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Abstract 

We use data from the London Metal Exchange (LME) to forecast monthly copper returns 

using the recently proposed dynamic model averaging and selection (DMA/DMS) framework, 

which incorporates time varying parameters as well as model averaging and selection into 

one unifying framework. Using a total of 18 predictor variables that include traditional 

fundamental indicators such as excess demand, inventories and the convenience yield, as well 

as indicators related to global risk appetite, momentum, the term spread, and various other 

financial series, we show that there exists a considerable predictive component in copper 

returns. Covering an out-of-sample period from May 2002 to June 2014 and employing 

standard statistical evaluation criteria we show that the out-of-sample R2 (relative to a 

random walk benchmark) can be as high as 18.5 percent for the DMA framework. Time 

series plots of the cumulative mean squared forecast errors and time varying coefficients 

show further that firstly, a large part of the improvement in the forecasts is realised during 

the peak of the financial crisis period at the end of 2008, and secondly that the importance of 

the most relevant predictor variables has changed substantially over the out-of-sample 

period. The coefficients of the SP500, the VIX, the yield spread, the TED spread, industrial 

production and the convenience yield predictors are most heavily affected, with the TED 

spread and yield spread coefficients even changing signs over this period. Our predictability 

results remain valid for forecast horizons up to 6 months ahead, but are weaker and smaller 

than at the one month horizon. 
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and selection models. 
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1. Introduction

The seminal paper by Chen et al. (2010) has shown that the exchange rates from a number of

commodity exporting countries — known as commodity currencies — ”have surprisingly robust

forecasting power over global commodity prices” (Chen et al., 2010, page 1145). Using standard

regression models and commodity currencies as predictor variables, Chen et al. (2010) show

further that their results are robust to various control settings, and that they hold in-sample as

well as out-of-sample. These encouraging results have lead to a general re-emergence of inter-

est in forecasting commodity prices, in particular with the use of more advanced econometric

models and richer predictor sets.

In this study, we implement the recently developed Dynamic Model Averaging and Se-

lection (henceforth DMA/DMS) framework of Raftery et al. (2010) and Koop and Korobilis

(2012) to forecast monthly London Metal Exchange (LME) copper returns using a large set of

18 predictor variables. Forecasting copper returns with the DMA/DMS framework is partic-

ularly appealing in the given context, as it combines time varying parameters and model av-

eraging/selection into one unified framework. These two features substantially increase the

flexibility of the prediction environment, as it reduces the commonly encountered problem of

over-fitting when too many predictor variables are included in the forecasting model. Since

the empirical evidence of parameter instability reported in Chen et al. (2010), it is well known

that ”addressing parameter instability” plays a crucial role in uncovering evidence of commod-

ity price predictability. In a more general context, West and Harrison (1997) have argued that

incorporating time varying parameters into a model can act as an approximation to neglected

non-linearities and also to omitted variables. Such an approximating feature can thus prove

advantageous, particularly when the model is used for forecasting. The benefits of forecasting

from a weighted average of linear models is widely known since the seminal work of Bates and

Granger (1969).

There exist a number of studies that include copper as one of the target commodities of in-
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terest in recent forecast evaluations, employing a variety of different modelling approaches (see

Chen et al. (2010), Groen and Pesenti (2011), Chen and Tsay (2011), Issler et al. (2014), Gargano

and Timmermann (2014) and many others). For instance, Groen and Pesenti (2011) apply a

factor augmented regression approach where the factors are extracted from a large data set

of well over 100 regressors using principal component analysis. Gargano and Timmermann

(2014) utilize their complete subset regression methodology on a data set that includes the well

known Goyal and Welch (2008) predictor variables extensively studied in the equity premium

forecasting literature, augmented with a set of variables that capture the state of the U.S. econ-

omy, exchange rates, as well as derivative prices. What is common to all of these studies is that

a rather general and broad predictor set is used for the various commodity series of interest.

There does not seem to exist any recent study that applies a dynamic and flexible forecasting

framework where only predictor variables that are relevant for copper are conditioned upon.

The objective of this study is to combine the flexibility of the DMA/DMS modelling frame-

work together with a large set of purposefully selected predictor variables into a forecast-

ing model for copper. More specifically, we construct 18 predictor variables that account for

changes in copper fundamentals such as excess demand, inventories, and the convenience yield

of holding copper in storage. Due to the recent financialization of commodity prices in general,

we also include predictor variables that are designed to capture the global appetite for risk as

approximated by the TED spread and the VIX, the equity prices of four large resource based

firms which are meant to capture the forward looking (and pricing) behaviour of equity mar-

kets, and the Chilean peso and the Australian dollar as the main commodity currencies. In

addition to U.S. industrial production as a standard proxy for monthly economic activity, we

further add various forward looking measures of economic activity. These are the U.S. term

spread, the Baltic Dry shipping index and also the broad S&P500 equity price index. Two other

commodities that we add to the above predictor set are gold and oil prices.

Covering an out-of-sample forecast evaluation period from May 2002 to June 2014 we show
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that the DMA/DMS modelling framework significantly outperforms the random walk bench-

mark for forecast horizons up to 6 months ahead. We employ two standard statistical evalua-

tion criteria to verify our result. These are the Campbell and Thompson (2008) out-of-sample R2

and the Clark and West (2007) Mean Squared Forecast Error (MSFE) adjusted t−statistic. At the

one-step-ahead horizon, the out-of-sample R2 reaches values as high as 18.5 and 13.7 percent

for forecasts from DMA and DMS, respectively, with corresponding MSFE adjusted p−values

of 0.002 and 0.013. It is interesting to point out here that even a simple expanding window

OLS regression using the full predictor set outperforms the random walk benchmark at the

one-step-ahead horizon, yielding an out-of-sample R2 of nearly 10 percent with corresponding

MSFE adjusted p−value of 0.025. What these results highlight is that the gains in predictability

over the random walk model are not solely due to the use of the DMA/DMS framework per se,

but arise also from the use of predictor variables that were constructed specifically with copper

forecasting in mind.

One particularly interesting finding of our paper is that there is a substantial boost in fore-

cast performance at the beginning of the 2008 financial crisis, that is, from September 2008 until

the beginning of 2009. After the Lehman Brothers collapse in September 2008, economic and

financial uncertainty reached a peak, with many financial assets being heavily affected by this.

Despite this uncertainty surrounding the Lehman collapse, we show that there is a large jump in

the cumulative MSFEs of the DMA (and also in the simple expanding window OLS regression)

model, relative to the random walk benchmark. This means that the biggest improvement in

forecast performance (over the random walk benchmark) is realised during a time of extremely

high uncertainty, thereby indicating a breakdown of the unpredictability view of asset prices

over this period. So far there do not seem to exist any accounts of such a finding in the com-

modity forecasting literature.

It should be added here that, although the main focus of the paper is an out-of-sample fore-

cast evaluation of the DMA/DMS framework, a positive by-product of the framework is the
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information that it provides with regards to the time-varying importance of the individual pre-

dictor variables that are used to construct the forecasts. This information is contained not only

in the filtered estimates of the time varying parameters of the model, but also in the posterior

prediction probabilities, which give an indication of the most frequently included variables in

the best forecasting models. From time series plots of the posterior inclusion probabilities and

the time varying coefficients it is evident that substantial changes occurred in the importance

of the 18 predictor variables that we condition upon, particulary over the September 2008 to

beginning of 2009 period following the Lehman Brothers collapse. For instance, the coefficients

on the SP500, the VIX, the yield spread, the TED spread, industrial production and the con-

venience yield predictors show sharp upward or downward jumps, with the TED spread and

yield spread coefficients even changing signs over this period. The posterior inclusion proba-

bility for the convenience yield drops from a value of about 70% to less then 30% and then back

up to 70% over a period of 3 months. These abrupt changes highlight the extreme dynamics

in the predictive environment around this time. In line with the results reported in Chen et al.

(2010), we also conclude from our study that “addressing parameter instability” plays a crucial

role for copper forecasting.

The rest of the paper is structured as follows. Section 2 reviews some of the basic theoretical

background to help understand the construction of the relevant predictor variables for copper

and provides also a selected recent literature review. In Section 3, we outline the econometric

dynamic model averaging and selection framework that we employ in this study. The data set

is described in detail in Section 4. The forecast evaluation of the competing models is outlined

and discussed in Section 5. In Section 6, we summarise and conclude the study.

2. Theoretical background and existing literature

This section provides a brief overview of the ‘fundamental’ factors that influence the dynamics of

copper prices. We also discuss here the broad effect of ‘financialization’ on copper prices, as well
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as the specific influence of exchange rates and equity prices of resource based stocks. Lastly,

we provide a selected literature review of recent developments in modelling and forecasting

commodity prices in general.

2.1. Fundamentals

We discuss two sets of fundamentals that determine the fundamental value of copper prices.

These are i) supply and demand dynamics and ii) inventories. In the absence of speculative

behaviour, the price of copper should — at least in equilibrium — be determined by these

fundamentals.

It should also be noted here that copper can be cheaply and effectively recycled, so as to

maintain its original quality. Recycling accounts for around 10% of total global copper supply,

and high quality scrap can be considered a nearly perfect substitute for high grade copper. The

share of recycled copper is thus expected to play an important role in the determination of

copper prices. Nevertheless, the main issue with using information about recycled copper in

an econometric model for forecasting purposes is the availability (and reliability) of scrap data.

Current available data on recycled copper has an annual frequency, which is much too low to

make it feasible to be included in an econometric model. Also, one would expect the price of

scrap copper to be closely correlated with that of (high grade) copper, due to their near perfect

substitutability. Therefore, from an information content perspective, using the lagged scrap

copper price as a predictor for copper is unlikely to add any information that is not already

contained in the lagged copper price itself.1 We thus do not include recycled copper as a viable

fundamental variable in the set of predictors that we use.

1The results found in Aruga and Managi (2011) confirm the view that the price of high grade copper and scrap
copper are contemporaneously determined and contain the same ‘information’ from a forecasting perspective.
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2.1.1. Supply and demand dynamics

It takes generally several years to build new copper production capacities. Due to this, copper

supply is typically very inelastic. Moreover, since it also takes time to switch to other substitute

commodities in the production process, copper demand tends to be rather inelastic as well

(Fisher et al., 1972). Demand shocks to copper frequently translate into volatility in prices, while

supply shocks lead to price cycles (Labys et al., 2000). Evidence of a demand induced price cycle

has been found, among others, by Cuddington and Jerrett (2008), who believe that Chinese

industrialization may have ignited a super-cycle in the metals market in general, starting in the

early 21st century. Issler et al. (2014) also find demand induced cyclical features between U.S.

industrial production and a number of different metals.

2.1.2. Inventories and the convenience yield

Since copper can be stored without any loss of quality, inventories can interact with demand

and supply forces to affect equilibrium prices. Storage theory provides a simple theoretical

framework that allows us to model commodity prices by taking inventories into account (Bren-

nan, 1958).2 When inventories are low, demand shocks can cause big changes in spot prices,

while forward prices exhibit lower variation, as demand and supply are expected to adjust

(Fama and French, 1988). When inventories are high, the shock to the spot price is dampened

by inventories and thus incorporated as a permanent one into the forward price. This means

that low inventories lead to higher forward-spot variability, whereas higher inventories should

be accompanied by similar variabilities in forward and spot prices. Ng and Pirrong (1994) find

that storage theory holds fairly robustly for metal prices.

Another key variable to be included in the set of predictors is the ‘convenience yield’.3 Fama

and French (1987) show that the futures–spot price spread (known as the ‘basis’), should be

2Storage theory suggests that equilibrium prices are obtained when the return from buying spot and selling
forward is enough to offset the foregone risk-free return and the marginal storage cost net of the convenience
yield.

3The convenience yield arises also from storage theory.
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equalized by the sum of the foregone investment in the risk-free interest rate and the storage

costs, net of the advantage accruing from physically holding the commodity. The convenience

yield thus cancels arbitrage opportunities that could arise from holding the commodity today,

forgoing an equal investment in the risk-free rate, and storing and selling the commodity τ

periods in the future. One difficulty with using the convenience yield as a predictor variable

is that it is not directly observed and needs to be constructed. For this, one needs to make an

assumption about storage costs. We will define explicitly in Section 4 how the convenience

yield is constructed.

2.2. Financialization

While the above discussed fundamentals play a central role in the determination of equilibrium

prices for copper, they are generally not enough to explain the high level of volatility that is em-

pirically observed in copper prices. Deaton and Laroque (1992, 1996) and Gilbert (2010), have

recently documented that speculators and financial arbitrageurs have amplified the variability

and the persistence observed in a wide variety of commodity prices. Similarly, Cochran et al.

(2012) have found that the latest upsurge in commodity financialization is due to changes in

legislation. In particular, the ‘Commodity Futures Modernization Act of 2000’ has attracted new

groups of investors into commodities, as commodities are seen to offer returns similar to equi-

ties, are positively correlated with inflation and provide also a hedge against fluctuations in the

value of the U.S. Dollar (UNCTAD, 2011). Copper in particular has more recently been found in

investment portfolios as an alternative to precious metals such as Gold and Silver, which play

the role of safe haven assets during times of uncertainty. Interest to hold also other metals such

as platinum and copper in investment portfolios has risen due to the view that gold and silver

may be reaching an asset bubble.

