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Abstract 

We suggest a simple and general approach to fitting the discount curve under no-arbitrage 

constraints based on a penalized shape-constrained B-spline. Our approach accommodates 

B-splines of any order and fitting both under the L1 and the L2 loss functions. Simulations and 

an empirical analysis of US STRIPS data from 2001-2009 suggest that an active knot search 

and splines of order three and four are mandatory to obtain reasonable fits. The loss 

function appears to be less relevant. 
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1 Introduction

The discount curve is the key ingredient in the valuation and risk-management not only of fixed

income securities, but of almost any financial instrument that promises future cash-flows, such as

structured debt, equity, and foreign exchange products, life annuities, and others. Moreover, the

discount curve defines two additional objects of interest: (i) the term structure of interest rates, also

called spot rate curve or yield curve; and (ii) the forward rate curve, which represents the return

on an investment over an infinitesimally small time horizon that is arranged today, but made in the

future.

To fix ideas, denote by d : [0,+∞) → (0, 1] the discount function that must be monotonically

decreasing by static no-arbitrage arguments; see McCulloch (1971). Under continuous compound-

ing, the spot rate function associated with d(·) is the mapping r : (0,+∞)→ [0,+∞) given by

r(τ) = −
1
τ

log d(τ) , (1)

while the forward rate curve is described by the mapping f : [0,+∞)→ [0,+∞) defined by

f (τ) = −
d′(τ)
d(τ)

, (2)

where d′(·) denotes the first-order derivative of d(·).

Because the discount curve is not directly observable, it needs to be estimated from prices of fixed

income instruments, such as government bonds or fixed income futures. Due to their flexibility,

spline estimators, usually based on B-splines, have a long tradition of being used for this purpose.

Simple spline approximations have been suggested, inter alia, in McCulloch (1971), McCulloch

(1975), Vasicek and Fong (1982), Litzenberger and Rolfo (1984), and Coleman et al. (1992);

see Marangio et al. (2002) for a review and Ioannides (2003) and Yallup (2012) for empirical

comparisons of these unconstrained spline methods on UK treasury bills and gilt data.

More recently, in an effort to obtain statistically more efficient, and in particular, arbitrage-free

estimates of the discount curve, the focus has shifted toward shape-constrained spline approxima-

tions. Although well researched over the past decades, the shape-constrained estimation of the
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discount curve still lacks a coherent and satisfying framework to date. Extant estimators are often

involved, are strongly tied to a specific degree of the spline, or depend on arguable assumptions.

For instance, Laurini and Moura (2010) suggest a penalized linear B-spline approximation to the

discount curve that is obtained by minimizing the L1 loss function. The definition of the forward

rate curve in (2), however, suggests that the discount function should be continuously differen-

tiable. A linear B-spline approximation may therefore not be satisfactory for certain applications.

Chiu et al. (2008) use a cubic B-spline instead, but for monotonicity to hold, they impose a local

convexity condition to hold piecewise between the spline segments. This assumption could be

questioned, as there is no economic theory that would require the discount curve to be convex,

either locally or globally. Moreover, an order of differentiability is lost. Similarly, the cubic for-

ward rate interpolation scheme of Hagan and Graeme (2006) depends on a convexity condition.

In building on the monotonized (cubic) B-spline basis owed to Ramsay (1988), Ramponi (2003)

avoids the assumption of local convexity for achieving monotonicity, but the estimator does not

include the additional property 1 ≥ d(τ) > 0. Another cubic B-spline is proposed in Barzanti

and Corradi (1999), in which the L1 solution is obtained by means of a linear program under the

assumption of a one-sided error distribution. In this context, a one-sided error distribution may not

be a natural assumption, because it yields estimates that are biased.

In this paper, we aim at closing this gap by providing a simple and general approach to fitting

the discount curve. The estimator is a penalized shape-constrained B-spline. Smoothness of any

order is achieved without any additional assumptions, although it is likely that quadratic or cubic

B-splines are sufficient for practice. As penalties, we consider the ridge and a first-order difference

penalty. The penalty regularizes the estimate in the presence of sparse data, and at the same time,

penalizes oscillatory behavior. Because it is often argued that L1 estimators are preferable, due

to their robustness against outliers and their more benign behavior (He and Shi, 1998; Lavery,

2000; Cheng et al., 2005), we discuss both L1 and L2 estimation. Both estimation methods are

straightforward to implement, because one can take advantage of standard solvers for quadratic

programs and quantile regression. Finally, we discuss knot placement based on an active knot

search and a subsequent knot deletion or relocation.
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The generality of our framework allows us to study a wide range of different, but mutually com-

parable estimators. We consider a total of twelve estimators. They are constructed using linear,

quadratic, and cubic B-splines, penalized by the ridge and the Eilers and Marx (1996) first-order

finite difference penalties, an solved by minimizing either the L1 or the L2 loss function. The esti-

mators are applied to simulated data and nine years of US STRIPS data from 2001-2009. We find

modest differences among the estimators, with the quadratic and cubic ones performing the best,

regardless of the loss function used for estimation.

The paper is organized as follows. In Section 2, we introduce the shape-constrained B-spline esti-

mator. The simulation results are provided in Section 3 and the empirical applications in Section 4.

Section 5 concludes.

2 Shape-constrained discount curve smoothing with B-splines

The purpose is to approximate up to some error ε with mean zero and finite variance, the unknown

discount curve by means of a B-spline basis of order q (degree q − 1):

d(τ) =

N+q∑
j=1

θ jB j(τ; q) + ε , (3)

where for j = 1, . . . ,N + q, B j(τ; q) denotes the B-spline basis function of order q (degree q − 1)

and θ j its parameter weight. We define the B-splines over the strictly increasing knot sequence

ξ1 = · · · = ξq < ξq+1 < · · · < ξq+N < ξq+N+1 = · · · = ξN+2q ,

where N is the number of interior knots. Because the interior knots are not coinciding, the spline

will be differentiable q− 2 times; see de Boor (2001) for a precise definition of B-splines and their

properties.

