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Abstract 

We characterize optimal redistribution in a dynastic economy with observable human capital 

and hidden ability. The government can use education to improve the insurance-incentive 

trade-off because there is a wedge between human capital investment in the laissez faire and 

the social optimum. This wedge differs from the wedge for bequests because: (i) returns to 

human capital are risky; (ii) human capital may change informational rents. We illustrate 

numerically that, if ability is i.i.d. across generations, human capital investment declines in 

parents' income in the social optimum, and show how this optimum can be implemented 

with student loans or means-tested grants. 
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1 Introduction

Of all the factors shaping inequality, one of the most debated is the transmission of physical
and human capital from parents to their o¤spring. As frequently argued, children from a
privileged background get a head start that is di¢ cult to reconcile with the provision of
equal opportunity. Yet, eliminating inequality in inherited �nancial and human capital
would be counterproductive since it removes the motivation of parents to provide their
children with wealth and education. The optimal taxation of intergenerational transfers
is therefore determined by the classic trade-o¤ between insurance and incentives.
Mirrlees�(1971) seminal contribution on optimal income taxation lays out a rigorous

framework to analyze this trade-o¤. It shows that asymmetric information about labor
market productivity prevents full insurance because productive agents would not �nd it
optimal to reveal their ability. We build on Mirrlees�insight, and the subsequent literature
on optimal taxation, to analyze optimal redistribution in a model with altruistic dynasties.
Each working-age generation of a dynasty decides how much labor e¤ort to exert, how
much to consume, to bequeath in terms of bonds and to invest into human capital of
their o¤spring. Bequests and human capital are observable but the draw from the ability
distribution, and hence productivity, is private information.
We show how taxes on labor income and bequests distort human capital investment.

Thus, education and tax policies need to be jointly determined. Following the optimal
taxation literature, we use the wedges between the laissez faire and the social optimum
to characterize the implicit taxes or subsidies required to attain the social optimum.
The constrained e¢ cient wedge for human capital turns out to be closely related, but

not identical, to the wedge for bequests. The similarity is intuitive because parents can
substitute �nancial with human capital when they transfer resources to their o¤spring.
But the productivity of children is uncertain and parents cannot diversify this risk. This
additional source of uncertainty makes it less attractive for families to invest in human
capital as it provides a bad hedge against consumption risk. It then follows that the
planner does not have to discourage human capital investment to the same extent as
bequests.
The planner also takes into account the impact that education has on the trade-o¤

between equality and incentives. Intuitively, if talented agents bene�t more from human
capital investments, increasing education raises their informational rents and worsens the
incentive problem. This is why the wedge for human capital contains an additional term
that is proportional to the degree of complementarity between ability and human capital.
We illustrate these results numerically, focussing on the case in which innate ability

is uncorrelated across generations. The solution for the constrained-e¢ cient allocation
delivers a striking result. We �nd that the socially-optimal human capital investment into
children should be decreasing in parents�ability and thus income. This result is explained
by a wealth e¤ect. In the constrained-e¢ cient allocation without full insurance, children
from a privileged background inherit larger bequests. This reduces their labor supply so
that it becomes relatively less e¢ cient for the planner to invest into their human capital.
The wedge for human capital required to implement this allocation is much lower than

3



the wedge for bequests, in our numerical illustration with a unit elasticity between ability
and human capital, so that human capital should be subsidized for all but the very-low
income families while bequests should be taxed across all income levels. We illustrate
numerically how the wedges can be implemented with means-tested grants or loans with
contingent repayments and illustrate the extent to which both implementations provide
insurance against ability risk.

Related literature.� Our paper relates to the two large literatures on human capital
and optimal taxation. For brevity, we focus only on a number of recent contributions and
refer to their literature reviews for further discussion of previous research.
While the wedges for labor supply and bequests in our model correspond to previous

�ndings in the literature (Farhi and Werning, 2013; Golosov et al. 2011; Kapiµcka, 2013;
Kocherlakota, 2010; Saez, 2001; and references therein), the wedge for human capital pro-
vides novel insights. It di¤ers from the wedges for bequests because human capital carries
more risk than bequests and, as explained above, may change the power of incentives.
In the social optimum the planner equates the social return on bequests and on human
capital as in Farhi and Werning (2010), who abstract from risk and do not endogenize the
labor supply of children, or in the independent and complementary work by Stantcheva
(2015). Implementation of the social optimum requires that the choice between bequests
and human capital has to be distorted if, and only if, human capital investment changes
the incentives to truthfully reveal ability.
Our results relate to recent research on optimal redistribution and human capital

accumulation over the life cycle. Findeisen and Sachs (2012) and Gary-Bobo and Trannoy
(2014) analyze optimal student-loan contracts in asymmetric-information models with two
periods. They show that the socially optimal allocation can be decentralized with student
loans that have income-contingent repayment schedules. From a technical point of view,
Findeisen and Sachs (2012) use the generalized envelope condition derived by Kapiµcka
(2013) and Pavan et al. (2014) to characterize the planner�s necessary conditions, as we
do in this paper.
Stantcheva (2014) extends the analysis of Findeisen and Sachs (2012) to a multi-period

setting with training time, and possibly unobservable human capital. She proposes a de-
composition of the human capital wedge that is similar, but not identical, to ours. The
discrepancy arises because of di¤erences in the timing of the models. Since Stantche-
va (2014) analyzes a life-cycle problem, she assumes that human capital raises today�s
productivity which generates an interaction of human capital with the contemporaneous
labor wedge. This mechanism is absent in our model because we focus on the education
of children whose bene�ts accrue only next period, when these children become adults
and participate to the labor market. The di¤erent timing allows us to simplify the human
capital wedge further, thereby highlighting its close relationship with the intertemporal
wedge for bequests in a dynastic family model.
Besides these speci�c di¤erences, the results in our model have a di¤erent interpre-

tation because we are focusing on dynastic families. This relates our analysis to recent
papers on optimal redistribution across generations. Gelber and Weinzierl (2014) analyze
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optimal taxation when the ability of future generations depends on the resources of the
current generation. This is modelled by letting the probability of types directly depend
on disposable income. Our model shares the feature that current resources may impact
the earnings capacity of future generations but lets generations choose the amount of
resources allocated to human capital accumulation.
Boháµcek and Kapiµcka (2008) characterize optimal education and tax policies when

agents have heterogenous ability that remains constant over time. Kapiµcka (2015) and
Kapiµcka and Neira (2015) extend this analysis by focussing on human capital investment
or learning e¤ort over the life cycle that are unobservable. By contrast, our assumptions
of observable human capital (think of high-school or college degrees) and stochastic un-
observed ability allow us to characterize the wedge for human capital when ability is not
perfectly predictable across generations.
The complementary research by Erosa and Koreshkova (2007), Heathcote et al. (2014),

Krueger and Ludwig (2013), Lee and Seshadri (2014) and Stantcheva (2015), Sections 2�5,
does not use the Mirrlees approach to analyze the e¤ect of redistribution in models with
human capital accumulation. Following the Ramsey approach, they specify parametric
tax schedules and then analyze the welfare e¤ects of changes in taxes.
Finally, our �nding that the planner can change the equality-e¢ ciency trade-o¤ over

time by adjusting the amount of human capital is akin to the economic mechanism in
Koehne and Kuhn�s (2014) model with habits or durable consumption. In their paper,
the planner can exploit complementarities between durable and non-durable consumption
choices over time to raise the marginal utility of non-durable consumption and thus the
incentive to exert labor e¤ort. Our paper shows how education may reduce the disutility
of labor of future generations if human capital is not too complementary to innate ability.
Then, consumption of leisure is less attractive and incentives to exert e¤ort are stronger.

