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Abstract 

For an additive autoregression model, we study two types of testing problems. First, a 

parametric specification of a component function is compared against a nonparametric fit. 

Second, two nonparametric fits of two different time periods are tested for equality. We 

apply the theory to a nonparametric extension of the linear heterogeneous autoregressive 

(HAR) model. The linear HAR model is widely employed to describe realized variance data. 

We find that the linearity assumption is often rejected, in particular on equity, fixed income, 

and currency futures data; in the presence of a structural break, nonlinearity appears to 

prevail on the sample before the outbreak of the financial crisis in mid-2007.  
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1 Introduction

A major workhorse used in the research on financial market volatility over the past decade

is the heterogeneous autoregressive model (HAR). When applied to time series of realized

variance (RV) data estimated from intra-day tick prices, it captures the stylized facts

of volatility data in an accurate manner and shows a forecasting power that is hard to

beat. Although much effort has been invested into further refinements of the model, the

actual improvements achieved in terms of forecasting ability against the simplest baseline

specification have proved to be comparably tiny.1

The popularity of this model, first suggested in Corsi (2009), may be attributed to

the following characteristics: (1) it builds on the intuitive heuristic of the heterogeneous

market hypothesis, according to which the observed variance process emerges as a cascade

of variance components induced by market participants with daily, weekly and monthly

investment horizons; (2) the model can approximate long range dependence of volatility

data in a simple manner; and (3) it is parsimonious and straightforward to estimate, as

it is a restricted AR(22) model.

As a core assumption in the HAR model, the component functions are linear in the

regressors. But is this assumption supported by the data? In this work, we provide the

diagnostic tools to answer this question. We first generalize the baseline HAR model

by allowing its component functions to have an arbitrary nonparametric form. This

nonparametric HAR model belongs to the class of additive models. We then suggest a

procedure to test whether the nonparametric components of the model have a parametric

structure. Importantly, our method allows us to test each component separately for

parametric specification. It can thus be used to verify the linearity assumption of the HAR

model for each of the component functions. To accommodate potential time variation of

the component functions, we additionally propose a test for a structural break. This test

allows for checking each component function for an unknown functional change, while

the remaining functions may or may not undergo a structural break. For both tests,

the wild bootstrap procedure to obtain critical values is shown to be consistent. In the

empirical part, we apply the theory to a large data set of high-frequency ticks of futures

and indices derived from a variety of underlying assets and test the linearity assumption

of the baseline HAR model.

Few studies have addressed the topic of potential nonlinearities in the HAR model for

RV. McAleer and Medeiros (2008a) consider a multiple regime smooth transition model

where regimes are triggered by large negative returns. In a similar vein, Corsi et al.

(2012) propose a tree-structured HAR model, in which regimes depend both on returns

1See Corsi et al. (2012) for a recent survey.
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and variance levels. Chen et al. (2013) suggest a linear HAR model whose coefficients are

allowed to vary slowly in time. All these studies, however, assume a specification that is

still linear conditionally on the regime or locally in time. We differ from these studies in

allowing the variance component functions to be fully nonparametric.

Our model is related to regression and autoregression models, where the (auto-)regression

function is modeled as a sum of nonparametric functions. Nonparametric additive mod-

els were first studied in Stone (1985, 1986) where it was pointed out that they are an

efficient compromise between modeling approaches that are too complex on the one hand

or too inaccurate on the other. Backfitting is one of the state of the art techniques for

estimating additive models; see Hastie and Tibshirani (1990). In the testing procedures

that we will discuss in this paper, we will make use of the smooth backfitting algorithm

introduced in Mammen et al. (1999). Smooth backfitting avoids problems of the ordinary

backfitting algorithm where covariates are too strongly correlated, and its asymptotic sta-

tistical properties are also better understood. Other estimation approaches for additive

models include sieve estimators (Chen; 2007), penalized splines (Eilers and Marx; 2002),

and marginal integration (Newey; 1994; Tjøstheim and Auestad; 1994).

Our test statistics are L2-distances between a nonparametric and a parametric fit

and between two nonparametric fits for two different time periods. Tests of this form

have been proposed in a series of papers for a large range of testing problems in non-

and semiparametric regression. Early research includes Härdle and Mammen (1993),

González-Manteiga and Cao-Abad (1993), Hjellvik et al. (1998), Zheng (1996), and Fan

et al. (2001). Whereas these papers treat i.i.d. data, more recent work discusses testing

problems in time series models; see, e.g., Dette and Sprekelsen (2004), Kreiß et al. (2008),

Aı̈t-Sahalia et al. (2009), and Leucht (2012). Test problems with additive alternatives

are considered in Fan and Jiang (2005) and Haag (2008). In this paper, we will develop

a complete asymptotic theory for two types of testing problems. First, we will treat the

testing problem where the parametric specification of an additive component is tested

against a nonparametric fit. In a second step, we consider the case where the nonpara-

metric fits for different time periods are compared. The theory applies to the case of a

nonparametric HAR model.

In an ample empirical analysis, we estimate the nonparametric HAR model on 17 RV

time series of global futures and indices on equity, fixed income instruments, currencies,

metals, and energy and agricultural commodities. Across the entire sample period from

July 2003 to December 2010, at a significance level at 10%, our tests uncover nonlinear

features in about 27 of the 51 (i.e., three component functions times 17) additive func-

tions to be estimated, most often in the daily component. In many cases, the nonlinear

functional patterns continue to exist after accounting for a structural break. Hence non-
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linearity is not an artifact of missing a structural break in an otherwise linear model.

Across the different asset classes, nonlinearity in our sample is most prevalent for equity

instruments and currency instruments.

While the number of positive test outcomes seems large, the actual degree of non-

linearity in the regressors is in fact moderate. For instance, we typically find that daily

component functions are mildly convex, implying that the marginal impact of today’s RV

has a larger impact on tomorrow’s RV in turbulent times than in calm market conditions.

Conversely, if nonlinear, weekly and monthly component functions tend to be concavely

shaped. This implies that the predictive power of weekly and monthly components is

largest in calm market conditions. Finally, during times of market distress, we observe a

preference for the simple model, as in most cases the linear specification is not rejected

on the post sample that comprises the financial crisis.

In summary, our empirical study sheds light on RV modeling in various ways. Corrob-

orating the forecasting literature, we conclude that the linear specification of the HAR

model is well taken, particularly for non-equity instruments and generally in turbulent

market phases. The moderate deviations from the linear model explain why nonlinear

extensions may attain only incremental improvements of the forecasting ability of the

baseline model. In addition to these insights, our results provide intuition about how to

extend existing parametric modeling approaches for RV data. One obvious possibility

would be a regime-switching model with parsimoniously parametrized nonlinear compo-

nent functions conditional on the regimes.

The paper is structured as follows. In Section 2, we introduce the nonparametric

HAR model. The specification test is introduced in Section 3, the structural break test

in Section 4. Section 5 presents the data, after which follows the empirical analysis in

Section 6. An appendix provides proofs and additional information on realized variance

estimation.

2 The nonparametric HAR model

We investigate a nonparametric extension of the heterogeneous autoregressive (HAR)

model introduced by Corsi (2009) for modeling realized variance. Let Vt be a daily

observation of the RV time series and define V
(n)
t = 1

n

∑n−1
j=0 Vt−j, n ∈ N+, i.e., as an

average of Vt over the past n trading days. Furthermore, denote by ι = (ι1, . . . , ιd)
> ∈ Nd

+

an index set with ι1 < ι2 . . . < ιd. The model is given by

V
(ι1)
t = m0 +

d∑
j=1

mj

(
V

(ιj)
t−1

)
+ εt for t = 1, . . . T, (1)
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where m0 is a constant, mj(·), j = 1, . . . , d, are smooth nonparametric link functions of un-

known shape, also called the (variance) component functions, and E[εt|V (ι1)
t−1 , . . . , V

(ιd)
t−1 ] =

0. Formally, this extends the notion of an additive model as introduced by Hastie and

Tibshirani (1990) to the time series setting; see Chen and Tsay (1993).

Usually, the link functions are assumed to be linear, i.e., mj (x) = θjx, θj ∈ R, in which

case the model reduces to a standard, yet parsimoniously parametrized AR(ιd) model,

since the autoregressive coefficients are restricted to be equal for each of the variance

components. A very common index set is ι = (1, 5, 22)>, which corresponds to a daily lag

and averages of the daily variances over the last week and the last month, respectively.2

This choice is motivated by the conceptual idea that market participants with different

investment horizons, such as daily, weekly, and monthly time-scales, are active in the

market. In this framework, one assumes that short-term variance does not impact long-

term investment behavior, whereas long-term variance affects short-term trading decisions

through expectations of future risk. By recursive substitutions of each long-term variance

forecast into the dynamic equation of the next level shorter dated variance, an additive

cascade of variance components emerges, where short-term variance is a function of past

variance at the same time-scale and the expectations of the longer-term period variance

components; see Corsi (2009) for details.

This motivates the model structure as given in (1). The linear specification, however, is

ad hoc and at best justified by the enormous body of literature employing the linear HAR

model for prediction purposes. In the following, we will formally test this assumption.

3 Testing for a parametric specification

In what follows, we investigate the question of whether one of the additive components

in model (1), say mj, admits a certain parametric form. Put differently, we want to test

whether mj belongs to a parametric family of functions {mθ : θ ∈ Θ}, where Θ denotes

the parameter space. The null hypothesis is thus given by

H0 : mj ∈
{
mθ : θ ∈ Θ

}
.

In the next subsection, we introduce our test statistic. The asymptotic distribution of

the statistic is derived in the second subsection. Finally, we describe a wild bootstrap

procedure to improve the small sample behavior of the test. The technical assumptions

and proofs of the main results can be found in Appendix A.

2This choice is suggested in Corsi (2009) and has frequently been adopted in the literature. Testing the

index ι = (1, 5, 22)> itself is beyond the scope of this text. For linear models, this is done in Craioveanu

and Hillebrand (2010) and Audrino and Knaus (2012).
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3.1 The test statistic

We develop our testing procedure in a general additive time series regression setup which

nests the nonparametric HAR model (1) as a special case. The setup is given by the

equation

Yt = m0 +
d∑
j=1

mj(Xt,j) + εt for t = 1, . . . , T (2)

with E[εt|X t] = 0 and X t = (Xt,1, . . . , Xt,d)
>. The nonparametric HAR model is obtained

by setting Yt = V
(ι1)
t and X t =

(
V

(ι1)
t−1 , . . . , V

(ιd)
t−1

)>
. To identify the additive component

functions m1, . . . ,md in (2), we normalize them to satisfy
∫
mj(xj)pj(xj)dxj = 0. Here,

pj is the marginal density of the j-th regressor Xt,j. To keep the notation as simple as

possible, we assume throughout that the regressors X t have bounded support, for example

[0, 1]d. The case of unbounded support can be incorporated by slightly modifying the test

statistic. We comment on this in Appendix A.

