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Abstract 

It is a major achievement of the econometric treatment effect literature to clarify under 

which conditions causal effects are non-parametrically identified. The first part of this 

chapter focuses on the static treatment model. In this part, I show how panel data can be 

used to improve the credibility of matching and instrumental variable estimators. In practice, 

these gains come mainly from the availability of outcome variables measured prior to 

treatment. Such outcome variables also foster the use of alternative identification strategies, 

in particular so-called difference-in-difference estimation. In addition to improving the 

credibility of static causal models, panel data may allow credibly estimating dynamic causal 

models, which is the main theme of the second part of this chapter. 

Keywords 

Matching, instrumental variables, local average treatment effects, difference-in-difference 

estimation, dynamic treatment effects. 

JEL Classification 

C22, C23, C32, C33. 



1. Introduction 

In the last three decades two rapidly developing fields had an immense effect on how 

microeconometric empirical studies are conducted in our days. On the one hand, the literature 

on panel econometrics clarified how the increasing availability of panel data sets could 

improve the estimation of econometric models by exploiting the fact that repeated 

observations from a unit of the population are available. This led to more precise and more 

robust estimation strategies. Many of these methods made it into our standard econometric 

textbooks and became part of the standard econometric curriculum. This handbook, as well as 

the recently published 3rd edition of the ‘Econometrics of Panel Data’ (Mátyás and Sevestre, 

2008), give a good account of the latest (as well as less new) developments in this field. 

On the other hand, the so-called treatment effects literature exploded over the last two 

decades as well. It is a major achievement of the econometric treatment effects literature to 

clarify under which conditions causal effects are non-parametrically identified. This also led 

to a much better understanding of how to choose appropriate research designs and of ‘what 

we are really estimating’. This is particularly so for the case when effects are heterogeneous, 

which is the prominent case in that literature. Furthermore, this literature, which is not yet as 

mature as the panel econometrics one, puts emphasis on identifying causal effects under as 

weak as possible (and plausible) conditions, which limits the role of tightly specified 

statistical parametric models. To the contrary, non- and semi-parametric methods are 

emphasized. Angrist and Pischke (2010) give a good account of these ideas and show how 

they influence the way microeconometric studies are done, while Heckman, LaLonde, and 

Smith (1999), and Imbens and Wooldridge (2009) provide rich surveys of the econometric 

methods. Angrist and Pischke (2009) give a (graduate) text book treatment of this topic,1 

                                                                 
1  This book also has a chapter on panel data but for the special case of difference-in-difference estimation, which so far 

provided the main formal link between treatment effects and panel data.  
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which also received top journal space in the ‘Forum on Estimation of Treatment Effects’ in 

the Journal of Economic Literature (e.g. Deaton, 2010, Heckman, 2010, Imbens, 2010) and 

the Symposium on ‘Con out of Econometrics’ by the Journal of Economic Perspectives 

(2010). 

The first part of this chapter shows how panel data can be used to improve the 

credibility of methods usually used in the (static) treatment effects literature. These 

improvements come mainly from the availability of outcome variables measured prior to 

treatment. However, in addition to improving the credibility of static causal models, panel 

data are essential for estimating causal effects obtained from dynamic causal models, which is 

the main theme of the second part of this chapter. This chapter also shows that such dynamic 

causal effects have only weak links to parameters usually appearing in the dynamic panel data 

model literature (e.g. Arellano, Bond, 1991). 

This survey has many omissions indeed. As the panel econometrics literature as well as 

the literature on treatment effects is huge, we had to omit several important topics to stick 

with the space constraints of such a handbook. First of all, all the semiparametric panel data 

literature is completely ignored. The interested reader is referred to the chapter by Bo Honoré 

(11) in this handbook. Duration models are another important omission from this chapter, for 

reasons of lack of space and not because of lack of relevance, although for example in the 

work of Abbring and van den Berg (2003) there is a clear link between panel data and the 

identification and estimation of causal effects. Furthermore, we ignore the extensive literature 

on distributional treatment effects (e.g. Firpo, 2007) as well as a substantial part of the more 

structural dynamics treatment literature (see, e.g. Abbring and Heckman, 2007, and Heckman 

and Navarro-Lozano, 2007). Finally, recent developments on testing as well as developing 

instrumental variable assumptions are ignored as well (for a recent example, see Klein, 2010). 
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Even for the subject not omitted, this chapter will neither review the whole panel 

literature nor the whole treatment effects literature. Instead it focuses on parts of the treatment 

literature where panel data are particularly helpful and important. ‘Importance’ and 

‘helpfulness’ of course entirely depend on which empirical subject is analysed, in addition to 

some degree of subjective judgement. Therefore, this chapter takes an applied perspective in 

the sense of prominently using an empirical example to exemplify ideas and of treating formal 

assumptions and properties rather informally (and relating the reader to the corresponding 

papers in the literature instead). In the same thrust, we exemplify the main ideas in a very 

simple linear regression setting. 

The main empirical example is the evaluation of active labour market programmes, 

which will now be introduced. This literature tries to answer the question whether 

unemployed benefit from participating in some public financed training or employment 

programme. Of course, the effects of interest of such programmes have many dimensions, 

usually including individual reemployment chances and earnings.2 Many of such studies are 

based on reasonably large administrative data sets which allow observing individuals before, 

during, and after participating in a programme. Thus, usually the empirical analysis is based 

on panel data. The econometric methods developed in the treatment effects literature are used 

in the respective empirical analyses, because their main advantages mentioned above are 

deemed to be important. Furthermore, a diverse set of different identification and estimation 

strategies is employed.3 

In the next section, the static treatment effects model is introduced. We consider three 

approaches that figure prominently in the applied literature. Starting with matching and 

                                                                 
2  The meta study by Card, Kluve, and Weber (2010) gives a comprehensive overview of recent studies in that field, and 

Lechner, Miquel, and Wunsch (2011) provide a recent prototypical example for Germany. 

3  For a different field applying treatment effects models with panel data, see for example Lechner (2009a), who analyses the 
impact of individual sports activity on labour market outcomes using the German GSOEP panel data. 
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regression type methods, we continue with differences-in-differences methods and 

instrumental variable estimation. In Section 3, we discuss matching and regression type 

methods within a dynamic treatment effects framework. Finally, Section 4 concludes and the 

Appendix contains some derivations omitted from the main body of the text. 

2. The static treatment model 

2.1 Notation 

This chapter features the most simple static treatment effects model, namely a model in 

which the treatment is binary. This simplification allows concentrating on the key issues 

without an overly complex technical apparatus hiding the main insights relevant for empirical 

work even if more general models are used in some of the applied work. In this model, like in 

any other treatment effects model, we are interested in the effect of a ceteris paribus change of 

the treatment (e.g., participating in a programme), D, on the outcomes, (e.g., earnings) Y. To 

denote the values of the outcomes that would occur if D=1 or D=0, respectively, we define 

so-called potential outcomes Yd (i.e. Y1 and Y0) (Rubin, 1974).4 By construction, both potential 

outcomes can never be observed simultaneously. The link between observable and potential 

outcomes is given by the following observation rule, i.e. Y = D Y1 + (1-D) Y0. The observation 

rule directly implies that 1
1 1 1 1( | ) ( | )d

t tE Y D d E Y D d= = = .  

Other variables that play a role as control variables are denoted by X (e.g. past education 

or the labour market history), while instrumental variables are denoted by Z. Depending on 

the context, X may be scalars or vectors of random variables. If not mentioned explicitly 

otherwise, X and Z are assumed not to be influenced by the treatment and are in this sense 

exogenous. 