The rest of the paper is structured as follows. In Section 2 we describe the model
set-up and solve the planner�s problem. In Section 3 we derive the optimality conditions
in the laissez faire and then characterize the wedges between the laissez faire and the
social optimum. We present the numerical solution for a calibrated version of the model
in Section 4 and discuss implementation of the constrained-e¢ cient allocation in Section
5.

2 The model

Family dynasties are the decision units of our analysis. Each family is composed of
parents and children in each generation, has a planning horizon T and a size normalized
to one. The family chooses the labor supply of the parents, as well as the bequests and
education for the children. Preferences link generations in a time separable fashion. We
make the common assumption that the per-period utility function U (ct; lt) is separable
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in consumption ct and labor e¤ort lt:

[A1] : U (ct; lt) = u (ct)� v (lt) ,
u (ct) 2 C2

�
R+
�
is increasing in ct and strictly concave,

v (lt) 2 C2
�
R+
�
is increasing in lt and strictly convex.

As in the seminal paper of Mirrlees (1971), agents di¤er in their ability �t which
cannot be observed by the planner. Instead, both bequests bt and human capital ht are
public knowledge. Output yt is produced according to the technology Y (ht; lt; �t) which is
increasing in its arguments and concave. We will use the production function to substitute
lt in the utility function and write U (ct; yt; ht; �t) instead of U(ct; lt) or, with assumption
[A1], v(yt; ht; �t) = v (lt). Note that the planner cannot use observable output yt to infer
actual labor supply lt because ability �t is stochastic and hidden.
In the spirit of Ben-Porath (1967), human capital in the next period ht+1 depends

on the expenditure �ow for education et and on the family background, which can be
summarized by the stock of human capital of parents ht.1 The human capital production
function ht+1(et; ht) is increasing in its arguments and concave.2

The timing in the model is as follows. In any given period t, the family learns the
parents�type �t and chooses to spend et on the children�s human capital ht+1, to supply
parents� labor lt, to consume ct and thus bequeath bt+1. We assume that abilities are
uncorrelated across generations with types being drawn at the beginning of each period
from a stationary distribution F : �! [0; 1] over the �xed support � � [�; �] with � > 0.
This assumption simpli�es the analytic results without changing the main insights. We
brie�y discuss the extension of our model to persistent ability shocks in Section 3.1 and
delegate the presentation of the results for this case to appendix A.2.3.

2.1 The planner�s problem

According to the revelation principle, we can solve the planner�s problem by focusing
on a direct mechanism such that families truthfully report their types in each gener-
ation. Let �t � f�0; �1; :::; �tg denote the history of types within a given family. We
do not impose any arbitrary restrictions on the allocation. In particular, we do not
rule out history dependent allocations summarized by x �

�
xt
�
�t
�	T

t=0
where xt

�
�t
�
�

1Human capital investment a¤ects productivity in the next period (for the next generation) and not in
the current period as in Stantcheva (2014). This di¤erence arises from the fact that Stantcheva analyzes
human capital investment of individuals over the life cycle while we focus on human capital investment
of parents into their children.

2We abstract from time use for human capital investments into children because the time e¤ort exerted
for human capital accumulation is plausibly as unobservable as is the time e¤ort for production. Adding
a second hidden action renders the analysis much less tractable because it enables agents to use joint
deviations. Furthermore ht+1 does not depend on the children�s realized ability �t+1. This assumption
could be relaxed but is imposed for parsimony: allowing ht+1 to depend on �t+1 would add a channel
through which output depends on ability but would not add substantial insights to our analytical and
numerical results as long as observation of ht+1 does not allow the planner to infer �t+1.
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�
ct
�
�t
�
; ht+1

�
�t
�
; yt
�
�t
�	
: The family�s preferences over an allocation x are given by

U (x) � E0

"
TX
t=0

�tU
�
ct
�
�t
�
; yt
�
�t
�
; ht
�
�t�1

�
; �t
�#
,

where E0 is the expectation operator conditional on information available at time 0 and �
is the discount factor measuring the strength of the altruism towards future generations.
In general, families do not have to behave truthfully. They choose the reporting strategy

r �
�
rt
�
�t
�	T

t=0
from the set R of feasible reports which maximizes their expected utility.

Since types are private information, an allocation must be incentive compatible, i.e.,

U (x) � U (x � r) ; for all r 2R; (1)

where (x � r)
�
�t
�
�
�
xt
�
rt
�
�t
��	T

t=0
is the allocation resulting from the reporting strat-

egy r and history �t.
The planner discounts future utility with the factor q which equals the inverse interest

factor.3 As Farhi and Werning (2013), we abstract from feedbacks between choices of
families due to equilibrium price e¤ects so that the allocation problem can be analyzed
separately for each family. Let X be the set of all feasible allocations. Cost minimization
along the equilibrium path is achieved when an allocation solves the objective function

min
x2X

�(x) � E0

"
TX
t=0

qt
�
ct
�
�t
�
+ et

�
�t
�
� yt

�
�t
��#

,

subject to the incentive compatibility constraint (1), and to the promise keeping constraint
U (x) � !0 which ensures that the expected utility of truthful families is at least as high
as the exogenously given level !0.

