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Abstract 

Building on the results of Ludwig (2012), we propose a method to construct robust time-

homogeneous Markov chains that capture the risk-neutral transition of state prices from 

current snapshots of option prices on the S&P 500 index. Using the recovery theorem of 

Ross (2013), we then derive the market’s forecast of the real-world return density and 

investigate the predictive information content of its moments. We find that changes in the 

recovered moments can be used to time the index, yielding strategies that not only 

outperform the market, but are also significantly less volatile. 
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Some moments are nice, some are nicer, some are even worth writing about.

– Charles Bukowski

Recently, Ross (2013) has shown that the market’s risk aversion, in the

form of a transition independent pricing kernel, can be recovered from the

risk-neutral transition matrix of a Markovian state variable. Knowledge of

the pricing kernel allows us to obtain the market’s subjective assessment

of real-world probabilities from risk-neutral densities, which makes the

information embedded in option prices directly accessible to applications

such as risk management, portfolio optimization and the design of trading

strategies. Ross’ recovery theorem is intriguing because, in contrast to

previous literature, it does neither rely on historical returns nor restrictions

on the shape of the pricing kernel. His work also challenges conventional

wisdom. While implied volatility has long been used to gauge the market’s

perception of risk, option prices were considered to be silent when it comes

to predicting the actual return, let alone the entire real-world distribution.

The recovery theorem has already prompted several theoretical extensions.

Carr and Yu (2012) investigate the assumptions behind Ross’ approach

and propose an alternative for di�usions on a bounded state space, with

restrictions placed on the form and dynamics of the numeraire portfolio

instead of the preferences of an agent. Dubynskiy and Goldstein (2013)

investigate implications of bounds on the state space and theorize that their

specific placement might give rise to econometric fragility. Martin and Ross

(2013) extend the results to fixed income markets and elucidate the long-

term implications of Ross’ assumptions. Huang and Shaliastovich (2013)

consider an extension that accounts for a preference for the early resolution

of uncertainty, but fall back on historical data.
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We set out to investigate whether or not the recovery theorem yields

predictive information beyond what can be gleaned from the moments of

risk-neutral densities. Our work contributes to the existing literature along

several dimensions. We present the first comprehensive empirical analysis

of the recovery theorem, using options on the S&P 500 spanning a period of

13 years. Building on the results of Ludwig (2012), we present an algorithm

to construct a time-homogeneous Markov chain from current option prices.

We also address the robustness of our results and investigate what drives

the pricing kernel.

The remainder of this paper is organized as follows. The next section

outlines how the relation between option prices and the real-world has

evolved and then briefly introduces the key ideas behind Ross recovery.

Section 2 provides a more detailed look at the individual steps involved

in applying the recovery theorem in practice. In Section 3 we present the

results of our empirical study. Section 4 sketches out potential extensions

and concludes.

1 Option Prices and the Real World

Literature on option pricing has traditionally focused on specifying the

stochastic process of an asset and deriving option prices following from the

imposed dynamics and no-arbitrage. By equating the price of a contingent

claim to that of a dynamic trading strategy, involving only the underlying

and a cash account, pricing is possible without knowledge of the expected

return on the underlying. The framework of risk-neutral valuation was

established by Black and Scholes (1973) and Merton (1973). Ever since,
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numerous extensions have sought to improve on the specification of the

stochastic process, so as to better match the market prices of options.

Prominent examples include stochastic volatility models, e.g., Hull and

White (1987), Stein and Stein (1991) and Heston (1993), models with jump

processes, e.g., Merton (1976), Bates (1991) and Carr et al. (2002), and

combinations af stochastic volatility and jumps, e.g., Bates (1996) and Bates

(2000).

With the increasing liquidity of markets for contingent claims, options

have become assets in their own right, to the extent that market prices

now determine the model parameters through the inverse problem of

calibration. The quality of a model is often assessed in the space of implied

volatilities, which highlights deviations from the assumptions underlying the

Black-Merton-Scholes (BMS) framework and facilitates comparisons across

di�erent strikes and maturities. Despite frequent re-calibration, traditional

models are typically not able to fully capture the rich patterns observable

in market prices. This has led to a somewhat orthogonal approach that

seeks to provide consistent quotes in a specified set, given the price of the

underlying asset and option prices at several strikes and maturities, without

specifying the dynamics of the underlying. This literature encompasses

work on implied volatility, price, and state price density surfaces. Among

the proposed methods are polynomials, e.g., Dumas, Fleming, and Whaley

(1998), kernel smoothing, e.g., Aït-Sahalia and Lo (1998), regression trees,

e.g., Audrino and Colangelo (2010), B-splines, e.g., Fengler and Hin (2013),

and neural networks, e.g., Ludwig (2012).

Over the last couple of years, there has been increased interest in the

predictive information content of market option prices. Option implied
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volatility has long been used as an important sentiment indicator, the most

notable example being the Chicago Board of Options Exchange Volatility

Index (VIX), often referred to as the investor fear gauge, cf. Whaley

(2000). Implied volatility has also been demonstrated to be an upward

biased predictor of future realized volatility, see e.g., Canina and Figlewski

(1993). More recently, research has focused on the predictive information

content of the implied volatility skew, e.g., Xing, Zhang, and Zhao (2010)

and Ratcli� (2013). Higher order moments of the risk-neutral distribution,

based on the results in Bakshi, Kapadia, and Madan (2003), have been

investigated in Rehman and Vilkov (2012) and Conrad, Dittmar, and

Ghysels (2013). Bollerslev, Tauchen, and Zhou (2009), Goyal and Saretto

(2009) and Drechsler and Yaron (2011) find that di�erences between risk-

neutral and realized measures of volatility predict future returns.

The mapping from risk-neutral to actual probabilities has also been studied

in the literature on the stochastic discount factor or pricing kernel, defined

as the ratio between the two measures, projected onto return states. Prior

to the recovery theorem, the real-world density had to be estimated by

resorting to time-series data, see e.g., Jackwerth (2000), Aït-Sahalia and Lo

(2000), Rosenberg and Engle (2002) and Bliss and Panigirtzoglou (2004).