                                                                 
4  Capital letters denote random variables, while small letter denote either their realisations or fixed values. 
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With respect to timing, we assume that the treatment occurs after period 0, i.e. t = 0, and 

before period 1. In other words, in the static model the treatment variable Dt equals 0 prior to 

period 1. In period 1, it switches from 0 to 1 with positive probability. Otherwise, Dt is time 

constant. Thus, fixing/knowing D1 is like fixing/knowing all Dt. There may be further pre- 

and post-treatment periods, denoted by t. Thus, the random variables consist of several 

elements over time, which will be stacked on top of each other, e.g. Y = (…, Y0, Y1, …)’. If 

not mentioned otherwise, all the random variables, describing a larger population of interest 

(unemployed individuals in our example), and functions thereof are assumed to have as many 

moments as required for the particular analysis. Finally, assume that we observe data from D 

and Y, as well as X and Z if needed. The data is obtained from N independent draws from the 

population described by these random variables. In other words, (di,yi,xi,zi) are i.i.d. in the 

cross-sectional dimension ‘i’ but may be arbitrarily correlated over time. 

It is usually the goal of a treatment effect analysis to uncover causal effects aggregated 

over specific subpopulations while allowing individual causal effects to vary across 

observations in a general way.5 In this chapter, we consider the average treatment effect 

(ATE, γt), the average treatment effect for the treated (ATET), γt(1) and non-treated 

(ATENT), γt(0), as well as the local average treatment effect (LATE, γt(z)), all in a particular 

period t.6 These effects are defined as follows: 

1 0

1 0
1 1 1 1

1 0

( ); ( )

( ) ( | ), {0,1}; ( , )

( ) ( | ( )); {...,0,1,...}. ( )

t t t

t t t

t t t

E Y Y ATE
d E Y Y D d d ATET ATENT
z E Y Y Complier z t LATE

γ

γ

γ

= −

= − = ∀ ∈

= − ∀ ∈

 

                                                                 
5  Again, by considering only averages the focus is on the simplest case, but conceptionally most of the considerations below 

carry over to quantile treatment effects, or other objects for which the knowledge of the marginal distribution of the 
potential outcome is sufficient. Furthermore, we also do not discuss a large range of other parameters that relate for 
example to continuous instruments (see Heckman and Vytlacil, 2005, for an extensive discussion of such parameters). 

6  By some inconsistency of notation, 
1( )t dγ  refers to a specific population defined by the value of d1, while ( )t zγ  refers to 

some population that is implied by the use of a specific instrument z (see below). 
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In our empirical example the ATE is the relevant object of estimation when interest is in 

the expected effect of the programme for a randomly chosen unemployed, while ATET will 

be the expected effect of a programme for a randomly chosen participant, and ATENT for a 

non-participant.7 Note that ATE can be directly derived from ATET and ATENT, because 

1(1) ( 1)t t P Dγ γ= =

 

1(0)[1 ( 1)].t P Dγ+ − =

 

Therefore, we focus most of the discussion only on 

the ATET, since the arguments for the ATENT are symmetric and ATE can always be 

obtained by a combination of the two. Note that one of the two terms that appear in the sum 

that defines ATET and ATENT can be expressed in terms of variables that have sample 

counterparts, i.e. 1
1 1 1 1( | ) ( | )d

t tE Y D d E Y D d= = =  (and can therefore consistently be estimated 

by the respective sample mean). However, this is not so for the second term, 

1
1 1( | 1 )d

tE Y D d= − , called the counterfactual, which requires further assumptions for 

identification, i.e. assumptions required to express the counterfactual in terms of the 

observable variables Y, X, and D (and Z). 

Finally, the LATE parameter, introduced by Imbens and Angrist (1994), measures the 

mean programme effect for a randomly drawn unemployed from a so-called complier 

population. A complier population is characterised by the fact that for every member a change 

in the value of the instrument leads to a change in the value of the treatment. Thus, in the 

empirical example, a complier is a person who would have a different programme 

participation status when faced with different values of the instrument.8 While the data is 

                                                                 
7  Note that this way of coding D implies that we measure the effect of the intervention that occurred in period 1 only. 

Analysing further changes in D is relegated to the section on dynamic treatment models. 

8  Indeed, there may be two such groups with become either more or less likely to receive treatment for an identical change 
of the instrument. Usually, one of those groups, called defiers, is assumed to be absent (see Imbens, Angrist, 2004). 
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informative about who is a participant and who is a non-participant, it is silent about who is a 

complier. Usually, we expect all these effects to be zero in the pre-treatment periods, 0t ≤ .9 

In the following, we consider several identification and estimation strategies that are 

popular in empirical studies trying to uncover causal effects and discuss the value of the 

availability of panel studies for these strategies. All these strategies provide potential 

solutions when a direct comparison of the means of yt for observations with d1i=1 (treated) 

and d1i=0 (controls) will be confounded by some other observable or unobservable variable 

that jointly influences the potential outcomes (Yt
d) and the treatment (D1). 

To illustrate some of the ideas and to simplify a comparison with standard (linear) panel 

data methods, we specify simple linear models for the conditional expectations of the 

potential outcomes. These models will not be the most general possible. In particular, we 

abstract among other things from effect heterogeneity (implying (1) (0)t t tγ γ γ= = ) which 

plays a key role in the treatment effects literature. However, keeping this parametric example 

simple allows obtaining additional intuiting for most major ideas discussed in this survey.10 

0
0 0 1 1

0
0 0 0 1 1 0 1

1
0 0 0 1 1 0 1

( | , )

0 0

( | , 0, ,..., ) ,

( | , 0, ,..., ) ;

, {...,0,1,..., }.
t

t T T t t t

t T T t t t t

E Y X x D d

E Y X x D D d D d x d
E Y X x D D d D d x d

x X t T

α β δ

α β δ γ
= =

= = = = = + +

= = = = = + + +

∀ ∈ ∀ =



 

T denotes the final period of data used. This (simple) specification captures the idea that 

the different groups (defined by treatment status) may exhibit the same effect of the treatment 

(allowed to be variable over time), but may have different levels in the potential outcomes. If 

subjects self-select or are selected into the treatments, 1 td δ  may be termed the time-varying 

                                                                 
9  If this is not true, for example due to changing behaviour in anticipation of treatment, then it is sometimes possible to 

adjust the calendar date of the treatment (i.e. period 0) just prior to the first period when such reaction could be expected. 

10  Note that these simple linear specifications sometimes allow specialised identification and estimation strategies exploiting 
these parametric features. As this is not the purpose of this example, such cases will be ignored in the discussions below. 
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conditional-on-X selection effect. The value of tδ  is inherently linked to the nature of the 

‘selection process’. For example, if treatment is assigned in a random experiment, then tδ  

equals zero. If differences of average outcomes between treated and control individuals result 

from differences in x0 only, then, again, tδ  equals zero. 

Using the observation rule, this model leads to the following conditional expectation for 

Yt: 

0 0 0 0 0( | , ) ( ); , {...,0,1,..., }.t t t t t t t tE Y X x D d x d x X t Tα β γ δ= = = + + + ∀ ∈ ∀ =  

From this equation it is obvious that additional assumptions are necessary in order to 

obtain consistent estimates of the treatment effect, tγ , because it is confounded by the 

selection effect, tδ .  

2.2 Selection on observables: The conditional independence assumption  

Non-parametric identification 

In this section we analyse the case when information on background variables X is rich 

enough such that the potential outcomes are unconfounded (conditionally independent of D1) 

given X (conditional independence assumptions, CIA). This is formalized as11 

0 1
1 0 0 0 0, | , , 0.t tY Y D X x x tχ= ∈ ∀ >



 

This assumption states that the potential outcomes are independent (denoted by 


) 

of treatment in period 1 conditional on X0 for the values of x0 in 0χ . In addition, assume that 

there is common support, i.e. 0 < P(D1|X0=x0) < 1, and that X0 is not influenced by D1.12 

                                                                 
11   means that each element of the vector of random variables B is independent of each element of the random 

vector  A conditional on the random vector C  taking values of  c  in the sense (see Dawid (1979). 