In the following, we wish to obtain estimates θ̂ j, j = 1, . . . ,N + q, such that the discount factor

function d(τ) =
∑N+q

j=1 θ̂ jB j(τ; q) does not admit arbitrage, i.e., (1) it is positive, (2) monotonically

decreasing in time-to-maturity, (3) and obeys the limit constraints d(0) = 1 and limτ→∞ d(τ) = 0.
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2.1 Estimation frameworks

We suppose that we are given a sample of observed discount factors {τi, d(τi)}ni=1.1 Denote by

B(τi; q) the (N + q) × 1 vector of B-spline basis functions of order q, evaluated at τi, i = 1, . . . , n,

and collect the sequence of B-spline weights in the vector θ = {θ j}, j = 1, . . . , (N + q). We will

seek solutions to θ, both in the L2 and the L1 loss functions.

For the L2 loss function, we minimize

θ̂ = arg min
θ∈RN+q

n∑
i=1

(
di − B(τi; q)>θ

)2
+ λP2 , (4)

subject to 1 ≥ θ1 > θ2 > . . . > θN+q ≥ 0 , (5)

where λ is the penalty parameter and P2 is the penalty term. Specifically, P2 can take the form

of a ridge penalty given by P2,R =
∑N+q

j=1 |θ j|
2 and the form of the first-order difference penalty

P2,EM1 =
∑N+q−1

j=1 |θ j+1 − θ j|
2 as introduced by Eilers and Marx (1996). This latter penalty, for

which one can define generalizations in terms of higher-order difference penalties, differs from the

usual penalty for the smoothing spline in that it only provides an approximation to the first-order

derivative. The theoretical properties of this class of splines have been studied only recently in

Claeskens et al. (2009).

When we search for an L1 solution, we minimize

θ̂ = arg min
θ∈RN+q

n∑
i=1

∣∣∣di − B(τi; q)>θ
∣∣∣ + λP1 , (6)

subject to 1 ≥ θ1 > θ2 > . . . > θN+q ≥ 0 , (7)

where the penalties now take the forms P1,R =
∑N+q

j=1 |θ j| and P1,EM1 =
∑N+q−1

j=1 |θ j+1−θ j|, respectively.

The constraints (5) and (7) implement the desired constraints of the upper and lower bounds on the

discount factor and monotonicity. The first are ensured by the leftmost and rightmost inequalities,

1For the sake of simplicity, we assume the existence of a sample of observed discount factors. While this holds true
for the US STRIPS data we use in our empirical application, in many practical cases, this may not apply. Typically, the
samples include observed bond prices and their coupon payments. It is, however, not difficult to rewrite the objective
functions for this case.
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because the B-spline basis functions are positive and form a partition of unity. The inner inequali-

ties ensure monotonicity by the variation diminution property of the B-spline: the number of sign

changes in d is, at most, as large as in the sequence of {θ j}; see de Boor (2001, pp. 138–142).

For linear and quadratic splines, these constraints are both necessary and sufficient, but for splines

with higher degrees, they are only sufficient. The sufficiency part is easily seen as follows. Suppose

q ≥ 2 and, for simplicity, that the knots are equidistant with width ∆. Differentiating the spline

function d(τ), one obtains d′(τ) =
∑

j θ jB′j(τ; q) = ∆−1 ∑
j(θ j − θ j−1)B j(τ; q− 1) by the properties of

B-splines; see de Boor (2001, p. 116). Thus, θ j < θ j−1 implies a monotonically decreasing spline

function. In consequence, the constraints (5) and (7) implement the desired constraints for any

degree of the polynomial spline space.

Remarkably, these constraints appear to be rarely used, although they are easy to implement and

originate from basic properties of the B-spline. Kelly and Rice (1991) use them to obtain a mono-

tonic B-spline for fitting a dose-response curve. They also appear in the discount factor model of

Barzanti and Corradi (1999), and more recently, in Fengler and Hin (2013), to impose monotonic-

ity along an axial direction of a call-option price surface modeled by a tensor-product B-spline.

Yet most studies on monotonic B-splines suggest imposing monotonicity directly on the result-

ing regression function, which only works well for linear and quadratic splines; see, e.g., He and

Shi (1998), He and Ng (1999), or Meyer (2012). It fails, however, for cubic and higher-degree

polynomials, because it is very intricate to characterize monotonicity in terms of conditions on the

parameters; see Fredenhagen et al. (1999) for an in-depth discussion. Therefore, for cubic and

higher-degree splines, one needs to content oneself with spline approximations that achieve mono-

tonicity only at a finite collection of points; see Tobler (1996) for such an approach to modeling

discount factors. Alternatively, one requires more structural assumptions, such as local convexity,

as in Chiu et al. (2008), or additional and more sophisticated optimization techniques, as proposed

in Turlach (2005) and Papp and Alizadeh (2014).
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2.2 Implementation of the estimators

To describe the implementation of the estimators, we introduce the following notation. Define

PR = IN+q, which is the unit matrix of size (N + q), and the (N + q − 1) × (N + q) matrix

PEM1 =


−1 1 0 · · · 0

0 −1 1
...

...
. . .

. . .
...

0 . . . . . . −1 1

 . (8)

Moreover, denote by

B =


B(τ1; q)>

...
B(τn; q)>

 (9)

the n× (N + q) B-spline collocation matrix for all n observations and collect the observed discount

rates into the vector d = (d1, . . . , dn)>. To implement the no-arbitrage constraints, we introduce the

banded (N + q + 1) × (N + q) matrix

M1 =



−1 0 0 · · · 0
1 −1 0 · · · 0

0 1 −1
...

...
. . .

. . .
...

0 . . . 1 −1
0 . . . 0 1


(10)

and the vector m1 = (−1, 01×(N+q))>, where 0(N+q)×1 is an (N+q)×1 column vector, with all elements

being zero.

In the L2 estimation framework, for P ∈ {PR,PEM1}, we estimate the B-spline coefficients θ by

means of the quadratic program

min
θ∈RN+q

θ>
(
B
>
B + λP>P

)
θ − 2d>Bθ (11)

s.t. M1θ ≥ m1 , (12)

which can be solved using standard quadratic programming methods, such as the Goldfarb-Idnani

algorithm. We will make use of the function solve.QP() from the R package quadprog that is

owed to Turlach and Weingessel (2014).
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If the estimated spline function is defined at τ = 0, i.e., if the knot sequence starts at zero by

choosing ξ1 = . . . ξq = 0, it can be useful to add the more powerful constraint d(0) = 1 to the

program. This goal is achieved by introducing the (N + q) × (N + q) matrix

M2 =



1 −1 0 · · · 0

0 1 −1
...

...
. . .

. . .
...