We are interested in the question of whether one of the component functionsm1, . . . ,md

has a parametric form. Restricting attention to the first component m1, the null hypoth-

esis is given by

H0 : m1 ∈
{
mθ : θ ∈ Θ

}
.

If the functions m2, . . . ,md were known, we could base our test on the one-dimensional

model

Zt = m1(Xt,1) + εt

with Zt = Yt −
∑d

j=2mj(Xt,j). In this case, standard nonparametric procedures could be

used to test the hypothesis H0. In particular, one could apply the kernel-based test of

Härdle and Mammen (1993) which measures an L2-distance between a parametric fit and

a kernel smoother of the function m1.

As we do not observe the functions m2, . . . ,md, we replace them by a set of estima-

tors. In particular, we estimate them by the smooth backfitting procedure introduced

in Mammen et al. (1999). We focus attention on a version of the smooth backfitting

algorithm which is based on Nadaraya-Watson smoothers and comment on a local linear

version below. The smooth backfitting estimators m̃0, . . . , m̃d of the functions m0, . . . ,md

are defined as the minimizers of the criterion

T∑
t=1

∫ 1

0

{
Yt − f0 −

d∑
j=1

fj(xj)
}2

Kg(xj, Xt,j)dxj, (3)

where the minimization runs over all additive functions f(x) = f0 + f1(x1) + · · ·+ fd(xd)

whose components satisfy
∫ 1

0
fj(xj)p̃j(xj)dxj = 0 for j = 1, . . . , d. Here, p̃j is a standard

kernel density estimator of pj given by p̃j(x) = 1
T

∑T
t=1 Kg(xj, Xt,j). Moreover, g is the
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bandwidth and

Kg(v, w) =
Kg(v − w)∫ 1

0
Kg(s− w)ds

is a modified kernel weight, where Kg(v) = 1
g
K(v

g
) and the kernel function K(·) integrates

to one. These weights have the property that
∫ 1

0
Kg(v, w)dv = 1 for all w, which is needed

to derive the asymptotic results for the backfitting estimates.

Given the estimators m̃2, . . . , m̃d, the variables Zt can be approximated by Z̃t = Yt −∑d
j=2 m̃j(Xt,j). Based on the sample {Z̃t, Xt,1}Tt=1, we can construct a parametric and

a nonparametric estimator of the function m1. Denote by mθ̂ the parametric estimator,

which satisfies the high-level condition (A7) in Appendix A, and denote by m̂ a Nadaraya-

Watson smoother of m1 with bandwidth h, i.e.,

m̂(w) =

∑T
t=1Kh(w −Xt,1)Z̃t∑T
t=1 Kh(w −Xt,1)

.

As we will see below, the bandwidth h differs from g. In particular, for the theory to

work, we have to undersmooth the backfitting estimates and thus choose g to converge

faster to zero than h

The idea of our test is to measure the distance between the two estimators mθ̂ and m̂.

More specifically, we set up a test statistic of the type introduced in Härdle and Mammen

(1993) which measures an L2-distance between the parametric and the nonparametric

estimate. The statistic is defined as

ST = Th1/2

∫ (
m̂(w)−Kh,Tmθ̂(w)

)2
π(w)dw

where π is a weight function with bounded support and
∫
π(x)dx = 1 and

Kh,Tg(·) =

∑T
t=1Kh(· −Xt,1)g(Xt,1)∑T

t=1Kh(· −Xt,1)
.

As proposed in Härdle and Mammen (1993), we smooth the parametric estimator mθ̂ by

applying the operator Kh,T to it. This artificially creates a bias term which cancels with

the bias part of the kernel smoother m̂.

Our test statistic is based on Nadaraya-Watson type estimators. Alternatively, local

linear estimators could be used. Specifically, we may estimate the functions m2, . . . ,md by

a local linear based version of the smooth backfitting approach; see Mammen et al. (1999)

for a formal definition and the technical details. Let us denote the resulting estimators

by m̃LL
2 , . . . , m̃LL

d and write Z̃LL
t = Yt −

∑d
j=2 m̃

LL
j (Xt,j). With this notation at hand, we

can replace m̂ by the local linear smoother

m̂LL(w) =

∑T
t=1Wh(w,Xt,1)Z̃LL

t∑T
t=1Wh(w,Xt,1)

,
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where Wh(w,Xt,1) = Kh(w − Xt,1)[QT,2 − (w − Xt,1)QT,1] and QT,j =
∑T

t=1Kh(w −
Xt,1)(w−Xt,1)j for j = 1, 2. Analogously as in the Nadaraya-Watson-based case, we may

now define our test statistic by

SLLT = Th1/2

∫ (
m̂LL(w)−KLL

h,Tmθ̂(w)
)2
π(w)dw,

where the operator KLL
h,T is given by

KLL
h,Tg(·) =

∑T
t=1Wh(·, Xt,1)g(Xt,1)∑T

t=1Wh(·, Xt,1)
.

As in the Nadaraya-Watson case, this operator helps to get rid of the bias part of the

nonparametric estimate.

3.2 Asymptotic distribution

We now examine the asymptotic behavior of our test. For simplicity, we focus on the

theoretical analysis of the Nadaraya-Watson based statistic ST . The statistic SLLT can

be handled by similar arguments. To start with, we derive the limiting distribution of

ST under the null hypothesis, i.e., for a parametric function m1 = mθ0 with θ0 ∈ Θ. To

get an idea of the power of the test, we additionally compute the asymptotic distribution

under local alternatives of the form m1(w) = m1,T (w) = mθ0(w) + cT∆(w) where ∆ is a

bounded function of w and cT = T−1/2h−1/4. This nests the null hypothesis with ∆ ≡ 0.

Theorem 1. Assume that the conditions (A1)–(A7) of Appendix A are satisfied and let

h = O(T−1/5) as well as g = O(T−1/4−δ) for some small δ > 0. Then

ST −BT −
∫

(Kh∆)2π(w)dw
d→ N

(
0, V

)
with Khg(·) =

∫
Kh(· − u)g(u)du,

BT = h−1/2κ0

∫
σ2(w)π(w)

p1(w)
dw

V = 2κ1

∫
[σ2(w)]2π2(w)

p2
1(w)

dw,

where p1 is the marginal density of Xt,1, σ2(w) = E[ε2
t |Xt,1 = w], κ0 =

∫
K2(u)du and

κ1 =
∫

(
∫
K(u)K(u+ v)du)2dv.

Importantly, our test statistic has the same limiting distribution as the test which is

based on the one-dimensional model Zt = m1(Xt,1) + εt with Zt = Yt −
∑d

j=2mj(Xt,j).

Thus, the uncertainty stemming from estimating the additive functions m2, . . . ,md does

not show up in the asymptotic distribution and the test has the following oracle property:

It has the same limiting distribution as in the case where the functions m2, . . . ,md are

known.
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3.3 Bootstrap

To improve the small sample behavior of our test, we set up a wild bootstrap procedure.

The bootstrap sample is given by {Z∗t , Xt,1}Tt=1 with

Z∗t = mθ̂(Xt,1) + ε∗t . (4)

The bootstrap residuals are constructed as ε∗t = ε̂t · ηt, where ε̂t = Z̃t − m̂(Xt,1) are

the estimated residuals and {ηt} is some sequence of i.i.d. variables with zero mean and

unit variance that is independent of the sample {Z̃t, Xt,1}Tt=1. Here, we have used the

unrestricted estimator m̂ to construct the residuals ε̂t. Alternatively, it is possible to

work with residuals which are based on the fit mθ̂ under the null. Denote by mθ̂∗ and m̂∗

the parametric and nonparametric estimator of m1 calculated from the bootstrap sample

{Z∗t , Xt,1}. Replacing the estimates mθ̂ and m̂ in ST by the bootstrap analogues mθ̂∗ and

m̂∗ yields the bootstrap statistic

S∗T = Th1/2

∫ (
m̂∗(w)−Kh,Tmθ̂∗(w)

)2
π(w)dw.

The next theorem shows that the above-defined bootstrap is consistent.

Theorem 2. Assume that the conditions (A1)–(A6) and (A7*) of Appendix A are satis-

fied and let h = O(T−1/5) as well as g = O(T−1/4−δ) for some small δ > 0. Then

S∗T −BT
d→ N

(
0, V

)
conditional on the sample {Z̃t, Xt,1}Tt=1 with probability tending to one.

4 Testing for breaks

4.1 The test statistic

In this section, we will discuss tests for breaks in the autoregression functions. Our

main motivation comes from the concern that the nonlinear structure detected by the

specification test may be spurious due to a neglected break in the functional components.

In the presence of a structural break, our data follow the nonparametric autoregression

model

Yt =

mante
0 +

∑d
j=1 m

ante
j (Xt,j) + εantet for t ≤ t∗,

mpost
0 +

∑d
j=1m

post
j (Xt,j) + εpostt for t > t∗.

We will discuss tests of break points based on the comparison of estimators of mante
j

and mpost
j . Here, t∗ is the break point. In this paper, we assume that t∗ is known. Our

discussion carries over to the case when t∗ is unknown and when it can be estimated by
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using additional data. Our theory changes if the break point is estimated by using only

the observations X1, ..., XT . This is because for the hypothesis where mante
j ≡ mpost

j , the

break point is not defined and thus t∗ cannot be replaced by a consistent estimator.

Given the break point, we are interested in tests that separately check if there are

changes in mante
j and mpost

j , j = 1, . . . , d, i.e., we test the hypothesis

H0 : mante
j = mpost

j for almost all x.

Without loss of generality we now give an explicit definition of the test statistic only

for the case j = 1. Our test is based on smooth backfitting fits of the functions mante
j

and mpost
j . We therefore modify the discussion following Equation (3) in the last section

to this new setting. The Nadaraya-Watson smooth backfitting estimators m̃l
0, . . . , m̃

l
d

(l = ante, post) are defined as the minimizers of the criterion∑
t∈Tl

∫
Ij

{
Yt − f0 −

d∑
j=1

fj(xj)
}2

Kg(xj, Xt,j)dxj, (5)

where Tante = {t : 1 ≤ t ≤ t∗} and Tpost = {t : t∗ + 1 ≤ t ≤ T}. The minimization runs

over all additive functions f(x) = f0 + f1(x1) + · · · + fd(xd) whose components satisfy∫ 1

0
fj(xj)p̃

l
j(xj)dxj = 0 for j = 1, . . . , d. Here, p̃lj(x) is equal to 1

T

∑
t∈Tl Kg(xj, Xt,j). Up

to a factor, this can be interpreted as a kernel estimator of the average density of Xt,j for

t ∈ Tl with j and l fixed. Moreover, the kernel Kg(v, w) is defined as in the last section.

Note that in case of a breakpoint, it makes no sense to assume that Xt,j have the same

distribution for t ∈ Tl with j and l fixed.