Index investment in commodity markets has grown rapidly from 62 billion U.S. Dollars in

June 2003 to 492 billion U.S. Dollars in 2008 (Hong and Yogo, 2012, page 482). Moreover, the
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number of futures and options contracts on commodities markets has increased exponentially

since 2004 − 2005, with notional amounts of commodity over-the-counter (OTC) derivatives

increasing sevenfold between 2004 and 2008. Commodity Exchange Traded Products (ETPs)

have also been introduced in a large scale. Since ETPs are designed to replicate indices of com-

modity prices, they are often backed by physical commodities. In this regard, it is clear that an

expansion of physically backed ETPs may well cause a tightening of physical commodity sup-

ply, because part of the physical commodities available in warehouses of commodity exchanges

will be held as collateral (UNCTAD, 2011).4

Despite the important effect of financialization on commodity prices, Dwyer et al. (2011)

note that the overall contribution of financialization to commodity price volatility should not

be given an excessive role, as financial volumes are still rather small when compared to world

production and export volumes. Dwyer et al. (2011) show also that, while the yearly turnover in

financial markets is several times higher than yearly production, open interest volume remains

much smaller, suggesting further that the recently observed increase in commodity prices and

price volatility is no different to what has been observed during past economic crisis periods.

Fundamentals, therefore, are still believed to play a fairly dominant role in the determination

of equilibrium prices for commodities. Official inventory volumes are small relative to total

supply and demand volumes and are thus judged to have an insignificant impact on copper

prices.5

Nevertheless, irrespective of how we assess the impact of financialization on commodity

prices, it should be highlighted that inventories have been accumulated as collateral in financ-

ing deals, especially by Chinese banks.6 There exist media reports that a whole shadow system

4See also UNCTAD (2011) on the discussion of how the creation of physically backed ETPs may ignite a specula-
tive bubble. For copper prices, Gilbert (2010) provides evidence of price bubbles occurring approximately between
February and April 2004, April and June−July 2006, and December 2008, at least partially induced by index in-
vestors. Yet, the measure of Net Index Position that he uses to evaluate the impact of index investors on several
commodity prices is built from data regarding index investment in agricultural commodities only.

5Our calculations suggest that average monthly LME copper inventories are less than about 15% of the monthly
world production of copper.

6It is estimated that 90% of warehouse stocks of aluminium are locked in financing deals. The same fig-
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of warehouses has been developed alongside the official ones in order to respond to such a high

demand in inventories.7 The lockup of huge amounts of copper and aluminium in financing

deals has contributed to generating queues to load off metals. Load-off queues have increased

to several months, forcing the LME to introduce new rules to restrict queues to a maximum of

100 days with a mandatory load-off of at least 500 tonnes per day for each metal upon request,

irrespective of official queue priorities.

What impact sudden liquidations of inventories have on metal prices is yet to be seen. Cur-

rently, data availability of liquidation is limited and questionable, making it difficult to incorpo-

rate this information into an econometric model. Nevertheless, it is important to keep this issue

in mind, as it suggests that official inventories may serve only as a limited signal for commodity

prices.

2.3. Exchange rates and stock prices of resource based firms

Exchange rates of countries that are heavily dependent on exports of one or more commodi-

ties are likely to be valid predictors of the prices of those commodities. The reason for this is

that these so called ‘commodity currencies’ incorporate expectations about future prices of the

country’s respective commodities. Within a Balassa-Samuelson framework, an increase in the

price of an exported commodity increases export revenues from that commodity. Resources are

drawn from the non-traded sector towards the traded one, decreasing the supply of non-traded

goods. The associated increase in non-traded goods prices leads to a real exchange rate appre-

ciation (see Obstfeld and Rogoff, 1996 for a textbook type treatment of the Balassa-Samuelson

effect and Chan et al., 2011 and Aizenman et al., 2012 for its use in a recent commodity forecast-

ing applications). More recently, Makin (2013) has documented empirical evidence that float-

ing exchange rates can act as shock absorbers in the event of export commodity price shocks,

ure is 60% for zinc and only 30% for copper (see, respectively, http://www.reuters.com/article/2013/02/12/
warehousing-banks-idUSL5N0BCE4D20130212 and http://www.bloomberg.com/news/print/2013-10-17/lme-
aluminum-stocks-jump-most-in-a-year-as-financing-continues.html for further details).

7See http://online.wsj.com/news/articles/SB10001424052702304244904579276830893405644.
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thereby significantly reducing fluctuations in GDP, especially for small open economies.

Moreover, the seminal paper by Chen et al. (2010) has shown that changes in the curren-

cies of commodity exporters such as Australia, Canada, Chile, New Zealand and South Africa

‘Granger-cause’ changes in various trade-weighted indexes of world non-fuel commodity prices.

Chen et al. (2010) show further that all of the exchange rates of the selected countries outperform

a random walk (RW) model forecast of world non-fuel commodity prices in an out-of-sample

analysis, with the Chilean peso indicating especially strong predictive power for copper prices.8

Financial market participants such as traders and quantitative analysts are widely seen to

be forward looking and best informed when it comes to the pricing of asset. Since changes in

future commodity prices will directly impact upon the revenue generating capacities of copper

dependent companies, stock price data from individual mining companies are expected to con-

tain some predictive information about the future movements of copper prices.9 Although it

is clear that equity price data is likely to produce a noisy signal as company specific news and

events will react to information about the standing of the firm, its revenue generating capac-

ity as well as the macroeconomic outlook, and not just information about commodity prices.

Nevertheless, we do expect some useful information to be contained in the stock prices of big

resource firms such as Freeport McMoran, BHP Billiton, Rio Tinto, and Alcoa.

8It should also be pointed out here that there exists evidence of commodity prices being a predictor of exchange
rates for countries with high commodity export shares. This is documented in Cashin et al. (2004), who evaluates
the co-movements of commodity prices and trade-weighted exchange rates for 58 countries over the period 1980−
2002. They found that the equilibrium real exchange rate for commodity exporting countries is affected by the
respective commodity prices. Since commodity price shocks can be quite persistent, the long-run equilibrium
level for the exchange rate is itself time-varying. Cashin et al. (2004) suggest that it is the exchange rate that adjusts
to these changes when reverting to its equilibrium, rather than commodity prices. Nevertheless, since the focus is
here on forecasting LME copper prices, we do not consider this point here any further.

9It is expected that companies will likely hedge their price exposures by entering into futures contracts or by
buying options. Nevertheless, financial market participants are still likely to look at headline spot price figures
and form expectations about future earnings based upon those figures. We therefore do anticipate an impact on
stock prices as well, which in turn will be predictive for copper itself.
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2.4. Existing literature

The empirical literature on modelling commodity prices has found mixed results regarding

predictability. Since the overall positive results found in the seminal paper of Chen et al. (2010),

there has been a renewed interest in evaluating the forecasting properties of new econometric

models as well as new predictor variables. To avoid reviewing this fairly large literature on

modelling commodity prices, the review that we present here focuses only on studies that have

been undertaken after the results of Chen et al. (2010).

Continuing the analysis in Chen et al. (2010), Chen et al. (2012) extend the causality tests that

they utilise to other commodity price indexes, such as agricultural commodities and individ-

ual commodities. Using quarterly data from 1980 − 2008, they forecast agricultural indexes

from the Commodity Research Bureau (CRB), the Economist and Standard and Poor’s (S&P),

as well as rice and wheat prices. Nevertheless, their results are mixed, providing only limited

evidence in favor of predictive power of exchange rates. Moreover, their results vary with the

agricultural commodity price indexes that are used, with the suggested models sometimes out-

performing the forecasts of a random walk benchmark. The interesting insight remains that

exchange rates can help predict the prices of those commodities that are more relevant in the

export basket of the countries’ considered.

Groen and Pesenti (2011) apply a factor augmented model with time-varying factor load-

ings. They build on a fact noted by Chen et al. (2012) that static models may be missing a

lot of the possibly evolving relationship between commodity prices and exchange rates, due

to evidence of parameter instability. Groen and Pesenti (2011) use monthly averages of broad

commodity indexes from CRB, S&P and the IMF from 1973 to 2009 with exchange rates and

fundamentals such as industrial production, business and consumer confidence indexes, un-

employment rates, core consumer prices, money aggregate and interest rates, inventories and

production of metals and oil derivatives, the Baltic Dry Index of transportation costs, and oth-

ers. Their results are also mixed, with statistical evidence in favor of exchange rates forecasting
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commodity price indexes being admittedly inconclusive.

Chen and Tsay (2011) employ a mixed-frequency data approach to forecast quarterly changes

in commodity price indexes, with daily exchange rates and equity data from 1984 to 2010 as

predictor variables. Their findings are encouraging, but are, nevertheless, sensitive to different

training sample sizes used in the estimation of the models. The results in Chen and Tsay (2011)

also suggest that equity price indexes can have a predictive power similar to exchange rates,

which is in line with the broad finding in Rapach et al. (2013), that information in U.S. stock

prices can be used to forecast stock returns in other international markets. Using daily futures

data on the exchange rates of Australia, Canada, New Zealand and South Africa, Chan et al.

(2011) find no evidence of Granger-causality, and hence no predictability, in either direction

and conclude that the futures market, being more liquid than the spot and the forward market

for commodities, is more efficient.

Issler et al. (2014) apply forecast combination techniques to predict monthly and quarterly

commodity prices from the IMF International Financial Statistics (IFS) database, over the 1965

to 2008 period, using forecasts from random walk, auto-regressive, vector auto-regressive, and

vector error-correction models. The averaging techniques include simple averages, averages

over the best five or ten models selected by BIC, weighted averages and bias corrected average

forecasts. They show that the best way to improve on a RW forecast at monthly frequency

appears to be simple forecast averaging.

Gargano and Timmermann (2014) use sets of financial and macroeconomic predictors, in-

cluding industrial production, unemployment, inflation, the Australian Dollar, the Indian Ru-

pee and futures market open interest. They use both univariate as well as multivariate regres-

sions to predict returns on CRB commodity sub-indices, ranging from industrials to metals,

fats/oils, foods, textiles and others. In their multivariate exercise, they use Ridge regressions

and forecast averaging techniques where the models are selected from all possible subsets of

the full regressor set. Overall forecast improvements over a RW benchmark lie in the range of
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3− 14% and are found at monthly as well as quarterly frequencies.

3. Econometric model

We model copper returns using the recently proposed Dynamic Model Averaging and Selection

(henceforth DMA and DMS, respectively) framework.10 The DMA/DMS framework is partic-

ularly appealing in the given context, as it combines two attractive modelling features. These

are: i) time varying parameters and ii) model averaging and/or model selection. Allowing the

parameters of a linear model to be time varying is desirable as economic conditions are fre-

quently thought to evolve over time due to changes in technology, legal environments, agent

preferences and learning. In a broader context, West and Harrison (1997) have argued that in-

corporating time varying parameters into a model can, to some extent, approximate neglected

non-linearities and/or omitted variables, which can be beneficial when the model is used for

forecasting.

The advantages of averaging over various competing models when forecasting are well

known since the seminal work of Bates and Granger (1969).11 Contrary to a simple time varying

parameter model, where one model with the same set of predictors holds for all time periods,

the DMA/DMS framework allows in addition to time varying parameters the set of predictors

to change at each point in time. These two features substantially increase the flexibility of the

model, as the commonly encountered problem of ‘over-fitting the data’ from using too many pre-

dictors, which is known to lead to poor out-of-sample forecast performance, can be mitigated.

10The DMA/DMS framework was first introduced by Raftery et al. (2010) and subsequently applied to inflation
forecasting in an economic context by Koop and Korobilis (2012).
11The popularity of model combination by means of averaging when forecasting has recently resurfaced in the
empirical macroeconomic and finance literature (see, among many other studies, Raftery et al. (1997), Fernández
et al. (2001a,b), Cogley and Sargent (2005), Eklund and Karlsson (2007), Wright (2008), and Buncic and Melecky
(2014)).
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3.1. The DMA/DMS approach

To outline how the DMA/DMS framework is implemented, let yt denote the variable to be

predicted at time period t.12 Also, let xt−1 be a (1 × K) vector that contains the full set of k

predictors plus an intercept term (K = k + 1), and let m = 1, . . . , M denote the model index,

where M = 2k is the total number of possible (linear) model combinations (including the trivial

model with only a constant term in it).13 The two equations that make up the DMA/DMS

framework (for model m) are:

Measurement : yt
(1×1)

= x(m)
t−1

(1×K)
β
(m)
t

(K×1)
+ u(m)

t
(1×1)

(1a)

State : β
(m)
t

(K×1)
= β

(m)
t−1

(K×1)

+ ε
(m)
t

(K×1)
, (1b)

where (1a) and (1b) are measurement and state equations, respectively. The two disturbance

terms u(m)
t and ε

(m)
t in (1) are jointly Multivariate Normal (MN) distributed, uncorrelated with

each other and over time, that is:

u(m)
t

ε
(m)
t

 ∼ MN


 0

0
(K×1)

 ,


H(m)

t
(1×1)

0

0
(K×K)

Q(m)
t

(K×K)


 , (2)

where H(m)
t and Q(m)

t are the variance and covariance matrix of the measurement and state

equations, respectively.

Also, letMt denote the set of all possible models at time t, so thatMt ∈ {1, 2, . . . , M}. Given

knowledge of H(m)
t and Q(m)

t and by fixing the model setMt = m, ie., to one particular model,

12For reasons of simplicity, we use standard yt and xt notation to denote the left-hand side and predictor variables
in the general description of the modelling framework. In our setting, yt is the monthly copper return computed
as 100(St/St−1− 1), where St is the LME spot price of copper. This will be made explicit in Section 4 and Section 5,
where the data and the forecast evaluation results are discussed.
13The term model here refers to the different possible linear combinations that can be obtained from using k pre-
dictors in a regression context, rather than the more general definition, where a model can be anything, potentially
as flexible as non-linear or a non-parametric specification. The use of the term model is standard in the model
averaging literature.

