the log-call price X now depends on both stochastic processes y and V , i.e.,

X(t, y, V ) = log(C(t, S, V )) = log(C(t, ey, V )) , (10)

it follows from Ito’s lemma that

dX = Fdt+Xydy +XV dV . (11)

By F we denote a sum of factors which are multiplied with dt and which therefore are

irrelevant to the option’s quadratic variation [X](t). As before Xy is the elasticity of

the call option ∆̃C , see (6), whereas XV is a weighted measure of the variance vega of

the option price, i.e., its sensitivity to changes in the underlying’s stochastic variance.

Denoting the variance vega by ν we have that

XV = XC
∂C

∂V
=

1

C
· νC =: ν̃C (12)

The two elasticity factors (∆̃C and ν̃C) are crucial to determining options second order

moments. Aside from requiring that time-to-maturity of the option not reaches zero,

the additional assumptions on the drift and diffusion function of the stochastic volatility

process V such that ∆̃C is bounded are stated in Bergman et al. (1996), Theorem 3: (a)

the drift and diffusion of the risk neutralized process for V (t) are not allowed to depend

on the level of y(t); and (b) the covariance between instantaneous percent changes in y(t)

and changes in V (t) does not depend on the level of y(t). For the Heston model as well as

for many other stochastic volatility models considered in the literature, these assumptions

are satisfied. The fact that ν̃C is bounded follows directly from the integrability of V (t) =

σ2(t).
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2.2.2 Quadratic variation and option variance dynamics

Let us assume that the integrated variance process exists, i.e.,
∫ t

0
σ2(u)du < ∞ for all

t < ∞. In that case the quadratic variation theory extends to stochastic volatility models.

For the two-dimensional diffusion process (1) together with (9) we have

[y](t) =

∫ t

0

σ2(u)du (13)

exactly as in (7).

Let us now apply the quadratic variation theory to the log-call price process derived

in (11). From the polarization identity3 we get

[X](t) =

∫ t

0

Var(dX(u) | F(u))

=

∫ t

0

X2
y Var(dy(u) | F(u)) +

∫ t

0

X2
V Var(dV (u) | F(u))

+ 2

∫ t

0

XyXV Cov(dy(u), dV (u) | F(u)) ,

(14)

where the last integral denotes (without considering the product XyXV ) the quadratic

covariation between the diffusion processes y and V defined as

[y, V ](t) = p− lim
M→∞

M∑
i=1

(y(ti)− y(ti−1)(V (ti)− V (ti−1)

where t0 = 0 < t1 < t2 < . . . < tM = t is any sequence of partitions such that supi(ti −

ti−1) → 0 when M → ∞.

Using the results computed in (6) and (12) we get

[X](t) =

∫ t

0

∆̃2
C σ2(u)du+

∫ t

0

ν̃2
Cθ

2(u)du+ 2

∫ t

0

∆̃C ν̃Cρσ(u)θ(u)du

=: I1 + I2 + 2I3 , (15)

3In the quadratic variation theory, the polarization identity allows one to compute the quadratic

variation of a sum of two stochastic processes, say Y and Z, by introducing the quadratic covariation

[Y, Z](t) as

[Y + Z](t) = [Y ](t) + [Z](t) + 2[Y,Z](t) ,

provided that all quantities exist; see e.g., Karatzas and Shreve (1991) or Protter (2005).
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where I1 is the same term we obtained when computing the quadratic variation of the

log-call price process in the one-dimensional diffusion case. The two additional factors are

due to the second diffusion process. Noting that I1 and I2 are positive, more attention

must be devoted to I3. First, there is strong empirical evidence that correlation ρ is

negative. This fact is called leverage in the financial literature. Second, for options of

different types (i.e., call or put options), the sign of the product XyXV is different. For

call options both derivatives are positive, whereas for put options ∆P < 0 and νP > 0.

This results in a negative sign of the product. Therefore, the contribution of I3 to the

total quadratic variation of X is positive for a put and negative for a call.

2.3 Considerations of model-dependence

On casual inspection, one could think that the first integral term I1 in (8) is the same

or at least very close to I1 in (15). Such a conclusion, however, may be näıve. Note

that an observed market call price can always be approximated by an implied volatility

compensated BS price. Hence, we get for its delta

∆C = ∆BS
C + νBS

σ

∂σ̂

∂S
. (16)

Thus, the true delta is a BS delta corrected by the BS-volatility vega times a term that

describes how implied volatility evolves with the underlying dynamics. Models may differ

in this respect. For instance, if we additionally assume that S(t) is independent from

its unit of measurement4, such as in the Heston model, it follows that implied volatility

is homogeneous of degree zero in strike and spot price. Applying the Euler theorem to

implied volatility we therefore get

∆C = ∆BS
C − νBS

σ

K

S

∂σ̂

∂K
, (17)

which relates the amount of the correction to the implied volatility skew. As a con-

sequence, in particular in periods when the implied volatility skew is pronounced, the

4This property is sometimes referred to as scale-invariance; see Renault (1997), Bates (2005) and

Alexander and Nogueira (2007) for a detailed account.
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correction term may be substantial and ∆BS
C may be far away from the true delta. This

fact can result in differences between the I1 factors in (8) and the one derived under

alternative assumptions as in (15). As we will show in our empirical investigation, this

difference can be large.

Similar considerations of model dependence apply to the variance vega. Thus alternate

model assumptions drive a wedge between the observed option second-order moments and

the model-based approximations using underlying data and form the basis for testable

predictions of model misspecification.

2.4 Testable predictions of model misspecification

The accuracy of model-based option second-order moments (8) and (15) is directly testable

using properly sampled option data in connection with the observed data on the under-

lying index. The two predictions to be tested here are the following:

(i) In the one-dimensional diffusion setting, every day t the observed options second

moments should be compatible with the ones obtained using data of the underlying

asset and a model-based estimator of the quadratic variation derived in (8).

(ii) In the two-dimensional stochastic volatility setting, every day t the observed options

second moments should be compatible with the ones obtained using data of the

underlying asset and a model-based estimator for the sum of the three factors in

the quadratic variation expression derived in (15).

These predictions examine whether using model-based estimators for the options second

moments are able to reproduce the reality of observed option second-order moments.

Because of their widespread use in academia and private institutions, we use the BS

model and the Heston model to represent one-dimensional and two-dimensional processes,

respectively, in the empirical analysis. The required estimation theory is well-known and

summarized in the next section.
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3 Realized variance

In this section, we sketch the properties of the realized variance as an estimator of the

quadratic variation. This will allow us to estimate in an accurate way the terms in the

model-based options second-order moments.

3.1 Definition and properties

Suppose that we record the log-prices yj,t, j = 1, . . . ,M, of an asset, such as a stock price,

at M equally spaced time points during the day t. Define the intra-day high-frequency

returns rj,t for day t as

rj,t = y
(
t− 1 +

j

M

)
− y

(
t− 1 +

j − 1

M

)
, j = 1, . . . ,M.

Clearly, rt =
∑M

j=1 rj,t, where rt = y(t)− y(t− 1) denotes the daily return on day t.

We now recall the well-known connection between realized variance RVy(t) defined as

RVy(t) =
M∑
j=1

r2j,t (18)

and quadratic variation.5 The main result states that if y is a semimartingale with drift

and volatility functions satisfying the assumptions stated in Section 2.1.1, realized variance

consistently estimates the daily increments of the quadratic variation:

RVy(t) =
M∑
j=1

r2j,t
P−→ [y](t)− [y](t− 1) =

∫ t

t−1

σ2(u)du . (19)

This result also holds in the case that σ(t) is a stochastic volatility process under the

additional provision that the integrated variance process exists. It holds irrespectively

of the stochastic relation between the drift function α, the volatility function σ, and the

Brownian motion w1 in (1).

5Realized variances have been used for a long time in the financial literature and their

properties have been extensively studied, for example, by Andersen, Bollerslev, Diebold and Ebens

(2001), Andersen, Bollerslev, Diebold and Labys (2001), Barndorff-Nielsen and Shepard (2001b),

Barndorff-Nielsen and Shepard (2001a), and Barndorff-Nielsen and Shepard (2002). We refer to

Andersen et al. (2010) for a good survey of this field, including a discussion of the related literature.
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3.2 Application to options quadratic variation

To obtain a consistent estimator of
∫ t

t−1
∆̃2

C σ2(u)du we will apply a (weighted) realized

variance estimator. To this end, let us denote by

α̃(t) = ∆̃C α(t) =
S(t)

C(t, S(t))

∂C(t, S(t))

∂S(t)
α(t)

σ̃(t) = ∆̃C σ(t) =
S(t)

C(t, S(t))

∂C(t, S(t))

∂S(t)
σ(t)

transformed drift and volatility functions using ∆̃C as weight. Since these functions fulfill

the assumptions stated for the original drift and volatility functions in Section 2, we can

introduce a weighted log-price stochastic process ỹ(t) and exploit the connection between

realized variance and quadratic variation on it.

Let dỹ(t) = ∆̃Cdy(t) be defined as

dỹ(t) = α̃(t)dt+ σ̃(t)dw1(t), t ≥ 0 ,

with ỹ(0) > 0 and drift and volatility functions defined above. Then the realized variance

computed using the weighted intra-day returns

r̃j,t = ∆̃C

[
y
(
t− 1 +

j

M

)
− y

(
t− 1 +

j − 1

M

)]
, j = 1, . . . ,M,

where ∆̃C = ∆̃C

(
t − 1 + j−1

M

)
, is a consistent estimator for the daily increments of the

quadratic variation of the transformed process ỹ

dRVỹ(t) =
M∑
j=1

r̃2j,t = Î1
P−→ [ỹ](t)− [ỹ](t− 1) =

∫ t

t−1

σ̃2(u)du =

∫ t

t−1

∆̃2
C σ2(u)du (20)

that is the quantity we are interested in. We term it dRV, as it is a model-derived realized

variance estimator.