Given the estimators m̃l
2, . . . , m̃

l
d, for l = ante, post, the variables Z l

t can be approxi-

mated by Z̃ l
t = Yt−

∑d
j=2 m̃

l
j(Xt,j) for t ∈ Tl. Based on the samples {Z̃ l

t, Xt,1}t∈Tl , we can

construct the Nadaraya-Watson smoother of ml
1 with bandwidth h, i.e.,

m̂l
1(w) =

∑
t∈Tl Kh(w −Xt,1)Z̃ l

t∑
t∈Tl Kh(w −Xt,1)

.

For j 6= 1 the estimators m̂l
j are defined by analogue constructions. We are now in the

position to define our test statistic as

Sj,T = Th1/2

∫ (
K
j,post
h,T m̂ante

j (x)−K
j,ante
h,T m̂post

j (x)− δ̃
)2
π(x)dx (6)

where π is a weight function with
∫
π(x) dx = 1 and

K
j,post
h,T g(·) =

∑T
t=t∗+1 Kh(·, Xt−1,j)g(Xt−1,j)∑T

t=t∗+1Kh(·, Xt−1,j)
,

K
j,ante
h,T g(·) =

∑t∗

t=2Kh(·, Xt−1,j)g(Xt−1,j)∑t∗

t=2 Kh(·, Xt−1,j)
,

δ̃ =

∫ (
K
j,post
h,T m̂ante

j (x)−K
j,ante
h,T m̂post

j (x)
)
π(x)dx.
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Note that δ̃ is chosen such that

Sj,T = min
δ∈R

Th1/2

∫ (
K
j,post
h,T m̂ante

j (x)−K
j,ante
h,T m̂post

j (x)− δ
)2
π(x)dx.

We now motivate the construction of this test statistic. In a first attempt, one could

consider the test statistic minδ∈R Th
1/2
∫ (

m̂ante
j (x) − m̂post

j (x) − δ
)2
π(x)dx. This test

statistic has the problem that m̂ante
j (x) and m̂post

j (x) have different asymptotic bias terms.

One can show that therefore this test behaves like a linear test and not like an overall

goodness-of-fit test; see Härdle and Mammen (1993) for a related discussion. Our test

statistic corrects for this disadvantage because, as one can show, K
j,post
h,T m̂ante

j (x) and

K
j,ante
h,T m̂post

j (x) have the same asymptotic bias and thus the bias terms cancel when we

take the difference of the two smoothed estimators.

We now discuss the asymptotic distribution of Sj,T in the following setting: the func-

tions m`
k are fixed for (k, `) 6= (j, post). For (k, `) = (j, post) we assume that

mpost
j (x) = mante

j (x) + T−1/2h−1/4∆(x).

One can show that the asymptotics of Sj,T does not change if mpost
` (x) − mante

` (x) also

converges to 0 for ` 6= j. For ∆ ≡ 0 we get a specification that lies on our hypothesis; for

∆ 6≡ 0 we get a neighbored point of the alternative.

Bearing in mind the asymptotic discussion in the last section, we have to take care of

the following two points: (i) Because of the break point, the process (Xt,1, . . . , Xt,d, Yt) is

no longer stationary. (ii) We have to show that by the additional smoothing operations

K
j,ante
h,T and K

j,post
h,T the bias terms cancel in the test statistics. Details are given in Ap-

pendix B. For (i), we will assume that there exist stationary processes Xante
t and Xpost

t

such that Xt is approximated by Xante
t for t � t∗ and that Xt is approximated by Xpost

t

for t� t∗; see Appendix B. In Appendix B, we also provide conditions under which these

approximations apply to the nonparametric HAR model of Section 2.

The limit distribution of Sj,T is given by the following theorem:

Theorem 3. Under assumptions (B1)–(B5) of Appendix B, the statistic

Sj,T − h−1/2K(2)(0)

∫
[0,1]

[
c−1σ2

ante(x) + (1− c)−1σ2
post(x)

]
π(x) dx

has a limiting normal distribution with mean MS =
∫

∆2(x)π(x)dx −
[∫

∆(x)π(x)dx
]2

and variance

VS = 2K(4)(0)

∫
[0,1]

[
1

c2

σante(x)4

pantej (x)2
+

2

c(1− c)
σante(x)2σpost(x)2

pantej (x)ppostj (x)
+

1

(1− c)2

σpost(x)4

ppostj (x)2

]
π(x)2 dx.

Here, σ2
ante(x) is the conditional variance of εantet given Xt−1,j = x and σ2

post(x) is the

conditional variance of εpostt given Xt−1,j = x. Furthermore, K(r) denotes the r-times

convolution product of K (for r ≥ 1).
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In the statement, c denotes the limit of t∗/T for T →∞. As an alternative one could

consider the test statistic minδ∈R Th
1/2
∫ (

m̃LL,ante
j (x) − m̃LL,post

j (x) − δ
)2
π(x)dx, where

m̃LL,ante
j and m̃LL,post

j are local linear smooth backfitting estimators. Now no additional

smoothing of the estimators is required because the asymptotic bias terms of the two

estimators do not differ. The reason is that bias terms of the local linear estimator do

not depend on the density of the covariables (Xt,1, . . . , Xt,d). This is the case for local

linear estimation in classical regression models and it also holds for the smooth backfitting

estimator in additive models; see Mammen et al. (1999). In our applications of both test

statistics, the statistic based on Nadaraya-Watson smoothing and the statistic based on

local linear smoothing, it turned out that the local linear estimator is highly variable in

the boundary region and that this leads to instabilities of the local linear test. As we

will point out, our conclusion is that Nadaraya-Watson smoothing is preferable in testing

whereas local linear smoothing leads to more reliable estimation results.

4.2 Bootstrap

To test against the parametric alternative, we suggest bootstrapping the test statistic to

improve on the small sample behavior. For simplicity of the exposition, set j = 1, for

example, and denote the bootstrap sample as {Y ∗t , Xt,1, . . . , Xt,d}Tt=1 with

Y ∗t =

m̃ante
0 + m̄1 (Xt,1) +

∑d
j=2 m̃

ante
j (Xt,j) + ε∗,antet for t ≤ t∗,

m̃post
0 + m̄1 (Xt,1) +

∑d
j=2 m̃

post
j (Xt,j) + ε∗,postt for t > t∗.

where m̄1 is an average of m̃ante
1 and m̃post

1 . The bootstrap residuals are constructed as

ε∗,kt = ε̂kt ·ηt, where ε̂kt = Yt−m̃k
0−
∑d

j=1 m̃
ante
j (Xt,j) with k = ante, post, are the estimated

residuals and {ηt} is some sequence of i.i.d. variables with zero mean and unit variance that

is independent of the sample {Yt, Xt,1, . . . , Xt,d}Tt=1. Here, we define bootstrap residuals

under the alternative. As also discussed in the last section, one can also use the residuals

of the fit under the null hypothesis. Asymptotically, for neighbored alternatives both

boostrap tests will have the same power. Thus differences in their performance must be

checked by finite sample simulations. In our simulations, we did not find major differences.

Denote by m̃∗,k1 (x), k = ante, post, the bootstrap analogue of m̃k
1(x). The bootstrap

statistic is then defined as

S∗1,T = Th1/2

∫ (
K

1,post
h,T m̃∗,ante1 (x)−K

1,ante
h,T m̃∗,post1 (x)− δ̃∗1

)2
π(x)dx

where

δ̃∗1 =

∫ (
K

1,post
h,T m̃∗,ante1 (x)−K

1,ante
h,T m̃∗,post1 (x)

)
π(x)dx.

The following theorem states that the bootstrap works.

13



Theorem 4. Assume that the conditions (B1)–(B5) of Appendix B are satisfied. Then

S∗j,T − h−1/2K(2)(0)

∫
[0,1]

[
c−1σ2

ante(x) + (1− c)−1σ2
post(x)

]
π(x) dx

d→ N
(
0, VS

)
conditional on the sample {Yt, Xt,1, . . . , Xt,d}Tt=1 with probability tending to one.

5 Data description

The high-frequency data we use ranges from 2003 to 2010 and is provided by Tick Data3

offering validated tick by tick data on a large number of global equity, currencies, com-

modities and interest rate futures and indices. The symbols we use for this work are sum-

marized in Table 1. Prior to estimation of the models, the raw price data are cleaned as

suggested in Barndorff-Nielsen et al. (2009). We then construct an equidistant 5-minutes

tick data series from observed prices by means of the previous tick method. This follows

suggestions in Andersen, Bollerslev, Diebold and Ebens (2001) and Andersen, Bollerslev,

Diebold and Labys (2001).4 Futures are rolled based on the day tick count for the various

contracts traded to ensure that only price data from the most liquidly traded contract is

employed. Finally, we compute intra-day log-returns.

For this work, we are only interested in modeling jump-free measures of realized vari-

ance, i.e., estimates of integrated variance. This is because including jumps as predictors

is questionable in nonparametric modeling given the sparsity of jump data. Furthermore,

the relevance of jumps in RV regressions is still subject to research (Andersen et al.; 2007;

Corsi et al.; 2010, among others). We therefore subject the return series to a testing

procedure (detailed in Appendix C) by which we separate jumps from non-jump returns.

Throughout this study, we only consider intraday returns, i.e., we ex ante qualify over-

night returns as jumps. Our estimate of daily RV is then estimated by summing the

intraday squared 5-minutes returns, but correcting for the contribution of jumps; see Ap-

pendix C. Finally, we compute the (log) weekly and monthly RV series using the index

set ι = (1, 5, 22), i.e. we set V
(1)
t = logRVt to compute V

(5)
t and V

(22)
t as explained in

Section 2. The log-transformation is commonly applied to RV data.

For illustration, we present three representative daily log-RV series of the S&P500

index (SP), the 10yr TNote (TY) and natural gas (NG) in Fig. 1. The equity index

hovered at about 11% ≈
√

250 exp(−10) annual volatility till mid 2007, while the fixed

income series even declined from 8% to about 3% annual volatility. Both series soared

through 2007-2008, where equity futures witnessed levels of RV of almost 80% annualized

3See www.tickdata.com.
4The previous tick method assigns the last traded price to the sampling time; see Dacorogna et al.

(2001) and Hansen and Lunde (2006) for detailed discussions of alternative sampling schemes.
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volatility at the climax of the financial crisis. For both instruments, RV declined through

2009 but picked up again during 2010 with the Euro-zone sovereign bond crisis looming.

This is in stark contrast to the natural gas future (NG) which is traded at high RV levels

of about 40% annualized volatility in the entire sample. This, however, does not imply

that NG was unaffected by the crisis. In fact, and in anticipation of our empirical results,

we find a structural break in NG as well as in TY, but not in SP, which demonstrates the

limits of visual inspection of nonlinear time series.

6 Empirical analysis

For the empirical analysis we proceed as follows. We first make some preliminary com-

ments on bandwidth choice and model estimation in Section 6.1. In Section 6.2, we

estimate the additive model on the whole sample and test each of the variance compo-

nents, i.e., the daily, weekly, and monthly functions, against linearity. In Section 6.3, we

ask whether these results are driven by a structural break that could have occurred at

the outbreak of the financial crisis in mid 2007. If our test identifies a structural break,

we repeat the tests for nonlinearity on each subsample. This is to check whether the

identified nonlinear shapes are artifacts of ignoring a structural break. In Section 6.4, we

report further results on alternative testing procedures and robustness checks.