Recursive formulation.� Instead of directly solving the problem above, we apply two
common modi�cations that simplify the analysis considerably. First, we write the plan-
ner�s problem in recursive form. As shown by Abreu et al. (1990), when ability � follows
an i.i.d. process, we do not need to condition allocations on the entire history of reports
but only on the realization of the equilibrium continuation value

!
�
�t
�
� U

�
ct
�
�t
�
; yt
�
�t
�
; ht
�
�t�1

�
; �t
�
+ �

Z
�

!
�
�t; �t+1

�
dF (�t+1) :

3We assume that the planner maximizes the welfare of the initial dynasty as in the in�nite-horizon
setting of Atkeson and Lucas (1992). See Farhi and Werning (2007, 2010) and Kocherlakota (2010),
chapter 5, for analyses in which the planner may give additional weight to future generations. As shown
in Farhi and Werning (2010), section IV.C, this generates a motive to subsidize education even when the
e¤ect of human capital on the labor supply of the next generation is ignored. We deliberately abstract
from this e¤ect to focus on the e¤ect of human capital on the incentives to exert labor e¤ort and the
consequences of the di¤erent risk of bequests and human capital investment.
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At the beginning of each period, families compare the continuation value !
�
�t
�
of truthful

reporting to those derived from arbitrary reporting strategies

!r
�
�t
�
� U

�
ct
�
rt
�
�t
��
; yt
�
rt
�
�t
��
; ht
�
rt�1

�
�t�1

��
; �t
�
+ �

Z
�

!r
�
�t; �t+1

�
dF (�t+1) :

Incentive compatibility is ensured when !
�
�t
�
� !r

�
�t
�
for all �t and all r 2R.4 Instead

of considering all feasible reports, we focus on marginal deviations from the truth. In
other words, we use a �rst-order approach. We replace the general incentive constraint by
an envelope condition that is valid on the equilibrium path on which families truthfully
reveal their types.5 The recursive form of this relaxed planning problem reads6

� (V; h; t) = min
fc;y;h0;V 0g

�Z
�

[c (�) + g(h0(�); h)� y (�) + q� (V 0 (�) ; h0(�); t+ 1)] dF (�)
�

s.t. ! (�) = U (c (�) ; y (�) ; h; �) + �V 0 (�) , (2)

V =

Z
�

! (�) dF (�) , (3)

@! (�)

@�
=

@U (c; y; h; �)

@�
, (4)

where we have inverted the human capital accumulation function h0(e; h) to substitute e(�)
with g(h0(�); h). Note that costly human capital accumulation implies @g(h0; h)=@h0 > 0,
whereas @g(h0; h)=@h < 0 if costs are smaller for parents with more human capital.
The �rst constraint de�nes the continuation value ! (�) as the sum of the current and

next-period promised utilities U (�) and V 0 (�), respectively. Equation (3) is the promise-
keeping constraint since it ensures that the expected value of the continuation utility is
equal to the promised value V . The last equation is the local incentive-compatibility
constraint captured by the envelope condition which is derived assuming that the �rst-
order condition for truthful reporting is satis�ed.7 Condition (4) is necessary but not
su¢ cient. The validity of condition (4) can be checked quite easily, however, if ability � is

4Note that we impose incentive compatibility for all �t 2 �t. Thus we now require truth telling to be
optimal after any history of shocks, whereas the incentive constraint (1) only requires truth telling to be
ex-ante optimal. But the di¤erence is immaterial to our analysis because the two notions can only di¤er
on a set of measure zero histories. In other words, allocations that are ex-ante incentive compatible are
also ex-post incentive compatible almost everywhere.

5To shorten the exposition, we do not explicitly derive the recursive formulation from �rst principles.
We refer readers interested in the validity of the �rst-order approach to Kapiµcka (2013) for an in-depth
discussion of the intermediate steps and technical issues.

6To simplify the notation, we only keep a time index for the value function, otherwise we drop the
indexes and use a prime 0 to denote the next period.

7Totally di¤erentiating the continuation value of a truthful family yields

@! (�)

@�
=
@U (c (r) ; y (r) ; h; �)

@�

����
r=�

+
@U (c (r) ; y (r) ; h; �)

@r

����
r=�

+ �
@V 0 (r)

@r

����
r=�

:

The local optimality condition is equivalent to (4) because the sum of the last two terms on the right
hand side equals zero when the �rst-order condition for truthful reporting is satis�ed.
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i.i.d. and preferences satisfy the single-crossing condition. Then the �rst-order approach
is valid when the allocation is monotone in ability.8

2.2 Optimality conditions

In the �rst best allocation, families are fully insured against changes in ability. Consump-
tion remains constant across families and is therefore separated from production. With
information asymmetries instead, the planner faces an insurance-incentive trade-o¤whose
optimal resolution is determined by the following conditions.

Proposition 1 If [A1] holds, the �rst-order conditions of the planner problem are

@H (�)
@V 0 (�)

=

"
� �
@u(c(�))
@c(�)

+ q�0(�)

#
f(�) = 0, (5)

@H (�)
@h0 (�)

=
@g(h0(�); h)

@h0(�)
+ q

Z
�

 @v(y0(�0);h0(�);�0)
@h0(�)

@u(c0(�0))
@c0(�0)

+
@g(h00(�0); h0(�))

@h0(�)

!
dF (�0) (6)

� q

Z
�

�0 (�0)
@2v(y0(�0); h0(�); �0)

@�0@h0(�)
d�0 = 0,

@H (�)
@y (�)

=

" @v(y(�);h;�)
@y(�)

@u(c(�))
@c(�)

� 1
#
f (�)� @

2v(y (�) ; h; �)

@�@y (�)
� (�) = 0, (7)

with

� (�) =

Z �

�

�
�� 1

@u (c (x)) =@c(x)

�
dF (x), and lim

�!�
� (�) = lim

�!�
� (�) = 0: (8)

Consumption and Output.� Equation (5) implies that the reciprocal Euler equation
holds in our model with human capital. To see why, note that evaluating the law of
motion (8) of the costate variable at the upper bound of the ability distribution yields

��
Z �

�

@c (�)

@! (�)
dF (�) = �

�
�
�
= 0:

Using @c (�) =@! (�) = [@u (c(�)) =@c(�)]�1 and leading this equation one period ahead, we
�nd that �0(�) = E

�
[@u (c0(�)) =@c0(�)]�1

�
: Thus the reciprocal Euler equation

1
@u(c(�))
@c(�)

=
q

�
E

"
1

@u(c0(�0))
@c0(�0)

#
8See example 1 in Battaglini and Lamba (2014) with discrete types as in any numerical approximation.

For continuous ability types and persistent shocks to ability, see Kapiµcka (2013) and Pavan et al. (2014),
or the discussion in Farhi and Werning (2013).
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is satis�ed and the inverse of the marginal utility of consumption follows a martingale
when q = �. Since the condition for optimal production (7) is analogous to the optimality
condition in the standard Mirrlees problem, we postpone its analysis to the next section
where we characterize the constrained e¢ cient wedges.

Human capital.� Turning our attention to education, let us repeat the optimality
condition

@g(h0; h)

@h0
= �q

Z
�

 @v(y0(�0);h0(�);�0)
@h0(�)

@u(c0(�0))
@c0(�0)

+
@g(h00; h0)

@h0

!
dF (�0) + q

Z
�

�0 (�0)
@2v(y0; h0; �0)

@�0@h0
d�0.