To compute dRV using the transformed process, we discretize ∆̃C at time t − 1 + j−1
M

,

that is at the beginning of each intra-day interval, strictly following the definition of the

Ito integral. For comparison purposes, we also employ three other choices:

- evaluate ∆̃C at the end of the intra-day intervals (i.e., at t− 1 + j
M
);
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- combine both schemes conditionally on whether the intra-day return is positive or

negative. This allows us to obtain upper and lower bounds for the whole integral

Î1.

As we will show in Section 5.2, these alternative discretization choices will hardly change

the estimates.

To test whether the options second-order moments obtained in the different settings (i.e.,

one-dimensional and two-dimensional stochastic volatility diffusion models) match the

second-order moments observed in the option market, we compare the model-derived

quantities with realized variances computed from intra-day option data. We denote these

observed options realized variances by oRV. They are computed by means of

oRVX(t) =
M∑
j=1

[
X
(
t− 1 +

j

M

)
−X

(
t− 1 +

j − 1

M

)]2
in a model-free setting, only assuming standard regularity conditions on the process X

such that the properties of the realized variance estimator are fulfilled.

3.3 Estimation of additional quadratic variation terms in the

stochastic volatility model: the Heston case

In the stochastic volatility setting we have to cope with two additional terms arising from

the quadratic variation of the volatility process and the covariation of the volatility and

the underlying asset price process. Both terms require not only knowledge of a delta but

also a vega. In order to be able to proxy these quantities, we specialize to the Heston

model. In this case, (9) specializes to a Cox-Ingersoll-Ross process withm(t) = κ(λ−V (t))

and θ(t) = ξ
√
V (t), where κ is the rate at which V (t) approaches its long-run mean λ,

and ξ is its volatility coefficient. Inserting we obtain

I2 =

∫ t

0

ν̃2
Cθ

2(u)du = ξ2
∫ t

0

(νC
C

)2

σ2(u)du (21)

I3 = ρ

∫ t

0

∆̃C ν̃Cσ(u)θ(u)du = ρξ

∫ t

0

∆̃CνC
C

σ2(u)du . (22)
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Following the ideas outlined in Section 3.2, we consider the transformed processes

dỹ2(t) = k̃2dy(t) (23)

dỹ3(t) = k̃3dy(t) (24)

where k̃2 = νC
C

and k̃3 =

√
∆̃CνC

C
.6 As before, realized variance is computed using the

weighted intra-day returns

r̃j,t;i = k̃i

[
y
(
t− 1 +

j

M

)
− y

(
t− 1 +

j − 1

M

)]
, j = 1, . . . ,M,

with k̃i = k̃i

(
t− 1 + j−1

M

)
and i = 2, 3. As estimators we obtain

RVỹ2(t) = Î2 = ξ̂2
M∑
j=1

r̃2j,t;2 ≈ ξ2
∫ t

t−1

ν2
C

C2
σ2(u)du (25)

and

RVỹ3(t) = Î3 = ρ̂ξ̂
M∑
j=1

r̃2j,t;3 ≈ ρξ

∫ t

t−1

∆̃CνC
C

σ2(u) du , (26)

where ρ̂ and ξ̂ denote the estimates obtained from the Heston calibration. For the compu-

tation of the different elasticity factors in (20), (21), and (22), we use model-based greeks

and observed option prices. As above we denote the model-derived RV by

dRV = Î1 + Î2 + 2Î3 .

3.4 Simulations

In this section, we investigate the properties of oRV estimators in an idealized simulation

framework, the design of which imitates our empirical setting. We simulate both the BS

and the Heston model. In either case, we simulate the underlying paths and price options.

We then compare the accuracy of the RV estimates by regressing oRV on its underlying

implied approximations dRV according to (20) and the sum of the three terms introduced

in (20), (25), and (26), respectively. Interest rates and dividends are assumed to be zero.

6For the puts, since ∆P < 0, we necessarily have k̃3 =

√∣∣∣ ∆̃P νP

P

∣∣∣ and (−1)RVỹ3(t) below. By local

boundedness of σ (introduced in Section 2.1), we ensure that k̃2 and k̃3 are (locally) bounded, and hence

the asymptotic properties of the RV estimators are preserved.
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3.4.1 Description of simulation framework

For each run, the model is simulated over 250 trading days in five, 15 and 30 minutes

intra-day increments. Initially, a put and a call option with 35 days to expiry are issued.

In line with the empirical analysis, option strikes are chosen slightly OTM, i.e., we take

XP = (1 − a)S0 for the put and for the call XC = (1 + a)S0 with a = 2.5% and S0 =

100. Throughout a trading day the option strikes remain unchanged. Before a new

trading day starts, however, options are restriked by the same factor using the “opening

price” of the underlying; the opening price is identical to the previous day’s settlement

price. Restriking is done to preserve the moneyness characteristics of the options over

the different simulation days.7 Additionally, the expiry date is reduced by one day. If

only five days to expiry are left, the time-to-expiry is set back to 35 days. The whole

procedure is repeated 999 times, thus yielding 999 × 250 daily oRV estimates, each of

which is computed from the successively refined intra-day resolution of the underlying

asset price processes.

For simulation of the underlying price process in the BS model, we draw the appropriate

number of normal innovations and compute the exact solution of the geometric Brownian

motion. To keep an equal footing between the BS and Heston simulations, we use as BS

(implied) volatility the square root of the Heston long-run variance from Table 5, i.e.,

σ =
√
0.0675 ≈ 0.2598. Option prices and the delta are calculated from the BS formulae.

For the Heston model, a Milstein scheme is employed for simulating the underlying asset.

The parameters used are taken from the Heston model calibrated to option data from 2003-

2011; see top panel of Table 5 and Section 4.3 for details on the calibration procedure.

The variance process is started in the long-run variance level. Option prices are computed

by direct integration of the characteristic function of the Heston model (Heston; 1993),

and the delta and variance vega by two-sided finite difference quotients.

In theory, intra-day time decay as measured by theta should not impact oRV. In order

to better understand the effect of the intra-day time decay on the estimates we run the

7Naturally, the artificial overnight return ensuing from the strike adjustment is not taken into account

for estimating oRV, as is done in the empirical part.
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described simulations twice: (i) all options are priced with a continuously adjusted time

to expiry; (ii) we ignore intra-day time decay for option valuation, i.e., time to expiry of

the option is adjusted only discretely by a whole day after each trading session.

3.4.2 Simulation results: BS model

The accuracy of the estimates is assessed by running OLS regressions of oRV on a constant

and its underlying implied approximation dRV. Ideally, we would expect a zero intercept

and a slope of one. Simulation results are presented in Tables 1 and 2 in terms of the 90%

confidence intervals of the estimated coefficients that are obtained from the 999 runs.

TABLES 1 AND 2 ABOUT HERE

The left panel in Table 1 summarizes the results when correctly adjusting time to expiry

intra-day. For the BS model, a small bias seems to be present. For neither intra-day

frequency do the 90% quantiles of estimated intercepts and slopes comprise zero and one,

respectively. In fact, the intercept is always estimated less than zero while the slope is

larger than one. The bias, however, shrinks with decreasing sampling frequency. For the

BS put, the average value drops from -0.0014 to -0.0003 for the intercept and for the slope

from 1.0133 to 1.0024. The figures for BS call are very much akin. In addition, the width

of the intervals shrinks substantially when choosing a smaller sampling frequency.

At this point, we can only conjecture where this bias stems from. Since we are using the

exact solution to the geometric Brownian motion and the closed-form pricing formula, we

expect the numerical noise to be relatively small. One possibility could be the presence of

a finite sample gamma effect. The log-option price appears to be concave, which implies

a negative gamma. As a consequence, the integral approximation may suffer from an

omitted variables bias. Such an effect should be larger for options that are issued far

away from at-the-money and closer when the option time-to-expiry is allowed to shrink

to zero. Indeed, this expectation is confirmed by additional but unreported simulation

results. The explanation also fits well with the results in the left panel in Table 2, which

displays the same simulation results when intra-day time decay is (incorrectly) ignored.
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In this case the bias is not removed but mitigated, since options cannot experience any

intra-day time decay. The confidence intervals of the regression estimates now marginally

contain the zero and the one; in addition, their width appears to be smaller.

3.4.3 Simulation results: Heston model

For the Heston model, simulation results show similar patterns. On average, the intercepts

are negatively biased, whereas the slopes are positively biased. In general, the 90%

confidence intervals are almost twice as large as for the BS case and do cover zero and

one for the intercept and the slope, respectively. Shrinking the sampling frequency, leads

to more accurate estimation results. The impact from ignoring intra-day time decay is

the same as in the BS case.

Our reading of these results is that for the two-factor model, convergence occurs at a

slower pace. Additionally, we expect convergence to be hampered by the larger numerical

noise due to the various approximations involved in the Heston model. The differences

between figures in Table 1 and 2 suggest that the same explanation for the observed bias

would apply in the Heston case.

To gauge the effect of model misspecification, we also run the regressions for the Heston

model, but assuming a BS model. An implied volatility compensated BS delta is used

to replace the Heston delta while the additional contributions from stochastic volatility

are ignored. Implied volatility is computed numerically by inverting the BS formula for

each Heston option price. In this situation, the intercept is positively biased, but within

the 90% confidence interval; the estimated slopes, however, are severely biased and range

between 1.11 and 1.41 for the put and between 0.36 and 0.90 for the call. Decreasing

sampling frequency or ignoring intra-day time decay has no visible impact on these sizable

biases.

In unreported results, we redo these regressions for the Heston model, but now relying

only on the Heston delta in the approximation of oRV. Contributions from stochastic

volatility are ignored. In this case, slope estimates are biased in the same direction as
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in the case, when oRV in the Heston model is approximated by an implied volatility

compensated BS delta, but the bias is even larger. Slope estimates range between 1.22

and 1.80 for the put and between 0.17 and 0.79 for the call.