Such estimates are not only highly sensitive to the chosen time period,

but by nature of construction less expressive than an estimate based

on current quotes. The mismatch between a density capturing the rich

amalgam of current investor sentiment and one based on decades of historical

data invariably manifests in the pricing kernel. Features deviating from

the monotonically decreasing shape prescribed by neoclassical theory were

perceived as a puzzle and have sparked a rich literature, see e.g., Ziegler

(2007) and Hens and Reichlin (2013).
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The Recovery Theorem

Ross (1976) and Cox and Ross (1976) demonstrate that in a dynamically

complete arbitrage-free market, the price of an option is given by the

expected present value of the payo� under the risk-neutral density (RND).

The RND is the continuous-state counterpart to the prices of Arrow-Debreu

state-contingent claims, that pay $1 in one ending state and nothing in all

other states. Extending these results, Banz and Miller (1978) and Breeden

and Litzenberger (1978) show that if we know the prices of European options

for all possible levels of the underlying, the discounted RND at expiration

is equal to the second derivative of the option prices with respect to strike.

Two additional conditions allow Ross (2013) to uniquely disentangle risk

aversion from what the market believes the real-world probabilities to be:

(i) the risk-neutral process evolves as a discrete time-homogeneous Markov

chain on a finite state space, (ii) the pricing kernel is path independent, and

therefore, utility is not state dependent.

Consider a time-homogeneous process Xt, Xt+1, . . . on a finite state space

with values in 1, . . . , n. Since calendar time is irrelevant, the transition

probability of moving from state i at time t to state j at time t + 1 is given

by:

Pi,j = Pr(Xt+1 = j|Xt = i) (1)

where Pn◊n denotes the one-step ahead transition matrix and is clearly

element-wise non-negative. We also assume that P is irreducible such that

P t > 0 for some t, that is, all states can be reached from all other states.

From the Perron-Frobenius theorem we know that a non-negative irreducible

matrix has a unique positive eigenvalue ⁄ and corresponding dominant left-
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and right-eigenvectors that are both unique and strictly positive, cf. Meyer

(2000).

v€P = ⁄v€ (2)

Pz = ⁄z (3)

Here v corresponds to the long-run distribution of the Markov chain up to

scale, and z traces the variations in scale over starting states. If the rows of

P sum to one, it is a stochastic matrix, and z is a constant. For the recovery

theorem, P is substochastic, as it captures the dynamics of the discounted

RND, that is, the state prices.

The elements Pi,j of the state price transition matrix correspond to the

prices of single period Arrow-Debreu securities, indexed by the starting and

ending state. The price of an Arrow-Debreu security can be decomposed as:

Pi,j = ”Mi,jFi,j (4)

where ” is the market’s average discount rate, Mn◊n is the pricing kernel, and

Fn◊n denotes the real-world transition matrix. It is apparent that knowledge

of P is not su�cient to uniquely determine the right-hand side.

However, the assumption that the pricing kernel is transition independent

means that it only depends on the marginal rate of substitution between the

future and current consumption. Defining the vector of marginal utilities

d = (d1, . . . , dn)€ allows us to write (4) as:

Pi,j = ”
dj

di
Fi,j (5)
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Defining the diagonal matrix Dn◊n with d on the main diagonal allows us

to rearrange for F as follows:

P = ”D≠1FD

F = ”≠1DPD≠1 (6)

Since F is stochastic, we have F1 = 1, where 1 is a vector of ones. Combined

with (6) we obtain:

PD≠11 = ”D≠11 (7)

If we define the vector z to contain the inverse of the diagonal elements

of D, we obtain the unique solution from (3), with ⁄ corresponding to the

discount factor ”.

To summarize, time-homogeneity and irreducibility make sure that the

eigenvalue problem has only one positive solution, and since z corresponds

to the inverse of the pricing kernel, which by no-arbitrage constraints must

be strictly positive, Ross (2013) is able to achieve recovery.

2 Steps to Recovery

The results of Breeden and Litzenberger (1978) only allow us to compute

the prices for Arrow-Debreu claims contingent on the current state of the

underlying. The construction of a full transition matrix, including claims

conditional on starting states that di�er from the current one, is thus at the

core of applying the recovery theorem.
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From Option Prices to State Prices

In reality we don’t observe a continuum of traded strikes, so we first have

to estimate option prices on a dense grid. Market prices also contain

microstructure noise, which poses a challenge, since derivatives amplify

irregularities. Furthermore, in order to estimate the transition matrix,

we need a current snapshot of the entire price surface, spanning multiple

maturities over a uniform state space. These requirements alone rule out

the vast majority of methods proposed to estimate option implied densities,

as they either aggregate data over time, deal only with single maturities, or

neglect the issue of extrapolation.1

It is our goal to fully capture the rich information priced into options

by means of supply and demand. In order to avoid the risk of model

misspecification, we follow the neural network approach of Ludwig (2012),

which has been shown to yield robust state price surfaces that are both

highly flexible and free of static arbitrage.

Just like linear models, neural networks approximate functions as a linear

combination of features. However, instead of fixed nonlinear transforma-

tions, the form of the basis expansions is learned at the same time as the

coe�cients of the simple linear model. Consider modeling implied volatility

‡ for a fixed maturity · as a function of strike x, using polynomials of up

to second order. The resulting function is additive in the features derived
1See e.g., Shimko (1993), Jackwerth and Rubinstein (1996), Aït-Sahalia and Lo (1998),

Bliss and Panigirtzoglou (2002), Aït-Sahalia and Duarte (2003), Figlewski (2010) and
Fengler and Hin (2013).
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from the basis expansions gi(x) = xi and can be described as:

‡(x) =
2ÿ

i=0
—i · gi(x)

where —i corresponds to the coe�cient of the ith feature. Now, consider a

neural network that models total implied variance ‹(x, ·) := ‡2(x, ·) · · as

a function of both strike and time to maturity:

‹(x, ·) =
Hÿ

i=1
—i · hi(x, ·) (8)

hi(x, ·) = 1
1 + e≠ci(x,·)

ci(x, ·) = –0i + –1ix + –2i

Ô
·

Here, the basis function hi(x, ·) is a logistic sigmoid. The weights –1i and

–2i control the steepness and thus modulate the amount of nonlinearity

introduced by each expansion. The constant –0i has the e�ect of shifting

the sigmoid horizontally, allowing the total variance surface to be build up

additively by regions of varying curvature.2

Given a su�cient number of basis expansions H, neural networks can

approximate any continuous function on a compact input domain to an

arbitrary degree of accuracy, see e.g., Hornik, Stinchcombe, and White

(1989).