16



the system in (1) takes the form of a standard state-space model, making it thereby possible to

extract or ‘filter’ the time varying parameters β
(m)
t as the ‘latent states’ using standard Kalman

Filter recursions. One-step-ahead forecasts and forecast errors are available as a by product of

the Kalman Filter. GivenMt = m, H(m)
t and Q(m)

t , the Kalman Filter recursions are:

Prediction : β̂
(m)
t|t−1 = β̂

(m)
t−1|t−1

P(m)
t|t−1 = P(m)

t−1|t−1 + Q(m)
t (3a)

ŷ(m)
t|t−1 = x(m)

t−1β̂
(m)
t|t−1 (3b)

Prediction errors : û(m)
t = (yt − ŷ(m)

t|t−1)

MSE of prediction errors : F(m)
t = x(m)

t−1P(m)
t|t−1xᵀ(m)

t−1 + H(m)
t (3c)

Kalman Gain : G(m)
t = P(m)

t|t−1xᵀ(m)
t−1 /F(m)

t

Updating : β̂
(m)
t|t = β̂

(m)
t|t−1 + G(m)

t (yt − ŷ(m)
t ) (3d)

P(m)
t|t = P(m)

t−1|t−1 −G(m)
t x(m)

t−1P(m)
t−1|t−1

where β̂
(m)
t|t−1 = IEt−1(β

(m)
t ), IEt−1(·) is the expectation taken with respect to a time t− 1 infor-

mation set denoted by It−1, and P(m)
t|t−1 is the mean square error (MSE) of β̂(m)

t|t−1. Forecasts from

model m using information set It−1 are denoted by ŷ(m)
t|t−1. The one-step-ahead forecast error is

û(m)
t and its associated MSE is denoted by F(m)

t . The (K × 1) vector G(m)
t is the Kalman Gain.

The terms β̂
(m)
t|t and P(m)

t|t are updated (or time t) estimates of the latent states β
(m)
t and their

corresponding MSEs.

The Kalman Filter recursions in (3) are conditional on H(m)
t and Q(m)

t (and model m). To

avoid having to estimate H(m)
t and Q(m)

t , two simplifying assumptions are used in the literature.

The first one, which is due to Raftery et al. (2010), is to replace P(m)
t|t−1 in (3a) by

P(m)
t|t−1 =

1
λ

P(m)
t−1|t−1, (4)
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where λ ∈ [0, 1]. This approximation implies that Q(m)
t =

(
λ−1 − 1

)
P(m)

t−1|t−1. In the given

context, the λ parameter is commonly referred to as a ‘forgetting factor’, as it determines how

many observations are effectively used for estimation.14 The second simplifying assumption is

to replace the time varying volatility H(m)
t by a simple exponentially weighted moving average

(EWMA) estimate, that is, H(m)
t is constructed as:

H(m)
t = κH(m)

t−1 + (1−κ)û2(m)
t−1 , (5)

where κ ∈ [0, 1] is the standard EWMA smoothing parameter. Note here that an EWMA

model can be thought of as a special form of a GARCH(1, 1) model, ie., a restricted integrated

GARCH(1, 1), with the restriction being that the intercept term is fixed at 0 and that the weights

on the t− 1 volatility and squared error term sum to unity.15

Model averaging or selection in the DMA/DMS framework is achieved by weighting the

forecasts by their respective predictive model probabilities. To clarify this, let us define π
(m)
t|t−1

to be the probability of model m given information up to time t− 1, written as:

π
(m)
t|t−1 = Pr(Mt = m|It−1). (6)

The DMA forecast of yt, given information up to time t − 1, denoted as E(yt|It−1), is then

computed as:

ŷ(DMA)
t|t−1 =

M∑
m=1

ŷ(m)
t|t−1π

(m)
t|t−1, (7)

that is, as a weighted average of the forecasts from all possible models, {ŷ(m)
t|t−1}

M
m=1, with the

14This is also known as ’windowing’. Intuitively, we can think of λ as a weighting function, where observations
τ periods in the past receive a weight of λτ . See the discussion in Section 3.1 in Raftery et al. (2010) and pages
872− 873 in Koop and Korobilis (2012) for more background and intuition about the use of forgetting factors in
dynamic econometric models and what it implies for the effective sample size.
15It is well known in the volatility literature that GARCH(1, 1) models are difficult to beat in out-of-sample forecast
evaluations (see, for instance, Hansen and Lunde, 2001). Approximating the time varying volatility by EWMA is
thus unlikely to create any important loss in accuracy. We discuss later on in the estimation section how κ is
calibrated.
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averaging weights being the predictive probabilities {π (m)
t|t−1}

M
m=1.

The DMS forecast of yt is computed by choosing at each point in time the forecast from the

model with the highest predictive model probability. Formally, let π∗t|t−1 = max
{
π
(m)
t|t−1

}M
m=1

and 1(A) be an indicator function that is equal to 1 if statement A is true, and 0 otherwise.

Then

ŷ(DMS)
t|t−1 =

M∑
m=1

ŷ(m)
t|t−11(π

∗
t|t−1 = π

(m)
t|t−1). (8)

To make the construction of the DMA/DMS forecasts in (7) and (8) feasible, model pre-

diction and updating recursions are needed. Let p jm = Pr(Mt = m|Mt−1 = j) denote the

(time invariant) transition probability of moving from model j at time t − 1 to model m at

time t. Also, let f (m)
N (yt|It−1) denote the predictive density of yt given model m and infor-

mation up to time t − 1. This predictive density is a Normal density evaluated at yt with

mean and variance given by ŷ(m)
t|t−1 and F(m)

t as computed in (3b) and (3c), respectively. That

is, f (m)
N (yt|It−1) = N(ŷ(m)

t|t−1, F(m)
t ). Given an initial or prior model probability π

(m)
0|0 , the model

prediction and updating equations are then constructed as:

Model Prediction : π
(m)
t|t−1 =

M∑
j=1

π
( j)
t−1|t−1 pim (9a)

Model Updating : π
(m)
t|t =

π
(m)
t|t−1 f (m)

N (yt|It−1)∑M
j=1 π

( j)
t|t−1 f ( j)

N (yt|It−1)
. (9b)

A final simplification that is need to make the computation of the predictive model proba-

bilities feasible is to approximate (9a) with

π
(m)
t|t−1 =

π
α(m)
t−1|t−1∑M

j=1 π
α( j)
t−1|t−1

, (10)

where α ∈ [0, 1].16 The approximation in (10) has the advantage that one avoids having to

16See Raftery et al. (2010) for more intuition about this approximation.
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specify an M×M dimensional model probability transition matrix, which would make model

prediction computationally infeasible when M is large. The α parameter in (10) can again be

interpreted as a ‘forgetting factor’.17

The implementation of the DMA/DMS procedure to forecast copper returns requires the cal-

ibration of the EWMA smoothing parameter κ as well as the two forgetting factor parameters,

λ and α. We follow the guidelines provided in RiskMetrics (1996) for monthly data and fix the

κ parameter at 0.97.18 For the two forgetting factors, Koop and Korobilis (2012) recommend to

set the values for λ andα in the [0.95, 0.99] interval, so that the parameters (as well as the model

probabilities) evolve reasonably gradually over time.19 We follow these recommendations and

use a common (λ,α) combinations in the empirical evaluation.

4. Data

We analyse the predictive power of the DMA/DMS modelling framework using monthly data

over the (full) sample period from June 1996 to June 2014. All data that we use in our analy-

sis were obtained from Bloomberg and the St. Louis Federal Reserve FRED database.20 With

the exception of copper consumption and production data and also U.S. industrial produc-

tion, which are available only at a monthly frequency, all series were aggregated from daily

observations to monthly averages.21 The choice of the sample period was driven by a trade-off

between maximum possible sample size and variability in the Chilean peso, which was offi-

17See also Section 3.2 in Raftery et al. (2010) and pages 874 − 875 in Koop and Korobilis (2012) for additional
discussion on this.
18See page 97 of the documentation in RiskMetrics (1996). Note here that RiskMetrics (1996) uses λ to denote their
EWMA smoothing parameter and not κ as we do.
19See the discussion on pages 872− 875 in Koop and Korobilis (2012). The effective window size, ie, how much
of a weight observations in the past obtained, is determined from 1/ (1− λ) (or 1/ (1−α), respectively). Choos-
ing values below say 0.95, would make the window narrow, so that only the very recent past receives non-zero
weights, which could result in very noisy forecasts.
20FRED Data is available from http://research.stlouisfed.org/fred2/.
21Bloomberg and FRED tickers are reported in the description of the variables in Table 1 in parenthesis. We follow
Chen et al. (2010), Groen and Pesenti (2011), Gargano and Timmermann (2014) and many others and construct
monthly averages from daily observations to reduce the volatility that is inherent when using end-of-period data.
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cially pegged until September 1999.22 In 1994, the Chilean central bank moved to an inflation

targeting policy regime, setting interest rates to keep inflation rates low, stable, and sustainable

over time. One could argue here that the policy focus may have already shifted more towards

price stability, with less attention given to the management of the currency, although it is clear

that there would have been intervention periods by the central bank to maintain stability in the

currency as well. Nevertheless, our view is that with June 1996 as the starting date, we are able

to maintain a fairly sizeable sample, while avoiding ‘major’ influences of the peg of the Chilean

peso on our forecast evaluation results. The full sample period thus consists of 217 monthly

observations. We use the first 70 observations as our in-sample or fitting period, and leave the

remaining observations for out-of-sample evaluation.23

4.1. Copper prices and returns

There exist three major exchanges for copper. These are the London Metal Exchange (LME), the

Shanghai Futures Exchange (SHFE) and the New York Mercantile Exchange (NYMEX). In our

analysis, we use copper prices from the London Metal Exchange, which is the oldest and most

liquid metal exchange in the world and is widely regarded as the reference index for world

copper prices (see also Watkins and McAleer, 2004 for additional information).24 To formalise

notation, let St denote the (LME) spot price of copper at time t. The one period (simple) return

for copper is then defined as rt = 100(St/St−1 − 1). To provide a visual overview of the time

22Since the end of 1984, the Chilean peso moved from a peg to the U.S. dollar to a crawling peg within some target
bands ranging between 2.5% − 5% that were periodically adjusted. In September 1999, the Chilean peso was
official freely allowed to float against the U.S. dollar, nevertheless, with occasional interventions from the Chilean
central bank, with the objective to counter excessive depreciation and volatility in the currency.
23Note that we are not per se interested in in-sample fitting, but since we are going to compare the forecasts
from the DMA/DMS model to simple expanding and rolling window OLS forecasts, an initial fitting period is
required. When using the Kalman Filter, it is also advisable to have an initialisation period for the filter to avoid
any dependencies on the initial (or ‘prior’) values need to get the filter started.
24The London Metal Exchange was founded in 1877. Labys et al. (1971) have pointed out that LME prices are
highly responsive to world demand and supply, reflecting prices at which bargains are struck throughout the
world rather than fixed or administered prices. Nevertheless, it is worth noting here that the relative importance
of the LME may have somewhat diminished over recent years due to the increasing importance of the Shanghai
Futures Exchange. Although the SHFE accounted for only about 25% of copper price determination in 2007, while
the LME accounted for 45%, the Shanghai Futures Exchange has grown substantially since its inception in 1992
(see also Hua et al., 2009, who study the SHFE’s growth performance in more detail).
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series properties of both, St as well as rt, we show a plot corresponding to monthly LME copper

prices and their returns in Panels (a) and (b) of Figure 1. ← Figure 1
about here

We can see from Panel (a) of Figure 1 how copper prices have significantly increased since

2003, peaking at the beginning of 2008, plummeting at the onset of the financial crisis in June

2008, then surging again strongly since the end of 2008, reaching another peak in mid 2011,

and gradually declining thereafter to more stable levels at the end of the sample period. From

Panel (b) of Figure 1 it is noticeable that volatility has roughly doubled since the beginning of

2006 and has remained higher until approximately the end of 2011. While there exist studies

that attribute this increase in volatility entirely to financial crises (see, for instance, Dwyer et al.,

2011), Radetzki et al. (2008) relate the observed cycles to asymmetries in supply and demand

patterns, and argue that the upsurge in copper prices is likely to be reverted as soon as supply

adjustments are completed.25 Nevertheless, irrespective of the sources of the variation, it is

clear from the return series that time-varying volatility is an evident feature of the data, albeit

being less pertinent than in other financial time series, such as exchange rates or stock prices.

4.2. Predictor variables

Given the theoretical discussion provided in Section 2, it is clear that we expect a mix of fun-

damental and financial variables to be informative for forecasting copper returns. We therefore

select the following three broad groups of predictor variables to match the factors outlined ear-

lier. These are variables relating to i) Fundamentals, ii) Financialization, and iii) Exchange rates

and stock prices. In the following sub-sections we describe the predictors in each of these three

groups separately.

25Several projects are indeed expected to be completed in the next few years, thus predicting a substantial increase
in copper production, which may thus potentially lower copper prices if the demand from China does not follow
through.
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4.2.1. Fundamental variables

We use data from the World Bureau of Metal Statistics (WBMS) on world refined copper pro-

duction and consumption together with LME warehouse inventories to construct a measure

of copper (excess) demand (simply demand henceforth), denoted by Demandt, which is com-

puted as Demandt = Consumptiont − (Productiont + Inventoryt), where Productiont and

Consumptiont are defined as world refined copper production and consumption, respectively,

and Inventoryt are LME warehouse stocks. Since Demandt is a strongly trending variable,

we use the month-on-month growth rate in demand computed as ∆Demandt = (Demandt −

Demandt−1) as the predictor variable.26 Given the availability of inventory data, we also con-

struct monthly growth in inventories (denoted by ∆Inventoryt) as a predictor.