4 Data

Our data set covers the time period from 01 July, 2003, to 8 November, 2011. It combines

the intra-day index computations of the EURO STOXX 50 R⃝ index; the EUREX traded

intra-day transaction records of all futures (FESX) and options (OESX) having the EURO

STOXX 50 R⃝ index as underlying asset; interest rate data and (implied) dividend yields.

We first describe the data sets and the data providers in general terms, report on the

organization of data for the various empirical parts in this work, and comment on data

filtering; specific details are deferred to the appendix.

4.1 Data description

Index data

EURO STOXX 50 R⃝ index8 was introduced in 1998 by STOXX Limited, Zürich, and is

the leading financial market indicator in the Eurozone. It is a price index and com-

prises stocks of fifty EUR-dominated blue chips. Selection is based on free float market

capitalization subject to a 10% weighting cap. As of 2012, the EURO STOXX 50 R⃝ in-

dex captured close to 57% of the free float market capitalization represented by the Euro

countries (Stoxx Limited; 2012). The index composition is reconsidered annually, whereas

the weighting of index constituents is reviewed on a quarterly basis. Dividends that are

paid out to stakeholders of the constituent stocks are not included in the index compu-

tation. Therefore, unlike performance indices that reinvest dividends, dividends need to

be accounted for when valuing options written on this index. High-frequency data of the

EURO STOXX 50 R⃝ index starting as of 1 July, 2003 is available through Tick Data9,

8ISIN = EU0009658145, Bloomberg code = SX5E, Reuters Instrument Code = STOXX50E.
9The homepage is www.tickdata.com
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a subsidiary of Nexa Technologies, Inc., Irvine, CA. The time granulation for the index

calculations between 9:00 and 17:30 CET is 15 seconds.

Futures and options data

The EUREX Frankfurt AG is a world-leading futures exchange, providing Euro-denominated

benchmark derivatives that are widely recognized in terms of liquidity and cost efficiency.

The most important equity products are the futures and options written on the EURO

STOXX 50 R⃝ index.

The futures contract (FESX) on the EURO STOXX 50 R⃝ index is cash settled. It has

delivery months in March, June, September and December. The last trading day is the

third Friday in the expiry month, or if it is a bank holiday, the trading day prior to

the third Friday.10 The FESX has a contract value of EUR 10 per index point, and the

minimum price change (or tick size) is one index point. Hence, one tick point corresponds

to a price change of EUR 10 per contract. From 2003-2011, average daily open interest

in the FESX futures rose from 1.3 to 2.7 million positions.11

Index options (OESX) are available as European style calls and puts on the EURO

STOXX 50 R⃝ index. The options are cash settled. Strike spacing is every 50 index points

when a contract has up to 36 months to expiry, and 100 index points for longer-dated

options. Expiry dates are the three nearest successive calendar months.12 As for the

FESX, expiry is the third Friday of each expiration month if this is an exchange day.

Expiry dates of the futures contract and the options coincide in March, June, September

and December. Price quotation in options is in points with one decimal; the minimum

price change is 0.1 points, implying a tick value of EUR 1. Average daily open interest in

the OESX options was around 9 million contracts in mid 2003 reaching about 45 million

10For further details on this and the rest of the discussion here, see, e.g., the quick guide on the FESX

published by Eurex Frankfurt AG (2009).
11Source: Eurex Monthly Statistics.
12There are more expiry dates beyond the three nearest successive calendar months spanning up to 9

years and 11 months. However, this is not relevant to this work as only short dated options with up to

three months to expiry provide sufficient liquidity.

22



contracts by the end of 2011 (aggregating open interest of both puts and calls).13

For academic use, the tick statistics of the FESX and OESX data can be received from

the Karlsruher Kapitalmarktdatenbank14 hosted at the Karlsruher Institute of Technol-

ogy, Germany. Information provided is the trading day, a time stamp up to seconds, the

expiry date, the strike and option type, a trading flag, the transaction price, quantity and

total traded quantity.

Interest rates, implied dividend yields, and implied volatility

As risk-free interest rates we use the Euro Interbank Offered Rate (EURIBOR) from July

2003 to December 2007 and the Euro overnight index swap (OIS) rates from January 2008

to November 2011 (Source: Bloomberg, both series). We change the interest rate source

in the sample, since by the end of 2007 the EURIBOR increasingly reflected credit risk of

banks, which makes its use as a risk-free rate questionable. Interest rates are interpolated

linearly to match the time-to-maturity of the futures and options data.

It is difficult to obtain information on expected dividends in the EURO STOXX 50 R⃝

index. We therefore infer dividend yields from our knowledge of interest rate, options,

futures and index data. Daily dividend yields are assumed to be constant intra-day and

are implied for each given option time-to-expiry. For option expiries that coincide with

a futures expiry, we exploit the forward valuation formula using intra-day futures prices

and index levels to derive the dividend.15 We take as an estimate the median of the

dividend yields that are derived from all available futures-index pairs (F t+τ
ti , Sti) available

during day t. An admissible pair is defined by the closest possible consecutive observations

between the index and the futures price, provided that no more than five seconds elapsed

between them. For the remaining expiries we use the put-call parity. For each day we

identify pairs of calls and puts of the same option series (unique strike and expiry date),

for which the index was traded within a tolerance of 0.01%. Once more the median of

13Source: Eurex Monthly Statistics.
14fmi.fbv.uni-karlsruhe.de/149.php
15Using the forward valuation formula to price the futures contract is only approximate when rates are

stochastic; but for the horizons relevant to this research (less than three months), it can be justified.
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the dividend yields computed from the triple (Cti , Pti , Sti) is our estimate.

Given interest rates and dividend yields, implied volatility is backed out by equating the

BS formula for calls and puts with observed market prices.

4.2 Data organization

From 2003-2011, the total raw option data set comprises approximately 5.8 million ob-

servations, 55% of which are puts and 45% calls. For our research, we organize this data

in two ways. First, we create a set comprising the relevant time series of option data,

index ticks and the futures prices. These data will be used to measure ex-post variation

of options. Second, we create a data set which will be used for calibration of the Heston

model. Our data filtering procedures are detailed in Appendix A.

Data set for estimation of option RV measures

For daily option RV computations, we identify for each trading day the most actively

traded call and put option series, i.e., a specific combination of strike price and expiry

date among all traded calls and puts of this particular day. We define ‘most actively

traded’ in terms of transaction counts during the trading day. Note that we indepen-

dently search for the most actively traded call and put; therefore the respective strikes,

which are usually slightly out-of-the-money, but sometimes also the expiry dates, differ

between calls and puts. Also, whereas the option series stays the same within the day,

it necessarily differs from day to day. Typically, however, it is the same expiry date that

is followed until roll-over close to expiry, while the strikes change depending on the drift

of the index. Thus we do not follow the same strike price and same expiry date, as

is done in the literature on option returns anomalies (Coval and Shumway; 2001; Jones;

2006; Broadie et al.; 2009). Cum grano salis, the moneyness characteristics of the op-

tions, however, stay similar over the entire sample period from 2003–2011, as the options

identified by our procedure are those close to at-the-money; see Figure 1. In the top panel

the EURO STOXX 50 R⃝ is shown along with selected strikes. The bottom panel plots
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the moneyness of the options selected. It seems that at the climax of the financial crisis

the most heavily traded options are somewhat deeper out-of-the-money than in calmer

periods. Further details on these data (after filtering) are summarized in Table 3.

FIGURE 1 AND TABLE 3 ABOUT HERE

After daily puts and calls have been identified, the most recently known level of the

underlying asset is assigned to each observation, i.e., the index level and the last traded

futures prices stemming from the most actively traded expiry. These values will be used

for computing the realized measures.

We point out that for estimating the realized measures, we do not make use of all available

ticks. It is well known that in the presence of market micro structure noise, overly frequent

sampling will result in biased RV estimates (Bandi and Russel; 2006; Hansen and Lunde;

2006). A conventional way to mitigate these effects when using the classical RV estimators

as in Section 3 is to sample at a lower frequency than potentially possible. Suggestions

for the sampling frequency range between five and sixty minutes depending on the liq-

uidity of the asset (Andersen et al.; 2000; Andersen, Bollerslev, Diebold and Ebens; 2001;

de Pooter et al.; 2008; Patton; 2011). Given this empirical evidence, we adopt a tick time

sampling of about 30 (20, 10) minutes on average. By tick time sampling we refer to sam-

pling ticks such that each tick is (on average) 30 (20 or 10) minutes apart. For the thirty

minutes frequency this results in roughly 19 observations per day used for estimating

oRV. The tick sampling frequency depends on the number of observations available at the

respective day; see Dacorogna et al. (2001) and Hansen and Lunde (2006) for a thorough

discussions of tick time sampling and other sampling schemes for high-frequency data.

Calibration data set

Since calibration of an option pricing model requires a cross-section of traded calls and

puts with different strikes and, if possible, expiry dates, this data set comprises, day by

day, all available strikes and expiry dates, both from calls and puts. Since calibration will
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be based on the index only, each observation is combined with the most recently observed

index level. The actual calibration of model parameters is carried out only on a subset of

all observations, namely on Wednesdays; see Section 4.3 for further details. This choice

mitigates expiry effects and substantially reduces the computational burden involved; see

e.g. Bates (1996), Christoffersen and Jacobs (2004) or Gruber et al. (2010) for details of

this practice. The extraction of the latent factor is eventually done on all days avail-

able; for descriptive details on the calibration data set after filtering, see Table 4. In

Figure 2, top panel, we present the at-the-money implied volatility levels and the implied

volatility skews measured in the calibration data set for the time period from 2003 to 2011.

FIGURE 2 AND TABLE 4 ABOUT HERE

4.3 Intra-day calibration of the Heston model

Calibration of an option pricing model such as the Heston model requires both estima-

tion of the model’s structural parameters θ = (κ, λ, ξ, ρ)⊤ and the series of latent spot

volatilities {V }t. A number of different estimation and filtering techniques have been

suggested to this end.16 In this study, we follow the two step-procedure suggested in

Bates (2000). We slightly modify the procedure to make it applicable to intra-day data;

see also Huang and Wu (2004), Christoffersen et al. (2009), and Gruber et al. (2010) for

applications of D. Bates’ procedure.