However, the usefulness of an estimator depends on its ability to successfully

generalize beyond observable data. The real challenge is thus to find a model

that is flexible enough to capture the relationships implicit in a set of sparse

and noisy observations without memorizing them.
2The intercept —0 is omitted for notational clarity.

11



In neural networks, model complexity can be controlled both through the

number of basis expansions and through regularization, that is, a penalty

on the norm of – and —. Since neural networks have to be trained

using iterative numerical methods, a comparable e�ect can be achieved by

stopping the optimization before convergence, as this keeps the weights close

to their highly regularized initial values, see e.g., Bishop (2006).

A common approach to determine the optimal model complexity is cross-

validation, which aims to gauge the generalization performance of an

estimator by omitting some observations during training. However, due to

the irregular data design of exchange traded equity options, cross-validation

is of limited usefulness, as it can only check locations for which we actually

have market quotes.

That means we cannot assess the quality of a surface estimator between

maturities, or for the sizable regions outside of traded strikes. The key idea

of Ludwig (2012) is to use two non-trivial problems, namely extrapolation

and no-arbitrage constraints, to solve a third, namely finding the optimal

model complexity of neural networks.

This is done by generating a population of estimators from networks with a

varying number of basis expansions and random starting parameters. The

neighborhoods of these initial solutions are then explored by running a

regularized gradient descent algorithm for only 10 steps. The estimators

are then checked for arbitrage violations. Due to the considerable amount

of extrapolation involved in obtaining surfaces that extend into the tails of

the density, these checks allow us to eliminate solutions that exhibit inferior

generalization performance. Within the subset of valid networks, solutions

can be ranked based on the empirical loss. This method yields an estimator
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that integrates the information contained in multiple options series into a

globally consistent and arbitrage-free surface.

From State Prices to Markov Chains

Given a matrix of state prices Sn◊m for m equidistantly spaced maturities,

Ross (2013) shows that if m Ø n, we can estimate P because it specifies the

time-homogeneous transition from one maturity to the next:

S:,t+1
€ = S:,t

€P, t = 1, 2, . . . , m ≠ 1 (9)

Let A€ = S:,1:m≠1 and B€ = S:,2:m contain state prices, equation (9) gives

rise to a matrix factorization problem:

min
P Ø0

ÎAP ≠ BÎ2
2 (10)

which is equivalent to n independent vector least squares problems. Let

pj := P:,j and bj := B:,j we have:

min
pjØ0

ÎApj ≠ bjÎ2
2 , j = 1, 2, . . . , n (11)

This non-negative least squares problem can be solved with standard

algorithms, cf. Lawson and Hanson (1974). However, active-set methods

depend on A€A, which renders them infeasible if A is ill-conditioned, as is

the case for our application.3 Considering that the transition matrix is at

the center of the recovery theorem, and given that the estimation of state

prices from option prices is already ill-posed, a high sensitivity of solutions
3The average condition number for A11◊11 is 2.17 · 108, for an overdetermined higher

resolution system A621◊150 it is 6.82 · 1012.
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for P with respect to small perturbations in A is highly undesirable. We

therefore consider the damped least squares problem:

minp ÎAp ≠ bÎ2
2 + ’ ÎpÎ2

2 (12)

where the scalar ’ controls the trade-o� between fit and stability of the

solution by reducing the impact of small singular values. This technique

to stabilize the solution of inverse problems is known as ridge regression or

Tikhonov regularization, cf. Tikhonov and Arsenin (1977). The regularized

formulation is also a least squares problem. Augmenting the constrained

least squares problem yields:

P = argmin
P Ø0

nÿ

j=1

.....

C
A

’I

D

pj ≠
C
bj

0

D.....

2

2
(13)

where I denotes an identity matrix and 0 is a vector of zeros. A natural

approach to determine ’ is to minimize the discrepancy between observable

state prices and the unrolled Markov chain. Let ÿi be a vector with 1 in the

ith position and zeros elsewhere, the t-step ahead state prices implied by a

given transition matrix can be computed as:

U:,t
€ = ÿ€

i P t, t = 1, 2, . . . , m (14)

Since we define our state space symmetrically around the current state,

(14) tells us that the center row of P t contains the t-steps ahead state

price approximation. We then solve for the smoothing parameter ’ that

minimizes:

min
’

DKL (SÎU)
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where DKL denotes the generalized Kullback-Leibler divergence, which is

defined as:
ÿ

i,j

Si,j · log
A

Si,j

Ui,j

B

≠
ÿ

i,j

Si,j +
ÿ

i,j

Ui,j (15)

To summarize, as for the estimation of the state price density surface, we

generate several solutions that are subsequently evaluated for properties

other than the error metrics defining the loss function used to compute

them.

3 Empirical Results

Let s denote the spot of the underlying asset and define moneyness as

Â := x/s. We estimate state prices over a fixed domain, with Â œ [0.4, 1.6]

and · œ [20, 730], using daily closing prices of out-of-the-money (OTM) call

and put options on the S&P 500 for each Wednesday between January 5,

2000 and December 26, 2012. The choice of only working with OTM options

is motivated by the fact that they are more liquid. In case a particular

Wednesday was a holiday, we use the preceding trading day. Option data

and interest rates were obtained from OptionMetrics Ivy DB database. In

order to determine estimates for all maturities, we linearly interpolate the

observable rates. We take the mean of bid and ask quotes as option prices

and discard observations with bids below $0.50, or outside the moneyness-

maturity domain of our surfaces. We also exclude options that violate

arbitrage constraints. Following Aït-Sahalia and Lo (1998) we use the put-

call parity to derive the implied forward from close to at-the-money (ATM)

call and put pairs. Given the implied forward, we back out the implied

dividend yield via the spot-forward parity and translate OTM puts into in-
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the-money (ITM) calls. The resulting data set contains 177’032 call prices

spanning a period of 13 years.