12  See the excellent survey by Imbens (2004) who extensively discusses this case. 

|A B C c=
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These assumptions imply that 1
1 1( | 1 )d

tE Y D d= − =  0 0 1 1 1 1[ ( | , ) | 1 ]tE E Y X x D d D d= = = −  so 

that ATE, ATET, and ATENT are identified, i.e. they can be expressed in terms of random 

variables for which realisations are available for all sampled members of the population: 

1 0 0 1 1

0 0 1 1 1 0 0

(1) ( | 1) [ ( | , 0) | 1],
(0) [ ( | , 1) | 0] ( | 0), , 0.
t t t

t t t

E Y D E E Y X x D D
E E Y X x D D E Y D x t

γ
γ χ

= = − = = =
= = = = − = ∀ ∈ ∀ >

 

For the linear model outlined above, note that as indicated already in the previous 

section, CIA implies that 0tδ =  for t > 0. Thus, the treatment effects can easily be obtained 

by standard regression methods.  

Why are panel data helpful in this essentially static setting? Firstly, having further post-

treatment time periods available allows estimating the dynamics of the effects. Secondly, 

whether this selection-on-observable assumption is plausible depends on the particular pre-

treatment information available, as the data needs to contain all variables that jointly influence 

the treatment and the post-treatment potential outcomes. Thirdly, assuming some 

homogeneity over time, we may argue that the CIA also holds for outcomes prior to the 

treatment. If this is true, and if the treatment effect is zero for those pre-treatment periods (

(1) (0) 0, 0t t t tγ γ γ= = = ≤ ), we may conduct placebo tests (pre-programme tests in the 

language of Heckman and Hotz, 1989). If we find statistically significant non-zero effects, 

this will be an indication that the CIA does not hold prior to treatment. This in turn may 

indicate that it does not hold in the post-treatment periods either.13 

Understanding the outcome dynamics in the empirical example is important because 

many programmes have initial negative effects, so-called lock-in effects (for example, due to 

a reduced job search while participating in a programme). Positive effects, if any, appear only 

later (see e.g. Lechner, Miquel, and Wunsch, 2011). The issue about using pre-treatment 

                                                                 
13  To be precise, such tests can be informative about confounders that are simultaneously related to the current treatment and 

the past and current outcomes. 
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variables to control for confounding may be even more important. In the case of labour 

market evaluations, Lechner and Wunsch (2011), for example, show the importance of 

controlling for variables capturing an informative individual labour market history to avoid 

biased estimation. It is probably true for many applications that key elements of X are pre-

treatment outcome variables ( 0 0 0( ,..., , )X Y Y Xτ−=  ; the last element in this vector denotes 

some other exogenous confounders). One reason for this may be that they contain the same or 

similar unobservables as the post-treatment variables and that such unobservables are likely to 

be correlated with D1. Finally, placebo tests may or may not be an appropriate tool in practice. 

For example, in many countries unemployment is a requirement to become eligible for the 

programmes of the active labour market policy. In such case, the sample will be selected such 

that everybody is unemployed in t = 0 (otherwise there would be no common support). Then, 

if we estimate an effect for the pre-treatment period t = 0 in a placebo experiment, we will 

always find a zero effect, at least for the outcome variable unemployment. Thus the test has 

no power for this variable in this period. As outcomes are likely to be correlated over time, 

and as different outcome variables, like earnings and various employment indicators, are also 

correlated in the cross-sectional dimension, the test may generally lack power in such 

situations. 

Estimation 

For our ‘toy-linear’ model, the CIA implies: 

0 0 0 0 0( | , ) ; , {1,..., }.t t t t t t tE Y X x D d x d x X t Tα β γ= = = + + ∀ ∈ ∀ =  

Thus, the treatment effect, tγ , is consistently estimated by a cross-sectional regression 

(in the post-treatment periods) in which the observable outcome, Yt, is regressed on X0 and D1. 

Remember that the vector of confounding variables here includes functions of past outcomes 

as well as other exogenous variables for which the realised values are known in period 0. 
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Indeed, there is no gain by using panel data methods in this model with linear confounding 

correction, time varying coefficients, and a treatment effect that does not vary with 

confounders and treatment, be it fixed or random effects. Cross-sectional regressions for post-

treatment periods (t > 0) are consistent estimators of the treatment effects. Of course, if some 

of the coefficients are constant over time, then panel data methods may lead to more efficient 

estimates. Similar arguments will be valid if conditional expectations of the potential 

outcomes are nonlinear functions of the confounders, or if the effects vary with the 

confounders. 

However, estimating a parametric model is unnecessarily restrictive since the 

identifying assumptions provide non-parametric identification of the mean causal effects. 

Therefore, it is not surprising that the literature emphasised methods that do not require the 

parametric assumptions (and the implied restrictions on effect heterogeneity). To estimate the 

effects non-parametrically, we need a non-parametric regression of P(D1=1|X0=x0) for 

weighting-type estimators (Hirano, Imbens, Ridder, 2003). Alternatively, for regression based 

estimators a non-parametric regression of E(Yt|X0=x0, D1=0) for the ATET, of E(Yt|X0=x0, 

D1=1) for the ATENT, or both for the ATE is required (Imbens, Newey, Ridder, 2007). At 

least one of those non-parametric regressions is also needed for many other non-parametric 

methods, like for most versions of matching (Rubin, 1979). This is the case because in the 

selection-on-observables framework all methods, whether parametric or non-parametric, are 

explicitly or implicitly based on adjusting the distribution of X0 in the D1=1 and D1=0 

subsamples such that the adjusted distribution of the confounders is very similar for treated 

and non-treated. If this is successful using the same adjustment for the outcome variables 

gives the desired mean causal effects. The higher the dimension of X0, the more difficult it is 

to create this kind of comparability in all dimensions of X0, and thus the curse of 

dimensionality comes into its damaging play. 
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The results of Rosenbaum and Rubin (1983) reduce this problem in some sense as they 

show that it is sufficient to make those subpopulations comparable with respect to a one-

dimensional random variable, instead of the high-dimensional X0. This one-dimensional 

random variable is the so-called propensity score, p(X0), which is the probability of treatment 

given the confounders, i.e. p(x0):=P(D1=1|X0=x0). The methods used most in empirical work 

are semiparametric in the sense that the propensity score is estimated by (flexible) parametric 

models. Then this score is used either for weighting, regression-type adjustments, or matching 

estimation. Since there is nothing specific to panel data when using these methods in this 

context, we will refer the reader to the excellent surveys by Imbens (2004) and Imbens and 

Wooldridge (2009). Several Monte Carlo studies compare the performance of the various 

estimators, like Frölich (2004), Busso, DiNardo, and McCrary (2009a, 2009b) and the very 

extensive study of Huber, Lechner, and Wunsch (2013). The latter compares more than 

hundred different estimators using what they call an ‘empirical Monte Carlo’ study, which is 

a Monte Carlo design that shares many features with real empirical studies. In the latter study, 

a particular radius matching estimator with bias adjustment showed some superior large and 

small sample properties. 

2.3 Selection on unobservables I: Difference-in-difference methods  

2.3.1 Semi-parametric identification 

Whereas matching-type methods discussed in the previous section may not necessarily 

require data from different periods, such data are essential for difference-in-difference (DiD) 

methods. The basic idea of the DiD concept is to have (at least) four different subsamples 

available for the empirical analysis: One group that has already been subject to the treatment 

(observed in t > 0), one group that will be subject to the treatment in the future (observed in 

0t ≤ ), and another two groups not subject to the treatment that are observed in the same 
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periods as the two treatment groups. If the treatment has no effect in period 0 and if the 

outcomes of the treatment and non-treatment groups develop in the same fashion over time 

(usually called either ‘common-trend’ or ‘bias stability’ assumption), then, conceptionally, we 

may either (i) use period ‘0’ to estimate the bias of any estimator based on selection-on-

observables (since the true effect is 0 in period 0) and use this estimate to purge the similar 

estimate in t > 0 from this bias, or (ii) use the change of the outcome variables of the non-

treatment group over time together with the pre-treatment outcomes of the future treated to 

estimate what would have happened to the treated group in t > 0 had they not been treated. 

These ideas are indeed old and can at least be traced back to a paper by Snow (1855). 