For identification of the volatility process at each point in time, a sufficiently densely pop-

ulated cross-section of options is required; otherwise the estimation process degenerates.

In working with intra-day transaction data, this is a challenge, since option trades occur

at random times. Hence, we cannot estimate the intra-day volatility process in a continu-

ous fashion. We therefore assume that the Heston volatility process is piecewise constant

16See, e.g. Bakshi et al. (1997), Eraker (2004), Broadie et al. (2007), and Carr and Wu (2007), among

others.
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on J = 8 intra-day subintervals. Since each day has 8.5 hours of trading, each subinterval

is slightly larger than one hour.17 In this way, we include all option observations available

on date t within the jth subinterval to estimate an average realization of the volatility

process on this subinterval that will be denoted by V̂t,j.

We base calibration on the cost functional

K(θ, {V }T,Jt,j ) =
1

TJ

T∑
t=1

J∑
j=1

Kt,j(θ, Vt,j)

Kt,j(θ, Vt,j) =
1

Nt,j

Kt,j∑
k=1

Nt,j,k∑
i=1

wt,j,k,i (Ht,j,k,i −Ht,j,k,i(θ, Vt,j))
2

(27)

where Nt,j,k is the number of all options traded in day t and intra-day interval j having

time to maturity Tk, where k = 1, . . . , Kt,j. The total sum of options traded in day

t and intra-day interval j is Nt,j =
∑Kt,j

k=1 Nt,j,k. By Ht,j,k,i we denote observed prices

and by Ht,j,k,i(θ, Vt,j) Heston model prices with parameter vector θ. The cost functional

overweights the short-dated options that are of particular interest to the study. This

is achieved by using piecewise constant weights wt,j,k,i that overweight options with a

time-to-expiry less than 30 days by a factor two.

The calibration procedure is iterative in nature and encompasses the following two steps

until only minor changes occur:

1. Given an initialization of the latent factor, find

θ̂ = argmin
θ

K(θ, {V }T,Jt,j ) .

2. With a working estimate θ̂, solve the optimization problems

V̂t,j = argmin
V

Kt,j(θ, Vt,j) t = 1, . . . , T, j = 1, . . . , J .

17We also experimented with shorter subintervals. This works in principle since only a single option

is required to (exactly) determine V̂t,j . Shorter subintervals, however, lead to a more erratic estimated

volatility process, and in consequence to more noise in the estimated Heston greeks. Another issue is the

dramatically increasing computation time. These considerations led us to choose the outlined strategy.
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A serious threat to evaluating the cost functional (27) is that it is computationally ineffi-

cient in an intra-day setting where each option Ht,j,k,i is observed at a different spot price.

The direct integration approach used in the simulation exercise presented in Section 3.4,

where emphasis is put on accurately computing greeks, is not feasible for the calibration

problem. Ideally we would like to price all options with fixed expiry date within each

subinterval by a single evaluation of a fast Fourier transform (FFT) pricer which returns

an entire set of option prices on a strike grid, such as the FFT pricer by Carr and Madan

(1999). However, with the underlying asset price fluctuating within each subinterval, this

is impossible.

We resolve this issue by exploiting a homogeneity property. Denote by H(X,S, T ) an

option price with strike X, underlying asset price S, and expiry data T . If the under-

lying asset price dynamics is independent from the unit of measurement, it holds that

H(X,S, T ) = α−1H(αX,αS, T ) since H is homogeneous of degree one in X and S. For

the Heston model this property holds.

Denote by Ht,j,k,i(Xi, Si, Tk) = Ht,j,k,i, i = 1, . . . , Nt,j a subsample of observed option

prices with fixed expiry date Tk which is realized in the jth subsample on date t. From

the preceding discussion it is then clear that rather than pricing each option separately, we

can price all options in subsample j by using a single evaluation of the FFT-pricer on the

modified Heston prices α−1
ji Ht,j,k,i(αjiXi, S̄j, Tk;θ, Vt,j), where αji = S̄j/Si and S̄j denotes

the mean spot price in subinterval j. This homogeneity trick substantially alleviates the

computational burden involved, since we are able to price all options within each interval

j by Kt,j price evaluations, i.e., the number of observed expiry dates in each interval.

The calibration results on the whole 2003-2011 sample and on the pre-crisis subsample

2003-2007 are summarized in Table 5. These results are obtained by holding the level of

mean reversion fixed at κ = 2.0. We fix κ, since in the Cox-Ingersoll-Ross process the

unconditional variance is given by λξ2/(2κ). Thus, at a given level of mean reversion

λ and unconditional variance, large values in ξ incite large values in κ and vice versa

(Jiang and Knight; 2002, p. 208). This property may slow down or impede calibration.

The selected level κ = 2.0 is close to the values typically reported for broad equity indices
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and also suggested in Bergomi (2004). Finally, we carry out the calibration in imposing

the Feller condition 2λκ ≥ ξ2, which ensures a strictly positive solution for the Cox-

Ingersoll-Ross process.

FIGURE 2 AND TABLE 5 ABOUT HERE

In Figure 2, lower panel, we display the RV series of the underlying that is implied

from calibrating the Heston model. Up to an annualization factor, this series is given by

summing the estimates of V̂t,j, i.e. RVH(t) =
∑J

j=1 V̂t,j. We contrast this estimate with the

RV series of the index estimated using (18) on five minute returns. The correspondence

between the two series is by no means perfect, but it is obvious that intra-day option

trades capture the RV dynamics of the underlying to a large extent.

5 Tests of model predictions

We present here the results of the tests of the model predictions introduced in Section 2.4.

We verify the goodness-of-fit along several dimensions: graphical inspection of the option

RV series (observed and underlying-based) and of their differences, analysis of the uncon-

ditional cumulative distribution functions, and pairwise regressions.

5.1 Option realized volatility series

As an illustrative starting point, we show the daily time series of oRV obtained from

high-frequency transactions in puts and calls in Figure 3. The plot additionally features

dRV using the BS approximation for the underlying index.

FIGURE 3 ABOUT HERE

First, it is important to highlight that the time series dynamics of oRV differs strongly

from what is usually observed for the realized variances of indices or other delta-one

instruments; see for comparison purposes the RV series of the underlying index plotted in
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Figure 2. Series of oRV are more rapidly fluctuating and less autocorrelated and do not

display a long memory feature. Clearly, this stylized fact might be a consequence of the

“roll-over strategy” needed to compute RV for options and of the fact that for each day

we take options with different strikes (most liquid options); for details, see the discussion

in Section 4.2 or Figure 1.

If we compare the two series in Figure 3, we find the approximation based on the BS

model for the underlying index to be reasonable at first sight. It closely follows the oRV

computed from high frequency data in the option market. For further investigation, we

therefore display the differences among the series in Figure 4.

FIGURE 4 ABOUT HERE

Let us first focus on the top panel obtained from the one-factor BS model. Differences

among the series can be very pronounced for some periods and are clearly not negligible.

This is a first warning about the accuracy and the reasonableness of the BS approximation

for the underlying index. Starting with 2007 and during the whole financial crisis there

is a clear tendency of BS-based dRV to be systematically larger (smaller) than the one

observed on the option market for call (put) options. In particular, the average value

of the differences is two times larger for the 2007-2011 period than for the period before

(2003-2006) for put options (−0.035 vs. −0.018, respectively). This loss in accuracy of

the dRV is even more evident for call options: after the beginning of the financial crisis,

differences have become on average four times larger than before (0.054 vs. 0.015).

These results may be a consequence of the rigid structure imposed by the BS model,

which is not able to react to changing market conditions. Comparing Figure 2, top panel,

and Figure 4, it seems that the deterioration of the approximation quality coincides with

the steeper implied volatility skew. Indeed, this is consistent and to be expected given

the theoretical discussion in Section 2.3. Since the simple BS-Delta does not take into

account the implied volatility dynamics, it might perform well in calm and trending

markets. During and after the financial crisis (2007-2011 period), with rising uncertainty

(compare the index levels shown in Figure 1 with implied volatility levels and the implied
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volatility skew in Figure 2), this correction term may gain importance, which explains the

impairment of the approximation quality.

Are these differences still present when using the more flexible stochastic volatility ap-

proximation for the underlying index, such as the Heston model? Results are shown in

the bottom panel of Figure 4. As shown in the figure, differences are still visible. Allowing

for stochastic volatility does not seem to be able to eliminate the mismatch between the

two series, although during the financial crisis differences are less evident and striking

(−0.024 and 0.026 for put and call options, respectively). Surprisingly, there seems to be

a clear bias in the 2003-2006 period. Under stable market conditions, i.e., low volatility

and uncertainty in the spot market, there is more variability in call options than pre-

dicted by the Heston-based approximation (the contrary is true for put options). This

behavior may once again be reconciled with the previous explanation based on the implied

volatility skew, since for the Heston model property (17) holds. To a certain degree, it

can therefore accommodate changes in implied volatility dynamics that are related to the

implied volatility skew. It seems, however, the Heston model over-compensates in the

non-crisis period.18

In summary, this section provided initial evidence that neither the BS model nor the

Heston model for the underlying dynamics may be suitable for capturing the second-

order moments observed in the options market. The higher degree of flexibility allowed by

introducing stochastic volatility does not seem to be sufficient to produce option realized

variances consistent with the observed ones.

5.2 Option realized volatility cumulative distribution functions

Figure 5 shows the cumulative distribution functions (CDF) of oRV and those of the BS-

based dRV. The red dotted lines indicate the 95% confidence interval for the empirical

CDFs based on Greenwood’s formula. The BS-based dRV introduced in equation (20)

18In fact, when calibrating to the non-crisis period, we obtain a smaller correlation coefficient which

implies an implied volatility skew that is shallower; see Table 5. Then differences become smaller, but

are still visible.
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are computed using the different approximation schemes introduced in Section 3.2: t and

t− 1 denotes the times when evaluation of ∆̃ is done: t is at the beginning of the return

interval (Ito discretization) and t− 1 at the end; “over” and “under” denote the minimal

and maximal weighting factors which yield bounds for the whole integral term.