We further use data on spot and forward rates to construct the ‘marginal convenience yield’

(simply convenience yield henceforth and denoted by Convyieldt), which is defined as:

Convyieldt = i(τ)t − (F(τ)
t − St)/St + W(τ)

t /St, (11)

where St is the spot price, i(τ)t and F(τ)
t are the risk free interest rate and the futures prices

at time t with maturity τ , and W(τ)
t is the cost of storing the commodity from time t to τ ,

with τ > t.27 Fama and French (1988, page 1077) point out that the marginal storage cost is

effectively constant over time and thus will only have a levels effect on the convenience yield.

Due to the unavailability of reliable storage cost data, we ignore the influence of the marginal

storage cost W(τ)
t /St on the convenience yield, and effectively set it to 0 in (11).

Although we expect the demand, inventory and convenience yield based fundamentals to

contain important information about global demand and supply imbalances in the market for

copper, we also include predictor variables that are meant as proxies for overall economic activ-

26Changes are denoted by the difference operator ∆. Also, the change in the monthly demand variable ∆Demandt
is measured in 10 000 metric tonnes. All world production and consumption data from WBMS are available only
at a monthly frequency.
27See pages 1077− 1078 in Fama and French (1988) for further details on the construction.
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ity, since the demand for copper is directly related to economic growth because of its primary

use in production, construction and manufacturing. We use two different sets of variables to

proxy economic activity. The first consists of growth in U.S. Industrial Production (abbreviated

by ∆IPt). Due its high ‘correlation’ with real economic activity and availability at monthly fre-

quency, industrial production is one of the most widely used economic performance indices

for the U.S.28 Nevertheless, one weakness of solely using industrial production as a measure of

economic activity in a forecasting application is that it is a backward looking measure, because

it only accounts for production that has already taken place. To include more forward looking

information about economic activity, we use the term spread and the Baltic Dry Index (BDI) in

the second set of economic activity proxies.

The information content in the term spread (denoted by Spreadt), defined as the difference

between the U.S. 10 year Treasury Bond and the 3 month Treasury Bill rate, is well known to

be a real time predictor of economic activity.29 The Baltic Dry Index has been used as a proxy

for global trade flows as well as supply and demand trends in production of finished goods

and raw materials. The BDI is made up as a composite index of the Baltic Capesize, Panamax,

Handysize and Supramax shipping indices and is designed as the successor to the Baltic Freight

Index. The BDI is frequently viewed as a leading indicator of future global economic growth, as

the goods that are transported are raw materials as well as final goods, thus give an indication

of the demand for primary inputs and overall trade flows. We use the monthly growth rate in

the Baltic Dry Index denoted by ∆BDIt as a predictor variable. In summary, the 6 fundamental

28More concretely, the correlation between quarterly growth in industrial production and real GDP growth is 80%
for data spanning from 1947:Q2 to 20014:Q2. One drawback of using IP growth as a proxy for economic activity
is that it is twice as volatile real GDP growth. Nevertheless, industrial production is also used in, among others,
Groen and Pesenti (2011), Gargano and Timmermann (2014) and we thus deem it to be a reasonable indicator of
economic activity.
29There exists a long and well established literature in monetary economics that links the yield curve to economic
activity. One of the seminal papers using only the term spread as we do here, rather then the full set of level,
slope and curvature factors, is the study by Estrella and Hardouvelis (1991), who showed that the term spread
is predictive for economic output as well as NBER dated recessions. More recently, Ang and Piazzesi (2003)
among many others have shown that this holds true even in more rigourous formulated term structure models
that account for more than just one factor (see also Brand et al. (2010) for the use of yield curve factors in the
construction of monetary policy surprises).
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variables that we construct are:

x(fun)
t = [∆Demandt, ∆Inventoryt, Convyieldt, ∆IPt, Spreadt, ∆BDIt]. (12)

4.2.2. Financial variables

To account for the impact of financialization on the evolution of copper prices, we include 5

headline financial variables in the set of predictors for copper. These are the Chicago Board Op-

tions Exchange Market Volatility Index (VIX), the TED spread (TED), the Standard and Poor’s

500 (SP500) stock price index, the spot price of Gold (Gold) and WTI crude oil spot prices (Oil).

The VIX measures the volatility implied by option prices on the S&P500 (SP500 henceforth)

over the coming month. The TED spread is calculated as the difference between the 3 month

LIBOR rate (U.S. dollar based) and the 3 month Treasury Bill rate. A higher value in the VIX

and/or the TED spread is generally taken as an indication of market participants expecting

an overall negative economic or financial outlook and hence an increased (global) aversion to

risk.30 Brunnermeier et al. (2009) have shown that the VIX and the TED spread predict higher

returns in carry trade strategies used in the foreign exchange market. Given their predictive

power in the foreign exchange market, we expect the VIX and the TED spread to also contain

some predictive information for copper. We use the (level) VIX and TED spread series (VIXt

and TEDt respectively) as predictors.

We also compute the monthly return on the SP500 index (denoted by ∆SP500t). Rapach

et al. (2013) have recently documented that returns in the U.S. stock market are predictive for

returns in various other global stock markets. To account for the possible predictive component

of the information content in the SP500 index, we include ∆SP500t as a predictor variable for

30The VIX and the TED spread are widely regarded as measures of the ‘global appetite for risk’. This is not only the
case for equity markets and equity options markets, but also for corporate credit markets and foreign exchange
markets (see for instance the evidence reported in Collin-Dufresne et al., 2001). Also, Pan and Singleton (2008) find
that the VIX in particular is strongly related to the variation in risk premiums in sovereign credit default swaps.
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copper.31

Gold and crude oil are the only two other commodities that we include in the set of predictor

variables. The motivation for including gold as a viable predictor variable is twofold. First, as

discussed in Section 2, copper has become an alternative asset to precious metals such as gold

and silver in investment portfolios that are diversified over equities, bonds, exchange rates and

commodities. Second, gold is also considered to be a ‘safe haven’ asset and can hence be seen to

complement the VIX and the TED spread indicators of risk aversion in financial markets. Gold

is further viewed to be a hedge against inflation, deflation, as well as general uncertainties

related to economic, financial and political instabilities. We expect, therefore, monthly gold

returns (∆Goldt) to be informative for copper forecasting, especially since the financial crisis in

2008.

The rational for using crude oil prices in the set of predictors is due to oil still being one of the

most widely used sources of energy (see for instance, among many other studies, the evidence

reported in Lardic and Mignon (2008) and He et al. (2010)). Moreover, there is a widely held

view that unexpected increases in the price of oil can cause recessions in many oil importing

countries (see Kilian (2008), Hamilton (2009) and others). High oil prices are often also linked

to periods of higher inflation, thereby directly affecting central bank policy and thus the set-

ting of interest rates (Bhar and Mallik, 2013). Lastly, oil prices, in conjunction with U.S. Energy

Information Administration (EIA) inventories are closely monitored by financial market partic-

ipants and reported in the financial press. These are taken to be early indicators of changes in

production and manufacturing demand. We thus include monthly oil (spot price) returns (de-

noted by ∆Oilt) in the predictor set. To summarise, the five variables that are included under

the financial variables heading are:

x(fin)
t = [VIXt, TEDt, ∆SP500t, ∆Goldt, ∆Oilt] . (13)

31The explanation given in Rapach et al. (2013) is that the U.S. is a news or information hub, where news about
economic and financial developments are most efficiently absorbed and reacted to.
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4.2.3. Exchange rate and stock price

The final group of predictor variables consists of two exchange rates, namely, the Chilean peso

(CLP) and the Australian Dollar (AUD) and the stock prices of four major commodity/resource

based firms.

Following the well known results of Chen et al. (2010) that exchange rates of commodity

exporting countries can forecast commodity prices, we include monthly returns in the Chilean

peso (∆CLPt) as one of the predictor variables in the forecasting model. Chile is the single

largest exporter of copper in the world, providing approximately 39% of world copper in

2008.32 Copper accounts for about half of Chile’s exports. The dependence of Chile’s econ-

omy on copper was highlighted in the study by Spilimbergo (2002), who showed that copper

price cycles almost always preceded business cycles during the 1990s. Since then, the Chilean

government has introduced new anti-cyclical fiscal policy rules to counteract at least some of

the dependence on copper (Gregorio and Labbé, 2011). Moreover, the free float of the exchange

rate in September 1999 has helped to absorb the effect of copper price shocks on the domes-

tic economy. The Chilean central bank has also intervened on a few occasions in the foreign

exchange market to counteract strong and unjustified depreciations in the peso.33

Apart from the Chilean peso, we also include the monthly return in the Australian dollar

(∆AUDt) as a predictor variable. Australia accounted for merely 6% of world copper exports

in 2008, being nevertheless the third largest exporter after Peru. In addition to copper, Aus-

tralia also exports other commodities, such as iron ore, aluminium ore (bauxite), steel as well

as gold, crude oil, beef and wheat. Any unexpected changes in commodity price will thus af-

fect Australian export earnings, the economic outlook and thereby the value of the Australian

dollar. Aside from the well known role of a ‘commodity currency’, the Australian dollar is, due

to the high yields offered by Australian bonds, also used as an investment currency in carry

32See Table I.4 on page 12 in Meller and Simpasa (2011).
33Claro and Soto (2013) give a recent account of foreign exchange interventions by the Chilean central bank.
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trades. Since carry trade returns are highly influenced by so called ‘crash-risk”, this strategy is

only implemented once the risk appetite of financial market participants has increased to an

appropriate level.34 The role of the Australian dollar in the predictor set is thus twofold: i)

to complement and broaden the commodity currency information component of the Chilean

peso and ii) to act as an alternative to the VIX and TED spread based measures of global risk

aversion.

We further add monthly stock returns from four of the largest listed commodity/resource

based firms in the U.S. to the predictor set. These are monthly returns from Rio Tinto (∆Riot),

Freeport McMoran (∆FPMt), BHBP Billiton (∆BHPt), and Alcoa (∆Alcoat). Our main motiva-

tion for adding these stock returns is the ‘efficiency view’ of the market, that is, any news related

to unexpected future commodity price movements will be quickly absorbed and priced accord-

ingly by market participants, providing the markets best view on the stock. Despite this view,

we expected there to be also company specific noise that may distort the signal we receive about

future copper price movements. Nevertheless, since the DMA/DMS econometric framework

that we employ is flexible enough to downweight predictor variables that are less informative

for future copper prices, we leave the selection of the most relevant predictors to the model.

This last set of predictor variables is summarized as:

x(other)
t = [∆CLPt, ∆AUDt, ∆Riot, ∆FPMt, ∆BHPt, ∆Alcoat]. (14)

Note that we also use lagged copper returns as a predictor variable. This is common prac-

tice in the asset return forecasting literature, as there can be periods of momentum in asset

returns due to some market participants adopting a trend following trading strategy (see, for

instance, Allen and Taylor (1990), Menkhoff (1998), and Lui and Mole (1999) for empirical evi-

dence of trend following behaviour in foreign exchange markets and also the theoretical agent

34See the discussion on pages 314 to 318 in Brunnermeier et al. (2009) for further details on the carry trade, and the
link between risk appetite and the Australian dollar.
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based models of Brock and Hommes (1997, 1998) which allow for momentum trading). Again,

our view is that if lagged copper returns are not informative, the model will downweight its

importance in the forecasts.

4.3. Summary statistics and visual overview of predictor variables

In this section we briefly describe some of the basic features of the predictor variables that are

evident from Table 1 and the plots shown in Figure 2. The exact transformations that were

applied to the series are described in Table 1 and the corresponding Bloomberg and FRED

tickers for each of the included variables are given in parenthesis. ←Table 1
about here

← Figure 2
about here

With regards to the transformations that were applied, most of the series are monthly growth

rates, computed in the standard way as 100(Pt/Pt−1 − 1) where Pt is the variable of interest at

time t so that they can be interpreted as percentage changes. Predictors that were not trans-

formed to growth rates are: the spread between the 10 year U.S. Treasury Bond and the 3

months U.S. Treasury Bill yield, the VIX index, the TED spread and the convenience yield.

Changes in copper demand and inventories are computed as first differences.

Looking over the summary statistics that are reported in Table 1 it is evident that the means

and medians of the predictors are largely in line with prior expectations in terms of magnitudes.

What is interesting to see is that the Chilean peso has declined on average by 0.14 percent

per month over the sample period, reflecting the largely depreciating trend since the float of

the currency in September 1999. It is further interesting to see that the BDI index is the most

volatile series, with a (monthly) standard deviation of 18.32, followed by the stock returns of

the resource based companies, as well as oil returns. The relatively high means of the VIX

index, the convenience yield and the spread are due to the fact that these variables are captured

in levels, rather than growth rates.

Inspecting the plots of the individual predictors shown in Figure 2 highlights the nearly

homogenous response of these variables to the September 2008 collapse of Lehman Brothers
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and hence the beginning of the most intense phase of the financial crisis, with most of the

return series dropping to values of around −20 percent and in some extreme cases down to

−60 percent for stock prices and the BDI. In fact, the Baltic Dry index seems to have been most

affected by the crisis. It is also interesting to note here that, despite the sharp initial increase

in changes in inventories after the onset of the crisis and subsequent sharp drop in 2009 and

bounce back shortly after, changes in the demand for copper did not seem to be noticeably

affected by the crisis period. From Figure 2 it seems that volatility in demand was in fact lower

over the end of 2008 to beginning of 2009 period than during most other periods in the sample,

spiking upwards only towards the end of 2009 and in mid 2013.