0 . . . 1 −1
0 . . . 0 1


(13)

and the vector m2 = (1, 01×(N+q−1))>. Then, constraint (12) must be replaced by

M2θ ≥ 0(N+q)×1

and m>2 θ = 1 ,
(14)

which can be solved by standard quadratic programming methods as well.

To estimate the L1 solution, further notation is required. For P ∈ {PR,PEM1}, define the (n + p) ×

(N + q) matrix

X̃ =


x̃1
...

x̃n+p

 =

(
B

λP

)
(15)

and introduce the (n + p)-vector

ỹ =


ỹ1
...

ỹn+p

 =

(
d

0p×1

)
, (16)

where p = N + q for PR and p = (N + q − 1) for PEM1. As noted in Ng and Maechler (2007), this

notation allows one to cast the objective function
∑n

i=1 |di − B(τi; q)>θ| + λP1, j, j = {R, EM1}, into

the more compact form
∑n+p

i=1 |̃yi − x̃>i θ|.

In summary, we express the constrained L1 problem as

min
θ∈RN+q

n+p∑
i=1

∣∣∣̃yi − x̃>i θ
∣∣∣

s.t. constraints (12) or (14) .

(17)

This linear program is a constrained median regression framework, which can be solved, for in-

stance, using the Frisch-Newton algorithm as described in Koenker and Ng (2005). Specifically,
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we use the low level function rq.fit.fnc() from the R package quantreg which is owed to

Koenker (2013).

2.3 Knot search and determination of the penalty parameter

The estimator requires both the selection of knots and of the penalty parameter. We address these

questions iteratively, i.e., we first determine the knot sequence, and conditionally on this, select

the penalty parameter λ. Because a good knot placement is an essential parametrization problem

for the B-spline, we do not fix knots on an equidistant grid, but make use of a guided knot search

followed by relocation and deletion strategies. This follows suggestions in He and Shi (1996),

Zhou and Shen (2001), and Fengler and Hin (2013).

As in He and Ng (1999), all model selections are guided by a Schwarz information criterion (SIC).

We define it by

SIC = log(ASR) +
1
2
ρ(λ)

log(n)
n

, (18)

where ASR = 1
n

∑n
i=1(di − d̂i)2 and ρ(λ) = tr{B(B>B + λP>P)−1B>} is an approximation to the

degrees of freedom in the sense of Hastie and Tibshirani (1990).2 For knot insertion, we set the

penalty parameter to λ = 10−10 and employ a B-spline of order q = 2. With all constraints being ac-

tive and given boundary knots, we search over each subinterval in the working knot sequence such

as to minimize SIC. This search is run for a user-specified number of layers; for our simulations

and empirical demonstrations, four layers have appeared to be sufficient.

Next, we provide a knot adjustment strategy. We employ the B-spline at the desired order. We then

iterate over each subinterval in the knot sequence resulting from the knot insertion phase and check,

for each knot, whether (i) the knot deletion and (ii) the knot relocation result in an improvement of

the SIC. After determining the knot sequence in this way, we minimize the SIC over the penalty
2The definition of ρ(λ) is borrowed from the unconstrained L2 solution. Thus, in the constrained L2 case, it is

only an approximation to the true degrees of freedom, which depend on the random number of active constraints. For
the L1 loss function, the case is yet more difficult, because even for unconstrained regression problems, appropriate
definitions of model selection criteria continue to be heavily researched; see Gao and Fang (2011) for further details.
Our procedure is just a practical way of addressing the difficult problem of model selection in this context.
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parameter λ. The value at the smallest SIC is taken as the optimal penalty parameter.

2.4 Relation to other constrained models of the discount curve

Laurini and Moura (2010) suggest using the linear COBS procedure owed to He and Ng (1999) to

estimate the discount factor curve. In this approach, for a given knot sequence, one minimizes the

objective function

min
θ∈RN+q

n∑
i=1

∣∣∣di − B(τi; q)>θ
∣∣∣ + α

N∑
i=1

∣∣∣B′(ξi+q; q)>θ − B′(ξi+q−1; q)>θ
∣∣∣ (19)

s.t. Hθ ≥ 0(N+q)×1 , (20)

where α is a penalty parameter and

H =


B′1(ξq; q) · · · B′N+q(ξq; q)

...
...

B′1(ξN+q+1; q) · · · B′N+q(ξN+q+1; q)

 (21)

and q = 2. B′(·; q) denotes the first-order derivative of the B-spline basis function. The constraint

Hθ ≥ 0 ensures the monotonicity of the estimate.3 Despite the notational differences, however,

the COBS penalty coincides up to a factor of proportionality with the ridge penalty P1,R of the

penalized B-spline when q = 2. Because our monotonicity constraints are both sufficient and

necessary, the monotonicity constraint is also equivalent to our formulation. Hence, under the L1

loss function and for q = 2, the COBS estimator, as applied by Laurini and Moura (2010), is

obtained as a special case of our set-up. As noted in the introduction, the monotonicity constraints,

as given in (20), do not generalize in a linear way for orders q ≥ 4 ; see He and Shi (1998, p. 644).

Our estimator is also related to that of Barzanti and Corradi (1999), who consider a linear program

of an unpenalized cubic B-spline approximation to the discount curve using the same formulation

of the constraints as in (14). Yet for q = 4 and λ = 0, their L1 estimator differs, because they esti-

mate under the assumption of a one-sided error distribution. As discussed in Preve and Medeiros

(2011), this yields biased estimates.

3For the sake of space, we disregard here the additional constraints that maintain positivity and ensure d(0) ≤ 1.
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3 Monte Carlo simulations

3.1 Simulation set-up

As in Ramponi (2003), we simulate from the Nelson-Siegel specification of the discount factor;

see Nelson and Siegel (1987). This functional form is a widely accepted to be sufficiently flexible

to mimic the most important shapes of empirically observed yield curves. It is given by

d(τ) = exp
[
−τ

{
β0 + (β1 + β2)

(
1 − exp

(
−
τ

ϑ

))
ϑ

τ
− β2 exp

(
−
τ

ϑ

)}]
, (22)

where β0, β1, β2, and ϑ are parameters. The spot rate function is given by

r(τ) = β0 + (β1 + β2)
{
1 − exp

(
−
τ

ϑ

)}
ϑ

τ
− β2 exp

(
−
τ

ϑ

)
(23)

and the forward rate function by

f (τ) = β0 +

(
β1 + β2

τ

ϑ

)
exp

(
−
τ

ϑ

)
. (24)