FIGURE 5 ABOUT HERE

As a first insight from Figure 5, all four BS-based approximations to option RV yield very

similar results: all CDFs are very close and exhibit almost no differences. Thus, we discuss

results only with respect to the computation based on t− 1, i.e., the Ito discretization.

In the top panel, results for the call options are presented. There are huge differences

between the CDFs when comparing oRV and BS-based dRV. At all quantile levels, the

BS-based dRV is systematically larger than what is directly observed from options, sup-

porting the results found in the last section. In some sense, one may interpret Figure 5 as

exhibiting “first-order stochastic dominance” of call options RV. This unusual interpreta-

tion is due to the fact that CDFs of second-order moments are considered and is meant in

the sense that BS-implied call dRV considerably overestimates risk (at least the one cap-

tured by second-order moments) at all quantile levels. Turning to puts (see bottom panel

of Figure 5), we likewise discern smaller but significant differences between the CDFs.

Consistent with our previous results, BS-implied put dRV systematically underestimates

the risk observed in the options market.

Remarkably, these results could be compatible with oRV if a stochastic volatility factor

is missing. Following (15), oRV splits into three contributions I1, I2 and I3, the last of

which changes sign between calls and puts. Thus, if I3 outweighs I2 in terms of size, an

estimate based on I1 alone would systematically overestimate (underestimate) calls oRV

(puts oRV) and patterns such as observed in Figure 5 could arise.

We therefore now turn to the results for the CDFs when considering the two-factor Heston

model for the underlying index. In Figure 6, four CDFs are reported: (i) for the oRV (solid

black lines, together with dotted lines for the 95% confidence bounds); (ii) the full Heston-

based dRV using the derivation given in (15), which includes all three integral terms

32



estimated according to (20), (21) and (22) (dotted-dashed lines); (iii) the Heston-based

dRV using solely (20), similarly to the BS case (dotted lines); and (iv), for comparison

purposes, the BS-based dRV CDFs (solid, grey lines).

FIGURE 6 ABOUT HERE

Let us start with the call option results shown in the top panel. The benefits from allowing

for stochastic volatility are clearly visible: adding this second factor in the underlying

dynamics is able to partially close the mismatch between the observed and Heston-based

CDFs. Nevertheless, the gap between the two functions is still present, in particular for

very small and very high quantiles. In contrast to the BS case, the curves no longer

display the reverted first-order stochastic dominance structure. It seems that in using the

Heston model for the underlying dynamics, the RV is underestimated at low quantiles,

whereas large values of RV are marginally, but still significantly, overestimated. Once

again this result is in line with the discussions in the previous section. Adding stochastic

volatility is a step in the right direction, but is conceivably not sufficient to produce call

option second-order moments that are consistent with the observed ones.

In the bottom panel of Figure 6, the same CDFs obtained for puts are plotted. The huge

discrepancy that was obtained with BS-based dRV has vanished. There is essentially no

difference between Heston-implied and oRV CDFs. Stochastic volatility seems to work

extremely well in this case. Thus, the Heston model seems to be consistent with observed

put realized volatilities, at least based on the graphical inspection of the unconditional

CDFs. In the next section, we show that this is not completely true when considering

pairwise regressions of observed realized volatilities on Heston-based realized volatilities.

Finally, we evaluate the effect of stochastic volatility for options second-order moments

in the Heston setting. In Figure 6 the difference between the dRV CDFs obtained using

the whole sum of the three terms in (15) and neglecting the two additional terms due to

stochastic volatility is a priori hardly imaginable (dotted-dashed line vs. dotted line). The

contribution of stochastic volatility for the final accuracy of the option realized volatilities

is substantial. Neglecting the two additional terms would lead to realized volatilities that
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are even less accurate than those obtained using the BS approximation. By and large,

this corresponds with our findings in the simulations; see Section 3.4.

In Figure 7, we try to quantify the contribution of stochastic volatility in the following

way: We report the ratio between I1 and 2I3. This third term has opposite signs for put

and call options and depends on the product of the two greeks ∆̃ and ν̃. The contribution

of the second term to the whole sum is smaller and therefore not reported.

FIGURE 7 ABOUT HERE

The results confirm that the contribution of stochastic volatility may be substantial de-

pending on the time period. Interestingly, it appears that during the financial crisis the

relevance of the additional third factor diminishes. This finding is attributable to two

factors. First, it might be a consequence of sampled option prices. Between 2008-2009,

the moneyness of the most liquid options under investigation is changing (see again Figure

1) as deeper out-of-the-money options are traded. Since in general these options have a

smaller vega, the third factor is lower in magnitude and odds may shift in favor of the

first factor. Second, recent studies of realized variances in index and futures markets have

shown that during the financial crisis, simple locally constant volatility models yield very

accurate RV predictions and are difficult to beat by more flexible approaches; see, among

others, Audrino and Knaus (2012). This fact would also explain the dominance of I1.

Summarizing, adding stochastic volatility as a second factor in the underlying dynamics

improves the fit and makes derived option second-order moments closer to the observed

ones.

5.3 Option realized volatility regressions

Similarly to the simulation part in Section 3.4, we report here the results obtained when

regressing oRV on a constant and on the BS- or Heston-based dRV. If the regressions

yield constants not significantly different from zero and slope coefficients not significantly

different from one (or at least biases of comparable size), we may conclude that the model
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approximations for the underlying index dynamics cannot be rejected by the data.

Results for the regressions are reported in Tables 6 and 7 for put and call options, respec-

tively. To account for possible autocorrelations and heteroscedasticity, standard errors are

computed using Newey-West estimators.19 Results are reported for different moneyness

m and time-to-maturity τ ranges. In the different panels of the tables, from top to bottom

we enlarge the moneyness range to be included by 1 −mi ≤ m ≤ 1 +mi, thus allowing

for more heterogeneity in the moneyness dimension; from left to right, we successively

exclude options with low time-to-maturity, i.e., τ < τk.

TABLES 6 AND 7 ABOUT HERE

First, for both put and call options we always find a small, statistically significant inter-

cept. The estimate is at least ten times larger than the one found in the simulations, and –

in sharp contrast to the simulations – always positive. This estimated intercept indicates

a global shift in the level of oRV. There are several possible reasons for this result: (i) this

large positive shift may be a global moneyness effect given that the options we consider

have more heterogeneous strikes than in the simulations20; (ii) and alternatively, the shift

may be due to differences in the microstructure noise between the two markets. While

the options are traded within a bid-ask spread, the underlying index is continuously cal-

culated from its fifty constituents, which is likely to average out the effect of the bid-ask

bounce.

Second, in line with previous evidence, the BS-approximation generally overestimates

(underestimates) the RV for call (put) options. The deviations of the estimated slope

coefficients are in the same direction, but smaller than our simulation results would suggest

when using solely the BS-based dRV approximation in a pure Heston model; compare the

right-most panel in Tables 1 and 2. In contrast, the Heston-based dRV tends to be too

19The number of lags used is determined by 4( n
100 )

1/4, floored to the nearest integer; n is sample size.
20As supporting empirical evidence for this explanation, we run similar regressions including moneyness

as an additional predictor. We saw that the intercept and the moneyness factor are highly correlated and

have similar regression coefficients with different signs. For this reason we exclude the intercept in the

regressions of Section 6.1.
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large for both call and put options. The slope coefficients are in general significantly

smaller than one and far beyond those we obtained in the simulations. Note that this

result is true (though less evident) for put options as well, showing that the impression

we derived from the visual inspection of the CDFs of the accuracy of the Heston-based

approximation for put options may be misleading.

Across different moneyness and time-to-maturity filters, all regressions yield qualitatively

the same picture, but it appears that both BS- and Heston-based approximations grad-

ually deteriorate when excluding short-dated options and/or enlarging the moneyness

range. This suggests that both model approximations do not correctly capture the vari-

ation in oRV across the various expiry dates.

Finally, when comparing BS and Heston results, we can conclude that in general allowing

for stochastic volatility improves on the accuracy of the derived option realized volatilities.

However, neither the BS model nor the Heston model is able to fully capture the second-

order moments observed in the option market. Also, there seems to be a wedge between

both markets. While the model-based approximations do not seem to do badly for puts,

the approximations are particularly poor for calls. For both models, observed call oRV

are significantly smaller than both models would suggest.

6 Further results

In this section, we test the robustness of the results found in the last section along several

dimensions. First, we extend the discussion to additional factors which might impact oRV.

Second, we test the stability of the results. More specifically, we test (i) along different

sampling frequencies on which we compute oRV; (ii) on a time period excluding the recent

financial crisis; (iii) we use a potentially more robust estimator based on mean-variance

principles; and (iv) we exclude days with a high number of a certain type of observational

violations of option and underlying price movements in the spirit of Bakshi et al. (2000a).
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6.1 Additional factors

We extend the regression results shown in Section 5.3 by including additional predictors.

Given the relative stability of the regressions with respect to different moneyness and

time-to-maturity filters, we report only the results for options with expiry larger than 5

days and moneyness in the range [0.9; 1.1].

As additional factors we consider:

- moneyness (m) and time-to-maturity (τ) to capture systematic cross-sectional het-

erogeneity which may have an impact on oRV. Given the high correlation between

the intercept and m, we exclude the intercept in these regressions.

- We estimate the underlying’s RV using the classical estimator in (18) based on five-

minute returns. The aim is to verify whether we can still capture stochastic volatility

components that are not modeled by the three-factor composition estimated from

the Heston model alone.

- Following the evidence presented for example in Han (2008), we introduce a dummy

for high/low uncertainty in the market. As a proxy for uncertainty we use similarly

to Han (2008) the underlying index volatility measured by values of RV larger or

smaller than 0.01; see Figure 2. The aim is to see whether the regression results

(in particular the significance of the slope coefficient for dRV) change for different

market conditions.21

Results of the additional regressions are shown in Tables 8 and 9. Standard errors are

computed using Newey-West estimators to correct for possible autocorrelations and het-

eroscedasticity.