(9)
The marginal cost of human capital investment on the left hand side is equated to the mar-
ginal bene�t. The latter is made of three components. Firstly, human capital lowers the
disutility of labor to produce a given quantity of output. This allows the planner to spend
less on consumption and still provide the family with the same continuation value.9 Sec-
ondly, when education costs vary with the family background, so that @g(h00; h0)=@h0 < 0,
more investment reduces the cost of accumulating human capital for the next generation.
Thirdly, human capital a¤ects the incentive compatibility constraint, as captured by the
second integral on the right hand side of (9). This term is central to our analysis so that
we elaborate on it.
In the absence of informational frictions, families are perfectly insured against tran-

sitory shocks to ability so that @! (�) =@� = 0. With hidden types instead, information
revelation is pro�table solely if

@! (�)

@�
=
@U (c; y; h; �)

@�
= �@v(y; h; �)

@�
> 0,

where the inequality follows under the assumption that higher ability reduces the disutility
of e¤ort, i.e., @v(�)=@� < 0. Incentive compatibility prevents full insurance: children with
more able parents enjoy higher lifetime utilities. An increase in the slope j@v(�)=@�j of the
disutility term widens the gap separating the constrained-e¢ cient allocation from the �rst
best. Hence, the cross-derivative @2v(�)=(@�@h) measures the e¤ect that human capital
has on the incentive compatibility constraint: if @2v(�)=(@�@h) > 0, more human capital
reduces the informational rents and mitigates the incentive problem.
These gains are translated into consumption units through multiplication by the

costate variable �0 (�0) which measures the marginal cost of violating the incentive con-
straint. The resulting products in (9) are integrated over all potential realizations of �0

because neither the planner nor the family know the value of �0 when the investment
decision is made.10

9As shown in the proof of Proposition 1 in appendix A.1, this bene�t for the planner is captured by

�@v(y0(�0);�0;h0(�))
@h0(�) =

@u(c0(�0))
@c0(�0) > 0.

10According to its de�nition in (8), the costate variable �0
�
�0
�
also captures the probability weight for

each type.
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The sign of the cross derivative @2v(�)=(@�@h) is determined by: (i) the Frisch elasticity
of labor supply and, (ii) the degree of complementarity between human capital and ability.
Both are captured by a single parameter if we assume that the disutility of labor and the
production function for output have the following functional forms.

Corollary 1 Assume that

[A1�]:
[A2]:

U (c; l) = u (c)� v (l) ; where v (l) = �l�, with � > 0 and � > 1,
Y (h; l; �) = A (�; h) l,
with A (�; h) = [��� + (1� �)h�]1=� , � 2 (�1; 1] and � 2 (0; 1) .

Then @2v(y; h; �)= (@�@h) � 0 if and only if � � ��.

If the production function is Cobb Douglas, � = 0. Hence, negative � imply more com-
plementarity between ability and human capital than in the Cobb-Douglas case. Corollary
1 shows that informational rents are decreasing in human capital when the sign of �+� is
positive: that is when the parameter �, which is inversely related to the Frisch elasticity
of labor supply,11 is greater than the degree of complementarity � between ability and
human capital.
Thus the e¤ect of h on the informational rents enjoyed by high-ability families depends

on two, potentially opposite, channels. The �rst one is driven by the adjustment in labor
supply following an increase in human capital. Raising h ensures that any level of output
can be produced with less labor. Since the disutility of e¤ort is convex, the returns
to ability, and thus the informational rents, are reduced. This labor supply e¤ect is
unambiguously positive, in the sense that it relaxes the incentive constraint, and its size
is proportional to the convexity of v (�) ; as measured by the elasticity parameter �.
The second e¤ect depends on the technology of production Y (�). When human capital

and ability are complementary factors, families with a high ability bene�t more from
any given increase in human capital. They �nd it more attractive to imitate less able
agents, which raises their informational rents. This is why an increase in the degree of
substitutability, as measured by an increase in the parameter �, relaxes the incentive
constraint, thereby reinforcing the positive in�uence of the labor supply channel.

3 The wedges

We now compare the optimality conditions in the laissez faire to those of the constrained-
e¢ cient allocation derived in the previous section. The wedges between these conditions
characterize the implicit taxes or subsidies which are necessary to attain the social opti-
mum.
11The Frisch elasticity of labor supply is equal to 1=(�� 1).
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In the laissez faire each family solves the maximization problem

W (b; h; t) = max
fb0;h0;lg

�Z
�

U (c(�); l(�)) + �W (b0(�); h0(�); t+ 1) dF (�)

�
s.t. b0(�) = (1 + r)b� c(�)� e(�) + y(�),

y(�) = Y (h; �; l(�)),

h0(�) = h0(e(�); h) so that e(�) = g(h0(�); h),

where b is the bequest and the agent chooses functions b0; h0; l : �! R+.

Proposition 2 The laissez faire is characterized by the following �rst-order conditions
for bequests, human capital and labor supply:

@U (c; l)

@c
= �(1 + r)E

�
@U (c0; l0)

@c0

�
,

@g(h0; h)

@h0
@U (c; l)

@c
= �E

��
@y0

@h0
� @g(h

00; h0)

@h0

�
@U (c0; l0)

@c0

�
,

�@U (c; l)
@l

=
@y

@l

@U (c; l)

@c
.

We assume preferences and technologies for production and human capital accumu-
lation such that the conditions in Proposition 2 are necessary and su¢ cient.12 Then the
results of Propositions 1 and 2 can be combined to derive interpretable conditions for the
wedges between the choices in the laissez faire and the constrained-e¢ cient allocation of
the planner. We start with the following de�nition.

De�nition 1 The wedges for bequests � b, labor supply � l and human capital �h are

� b
�
�t
�
� 1� q

�

@u (c) =@c

E [@u (c0) =@c0]
, (10)

� l
�
�t
�
� 1� @v(y; h; �)=@y

@u (c) =@c
, (11)

�h
�
�t
�
� �

@g(h0;h)
@h0

E

"
@u(c0)
@c0

@u(c)
@c

�
@y0

@h0
� @g(h

00; h0)

@h0

�#
� 1. (12)

Wedges are de�ned as the deviations from the laissez faire. In general, the wedges
depend on the whole history of shocks since the allocation fc; h0; yg is a function of �t which
12Note that human capital is chosen for the next generation (current human capital is a state variable)

and thus does not imply a direct intratemporal substitution e¤ect for the labor supply of the current
generation. This timing assumption, which is plausible in our setting with families who invest into
the education of their children, avoids the potential non-concavities discussed in Bovenberg and Jacobs
(2005), Section 2.2. We have not been able, however, to derive simple conditions that establish concavity
in our dynamic model with the additional bequest choice.
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we suppressed in the notation for convenience. In the following we denote the wedges as
� j � � j

�
�t
�
; and the corresponding leads and lags of the wedges as � 0j � � 0j

�
�t+1

�
and � j� � � j�

�
�t�1

�
, j = b; l; h. The wedges have a useful interpretation: constrained

e¢ ciency requires that the planner discourages (encourages) bequests, labor supply or
human capital, respectively, if the optimality conditions which characterize the social
optimum are such that � j > 0 (� j < 0), j = b; h; l.