Implementation

We use BMS, to map prices to implied volatilities (IVs) and augment the

training data with observations at the average ATM IV for Â œ [1.2, 1.6]

and · œ [10, 20]. This curbs calendar arbitrage by counteracting the e�ect

discrete quotes have on the IVs of short term OTM calls. We also replicate

the first options series with · Ø 20 for Â œ [0.9, 1.1] at · = 10. This

stabilizes the results over time by reducing the impact of near maturity

options dropping out of our model domain. We hasten to add that these

points only serve to provide guidance during training and do not a�ect the

ranking of valid solutions. We then map the data into total implied variance

space and train several neural networks, of the form in (8). Each network

varies both with respect to – and —, which we initialize randomly following

the algorithm proposed by Nguyen and Widrow (1990), and the number

of basis expansions H = max (10, 10 + Â÷Ê), where ÷ ≥ N (0, 2). Since

options close to ATM are more liquid, we weight the training errors with

Ê = N (Â|1, 0.2) + N (Â|1, 0.1). We train each network for 10 iterations

by minimizing the residual sum-of-squares using the method proposed by

Foresee and Hagan (1997). Once we have a set of 15 valid surfaces we

obtain the final estimator by averaging the 5 solutions with the smallest

error on market quotes.

The resulting surfaces span 1201 states and 711 tenors. We use local

polynomial smoothing to remove any kinks along the term structure

of interest rates and dividend yields to avoid artifacts when mapping
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the IV surface to option prices and compute state prices via numerical

di�erentiation. In order to reduce the computational cost of finding the

optimal ’, we downsample S to 150 states.

We then slice S150◊711 with an o�set of 90 days to create A621◊150 and

B621◊150 and using (13), estimate quarterly transition matrices for ’ œ

(0, 0.2]. In order to prevent a divide by zero error, when computing the

generalized Kullback-Leibler divergence of the corresponding Markov chains,

we add 10≠20 to S and U in (15). We choose the transition matrix

whose unrolled chain best approximates the state price density surface

obtained from the shape constrained neural networks and compute the

pricing kernel as the inverse of its right dominant eigenvector. We use

cubic spline interpolation to obtain z for 1199 states and recover the unnor-

malized real-world probabilities R1199◊711 from the risk-neutral density via:

Ri,j = zi · Si,j (16)

From the risk-neutral and recovered real-world measures we can directly

compute moments, that is, we do not need to mimic skewness or kurtosis

estimates via the option spanning approach developed in Carr and Madan

(2001) and Bakshi, Kapadia, and Madan (2003). Given that our surfaces

cover a large and symmetric moneyness range, they are likely less a�icted

by the biases documented in Dennis and Mayhew (2002) and Jiang and Tian

(2007).

Figure 1 illustrates the quality of our Markov chains by contrasting the

initial neural network estimates to the one-, two-, and four-step ahead

approximations, both in state price and implied volatility space. The

estimates are so close together that they can hardly be distinguished in
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Figure 1. State Prices, Implied Volatilities and Pricing Kernels
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Notes. The first columns contrast the initial neural network estimates (solid) to those obtained from unrolling the Markov chain (dotted) to 110,
200 and 380 days to maturity. The implied volatilities were obtained by first integrating the Markov chain estimates to option prices. The last

column illustrates the corresponding recovered pricing kernels for January 4, 2006, October 24, 2007, and March 19, 2008.
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the graph, only in IV space we can discern di�erences.

The figure also shows how the increasing uncertainty in the run-up to the

crisis of 2008–2009 manifests in the di�erent spaces. We observe how the

increasing volatility spreads the state prices over a wider range while pushing

the implied volatility curves up. We further see that there is a relation

between the state price density and the shape of the corresponding pricing

kernel. While such a relation would be expected for the left principal

eigenvector v, it is a priori not obvious for the right Perron vector. We

find a strong correlation between state prices averaged across maturities

and z, with an R2 of 80% over the period from 2000–2012. The relationship

is time-varying and weakens during market downturns. This finding sheds

light on what drives the recovered pricing kernel and hints at the tantalizing

possibility for pseudo recovery: sidestepping the construction of the Markov

process via z̃i Ã
q

j Si,j .

The recovered pricing kernels are furthermore U-shaped, which is in line

with findings of Aït-Sahalia and Lo (2000), Jackwerth (2000), Rosenberg

and Engle (2002), Carr et al. (2002), Bakshi, Madan, and Panayotov (2010)

and more recently Christo�ersen, Heston, and Jacobs (2013).

Moments

Figure 2 depicts the first four moments computed from the 30 day

to maturity cross-sections of the risk-neutral and recovered probability

densities. Both the range and time-variation of the risk-neutral moments are

consistent with results based on the method of Bakshi, Kapadia, and Madan

(2003), see e.g., Christo�ersen, Jacobs, and Chang (2013). In line with Birru
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Figure 2. Risk-Neutral and Recovered Moments
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Notes. This figure contrasts the evolution of the index (shaded) with that of risk-neutral (light) and recovered moments (dark) for · = 30.
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and Figlewski (2012), we find that skewness becomes less negative leading

up to the crisis of 2008–2009, along with a drop in kurtosis.

This pattern persists after the crash, with skewness becoming more negative

during the rebound, along with an increase in kurtosis. We further observe

the expected correlation between recovered means and volatility, which in

turn exhibits the well documented inverse relation to index returns. We

remark that the former corroborates the validity of the recovery theorem.

While parametric models often explicitly tie the equity risk premium to

be proportional to spot variance, see e.g., Filipovic, Gourier, and Mancini

(2013), our results are entirely data driven.