6.1 Bandwidth choice

For bandwidth selection of the smooth backfitting estimators m̃j, we use a plug-in rule

which works as follows. We calculate the integrated mean squared error of m̃j; see Mam-

men et al. (1999) for the relevant expressions. Since the asymptotic bias expression of

the Nadaraya-Watson based backfitting estimators is very involved, we work with the

bias expression of the local linear backfitting instead. We then iteratively choose the

bandwidths which minimize the integrated mean squared error. This follows bandwidth

selection rules for additive models proposed in Mammen and Park (2005). The band-

widths resulting from this procedure are collected in Table 2.

As is apparent from Theorems 1 and 3, the initial smooth backfitting estimates need to

be undersmoothed. To achieve this undersmoothing, these initial fits are obtained using

bandwidths that are 30% smaller than those displayed in Table 2.

6.2 Tests against the linear specification

We now test the linearity hypothesis of the simple HAR model for each variance com-

ponent function. The tests are implemented as prescribed by Theorems 1 and 2 for

15



the Nadaraya-Watson based smooth backfitting estimator. The bootstrap sample is con-

structed as described in Equation (4). We experimented by drawing residuals from both

the alternative and the null hypothesis. Both results are very similar, with the latter

slightly more conservative. We hence only report results obtained for residuals drawn

from the null hypothesis. The weight function is the empirical density of Xt,j, which

mitigates potential boundary effects. All p-values are computed from 10,000 bootstrap

replications.

From Table 3, it is evident that there is a case for nonlinearity. For the daily compo-

nent, in 11 out of the 17 series, we find evidence of there being a deviation from the simple

linear specification at p-values below 10% (CF, FT, XX, BN, TY, US, NG, HG, EC, JY,

SY; see Table 1 for the acronyms). For the weekly component, the evidence is weaker.

Here, we find nonlinearity in about half the cases (CF, XX, BN, CL, EC, JY, CN). For

the monthly component, 9 tests reject the linear specification at a 10% significance level

(FT, KM, NE, SP, TY, US, HG, EC, CN).

Across asset classes, evidence against linearity appears to be strongest among assets

that can be expected to be most strongly affected during an economic downturn, such as

assets under distress such as equity (CF, FT, KM, NE, SP, XX), for all of which at least

one component is nonlinear, and safe haven assets such as fixed income (BN, TY, US)

and currency futures (EC, JY), which even have two nonlinear components. For assets

whose prices are predominantly determined by long-term global consumption perspectives,

such as energy (CL, NG), metal (HG) and food commodities (SY), the evidence is less

compelling, as typically only one component is affected at comparatively large p-values.

Interestingly, despite its role as a primary safe haven asset during the financial and the

sovereign bond crisis, gold (GC) appears to be best fitted with the linear HAR model.

In Fig. 3, we display a number of nonlinear fits of the first variance component function

for both the equity-based assets and natural gas (CF, FT, XX, NG in top left panel) and

the fixed income and currency futures (BN, US, EC, JY in top right panel). All in all,

the degree of nonlinearity is moderate. Discounting boundary effects, we find upward

curving, mildly convex shapes as a common stylized facts among these daily component

functions. Hence, at increased levels of RV, the marginal impact of short-term trading on

future daily RV is larger. According to the usual interpretation of the HAR model, this

means that at higher variance levels, daily trading activities drive RV more predominantly

than in calm markets. This is in contrast to the weekly and monthly component functions

shown in the lower panels of Fig. 3. They appear to be concavely shaped, which implies

that the marginal predictive relevance of the weekly and monthly variance components

on future RV diminishes at higher variance levels. Thus, there appears to be a shift in the

relative predictive importance of the different variance functions depending on the level
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of daily realized variance. Allowing for nonlinear variance components captures these

patterns nicely.

In Fig. 4, we display the two examples of nonparametric HAR model for the French

index CAC40 (CF, top panel) and USD-Yen currency future (JY, lower panel). The

estimated functions are contrasted with the linear fits. According to our tests in Table 3

for CF, there is nonlinearity in the components m̃1 and m̃2, but not in m̃3. This is

confirmed by the plots. Because of convexity, the linear model overfits m̃1 in the middle

of the domain and underfits in the boundary regions. Converse observations apply to m̃2.

Clearly, m̃3 for CF is not different from the linear fit. For m̃1 of JY, similar observations

as for the daily variance function of CF apply. For m̃2 the evidence is less compelling, as

the p-value is at about 7%. Therefore, this function could also be assumed to be linear –

as well as obviously m̃3.

6.3 Structural break tests and specification tests on subsamples

6.3.1 Choice of break date

The data set includes the global financial crisis following the collapse of the U.S. real estate

markets towards the end of 2007 as well as the initial phase of the subsequent Euro-zone

sovereign bond crisis beginning early in 2010. The severity of the market distress during

the financial crisis can be inferred from Fig. 2, which shows daily S&P500 index closing

prices along with the spread of the London interbank offered rate over the overnight

indexed swap (Libor-OIS, 3-months, USD). The Libor-OIS spread is a widely recognized

measure of credit risk within the banking sector (Thornton; 2009). As is visible, the spread

is close to zero up to July/August 2007, after which it spikes up, reaching unprecedented

levels of more than 350 basis points during the climax of the crisis in 2008/2009.

In structural break analysis, we will use the sharp increase of the spread in July/August

2007 as an indicator for a potential structural break in the RV series. More precisely, the

break date is assumed to be July 25, 2007, where the sample is split. This was one of the

last days on which the Libor-OIS spread was below 10 basis points. By the end of August

the Libor-OIS spread was already larger than 45 basis points; see Fig. 2. In Section 6.4,

we subject this choice to a sensitivity analysis.

6.3.2 Discussion of results

Structural break tests are based on the test statistic presented in Section 4. As a weight

function in the statistic (6), we use π = cπ p
ante
j ppostj /(pantej + ppostj ), where the empirical

density function on the subsample is denoted by pij, j = 1, 2, 3, i = {ante, post}, and

cπ is a constant such that
∫
π(u)du = 1. This weight function puts emphasis on the
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joint overlap of the ante sample and post sample data. All p-values are computed from

10,000 bootstrap replications. The specification tests against the linear HAR model on

the subsamples are carried out exactly as described above.

Table 4 presents the results of the structural break tests. Breaks are identified in all

three component functions but are most frequent in the daily component functions. In

the daily component functions, breaks are found for the equity and fixed income-based

instruments (CF, FT, KM, XX, TY, US), and corn (CN). TY and US exhibit breaks

in all three components. Additional breaks in the weekly component are found for NG

and SY and for the monthly component in KM, XX and EC. With few exceptions, the

component functions with breaks display evidence of nonlinearity when estimated on the

whole sample. It will thus be of interest to test for nonlinearity on the subsamples.

In Table 5, the subsamples are submitted to the specification test against the linear

model. We first consider the daily component function. Here, for three out of the four

remaining equity instruments (CF, FT, XX), the linear daily variance function is rejected

in the ante sample but not in the post sample. The same observation applies to corn (CN).

In contrast, in the 30 yrs TBond future data (US), the test strongly rejects linearity on

the post sample. In all these cases (except CN), the tests in Table 3 already show evidence

of nonlinearity on the whole sample.

For the weekly component functions, it is again the estimate on the ante sample that

is rejected in most cases (US, NG, and EC). For EC, the post sample estimate is nonlinear

as well. For the monthly function, evidence is more evenly distributed. For KM and EC,

the tests on the ante and the post sample reject; for US and XX, the tests reject only on

the ante and the post sample, respectively. In three cases (US, NG, XX), this nonlinearity

was undetected when tested on the whole sample.

In Fig. 5, we contrast the component functions of interest estimated on the ante versus

the post sample. As found for the estimates on the whole sample in Section 6.2, the daily

component functions of the equity instruments CF, FT, XX, and corn (CN) estimated

on the ante sample retain mildly convex shapes. The weekly component function of NG

(middle plot in lower panel of Fig. 5) seems to consist of two approximately linear parts,

more strongly sloped for low levels of RV and flatter for high levels. A similar observation

applies to the monthly ante component function of EC. The 10 yrs treasury note future

(TY) is the only series for which no test rejects. The nonlinearity previously detected on

the whole sample is likely due to ignoring a structural break in an otherwise linear model.

A linear HAR models on each subsample is a perfect choice; see Fig. 6.

In summary, the picture that emerges is twofold. First, RV series of equity, fixed

income and currency futures exhibit structural breaks in at least one component function

at the outbreak of the crisis period; second, the nonlinearity in the component function
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remains robust in at least one of the subsamples, usually in the ante, i.e., the pre-crisis

sample. Interestingly, we find that the linear model is hardly rejected on the post sample:

in crisis times, it is the simple model that fits best.

6.4 Additional statistical procedures and robustness checks

In order to complete the picture of our empirical findings, we compare our results with

alternative testing procedures. As remarked in the main text, our tests could be carried

out using the local linear smooth backfitting procedure. We therefore repeat the analysis

of Section 6.2.5 For most series, the local linear-based tests in Table 6 reject where the

Nadaraya-Watson-based test rejects (Table 3), thus confirming our previous results. Yet,

there appears a tendency of the local linear smooth backfitting-based test to find more

rejections of the linearity assumption.6 This could have been expected as local polynomials

are instable when the design density is thin. In our situation, this may occur at the

boundaries of the support and might therefore result in spurious evidence of nonlinearity;

see Seifert and Gasser (1996) for a discussion of this issue. The Nadaraya-Watson based

test is more robust in this respect.

Due to the aforementioned instability of the local linear-based testing, we do not con-

sider this approach for the structural breaks. When the mutual support of the functions

in the ante and the post sample does not fully overlap, boundary effects are overempha-

sized, which leads to unreasonable test outcomes. We rather consider alternative break

dates. From Fig. 1 and Fig. 2, one sees that the increase in the Libor-OIS spread also

marks the beginning of soaring volatility levels. Nevertheless, setting the structural break

date in this way could invite criticism of being arbitrary. As a safeguard, we shifted this

date two weeks before the July 25, 2007, and two and fours weeks after this date. In

all cases, the conclusion about the structural break was the same as in Table 4.7 This

interpretation can also be supported by asymptotic considerations that show that the test

statistic smoothly depends on the chosen break point; see the fifth bound in Assumptions

(B2).