He was interested in whether cholera was transmitted by (bad) air or (bad) water. Snow 

(1855) used a change in the water supply in one district of London, namely the switch from 

polluted water taken from the Themes in the centre of London to a supply of cleaner water 

taken upriver, to isolate the effect of the water quality from other confounders. In our days 

there are many applications of these methods, mainly in applied microeconomics. They are 

also well explained in most modern econometric textbooks (see for example the excellent 

discussions in Angrist and Pischke, 2009). Since these methods are also contained in several 

excellent surveys on treatment effects (e.g., Blundell and Costa Dias, 2009, and Imbens and 

Wooldridge, 2009), I keep this section brief and reiterate a few panel data related points that 

appeared in my recent survey on DiD estimation (Lechner, 2011a).  

The common-trend assumption,  

( ) ( )
( ) ( )
( ) ( )

0 0
1 0 0 1 0 0 0 1

0 0
1 0 0 1 0 0 0 1

0 0
1 0 0 0 0 0 0 0

| , 1 | , 1

| , 0 | , 0

| | , ,

E Y X x D E Y X x D

E Y X x D E Y X x D

E Y X x E Y X x x χ

= = − = = =

= = − = = =

= − = ∀ ∈

 

together with the assumptions that (i) D1 has no effect prior to treatment, i.e. 

( ) 0, 0t d tγ = ≤ , (ii) the covariates are not influenced by the treatment, and that (iii) there is 
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the necessary common support, (1)tγ , are identified.14 Note that identification is not non-

parametric (as in the previous section) in the sense that the validity of the common-trend 

assumption depends on the chosen transformation (unit of measurement) of the outcome 

variables. In other words, if the common-trend assumption is deemed to be correct, for 

example, for earnings it will be violated for non-linear transformations of earnings, like log-

earnings (at least for non-trivial cases). As it is usually difficult to explain why such an 

assumption should only be valid for a particular functional form, this is a limitation of this 

method (see the generalisation of Athey and Imbens, 2006, which is however more difficult to 

apply).15 

Going back to our ‘toy’ model and forming the differences for the non-participation 

potential outcomes, we obtain the following expressions: 

0 0
0 0 1 0

0 0
0 0 1 0

( | , 1) ( ) ( ) ( ),

( | , 0) ( ) ( ); {...,0}, {1,..., }.
t t t t

t t t

E Y Y X x D x
E Y Y X x D x t T

τ τ τ τ

τ τ τ

α α β β δ δ

α α β β τ

− = = = − + − + −

− = = = − + − ∈ ∈
 

Thus, the required condition for the common trend assumption to hold is that the impact 

of the selection effect is time constant ( ) 0t τδ δ− = , at least for the (minimum of) two periods 

used for estimation. This may seem to be somewhat more general than in the case of CIA 

which required the absence of post-treatment confounding, i.e. 0tδ = . However, since 

obviously 0tδ =  does not imply ( ) 0t τδ δ− = , the two methods are not nested. On top of this, 

DiD also requires the absence of pre-treatment effects ( 0, 0τγ τ= ≤ ).16 Under these 

                                                                 
14  This literature usually attempts only to identify effects for treated. Although identifying effects for non-treated would 

technically just involve a redefinition of the treatment, this setting is usually unattractive in empirical studies, because it 
requires three treated groups one of which becomee non-treated from period 0 to period 1. 

15  See Lechner (2011a) for more discussion on how to deal with non-linearities in this approach. 

16  Note that although this is not required by CIA in general, once pre-treatment outcomes are used as covariates they must be 
exogenous. Of course, this is only plausible in the absence of pre-treatment effects. 
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assumptions, we obtain the following conditional expectations for the observable outcome 

variables: 

0 0 1 1 0 1( | , ,..., ) 1( 0)t T T t t t tE Y X x D d D d x t d dα β γ δ= = = = + + > + . 

1( )⋅  denotes the indicator function which is one if its argument is true. Thus the 

treatment effects can be recovered by regression methods. 

2.3.2 Estimation 

The name of the estimation strategy is already indicative of the underlying estimation 

principle in general. If the common-trend assumption holds conditional on X0, then the 

estimate of the effect conditional on X can be obtained by forming the differences of the pre- 

and post-treatment periods’ outcomes of the treated and subtracting the differences of the pre- 

and post-treatment periods’ outcomes of the non-treated. In the (virtual) second step the 

conditional-on-X effects are averaged with weights implied by the distribution of X among the 

treated.  

For our simple linear model this leads to the specification given above. Clearly, the 

treatment effects cannot be estimated with one period of data alone because of the presence of 

the selection term, 1d δ , which was absent in the model of the section discussing the selection- 

on-observables only. Within a post-treatment cross-section this selection effect cannot be 

distinguished from the causal effect 1( 0) t tt d γ> . Further note that panel data are not necessary 

for estimating the parameters of this equation. Repeated cross-sections of at least one pre-

treatment and one post-treatment period are sufficient as long as they contain also the 

information about the (past and future) treatment status and confounders. 

If the linear model is not deemed to be appropriate for modelling the conditional 

expectations, then there are some non-linear and/or less parametric methods available, many 
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of which are discussed in Lechner (2011a). Therefore, for the sake of brevity the interested 

reader is referred to that paper. 

2.3.3 The value of panel data compared to repeated cross-sections 

In the previous sections we saw that panel data allowed us to (i) follow the outcome 

dynamics, (ii) compute more informative control variables, and (iii) check the credibility of 

the identifying assumptions with placebo tests. While (ii) always requires panel data, for (i) 

and (iii) it is only essential to have data from additional periods (so that repeated cross-

sections are sufficient). The same is true for DiD. 

If panel data are available the linear DiD estimator can be estimated by fixed effects 

methods:17 One consequence of basing the estimator on individual differences over time is 

that all influences of time constant confounding factors that are additively separable from the 

remaining part of the conditional expectations of the potential outcomes are removed by the 

DiD-type of differencing. Therefore, it is not surprising that adding fixed individual effects 

instead of the treatment group dummy d in the regression formulation leads to the same 

quantity to be estimated (e.g. Angrist and Pischke, 2009). This way it becomes obvious, as it 

was for our ‘toy’-model, that the usual advantages attributed to fixed effects models, like 

controlling of time constant endogeneity and selectivity within a linear setting, are also 

advantages of the difference-in-difference approach. 

Furthermore, from the point of view of identification, a substantial advantage of panel 

data is that matching estimation based on conditioning on pre-treatment outcomes is feasible 

as well. This is an important issue because it appears to be a natural requirement for a 'good' 

comparison group to have similar pre-treatment means of the outcome variables (because it is 

likely that pre-treatment outcomes are correlated with post-treatment outcomes as well as 

                                                                 
17  The remaining part of this section follows closely section 3.2.8 of Lechner (2011a). 
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selection, either directly, or because the unobservables that influence those three quantities are 

correlated).18 This conditioning is not possible with repeated cross-sections since we do not 

observe pre- and post-treatment outcomes of the same individuals. 

The corresponding matching-type assumptions for the case when lagged outcome 

variables are available (and used) imply the following: 

( ) ( )0 0
0 0 0 0 1 0 0 0 0 1| , , 1 | , , 0 , 0.t tE Y Y y X x D E Y Y y X x D t= = = = = = = ∀ >  

Imbens and Wooldridge (2009) observe that the common-trend assumption and this 

matching-type assumption impose different identifying restrictions on the data which are not 

nested and must be rationalized based on substantive knowledge about the selection process, 

i.e. only one of them can be true. Angrist and Krueger (1999) elaborate on this issue on the 

basis of regression models and come to the same conclusions.  

The advantage of the DiD method, as mentioned before, is that it allows for time 

constant confounding unobservables ( 0tδ ≠ ) while requiring common-trends ( t τδ δ= ), 

whereas matching does not require common-trends ( t τδ δ≠ ) but assumes that conditional on 

pre-treatment outcomes confounding unobservables are irrelevant ( 0tδ = ). As ,t τδ δ  capture 

the effects of variables jointly influencing selection as well as outcomes, their interpretation 

depend on the conditioning sets used. For example, if the selection process is entirely 

governed by x0 and yτ , then controlling for those variables implies 0tδ = . In this case 

matching may be used and there is no need for any assumptions concerning the selection 

process in period τ . More generally, one may argue that conditioning on the past outcome 

variables already controls for the part of the unobservables that manifested themselves in the 

lagged outcome variables. 