5. Forecast evaluation

In this section we evaluate the forecast performance of the dynamic model averaging and se-

lection framework. Since we are primarily interested in the real time predictive ability of the

the model, we focus here on evaluating the models’ out-of-sample performance only. Before we

outline in detail the statistical evaluation criteria that we use as well as the results of the forecast

evaluation, we initially describe the prediction setting that we employ in our evaluation.

5.1. Prediction setting

5.1.1. Model set-up

Following the general description of the DMA/DMS framework in Section 3, the forecasting

model for copper returns rt+1 takes the form

rt+1 = x(m)
t β

(m)
t+1 + u(m)

t+1 (15a)

β
(m)
t+1 = β

(m)
t +ε

(m)
t+1 (15b)
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where m = 1, . . . , M denotes the model index, rt+1 = 100(St+1/St − 1), St is the LME spot

price of copper, and the full (1× K) predictor set xt (including the intercept term) is defined as:

xt =
[
1, rt, x(fun)

t , x(fin)
t , x(other)

t

]
. (16)

In (16), the intercept term is denoted by 1, rt is the lagged copper return, and x(i)t for all i ={fun,

fin, other} is as defined in (12), (13) and (14), respectively. The number of predictor variables

(excluding the intercept term) is k = (1 + 6 + 5 + 6) = 18, thus a total of M = 218 = 262144

models are available, at each point in time.35

To compute return forecasts for copper from the recursions in (15), time t filtered estimates

β̂
(m)
t|t are needed to construct the optimal forecast of β(m)

t+1. Given our random walk specifica-

tion of the state dynamics in (1b), this forecast is given by β̂
(m)
t|t , for all m = 1, . . . , M. The

sequence of β̂(m)
t|t are obtained from the Kalman filter recursions outlined in (3). To implement

the Kalman filter, we need to specify initial values. We follow Koop and Korobilis (2012) and

use a diffuse prior for β̂
(m)
0|0 ∼ MN(0Km , 100IKm), where Km denotes the dimension of the mth

model, 0Km is a (Km × 1) dimensional vector of zeros and IKm is (Km × Km) dimensional iden-

tity matrix. The model updating probabilities π (m)
t|t in (9b) are initialised with an uninformative

prior π (m)
0|0 = 1

M , so that all models are assumed to be equally likely. Theα and λ parameters are

set to (0.95, 0.99).36 The κ term in the EWMA specification is fixed at 0.97, in line with current

RiskMetrics (1996) recommendations.

Given the model updating probabilities π
(m)
t|t and α = 0.95, forecasts of the model probabil-

ities are computed as π
(m)
t+1|t = π

α(m)
t|t /

∑M
j=1 π

α( j)
t|t , yielding the DMA and DMS based forecasts

35Note that the null or base model is the one with only an intercept term in it.
36This combination is also used in Koop and Korobilis (2012) (see the results in Tables 4 and 5). We set the
forgetting factor for the model probability updating somewhat lower to allow for a more frequent updating in the
model probabilities. The reason for this is that we have a fairly large number of regressors and want to allow for
the possibility of fast changes over time in terms of which ones are included in the model. One could experiment
here with a few different values as well, nevertheless, we want to abstract from a search for the best values and
use this simple parameter setting instead.
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of copper returns:

r̂(DMA)
t+1|t =

M∑
m=1

x(m)
t β̂

(m)
t|t π

(m)
t+1|t (17a)

r̂(DMS)
t+1|t =

M∑
m=1

x(m)
t β̂

(m)
t|t 1

(
π∗t+1|t = π

(m)
t+1|t

)
(17b)

respectively, where 1
(
π∗t+1|t = π

(m)
t+1|t

)
is again as defined above in (8), ie., an indicator variable

that is equal to one for the most probable model.

5.1.2. Fitting and evaluation periods

Our entire available data set consists of T = 216 observations, covering the period from June

1996 to June 2014.37 We follow common practice in the out-of-sample forecast evaluation litera-

ture and split the full sample into roughly 1/3 in-sample and 2/3 out-of-sample portions. More

specifically, we use the first 70 observations for ‘in-sample’ fitting and the remaining 146 for out-

of-sample evaluation (the out-of-sample period thus spans from May 2002 to June 2014). The

reason for the 1/3 and 2/3 split here is to have a relatively large number of out-of-sample fore-

casts available to be able to conduct statistically meaningful inference. Moreover, since we are

working with a model that allows for time varying dynamics in the model parameters as well

as the selected predictors, it will be interesting to see how the model performs over a sample

that includes the period before, during and after the 2008 financial crisis.

5.2. Evaluation criteria

We assess the out-of-sample forecast performance of the DMA/DMS framework by following

the recent literature on forecasting the equity premium. That is, we follow the approach of

Rapach et al. (2013), Neely et al. (2014) and many others and evaluate the forecasts in terms

of the Campbell and Thompson (2008) out-of-sample R2 (denoted by R2
os henceforth) and the

Clark and West (2007) Mean Squared Forecast Error (MSFE) adjusted t−statistic, which we
37One observations is lost due to lagging.
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denote by CW− statistic. The forecast errors from the various competing models are defined

as:

ê(n)t+1|t =
(
rt+1 − r̂(n)t+1|t

)
(18)

with corresponding MSFEs being

MSFE(n) =
1

Tos

T∑
t=Tis

ê2(n)
t+1|t, (19)

for all n = {DMA, DMS, BM}, where BM is the benchmark model that is used. Tos and Tis

denote, respectively, the number of out-of-sample and in-sample observations, so that Tis +

Tos = T.38

The Campbell and Thompson (2008) R2
os is computed as follows. Let MSFE(DMA) be the

MSFE from the DMA model and let MSFE(BM) denote the MSFE from some alternative bench-

mark model. Then, the R2
os comparing the performance of the DMA model to the BM is defined

as:

R2
os = 1−

MSFE(DMA)

MSFE(BM)
. (20)

Intuitively, the R2
os statistic in (20) measures the reduction in the MSFE of the proposed DMA

model relative to the benchmark model. When R2
os > 0, then this is an indication that the pro-

posed DMA model (or other competing model that is used) performs better than the benchmark

model in terms of MSFE, while R2
os < 0 suggests that the benchmark model performs better.

The Clark and West (2007) MSFE adjusted t−statistic is computed as (again assessing the

performance of the DMA model relative to the BM):

CW− statistic = − 2
Tos

T∑
t=Tis

ê(BM)
t+1|t

(
ê(BM)

t+1|t − ê(DMA)
t+1|t

)
(21)

38For longer forecast horizons, ie., when h > 1, where h denotes the forecast horizon, this means that the number
of out-of-sample observations is Tos = T− Tis − h + 1.
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(see equation 4.1 on page 297 in Clark and West (2007)). Following the suggestion in Clark and

West (2007, page 294) , the easiest way to compute the CW− statistic is to form the sequence

cwt+1 = dmt+1 + adjt+1 (22)

where

dmt+1 = ê2(RW)
t+1|t − ê2(DMA)

t+1|t (23)

and

adjt+1 =
[
r̂(RW)

t+1|t − r̂(DMA)
t+1|t

]2. (24)

The dmt term is the standard Diebold and Mariano (1995) sequence that is computed to test for

(unconditional) superior predictive ability. The adjustment term adjt arises due to the nested

nature of the models being compared and performs a bias correction (see Clark and West (2007)

for more details). The CW− statistic is then computed as

CW− statistic =
cw√

Var(cw)
(25)

where cw = T−1
os
∑T

t=Tis
cwt+1 and Var(cw) is the variance of the sample mean, which can

simply be obtained as the heteroskedasticity and autocorrelation (HAC) robust t−statistic on

the intercept term of a regression of cwt+1 on a constant.39

The CW− statistic implements a test of the null hypothesis that the MSFE of the benchmark

model is equal to the MSFE of the DMA model, against the one sided alternative hypothesis that

the benchmark’s MSFE is greater than that of the DMA. A rejection of the null hypothesis hence

suggests that DMA forecasts are (on average) significantly better than BM forecasts. It should

be highlighted here that the CW− statistic is particularly suitable in the given context, as it is

designed for a comparison of nested forecasting models. The benchmark model is frequently

39See also the discussion in section 2.1 in Diebold (2014) for more background on this in the context of the tradi-
tional Diebold-Mariano (DM) statistic.
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assumed to be a RW model, which can be obtained from the DMA/DMS framework by setting

(or restricting) β(m)
t = 0.

5.3. Forecast evaluation results

Table 2 presents the one-step-ahead forecast evaluation results for the out-of-sample period

from May 2002 to June 2014. We use 70 observations from June 1996 to April 2002 as the in-

sample fitting period for the OLS based benchmarks.40 Following the large literature on out-

of-sample forecast evaluation, we use the random walk (RW) model as the benchmark model

in the statistical tests. The first column in Table 2 shows the models that are fitted, the second

column shows the mean squared forecast errors (MSFEs), the third column the MSFEs relative

to the RW benchmark, the fourth column the Campbell and Thompson (2008) R2
os (in percent)

as defined in (20), and the fifth and sixth columns display the Clark and West (2007) MSFE

adjusted t−statistic (CW−statistic) and its corresponding one-sided p−value. ←Table 2
about here

We include a number of alternative models in our forecast evaluation exercise. These are

the Historical Average (HA) and a standard OLS regression on the full (1 × K) dimensional

predictor set xt as defined in (16). The historical average forecast has recently gained popu-

larity in the equity premium forecasting literature (see for instance Campbell and Thompson

(2008), Rapach et al. (2013), Neely et al. (2014) and others). The historical average is computed

simply by taking the arithmetic mean for data up to time t, and using that as the forecast for the

next time period t + 1. More intuitively, it can be easily implemented as an OLS regression of

copper returns on an intercept term. For both, the OLS and HA based alternative models, we

construct the forecasts with two different schemes: i) a rolling window scheme and ii) an ex-

panding window scheme.41 Apart from the DMA/DMS models withα and λ calibrated at 0.95

40We should note here also that since the Kalman filter recursions in (3) depend on the initial conditions (or priors),
the in-sample fitting period can also be thought of as a burn-in period for the Kalman filter. After this initial period,
the influence of the initial conditions becomes smaller as the recursions proceed.
41Under a rolling window scheme, we keep the estimation sample fixed and ‘roll’ through the remaining out-of-
sample data points to construct the forecast. The parameter estimates thus change at each point in time over the
out-of-sample data, in the same way that a ‘real time’ forecast would be constructed. That is, we use observations
1 to 70 for fitting, forecast observation 71, and then move forward to observations 2 to 71 (keeping the sample size
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and 0.99 respectively, we also include forecasts from a simple time-varying parameter (TVP)

model. Note here that the TVP model (with λ = 0.99) arises as a by-product of the DMA/DMS

procedure, as it is readily computed and simply corresponds to the model which contains the

full set of predictors.42 Also, as there is no model averaging or selection, the value of the α

parameter is irrelevant.

Looking over the results reported in Table 2, one can notice that both rolling and expend-

ing window historical averages perform poorly in forecasting monthly LME copper returns,

in fact, much worse than a simple RW benchmark. It is further evident that the rolling win-

dow OLS regression on the full predictor set forecasts also rather poorly, noticeably worse than

the two historical average forecasts. All three models produce negative R2
os and rather small

and insignificant CW−statistics. Nevertheless, all remaining four models produce statistically

superior forecasts to the RW benchmark with sizeable R2
os values, ranging from 9.6% for the

TVP model to about 18.5% for the DMA model. The forecast performance of the DMS model

is marginally worse than that of the DMA model in terms of MSFE, the R2
os, as well as statisti-

cal significance. What is interesting to observe from the results that are reported in Table 2 is

that even the simple OLS model using the full regressor set on an expanding window size does

remarkably well in forecasting, producing an R2
os of nearly 10%, and a CW−statistic of 1.96,

which is significant at the 5% level. From these results we can thus see that the (rather large) set

of predictor variables that we use contains valuable information for forecasting copper returns.

Comparing these results to the ones from the TVP model seems to suggest that it is not solely

the time-varying parameter part that leads to improved forecasts when using DMA/DMS, but

a combination of the selected predictor set, time varying parameters, and most importantly,

fixed at 70), re-estimate the model parameters again and then forecast observation 72, etc. Under an expanding
scheme, the first step is the same as under the rolling scheme, but all of the forecasts use the full in-sample data
for fitting, ie., from observations 1 to 71 (increasing sample size of 71 now), re-estimating and then forecasting
observation 72 and so forth. One can argue that both have their advantages and disadvantages. A rolling window
scheme should adapt faster to parameter changes, should these occur, while the expanding window scheme would
be preferred if there is no change in parameters because more precise estimates are obtained with a growing sample
as opposed to a fixed one.
42Note that there is no model averaging or switching in the TVP model, since the model with the full set of
predictors is used to forecast.
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the averaging over the various models that are estimated. In summary, the statistical results

presented here are overall positive and promising.

To facilitate our understanding of the statistical results that are summarised in Table 2, we

show various plots of interest from the forecast evaluation exercise in Figure 3. In Panel (a) of

Figure 3, we show a plot of the actual monthly copper returns (blue line) together with pre-

dicted values from DMA (red line) and expanding window OLS (green line), to get a visual

impression of the overall out-of-sample fit of these two models. It is noticeable from the plots

in Panel (a) that both models follow the actual copper return series rather well, with the two

models producing broadly similar forecasts. There are a few important differences though. The

DMA model seems to forecast somewhat worse at the end of 2006, and produces a marginally

stronger crisis drop in copper returns towards the end of 2008. Nevertheless, DMA produces

noticeably better forecasts than the expanding window OLS counterpart from early 2009 on-

wards for about 4 consecutive months, with the forecasts thereafter being again fairly similar.