On the other hand, one could argue that by mid-2009 the crisis had calmed down,

implying that one should test on a smaller post sample, for example from July 25, 2007,

5We again use the bandwidth from Table 2. In the plug-in procedure we used for bandwidth deter-

mination the bias of the Nadaraya-Watson-based backfitting was approximated with the bias from local

linear-based backfitting; therefore the implementation is actually accurate for the local linear estimator.
6There are also a few cases in which Nadaraya-Watson-based tests reject the null hypothesis while the

local linear-based tests do not. It should be noted, however, that with the exception of CN (weekly) and

SP (monthly), p-values were about 7% or larger; thus evidence in favor of nonlinearity is already weak

in the Nadaraya-Watson-based test.
7Table available from authors upon request.
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to May 20, 2009. This date corresponds to the time when the level of the Libor-OIS

spread reached about 50 basis points. We therefore ran the structural break tests on this

smaller post sample. In comparison to Table 4, we find that the weekly components in

NG and US as well as the monthly component function in KM do not reject the null of

a structural break, whereas NE in the monthly component does.8 Thus, on the smaller

sample, which ranges over the dramatic period of the financial crisis only, we find fewer

structural breaks rather than more. This may be caused by the smaller sample size. Given

all these results, we conclude that our model estimated from the broader post sample and

choice of the break date are justified and that the significant differences between ante and

post functions are not driven by temporary changes only.

We finish this section by reporting the subsample tests against the linear HAR model

based on local linear smooth backfitting; see Table 7. As observed on the entire sample,

test results using the local linear-based estimator encompass the findings from the main

section but also provide once more further evidence of nonlinearity. This may again be

due to the sensitivity of the local linear estimator.

7 Concluding remarks

We provide the diagnostic tool to detect nonlinearity and to test for structural breaks

in additive models that are estimated from dependent data by means of smooth back-

fitting. We apply the theory to a nonparametric extension of the linear heterogeneous

autoregressive model (HAR) suggested by Corsi (2009) to model realized variance data.

We find the linearity assumption is widely rejected, in particular on equity, fixed income

and currency futures data; in the presence of a structural break, nonlinearity prevails on

the sample ending before the outbreak of the financial crisis.

In this work, we concentrated on comparing the linear HAR specification against

the additive model. This basic nonparametric HAR model could readily be extended

in several ways, e.g., by adding additional parametric components that capture jumps,

as in Andersen et al. (2007) or Corsi et al. (2010), and by including a nonparametric

leverage function as in Corsi and Renò (2012). Furthermore, one could build on our results

by replacing the nonparametric estimates by approximate parametric components and

conducting a forecasting exercise. A potential avenue would be to add ideas from regime-

switching models that have parsimoniously parametrized nonlinear variance component

functions conditionally on the regimes. We leave this for further research.

8Table available from authors upon request.
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A Parametric specification tests

In this appendix, we prove the results concerning the test on parametric specification from

Section 3. Throughout, the symbol C is used to denote a universal real constant that

may take a different value on each occurrence. Without loss of generality, we consider the

case d = 2, i.e., we work with the model

Yt = m0 +m1(Xt,1) +m2(Xt,2) + εt.

We make the following assumptions on the model components:

(A1) The process {X t, εt} is strictly stationary and strongly mixing with mixing coeffi-

cients α satisfying α(k) ≤ ak for some 0 < a < 1.

(A2) The variables X t = (Xt,1, Xt,2) have compact support, e.g. [0, 1]2. The density p

of X t and the densities p(0,l) of (X t,X t+l), l = 1, 2, . . . , are uniformly bounded.

Furthermore, p is bounded away from zero on [0, 1]2.

(A3) The functions m1 and m2 are twice continuously differentiable. The second deriva-

tives are Lipschitz continuous of order β for some small β > 0, i.e. |m′′i (u)−m′′i (v)| ≤
C|u− v|β for i = 1, 2. Moreover, the first partial derivatives of p exist and are con-

tinuous.

(A4) The kernelK is bounded, symmetric about zero and has compact support ([−C1, C1],

for instance). Moreover, it fulfills the Lipschitz condition that there exist a positive

constant L with |K(u)−K(v)| ≤ L|u− v|.

(A5) The residuals are of the form εt = σ(X t)ξt. Here, σ is a Lipschitz continuous

function and {ξt} is an i.i.d. process having the property that ξt is independent of

Xs for s ≤ t. The variables ξt satisfy E[ξ6+δ
t ] < ∞ for some small δ > 0 and are

normalized such that E[ξ2
t ] = 1.

(A6) There exists a real constant C and a natural number l∗ such that E[|ξt||X t,X t+l] ≤
C for all l ≥ l∗.

(A7) It holds that

mθ̂(w)−mθ0(w) =
1

T

T∑
t=1

〈q(w), r(Xt,1)〉ε̃t + op((T log T )−1/2)

uniformly in w, where ε̃t = εt + (m2(Xt,2) − m̃2(Xt,2)) and q and r are bounded

functions taking values in Rk for some k. Here, 〈·, ·〉 denotes the usual Euclidean

inner product for vectors.

21



For the results on the wild bootstrap procedure, we replace (A7) by an analogous assump-

tion in the bootstrap world.

(A7*) Let θ̂∗ be the parameter estimate based on the bootstrap sample {Y ∗t ,X t}. It holds

that

mθ̂∗(w)−mθ0(w) =
1

T

T∑
t=1

〈q(w), r(Xt,1)〉ε∗t + op((T log T )−1/2)

uniformly in w, where q and r are bounded functions taking values in Rk for some

k.

We make some brief remarks on the above assumptions. First, note that we do not

necessarily require exponentially decaying mixing rates as assumed in (A1). These could

alternatively be replaced by sufficiently high polynomial rates at the cost of a more in-

volved notation. It is also possible to drop the boundedness assumption in (A2) and to

allow for unbounded support of X t. To do so, we have to modify the smoother m̂ and the

pilot estimators of the backfitting algorithm. Specifically, let A = A1 × A2 be a compact

subset of R2 and suppose that the support of the weight function π is contained in A1,

i.e., supp(π) ⊆ A1 with supp(π) being the support of π. With this notation at hand, we

can replace m̂ by ∑T
t=1 I(X t ∈ A)Kh(w −Xt,1)Z̃t∑T
t=1 I(X t ∈ A)Kh(w −Xt,1)

and modify the pilot estimates of the backfitting procedure in an analogous way; see

Section 5 in Mammen et al. (1999) who work with the same modification. Rewriting

the test statistic in terms of these modified estimators allows one to handle regressors

with unbounded support. (A2)–(A4) are standard conditions in the smooth backfitting

literature (Mammen et al.; 1999). (A6) is required to derive the uniform convergence

rates of the Nadaraya-Watson estimators that enter the smooth backfitting procedure as

pilot smoothers. (A5) imposes a martingale difference structure on the residuals, which

is needed to cope with the time series dependence of the model variables when deriving

the limiting distribution of the test statistic. Finally, condition (A7) is fulfilled, e.g., for

weighted least squares estimators in linear models and under appropriate smoothness con-

ditions for weighted least squares estimates in nonlinear settings; see Härdle and Mammen

(1993) for details.

Before we come to the proof of Theorems 1 and 2, we list some properties of the back-

fitting estimators m̃1 and m̃2. For technical reasons, we undersmooth them by choosing

the bandwidth g to be of the order O(T−(1/4+δ)) for some small δ > 0. Under the assump-

tions from above, m̃i, for i = 1, 2, can be written as m̃i = m̃A
i + m̃B

i with m̃A
i having the

expansion

m̃A
i (w) = m̃A,NW

i (w) +
1

T

T∑
t=1

rt(w)εt + op(T
−1/2) (7)
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uniformly for w ∈ [0, 1]. Here, m̃A,NW
i is the stochastic part of a one-dimensional

Nadaraya-Watson estimator given by

m̃A,NW
i (w) =

∑T
t=1 Kg(w,Xt,i)εt∑T
t=1 Kg(w,Xt,i)

and rt(·) = r(X t, ·) are random functions that are absolutely uniformly bounded and

fulfill the Lipschitz condition |rt(w) − rt(w′)| ≤ C|w − w′|. The expansion (7) has been

derived in Mammen and Park (2005) in an i.i.d. setup. The proving strategy can however

be easily extended to our stationary mixing framework. We omit the details. For the bias

part m̃B
i , we have the following uniform convergence result: Let Ih = [2C1g, 1−2C1g] and

Ich = [0, 1]\ Ih be the interior and the boundary region of the support of Xt,i, respectively.

Then

sup
w∈Ih
|mi(w)− m̃B

i (w)| = Op(g
2) (8)

sup
w∈Ich
|mi(w)− m̃B

i (w)| = Op(g). (9)

This can be shown following the lines of the proof for Theorem 4 in Mammen et al. (1999).

Proof of Theorem 1

Let m1(·) = mθ0(·) + cT∆(·) with cT = T−1/2h−1/4 and denote by p1 the marginal density

of Xt,1. Moreover, without loss of generality set π(w) = I(w ∈ [0, 1]) and write
∫

=
∫ 1

0

for short. Some straightforward calculations yield that

ST = Th1/2

∫ (
UT,1(w) + . . .+ UT,5(w)

)2
dw + op(1)

with

UT,1(w) =
1

T

T∑
t=1

Kh(w −Xt,1)cT∆(Xt,1)
/
p1(w)

UT,2(w) =
1

T

T∑
t=1

Kh(w −Xt,1)εt
/
p1(w)

UT,3(w) =
1

T

T∑
t=1

Kh(w −Xt,1)
(
m2(Xt,2)− m̃2(Xt,2)

)/
p1(w)

UT,4(w) =
1

T

T∑
t=1

Kh(w −Xt,1)
( 1

T

T∑
s=1

〈q(Xt,1), r(Xs,1)〉εs
)/
p1(w)

UT,5(w) =
1

T

T∑
t=1

Kh(w −Xt,1)
( 1

T

T∑
s=1

〈q(Xt,1), r(Xs,1)〉
(
m2(Xs,2)− m̃2(Xs,2)

))/
p1(w).
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The two terms UT,3(w) and UT,5(w) capture the estimation error resulting from approx-

imating the function m2 by m̃2. They can thus be regarded as measuring the difference

between our test statistic and the statistic of the oracle case where the function m2 is

known. In what follows, we show that UT,3(w) and UT,5(w) are asymptotically negligible

in the sense that

Th1/2

∫
UT,j(w)UT,3(w)dw = op(1) (10)

Th1/2

∫
UT,j(w)UT,5(w)dw = op(1) (11)

for all j = 1, . . . , 5. We thus arrive at

ST = Th1/2

∫ (
UT,1(w) + UT,2(w) + UT,4(w)

)2
dw + op(1) =: S ′T + op(1) (12)

with S ′T basically being the statistic of the oracle case. (12) thus shows that our statistic

ST has the same limit distribution as that of the oracle case.

To complete the proof, we need to derive the asymptotic distribution of S ′T . The latter

has exactly the same structure as the statistic from Proposition 1 in Härdle and Mammen

(1993). Even though Härdle and Mammen derive their results in an i.i.d. setting, their

proving strategy easily carries over to our mixing setup. We need only make some minor

adjustments. Most importantly, we cannot apply a central limit theorem for quadratic

forms of i.i.d. variables as they do. Nevertheless, assumption (A5) on the error terms

allows us to work with a central limit theorem for martingale differences instead (e.g.

with Theorem 1 in Chapter 8 of Pollard (1984)). On this basis we can proceed along the

lines of their arguments to complete the proof. The details are omitted.