                                                                 
18  Note that although such an intuition of controlling for more information is plausible in many applications, it is easy to 

create an example with a larger and a smaller conditioning set for which CIA holds in the smaller but not in the larger set. 
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One may try to combine the positive features of both methods by including pre-

treatment outcomes among the covariates in a DiD framework. This is however identical to 

matching: Taking the difference while keeping the pre-treatment part of that difference 

constant at the individual level in any comparison (i.e. the treated and matched control 

observations have the same pre-treatment level) is equivalent to just ignoring the differencing 

of DiD and to focus on the post-treatment variables alone. Thus, such a procedure implicitly 

requires the matching assumptions. In other words, assuming common-trends conditional on 

the start of the trend (which means it has to be the same starting point for treated and controls) 

is practically identical to assuming no confounding (i.e. that the matching assumptions hold) 

conditional on past outcomes. 

Thus, Imbens and Wooldridge's (2009, p. 70) conclusion about the usefulness of DiD in 

panel data compared to matching is negative: "As a practical matter, the DiD approach 

appears less attractive than the unconfoundedness-based approach in the context of panel data. 

It is difficult to see how making treated and control units comparable on lagged outcomes will 

make the causal interpretation of their difference less credible, as suggested by the DID 

assumptions." However, Chabé-Ferret (2012) gives several examples in which a difference-

in-difference strategy leads to a consistent estimator while matching conditional on past 

outcomes may be biased. However, even for those examples given, the assumptions necessary 

for the consistency of DiD require substantive knowledge on how the selection bias impacts 

the potential outcomes, which are similar to our toy-model. He also shows simulations that 

indicate that for the case when the assumptions for matching on lagged outcomes as well as 

for DiD are not exactly fulfilled, both estimators are biased, but matching appears to be more 

robust than DiD. He concludes that for the cases for which one or the other set of assumptions 

is not clearly preferred on theoretical grounds, results from both estimation strategies should 

be presented. 
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2.4 Selection on unobservables II: Instrumental variables  

2.4.1 Non-parametric identification 

Either when selection-on-observables or differences-in-differences approaches are not 

credible, or when the instrument-specific LATE parameter is the more interesting parameter 

compared to the ATE, ATET, or ATENT,19 then instrumental variable estimation may be the 

method of choice. The seminal paper by Imbens and Angrist (1994) increased considerably 

our understanding of which kind of causal effect is estimated by 2SLS when effects are 

heterogeneous. This literature was further extended by Heckman (1997), Vytlacil (2002), and 

Heckman and Vytlacil (2005) for continuous instruments as well as Abadie (2003) and 

Frölich (2007) for ways to deal with covariates. These papers also clarify that with 

heterogeneous effects the IV assumptions have to be strengthened somewhat. In other words, 

on top of the assumption that the instrument has no effect on the outcomes other than by 

changing the treatment (exclusion restriction, no direct effect assumption), the assumption 

that a change in the instrument affects the treatment only in one direction (i.e. it either 

increases or decreases treatment probability for all), the so-called monotonicity assumption, is 

required as well. 

As before, the key question for this chapter is about the role of panel data in IV 

estimation. As before, the first benefit panel data provide is that observing more post 

treatment outcomes allows uncovering how the effects of the treatment in period 1 evolve 

over time. Secondly, instruments may not be valid unconditionally and current period control 

variables may not help as they might already be affected by the treatment. In this case 

observing more pre-treatment variables may be very helpful. In our example of active labour 

                                                                 
19  For example, Frölich and Lechner (2010) analyse the effects of active labour market programmes and argue that the 

compliers that relate to their instruments are close to a population that would join the programmes if they were marginally 
extended. In fact, for the policy question about the effects of extending the programmes estimating such a parameter 
would be more interesting than estimating the ATE, the ATET, or the ATENT. 
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market policy evaluation, Frölich and Lechner (2010) used an instrument that measured on 

which side of a regional boarder within a local labour market an unemployed lived. The 

rational for this instrument was that this fact mattered for their programme participation 

probability but not (directly) for their labour market success. The concern in the paper was 

that they might have chosen one or the other side of the boarder by considerations that could 

involve other characteristics, like tax rates and past labour market success. These factors may 

be however related to outcomes via different channels than programme participation thus 

violating the exclusion restriction. With panel data we are able to condition on such past 

events and thus improve the credibility of the instrument. The third benefit one might derive 

from panel data is that past values of some variables that are not time constant may provide 

instruments. A word of caution is in order in this instant, because there are a couple of 

empirical papers that use lagged outcomes as instruments without giving the explicit 

reasoning that would justify doing so. This is somewhat at odds with the arguments made in 

the previous section about the value of lagged outcomes as a confounding control variable, 

because by definition a confounder has a direct effect on outcomes thus violating one of the 

key assumptions required for consistent IV estimation. In other words, as it is likely that those 

lagged outcome variables depend on the same unobservable than the current period outcome 

variables do, one needs very explicit arguments why this should not matter with respect to the 

exclusion restriction in the particular study at hand. The fourth benefit of panel data, namely 

placebo tests, is that it may allow estimating effects for periods in which the true effect is 

known to be zero (and the instrument is valid as well), thus providing some empirical 

evidence on the credibility of the instrument. 

2.4.2 Estimation 

The easiest way to conceptualize the linear model is to follow exactly the same steps as 

for selection-on-observables, and to assume that one of the confounders that are contained in 
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the required conditioning set X0 is unobservable. Thus the linear model for the observable 

outcomes derived above cannot be a basis for consistent estimation by regression methods. 

Note that by the definition of a confounder as a variable jointly correlated with treatments and 

outcomes, this leads to the endogeneity of Dt in the regression formulated in terms of 

observable variables. In this case, and if a valid instrument is available, the panel econometric 

IV methods for linear models, described for example in Baltagi (2008) and Biorn and 

Krishnakumar (2008), may be applied to obtain estimates that are consistent under the 

linearity and homogeneity assumptions discussed in the previous section. 

For non- or semiparametric estimation similar problems concerning the dimension of 

the confounders in case of selection-on-observables occur. Frölich (2007) showed that the IV 

estimate is a ratio of estimators that would be consistent under a no-confounding assumption 

of the relation of the instrument and the outcome. In fact, IV estimates can be obtained by 

dividing the effect of the instrument Z on the outcome Yt by the effect of Z on D1 each time 

controlling for variables, X0, that are jointly related to the instrument and to the outcome or 

the treatment.20 Since these are similar estimation strategies as described in the section on 

selection-on-observables the same tools for reducing the dimension are available. The only 

difference is of course that the propensity score in this case is the probability of the binary 

instrument (instead of the treatment) being one given the confounders, i.e. pz(x0):= 

P(D1=1|X=x0). 

                                                                 
20  Note that although the same notation X is used here for both variables, usually these ‘instrument confounders’ may be 

different from the ‘treatment confounders’ that are required under the CIA. 
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3. A dynamic treatment model 

3.1 Motivation and basic structure of the model  

The static treatment model, which is widely used in micro econometrics even when 

panel data are used, allows for dynamics in the sense that the effects of the treatment, D1, are 

allowed to vary over time, and that variables measured in pre-treatment periods were used to 

tackle the confounding problem in different ways. The treatment itself, however, was not 

allowed to change over time more than once (from period 0 to period 1). In this section we 

present a model that allows for more treatment dynamics. For such a model, the availability of 

panel data is essential. 