For the simulation, we choose M = 200 regularly spaced tenors ranging from τ1 = 0.15 to τ200 = 30

years. The Nelson-Siegel yields r(τ j), j = 1, . . . ,M, are perturbed using normal mean-zero error

with standard deviation σ j which is allowed to vary in j. To make our modeling of heteroscedastic-

ity empirically relevant, we estimate it as follows. From the bucket-wise medians of the high minus

low yield spreads that we observe in the US zero-coupon STRIPS data4, we compute the spread

s j = Med
(
{hi, j − li, j}

n j

i=1

)
, where h j and l j denote the high and the low yields, respectively, and n j

is the total number of observations within each bucket ranging from (τ j−1, τ j], j = 1, . . . ,M, with

τ0 = 0. Because these spreads give a very rough picture, the standard deviation σ j, j = 1, . . . ,M,

used for the simulations are obtained from applying a running median with window width five over

these 200 buckets. The median is used for robustness reasons. Figure 1 reports the total number

of observations (left panel) and the estimated standard deviation (right panel) as a function of the

maturity buckets. Starting with the smallest tenors, the median spread gradually decreases and is

4See Section 4 for a more detailed description of these data.
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lowest for about 20-24 years (buckets 130 to 160). For the largest tenors, the estimated volatility

rises again.

For the simulations, we consider three sets of parameters to generate different shapes of the yield

curve: (1) a flat curve parametrized with β0 = 0.04, β1 = β2 = 0, ϑ = 1; (2) an increasing curve

with β0 = 0.05, β1 = −0.03, β2 = 0, ϑ = 2; and (3) a humped-shaped curve with β0 = 0.05, β1 =

0, β2 = −0.1359, ϑ = 2. The humped-shaped curve produces an almost flat discount factor curve

for τ ≈ 2 years. A non-constrained estimator is therefore likely to produce inadmissible estimates

in this case. For each of the three parameters’ settings, 1,000 random samples are drawn and

subjected to the different estimators.

In the literature, there is consensus about the usefulness of constrained estimators, but less is

known about the relative importance of the degrees of the spline and the loss functions used for

constrained estimation. This is because a single constrained estimator is usually compared against

unconstrained fits; see Barzanti and Corradi (1999); Ramponi (2003); Chiu et al. (2008); Laurini

and Moura (2010). The general estimation framework that we suggest allows us to obtain a more

complete picture of the impact of the B-spline order, the penalty, and the loss function on estimation

efficiency. We therefore consider three orders of the B-spline, q ∈ {2, 3, 4}, and two penalties PR

and PEM1 for both the L1 and the L2 estimators. We use the constraints spelled out in (14). Together

with the original COBS estimator for the discount curve as suggested by Laurini and Moura (2010),

this yields thirteen estimators for comparison purposes.

3.2 Simulation results

In Table 1, we display the knot sequences and the penalty parameters underlying the estima-

tions. For our estimators, they are obtained from a knot search as described in Section 2.3 on

one randomly chosen sample. The boundary knots are set to 0.00 and 60.00. We choose a right

boundary knot this far to the right for two reasons. First, it allows us to better approximate the

limτ→∞ d(τ) = 0 behavior; second, this choice stabilizes the estimations of the derivative that we

need to compute the forward rate curve; see Fengler and Hin (2013) for a detailed discussion of this
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issue. To avoid additional randomizations, the knots are kept fixed for all 1,000 runs. The COBS

implementation, as used in Laurini and Moura (2010), does not actively search for optimal knot

sites, but sets knots equidistantly in percentiles and deletes redundant knots according to the SIC.

As discussed in Section 2.4, we can therefore attribute any differences between our L1 estimator

for q = 2 with ridge penalty PR and the COBS estimator to the different knot placement strategies.

As can be seen from Table 1, our knot search suggests richer parametrized models (more knots)

for the L1 estimator than for the L2 estimator. As regards the two penalties, there are, at most,

minimal differences, because the influence of the penalty term is masked in the knot search phase.

We also do not find a lot of variation across the different orders of the B-spline, with the exception

of Setting 1, which is the case with the flat yield curve. The selected penalty parameters tend to

be larger for the L1 estimator, which may be due to the larger number of knots selected for this

estimator.

For each estimator, Tables 2, 3 and 4 report the integrated mean squared error (IMSE), the inte-

grated squared bias (IBias2), and the integrated variance (IVar) for each curve, i.e.,

IMSE ≡
∫

E[{m̂(τ) − m0(τ)}2 |τ]dτ =

∫
{E[m̂(τ)|τ] − m0(τ)}2︸                        ︷︷                        ︸

IBias2

dτ +

∫
Var[m̂(τ)|τ]dτ︸               ︷︷               ︸

IVar

, (25)

where m(·) ∈ {d(·), r(·), f (·)} are the discount factor curve, the spot rate and the forward rate curve,

respectively. We also compute the integrated mean absolute deviation about the true function

(IMAD), which we decompose into a bias and a dispersion component, namely, the integrated

absolute deviation of the median about the true function (IBias-med) and the integrated mean

absolute deviation of the estimates about the median (IMAD-med). For these, it holds that

IMAD ≡
∫

E
[∣∣∣m̂(τ) − m0(τ)

∣∣∣|τ] dτ (26)

≤

∫ ∣∣∣ Med[m̂(τ)|τ] − m0(τ)
∣∣∣dτ︸                               ︷︷                               ︸

IBias-med

+

∫
E

[∣∣∣m̂(τ) −Med[m̂(τ)|τ]
∣∣∣|τ] dτ︸                                     ︷︷                                     ︸

IMAD-med

. (27)

Table 2 shows that in our simulation environment, where the error distributions are inferred from

the daily high-low spreads, the largest contributions to both the IMSE and the IMAD come from

12



the bias components. The contributions of dispersion components are small. For Setting 1, the flat

yield curve, all estimators produce almost the same fitting quality, independently of the orders of

the underlying B-splines. This is because the knot search successfully eliminates redundant knots,

and thus, avoids excessive variation of the higher order B-splines. Moreover, the results do not

exhibit any particular difference between COBS and the other estimators, which shows that exact

knot placement is irrelevant for the flat yield curve. This is in contrast to Settings 2 and 3. For the

increasing and the humped-shaped yield curve, good knot placement matters. This corroborates

the findings in Ramponi (2003). Moreover, the order of the spline is of importance. The best fits

are achieved for the splines of order three and four. It is worth noting that, for our simulations,

we observe neither systematic differences between the L1 and the L2 estimators, nor between the

different penalty versions. In Tables 3 and 4, we additionally evaluate the estimates on the spot and

the forward rate curve. The nonlinear transformations tend to amplify the differences among the

estimators, yet overall, the previous conclusions are confirmed.