Bequest and labor wedges.� Combining the conditions for the social optimum with
the de�nition of the wedges allows us to derive the wedges at the constrained e¢ cient
allocation.

Proposition 3 Under assumption [A1], the �rst-order conditions of the planner�s prob-
lem imply that the constrained e¢ cient wedges for bequests � �b and labor �

�
l are given

by

� �b = 1� 1

E
�

1
@u(c0)
@c0

�
E
h
@u(c0)
@c0

i , (13)

� �l = �@
2v(y; h; �)

@�@y

� (�)

f (�)
. (14)

By Jensen�s inequality, we obtain the standard result that the wedge for bequests
� �b > 0. The planner reduces intergenerational transfers to discourage double deviations
in which parents leave bequests and their children shirk. The expression for the labor
wedge � �l is also standard. Since ability increases productivity, @

2v(y; h; �)=(@�@y) < 0,
and � �l is positive whenever � (�) > 0. The intuition is that an additional unit of required
output tightens the incentive compatibility constraint, increases the information rents and
thus allows for less redistribution. Families do not internalize this e¤ect when choosing
their optimal labor supply. Corollary 2 below shows that the labor wedge in our model is
analogous to the wedge in Mirrlees (1971).13

Corollary 2 Under assumption [A1�] and [A2]

� �l
1� � �l

= �
���

A�
@u (c) =@c

�f (�)

Z �

�

"
�� 1

@u(c(x))
@c(x)

#
dF (x),

where � = "�1 + 1 and " denotes the Frisch elasticity of labor supply.

13Compared with Mirrlees (1971), the multiplier � is in the numerator since the shadow price � is
in units of marginal utils and not of public funds of the planner. Furthermore, lim�!� � (�) = 0 and
lim�!� � (�) = 0 imply thatZ �

�

24�� 1
@u(c(x))
@c(x)

35 dF (x) = Z �

�

24 1
@u(c(x))
@c(x)

� �

35 dF (x).
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Human capital wedge.� Our contribution consists in deriving an explicit decomposition
for the optimal human capital wedge.

Proposition 4 Under assumption [A1�] and [A2], the constrained e¢ cient wedge � �h
for human capital can be decomposed as

� �h = �b +�i;

where

�b �
q

@g(h0;h)
@h0

E
�
@y0

@h0
� @g(h

00; h0)

@h0

�
� �b

1� � �b
+

�
@g(h0;h)
@h0

@u(c)
@c

Cov

�
@u (c0)

@c0
;
@y0

@h0
� @g(h

00; h0)

@h0

�
,

(15)
and

�i � �
q

@g(h0;h)
@h0

�E

"
l0 (�0)

dv (l0 (�0))

dl0

@A(�0;h0)
@�0

@A(�0;h0)
@h0

A (�0; h0)
2 �0 (�0)

#
: (16)

The �rst component �b relates the wedge for human capital to the wedge for bequests
� �b . It should not be surprising that the two wedges are closely related since both forms
of capital transfer resources from one generation to the next. The �rst term in �b is of
the same sign as � �b .

14 The equality

q
� �b

1� � �b
= E

"
�
@u(c0)
@c0

@u(c)
@c

� q
#

makes explicit that the size of q� �b=(1�� �b) depends on the di¤erence between the stochastic
discount factor of the family � @u(c

0)
@c0 =

@u(c)
@c

and the discount factor of the planner q. The
two discount factors di¤er because the reciprocal (not the standard) Euler equation holds
at the social optimum. As � �b 2 (0; 1), the di¤erence is expected to be positive. In order
to correct that distortion, the planner has to render human capital accumulation less
attractive. Otherwise families would invest too much into human capital as an alternative
way of transferring utility from the current to the future generation.15

However, bequests and human capital are not perfect substitutes because the return
to human capital depends on future ability and is thus risky. The risk adjustment is
captured by the second term in (15) which depends on the covariance between the return
to human capital and the marginal utility of consumption. Since both the return to human
capital and consumption of the next generation are likely to increase with ability �0, we
expect the covariance to be negative. The planner needs to discourage human capital
investment relatively less than bequests because the former provides a bad hedge against
consumption risk, rendering its accumulation less attractive to families.

14To see why, notice that: (i) the return to human capital, @y0=@h0 � @g(h00; h0)=@h0, is positive; (ii)
equation (13) implies that the constrained-e¢ cient wedge for bequests ��b 2 (0; 1).
15In other words, the component of the wedge �b is positive if the risk-adjusted return to human

capital investment is higher for families than for the planner. See also the expression for �b in equation
(26) in the proof of Proposition 4.
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The second component �i corresponds to the incentive term in (9) net of the labor
supply e¤ect discussed at the end of Section 2.2. We show explicitly in the proof of
Proposition 4 that the e¤ect on the incentive constraint through changes in labor supply
is exactly o¤set at the social optimum by the distortion of the human capital decision
introduced by the labor wedge. Intuitively, the planner neutralizes the intratemporal
distortions for the human capital decision so that the socially optimal investment in
human capital di¤ers from the laissez faire only because of the intertemporal distortions.
Hence, the decomposition in Proposition 4 does not contain a component relating the
human capital wedge to the labor wedge. As in Stantcheva (2014), �i can be interpreted
as the net wedge because it captures the implicit tax on human capital once the distortions
introduced by the wedges for bequests and labor have been compensated for.
When the parameter � = 0, the production technology is Cobb-Douglas and the net

wedge �i = 0. To understand why, it is instructive to rewrite the planner�s optimality
condition as16

1 =
q

@g(h0;h)
@h0

E
�
@y0

@h0
� @g(h

00; h0)

@h0

�
��i : (17)