We also find that variations in the recovered skewness and kurtosis estimates

are considerably more stable over time. This is intuitively appealing, as we

would expect agents to be more measured when it comes to updating their

views on the real-world distribution, as opposed to the risk-neutral density,

which also reflects risk-aversion. This self-stabilizing property of recovery is

also consistent with the observed correlation between state prices and z.

Risk Premia

Figure 3 shows the risk premia for a maturity of 30 days. As expected,

the equity risk premium is positive and exhibits significant time-variation

with countercyclical behavior, while the variance risk premium is negative

throughout and procyclical. These findings are in line with recent studies,

e.g., Bollerslev, Tauchen, and Zhou (2009) and Martin (2013). The increase

in the equity risk premium during downturns highlights the fact that the

average investor requires higher returns to compensate for an increase in
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Figure 3. Recovered Risk Premia
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Notes. This figure contrasts the evolution of the S&P 500 (shaded) with the recovered risk premia for · = 30 days. With the exception of the
variance risk premium, they correspond to the di�erences between the recovered and risk-neutral moments depicted in Figure 2 above.
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return variance. The negative variance risk premium, on the other hand,

indicates a preference for lower variance on average to compensate for a

higher variance of return variance. As expected, we find that the skewness

risk premium is higher during periods where skewness exhibits a higher

variance, consistent with the reasoning behind the equity and variance risk

premium. For the kurtosis risk premium we observe the same pattern,

the higher the variance of kurtosis, the stronger the risk adjustment. The

skewness risk premium closely tracks movements in the index, but precedes

the sharp drop in 2008. Interestingly, just before the peak of the S&P

500 in 2007, the real-world density exhibits fatter tails than the risk-

neutral, something we otherwise only observe just before market rebounds.

Furthermore, the skewness premium also changes sign during 2002–2003,

2007–2009, and for the sovereign debt crisis in late 2011.

A Simple Trading Strategy

The relation between moments and the underlying index price motivates

us to investigate whether changes in moments predict subsequent returns.

Economic intuition dictates that risk-averse investors prefer portfolios

with lower volatility, higher skewness, and lower kurtosis and need to

be compensated with higher expected returns if any of them increase in

modulus, see e.g., Kimball (1993).

We sidestep the well documented pitfalls of predictive regressions4 and

analyze the viability of market timing. We deliberately choose a simple

trading strategy that does not rely on the calibration of any tuning
4E.g., Stambaugh (1999), Ferson, Sarkissian, and Simin (2003), Valkanov (2003),

Boudoukh, Richardson, and Whitelaw (2008), Welch and Goyal (2008), Anderson, Bianchi,
and Goldberg (2013).
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Figure 4. Trading at a Moment’s Notice
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Notes. This figure contrasts strategies based on changes in recovered (top panel) and risk-neutral moments (bottom panel) to the index.
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parameters. If the absolute value of a moment is larger than it was the

week before, we go long the S&P 500 for one week, otherwise we short the

index for one week. Figure 4 illustrates the evolution of log-returns for the

recovered (top panel) and risk-neutral moments (bottom panel). The bold

lines trace the average returns across portfolios.

While the return on the index is essentially zero after 13 years, the yearly

returns of the average recovered and risk-neutral strategies are 8.1% and

4.0% respectively.5 Strategies based on risk premia fare only slightly better

than those based on risk-neutral moments and are not reported. This finding

indicates that the combination of changes in level and risk-aversion is more

powerful than either signal in isolation. Another notable feature is the

stability of the recovered strategies over vastly di�erent regimes and their

modest dispersion around the average.6

The best performing recovered moment up to the large market drop

in the Fall of 2008 is the expected mean return, after that, we see

recovered skewness taking over. The risk-neutral moment with the highest

performance is variance, while risk-neutral kurtosis is quite inconsistent.

The average number of round-trip transactions is 30 per year, which given

a conservative estimate of 2 basis-points for commissions and transaction

costs, only impacts the yearly returns of our trading strategies by about

0.6%.

Our findings that changes in the modulus of variance, skewness and kurtosis
5The fact that such a trading strategy is feasible despite noisy market quotes is a

testament to the quality and robustness of the surfaces obtained via the neural network
method of Ludwig (2012).

6To preempt concerns regarding the impact of the asynchronous recording between
option prices and the S&P 500 in OptionMetrics Ivy DB database we implement all
strategies using the opening spot of the following trading day, see e.g., Battalio and Schultz
(2006).
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are positively related to future index returns are consistent with economic

theory. The results on risk-neutral skewness and kurtosis are also in line with

findings of Conrad, Dittmar, and Ghysels (2013), which is curious because

they average the Bakshi, Kapadia, and Madan (2003) moments over three

months, thereby diluting the ex-ante nature of the raw estimates, as rightly

pointed out by Rehman and Vilkov (2012). In contrast, our risk-neutral and

real-world moments are genuinely conditional and forward-looking, as they

are constructed from closing market quotes of one single day.

Boyer, Mitton, and Vorkink (2010) and Amaya et al. (2013) find a negative

relation between realized skewness and future returns in the cross-section,

while Rehman and Vilkov (2012) find the opposite relation using daily risk-

neutral skewness estimates obtained via option spanning.

The predictive information content of option implied measures is typically

attributed to market fragmentation, with informed agents preferring to

express their views on the future via the options market, see e.g., Easley,

O’Hara, and Srinivas (1998). The operative word being informed. Increased

buying pressure for OTM puts would then be indicative of negative future

returns. Given that the left tail of our densities is essentially driven by OTM

puts that have been converted to ITM calls, higher put prices would likely

increase both variance and kurtosis and reduce skewness. We, however, go

long the index in this scenario and, over the 676 weeks that we are in the

market, make quite consistently money from our trades.

Our results do not support the frequently postulated informational advan-

tage of option traders, but some form of overreaction, which on average

is being corrected over the course of the subsequent week. This is in line

with findings of Birru and Figlewski (2012), who document overshooting in

26



RNDs in response to movements in the S&P 500 index. Bates (1991) also

reports subsiding fears leading up to the market peak in 1987, and a surge

immediately after the crash. Lynch and Panigirtzoglou (2008) find that

while RNDs change in response to market events, they do not predict them.