4 Empirical applications

We work with the US zero-coupon STRIPS data of the Thomson Reuters Tick History as supplied

by the Securities Industry Research Centre of Asia-Pacific. STRIPS disentangle the coupon and

principal components of eligible US Treasury notes and bonds. They can be held as separate

securities. Because a payment is only received at maturity, we can treat them as zero coupon

bonds. The data set consists of the daily yields of both the ‘interest rate only’ and the ‘principal

only’ components as observed between January 2, 2001 and December 31, 2009. For each record

day, the day high, low, open and close yield in percentage terms, along with the corresponding date

of maturity, are available.

Because the yields are reported on an ISMA Act/Act 6M YTM basis, we first convert them into

annualized continuous spot rates by means of r = log
[
{1 + (Y/100)/2}2

]
, where Y denotes the

reported day close yield. We then compute the discount factors respecting the Act/Act day count

convention, and all estimators are applied using the constraints in (14). The selections of knots and

13



penalty parameters are performed on each sample date.

The results are summarized in Table 5. As in the simulations, the differences between the different

penalty versions, on the one hand, and between the L1 and the L2 estimators, on the other hand, are

not dramatic. Yet there appears to be a clear preference for the more flexible splines of order four.

Comparing the fits of the COBS model with the L1 fit at order q = 2 with ridge penalty, one again

discerns the benefits of an active knot search.

In Figure 2, we display selected fits from the sample. While the differences in the discount factor

curves are hardly visible, the spot rate curves demonstrate the versatility of the higher order fits

vis-à-vis the linear fit with fixed knots. This is particularly striking for the hump-shaped fits as

in Figure 2. The log-transformation produces unacceptable kinks in the resulting spot rate curve,

although no derivative is needed for its computation. In summary, cubic fits are not only superior

in terms of their statistical fitting quality, but also more appealing on simple visual and practical

considerations.

5 Concluding remarks

We describe a simple and general framework for fitting the discount curve based on penalized B-

splines. The fits are obtained under no-arbitrage constraints, i.e., the discount curve obeys d(0) = 1,

and is monotonically decreasing and positive. The framework is independent of the order of the

selected B-splines. In our implementations, we use linear, quadratic and cubic splines on simulated

data and on a large data set of historical US STRIPS, and estimate under an L1 and an L2 loss

function. We also discuss an active knot search for optimal knot placement.

Our results suggest (i) that the quadratic and cubic splines are superior to concurrent linear shape-

constrained fits; (ii) that a good knot placement is an important parametrization device to capture

the salient features of the discount curve; (iii) that both the ridge and the first-order difference

penalty deliver comparable results; and (iv) that differences between L1 and L2 estimates are not

dramatic when applying the penalized B-spline to highly liquid interest rate data as we do. Clearly,
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L1 estimation could be more relevant when working with more volatile data, for instance, the

interest rate data of emerging markets.
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Tables and Figures

Table 1: Knot sequences and penalty parameters.

Estimator Knots λ

Setting 1: β0 = 0.04, β1 = 0, β2 = 0, ϑ = 1.
COBS 0.15, 6.00, 12.00, 18.00, 24.00, 30.00 0.4257
L1, q = 2,PEM1 0.00, 0.96, 4.28, 7.61, 9.99, 15.61, 20.65, 26.55, 29.45, 38.70, 60 .00 0.0592
L1, q = 2,PR 0.00, 1.14, 4.29, 7.61, 10.01, 15.72, 21.30, 51.22, 60.00 0.0903
L1, q = 3,PEM1 0.00, 1.91, 2.69, 6.13, 8.66, 9.62, 18.90, 21.29, 28.55, 31.16, 42.46, 60.00 0.0753
L1, q = 3,PR 0.00, 1.91, 2.69, 6.14, 8.65, 9.63, 11.06, 21.52, 32.29, 60 0.0919
L1, q = 4,PEM1 0.00, 10.04, 28.88, 29.60, 34.52, 60.00 0.0810
L1, q = 4,PR 0.00, 9.50, 47.21, 60.00 0.0705
L2, q = 2,PEM1 0.00, 1.27, 4.32, 9.18, 12.75, 15.6, 20.85, 60.00 0.0001
L2, q = 2,PR 0.00, 1.27, 4.32, 9.18, 12.75, 15.6, 20.85, 60.00 0.0001
L2, q = 3,PEM1 0.00, 1.30, 2.67, 5.97, 8.62, 9.49, 15.6, 24.48, 60.00 0.0090
L2, q = 3,PR 0.00, 1.30, 2.67, 5.97, 8.62, 9.49, 15.6, 24.48, 60.00 0.0003
L2, q = 4,PEM1 0.00, 7.03, 46.99, 60.00 0.0009
L2, q = 4,PR 0.00, 7.03, 46.99, 60.00 0.0016

Setting 2: β0 = 0.05, β1 = −0.03, β2 = 0, ϑ = 2.
COBS 0.15, 6.00, 12.00, 18.00, 24.00, 30.00 0.6623
L1, q = 2,PEM1 0.00, 1.00, 5.34, 7.84, 12.79, 17.16, 23.4, 35.03, 57.11, 60.00 0.0955
L1, q = 2,PR 0.00, 1.00, 5.34, 7.84, 12.79, 17.16, 23.32, 51.95, 57.07, 60.00 0.0904
L1, q = 3,PEM1 0.00, 2.23, 4.06, 7.8, 13.28, 15.11, 23.26, 34.92, 57.11, 60.00 0.0818
L1, q = 3,PR 0.00, 2.23, 4.06, 7.8, 13.28, 15.1, 23.28, 36.6, 57.07, 60.00 0.0803
L1, q = 4,PEM1 0.00, 3.28, 6.57, 7.8, 12.85, 17.16, 22.75, 36.59, 57.11, 60.00 0.0852
L1, q = 4,PR 0.00, 3.28, 6.57, 7.8, 12.83, 17.16, 22.76, 36.6, 57.07, 60.00 0.0510
L2, q = 2,PEM1 0.00, 0.79, 5.75, 14.65, 59.58, 60.00 0.0001
L2, q = 2,PR 0.00, 0.79, 5.75, 14.65, 60.00 0.0010
L2, q = 3,PEM1 0.00, 1.24, 6.58, 17.98, 50.81, 60.00 0.0100
L2, q = 3,PR 0.00, 1.24, 6.58, 17.97, 50.79, 60.00 0.0008
L2, q = 4,PEM1 0.00, 7.24, 15.05, 57.02, 60.00 0.0034
L2, q = 4,PR 0.00, 7.22, 15.06, 57.00, 60.00 0.0009