Robins (1986) suggested an explicitly dynamic causal framework based on potential 

outcomes. It allows the definition of causal effects of dynamic interventions and clarifies the 

resulting endogeneity and selectivity problems. Identification is achieved by sequential 

selection-on-observable assumptions (see Abbring, 2003, for a comprehensive summary).21 

His approach was subsequently applied in epidemiology and biostatistics (e.g. Robins, 1989, 

1997, 1999, Robins, Greenland, and Hu, 1999, for discrete treatments; Gill and Robins, 2001, 

for continuous treatments; and many other applications by various authors) to define and 

estimate the effect of time-varying treatments in discrete time. It is common in that literature 

to estimate the effects by parametric models usually based on the so-called G-computation 

algorithm as suggested by Robins (1986).  

Lechner and Miquel (2010, LM10 further on) extend Robins’ (1986) framework to 

different causal parameters. Since the assumptions used in LM10 are similar to the selection-

                                                                 
21  Until now identification of dynamic treatment models by instrumental variable methods and generalized difference-in-

difference methods is a rather unexplored area, although there are some results in Miquel (2002, 2003), that awaits further 
research. Therefore, this section focuses entirely only on the sequential-selection-on-observable approach proposed by 
Robins (1986) in his seminal paper. Alternative reduced form approaches have been suggested for example by 
Fitzenberger, Osikuminu, and Paul (2010). 
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on-observables or conditional independence assumptions (CIA) of the static model, Lechner 

(2009b) proposed dynamic extensions of the matching and inverse-probability-weighting 

estimators discussed above, which are more robust than parametric models. The applications 

of this approach in economics are limited so far.22 One reason is that this approach, in 

particular in its semi-parametric and non-parametric form requires larger and more 

informative data than required for estimating causal effects in a static treatment effects model. 

Below, the definitions of the dynamic causal model as well as the identification results 

derived by Robins (1986) and Lechner and Miquel (2010) are briefly reviewed.23 To ease the 

notational burden, we use a three-periods-binary-treatment model to discuss the most relevant 

issues that distinguish the dynamic from the static model.24 Using again our labour market 

programme evaluation example for illustration, suppose that, as before, there is an initial pre-

treatment period, D0=0, plus two subsequent periods in which different treatment states 

(participation in a programme) are realized. Denote the history of variables up to period t by a 

bar below that variable, i.e. 2 1 2(0, , )d d d= .25 Therefore, in this setting all treatment 

combinations are fully described by the four sequences (0,0), (1,0), (0,1), and (1,1). The 

potential outcomes are indexed by these treatment combinations, 1d
tY  ( 1t ≥ ) or 2d

tY  ( 2t ≥ ). 

They are measured at the end of each period, whereas treatment status is measured at the 

beginning of each period. For each sequence length of length of one or two periods (plus the 

initial period), one of the respective potential outcomes is observable: 

                                                                 
22  Exceptions are Lechner and Wiehler (2013) who analyse the effects of the timing and order of Austrian active labour 

market programs and LM10 who analyse the effects of the German active labour market policies. A further exception is 
Ding and Lehrer (2003) who use this framework and related work by Miquel (2002, 2003) to evaluate a sequentially 
randomized class size study using difference-in-difference-type estimation methods. Lechner (2008) discusses practical 
issues when using this approach for labour market evaluations.  

23  The dynamic potential outcome framework is also useful to compare concepts of causality used in microeconometrics and 
time series econometrics (see Lechner, 2011b, for details). 

24  As before, there may be more periods available to measure pre- or post-treatment outcomes though.  

25  Therefore, the first element of this sequence, d0, is mainly ignored in the notation as it does not vary. 
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1 0
1 1(1 ) , 1;t t tY D Y D Y t= + − ∀ ≥  

1 0 11 01 10 00
1 1 1 2 1 2 1 2 1 2(1 ) (1 ) (1 ) (1 )(1 ) ;

2.
t t t t t t tY D Y D Y D D Y D D Y D D Y D D Y

t
= + − = + − + − + − −

∀ ≥
. 

Finally, note that the confounders, Xt, will be explicitly considered to be time varying 

and may contain functions of . Like the outcomes they are observable at the end of each 

period. 

As for the static model, the causal effect of the sequences is formalized using averages 

of potential outcomes. The following expression defines the causal effect (for period t) of a 

sequence of treatments up to period 1 or 2, kdτ , compared to an alternative sequence of the 

same or a different length, '
ldτ , for a population defined by one of those sequences or a third 

sequence, jdτ : 

' ', ( ) ( | ) ( | )
k l k ld d d dj j j

t t td E Y D d E Y D dτ τ τ τ
τ τ τ τ τγ = = − =
    

, 

0 ;1 , ' 2, ', ; , ', ;tτ τ τ τ τ τ τ τ τ≤ ≤ ≤ ≤ ≤    , (1,..., 2 )k τ∈ , '(1,..., 2 )l τ∈ , . 

The treatment sequences indexed by k, l, and j may correspond to d1=0 or d1=1 if τ  (or 

'τ ) denotes period 1, or to the longer sequences (d1, d2)= (0,0), (0,1), (1,0), or (1,1) if τ  (or 

'τ ) equals two. LM10 call ',k ld d
t
τ τγ  the dynamic average treatment effect (DATE). Accord-

ingly, ', ( )
k ld d k

t dτ τ
τγ is termed DATE on the treated (DATET). There are also cases in-between, 

like 2 2,
1( )

k ld d l
t dγ , for which the conditioning set is defined by a sequence shorter than the one 

defining the causal contrast. Finally, note that the effects are symmetric for the same popu-

lation ( ', ( )
k ld d k

t dτ τ
τγ  = ' , ( )

l kd d k
t dτ τ

τγ− , but ', ( )
k ld d k

t dτ τ
τγ ',

'( )
k ld d l

t dτ τ
τγ≠ ). This feature, however, does 

not restrict effect heterogeneity. 

tY

k l≠ (1,..., 2 )j τ∈ 
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Let us now postulate a simple linear model that serves the same purpose as in the case 

of the static model: 

0
0 0 1 1

0
0 0 1 1 1, 0 1, 1 1,

1 1
0 0 1 1 1, 0 1, 1 1, 0 0

( | , )

( | , ) ,

( | , ) , , {...,0,1,..., }.

t

t t t t

t t t t t

E Y X x D d

E Y X x D d x d

E Y X x D d x d x t T

α β δ

α β δ γ χ
= =

= = = + +

= = = + + + ∀ ∈ ∀ =


 

Therefore, for the ‘observable’ outcomes the observation rule implies the following: 

1
0 0 1 1 1, 0 1, 1 1,( | , ) ( ).t t t t tE Y X x D d x dα β γ δ= = = + + +  

Note that this part of the specification that relates to the effects of the treatments in 

period 1 only is specified exactly as for the static model to ease comparison (with the 

exception of not conditioning on all Dt, which has a different meaning in the dynamic than in 

the static model). Therefore, it is also clear that identification of 1,tγ  is exactly as for the static 

model discussed in the previous section. Therefore, from now on we concentrate on 

sequences that include treatment status in period 2 as well. 

The key features that the toy model for dynamic treatments is supposed to capture are 

related to the impact of confounders already influenced by the treatment in period one as well 

as the selection effects that come from selecting into D1 in period 1 and into D2 in period 2. 

The following specifications contain these features while keeping all other complications to a 

minimum: 

1 2

00
1 1

1 2

00 11 01 10
1 1 2, 0 2, 1 1 2 1 2 1 2

', ' 11 01 10
1 1 2, 0 2, 1 1 2 1 2 1 2

( | , )

' '

( | , ) (1 ) (1 ) ;

( | , ) (1 ) (1 )

;
t T T

t T T t t t t t t

d d
t T T t t t t t t

E Y X x D d

d d
t

E Y X x D d x y d d d d d d

E Y X x D d x y d d d d d d

α β φ λ λ λ

α β φ λ λ λ

γ
= =

= = = + + + + − + −

= = = + + + + − + −

+



0 1 2 1, , , .x y d d∀
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Note that the coefficients 1 2,d d
tλ  denote the subsample specific selection effects. Next, 

we derive the conditional expectation of the observable outcome for this case using the 

observation rules given above. 