The fact that trading strategies based on recovered real-world moments

perform better than those based on their risk-neutral counterparts suggest

that risk-neutralization decreases the signal to noise ratio, and implies that

beliefs about properties of the physical process also do not lead the market,

but lag behind events that have already unfolded.

We conclude by noting that the performance of market timing based on

the recovered mean confirms the validity of the recovery theorem, as the

expected real-world return contains much of the same information our

contrarian higher-order strategies trade on.

Robustness Checks

Given that the construction of a transition matrix from state prices poses

a discrete ill-posed problem, robustness is of paramount importance. If

the response to small changes in the state prices is not proportionate and

localized, we will not obtain sensible changes in the pricing kernel over time.

The robustness of a Markov chain can be quantified by the eigengap, that

is, the ratio of the dominant to the subdominant eigenvalue. If the value of

the subdominant eigenvalue is close to one, the corresponding Markov chain

is ill-conditioned in the sense that the stationary distribution is sensitive to

perturbations in the transition matrix, cf. Meyer (1994).

The average eigengap of our transition matrices is 0.74. We also find that the
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Figure 5. Risk Premia based on Pseudo Recovery
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Notes. This figure illustrates the evolution of risk premia obtained from pseudo recovery, that is, a pricing kernel directly derived from S.
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social rate of discount ”, that is, the dominant eigenvalue is always smaller

than one and exhibits a sensible variation over time. This is as it should be

and follows naturally from our algorithm, which only imposes non-negativity

and a modicum of smoothness.

Furthermore, we observe that our results are largely robust to changes in the

number of states used in the construction of the transition matrices. Changes

in the step size do have some impact on the results, which is to be expected,

given that the actual risk-neutral process likely violates the assumption of

time-homogeneity, see e.g. Carr and Yu (2012). Larger step sizes seem

to yield pricing kernels that are more stable across moneyness, which is

important when it comes to recovering sensible real-world densities at longer

maturities. Last but not least, we find that our results are not sensitive to an

expansion of the moneyness domain beyond Â œ [0.4, 1.6], that is, a larger

moneyness domain does not change the shape of the eigenvectors over the

original states. This ties back again to the relation between z and state

prices, which are also only locally a�ected by a wider Â domain.

Pseudo Recovery

Figure 5 illustrates the risk premia obtained via pseudo recovery, that is,

the pricing kernel corresponds to the inverse of state prices averaged across

maturities. Both the range and time-variation of the risk premia are largely

in line with those depicted in Figure 3. The variance risk premium exhibits

the most prominent di�erences with a significantly larger spike in the Fall

of 2008, necessitating a change of scale to accommodate it. We also observe

lower equity risk premia during times of market turmoil.
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Figure 6. Market Timing based on Pseudo Recovery
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Notes. This figure contrasts strategies based on changes in pseudo recovered moments (top) and pseudo risk premia (bottom) to the index.
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Results for the trading strategy are also surprisingly similar. The recovered

mean dominates up to the crash in late 2008, while recovered skewness

delivers the highest final return. The variance based timing strategy closely

tracks the average over all portfolios and exhibits the lowest variation over

time. Kurtosis performs the worst.

In contrast to Figure 4, the bottom panel of Figure 6 depicts the results

for a strategy based on risk premia. In line with Bollerslev, Tauchen, and

Zhou (2009), Goyal and Saretto (2009) and Drechsler and Yaron (2011), we

now find an excellent performance for the variance risk premium, closely

followed by the equity risk premium. While skewness and kurtosis risk

premia perform rather inconsistent, market timing based on the variance

risk premium would have yielded a return of over 308% for the period from

2000 to 2013. From a practical perspective, pseudo recovery brings with it

the additional advantage of computational e�ciency.

4 Conclusion

Any empirical implementation of the recovery theorem requires the solution

of two ill-posed problems. The first involves estimating the second derivative

of the option pricing function from noisy and sparse market quotes to obtain

state prices over a fixed domain. The second step entails the construction

of a transition matrix that captures the dynamics of said state prices. Only

then can recovery be obtained via spectral decomposition. In this paper we

present a method based on Tikhonov regularized non-negative least squares

to construct robust time-homogeneous Markov chains that not only yield

an excellent fit to state prices at various maturity horizons, but pricing
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kernels that exhibit a sensible variation over time. We investigate the

predictive information content of the risk-neutral and recovered moments

and find that – in line with economic theory – the real-world mean impounds

most of the information of higher-order risk-neutral moments. Without any

restrictions on the shape of the pricing kernel we always find a positive equity

risk premium and a negative variance risk premium. Higher-order premia

are also consistent with economic intuition. We find that the recovered

pricing kernels are closely related to state prices and illustrate the possibility

for pseudo recovery. While we conclude that the recovery theorem adds

economic value, our empirical study is only a first foray into what will likely

be a fruitful research area for some time to come. Possible extensions include

more comprehensive asset allocation studies along the lines of Kostakis,

Panigirtzoglou, and Skiadopoulos (2011) and Jondeau and Rockinger (2012).

It would also be interesting to apply our methodology to other markets such

as the VIX and investigate if the recovered distributions provide additional

information about aggregate risk aversion and economic uncertainty.

References

Aït-Sahalia, Y. and J. Duarte. 2003. “Nonparametric Option Pricing under Shape

Restrictions.” Journal of Econometrics 116 (1-2):9–47.

Aït-Sahalia, Y. and A.W. Lo. 1998. “Nonparametric Estimation of State-Price

Densities Implicit in Financial Asset Prices.” Journal of Finance 53 (2):499–

547.

———. 2000. “Nonparametric Risk Management and Implied Risk Aversion.”

Journal of Econometrics 94 (1-2):9–51.

Amaya, D., P. Christo�ersen, K. Jacobs, and A. Vasquez. 2013. “Does Realized

Skewness Predict the Cross-Section of Equity Returns?” Working Paper .

32



Anderson, R.M., S.W. Bianchi, and L.R. Goldberg. 2013. “In Search of a

Statistically Valid Volatility Risk Factor.” Working Paper, University of

California at Berkeley .