Looking at the squared forecast errors plotted in Panel (b) of Figure 3, one gets the same overall

impression regarding the performance of these two models.43 ← Figure 3
about here

In Panel (c) of Figure 3 we show plots of the time series evolution of the cumulative sum

of the differences of the squared forecast errors of the DMA (red line) and expanding window

OLS (green line) models, relative to those of the RW benchmark. This cumulative sum of dif-

ferences is commonly used in the equity premium forecasting literature as a tool to highlight

the predictive performance of the model relative to the benchmark over time (see Goyal and

Welch, 2008). For DMA, with the benchmark being the RW model, this difference is computed

as:44

CSD(RW,DMA)
t =

Tos∑
t=Tis

(
ê2(RW)

t+1|t − ê2(DMA)
t+1|t

)
. (26)

A value above zero of CSD(RW,DMA)
t indicates that the cumulative squared forecast errors of

43The plot in Panel (b) is fairly self explanatory. To conserve space, we do not discuss this plot any further and
include it simply to provide additional information regarding the forecasting performance of these two models.
44Analogously for the expanding window OLS model.
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the RW model are larger than those corresponding to the DMA model, suggesting that DMA

produces better forecasts whenever CSD(RW,DMA)
t > 0. As is evident from Panel (c) of Figure 3,

for both, DMA as well as expanding window OLS forecasts, CSD(RW,•)
t is uniformly greater

than 0, apart from a short time period at the beginning of the out-of-sample evaluation period

in 2003. What is interesting to observe is that the biggest boost in CSD(RW,•)
t is obtained during

a short window around the peak of the financial crisis in September 2008. This suggests that,

apart from the weaker predictability of LME copper returns during normal times, there was a

period from September 2008 to the beginning of 2009 where substantial forecast gains could be

realised. This is an interesting finding that has not been documented in the copper forecasting

literature thus far.

In the last panel in Figure 3, we show a scatter plot of predicted copper returns from the

DMA model on the x−axis against actual copper returns on the y−axis. Scatter plots of actual

against predict values are informative, as they can shed light on the overall performance of

the model. Since we can think of the out-of-sample R2 as being the standard regression R2

from an OLS fit of actual copper returns on predicted values from the DMA model, examining

a scatter plot of predicted against actual can reveal possible abnormalities in this relationship

such as outliers, which can influence the statistical results. A scatter plot can further reveal

features that may be lost or hidden away in the R2
os and/or CW−statistic.45 To help us identify

relational patterns in the data, we superimpose two simple model fits on the scatter in Panel

(d). These are fits from i) a linear OLS regression of actual on predicted returns (solid blue

line) and ii) a flexible non-parametric local linear regression (LOESS) of actual on predicted

returns. The non-parametric LOESS fit is evaluated at the DMA predicted (x−axis) values

(marked by red circles), as well as over an evenly spaced grid from min(DMA predicted) to

max(DMA predicted) (drawn as a solid red line). Grey shading around the LOESS fit mark the

45The objective here is to learn about models and their fit to data in the spirit of Pagan (2002) and Breunig et al.
(2003), which was recently also applied in Buncic (2012) in the context of exchange rate forecasting.
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95% confidence interval computed from asymptotic standard errors.46

Looking over the plots in Panel (d) of Figure 3, one can immediately identify the general

positive and mostly linear relationship between the predicted and actual return series. It is fur-

ther noticeable that the linear OLS and the flexible non-parametric LOESS fits are reasonably

similar over the range of the data where the bulk of the observations lie, ie., broadly the [−5, 10]

x−axis interval. There are evidently some observations on either end of the tails of the return

distribution that are different from a linear fit, especially the handful of observations that are in

the [−15,−5] interval. Over this range, the LOESS estimates is rather flat, indicating no rela-

tionship between DMA predictions and actual returns, while the linear OLS fit is still upward

sloping. Another feature that should be pointed out from the non-parametric fit is the very mild

(inverted) S−shape in the predicted against actual relation over the [−5, 10] interval. Neverthe-

less, one needs to be careful with the interpretation of this visual non-linearity in the fit, as the

OLS regression line that crosses this interval stays mostly within the 95% confidence interval of

the LOESS fit, indicating that the uncertainty surrounding the non-parametric point estimate is

large enough to include the (linear) OLS regression line. This could be seen as ‘insignificant’ or

redundant non-linearity and therefore we do not discuss this any further.47

In summary, we can conclude from the visual inspection of the plots in Figure 3 that the

DMA model performs reasonably well overall as a predictive model for copper returns. In-

terestingly, the plots of the cumulative difference of the squared forecast errors relative to the

RW benchmark reveal that there is a boost in copper predictability after the Lehman Brothers

collapse in September 2008, which is a time period of high economic and financial uncertainty.

Over this period, a considerable gain in predictive ability over a simple RW model is realised.

46We used a simple Silverman (1986) plug in bandwidth and a first order polynomial in the LOESS regression (see
Pagan and Ullah, 1999, page 104 for details).
47A visual indication of non-linearity is clearly not equivalent to a statistical test, however, the empirical finance
literature has used visual evidence to argue for the need to fit non-linear models to the data. We do not pursue this
issue any further as the objective here is purely to provide a visual overview of how the actual and fitted values
relate to each other.
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5.3.1. Which predictors perform best?

Given our flexible model specification with regards to the predictor variables that are included,

as well as the time varying nature of the modelling setup that we implement, we can now look

at which predictors are the most influential, and more importantly, how this influence evolves

over time. Since we include various fundamental as well as financial predictor variables that

we deem important for copper return forecasting, we expect to see changes, particularly during

the peak of the financial crisis period from September 2008 to the beginning of 2009, where asset

prices world wide went through a substantial re-valuation phase.

To obtain a visual impression of the time varying influence of our predictor variables on

copper return forecasts, we examine the dynamic evolution of two quantities of interest. The

first one is the posterior inclusion probability (PIPt for short) of the predictor variable. The

second one is the weighted average of the updated estimates of the latent state vector, which

we denote by β̂
(DMA)
t|t . The (k× 1) dimensional PIP vector at time t is computed as:48

PIPt =
M∑

m=1

π
(m)
t|t 1

(
xt ∈ M = m

)
, (27)

where π
(m)
t|t is the updated model probability as defined in (10) and 1

(
xt ∈ M = m

)
is an

indicator variable that is equal to 1 if any of the regressors in xt are included in the mth model.

To construct the PIP, one thus simply sums over all updated model probabilities π
(m)
t|t which

contain the ith predictor variable {xi,t}k
i=1. The weighted average of the time varying parameter

estimates is obtained as:

β̂
(DMA)
t|t =

M∑
m=1

π
(m)
t|t β̂

(m)
t|t 1

(
xt ∈ M = m

)
, (28)

where β̂
(m)
t|t is as defined in (3d) and 1

(
xt ∈ M = m

)
is as above. Intuitively, to calculate

48It is k here, rather K = (k + 1). This excludes the intercept term as it is by default included in all models so by
construction has a PIP of 1.
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β̂
(DMA)
t|t , we simply average each β̂

(m)
t|t estimate over the updated model probabilities π

(m)
t|t , at

each point in time for the regressors that are included in the model.

In Figures 4 and 5 we show plots of the time series evolution of PIPt and β̂
(DMA)
t|t over the out-

of-sample period from May 2002 to June 2014. Let us first discuss the plots of the PIPs shown in

Figure 4. Looking over the bottom row of plots, it is evident that three of the four resource based

equity return series have very low probabilities of being included in the forecasting models.

There is some mild variation over time, but most of the PIPs remain well below 20%. The

influence of the Spread, the VIX, the TED spread, and Gold prices shown in the middle of

Figure 4 have fairly stable PIPs over time (at least since March 2006), indicating that, on average,

these variables are included about 50% of the time in the forecasting models. This stability is

particularly interesting to see for the VIX and the TED spread, as our prior expectation would

have been an increasing influence with an overall jump in risk aversion during the financial

crisis period from September 2008 onwards, due to these two variables being market proxies

for global risk appetite. ← Figure 4
about here

The SP500, Oil prices, the Chilean Peso, Australian Dollar and the stock price of Alcoa are

also overall fairly stable (broadly in the 50% PIP region), nevertheless, with some adjustments

taking place in March 2006 and May 2009. In March 2006, the PIP of ∆Oil changed from around

20% to nearly 80% by June 2006 and declined gradually thereafter, stabilising at 40%. The

importance of the SP500 jumped from around 30% to just under 60% in March 2006, while the

Australian Dollar and Alcoa equity returns experienced a marginal increase in their inclusion

probabilities from March 2006 until the end of 2008, remaining fairly stable at around 45% over

the rest of the sample.

The biggest PIP changes are visible for lagged copper returns, the convenience yield, indus-

trial production, and to a lesser extent, the Baltic dry index. The variability in the PIP of the

lagged copper return series is particularly pronounced, with the posterior inclusion probabil-

ity changing from rather high values of over 80% at the beginning of the evaluation period, to
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low values of around 40% in March 2006, increasing back to 80% by September 2008 and then

dropping sharply to around 20− 30% and remaining at this level until May 2009. The impor-

tance of lagged copper returns has increased rapidly again since May 2009, reaching levels well

above 80% by mid 2010 and staying at this level until the end of the evaluation period. What

is interesting to see from the PIP of the lagged copper return series (and also from the β̂
(DMA)
t|t

plots in Figure 5) is the varying degree of momentum that the series exhibits, particularly over

the January 2006 to January 2009 period, and also from January 2009 to February 2011 (see also

Panel (a) of Figure 1 for the build up, drop and built up cycle of LME copper prices).

The inclusion probability of the convenience yield has been reasonably stable since 2006 at

around 50− 60%, but then spiked sharply down and back up again in September 2008, indicat-

ing that the predictive content of the convenience yield was much lower during this period of

high uncertainty. A broadly similar picture is visible for the PIP of industrial production, which

was also fairly constant at a level of 40− 60% from the beginning of the out-of-sample period

in May 2002 until September 2008. In September 2008, the PIP then dropped from a level of

around 40% to nearly zero, moving gradually back towards a level of 40% by June 2014. The

sudden and sizable drops in the PIPs of these two variables give an indication of how normally

informative ‘fundamental’ variables were irrelevant for the determination of copper prices over

this time period of heightened economic and financial uncertainty. ← Figure 5
about here

Given our knowledge of how the inclusion probabilities of the different predictor variables

have changed over time, we can now examine the evolution of the β̂
(DMA)
t|t coefficients shown

in Figure 5 to complement the PIP results. Due to the very low inclusion probabilities of the 3

resource based equity return series shown in the last row of Figure 5, we do not discuss their

time varying β̂
(DMA)
t|t plots. Looking over the time variation of the model averaged coefficients

for the Chilean peso, the Australian dollar, Alcoa stock, Oil and Gold we can identify a number

of interesting features. Initially, we can notice the fairly stable and positive coefficient on the

Chilean peso from April 2004 until the end of the sample. The coefficient was close to zero from
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May 2002 until January 2004, but then increased fairly rapidly to a value of around 0.20 by July

2004 and staying at that level. In September 2008, the value of the coefficient increased further

to about 0.30 until the middle of 2010, suggesting an heightened influence of the Chilean peso

on copper returns over the crisis period.49

The coefficients on the Australian dollar, Alcoa stock , Oil and Gold were small or close to

zero for most of the out-of-sample period, with important exceptions being the two time peri-

ods March 2006 and September 2008. All four predictor variables had positive and increasing

coefficients over these two periods suggesting a positive relationship with copper returns. For

instance, Oil, Alcoa stock and also Gold went through a similar initial rapid increase and then

subsequent fall over the March 2006 to December 2006 period. This is reflected in the magni-

tudes of the coefficients over this time frame. The Australian dollar grew in importance over

the resource based run up until mid 2008. What is different for the Australian dollar is the

impact over the September 2008 to May 2009 period. While the coefficients on Oil, Alcoa stock

and Gold jumped up, the one on the Australian dollar dropped down towards zero. Although

all four predictor variables were affected by the September 2008 period, the intensity and mag-

nitude of the responses varied. Alcoa’s equity price was most heavily affected by this period,

with its stock dropping from approximately 38USD just before September 2008 to about 6USD

by February 2009. Oil prices tumbled from 140USD a barrel to under 40USD.50 Over the same

time frame, the Australian dollar was heading towards parity with the USD before September

2008, but then depreciated sharply to 0.65USD. Gold prices also dropped in response to the

Lehman Brothers collapse, but the drop was rather small from around 1000USD to 800USD

(around 20%) when compared to the magnitudes of decline in the other three predictors, and

also when measured against the sharp increase in Gold prices that followed.

49A coefficient value of 0.3 translates into a copper return increase of 0.3% for every 1% increase in ∆CLP, provided
all else is the same.
50Oil had an immense run up before September 2008 and had peaked in fact in July 2008, then dropped down
from 143USD to around 91USD, increased once more to 122USD a barrel, before collapsing to 33USD in December
2008.
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Looking over the evolution of the coefficients on the two risk aversion proxies, the VIX and

the TED spread, we can clearly identify the impact of the September 2008 crisis period. What

is interesting to observe here is that the coefficient on the TED spread was positive, suggest-

ing that a rise in the TED spread projected an increase in copper returns, ceteris paribus, for the

first half of the out-of-sample period, that is, before September 2008. There is some variation

in the magnitude before the financial crisis, but the coefficient stayed positive until September

2008. Thus, during non-crisis (or normal) times, an increase in the TED spread gave a substan-

tially different prediction signal for copper. Following September 2008, the coefficient changed

abruptly to a negative value, dropping as low as −0.25 by the end of 2008. Although the TED

spread had stabilised fairly quickly at a value of around 0.5, which is below its long term aver-

age of 0.61 after September 2009 (see the plot of the predictors in Figure 2), the coefficient value

on the TED spread stayed negative at about −0.18. We can hence see that even months after

the September 2008 collapse of Lehman Brothers, marginal increases in the TED spread had a

negative impact on copper prices, which is in contrast with the first half of the out-of-sample

period.