1 1 1 1 2 2
11 11 01 01 10 10

2, 0 2, 1 1 2 1 2 1 2

( | , ) ( | , )

( ) (1 ) ( ) (1 )( ).
t T T t

t t t t t t t t t

E Y X x D d E Y X x D d
x y d d d d d dα β φ γ λ γ λ γ λ

= = = = = =

= + + + + + − + + − +
 

In a similar fashion as before, this equation shows that the treatment effects are not 

identified without further assumptions that concern the selection effects, 1 2d d
tλ . It is also 

important to note that this model is not a typical dynamic panel data model, as the 

conditioning is not on yt-1, but on y1, i.e. it does not depend on t. 

3.2  Identification  

The weak dynamic conditional independence assumption (W-DCIA) postulates that the 

variables that jointly influence selection at each stage of the sequence as well as the outcomes 

are observable in the time period corresponding to that stage: 

00 10 01 11
1 0 0

00 10 01 11
2 2 1 1 1 1

) , , , | ,

) , , , | , ,
t t t t

t t t t

a Y Y Y Y D X x

b Y Y Y Y D d D d X x

=

= = =





, 1.t∀ ≥  

1 0 1( , )χ χ χ=  denotes the support of X0 and X1. Part a) of W-DCIA states that the poten-

tial outcomes are independent of treatment choice in period 1 (D1) conditional on . This is 

the standard version of the static CIA. Part b) states that conditional on the treatment in period 

1 and on the confounding variables of periods 0 and 1, , potential outcomes are in-

dependent of participation in period 2 (D2).  

In Appendix A it is shown that using this assumption and the observation rule gives us 

the relation between shorter and longer sequences of potential outcomes (which also provides 

the link between the static and the dynamic models): 

1 1x χ∀ ∈

0X

1X
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1 1 2 1 2

1 1 2

0 1 1

1 2

0 1 1

1 0
1 1 1 1 2 1 1 1 2 1

1 (1 )1 |
1 1 0 0 1 1 2 0 1|

(1 )0 |
0 0 1 1 2 0|

( | ) ( | , 1) ( ) ( | , 0) 1 ( ) ;

( | ) ( | , 1 , 1) ( ,1 )

( | , 1 , 0) 1 ( ,

d d D d D
t t t

d d D X
t tX D d

d D X
tX D d

E Y D d E Y D d D p d E Y D d D p d

E Y D d E E Y X x D d D p x d

E E Y X x D d D p x

− −

=

−

=

 = = = = + = = − 
 = = = = − = − 

+ = = − = −

2 2

1

|
1 2 1 1 0 1 2 0 0 1 1

1 ) ;

( ) : ( 1| ); ( , ) : ( 1| , ).D D X

d

p d P D D d p x d P D X x D d

  −  

= = = = = = =
 

Thus the expectation of the outcomes of the shorter sequences is a weighted average of 

the expectation of the two longer sequences that have the same first period treatment as the 

shorter sequence. 

To see whether the W-DCIA is plausible in our example, the question is which variables 

influence programme participation in each period as well as subsequent labour market out-

comes and whether such variables are observable. If the answer to the latter question is yes 

(and if there is common support, i.e. there are individuals with the same observable character-

istics that are observed in both treatment sequences of interest), then there is identification, 

even if some or all conditioning variables in period 2 are influenced by the labour market and 

programme participation outcomes of period 1. LM10 show that, for example, quantities that 

are for subpopulations defined by treatment status in period 1 or 0 only, like 11
2( )E Y , 

11
2 1( | 0)E Y D = , and 11

2 1( | 1)E Y D = , are identified. Mean potential outcomes for 

subpopulations defined by treatment status in period 1 and 2 are only identified if the 

sequences coincide in the first period (e.g., 11
2 2[ | (1,0)]E Y D = ). However,  11

2 2[ | (0,0)]E Y D =  

or 11
2 2[ | (0,1)]E Y D =  are not identified. Thus, ',k ld d

t
τ τγ  and ',

1( )
k ld d j

t dτ τγ  are identified 

1 2 1 2 1 2, , , , , {0,1}k k l l j jd d d d d d∀ ∈ , but 2 2,
2 2( )

k ld d jdγ  is not identified if 1 1
l kd d≠ , 1 1

l jd d≠ , or 1 1
k jd d≠ . 

The relevant distinction between the populations defined by participation states in period 1 

and subsequent periods is that in period 1, treatment choice is random conditional on ex-

ogenous variables, which is the result of the initial condition stating that 0 0D =  holds for 

everybody. However, in the second period, randomization into these treatments is conditional 



30 
 

on variables already influenced by the first part of the treatment. W-DCIA has an appeal for 

applied work as a natural extension of the static framework. However, W-DCIA is not strong 

enough to identify the classical treatment effects on the treated which would define the 

population of interest using one of the complete sequences (for all three periods), if the 

sequences of interest differ in period 1. 

Let us now consider identification in our linear example. Note that part b) of the W-

DCIA implies that 1 2', '
1 1( | , )d d

t T TE Y X x D d= = =  1 2', '
1 1 1 1( | , )d d

tE Y X x D d= = , thus 

11 10 1( )t t tλ λ λ= =  and 01 00 ( 0)t tλ λ= = , thus we have: 

1 2 1 2 1 2

00 00 1
1 1 1 1 1 1 2, 0 2, 1 1

', ' ', ' ' '1
1 1 1 1 1 1 2, 0 2, 1 1

( | , ) ( | , ) ;

( | , ) ( | , ) .
t T T t t t t t

d d d d d d
t T T t t t t t t

E Y X x D d E Y X x D d x y d

E Y X x D d E Y X x D d x y d

α β φ λ

α β φ λ γ

= = = = = = + + +

= = = = = = + + + +
 

11 1
1 1 2, 0 2, 1 1 2

01 10 1
1 2 1 2

( | , ) ( )

(1 ) (1 )( ).
t T T t t t t t

t t t

E Y X x D d x y d d

d d d d

α β φ γ λ

γ γ λ

= = = + + + + +

+ − + − +
 

Thus, 01
tγ  as well as 2, 2,, ,t t tα β φ  are identified. Furthermore since part a) of the W-

DCIA implies that 1, 0tδ = , the effects of the treatment of the first period, 1
1, 1,, ,t t tα β γ , are 

identified as well. However, there is still a selection effect, 1
tλ , that hinders full identification 

of the causal effects, i.e. only 11 1( )t tγ λ+  and 10 1( )t tγ λ+  are identified from this regression. 

However, this is already enough because the treatment effects are linked in the sense 

that 1
tγ  must, by definition, be a weighted average of 11

tγ  and 10
tγ . Indeed the appendix shows 

that [ ]
0 1

1 11 10 01 10
2 0 0 1 2 1| 0

( ) ( 1| , 1) ( 1| 0)t t t t tX D
E P D X x D P D Dγ γ γ γ γ

=
= − = = = − = = +  holds in this 

model, which provides identification (because (i) [ ]
0 1

2 0 0 1| 0
( 1| , 1)

X D
E P D X x D

=
= = =  and 

2 1( 1| 0)P D D= =  are identified; (ii) 11
tγ  can be expressed in terms of identified terms and 10

tγ
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; (iii) thus 11 1( )t tγ λ+  and 10 1( )t tγ λ+  depend only on two further unknowns and have, for non-

trivial cases, a solution).  

For the general model, LM10 show that to identify all treatment parameters, W-DCIA 

must be strengthened by essentially imposing that the confounding variables used to control 

selection into the treatment of the second period are not influenced by the selection into the 

first-period treatment. This can be summerized by an independence condition like 

2
2 1 1|d

tY D X x=  (LM10 call this the strong dynamic conditional independence assumption, 

S-DCIA). Note that the conditioning set includes the outcome variables from the first period. 