If we divide by q, equation (17) shows that the planner equates the social return on
bequests 1=q to the social return on human capital. If �i = 0, the necessary condition
for human capital (17) corresponds to the one prevailing in �rst-best environments: the
planner simply equates the marginal costs and returns of human capital investment.
Figure 1 illustrates why incentive provision does not distort the planner�s optimality

conditions when the technology is Cobb-Douglas. The formal foundations for Figure
1 are derived in Appendix A.2.1. The concave curves in the �gure illustrate a typical
allocation in the fy; u (c) + �V 0g plane. The convex curves are the indi¤erence curves of
a randomly chosen family. Local incentive compatibility holds when the indi¤erence curve
is tangent to the allocation. Figure 1 also reports the e¤ect of a perturbation (derived
formally in Appendix A.2.1) which increases human capital and output holding labor
supply, consumption and promised utility constant. The allocation resulting from such
a perturbation remains incentive compatible because both curves shift and tilt such that
incentive compatibility is maintained. The planner can therefore set human capital so as
to maximize revenues without a¤ecting the incentive compatibility of the allocation.
This result does not hold when � di¤ers from zero. Then the perturbation described

above does not preserve incentive compatibility. For example, if ability and human capital
are so complementary that � < 0, high types are able to use human capital relatively more
e¢ ciently and the indi¤erence curve intersects the perturbed allocation from above. It
is not optimal anymore for the family to keep its labor supply unchanged. Instead, it

16Equation (17) follows replacing �h by �b+�i on the left hand side of the de�nition (12) ; and noticing
that

�b �
�
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@h0

E

24 @u(c0)
@c0

@u(c)
@c

�
@y0

@h0
� @g(h

00; h0)

@h0

�35 = � q
@g(h0;h)
@h0

E
�
@y0

@h0
� @g(h

00; h0)

@h0

�
:

15



0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
­0.8

­0.6

­0.4

­0.2

0

0.2

0.4

0.6

0.8

1

1.2

y

u(
c)

+β
 V

'

Allocation
Indifference Curve
Perturbed Allocation
Indifference Curve

∆ h >0

Figure 1: E¤ect of perturbation �h = 4 when � = 0. Notes: Plot for a family with zero
assets and 13 years of human capital; parameter values speci�ed as in Table 1, Section 4.

will reduce its e¤ort and imitate lower types.17 In other words, increasing human capital
makes it more di¢ cult to elicit truthful reporting from families when � < 0.
To summarize, �i measures the wedge between the �rst and second best investment

rules due to the impact that human capital has on the implementability of the allocation.
This e¤ect is not internalized by families because they take the allocation as given. They
ignore the impact of their investments on the incentive compatibility of the allocation
which drives a wedge between their optimal choice and that of the planner. Whether
this net wedge is positive or negative depends on the degree of complementarity between
human capital and ability.

3.1 Extensions

Liquidity constraints.�We have not ruled out negative bequests. Given our focus on
a family unit of parents and children, this allows us to capture children of low-income
families who enter their working life with debt because they take on loans to �nance
education and do not receive bequests. One may argue, however, that a negative b is not
plausible since parents cannot require children to make transfers to them and that children
within a family may not be able to take on debt obligations. In our model this corresponds
to the constraint b0 � 0 ensuring that bequests cannot be negative. We characterize in
Appendix A.2.2 how the possibility of a binding liquidity constraint a¤ects the wedges. It
implies a lower labor wedge ceteris paribus because the planner encourages labor e¤ort to
generate income and alleviate the constraint. The wedges for bequests and human capital

17The opposite adjustment occurs when � > 0 as the indi¤erence curve intersects the allocation from
below, making it more easy to motivate families.
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become larger instead to o¤set that a binding constraint increases resources of the future
generation.

Persistent types.� Our main results hold in a model where, instead of being indepen-
dent, types are correlated across generations. Adding this feature captures the genetic
transmission of characteristics from parents to their o¤spring. We show in Appendix A.2.3
that, if we let the density f(�) from which children�s abilities are drawn vary with the type
of the parents, then the incentive e¤ect of human capital also depends on whether the
probability distribution satis�es the monotone likelihood-ratio property.18 This restric-
tion is commonly assumed to ensure that the value of private information is positive, since
families who underreport their types have higher expectations about the ability of their
children than the planner. Furthermore, we show that an expression analogous to that in
Proposition 4 holds for the constrained-e¢ cient human capital wedge, so that it continues
to be closely related to the wedge for bequests even when we allow for persistent ability
shocks.

3.2 Comparison with the literature

We �nd that socially optimal distortions of human capital investment are tightly related
to the optimal distortions of bequests. Compared to bequests, human capital carries risk
and may change incentives. If � < 0, human capital worsens incentives (�i > 0) so
that the social return on human capital in equation (17) is reduced (vice versa if � > 0).
It follows that the planner distorts the family�s decision between bequests and human
capital investment to equate their social return. This result is di¤erent from Farhi and
Werning (2010), who abstract from risk and do not consider the e¤ect of human capital
on incentives, and is analogue to the independent complementary research in Section 6 of
Stantcheva (2015).
Findeisen and Sachs (2012) �nd a negative incentive e¤ect of human capital assuming

that more human capital and higher innate ability both favorably shift the distribution
function of labor market productivity. Since Findeisen and Sachs (2012) assume that
more human capital reinforces the e¤ect of innate ability on the distribution function of
productivity, human capital increases the informational rents of high-ability types. Thus,
the incentive compatibility constraint tightens and it is optimal to tax human capital
investment ceteris paribus.
In our paper instead, we assume a standard production technology in which labor

productivity depends on human capital and innate ability with an aggregator function
that exhibits a constant elasticity of substitution. If innate ability and human capital are
less complementary than in the Cobb-Douglas case, the disutility of e¤ort to produce a
given output decreases less in innate ability if human capital is higher. Then, more human
capital reduces the e¤ort cost for all agents to produce a given output, and this e¤ect is

18A probability density function satis�es the monotone likelihood ratio property when�
@f(�0

�� �)=@�� =f(�0�� �) is increasing in �0.

17



stronger for agents with low innate ability. In this case more human capital alleviates the
incentive problem, opposite to the result in Findeisen and Sachs (2012).
As Stantcheva (2014), we �nd that human capital leaves the incentive constraint un-

changed solely if the technology of production is Cobb-Douglas. We reach similar conclu-
sions although, in our speci�cation of the allocation problem, the planner chooses output
while the planner in Stantcheva (2014) chooses unobservable labor e¤ort. In accordance
with the revelation principle, the wedges do not depend on the choice of control variable
but their decomposition di¤ers. More precisely, our derivations identify an additional
term which captures how human capital investment a¤ects incentives to produce a given
level of output by lowering the required labor input. We show in the proof of Proposition
4 that, at the social optimum, this e¤ect exactly o¤sets the distortion of human capital
investment induced by the labor wedge.
Besides this similarity, human capital investment has an immediate e¤ect on produc-

tivity in Stantcheva (2014), while it only becomes productive next period in our model.
The di¤erent timing in Stantcheva (2014) implies that human capital has a direct in-
tratemporal impact on labor supply, leading to a tight relationship between the labor
and human capital wedges. Such a link is absent in our economy because the e¤ect of
human capital is purely intergenerational, tying it instead to the wedge for bequests. We
illustrate this relationship in the next section where we calibrate and simulate the model.