Proof of (10) and (11). We limit our attention to the proof of (10), the arguments for

(11) being exactly the same. Using the uniform expansion (7) for the stochastic part of

the backfitting estimator m̃2, we can write UT,3(w) = UA,NW
T,3 (w) + UA,SBF

T,3 (w) + UB
T,3(w)

with

UA,NW
T,3 (w) = − 1

T

T∑
t=1

Kh(w −Xt,1)
( 1

T

T∑
s=1

Kg(Xt,2, Xs,2)
1
T

∑T
v=1Kg(Xt,2, Xv,2)

εs

)/
p1(w)

UA,SBF
T,3 (w) = − 1

T

T∑
t=1

Kh(w −Xt,1)
( 1

T

T∑
s=1

rs(Xt,2)εs

)/
p1(w)

UB
T,3(w) =

1

T

T∑
t=1

Kh(w −Xt,1)
(
m2(Xt,2)− m̃B

2 (Xt,2)
)/
p1(w).
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To complete the proof of (10), it thus suffices to show that

Th1/2

∫
UT,j(w)UA,NW

T,3 (w)dw = op(1) (13)

Th1/2

∫
UT,j(w)UA,SBF

T,3 (w)dw = op(1) (14)

Th1/2

∫
UT,j(w)UB

T,3(w)dw = op(1) (15)

for j = 1, . . . , 5.

We start with the proof of (13) which consists of several steps. In the first step, we

show that

Th1/2

∫
UT,j(w)UA,NW

T,3 (w)dw = WT,j + op(1) (16)

with

WT,j = Th1/2

∫
UT,j(w)

1

T

T∑
t=1

Kh(w −Xt,1)

p1(w)

( 1

T

T∑
s=1

Kg(Xt,2, Xs,2)

κ(Xt,2)
εs

)
dw

and κ(u) = E[Kg(u,X0,2)]. We thus replace the sum 1
T

∑T
v=1Kg(Xt,2, Xv,2) in UA,NW

T,3 by

the moment κ(Xt,2) and show that the resulting error is asymptotically negligible. To

do so, write 1
T

∑T
v=1Kg(u,Xv,2) = κ(u) + R(u) with κ(u) = E[Kg(u,Xv,2)] and R(u) =

1
T

∑T
v=1(Kg(u,Xv,2) − E[Kg(u,Xv,2)]). As supu∈[0,1] |R(u)| = Op(

√
log T/Tg), it further

holds that( 1

T

T∑
v=1

Kg(u,Xv,2)
)−1

=
1

κ(u)

(
1 +

R(u)

κ(u)

)−1

=
1

κ(u)

(
1− R(u)

κ(u)
+Op

( log T

Tg

))
uniformly in u. Plugging this into the term UA,NW

T,3 (w), we easily arrive at (16).

In the next step, we split up WT,j into a leading term and a remainder which is

asymptotically negligible. In particular, letting Et[ · ] denote the expectation with respect

to the variables indexed by t, we show that

WT,j = Th1/2

∫
UT,j(w)

( 1

T 2

T∑
s,t=1

Kh(w −Xt,1)

p1(w)
Et
[Kg(Xt,2, Xs,2)

κ(Xt,2)

]
εs

)
dw +RT,j, (17)

where the remainder term RT,j is given by

RT,j = Th1/2

∫
UT,j(w)

( 1

T 2

T∑
s,t=1

Kh(w −Xt,1)

p1(w)

(Kg(Xt,2, Xs,2)

κ(Xt,2)
−Et

[Kg(Xt,2, Xs,2)

κ(Xt,2)

])
εs

)
dw

and satisfies RT,j = op(1). This can be seen as follows: To start with, apply the Cauchy-

Schwarz inequality to obtain that |RT,j| ≤ C(
∫
UT,j(w)2dw)1/2 ·Q1/2

T with

QT =

∫ {h1/2

T

T∑
s,t=1

Kh(w −Xt,1)
(Kg(Xt,2, Xs,2)

κ(Xt,2)
− Et

[Kg(Xt,2, Xs,2)

κ(Xt,2)

])
εs

}2

dw.
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Below, we show that Q
1/2
T = Op(aT ) with aT = κT (log T )g−3/4, where κT slowly diverges

to infinity, e.g. κT = log log T . As (
∫
UT,j(w)2dw)1/2 = Op(g) for all j = 1, . . . , 5, this

immediately implies that RT,j = op(1).

Our strategy to verify that Q
1/2
T = Op(aT ) is to exploit the second moment structure

of the term Q
1/2
T . More specifically, let M be a positive constant. Then by Chebychev’s

inequality,

P
(
|Q1/2

T | > MaT
)
≤ E[QT ]

(MaT )2
=

h

(MTaT )2

T∑
s,s′,t,t′=1

∫
E
[
ψt,s(w)ψt′,s′(w)εsεs′

]
dw

with

ψt,s(w) = Kh(w −Xt,1)
(Kg(Xt,2, Xs,2)

κ(Xt,2)
− Et

[Kg(Xt,2, Xs,2)

κ(Xt,2)

])
.

We now write

h

(TaT )2

T∑
s,s′,t,t′=1

∫
E
[
ψt,s(w)ψt′,s′(w)εsεs′

]
dw

=
h

(TaT )2

∑
(s,s′,t,t′)∈Γ

∫
E
[
ψt,s(w)ψt′,s′(w)εsεs′

]
dw

+
h

(TaT )2

∑
(s,s′,t,t′)∈Γc

∫
E
[
ψt,s(w)ψt′,s′(w)εsεs′

]
dw

=: EΓ + EΓc .

Here, Γ is the set of tuples (s, s′, t, t′) with 1 ≤ s, s′, t, t′ ≤ T such that (at least) one index

is separated from the others and Γc is its complement. We say that an index, for instance

t, is separated from the others if min{|t− t′|, |t− s|, |t− s′|} > C2 log T , i.e. if it is further

away from the other indices than C2 log T for a constant C2 to be specified later.

We now analyze EΓ and EΓc separately. By definition, the set Γc contains all index

tuples (s, s′, t, t′) such that no index is separated. With this in mind, it is easily seen that

the number of tuples contained in Γc is smaller than C(T log T )2 for some sufficiently large

constant C. Moreover, with the help of the Cauchy-Schwarz inequality it is straightfor-

ward to compute that
∫
E[ψt,s(w)ψt′,s′(w)εsεs′ ]dw ≤ Ch−1g−3/2. As a consequence,

EΓc ≤ h

(TaT )2

∑
(s,s′,t,t′)∈Γ

∫
E
[
ψt,s(w)ψt′,s′(w)εsεs′

]
dw ≤ C

κ2
T

→ 0.

We next turn to EΓ. First note that Γ can be written as the union of the disjoint sets

Γ1 = {(s, s′, t, t′) ∈ Γ | the index t is separated}

Γ2 = {(s, s′, t, t′) ∈ Γ | (s, s′, t, t′) /∈ Γ1 and the index s is separated}

Γ3 = {(s, s′, t, t′) ∈ Γ | (s, s′, t, t′) /∈ Γ1 ∪ Γ2 and the index t′ is separated}

Γ4 = {(s, s′, t, t′) ∈ Γ | (s, s′, t, t′) /∈ Γ1 ∪ Γ2 ∪ Γ3 and the index s′ is separated}.
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Hence, EΓ = EΓ1 + EΓ2 + EΓ3 + EΓ4 with

EΓr =
h

(TaT )2

∑
(s,s′,t,t′)∈Γr

∫
E
[
ψt,s(w)ψt′,s′(w)εsεs′

]
dw

for r = 1, . . . , 4. In what follows, we show that EΓr = o(1) for r = 1, . . . , 4. Since the

proof is exactly the same for r = 1, . . . , 4, we focus attention on the term EΓ1 . Let {In}NT
n=1

be a cover of the compact support [0, 1] of Xt,2. The elements In are intervals of length

1/NT given by In = [n−1
NT

, n
NT

) for n = 1, . . . , NT − 1 and INT
= [1− 1

NT
, 1]. The midpoint

of the interval In is denoted by un. With this, we can write

Kg(Xt,2, Xs,2) =

NT∑
n=1

I(Xs,2 ∈ In)
[
Kg(Xt,2, un) + (Kg(Xt,2, Xs,2)−Kg(Xt,2, un))

]
and thus ψt,s(w) = ψAt,s(w) + ψBt,s(w) with

ψAt,s(w) = Kh(w −Xt,1)

NT∑
n=1

{Kg(Xt,2, un)

κ(Xt,2)
− Et

[Kg(Xt,2, un)

κ(Xt,2)

]}
I(Xs,2 ∈ In)

ψBt,s(w) = Kh(w −Xt,1)

NT∑
n=1

{Kg(Xt,2, Xs,2)−Kg(Xt,2, un)

κ(Xt,2)

− Et
[Kg(Xt,2, Xs,2)−Kg(Xt,2, un)

κ(Xt,2)

]}
I(Xs,2 ∈ In).

Inserting this into the expression for EΓ1 , we obtain EΓ1 = EA
Γ1

+ EB
Γ1

with

EA
Γ1

=
h

(TaT )2

∑
(s,s′,t,t′)∈Γ1

∫
E
[
ψAt,s(w)εsψt′,s′(w)εs′

]
dw

EB
Γ1

=
h

(TaT )2

∑
(s,s′,t,t′)∈Γ1

∫
E
[
ψBt,s(w)εsψt′,s′(w)εs′

]
dw.

We first consider EA
Γ1

: The Lipschitz continuity of the kernelK yields that |Kg(Xt,2, Xs,2)−
Kg(Xt,2, un)| ≤ C

g2
|Xs,2 − un|, which in turn gives that |ψBt,s(w)| ≤ C

hg2NT
. Plugging this

into the expression for EB
Γ1

and letting NT grow at a sufficiently fast rate, we arrive at

|EB
Γ1
| = o(1). To deal with EA

Γ1
, we write

EA
Γ1

=
h

(TaT )2

∑
(s,s′,t,t′)∈Γ1

( NT∑
n=1

∫
γn(w)dw

)
with

γn(w) = E
[
Kh(w −Xt,1)

{Kg(Xt,2, un)

κ(Xt,2)
− Et

[Kg(Xt,2, un)

κ(Xt,2)

]}
I(Xs,2 ∈ In)εsψt′,s′(w)εs′

]
.
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By Davydov’s inequality, it holds that

γn(w) = Cov
(
Kh(w −Xt,1)

{Kg(Xt,2, un)

κ(Xt,2)
− Et

[Kg(Xt,2, un)

κ(Xt,2)

]}
, I(Xs,2 ∈ In)εsψt′,s′(w)εs′

)
≤ C

(gh)2

(
α(C2 log T )

)1− 1
q
− 1

r ≤ C

(gh)2

(
aC2 log T

)1− 1
q
− 1

r ≤ C

(gh)2
T−C3

with some C3 > 0, where q and r are chosen slightly larger than 4
3

and 4, respectively.