Audrino, F. and D. Colangelo. 2010. “Semi-Parametric Forecasts of the Implied

Volatility Surface Using Regression Trees.” Statistics and Computing

20 (4):421–434.

Bakshi, G., N. Kapadia, and D. Madan. 2003. “Stock Return Characteristics, Skew

Laws, and the Di�erential Pricing of Individual Equity Options.” Review of

Financial Studies 16 (1):101–143.

Bakshi, G., D. Madan, and G. Panayotov. 2010. “Returns of Claims on the

Upside and the Viability of U-Shaped Pricing Kernels.” Journal of Financial

Economics 97 (1):130–154.

Banz, R.W. and M.H. Miller. 1978. “Prices for State-Contingent Claims: Some

Estimates and Applications.” Journal of Business 51 (4):653–72.

Bates, D.S. 1991. “The Crash of ’87: Was it Expected? The Evidence from Options

Markets.” Journal of Finance :1009–1044.

———. 1996. “Jumps and Stochastic Volatility: Exchange Rate Processes Implicit

in Deutsche Mark Options.” Review of Financial Studies 9 (1):69–107.

———. 2000. “Post-’87 Crash Fears in the S&P 500 Futures Option Market.”

Journal of Econometrics 94 (1-2):181–238.

Battalio, R. and P. Schultz. 2006. “Options and the Bubble.” Journal of Finance

61 (5):2071–2102.

Birru, J. and S. Figlewski. 2012. “Anatomy of a Meltdown: The Risk Neutral

Density for the S&P 500 in the Fall of 2008.” Journal of Financial Markets

15 (2):151–180.

Bishop, C. M. 2006. Pattern Recognition and Machine Learning. New York:

Springer.

Black, F. and M. Scholes. 1973. “The Pricing of Options and Corporate Liabilities.”

Journal of Political Economy 81 (3):637–654.

33



Bliss, R.R. and N. Panigirtzoglou. 2002. “Testing the Stability of Implied

Probability Density Functions.” Journal of Banking & Finance 26 (2-3):381–

422.

———. 2004. “Option-Implied Risk Aversion Estimates.” Journal of Finance

59 (1):407–446.

Bollerslev, T., G. Tauchen, and H. Zhou. 2009. “Expected Stock Returns and

Variance Risk Premia.” Review of Financial Studies 22 (11):4463–4492.

Boudoukh, J., M. Richardson, and R.F. Whitelaw. 2008. “The Myth of Long-

Horizon Predictability.” Review of Financial Studies 21 (4):1577–1605.

Boyer, B., T. Mitton, and K. Vorkink. 2010. “Expected Idiosyncratic Skewness.”

Review of Financial Studies 23 (1):169–202.

Breeden, D.T. and R.H. Litzenberger. 1978. “Prices of State-Contingent Claims

Implicit in Option Prices.” Journal of Business 51 (4):621–651.

Canina, L. and S. Figlewski. 1993. “The Informational Content of Implied

Volatility.” Review of Financial Studies 6 (3):659–681.

Carr, P., H. Geman, D.B. Madan, and M. Yor. 2002. “The Fine Structure of Asset

Returns: An Empirical Investigation.” Journal of Business 75 (2):305–333.

Carr, P. and D.B. Madan. 2001. “Optimal Positioning in Derivative Securities.”

Quantitative Finance 1 (1):19–37.

Carr, P. and J. Yu. 2012. “Risk, Return, and Ross Recovery.” The Journal of

Derivatives 20 (1):38–59.

Christo�ersen, P., S. Heston, and K. Jacobs. 2013. “Capturing Option Anomalies

with a Variance-Dependent Pricing Kernel.” Review of Financial Studies

26 (8):1963–2006.

Christo�ersen, P., K. Jacobs, and B.Y. Chang. 2013. “Forecasting with Option

Implied Information.” In Handbook of Economic Forecasting, vol. 2A, edited

by G. Elliott and A. Timmermann. Elsevier.

Conrad, J., R.F. Dittmar, and E. Ghysels. 2013. “Ex Ante Skewness and Expected

Stock Returns.” Journal of Finance 68 (1):85–124.

34



Cox, J.C. and S.A. Ross. 1976. “The Valuation of Options for Alternative Stochastic

Processes.” Journal of Financial Economics 3 (1-2):145–166.

Dennis, P. and S. Mayhew. 2002. “Risk-Neutral Skewness: Evidence from Stock

Options.” Journal of Financial and Quantitative Analysis 37 (3):471–493.

Drechsler, I. and A. Yaron. 2011. “What’s Vol Got to Do with it.” Review of

Financial Studies 24 (1):1–45.

Dubynskiy, S. and R. Goldstein. 2013. “Recovering Drifts and Preference

Parameters from Financial Derivatives.” Working Paper, University of

Minnesota .

Dumas, B., J. Fleming, and R.E. Whaley. 1998. “Implied Volatility Functions:

Empirical Tests.” Journal of Finance 53 (6):2059–2106.

Easley, D., M. O’Hara, and P.S. Srinivas. 1998. “Option Volume and Stock Prices:

Evidence on where Informed Traders Trade.” Journal of Finance 53 (2):431–

465.

Fengler, M.R. and L.Y. Hin. 2013. “Semi-Nonparametric Estimation of the Call

Price Surface under No-Arbitrage Constraints.” Working Paper, University of

St. Gallen .

Ferson, W.E., S. Sarkissian, and T.T. Simin. 2003. “Spurious Regressions in

Financial Economics?” Journal of Finance 58 (4):1393–1414.

Figlewski, S. 2010. “Estimating the Implied Risk Neutral Density for the US Market

Portfolio.” In Volatility and Time Series Econometrics: Essays in Honor of

Robert F. Engle, edited by T. Bollerslev, J.R. Russel, and M.W. Watson.

Oxford University Press, 323–354.

Filipovic, D., E. Gourier, and L. Mancini. 2013. “Quadratic Variance Swap Models.”

Swiss Finance Institute Research Paper .