Setting 3: β0 = 0.05, β1 = 0, β2 = −0.1359, ϑ = 2.
COBS 0.15, 6.00, 12.00, 18.00, 24.00, 30.00 0.1203
L1, q = 2,PEM1 0.00, 0.69, 3.85, 5.18, 14.36, 20.27, 23.65, 33.69, 60.00 0.0978
L1, q = 2,PR 0.00, 0.69, 3.85, 5.18, 14.36, 20.27, 23.7, 38.32, 45.29, 60.00 0.0932
L1, q = 3,PEM1 0.00, 0.78, 3.65, 7.23, 20.35, 22.3, 24.03, 37.37, 45.62, 60.00 0.0890
L1, q = 3,PR 0.00, 0.78, 3.65, 7.23, 20.44, 22.3, 24.03, 40.11, 45.27, 60.00 0.0752
L1, q = 4,PEM1 0.00, 2.80, 4.65, 7.21, 12.79, 17.11, 23.79, 37.42, 45.62, 60.00 0.0867
L1, q = 4,PR 0.00, 2.60, 4.80, 7.17, 13.01, 17.33, 24.29, 35.37, 45.29, 60.00 0.0487
L2, q = 2,PEM1 0.00, 0.65, 3.47, 4.87, 14.29, 22.39, 60.00 0.0001
L2, q = 2,PR 0.00, 0.65, 3.47, 4.87, 14.29, 22.39, 60.00 0.0003
L2, q = 3,PEM1 0.00, 1.05, 3.86, 6.97, 23.85, 60.00 0.0082
L2, q = 3,PR 0.00, 1.05, 3.86, 6.97, 23.85, 60.00 0.0006
L2, q = 4,PEM1 0.00, 3.47, 3.86, 6.97, 12.47, 45.65, 60.00 0.0002
L2, q = 4,PR 0.00, 3.47, 3.86, 6.97, 12.47, 45.65, 60.00 0.0010
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Table 2: Summary statistics for discount factors. IMSE: integrated mean squared error. IBias2:
integrated squared bias. IVar: integrated variance. IMAD: integrated mean absolute deviation of
the sample estimates about the true value. IBias-med: integrated absolute deviation of the median
about the true value. IMAD-med: integrated mean absolute deviation of the sample estimates
about the median.

Estimator IMSE (×10−1) IBias2 (×10−1) IVar (×10−5) IMAD IBias-med IMAD-med (×10−2)
Setting 1: β0 = 0.04, β1 = 0, β2 = 0, ϑ = 1.

COBS 1.1993 1.1992 0.8463 1.1277 1.1278 0.8563
L1, q = 2,PEM1 1.1987 1.1986 1.0524 1.1206 1.1208 0.9360
L1, q = 2,PR 1.1997 1.1997 0.8019 1.1207 1.1208 0.8330
L1, q = 3,PEM1 1.1986 1.1985 1.0388 1.1204 1.1205 0.9370
L1, q = 3,PR 1.1986 1.1986 0.9086 1.1203 1.1205 0.8759
L1, q = 4,PEM1 1.1990 1.1989 0.5049 1.1205 1.1207 0.6482
L1, q = 4,PR 1.1990 1.1989 0.4233 1.1206 1.1206 0.5955
L2, q = 2,PEM1 1.2002 1.2001 0.5395 1.1210 1.1209 0.6818
L2, q = 2,PR 1.2001 1.2001 0.5395 1.1210 1.1209 0.6819
L2, q = 3,PEM1 1.2001 1.2000 0.5252 1.1209 1.1209 0.6775
L2, q = 3,PR 1.1996 1.1996 0.5732 1.1208 1.1208 0.7076
L2, q = 4,PEM1 1.1994 1.1994 0.2627 1.1204 1.1204 0.4741
L2, q = 4,PR 1.1988 1.1987 0.2867 1.1202 1.1201 0.4894

Setting 2: β0 = 0.05, β1 = −0.03, β2 = 0, ϑ = 2.
COBS 1.6052 1.6052 0.6380 1.2983 1.2983 0.7415
L1, q = 2,PEM1 1.6038 1.6038 0.6773 1.2921 1.2921 0.7694
L1, q = 2,PR 1.6035 1.6035 0.6719 1.2920 1.2920 0.7664
L1, q = 3,PEM1 1.6033 1.6032 0.9175 1.2920 1.2920 0.8905
L1, q = 3,PR 1.6032 1.6031 0.6900 1.2918 1.2920 0.7844
L1, q = 4,PEM1 1.6030 1.6030 0.7064 1.2917 1.2917 0.7923
L1, q = 4,PR 1.6032 1.6031 0.7192 1.2917 1.2917 0.8000
L2, q = 2,PEM1 1.6109 1.6108 0.2246 1.2925 1.2924 0.4495
L2, q = 2,PR 1.6107 1.6107 0.2245 1.2923 1.2923 0.4494
L2, q = 3,PEM1 1.6050 1.6050 0.2169 1.2923 1.2922 0.4461
L2, q = 3,PR 1.6039 1.6039 0.2154 1.2921 1.2920 0.4447
L2, q = 4,PEM1 1.6041 1.6041 0.2644 1.2945 1.2944 0.4877
L2, q = 4,PR 1.6036 1.6035 0.2457 1.2943 1.2942 0.4658