Such a change in sign of the coefficient did not occur for the VIX, which remained negative

for the entire out-of-sample period, with values ranging from −0.01 to 0, being closer to 0

from March 2006 to December 2007.51 In September 2008, there was a substantial shift down

in the coefficient, dropping as low as −0.02 and stabilising at around −0.01 by January 2012.

Despite being negative over the whole forecast evaluation period, the sensitivity of copper to

changes in the VIX more than doubled from the time before the Lehman collapse until May

2009, suggesting that market participants were extremely responsive to risk aversion. Looking

over the time series plot of the coefficient on the SP500 one can see two interesting features.

The first is the obvious jump during the September 2008 to May 2009 period. The second is the

steady positive trend in the coefficient, particularly from June 2007 until the end of the sample

51Note here the that coefficient looks rather small when compared to the TED spread one, but it needs to be kept
in mind that scale of the VIX predictor variable is 10 times that of the TED spread.
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period. Both of these results are consistent with the recent finding by Rapach et al. (2013), that

the U.S. is an information center when it comes to news related to global economic and financial

activity. The persistence in the upward trend after September 2008 is particularly interesting,

as it suggests that the U.S. played the role of an information hub not only during the peak of

the financial crisis period, but also afterwards.52

The three predictor variables that are meant to capture economic activity, namely, indus-

trial production, the Baltic dry index and the term spread also show a number of interesting

features with regards to the time series evolution of their coefficients. Industrial production,

for instance, had a fairly large coefficient over the first half of the evaluation period, varying

broadly between 0.8 and 1.3, suggesting that changes in industrial production (our proxy for

U.S. economic activity) had a positive impact on copper prices. This changed dramatically in

September 2008, with the coefficient on ∆IP dropping to less than 0.05 by December 2008. So

not only did the PIP of ∆IP go towards zero (as discussed before and shown in Figure 4), but

also the magnitude of its coefficient, indicating that the usual predictive content of industrial

production for copper had disappeared after the Lehman Brothers collapse. The coefficient did

recover gradually after May 2009, which is in line with the findings for the PIP values, but

remained subdued at values well below 0.5.

The coefficients on ∆BDI and Spread jumped in September 2008. For the Spread variable,

the coefficient was close to zero for a few years before the crisis, but then dropped down to−0.3

by November 2008, before gradually increasing back to −0.1. Note here the interpretation. The

yield curve is said to be inverted when the spread is negative. An inverted yield curve is

predictive for U.S. recessions. A decreasing value thus signals that markets are anticipating a

worsening economic outlook. As is visible from the plot of the term spread in Figure 2, the yield

curve was inverted for two episodes: from July 2000 to January 2001 and from July 2006 to May

52It might seem obvious to think that the U.S. was the source of all news related to, and around, the Lehman Broth-
ers collapse due to the news actually originating there. Nevertheless, it is astounding to see that this importance,
as captured by the coefficient size, did not decrease after news related to the financial crisis diminished.
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2007. Although the term spread was positive from May 2007 onwards and thus not suggestive

of recessionary expectations building up, there were substantial jumps up and down in the

term spread around the time of the Lehman Brothers collapse in September 2008, due to the

increased economic and financial uncertainty. For example, in August 2008, the term spread

was 2.14%, then jumped to 3.30% by November 2008, moved down to 2.35% by January 2009,

before increasing fairly steadily afterwards until May 2010. This period of uncertainty was

accompanied by a sharp drop in the coefficient on the spread.

The spread had rather negligible predictive power in the two years preceding the Lehman

Brothers collapse, as is evident from its coefficient being close to zero in June 2008. Never-

theless, by November 2008, the coefficient had dropped to −0.29, highlighting the increased

predictive power over this time frame. What is interesting to note here is the reversal in the

sign of the coefficient. For the first half of the out-of-sample period, the spread coefficient was

small but mainly positive (only turning negative in March 2009), so that an increasing yield

spread predicted positive copper returns. After September 2008, this relationship reversed so

that increases in the yield spread were predicting negative returns. Changes in the Baltic dry

shipping index were largely of less importance as is visible from the close to zero coefficient

value for a substantial part of the out-of-sample period. Nevertheless, noticeable increases in

the coefficient to values just below 0.1 are evident for the March 2006 and September 2008

periods, emphasising the increased predictive content of the BDI for copper over these two

particular periods.

The three predictors related to copper fundamentals, that is, (excess) demand, inventory and

the convenience yield also portray considerable time variation in their coefficients. Changes in

inventories had initially a fairly constant negative impact on copper returns, but then dropped

noticeably lower in September 2008 (and to a lesser extent in March 2006) before recovering to

a value of −0.1 by the end of the sample period. The coefficient on ∆Demand jumped during

the September 2008 period from around 0.04 to a value of 0.10, highlighting the increased
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sensitivity to expectations about demand pressures over this time period. After September

2008, the coefficient adjusted again to a considerably smaller value, dropping below 0.02 by

the end of the sample. The coefficient on the convenience yield seems to be the most volatile

of the three fundamental predictors, starting off at a value close to −0.4, increasing steadily

to −0.1 until March 2006, then dropping initially rapidly and finally more slowly towards the

September 2008 period. In September 2008, the coefficient on the convenience yield jumped

from −0.27 to −0.15, and then dropped as low as −0.4 by May 2009, indicative of substantial

changes in predictive power over this time frame. Since then, the coefficient has been increasing

towards 0, suggesting a more subdued influence on copper returns.

The variation in the coefficient on lagged copper returns shows similar patterns to the ones

seen in the posterior inclusion probabilities that are plotted in Figure 4. Initially, there was a

strong build up in momentum for copper, with the coefficient on lagged returns increasing from

just below 0.4 to 0.6 over the period from May 2002 to March 2006. This strong momentum

phase is also evident in LME spot prices plotted in Panel (a) of Figure 1. After March 2006,

a drop in momentum is visible, with the coefficient on lagged copper returns falling to 0.22

by August 2006, but then increasing steadily towards 0.45 by May 2008. The final drop in

momentum occurred in two phases after September 2008, with a noticeable rebound phase

from November 2008 to January 2009, bottoming out in February 2009 at a coefficient value of

0.12. Inline with the strong increases in copper prices that are visible in Panel (a) of Figure 1,

momentum began once again to increase steadily until the end of the sample in June 2014.

In summary, the results presented in this section show that there is considerable time vari-

ation not only in the set of predictor variables that are most informative for forecasting copper

returns, but also in the magnitude of the model averaged coefficients attached to the predictors.

Moreover, the effect of the Lehman Brothers collapse in September 2008 is visible in nearly all

the predictor variables through jumps and spikes in the inclusion probabilities as well as in the

magnitudes of the coefficients. This highlights the fast changing nature of the prediction envi-
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ronment and information flow during that time. The SP500, the VIX, the yield spread, the TED

spread and the convenience yield predictors were particulary heavily influenced during the

September 2008 to May 2009 period, re-emphasising the need for a flexible forecasting model.

5.4. Forecasting performance at longer horizons

Given the overall positive results at the one month ahead horizon, we now turn to assess the

forecasting performance of our model and predictor set at horizons greater than one month. It is

well known from the literature on exchange rate forecasting (see, for instance, Mark, 1995) that

some predictor variables, especially fundamentals, can contain more predictive information

when forecasting multiple periods into the future, as the influence of ‘noise traders’ can drive

the evolution of the return process at shorter horizon.53 To assess the multiple steps ahead

forecast performance of our framework, we construct and evaluate copper return forecasts at

horizons of 2, 3, 6, 9, and 12 months into the future.

5.4.1. Computing multiple period ahead out-of-sample forecasts

We implement the so-called ‘direct’ forecasting approach to construct multiple-step-ahead out-

of-sample forecasts form the DMA/DMS framework.54 That is, we re-formulate the relation in

(1) (again using the general yt and xt notation as in Section 3.1) as

yt = x(m)
t−hβ

(m)
t,h + u(m)

t (29a)

β
(m)
t,h = β

(m)
t−1,h +ε

(m)
t , (29b)

53The influence of noise traders or chartists, that is, traders that use simple technical indicators as trading signals is
well known in the exchange rate and equity premium forecasting literature (see, among many other studies, Allen
and Taylor, 1990 and Neely et al., 2014 for two widely cited studies in the exchange rate and equity forecasting
literature).
54See Clements and Hendry (1996), Chevillon and Hendry (2005), Marcellino et al. (2006), Chevillon (2007), and
Pesaran et al. (2011), among others, for a motivation, evaluation and comparison of the direct forecasting approach
to iterated forecasts.

48



where the h subscript in β
(m)
t,h signifies the relation to the h−period lagged value of xt. Using the

same Kalman Filter recursions as in (3), but now on the h−period lagged relation as specified

in (29) yields filtered estimates of the latent states (for each model), that is, β̂(m)
t|t,h. Analogues to

the forecasting equations in (15), the h−period copper return forecast relation becomes:

rh
t+h = x(m)

t β
(m)
t+h,h + u(m)

t+h (30a)

β
(m)
t+h,h = β

(m)
t+h−1,h +ε

(m)
t+h (30b)

where rh
t+h = 100(St+h/St − 1), that is, the h−period holding return from buying LME spot

copper at time t and selling it at time t + h.

Given (30), the DMA/DMS based h−step ahead forecasts are then computed as:

r̂h(DMA)
t+h|t =

M∑
m=1

x(m)
t β̂

(m)
t|t,hπ

(m)
t+h|t (31a)

r̂h(DMS)
t+h|t =

M∑
m=1

x(m)
t β̂

(m)
t|t,h1

(
π∗t+h|t = π

(m)
t+h|t

)
(31b)

for all t = Tis, . . . , T, where, again due to the random walk evolution of the latent state vector

β
(m)
t+h,h, the best forecast of β

(m)
t+h,h is its last observed filtered estimate, that is, IEt(β

(m)
t+h,h) =

β̂
(m)
t|t,h. As defined earlier, the term 1

(
π∗t+h|t = π

(m)
t+h|t

)
is an indicator that is equal to one for the

model with the highest predictive probability and π∗t+h|t = max
{
π
(m)
t+h|t

}M
m=1. The h−step ahead

predictive model probabilities at time t are computed from

π
(m)
t+h|t =

π
α(m)
t|t∑M

j=1 π
( j)
t|t

, (32)

where π
(m)
t|t is as defined in (9b).
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5.4.2. Multiple-step-ahead forecast evaluation

We use the same calibration for the λ,α and κ parameters that were used in the one-step-ahead

forecast setting to implement the Kalman Filter recursions. The results for forecast horizons

h = 2, 3, 6, 9, and 12 months are reported in Table 3. The content of the columns of Table 3 is

the same as described earlier in the one-step-ahead forecast evaluation in Table 2, with the only

exception being that the second column now reports MSFEs deflated by the forecast horizon

h. Also, since h−step ahead forecast errors will be MA(h − 1) processes in general (ie., will

be autocorrelated of order h − 1) which affects also the CW−statistic, we use a HAC robust

variance for Var(cw) in (25). More specifically, we follow the recommendation of Andrews and

Monahan (1992) and employ a data driven bandwidth using a Quadratic Spectral (QS) Kernel

with a ‘pre-whitening’ step, where we set the (optimal) bandwidth parameter with an AR(1) as

the approximating model (see equation 3.5 in Andrews and Monahan (1992)).55 ←Table 3
about here

From the results reported in Table 3 it is evident that the forecasting performance of the DMA

model (relative to a simple random walk forecast) remains in tact for forecast horizons up to

6 months ahead. The overall predictive ability diminished fairly consistently as the forecast

horizon increases, with the out-of-sample R2 dropping from close to 8% at forecast horizon

2, to 6.8% at h = 3, to 5.2% at h = 6 months ahead, yielding corresponding CW−statistics

that are significant at the 5% for h = 2, 3 and 10% level for h = 6. What is interesting to see

from the results reported in Table 3 is that the performance of DMS, TVP and OLS on the full

regressor set (using an expanding window) perform noticeably worse than DMA. Also, the

performance of the simple historic average on an expanding window seems to keep its overall

predictive performance, producing marginally lower out-of-sample MSFEs than the random

walk benchmark.
55That is, to pre-whiten the cwt+1 series, we first fit an ARMA(1, 1) to cwt+1 and then use the QS Kernel with
the bandwidth parameter set to 1.3221 (α̂(2)Tos)

1/5, where α̂ (2) = 4ρ̂2/(1 − ρ̂)4 and ρ̂ is the AR(1) parameter
estimate obtained from an AR(1) regression of the (pre-whitened) residual series obtained from the ARMA(1, 1)
model fitted to cwt+1. To obtained the HAC variance, we then ‘re-colour’ again with the ratio of the square of the
ARMA lag polynomials (see Andrews and Monahan, 1992 for more details on the exact computations).
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To visualise how the actual long-horizon returns as well as the predicted values from the

DMA model compare, we plot again the same contents that were shown in Figure 3 in Figures

6 to 10. The main aim here is once again to learn about the forecasts from the different models.