Note that we can make C3 arbitrarily large by choosing C2 to be large enough. From this,

it easily follows that EA
Γ1

= o(1). Putting everything together yields that QT = Op(aT ),

which in turn shows that RT,j = op(1).

Thus far, we have shown that equation (17) holds with RT,j = op(1). Slightly rear-

ranging the terms in (17), we arrive at∣∣∣Th1/2

∫
UT,j(w)UA,NW

T,3 (w)dw
∣∣∣

=
∣∣∣Th1/2

∫
UT,j(w)

( 1

T

T∑
t=1

Kh(w −Xt,1)

p1(w)

)
︸ ︷︷ ︸

Op(1) uniformly in w

( 1

T

T∑
s=1

E0

[Kg(X0,2, Xs,2)

κ(X0,2)

]
εs

)
︸ ︷︷ ︸

=Op(T−1/2) uniformly in w

dw
∣∣∣+ op(1)

≤ Th1/2 Op(T
−1/2)

(∫
UT,j(w)2dw

)1/2

+ op(1),

where the last line is by the Cauchy-Schwarz inequality. From this, (13) immediately

follows for j = 1, 2, 4. Using the arguments from Steps 1 and 2 above and noting that(∫
UB
T,j(w)2dw

)1/2

= Op(g
2) (18)

for j = 3, 5, some straightforward additional considerations yield (13) for j = 3, 5 as well.

The results (14) and (15) follow by similar arguments. This completes the proof.

Proof of Theorem 2

The proof has the same structure as the proof of Theorem 1. By arguments analogous to

those above, we can replace the estimator m̃2 by the true function m2 and show that the

resulting error is asymptotically negligible. Once this has been done, the proof follows

the line of the arguments in Härdle and Mammen (1993).
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B Structural breaks tests

We make the following assumptions. As in Appendix A, we assume for simplicity that

d = 2.

(B1) For l = ante, post, there exist stationary processes (X l
t,1, X

l
t,2, Y

l
t ) with:

Y l
t = ml

0 +ml
1

(
X l
t,1

)
+ml

2

(
X l
t,2

)
+ εlt . (19)

The process (Xante
t,1 , Xante

t,2 , εantet , Xpost
t,1 , Xpost

t,2 , εpostt ) is stationary and α-mixing with

α(t) ≤ Cαη
t

for some 0 < Cα <∞ and 0 < η < 1.

(B2) There exist 1/2 < γ < 1 and a constant Cγ such that for j = 1 and j = 2

sup{|Xpost
t,j −Xt,j| : t∗ + Cγ log T ≤ t ≤ T} = Op(hT

−γ),

sup{|Y post
t − Yt| : t∗ + Cγ log T ≤ t ≤ T} = Op(T

−γ),

sup{|Xante
t,j −Xt,j| : Cγ log T ≤ t ≤ t∗} = Op(hT

−γ),

sup{|Y ante
t − Yt| : Cγ log T ≤ t ≤ t∗} = Op(T

−γ),

sup{|Yt| : 0 ≤ t ≤ Cγ log T or t∗ ≤ t ≤ t∗ + Cγ log T} = Op(log T ).

(B3) Assumptions (A2)–(A6) from Appendix A apply with Xt,1, Xt,2, εt, σ,m0,m1 and m2

replaced by Xante
t,1 , Xante

t,2 , εantet , σante, mante
0 , mante

1 and mante
2 or by Xpost

t,1 , Xpost
t,2 , εpostt ,

mpost
0 , σpost, mpost

1 and mpost
2 . In Assumption (A6), we put εlt = σl(X l

t,1, X
l
t,2)ξlt for

l = ante, post and we assume that ξantet and ξpostt are independent of (Xante
s , Xpost

s :

s ≤ t).

(B4) It holds that t∗/T → c for T →∞.

(B5) It holds that h = O(T−1/5) and g = O(T−1/4−δ) for some small δ > 0.

Before we come to the proofs of Theorems 3 and 4, we briefly discuss how Assump-

tions (B1)–(B4) hold under reasonable conditions for the nonparametric HAR process of

Section 2:

V
(ι1)
t =

m
ante
0 +mante

1

(
V

(ι1)
t−1

)
+mante

2

(
V

(ι2)
t−1

)
+ εantet for t ≤ t∗,

mpost
0 +mpost

1

(
V

(ι1)
t−1

)
+mpost

2

(
V

(ι2)
t−1

)
+ εpostt for t > t∗.

For a discussion of the existence of stationary solutions of (19), it needs to be determined

if there exist stationary solutions of the equations

V
j,(ι1)
t = mj

0 +mj
1

(
V
j,(ι1)
t−1

)
+mante

2

(
V
j,(ι2)
t−1

)
+ εjt for 1 ≤ t ≤ T, j = ante, post
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that fulfill the mixing conditions of (B1). For such a discussion, see, e.g., Chen and

Chen (2001). The following lemma states a condition under which (B2) holds for the

nonparametric HAR process.

Lemma 1. Assume that stationary solutions of (19) exist and that for j = ante, post∣∣∣∣ ∂∂xmj
1 (x)

∣∣∣∣+

∣∣∣∣ ∂∂xmj
2 (x)

∣∣∣∣ < ρ

for some 0 < ρ < 1. Then Assumption (B2) holds for (Yt, Xt,1, Xt,2) = (V
(ι1)
t , V

(ι1)
t−1 , V

(ι2)
t−1 ).

Proof of Lemma 1. Choose γ > 1/2. Suppose that ι1 < ι2. For the proof of the first

two inequalities of (B2), one makes iterative use of the following inequality

|V post,(ι1)
t − Vt| ≤

∣∣∣mpost
1

(
V
post,(ι1)
t−1

)
−mpost

1

(
V

(ι1)
t−1

)
+mpost

2

(
V
post,(ι2)
t−1

)
−mpost

2

(
V

(ι2)
t−1

)∣∣∣
≤ ρmax

{∣∣∣V post,(ι1)
t−1 − V (ι1)

t−1

∣∣∣ , ∣∣∣V post,(ι2)
t−1 − V (ι2)

t−1

∣∣∣}
≤ ρ max

1≤l≤ι2
|V post,(ι1)
t−l − Vt−l|

for t∗ + Cγ log T ≤ t ≤ T . The third and fourth claims of (B2) follow similarly.

For the proof of the last claim of (B2), note first that our moment condition on the

errors imply that for j = ante, post

sup{|εjt | : 0 ≤ t ≤ Cγ log T or t∗ ≤ t ≤ t∗ + Cγ log T} = Op((log T )1/4) = Op((log T )).

In Section 2, we assume that the autoregression function of the HAR process consists

of three additive components mj
1, mj

2 and mj
3 for j = ante, post. For this specification of

the HAR process, we have to replace the assumption of Lemma 1 by:∣∣∣∣ ∂∂xmj
1 (x)

∣∣∣∣+

∣∣∣∣ ∂∂xmj
2 (x)

∣∣∣∣+

∣∣∣∣ ∂∂xmj
3 (x)

∣∣∣∣ < ρ

for j = ante, post for some 0 < ρ < 1 .

Some technical lemmas

Define now the backfitting estimators m̃ante
1 and m̃ante

2 of mante
1 and mante

2 , respectively,

based on the observations Y1, X1,1, X1,2, . . . , Yt∗−1, Xt∗−1,1, Xt∗−1,2, and the backfitting es-

timators m̃post
1 and m̃post

2 of mpost
1 and mpost

2 , respectively, based on the observations Yt∗ ,

Xt∗,1, Xt∗,2, . . ., YT , XT,1, XT,2. In our asymptotic analysis, we compare these estima-

tors with the corresponding infeasable backfitting estimators of mante
1 ,mante

2 , mpost
1 and

mpost
2 , respectively, based on the observations Y ante

1 , Xante
1,1 , Xante

1,2 , ..., Y ante
t∗−1 , X

ante
t∗−1,1, X

ante
t∗−1,2

or Y post
t∗ , Xpost

t∗,1 , X
post
t∗,2 , ..., Y

post
T , Xpost

T,1 , X
post
T,2 , respectively. The latter estimators are denoted

by m̃†,ante1 , m̃†,ante2 , m̃†,post1 and m̃†,post2 , respectively. In our next lemma, we argue that

m̃j
l − m̃

†,j
l is small for j = ante, post and l = 1 and l = 2.
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Lemma 2. Under the assumptions (B1)–(B4) we have that for j = ante, post and l = 1

and l = 2

sup
x∈[0,1]

|m̃†,jl (x)− m̃j
l (x)| = Op(T

−γ).

Proof of Lemma 2. We argue that we have for j = ante, post and l = 1 and l = 2

sup
x∈[0,1]

|m̄†,jl (x)− m̄j
l (x)| = Op(T

−γ), (20)

where we compare the following ‘marginal estimators’

m̄†,antel (x) =

∑t∗−1
t=1 Kh(x,X

ante
t,l )Y ante

t∑t∗−1
t=1 Kh(x,Xante

t,l )
,

m̄†,postl (x) =

∑T
t=t∗ Kh(x,X

post
t,l )Y post

t∑T
t=t∗ Kh(x,X

post
t,l )

,

m̄ante
l (x) =

∑t∗−1
t=1 Kh(x,Xt,l)Yt∑t∗−1
t=1 Kh(x,Xt,l)

,

m̄post
l (x) =

∑T
t=t∗ Kh(x,Xt,l)Yt∑T
t=t∗ Kh(x,Xt,l)

.

We prove (20) for j = post. Application of Assumption (B2) yields that∣∣∣∣∣ 1

T

T∑
t=t∗

Kh(x,X
post
t,l )Y post

t − 1

T

T∑
t=t∗

Kh(x,Xt,l)Yt

∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

T

∑
t∈T−

Kh(x,X
post
t,l )Y post

t

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1

T

∑
t∈T−

Kh(x,Xt,l)Yt

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

T

∑
t∈T+

{
Kh(x,X

post
t,l )Y post

t −Kh(x,Xt,l)Yt
}∣∣∣∣∣∣

= OP (T−1(log T )2 + T−γ)

= OP (T−γ),

where T− = {t : t∗ ≤ t ≤ t∗ + Cγ log T} and T+ = {t : t∗ + Cγ log T < t ≤ T}. This

shows (20) for j = post. The statement of the lemma follows from the theory developed

in Mammen et al. (1999) for the smooth backfitting estimator. There it is explained that

the smooth backfitting estimator results from the ‘marginal estimators’ by the application

of an operator that has the following property: a bounded function is mapped onto a

bounded function. This can be seen from arguments given in Mammen et al. (1999); see,

e.g., the proof of their Equation (88).
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We now define

K
†,j,post
h,T g(·) =

∑T
t=t∗+1 Kh(·, Xpost

t−1,j)g(Xpost
t−1,j)∑T

t=t∗+1Kh(·, Xpost
t−1,j)

,

K
†,j,ante
h,T g(·) =

∑t∗

t=1Kh(·, Xante
t−1,j)g(Xante

t−1,j)∑t∗

t=1 Kh(·, Xante
t−1,j)

,

δ̃† =

∫ (
K
†,j,post
h,T m̃ante

j (x)−K
†,j,ante
h,T m̃post

j (x)
)
π(x)dx.