Setting 3: β0 = 0.05, β1 = 0, β2 = −0.1359, ϑ = 2.
COBS 1.0309 1.0308 1.1179 0.9698 0.9698 0.9867
L1, q = 2,PEM1 1.0299 1.0298 1.0242 0.9509 0.9507 0.9491
L1, q = 2,PR 1.0296 1.0295 1.0166 0.9507 0.9505 0.9462
L1, q = 3,PEM1 1.0286 1.0285 1.0565 0.9524 0.9523 0.9644
L1, q = 3,PR 1.0290 1.0289 1.0619 0.9525 0.9524 0.9640
L1, q = 4,PEM1 1.0289 1.0288 1.0983 0.9535 0.9535 0.9972
L1, q = 4,PR 1.0290 1.0289 1.1275 0.9530 0.9529 1.0101
L2, q = 2,PEM1 1.0306 1.0305 0.4859 0.9506 0.9505 0.6548
L2, q = 2,PR 1.0305 1.0305 0.4858 0.9506 0.9504 0.6549
L2, q = 3,PEM1 1.0305 1.0305 0.4054 0.9517 0.9516 0.5985
L2, q = 3,PR 1.0296 1.0296 0.4693 0.9516 0.9514 0.6419
L2, q = 4,PEM1 1.0297 1.0296 0.5141 0.9554 0.9553 0.6737
L2, q = 4,PR 1.0294 1.0294 0.4741 0.9553 0.9552 0.6501
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Table 3: Summary statistics for spot rates. IMSE: integrated mean squared error. IBias2:
integrated squared bias. IVar: integrated variance. IMAD: integrated mean absolute deviation of
the sample estimates about the true value. IBias-med: integrated absolute deviation of the median
about the true value. IMAD-med: integrated mean absolute deviation of the sample estimates
about the median.

Estimator IMSE (×10−3) IBias2 (×10−3) IVar (×10−7) IMAD (×10−1) IBias-med (×10−1) IMAD-med (×10−3)
Setting 1: β0 = 0.04, β1 = 0, β2 = 0, ϑ = 1

COBS 1.2493 1.2491 1.8275 1.2775 1.2777 1.2001
L1, q = 2,PEM1 1.2062 1.2059 2.5932 1.2146 1.2143 1.3426
L1, q = 2,PR 1.2064 1.2062 1.8810 1.2130 1.2128 1.1868
L1, q = 3,PEM1 1.2054 1.2052 2.0128 1.2129 1.2130 1.2737
L1, q = 3,PR 1.2053 1.2051 2.0446 1.2127 1.2129 1.2421
L1, q = 4,PEM1 1.2055 1.2055 0.8976 1.2136 1.2138 0.8634
L1, q = 4,PR 1.2056 1.2056 0.7859 1.2134 1.2134 0.8036
L2, q = 2,PEM1 1.2071 1.2070 1.2525 1.2134 1.2132 0.9681
L2, q = 2,PR 1.2070 1.2069 1.2525 1.2133 1.2131 0.9681
L2, q = 3,PEM1 1.2064 1.2062 1.6039 1.2132 1.2130 1.0283
L2, q = 3,PR 1.2061 1.2060 1.7245 1.2131 1.2128 1.0643
L2, q = 4,PEM1 1.2062 1.2061 0.7838 1.2076 1.2074 0.7113
L2, q = 4,PR 1.2058 1.2057 0.9155 1.2072 1.2070 0.7456

Setting 2: β0 = 0.05, β1 = −0.03, β2 = 0, ϑ = 2.
COBS 2.0719 2.0717 1.2777 1.5878 1.5878 1.0406
L1, q = 2,PEM1 2.0191 2.0189 2.0404 1.5334 1.5334 1.1892
L1, q = 2,PR 2.0188 2.0186 2.0345 1.5332 1.5332 1.1869
L1, q = 3,PEM1 2.0184 2.0175 8.9916 1.5326 1.5316 1.5970
L1, q = 3,PR 2.0178 2.0176 1.9820 1.5323 1.5323 1.2025
L1, q = 4,PEM1 2.0171 2.0169 1.8894 1.5293 1.5291 1.1924
L1, q = 4,PR 2.0171 2.0169 1.9043 1.5293 1.5291 1.1997
L2, q = 2,PEM1 2.0329 2.0328 1.2207 1.5406 1.5406 0.7697
L2, q = 2,PR 2.0323 2.0321 1.2187 1.5397 1.5396 0.7695
L2, q = 3,PEM1 2.0320 2.0319 1.4165 1.5452 1.5450 0.7856
L2, q = 3,PR 2.0318 2.0316 1.4761 1.5456 1.5455 0.7908
L2, q = 4,PEM1 2.0319 2.0318 0.9358 1.5556 1.5555 0.7822
L2, q = 4,PR 2.0315 2.0315 0.8767 1.5556 1.5554 0.7513

Setting 3: β0 = 0.05, β1 = 0, β2 = −0.1359, ϑ = 2.
COBS 1.1679 1.1676 2.3740 1.0738 1.0736 1.3303
L1, q = 2,PEM1 0.9064 0.9060 3.9779 0.9320 0.9314 1.4308
L1, q = 2,PR 0.9062 0.9058 3.9173 0.9318 0.9312 1.4233
L1, q = 3,PEM1 0.9113 0.9108 5.5606 0.9455 0.9453 1.4982
L1, q = 3,PR 0.9117 0.9112 5.2582 0.9456 0.9455 1.4759
L1, q = 4,PEM1 0.9504 0.9500 4.2224 0.9702 0.9699 1.5175
L1, q = 4,PR 0.9382 0.9378 4.0074 0.9626 0.9623 1.5046
L2, q = 2,PEM1 0.9048 0.9046 1.5172 0.9300 0.9295 0.9435
L2, q = 2,PR 0.9047 0.9045 1.5311 0.9298 0.9293 0.9459
L2, q = 3,PEM1 0.8998 0.8997 1.6184 0.9261 0.9255 0.8994
L2, q = 3,PR 0.8992 0.8990 1.7338 0.9260 0.9253 0.9440
L2, q = 4,PEM1 0.9709 0.9708 1.5033 0.9827 0.9826 0.9768
L2, q = 4,PR 0.9695 0.9694 1.4527 0.9821 0.9819 0.9527
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Table 4: Summary statistics for forward rates. IMSE: integrated mean squared error. IBias2:
integrated squared bias. IVar: integrated variance. IMAD: integrated mean absolute deviation of
the sample estimates about the true value. IBias-med: integrated absolute deviation of the median
about the true value. IMAD-med: integrated mean absolute deviation of the sample estimates
about the median.