TABLES 8 AND 9 ABOUT HERE

Let us first discuss the results of the regressions without the underlying’s volatility dummy.

21We also used other similar dummy variables, for example for up and down movements of the under-

lying index. Results were qualitatively the same and may be obtained from the authors upon request.
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As expected, including moneyness has a marginal impact in the regressions: moneyness

takes the role of the constant term in the previous regressions (recall that moneyness

is always in the neighborhood of one). The effect of time-to maturity is significantly

negative in all cases, whether for BS or the Heston-based approximations. The larger

time-to-maturity, the more the model-based approximations overpredict oRV. Adding the

underlying’s RV to the regressors has an effect only on put oRV. The underlying’s RV

significantly increases the option oRV. For calls the sign is negative but insignificant. This

finding suggests that there are additional stochastic volatility components which are not

correctly captured by the Heston model and which act on oRV in the sense of the sign-

switching term I3. As a final remark, note that the BS and Heston dRV slope coefficients

are hardly influenced by the inclusion of all these factors and remain fairly unchanged.

Consider now the regression results when explicitly taking market uncertainty into ac-

count. Several results are worth highlighting. First, for both put and call options in

the Heston setting, the underlying’s RV has a significant effect on oRV during periods of

low and stable market conditions, whereas it has no (or much smaller) effect in times of

market distress. It acts in opposite directions: it tends to increase (decrease) oRV for put

(call) options.

Second, for put options the BS-based dRV is adequate for the low volatility regime and

is only marginally rejected during periods of high market uncertainty. The Heston-

approximation cannot be rejected for periods of high market uncertainty but fails (dRV is

too high) in the other regime. Third, for call options the BS approximation yields options

second-order moments that are too large compared to the observed ones. This result is

true for both regimes but most evident for the high volatility regime. The additional

flexibility allowed by the Heston model yields an improvement in accuracy, in particular

in periods of low market volatility. These findings are in line with those presented in Han

(2008) and may be seen as a confirmation that probably an important factor relevant to

option pricing is missing in the models under consideration.
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6.2 Robustness checks

6.2.1 Other frequencies

Hare we check in which way changing the tick sampling frequency of 30 minutes for the

computation of oRV affects the results presented in Section 5. Similarly to the simulations,

we redo the analysis using option prices on 10 and 20 minute intervals. Results are very

close to the ones we presented in the previous sections and therefore not reported. All

discussions and conclusions also still hold when considering other frequencies.

6.2.2 No financial crisis

We redo the whole analysis only on the pre-crisis period to see whether our findings are

driven by the financial crisis. To this end we only use the pre-crisis sample from 2003

to 2007. For the sake of brevity, we report results only for the regressions. They are

summarized in Tables 10 and 11.

TABLES 10 AND 11 ABOUT HERE

Results are qualitatively similar to the ones we discussed in Section 5.3. It seems, however,

that in the pre-crisis period the approximation quality for calls is slightly improved. All

in all, however, we do not find that results could be specifically attributed to the financial

crisis. They appear to be stable over different sub-periods and market conditions.

6.2.3 Mean-variance approach

The present analysis could be challenged on the grounds that the figures obtained for the

Heston model might be harder to estimate since three integral terms need to be obtained.

This could lead to larger estimation noise and thus to less accurate estimates. Moreover,

the estimates Î2 and Î3 also depend on the filtered Heston latent variance, which introduces

additional model dependence. To investigate this issue, we study the performance of a

minimum variance (MV) delta.
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The MV delta is a delta than minimizes the instantaneous variance of a purely delta-

hedged portfolio.22 It is given by

∆mv = ∆C + ν
d[S, V ]

d[V ]
,

where ∆ denotes the usual (call) delta and ν the variance vega. By the covariation in

the numerator, the second term depends on correlation. Therefore it is zero whenever the

Brownian motions driving the two-factor model are uncorrelated. Since for equity markets

correlation is typically negative, the MV call delta leads to an underhedge relative to the

usual model call delta. For the Heston model, the formula specializes to

∆Hmv = ∆H
C +

ρξ

S
ν .

In the analysis with the MV delta, we may treat the stochastic volatility as a one-factor

model and consider only an estimate for I1. Similarly as in Section 3.2 we define weighted

returns

r̃j,t = ∆̃Hmv
C

[
y
(
t− 1 +

j

M

)
− y

(
t− 1 +

j − 1

M

)]
, j = 1, . . . ,M,

where ∆̃Hmv
C = ∆Hmv

C
S
C
(with the understanding that evaluation of this term takes place

at the beginning of the time interval as discussed in Section 3.2). Then

dRVỹ1(t) = Îmv
1 =

M∑
j=1

r̃2j,t ≈
∫ t

t−1

(∆̃mv
C )2 σ2(u)du . (28)

If the three separate estimates of the integral terms are of similar quality as a single one,

we would expect that Îmv
1 performs like Î1 + Î2 + 2Î3.

In our simulations and empirical analysis, we indeed find this to be the case. In fact,

using the single-term approximation based on the MV delta rather than the triple sum of

separate terms yields close to indistinguishable results. We therefore do not report them.

We take this as evidence that the results for the Heston model using Î1 + Î2 +2Î3 are not

driven by spurious noise.

22The MV delta has been extensively studied in Bakshi et al. (1997), Bakshi et al. (2000b),

Alexander and Nogueira (2007) among others.
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6.2.4 Excluding violations

Based on a taxonomy presented in Bakshi et al. (2000a), we test whether our findings

are particularly affected by days when the number of intra-day underlying movements

and option prices is not in accordance with properties shared by all one-dimensional

diffusion option models. Let us denote with ∆S (∆C or ∆P ) the intra-day changes of

the underlying index price (call or put price, respectively). Bakshi et al. (2000a) define

four types of violations, the second and third of which appear to be the most relevant for

our analysis:

(II) ∆S ̸= 0 but ∆C = 0 for call options and ∆P = 0 for put options.

(III) ∆S = 0 but ∆C ̸= 0 for call options and ∆P ̸= 0 for put options.

Our results may be particularly sensitive to days with a large fraction of violations of type

II or III above, given that they are based on comparisons of the realized volatilities. This

is because for computing RV of the index and the options we consider sums of intra-day

changes. The time series of the proportions of these two types of violations is plotted in

Figure 8.

FIGURE 8 ABOUT HERE

Depending on the time period, the proportion of intra-day violations may be quite sub-

stantial for type II errors, totaling as large as 30-40% of the total number of intra-day

changes. This can be understood by noting that small changes in the index, which is

continuously calculated up to two digits, are not sufficiently large to trigger revisions in

option prices that are quoted within a bid-ask spread. In contrast, type III errors are

negligible.

We redo the regression analysis excluding days with more than one occurrence of type II

violations, but ignore type III violations given their irrelevance; see Tables 12 and 13.

TABLE 12 AND 13 ABOUT HERE
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As to be expected, the results of the different tests of the BS-model predictions improve

for both puts and calls. Across all moneyness and time-to-maturity filters, it is difficult

to reject the hypothesis that the slope coefficient is equal to one for puts oRV when

considering Heston-based dRV. By contrast, the BS-based approximation is uniformly

rejected. For call oRV the changes are tiny. The strict segregation in the approximation

quality between put and call oRV, however, continues to hold.

7 Concluding remarks

We presented an empirical investigation of whether classical one-dimensional and two-

dimensional diffusion processes are able to reproduce ex-post intra-day variability observed

in option prices. Thanks to the availability of high-frequency data, accurate measures for

the unobservable option second-order moments can be obtained: realized variances. Our

analysis is based on the differences among option realized variances and model-based

approximations of realized variances obtained from the Black and Scholes and Heston

models. We showed that these widely used benchmark models are not consistent with

what is observed in second-order moments in the option market. Our analysis thus adds an

intra-day perspective to the existing literature studying the performance of these models

on lower frequencies, such as daily or weekly data.

The present analysis could be refined and extended in many directions. First, the Heston

model is very restrictive. In fact, it could even be too limited to capture the salient features

of short-dated at-the-money options and their associated volatility dynamics, as required

by our study. Recent research by Christoffersen et al. (2010) suggests that non-affine

stochastic volatility models, such as Jones (2003) or Aı̈t-Sahalia and Kimmel (2007) may

substantially improve on these deficiencies. Second, one could allow for richer volatility dy-

namics, for instance by modeling stochastic leverage. In fact, Christoffersen et al. (2009)

provide evidence that allowing for a transitory and a permanent component in the volatil-

ity process cuts option pricing errors both in- and out-of-sample; see also Gouriéroux et al.

(2009) and Gruber et al. (2010) for related multi-factor stochastic volatility models. Third,
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ample empirical evidence underscores the relevance of jumps for modeling equity return

data and pricing equity options; see Bakshi et al. (1997), Pan (2002), Eraker (2004),

Bollerslev and Todorov (2011), among others. While the inclusion of more stochastic

volatility factors and jumps is likely to render the estimation of the additional contribu-

tions to option realized variance considerably more intricate, it seems natural to expect

that these extensions potentially close the observed gaps between option realized variance

and its model-based approximations. Finally, our results appear to indicate that some

relevant factors influencing the underlying and/or option price processes are still missing.