By using similar arguments as for the proof of (20), one gets the following lemma:

Lemma 3. Under the assumptions (B1)–(B4) we have that for j = ante, post and l = 1

and l = 2

sup
x∈[0,1]

∣∣{Kj,post
h,T m̃ante

j (x)−K
j,ante
h,T m̃post

j (x)− δ̃
}

−
{
K
†,j,post
h,T m̃†,antej (x)−K

†,j,ante
h,T m̃†,postj (x)− δ̃†

}∣∣ = Op(T
−γ).

From Lemma 3, we get that S†j,T = Sj,T + oP (1), where

S†j,T = Th1/2

∫ (
K
†,j,post
h,T m̃†,antej (x)−K

†,j,ante
h,T m̃†,postj (x)− δ̃†

)2
π(x)dx.

Thus, for the statement of Theorem 3, it suffices to show that

S†j,T − h
−1/2K(2)(0)

∫
[0,1]

[
c−1σ2

ante(x) + (1− c)−1σ2
post(x)

]
π(x) dx

has a limiting normal distribution with mean MS and variance VS.

Proofs of Theorems 3 and 4

The proofs follow the lines of arguments given in the proofs of Theorems 1 and 2. The

discussion of the last subsection has shown that the observations can be approximated by

stationary random variables. Thus we can show asymptotic normality with the same tools

as in Appendix A. Our assumptions on the bandwidths show that the bias terms of the

pilot smooth backfitting estimation step are of lower order. Furthermore, one can show

by similar arguments that the bias terms of Nadaraya-Watson smoothing of the second

step cancel.
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C Measurement of realized variance

For reasons explained in the main text, we are only interested in modeling the continuous

component in RV. Here, we sketch the estimation procedure, which follows ideas outlined,

e.g., in Andersen et al. (2007), Andersen, Bollerslev, Frederiksen and Nielsen (2010), and

Audrino and Hu (2011).

Suppose the log-price of a financial asset yt follows the process

dy(t) = µ(t)dt+ σ(t)dW (t) + a(t)dJ(t) , (21)

where µ(t) is the drift, σ(t) the instantaneous volatility function, W (t) a Wiener and

J(t) a counting process with discrete jump sizes a(t) = y(t) − y(t−). It is well known9

that in this case the ‘classical’ realized variance estimator that sums squared intra-day

returns captures the contribution to quadratic variation from both the continuous and

the discontinuous part of the process. More precisely, in recording yi,t, i = 1, . . . ,M, at

M equally spaced time points during day t, define the intra-day high-frequency returns

as ri,t = y
(
t− 1 + i

M

)
− y
(
t− 1 + i−1

M

)
, i = 1, . . . ,M . Then

RVt =
M∑
i=1

r2
i,t

P−→
∫ t

t−1

σ2(s)ds+
∑

t−1≤s≤t

a2(s) , (22)

where the term
∫ t
t−1

σ2(s)ds constitutes the contribution stemming from the continuous

part only (also called integrated variance).

We therefore test whether each return ri,t is a jump based on the jump test due

to Lee and Mykland (2008). Whenever the Lee-Mykland test statistic T Jt,i exceeds the

critical value β∗ at a significance level of 1%, the return is classified as a jump by ai,t =

ri,t1{TJ
t,i>β

∗}, where 1A is the indicator function of the event A. The measure of daily

variation that only comprises the continuous part of RV is estimated by

cRVt = RVt − JV t , (23)

where

JV t =
M∑
i=1

a2
i,t −

MJ
t

M −MJ
t

IV t , (24)

IV t =
M∑
i=1

r2
i,t1{TJ

t,i≤β∗} (25)

with MJ
t =

∑M
i=1 1{TJ

t,i>β
∗} denoting the number of jumps in day t. The correction term

in (24) is designed to correct the total RV due to jumps by the average level of integrated

variance measured on the non-jump returns.

9See McAleer and Medeiros (2008b) and Andersen, Bollerslev and Diebold (2010) for surveys, including

discussions of the related literature.
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Bandwidths

Symbol Daily Weekly Monthly

CF 0.213 0.206 0.209

FT 0.204 0.197 0.194

KM 0.251 0.283 0.301

NE 0.214 0.210 0.238

SP 0.206 0.222 0.195

XX 0.217 0.246 0.207

BN 0.188 0.197 0.271

TY 0.234 0.253 0.217

US 0.240 0.256 0.200

CL 0.353 0.214 0.185

NG 0.175 0.182 0.227

GC 0.245 0.260 0.259

HG 0.314 0.255 0.224

EC 0.169 0.198 0.199

JY 0.171 0.202 0.358

CN 0.216 0.218 0.255

SY 0.208 0.254 0.239

Table 2: Optimal bandwidths obtained by minimizing the IMSE; see Section 6.1 for

details. Integrated squared bias is approximated from the local linear smooth backfitting.

Estimation is carried out on [0,1]; see Table 1 for the list of acronyms.
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Symbol Daily Weekly Monthly

CF 0.007 0.023 0.467

FT 0.013 0.665 0.073

KM 0.293 0.362 0.002

NE 0.106 0.868 0.000

SP 0.364 0.201 0.010

XX 0.020 0.049 0.321

BN 0.003 0.017 0.572

TY 0.062 0.111 0.001

US 0.003 0.519 0.012

CL 0.133 0.060 0.445

NG 0.053 0.195 0.160

GC 0.344 0.436 0.322

HG 0.094 0.122 0.000

EC 0.000 0.006 0.000

JY 0.000 0.006 0.146

CN 0.180 0.014 0.072

SY 0.098 0.803 0.198

Table 3: Specification test based on Nadaraya-Watson smooth backfitting as suggested

in Section 3. Null hypothesis is the linear specification in the respective component

function. The p-values are obtained from 10,000 bootstrap replications of the estimate

with residuals obtained from the null hypothesis. p-values are in bold when below 10%.

Weighting function in the test statistic is the empirical density function; see Table 1 for

the list of acronyms.
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Symbol Daily Weekly Monthly

CF 0.014 0.688 0.416

FT 0.019 0.909 0.841

KM 0.070 0.833 0.022

NE 0.133 0.648 0.104

SP 0.591 0.735 0.537

XX 0.028 0.947 0.080

BN 0.570 0.656 0.157

TY 0.000 0.042 0.001

US 0.000 0.069 0.005

CL 0.194 0.142 0.690

NG 0.109 0.021 0.696

GC 0.765 0.815 0.288

HG 0.595 0.106 0.455

EC 0.102 0.081 0.014

JY 0.168 0.396 0.185

CN 0.007 0.270 0.514

SY 0.200 0.015 0.062

Table 4: Structural breaks test based on Nadaraya-Watson smooth backfitting as sug-

gested in Section 4. Null hypothesis is equality of the function on the ante and the post

sample. The p-values are obtained from 10,000 bootstrap replications of the estimate

with residuals obtained from the null hypothesis. p-values are in bold when below 10%.

Assumed break date is July 25, 2007. Weighting function in the test statistic is a weighted

product of the empirical density function on the subsamples; see Table 1 for the list of

acronyms.
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Daily Weekly Monthly

Ante Post Ante Post Ante Post

CF 0.002 0.114

FT 0.000 0.435

KM 0.174 0.378 0.016 0.075

XX 0.002 0.266 0.596 0.030

TY 0.315 0.228 0.474 0.420 0.410 0.127

US 0.865 0.001 0.001 0.124 0.002 0.131

NG 0.012 0.573

EC 0.005 0.021 0.000 0.002

CN 0.003 0.847

SY 0.761 0.634

Table 5: Specification tests (Nadaraya-Watson smooth backfitting) on subsamples where

a structural break is detected according to Table 4. Null hypothesis is the linear specifi-

cation in the respective component function. p-values are obtained from 10,000 bootstrap

replications with residuals obtained from the null hypothesis. p-values are in bold when

below 10%. Weighting function in the test statistic is the empirical density function; see

Table 1 for the list of acronyms.
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Symbol Daily Weekly Monthly

CF 0.000 0.000 0.587

FT 0.000 0.073 0.194

KM 0.167 0.840 0.022

NE 0.000 0.013 0.009

SP 0.001 0.389 0.375

XX 0.000 0.001 0.504

BN 0.005 0.011 0.560

TY 0.216 0.019 0.000

US 0.005 0.278 0.001

CL 0.381 0.173 0.059

NG 0.004 0.005 0.583

GC 0.035 0.215 0.989

HG 0.821 0.046 0.014

EC 0.054 0.003 0.000

JY 0.000 0.010 0.869

CN 0.104 0.155 0.048

SY 0.449 0.520 0.228

Table 6: Specification tests with LL smooth backfitting. Null hypothesis is the linear

specification in the respective component function. The p-values are obtained from 10,000

bootstrap replications of the estimate with residuals obtained from the null hypothesis.

p-values are in bold when below 10%. Weighting function in the test statistic is the

empirical density function; see Table 1 for the list of acronyms.
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Daily Weekly Monthly

Ante Post Ante Post Ante Post

CF 0.053 0.014

FT 0.001 0.122

KM 0.231 0.509 0.553 0.003

XX 0.041 0.047 0.075 0.004

TY 0.535 0.619 0.683 0.062 0.002 0.103

US 0.537 0.254 0.033 0.122 0.000 0.053

NG 0.017 0.715

EC 0.000 0.010 0.000 0.007

CN 0.009 0.946

SY 0.031 0.507

Table 7: Specification tests (local linear smooth backfitting) on subsamples where a struc-

tural break is detected according to Table 4. Null hypothesis is the linear specification in

the respective component function. p-values are obtained from 10,000 bootstrap replica-

tions with residuals obtained from the null hypothesis. p-values are in bold when below

10%. Weighting function in the test statistic is the empirical density function; see Table 1

for the list of acronyms.
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Figure 1: Daily log-RV for selected instruments: S&P500 (SP), 10yrs TNote (TY), natural

gas (NG).
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Figure 2: Difference of the 3-months USD Libor over the 3-months overnight indexed

swap (left ordinate axis), S&P 500 index closing prices (right ordinate axis) from July 1,

2003, to Dec. 31, 2010. Source: Bloomberg.
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Figure 3: Selection of smooth backfitting estimates of variance component functions in

the nonparametric HAR model. Daily functions (m1) in top panel, weekly and monthly

(m2, m3) in the lower panel; see Table 1 for the list of acronyms.
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