From Figures 6 and 7 we can broadly identify the same pattern in the plots that we found

in the corresponding plots shown in Figure 3. These are the reasonably close performance

of DMA and OLS on an expanding window up to the September 2008 crisis period. What

is different at the 2 and 3 step ahead horizons is that the expanding window OLS regression

does not produce the rebound in copper returns following the January 2009 period. The DMA

model is much better able to adapt to the strong appreciation in copper prices that followed

the end of 2008 collapse. From about January 2010, the forecasts from the two models are quite

similar again, producing forecasts that are visually not different to a random walk model. The

reasonably good out-of-sample performance of DMA at horizons 2 and 3 is also mirrored in the

predicted against actual scatters shown in Panel (d) of the two figures. The predicted against

actual relationship seems again fairly linear with little influence from aberrant observations. ← Fig.6-10
about here

Looking over the plots for the 6 months forecast horizon shown in Figure 8 it is interesting

to see that OLS on an expanding window performed uniformly better than DMA (and also

the RW benchmark) for roughly one half of the out-of-sample period, as is evident from the

positive cumulative sum of squared forecast errors shown in Panel (c). From May 2009, the

performance dropped of substantially and rapidly, again due to (expanding window) OLS not

being able to generate the rebound after the September 2008 slump. The DMA model gets most

of its gain in predictability over the time frame from April 2009 to February 2010. From around

February 2010, we can see from Panel (a) of Figure 8 that the forecasts from DMA and OLS

were remarkably similar again. The weaker predictive power for 6 months ahead forecasts that

is evident from the statistical results reported in Table 3 is also visible from the predicted vs.

actual scatter shown in Panel (d) of Figure 8. Although the (linear) OLS fit as marked by the blue

line in the plot indicates an overall positive relationship between predicted and actual values,
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the non-parametric fit shows that this positive relation holds only mildly over the [−10, 10]

x−axis range, while it is flat over (nearly) the entire remaining x−axis range.56

The plots summarising the performance of 9 and 12 months ahead forecasts shown in Fig-

ure 9 and Figure 10, respectively, are fairly similar in terms of highlighting the breakdown of the

expanding OLS based forecasts. From the actual vs predicted plots in Panel (a) of the figures it

is evident that the models performed fairly similarly, producing rather flat forecasts. Neverthe-

less, conditioning on the values of the predictor variables at their September 2008 crisis period

values produces extremely poor and exaggerated negative 9 and 12 months ahead forecasts

from expanding window OLS. All the parameter estimates that are obtained during ‘normal

times’ are now used to forecast with the same sensitivities for predictor variables that have a

fundamentally different relation to copper, producing a strong and wrongly signed forecast.

The DMA framework seems to be able to better adjust to these differences, forecasting at least

broadly in the same direction as the target variable. The two plots showing predicted against

actual values in Panel (d) of Figure 9 and Figure 10 signify the poor forecasts.

Overall, we can conclude here that forecasting copper returns over a holding period of

longer than 6 months using the DMA framework is no better than a random walk forecast,

with forecasts from an OLS based model on the full predictor set being substantially worse.

Also, given the long-horizon forecast results, the simple historical average computed over an

expanding window could be a viable alternative forecasting model to use when an alternative

to the random walk forecast is desirable.

6. Conclusion

We use the recently proposed dynamic model averaging and selection (DMA/DMS) framework

to forecast monthly LME copper returns using a purposefully selected large set of 18 predictor

variables. The DMA/DMS modelling framework is particularly appealing for forecasting cop-

56The exception being the few points in the right hand side of the scatter, ie., for x−axis values greater than 30.
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per, as it combines a time varying parameter and model selection approach under one unified

setting. Letting not only the model parameters but also the set of predictors change over time

is important in the given context, as the role of copper has evolved over time from being a

‘simple commodity’ that is used as a primary input in the production process of final goods, to

a financial asset that is held and traded for speculative purposes. This changing role of copper

makes it necessary to condition on a large and diverse set of predictor variables that control not

only for standard demand, inventory and convenience yield factors, but also for the impact that

financialization has had on copper, since the importance of these particular factors has shifted

over the last few decades.

Covering an out-of-sample period from May 2002 to June 2014, we show in our empirical

forecast evaluation exercise that the DMA/DMS modelling framework significantly outper-

forms the random walk benchmark for predicting monthly copper returns. The out-of-sample

R2 can be as high as 18.5% for the DMA/DMS framework and is nearly 10% for even a much

simpler (expanding window) OLS regression model on the full predictor set. Moreover, these

forecast gains are statistically significant. What these results highlight is that the attained fore-

cast gains are not purely due to the flexibility of the DMA/DMS specification that we imple-

ment. A substantial part is also attributable to the set of highly relevant predictor variables that

were specifically selected for copper forecasting. Using visualisation techniques to learn about

the fit of the models to the data, our results highlight further that the biggest improvement in

the forecast performance over the benchmark model is realised over the September 2008 to be-

ginning of 2009 period, which seems to have been the worst phase of the 2008 financial crisis.

During this time period, copper return predictability is larger than during any other time pe-

riod in our sample. This finding has not been documented so far in the commodity forecasting

literature.

From plots of the time varying parameter estimates as well as the posterior inclusion proba-

bilities (PIPs) we show further that the influence of the most relevant predictor variables for
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copper has changed over time, and substantially so over the period following the Lehman

Brothers collapse in September 2008. The coefficients and/or the PIPs of nearly all predictor

variables show either a sizeable jump or a drop around the time of the Lehman collapse. The

coefficients of the SP500, the VIX, the yield spread, the TED spread, industrial production and

the convenience yield predictors were most heavily affected, with the TED spread and yield

spread coefficients even changing signs over this period. The time series plots highlight further

that momentum in copper has varied considerably and abruptly, most visibly around March

2006 and September 2008.

Results from our multiple-step-ahead forecast evaluation indicate that copper predictability

holds for horizons up to 6 months into the future. Predictability is strongest at the one month

forecast horizon and decreases as the horizon increases. At 2, 3 and 6 months ahead horizons,

only forecasts from DMA produce statistically superior forecasts over a random walk bench-

mark. The performance of the expanding window OLS regression model on the full predictor

set deteriorates quickly, producing substantially worse forecasts than a random walk model.

DMS and a simple time varying parameter (TVP) model without predictor selection perform

also notably worse than the random walk benchmark.
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Figure 1: Time series evolution of London Metal Exchange (LME) Copper from June 1996 to June 2014. Spot prices
(St) are shown in Panel (a) and returns (rt) are shown in Panel (b).
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Figure 2: Time series plot of the set of predictor variables (June 1996 to June 2014).
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Table 2: One-step-ahead out-of-sample forecast results (May 2002 to June 2014)

Model MSFE Relative−MSFE R2
os(%) CW−statistic p−value

Random Walk (RW) 56.9500 1.0000 − − −
HA (rolling window) 57.4338 1.0085 −0.8494 0.5884 0.2781
HA (expanding window) 57.0555 1.0019 −0.1852 0.3693 0.3559
OLS (rolling window) 59.6750 1.0478 −4.7849 0.0767 0.4694
OLS (expanding window) 51.2692 0.9002 9.9751 1.9639 0.0248
DMA (α = 0.95, λ = 0.99) 45.6190 0.8150 18.5009 2.8551 0.0022
DMS (α = 0.95, λ = 0.99) 49.1047 0.8622 13.7759 2.2284 0.0129
TVP (λ = 0.99) 51.4550 0.9035 9.6488 1.9136 0.0278

Notes: This table reports the one-step-ahead out-of-sample forecast evaluation results over the time period from May
2002 to June 2014. 70 observations (ie., from June 1996 to April 2002) were used for in-sample fitting. The first column
shows the models that are fitted, the second column the mean squared forecast error (MSFE), the third column shows the
MSFEs relative to the MSFE of a random walk (RW) model, the fourth column provides the Campbell and Thompson
(2008) out-of-sample R2

os (in percent), the fifth column is the Clark and West (2007) MSFE-adjusted t−statistic, and
the sixth column is the corresponding (one-sided) p−value.
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Figure 3: 1-step-ahead out-of-sample forecasts. Panel (a) shows the evolution of the actual copper return together with

the predicted values from DMA and expanding window OLS predictions. Panel (b) plots the squared forecast errors from

random walk (RW), DMA and expanding window OLS. Panel (c) shows plots of the cumulative difference between the

squared forecast errors of the DMA and expanding window OLS forecasts, relative to the RW model. Panel (d) shows

a scatter plot of predicted copper returns from the DMA model (x−axis) and actual returns (y−axis), together with an

OLS based (linear) and a LOESS non-parametric fit of this relationship. 95% confidence intervals for the LOESS fit,

based upon asymptotic standard errors are marked in grey shading.
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Figure 4: Time series plots of the posterior inclusion probability (PIPt) over the out-of-sample evaluation period from

May 2002 to June 2014.
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Figure 5: Time series plots of the DMA aggregated time varying parameter estimates (β̂
(DMA)
t|t ) over the out-of-sample

period from May 2002 to June 2014.
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Table 3: Multiple-step-ahead out-of-sample forecast results

Model MSFE/h Relative−MSFE R2
os(%) CW−statistic p−value

h = 2

Random Walk (RW) 82.1507 1.0000 − − −
HA (rolling window) 82.3034 1.0019 −0.1859 0.7231 0.2348
HA (expanding window) 81.4063 0.9909 0.9062 0.7271 0.2336
OLS (rolling window) 101.0579 1.2302 −23.0153 0.3921 0.3475
OLS (expanding window) 86.1708 1.0489 −4.8936 0.6041 0.2729
DMA (α = 0.95, λ = 0.99) 75.6150 0.9204 7.9557 2.1961 0.0140
DMS (α = 0.95, λ = 0.99) 81.4557 0.9915 0.8459 0.7247 0.2343
TVP (λ = 0.99) 88.3177 1.0751 −7.5070 0.7523 0.2259

h = 3

Random Walk (RW) 97.6540 1.0000 − − −
HA (rolling window) 98.1034 1.0046 −0.4602 0.5363 0.2959
HA (expanding window) 96.4411 0.9876 1.2420 0.5588 0.2881
OLS (rolling window) 126.3863 1.2942 −29.4226 0.1310 0.4479
OLS (expanding window) 108.2863 1.1089 −10.8877 0.4798 0.3157
DMA (α = 0.95, λ = 0.99) 91.0030 0.9319 6.8108 1.9307 0.0268
DMS (α = 0.95, λ = 0.99) 101.6393 1.0408 −4.0811 0.4982 0.3092
TVP (λ = 0.99) 98.3304 1.0069 −0.6927 0.6649 0.2531

h = 6

Random Walk (RW) 134.8147 1.0000 − − −
HA (rolling window) 135.2127 1.0030 −0.2952 0.5507 0.2909
HA (expanding window) 131.4130 0.9748 2.5232 0.7900 0.2148
OLS (rolling window) 172.4352 1.2791 −27.9053 0.2166 0.4142
OLS (expanding window) 167.2238 1.2404 −24.0398 0.3990 0.3450
DMA (α = 0.95, λ = 0.99) 127.7949 0.9479 5.2070 1.5404 0.0617
DMS (α = 0.95, λ = 0.99) 143.5110 1.0645 −6.4506 0.7343 0.2314
TVP (λ = 0.99) 135.9420 1.0084 −0.8362 0.4345 0.3320

h = 9

Random Walk (RW) 160.0248 1.0000 − − −
HA (rolling window) 160.2217 1.0012 −0.1230 0.5925 0.2767
HA (expanding window) 155.7709 0.9734 2.6583 0.8151 0.2075
OLS (rolling window) 265.6328 1.6599 −65.9948 −0.1554 0.5618
OLS (expanding window) 224.4761 1.4028 −40.2758 0.2217 0.4123
DMA (α = 0.95, λ = 0.99) 171.4907 1.0717 −7.1651 0.5588 0.2882
DMS (α = 0.95, λ = 0.99) 191.7606 1.1983 −19.8318 0.4548 0.3246
TVP (λ = 0.99) 249.1862 1.5572 −55.7173 −0.1041 0.5414

h = 12

Random Walk (RW) 176.1519 1.0000 − − −
HA (rolling window) 178.3301 1.0124 −1.2365 0.5092 0.3053
HA (expanding window) 172.7305 0.9806 1.9423 0.4516 0.3258
OLS (rolling window) 319.8395 1.8157 −81.5703 −0.2590 0.6022
OLS (expanding window) 251.5167 1.4278 −42.7839 0.1339 0.4467
DMA (α = 0.95, λ = 0.99) 184.0053 1.0446 −4.4583 0.4608 0.3225
DMS (α = 0.95, λ = 0.99) 196.0132 1.1128 −11.2751 0.1923 0.4238
TVP (λ = 0.99) 286.9439 1.6290 −62.8957 −0.1898 0.5753

Notes: This table reports the multiple-step-ahead out-of-sample forecast evaluation results. All entries in this table are
the same as in Table 2, with the only exception being the second column which shows the MSFE deflated by the forecast
horizon h. The CW−statistic in the 5th column uses HAC standard errors computed with an ARMA(1, 1) pre-whitening
step and a Quadratic Spectral Kernel where the bandwidth parameter was chosen optimally with the data driven approach
outlined in Andrews and Monahan (1992).
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Figure 6: 2-step-ahead out-of-sample forecasts. The contents of the plot are the same as in Figure 3.
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Figure 7: 3-step-ahead out-of-sample forecasts. The contents of the plot are the same as in Figure 3.
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Figure 8: 6-step-ahead out-of-sample forecasts. The contents of the plot are the same as in Figure 3.
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Figure 9: 9-step-ahead out-of-sample forecasts. The contents of the plot are the same as in Figure 3.
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Figure 10: 12-step-ahead out-of-sample forecasts. The contents of the plot are the same as in Figure 3.
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