In fact, recent research on option prices has shown that purely rational models such as the

ones we considered in our investigation, are not able to completely reconcile model-based

option prices with observed option prices; see, among others, Poteshman (2001) and Han

(2008). There it has been found that including behavioral factors to explain option prices

significantly improves the fit. We leave these topics for further research.
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A Data filtering

Volkswagen squeeze out

We delete all trading days between October 27, 2008, and November 2, 2008, since during

this time a squeeze out took place in Volkswagen AG, which is a major constituent of

the EURO STOXX 50 R⃝ . The squeeze-out was triggered after Porsche AG announced on

October 26, 2008, that it increased its Volkswagen shares from 35% to 42.6% and that it

possessed option rights to further increase its share to 74.1%. Since the Lower Saxony, a

federal state of Germany, owns 20%, the free float of Volkswagen was only 6% of the total

shares outstanding. However, at this time many market participants held speculative

short positions on Volkswagen, which they were desperate to close.23

During the squeeze-out Volkswagen shares more than doubled and were traded in only

low volumes. As a consequence, the no-arbitrage relationship between the index and the

futures broke down. The situation continued for few days until index providers decided

in an immediate action to reduce the fraction of Volkswagen for index calculation. This

measure, which became effective on October 31, 2008, eased the situation. We decided to

remove some additional days because it was only by 3 November that Volkswagen shares

returned to levels they held prior to the squeeze.

Filtering RV data

For filtering RV data, we directly borrow from the established filtering steps used for stock

price data as devised by Barndorff-Nielsen et al. (2009, Section 3) for TAQ data:

P1 Deletion of entries having a time stamp outside the time window the exchange is

open. From July 1, 2003, to November 11, 2011, the EUREX trades OESX options

from 09:00 to 17:30 CET. For FESX futures, there is also a pre-trading and a post-

trading phase outside 09:00 to 17:30 CET, which by this choice is excluded from

analysis.

P2 Deletion of zero prices. For EUREX data this applies when two market participants

23See http://www.economist.com/node/12501847?story_id=12501847.
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trade with each other by mutually agreeing on a price, but without going through

the order book. The trade is only routed via the EUREX trading system. This

is done, for instance, in order to mitigate counterparty risk.24 The price is not

published and marked as zero in the record file, but the volume traded is known.

T2 Delete trades occurring in the post-trading period or within a trading halt.

T3 When multiple transactions have a common time stamp, use the median price.

T4/Q4 Delete entries for which the transaction price deviates by more than 10 mean ab-

solute deviations from a running centered median computed from the 17 preceding

and the 17 succeeding options (futures, index) observations, excluding the current

one.25

Filtering calibration data

For calibration we apply the filtering rules P1, P2, and T2. Moreover we keep observations

1. within the implied volatility range of [8%; 80%] (implied volatility filter);

2. within a (spot-)moneyness range of [.99; 1.05] for calls and [.95; 1.01] for puts (mon-

eyness filter);

3. having at least five days, but less than 90 days to expiry (days to expiry filter).

These filters are standard in the literature working with daily option data to exclude

observations that have unreasonably low and high implied volatility and that are thinly

traded, see e.g. Bakshi et al. (2010). The time-to-maturity and strike filter is chosen to

be very tight to avoid overstretching the ability of the Heston model to match the steep

equity implied volatility smirk and the term structure of the implied volatility surface.

24When trades are routed via the EUREX trading system, counterparty risk remains with the exchange.

EUREX hedges against this counterparty risk by asking for margin requirements in the form of selected

collaterals, such as top-rated government bonds.
25For TAQ data, 25 is the original suggestion by Barndorff-Nielsen et al. (2009). We found that some-

what too large for options data.
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Summary statistics: RV data

sample period 2003-2011 2003-2007

puts calls puts calls

avg. # of options per day available for oRV 149 157 91 94

avg. # of options per day used for oRV 19 19 19 19

total # of oRV measures 1772 1836 933 983

avg. time to expiry (days) 16.5 16.5 16.5 16.5

avg. moneyness 0.971 1.025 0.981 1.015

Table 3: Summary statistics of observed realized variances (oRV) raw data after filtering.

Statistics refer to most heavily traded calls and puts (fixed strike, fixed expiry date) from

which daily oRV is computed. Two different time periods are considered: the whole

sample (2003-2011) and the pre-financial crisis period only (2003-2007).
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Summary statistics: calibration data

sample period 2003-2011 2003-2007

A B A B

total # of options 2.0×106 4.1×105 5.4×105 1.1×105

# of days in sample 2013 436 1044 213

avg. # of options per day 951 937 514 500

avg. time to expiry (days) 58 58 61 61

avg. moneyness 0.997 0.997 0.998 0.999

Table 4: Summary statistics of calibration data after filtering. Column B refers to the

subsample used for estimating the structural parameters (only Wednesdays of original

sample). Column A gives the statistics on the whole sample from which the Heston latent

volatility series is calculated based on the structural parameter estimates. Two different

time periods are considered: the whole sample (2003-2011) and the pre-financial crisis

period only (2003-2007).

Heston calibration

sample κ∗ λ̂ ξ̂ ρ̂ PE

2003-2011 2.0 0.0675 0.5197 -0.9012 8.31%

2003-2007 2.0 0.0532 0.4614 -0.8112 7.49%

Table 5: Calibrated parameters of the stochastic volatility Heston model: dS(t)/S(t) =

(r − d)dt +
√

V (t)dw1(t), dV (t) = κ(λ − V (t))dt + ξ
√
V (t)dw2(t), dw1(t)dw2(t) = ρdt.

The starred parameter indicates that this parameter was held fixed during calibration.

Column PE displays the average daily root mean squared relative pricing error computed

at the strikes and time-to-maturities used for computing option realized variance. Two

different time periods are considered: the whole sample (2003-2011) and the pre-financial

crisis period only (2003-2007).
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Puts

τ 3 5 8 10

m BS Hes. BS Hes. BS Hes. BS Hes.

0.05

β0 0.010 0.003 0.005 0.005 0.005 0.007 0.004 0.007

SE 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.002

β1 1.078 0.980 1.138 0.902 1.134 0.865 1.157 0.845

SE 0.023 0.028 0.025 0.028 0.031 0.031 0.036 0.036

R̄2 0.901 0.768 0.903 0.803 0.892 0.784 0.885 0.778

n 1471 1296 1210 1047

0.10

β0 0.012 0.010 0.009 0.010 0.008 0.012 0.007 0.011

SE 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.002

β1 1.068 0.968 1.098 0.894 1.106 0.864 1.123 0.848

SE 0.022 0.027 0.029 0.026 0.027 0.029 0.031 0.034

R̄2 0.893 0.724 0.885 0.770 0.880 0.754 0.875 0.751

n 1707 1522 1431 1249

0.15

β0 0.012 0.014 0.009 0.015 0.009 0.016 0.007 0.015

SE 0.002 0.003 0.002 0.003 0.002 0.003 0.002 0.003

β1 1.070 0.955 1.103 0.879 1.107 0.847 1.125 0.829

SE 0.022 0.026 0.029 0.026 0.027 0.029 0.030 0.034

R̄2 0.892 0.702 0.884 0.729 0.878 0.718 0.872 0.700

n 1772 1587 1493 1310

Table 6: Put options regression results: We consider regressing oRV = β0+β1dRV, where

dRV are based on the Black-Scholes (BS) and the Heston (H) model for various moneyness

(m) and time-to-maturity filters (τ). SE denotes Newey-West standard errors and n the

sample size. For example, panel τ = 5,m = 0.1 refers to a regression executed on data

including all options with m ≤ 0.1 and 5 < τ ≤ 35 days. The data spans the time period

from 2003 to 2011.
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Calls

τ 3 5 8 10

m BS Hes. BS Hes. BS Hes. BS Hes.

0.05

β0 0.020 0.034 0.019 0.031 0.018 0.029 0.022 0.029

SE 0.003 0.003 0.003 0.003 0.004 0.004 0.004 0.005

β1 0.685 0.809 0.672 0.774 0.668 0.785 0.619 0.754

SE 0.020 0.032 0.028 0.036 0.033 0.043 0.044 0.068

R̄2 0.843 0.733 0.820 0.743 0.812 0.736 0.761 0.663

n 1606 1423 1332 1143

0.10

β0 0.023 0.041 0.023 0.039 0.022 0.037 0.025 0.038

SE 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004

β1 0.647 0.717 0.626 0.670 0.626 0.673 0.582 0.623

SE 0.022 0.035 0.026 0.037 0.027 0.040 0.030 0.043

R̄2 0.820 0.684 0.797 0.699 0.800 0.703 0.768 0.655

n 1804 1618 1522 1327

0.15

β0 0.024 0.042 0.024 0.040 0.022 0.038 0.025 0.039

SE 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004

β1 0.641 0.703 0.622 0.657 0.621 0.656 0.582 0.610

SE 0.022 0.036 0.026 0.037 0.026 0.041 0.029 0.044

R̄2 0.82 0.682 0.8 0.701 0.805 0.706 0.775 0.663

n 1836 1649 1553 1356

Table 7: Call options regression results: We consider regressing oRV = β0+β1dRV, where

dRV are based on the Black-Scholes (BS) and the Heston (H) model for various moneyness

(m) and time-to-maturity filters (τ). SE denotes Newey-West standard errors and n the

sample size. For example, panel τ = 5,m = 0.1 refers to a regression executed on data

including all options with m ≤ 0.1 and 5 < τ ≤ 35 days. The data spans the time period

from 2003 to 2011.
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Non-crisis period: Puts

τ 3 5 8 10

m BS Hes. BS Hes. BS Hes. BS Hes.