Estimator IMSE (×10−2) IBias2 (×10−3) IVar (×10−5) IMAD (×10−1) IBias-med (×10−1) IMAD-med (×10−2)
Setting 1: β0 = 0.04, β1 = 0, β2 = 0, ϑ = 1

COBS 0.3460 3.4566 0.3239 2.0649 2.0651 0.5194
L1, q = 2,PEM1 0.3529 3.4681 6.1392 2.0758 2.0784 1.1022
L1, q = 2,PR 0.3332 3.3282 0.3825 2.0400 2.0404 0.5717
L1, q = 3,PEM1 0.3435 3.4086 2.6816 2.0656 2.0825 0.9244
L1, q = 3,PR 0.3360 3.3517 0.8182 2.0527 2.0524 0.6968
L1, q = 4,PEM1 0.3363 3.3538 0.8820 2.0534 2.0595 0.3287
L1, q = 4,PR 0.3318 3.3167 0.0953 2.0446 2.0447 0.2271
L2, q = 2,PEM1 0.3295 3.2918 0.2928 2.0271 2.0270 0.4891
L2, q = 2,PR 0.3294 3.2911 0.2928 2.0270 2.0269 0.4891
L2, q = 3,PEM1 0.3373 3.3703 0.3095 2.0575 2.0586 0.4570
L2, q = 3,PR 0.3336 3.3315 0.4277 2.0483 2.0517 0.5318
L2, q = 4,PEM1 0.3382 3.3818 0.0393 2.0619 2.0615 0.1534
L2, q = 4,PR 0.3366 3.3654 0.0477 2.0583 2.0584 0.1629

Setting 2: β0 = 0.05, β1 = −0.03, β2 = 0, ϑ = 2.
COBS 6.2838 6.2810 0.2815 2.8044 2.8053 4.7481
L1, q = 2,PEM1 6.1182 6.1144 0.3816 2.7337 2.7342 5.8257
L1, q = 2,PR 6.1159 6.1121 0.3767 2.7336 2.7343 5.7835
L1, q = 3,PEM1 6.1674 6.1531 1.4265 2.7460 2.7442 9.1344
L1, q = 3,PR 6.1094 6.1044 0.4992 2.7368 2.7370 6.0393
L1, q = 4,PEM1 6.1646 6.1599 0.4694 2.7440 2.7451 6.0305
L1, q = 4,PR 6.1049 6.0993 0.5647 2.7335 2.7324 6.5505
L2, q = 2,PEM1 5.8250 5.8247 0.0362 2.6434 2.6432 1.7602
L2, q = 2,PR 5.8244 5.8241 0.0361 2.6431 2.6429 1.7597
L2, q = 3,PEM1 6.0953 6.0950 0.0331 2.7555 2.7557 1.5973
L2, q = 3,PR 6.0871 6.0867 0.0316 2.7544 2.7543 1.5581
L2, q = 4,PEM1 6.2288 6.2282 0.0614 2.7782 2.7784 2.0687
L2, q = 4,PR 6.1677 6.1670 0.0722 2.7682 2.7677 2.0070

Setting 3: β0 = 0.05, β1 = 0, β2 = −0.1359, ϑ = 2.
COBS 4.7101 4.7065 0.3600 2.3436 2.3448 5.5033
L1, q = 2,PEM1 4.4404 4.4347 0.5657 2.2219 2.2219 6.4729
L1, q = 2,PR 4.4219 4.4163 0.5622 2.2183 2.2185 6.4594
L1, q = 3,PEM1 4.5062 4.4964 0.9828 2.2179 2.2197 7.1716
L1, q = 3,PR 4.4089 4.3984 1.0520 2.2000 2.2005 7.2991
L1, q = 4,PEM1 4.4585 4.4529 0.5595 2.2048 2.2061 6.3470
L1, q = 4,PR 4.3794 4.3713 0.8048 2.1828 2.1818 7.2223
L2, q = 2,PEM1 4.5038 4.5023 0.1538 2.2346 2.2340 3.4021
L2, q = 2,PR 4.5026 4.5011 0.1540 2.2345 2.2339 3.4040
L2, q = 3,PEM1 4.4062 4.4050 0.1175 2.1827 2.1851 2.3812
L2, q = 3,PR 4.3351 4.3329 0.2252 2.1687 2.1652 3.3669
L2, q = 4,PEM1 4.4501 4.4484 0.1627 2.2227 2.2214 3.2598
L2, q = 4,PR 4.4323 4.4311 0.1223 2.2200 2.2194 2.9336
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Table 5: Goodness-of-fit on US STRIPS data. Reported are the time series means of the mean
squared error (MSE), the median absolute deviation (MAD) and the median absolute deviation
(MedAD) of the fits on US STRIPS data from January 2, 2001 to December 31, 2009.

Discount factor Spot rate
MSE (10−5) MAD (10−3) MedAD (10−3) MSE (10−6) MAD (10−4) MedAD (10−4)

COBS 4.330 3.557 2.944 11.607 14.743 12.748
L1, q = 2,PR 3.099 2.359 1.655 4.402 7.350 5.224
L1, q = 2,PEM1 3.074 2.353 1.650 4.330 7.332 5.245
L1, q = 3,PR 2.705 2.045 1.394 3.370 6.510 4.977
L1, q = 3,PEM1 2.797 2.066 1.394 3.541 6.590 4.975
L1, q = 4,PR 2.260 1.847 1.293 2.104 5.329 3.866
L1, q = 4,PEM1 2.261 1.853 1.292 2.118 5.344 3.865
L2, q = 2,PR 2.580 2.586 2.187 2.580 7.038 5.884
L2, q = 2,PEM1 2.582 2.589 2.191 2.576 7.038 5.888
L2, q = 3,PR 2.176 2.064 1.549 2.174 6.158 5.299
L2, q = 3,PEM1 2.178 2.068 1.552 2.179 6.174 5.318
L2, q = 4,PR 2.195 2.000 1.454 2.019 5.705 4.232
L2, q = 4,PEM1 2.199 2.008 1.456 1.987 5.689 4.231
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Figure 1: Patterns of heteroscedasticity for Monte Carlo simulations. Panel A shows the num-
ber of spread observations pooled in each bucket. Panel B exhibits the pattern of heteroscedasticity
as estimated from bucket-specific yield spreads, which are computed from daily high-low yield dif-
ferences. Source: US STRIPS data 2001-2009.
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Figure 2: Selected Fits. The fitted discount and spot rate factor curves are plotted for selected
sample days. Source: US STRIPS data 2001-2009.
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