4 Numerical analysis

We uncover further interesting features of the allocation and wedges by solving the model
numerically when ability is i.i.d. across generations. This not only facilitates interpreta-
tion but also contains the computational burden. In doing so, we check that the solution
of the relaxed problem, based on the �rst-order approach, is indeed incentive compatible.
We start by discussing how we calibrate the model so that the quantitative implications
of the simulations are comparable to U.S. data.

4.1 Calibration

Utility function.�We set the length of a period to 30 years to approximate the time
until labor-market entry of a new-born generation and the length of the labor-market
career. For the assumption of an annual discount rate of 3%, this implies that � = 0:412.
We assume q = � to abstract from intergenerational redistribution motives arising from
di¤erences in the planner�s and households�discount factors (see, for example, Farhi and
Werning, 2010). We specify the utility function as U(c; l) = ln(c)� l�=�, which satis�es
the parametric assumption [A1�] made above. Based on estimates for the Frisch elasticity
of 0:5 documented in Chetty (2012), we obtain that � = "�1 + 1 = 3.

Production technology.�We assume that labor productivity is Cobb-Douglas so that
A(�; h) = ��h1��. From a practical standpoint, the assumption of Cobb-Douglas produc-
tivity has the advantage that, under the assumption of competitive labor markets, wages
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w(�; h) are log-linear in human capital and unobserved ability:

lnw(�; h) = lnA(�; h) = (1� �) lnh+ � ln �. (18)

Our model thus predicts that di¤erences in unobserved ability � generate the residual
wage dispersion which remains in the data after regressing log-wages on years of schooling
(where years of schooling S correspond to lnh in our model). We assume that � is drawn
from a log-normal distribution with mean 1 and standard deviation

p
0:2=�, based on

estimates by Heathcote et al. (2008, 2010).19 They show that the variance of residual
log-wages among U.S. workers due to persistent shocks has been equal to 0:2 in 2005.20

We use the variance resulting from persistent shocks because � is fully persistent in our
model during a generation�s labor-market career and transitory shocks (at least partially)
wash out.
In order to calibrate the parameter � of the production function, we use the large body

of empirical evidence on Mincerian wage regressions. As surveyed by Card (1999), the
literature shows that the marginal returns of an additional year of schooling are remark-
ably consistent across studies and close to 0:1. Since years of schooling S correspond to
lnh in our model, equation (18) implies that 1� � = 0:1 and � = 0:9.

TABLE 1: Calibration
Parameters Model Target Source

Utility function
� = q = 0:412 Discount rate Annualized 3% Standard

� = 3 v (l) = l�=� Frisch Elasticity 1=2 Chetty (2012)

Production technology
� = 0:9 y=l = ��h1�� Returns to education 10% Card (1999)

� =
p
0:2=� log �0 � N (��2=2; �2) Variance residual wages Heathcote et al. (2008)

Education cost
& = :214 Cost function: Costs for tertiary/upper- OECD (2011)
� = :087 g(h0; h) = � [h0& � 1] secondary education

Education costs.� The interpretation of lnh as years of schooling S allows us to use
data on educational expenditure to determine parameters of the cost function g(h0; h).
For simplicity, we abstract from the e¤ect of family background h on the cost of human
capital accumulation so that @g(h0; h)=@h = 0 for the �exible but parsimonious cost
function g(h0; h) = � [h0& � 1]. Since years of schooling S = ln(h0) = 0 if h0 = 1, this
function ensures that it is costless to provide children with 0 years of non-compulsory
education. Non-compulsory education in the data corresponds to additional years of

19The log-normal distribution is approximated by a truncated density so that we draw the next-period
ability from a compact interval [�; �].
20See panel C of Figure 3 in Heathcote et al. (2008).
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schooling starting from the �rst year of upper-secondary education, i.e., grade 9 in the
U.S.
We use data on the costs of upper-secondary and tertiary education to calibrate

the parameters & and �. The parameter & is identi�ed by the cost of tertiary educa-
tion relative to upper-secondary education whereas � is identi�ed by the level of upper-
secondary education costs. For the assumed functional form, the ratio of cumulative costs
for tertiary education to the cumulative cost for upper-secondary education is equal to
(exp(S2)

& � 1) = (exp(S1)& � 1). Using actual expenditures reported in OECD (2011), we
�nd that & = 0:214.21

The parameter � is calibrated to match the actual cost of the �rst year of upper-
secondary education. We thus have to relate the monetary costs observed in the data to
units of the model. We make the empirically plausible assumption that the median worker
of those workers without any non-compulsory education does not receive, or leave, any
signi�cant bequests, so that she is approximately a hand-to-mouth consumer. The lifetime
income of such a worker in the laissez-faire economy is then equal to 1 which we use as
numéraire.22 According to census data, the mean annual earnings of high-school dropouts
have been equal to $20; 241 in 2010.23 By comparison, the annual expenditure per year
for upper-secondary students was $12; 690. Computing the cost-income ratio, we �nd that
the cost of an additional year of upper-secondary education amounts to 62:6% of annual
income or, given our 30-year period, to 2:08% of lifetime income of the median worker
without non-compulsory education. It follows that � = 0:0208= [exp(1)0:214 � 1] = 0:087.
We initialize the level of human capital so that h1 corresponds to high-school gradu-

ation (S = 4). The speci�cation of the initial promised value ensures that the planner
breaks even when we account for the cost of compulsory education, i.e., �(V1; h1; 1) = 0.
We solve the model for a dynasty of four generations (120 years) and focus on the de-
cisions of the second generation.24 The algorithm, discussed further in Appendix A.3,
follows Farhi and Werning (2013) closely.

21Annual expenditure per year in the U.S. amounts to $12; 690 for upper-secondary education and to
$29; 910 for tertiary education (Tables B.1.2 and B.1.6 in OECD, 2011). Hence, the cumulative costs for
S1 = 4 years of upper-secondary education is $50; 760. The cumulative cost for S2 = 8, with additional
four years of tertiary education, is $50; 760 + $119; 640 = $170; 400. Thus, the cost ratio is 3:357, which
for & = 0:214 equals (exp(8)& � 1) = (exp(4)& � 1) :
22For a hand-to-mouth consumer without bequests, c = y. The optimal labor supply for such a

consumer in the laissez-faire economy solves l� (�; h) � argmax fln(A (�; h) l)� v (l)g, so that l� (�; h) =
(A (�; h) =c)

1
��1 = �

�
��1h

1��
��1 c

1
1�� : Evaluating this solution for the median worker with S = exp(h) = 0,

one gets l� (1; 1) = c
1

1�� = y (1; 1)
1

1�� given hand-to-mouth behavior. Since y� (�; h) = A (�; h) l� (�; h),
the income of the average worker without any non-compulsory education is y� (1; 1) = 1.
23See Table 232 in the Statistical Abstract of the United States 2012 published by the U.S. Census

Bureau. For data sources see also http://www.census.gov/population/www/socdemo/educ-attn.html)
24We show in the Appendix A.3 that, due to the high discount factor, increasing the horizon of the

dynasty has a negligible e¤ect when T is larger or equal to 3:
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Figure 2: Investment in children�s human capital and wedges for human capital and
bequests, as a function of labor income for parents with zero assets and 13 years of
schooling.