Foresee, F.D. and M.T. Hagan. 1997. “Gauss-Newton Approximation to Bayesian

Learning.” In Proceedings of the 1997 International Joint Conference on

Neural Networks, vol. 3. IEEE, 1930–1935.

35



Goyal, A. and A. Saretto. 2009. “Cross-Section of Option Returns and Volatility.”

Journal of Financial Economics 94 (2):310–326.

Hens, T. and C. Reichlin. 2013. “Three Solutions to the Pricing Kernel Puzzle.”

Review of Finance 17 (3):1065–1098.

Heston, S.L. 1993. “A Closed-Form Solution for Options with Stochastic Volatility

with Applications to Bond and Currency Options.” Review of Financial

Studies 6 (2):327–43.

Hornik, K., M. Stinchcombe, and H. White. 1989. “Multilayer Feedforward

Networks Are Universal Approximators.” Neural Networks 2 (5):359–366.

Huang, D. and I. Shaliastovich. 2013. “Risk Adjustment and the Temporal

Resolution of Uncertainty: Evidence from Options Markets.” Working Paper,

University of Pennsylvania .

Hull, J.C. and A. White. 1987. “The Pricing of Options on Assets with Stochastic

Volatilities.” Journal of Finance 42 (2):281–300.

Jackwerth, J.C. 2000. “Recovering Risk Aversion from Option Prices and Realized

Returns.” Review of Financial Studies 13 (2):433–451.

Jackwerth, J.C. and M. Rubinstein. 1996. “Recovering Probability Distributions

from Option Prices.” Journal of Finance :1611–1631.

Jiang, G.J. and Y.S. Tian. 2007. “Extracting Model-Free Volatility from Option

Prices: An Examination of the VIX Index.” The Journal of Derivatives

14 (3):35–60.

Jondeau, E. and M. Rockinger. 2012. “On the Importance of Time Variability in

Higher Moments for Asset Allocation.” Journal of Financial Econometrics

10 (1):84–123.

Kimball, M.S. 1993. “Standard Risk Aversion.” Econometrica: Journal of the

Econometric Society 61 (3):589–611.

Kostakis, A., N. Panigirtzoglou, and G. Skiadopoulos. 2011. “Market Timing with

Option-Implied Distributions: A Forward-Looking Approach.” Management

Science 57 (7):1231–1249.

36



Lawson, C.L. and R.J. Hanson. 1974. Solving Least Squares Problems. SIAM.

Ludwig, M. 2012. “Robust Estimation of Shape Constrained State Price Density

Surfaces.” Working Paper, University of Zurich .

Lynch, D. and N. Panigirtzoglou. 2008. “Summary Statistics of Option-Implied

Probability Density Functions and Their Properties.” Bank of England .

Martin, I. 2013. “Simple Variance Swaps.” Working Paper, Stanford University .

Martin, I. and S.A. Ross. 2013. “The Long Bond.” Working Paper, Stanford

University and MIT .

Merton, R.C. 1973. “Theory of Rational Option Pricing.” Bell Journal of Economics

and Management Science 4 (1):141–183.

———. 1976. “Option Pricing when Underlying Stock Returns Are Discontinuous.”

Journal of Financial Economics 3 (1-2):125–144.

Meyer, C.D. 1994. “Sensitivity of the Stationary Distribution of a Markov Chain.”

SIAM Journal on Matrix Analysis and Applications 15 (3):715–728.

———. 2000. Matrix Analysis and Applied Linear Algebra. SIAM.

Nguyen, D. and B. Widrow. 1990. “Improving the Learning Speed of 2-Layer Neural

Networks by Choosing Initial Values of the Adaptive Weights.” In Neural

Networks, 1990., 1990 IJCNN International Joint Conference on. IEEE, 21–

26.

Ratcli�, R. 2013. “Relative Option Prices and Risk-Neutral Skew as Predictors of

Index Returns.” The Journal of Derivatives 21 (2):89–105.

Rehman, Z. and G. Vilkov. 2012. “Risk-Neutral Skewness: Return Predictability

and Its Sources.” Working Paper, Goethe University Frankfurt .

Rosenberg, J.V. and R.F. Engle. 2002. “Empirical Pricing Kernels.” Journal of

Financial Economics 64 (3):341–372.

Ross, S.A. 1976. “Options and E�ciency.” The Quarterly Journal of Economics

90 (1):75.

———. 2013. “The Recovery Theorem.” Journal of Finance (forthcoming) .

Shimko, D. 1993. “Bounds of Probability.” Risk 6 (4):33–37.

37



Stambaugh, R.F. 1999. “Predictive Regressions.” Journal of Financial Economics

54 (3):375–421.

Stein, E.M. and J.C. Stein. 1991. “Stock Price Distributions with Stochastic

Volatility: An Analytic Approach.” Review of Financial Studies 4 (4):727–752.

Tikhonov, A.N. and V.Y. Arsenin. 1977. Solutions of Ill-Posed Problems. V. H.

Winston & Sons.

Valkanov, R. 2003. “Long-Horizon Regressions: Theoretical Results and

Applications.” Journal of Financial Economics 68 (2):201–232.

Welch, I. and A. Goyal. 2008. “A Comprehensive Look at the Empirical

Performance of Equity Premium Prediction.” Review of Financial Studies

21 (4):1455–1508.

Whaley, R.E. 2000. “The Investor Fear Gauge.” Journal of Portfolio Management

26 (3):12–17.

Xing, Y., X. Zhang, and R. Zhao. 2010. “What Does the Individual Option

Volatility Smirk Tell Us about Future Equity Returns?” Journal of Financial

and Quantitative Analysis 45 (3):641.

Ziegler, A. 2007. “Why Does Implied Risk Aversion Smile?” Review of Financial

Studies 20 (3):859–904.

38


	Option Prices and the Real World
	The Recovery Theorem

	Steps to Recovery
	From Option Prices to State Prices
	From State Prices to Markov Chains

	Empirical Results
	Implementation
	Moments
	Risk Premia
	A Simple Trading Strategy
	Robustness Checks
	Pseudo Recovery

	Conclusion