0.05

β0 0.009 0.003 0.006 0.005 0.007 0.008 0.007 0.008

SE 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.002

β1 1.050 0.938 1.083 0.865 1.062 0.820 1.061 0.793

SE 0.032 0.033 0.029 0.028 0.034 0.028 0.040 0.033

R̄2 0.896 0.815 0.900 0.840 0.890 0.833 0.877 0.821

n 884 785 737 643

0.10

β0 0.011 0.006 0.010 0.008 0.008 0.010 0.008 0.009

SE 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002

β1 1.028 0.925 1.035 0.852 1.050 0.810 1.041 0.792

SE 0.035 0.033 0.044 0.029 0.033 0.029 0.038 0.033

R̄2 0.887 0.789 0.880 0.800 0.883 0.805 0.875 0.803

n 927 827 777 681

0.15

β0 0.011 0.008 0.010 0.010 0.008 0.012 0.008 0.011

SE 0.003 0.004 0.003 0.003 0.002 0.003 0.002 0.002

β1 1.029 0.918 1.038 0.842 1.054 0.801 1.047 0.779

SE 0.034 0.034 0.042 0.029 0.033 0.029 0.038 0.035

R̄2 0.887 0.774 0.881 0.774 0.885 0.770 0.877 0.750

n 933 833 782 686

Table 10: Put options regression results: We consider regressing oRV = β0 + β1dRV,

where dRV are based on the Black-Scholes (BS) and the Heston (H) model for various

moneyness (m) and time-to-maturity filters (τ). SE denotes Newey-West standard errors

and n the sample size. For example, panel τ = 5,m = 0.1 refers to a regression executed

on data including all options with m ≤ 0.1 and 5 < τ ≤ 35 days. The data spans the

time period from 2003 to 2007.
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Non-crisis period: Calls

τ 3 5 8 10

m BS Hes. BS Hes. BS Hes. BS Hes.

0.05

β0 0.015 0.023 0.016 0.024 0.016 0.024 0.016 0.022

SE 0.002 0.004 0.003 0.003 0.002 0.003 0.003 0.003

β1 0.756 0.909 0.732 0.840 0.718 0.823 0.712 0.847

SE 0.022 0.042 0.031 0.045 0.026 0.040 0.029 0.044

R̄2 0.844 0.750 0.807 0.750 0.802 0.740 0.748 0.684

n 957 854 803 697

0.10

β0 0.016 0.025 0.017 0.026 0.016 0.025 0.015 0.024

SE 0.003 0.004 0.003 0.003 0.002 0.003 0.003 0.003

β1 0.747 0.883 0.721 0.815 0.720 0.806 0.717 0.815

SE 0.023 0.043 0.030 0.046 0.024 0.043 0.028 0.041

R̄2 0.837 0.743 0.799 0.744 0.805 0.743 0.759 0.694

n 983 880 828 722

0.15

β0 0.016 0.025 0.017 0.026 0.016 0.025 0.015 0.024

SE 0.003 0.004 0.003 0.003 0.002 0.003 0.003 0.003

β1 0.747 0.883 0.721 0.815 0.720 0.806 0.717 0.815

SE 0.023 0.043 0.030 0.046 0.024 0.043 0.028 0.041

R̄2 0.837 0.743 0.799 0.744 0.805 0.743 0.759 0.694

n 983 880 828 722

Table 11: Call options regression results: We consider regressing oRV = β0 + β1dRV,

where dRV are based on the Black-Scholes (BS) and the Heston (H) model for various

moneyness (m) and time-to-maturity filters (τ). SE denotes Newey-West standard errors

and n the sample size. For example, panel τ = 5,m = 0.1 refers to a regression executed

on data including all options with m ≤ 0.1 and 5 < τ ≤ 35 days. The data spans the

time period from 2003 to 2007.
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Type II violations: Puts

τ 3 5 8 10

m BS Hes. BS Hes. BS Hes. BS Hes.

0.05

β0 0.012 0.002 0.005 0.003 0.004 0.004 0.002 0.004

SE 0.003 0.004 0.002 0.002 0.003 0.003 0.002 0.004

β1 1.096 1.052 1.172 0.987 1.184 0.963 1.223 0.948

SE 0.029 0.032 0.029 0.03 0.038 0.04 0.041 0.052

R̄2 0.897 0.774 0.901 0.818 0.887 0.783 0.885 0.786

n 949 818 759 639

0.10

β0 0.012 0.008 0.007 0.007 0.007 0.008 0.005 0.007

SE 0.002 0.004 0.002 0.002 0.002 0.003 0.003 0.003

β1 1.103 1.04 1.157 0.98 1.162 0.962 1.191 0.95

SE 0.026 0.03 0.027 0.027 0.034 0.034 0.037 0.041

R̄2 0.896 0.742 0.897 0.806 0.886 0.772 0.888 0.785

n 1077 941 881 752

0.15

β0 0.012 0.01 0.007 0.009 0.007 0.01 0.005 0.009

SE 0.002 0.004 0.002 0.002 0.002 0.003 0.003 0.003

β1 1.107 1.036 1.165 0.976 1.166 0.956 1.198 0.945

SE 0.026 0.03 0.029 0.027 0.034 0.034 0.037 0.041

R̄2 0.896 0.727 0.898 0.774 0.884 0.757 0.886 0.761

n 1103 967 906 777

Table 12: Put options regression results: We consider regressing oRV = β0 + β1dRV,

where dRV are based on the Black-Scholes (BS) and the Heston (H) model for various

moneyness (m) and time-to-maturity filters (τ). SE denotes Newey-West standard errors

and n the sample size. For example, panel τ = 5,m = 0.1 refers to a regression executed

on data including all options with m ≤ 0.1 and 5 < τ ≤ 35 days. We exclude days with

more than one violation of type II (that is underlying index changing while simultaneously

the put price remains unchanged) according to the definition introduced in Bakshi et al.

(2000a). The data spans the time period from 2003 to 2011.

64



Type II violations: Calls

τ 3 5 8 10

m BS Hes. BS Hes. BS Hes. BS Hes.

0.05

β0 0.019 0.026 0.018 0.026 0.019 0.026 0.022 0.026

SE 0.004 0.004 0.005 0.005 0.006 0.006 0.007 0.008

β1 0.698 0.851 0.687 0.795 0.664 0.781 0.62 0.758

SE 0.027 0.039 0.039 0.047 0.044 0.056 0.062 0.094

R̄2 0.869 0.784 0.848 0.796 0.848 0.795 0.808 0.733

n 1023 894 829 694

0.10

β0 0.021 0.033 0.02 0.033 0.021 0.033 0.024 0.035

SE 0.004 0.004 0.004 0.004 0.005 0.004 0.005 0.004

β1 0.669 0.772 0.656 0.712 0.636 0.69 0.596 0.64

SE 0.025 0.034 0.033 0.036 0.035 0.037 0.041 0.042

R̄2 0.855 0.744 0.838 0.764 0.842 0.766 0.821 0.73

n 1137 1006 938 800

0.15

β0 0.022 0.034 0.021 0.033 0.022 0.034 0.024 0.035

SE 0.004 0.004 0.004 0.004 0.004 0.004 0.005 0.004

β1 0.664 0.761 0.65 0.703 0.631 0.682 0.596 0.64

SE 0.025 0.034 0.032 0.034 0.034 0.035 0.039 0.04

R̄2 0.855 0.745 0.84 0.769 0.845 0.773 0.826 0.741

n 1153 1022 954 814

Table 13: Call options regression results: We consider regressing oRV = β0 + β1dRV,

where dRV are based on the Black-Scholes (BS) and the Heston (H) model for various

moneyness (m) and time-to-maturity filters (τ). SE denotes Newey-West standard errors

and n the sample size. For example, panel τ = 5,m = 0.1 refers to a regression executed

on data including all options with m ≤ 0.1 and 5 < τ ≤ 35 days. We exclude days with

more than one violation of type II (that is underlying index changing while simultaneously

the call price remains unchanged) according to the definition introduced in Bakshi et al.

(2000a). The data spans the time period from 2003 to 2011.
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Figure 1: Characteristics of the considered options. Top panel: the EURO STOXX 50 R⃝

is shown along with selected strikes. Bottom panel: the moneyness series of the selected

options is plotted.
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Figure 2: Top panel: Daily at-the-money BS implied volatility (IV) level (right axis) and

daily implied volatility (IV) skew (left axis) time series. IV skew is defined as σ̂1.05− σ̂0.95

at 15 days to expiry. Bottom panel: Option-implied underlying (daily) RV obtained from

the calibration of the Heston model superimposed on the RV computed using 5 minutes

returns of the underlying EURO STOXX 50 R⃝ index. The sample spans the time period

from 2003 to 2011.
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Figure 3: Daily time series of observed option realized volatilities (oRV) superimposed

on realized volatilities computed assuming the classic one-factor Black and Scholes (BS)

model for the underlying index.
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Figure 4: Time series of the differences between underlying-implied option realized volatil-

ity and observed option realized volatility (oRV). The data spans the time period from

2003 to 2011. Top panel: underlying-implied option realized volatility based on the BS

model (dRV(BS)). Bottom panel: underlying-implied option realized volatility based on

the Heston model (dRV(Heston)).
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Figure 5: Empirical cumulative distribution function (CDF) of option RV obtained from

high-frequency data (black, solid) and BS-based approximations. Shown are four approx-

imations: the estimator based on the Itô discretization at the beginning of the period (at

t − 1, grey, solid); an estimate evaluated at the end of the period (at t, black, dashed-

dotted); two estimates with evaluation times conditionally on the sign of the return leading

to an over/under-estimate (black, dashed / black, dotted). Red dotted lines indicate the

95% confidence interval for the CDF. The data spans the time period from 2003 to 2011.
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Figure 6: Empirical cumulative distribution function (CDF) of option RV obtained from

high-frequency data (black, solid), together with dotted lines for the 95% confidence

bounds, superimposed on: (i) the full Heston-based RV including all three integral terms

(dotted-dashed lines); (ii) the Heston-based RV using solely the first term, similarly to

the BS case (dotted lines); and (iii) the BS-based RV CDFs (solid, grey lines). The data

spans the time period from 2003 to 2011.
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Figure 7: Relative importance of I3 in comparison to I1 for the computation of Heston-

based RV. The grey solid line indicates one, i.e., when both terms are of equal size. The

data spans the time period from 2003 to 2011.
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Figure 8: Time series of the frequencies of daily observed violations of the proper-

ties shared by one-dimensional diffusion models according to the definition given in

Bakshi et al. (2000a): Type II violations are defined as changes in the underlying index

EURO STOXX 50 R⃝ (SX5E) with simultaneous prices of options remaining unchanged.

Type III violations are changes in the option prices when the underlying index remains

unchanged. The data spans the time period from 2003 to 2011.
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