This is the usual conditional independence assumption used in the multiple static treatment 

framework (with four treatments; see Imbens, 2000, and Lechner, 2001). In other words, 

when the control variables (including the outcome variables in period 1) are not influenced by 

the previous treatments, the dynamic problem collapses to a static problem of four treatments 

with selection on observables. An example of such a situation would be an assignement to a 

two subsequent training programmes which was made already before the first programme 

began and for which there is no chance to drop out once assigned to both programmes. 

Any attempt of non-parametrically estimating these effects faces the same problem that 

distributional adjustments based on a potentially high-dimensional vector of characteristics 

and intermediate outcomes are required. However, as before for the static case, propensity 

scores are available to allow the construction of semi-parametric estimators (see LM10 for 

details).  

3.3  Estimation  

Lechner (2008, L08 further on) shows that for the model using W-DCIA these 

propensity scores are convenient tools for constructing sequential propensity score matching 
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and reweighting estimators.26 Using such propensity scores, the following identification result 

based on W-DCIA is the key ingredient for building appropriate estimators: 

2 2 1 1 1

|1 2 1
0 1

| ,
12 1 1 2 2 2 1 1 0 1 1

( ) ( )
( | ) [ ( | , ( )) | , ( )] | ,

k k k k k

k k kd d d

d d d d dj k k j

p x p x
E Y D d E E E Y D d p x D d p x D d

 
= = = = = 

 

                                 2 1 1 2 1 1| , |
1 1 0( ) : [ ( ), ( )]

k k k kd d d d d dp X p X p X= ,    1 2 1 1, , , {0,1},k k jd d d d∀ ∈  

where 2 1 2 1| |
11 12 2 1 1( ) : ( | , )

k k k kd d d d k kp x p P D d D d X x= = = =  and 

1
0 1 1 0 0( ) ( | )dp x P D d X x= = =  are the respective participation probabilities. To learn the 

counterfactual outcome for the population participating in 1
jd  (the target population) had they 

participated in the sequence 2
kd , characteristics (and thus outcomes) of observations with 2

kd  

must be reweighted to make them comparable to the characteristics of the observations in the 

target population ( 1
jd ). The dynamic, sequential structure of the causal model restricts the 

possible ways to do so. Intuitively, for the members of the target population, observations that 

share the first element of the sequence of interest ( 1
kd ) should be reweighted such that they 

have the same distribution of 1
0( )

kdp X  as the target population. Call this artificially created 

group comparison group one. Yet, to estimate the effect of the full sequence, the outcomes of 

observations that share 2
kd  instead of 1

kd  are required. Thus, an artificial subpopulation of 

observations in 2
kd  that has the same distribution of characteristics of 1

0( )
kdp X  and 

2 1|
1( )

k kd dp X  as the artificially created comparison group 1 is required. The same principle 

applies for dynamic average treatment effects in the population (DATE). 

                                                                 
26  Of course, other static matching-type estimators (e.g. Huber, Lechner, Wunsch, 2013) can be adapted to the dynamic 

context in a similar way. 
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All proposed estimators in L08 have the same structure: They are computed as weighted 

means of the outcome variables observed in the subsample 2 2
kD d= . The weights, ( )w ⋅ , 

depend on the specific effects of interest and are functions of the balancing scores. 



2 2 22 1 2 1 1 1 1

2 2

, , ,| ,
2 1 1 1, 1( | ) ( ( ), ) ; 0; 1;

j j jk k kk k k k

k k

d d d d d dd d d dj k
i i i i i

i d i d

E Y D d w p x d y w w
∈ ∈

= = ≥ =∑ ∑  (1) 



2 2 2 1 1 2 2

2 2

| ,
2 1, 1( ) ( ( ), ) ; 0; 1

k k k k k k k

k k

d d d d d d dk
i i i i i

i d i d

E Y w p x d y w w
∈ ∈

= ≥ =∑ ∑ . (2)
 

It remains to add a note on estimation of our linear toy model. Following the 

considerations in the identification part, the model consists of two linear regressions based on 

the following two equations:  

1
0 0 1 1 1, 0 1, 1

11 1 01 10 1
1 1 2 2 2, 0 2, 1 1 2 1 2 1 2

( | , ) ;

( | , ) ( ) (1 ) (1 )( ).
t t t t

t t t t t t t t t

E Y X x D d x d

E Y X x D d x y d d d d d d

α β γ

α β φ γ λ γ γ λ

= = = + +

= = = + + + + + − + − +
 

In a second step the estimated coefficients together with the link between the one-period 

and two-period treatment effects are used to uncover the causal effects. Since these effects are 

assumed to be homogenous, the W-DCIA is sufficient to identify all relevant quantities of this 

model. It is important to note, though, that the outlined procedure is very different from 

estimating a classical dynamic or static linear or non-linear panel data model. 

4. Concluding remarks 

For many empirical applications panel data are essential for the credible identification 

and precise estimation of causal effects. The first part of this chapter, which discussed 

matching and instrumental variable estimation in the static treatment model, showed how the 

additional information provided by panel data can be used to measure pre-treatment variables 

that improve the credibility of those strategies. Furthermore, if several post-treatment periods 
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were available, more interesting effects capturing the outcome dynamics can be estimated. 

The latter was also true for the so-called difference-in-difference approach, although the use 

of the pre-treatment outcomes differ for this approach: lagged outcomes do not appear in the 

conditioning set but were used instead to form pre-treatment-post-treatment outcome 

differences. Thus, the latter approach is not robust to non-linear transformations of the 

outcome variables while the former two approaches are robust to such transformations. 

Another difference between IV, matching, and difference-in-difference approaches is that for 

the latter panel data are not strictly necessary as repeated cross-sections will do. Finally, for 

all approaches based on a static treatment framework panel data may allow for so-called 

placebo tests, i.e. estimating effects for periods for which it is known that they should be zero. 

Such tests are another tool of improving the credibility of the chosen identifying assumptions.  

The second part of this chapter showed how panel data can be used to identify and 

estimate causal parameters derived from dynamic treatment effect models, an area which did 

not yet receive much attention in econometrics. Therefore, the results on non-parametric 

identification and non- or semi-parametric estimation are mainly limited to the case of 

imposing sequential selection-on-observable assumptions, a case which is popular in other 

fields as well, like epidemiology. It is a perhaps a surprising insight from this analysis that the 

parameters usually estimated by linear parametric panel data models and the causal 

parameters derived from the dynamic treatment models are only loosely related. 

There are still many open ends in this literature. For example, in the dynamic treatment 

models instrumental variable estimation seems to be rather unexplored, while for the static 

models we just start to understand when it makes more sense to use lagged outcome variables 

as covariates instead of forming differences and apply a difference-in-difference approach 

instead. In conclusion, we can expect the intersection of the literatures on panel data and 

treatment effects to produce many interesting research papers in the near future. 
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Appendix: Relation of different potential outcomes in the dynamic 

treatment model 

In this appendix we provide the derivations that lead to the link of the potential 

outcomes of sequences of length one and two. First, define the following short-cut notation 

for the conditional selection probabilities. 

2 2 |
1 2 1 1 0 1 2 0 0 1 1( ) : ( 1| ); ( , ) : ( 1| , ).D D Xp d P D D d p x d P D X x D d= = = = = = =  

Next, we use the observation rule to establish the desired relation: 

1 0 1 11 10
1 1 1 1 2 2 1(1 ) | 1 | 1 (1 ) | 1t t t t tE D Y D Y D E Y D E D Y D Y D     + − = = = = + − =      . 

Using iterated expectations, for the general case we obtain the following expression: 

1 1 2 1 2

1 2 1 2

1 1 1 1 2 1 1 1 2 1

1 0
1 1 2 1 1 1 2 1

( | ) ( | , 1) ( ) ( | , 0) 1 ( )
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 = = = = + = = − 
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Next, we want to establish a similar link for the mean counterfactual 1
1 1( | 1 )d

tE Y D d= −

, which requires the use of part a) of the W-DCIA. 

1 1
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This formula can now be used to connect the treatment effects as well: 
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Finally, we consider the special case of the dynamic linear toy model postulated for 

1(0)tγ : 
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