4.2 Results

Human capital investment and parental income.� The left panel of Figure 2 shows that
optimal investment into education decreases in the income, and thus in the ability, of
parents. This result may be surprising but is a natural consequence of the asymmetric
information problem.
In the �rst best, human capital investment is constant in parents�ability because types

are uncorrelated across generations. Under asymmetric information, the planner�s insur-
ance of the current generation is constrained by incentive compatibility. This requires
that the planner promises families with currently high ability additional utility for their
children. The planner achieves this by giving children of high ability parents more con-
sumption and by letting them produce less output, thus reducing their disutility of labor.
In the decentralized allocation, children inherit higher bequests when the productivity of
their parents is high, which entails a negative wealth e¤ect on their labor supply.
The smaller labor e¤ort of children of high-ability parents makes it, in turn, less at-

tractive for the planner to invest into their human capital. This is why, in Figure 2,
children of very able parents only receive 13.5 years of education, roughly corresponding
to high-school graduation, whereas hard-working children of low-ability parents complete
5 more years of education to obtain a master�s degree. Optimal education hence exerts
a mean-reverting in�uence across generations by ensuring that labor market productiv-
ity of parents and expected labor market productivity of their o¤spring are negatively
correlated.
This prediction for the social optimum is strikingly at odds with the observed positive

correlation between the college attendance rate of children and the percentile rank of
parental income documented in Chetty et al. (2014), Table 1. Taking the model at face
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value, this suggests that the observed allocation in the U.S. is not constrained e¢ cient:
low-income families undereducate their children while high-income families overeducate
them. Alternatively, one may question the assumption in the model that ability is i.i.d.
across generations. We expect the di¤erence between the empirical observations and the
model predictions to be smaller when ability is persistent across generations. Although
there is no consensus on whether there actually is such persistence, it is worthwhile to
brie�y discuss its implications for optimal human capital investment. In the �rst best,
human capital investment would then be increasing in parent�s ability. It is thus not clear
whether children of high-ability parents optimally receive less education in an economy
with asymmetric information and persistent ability. An interesting question for future
research is how persistent ability has to be in order to make human capital investment
increase in parent�s ability, and whether such persistence across generations is at all
plausible.

The human capital wedge.� The right panel of Figure 2 plots � �h against labor income
and shows that the wedges for bequests and human capital are tightly related but not
identical. As is to be expected from results on wedges for savings in Kocherlakota (2010),
chapters 3 and 4, the wedge for bequests is regressive: it is decreasing in income because
the planner wants to discourage families with bequests to shirk and report a low type.
It follows from Proposition 4 that the wedge for human capital in the calibrated Cobb-
Douglas case reads

� �h =
� �b

1� � �b
+

�
@g(h0;h)
@h0

@u(c)
@c

Cov

�
@u (c0)

@c0
;
@y0

@h0
� @g(h

00; h0)

@h0

�
: (19)

It di¤ers from the wedge for bequests because human capital carries risk. Since � �h <
� �b=(1 � � �b) in Figure 2, the covariance term in equation (19) is negative, showing that
human capital is a bad hedge for consumption risk.
The planner does not have to discourage human capital accumulation as much as

bequests because parents cannot diversify the risk associated with their children�s ability.
This explains why the implicit tax on bequests � �b is always positive whereas the implicit
tax on human capital � �h is mostly negative, implying that human capital should be
subsidized for all but very low-ability types who have the lowest income. Moreover, the
gap between the two wedges narrows as labor income increases because the o¤spring will
enjoy higher consumption on average. This lowers the absolute value of the covariance
term in (19) if u000(c) > 0, as is the case for log utility in our numerical solution, so
that marginal utility is decreasing at a decreasing rate. Then variation in consumption
levels will result in smaller �uctuations of marginal utility at higher consumption levels.
For middle-income families this e¤ect dominates the regressivity induced by the wedge
for bequests � �b , implying an implicit tax on human capital that is locally �at or even
progressive, as illustrated in Figure 2 by the positive slope of � �h at high income levels.

Education and family background.� Besides di¤erences in labor income, the model also
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Figure 3: Human capital accumulation as a function of families� inherited wealth and
labor income for families with parents that have 13 years of education.

allows us to evaluate the in�uence of inherited wealth on educational choices.25 Figure
3 shows that parents�wealth and labor income have qualitatively similar e¤ects on the
optimal level of education. This is intuitive since both increase the resources available for
the next generation. As explained above, the resulting wealth e¤ect lowers the labor e¤ort
of the o¤spring, making it less attractive for the planner to provide them with education.

Complementarity and incentive wedge.� The numerical results are based on the canon-
ical Mincerian speci�cation of the wage equation for which wages are log-linear in school-
ing, with a constant slope across ability groups. Our model allows us to check the im-
portance of the Cobb-Douglas assumption if we change the degree of complementarity
between � and h by changing the parameter � of the production function. As shown in
Proposition 4, � 6= 0 introduces an additional motive for the planner to tax or subsidize
human capital investment. The results presented in Appendix A.3 show that the shape
of the human capital wedge remains very similar and its level is shifted by the incentive
e¤ect of human capital investment �i. Since labor e¤ort is highest for the children of
low-ability parents, the incentive e¤ect is monotonically decreasing in parents�ability.

25We vary the promised value V1 which corresponds to varying assets of families in the decentralized
allocation. To simplify the interpretation of the �gures, we thus replace the promised values by the
corresponding levels of bequest, b(V1; h1; 1) = �(V1; h1; 1), in the decentralized allocation. The human
capital of parents does not matter much quantitatively in our calibration so that we hold it constant at
13 years of education.
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5 Implementation

An important question is how the solution of the planner�s problem can be implemented in
a decentralized economy. One possibility is to rely on education loans that are contingent
on the whole history of loans and earnings. The socially optimal allocation can then
be implemented by combining these history-dependent repayments with taxes on labor
income and bequests that condition only on contemporaneous variables.
The history dependence of the tax system becomes much simpler, however, when abil-

ity types are i.i.d. Then the history can be summarized by two state variables, bequests
and human capital. This makes it possible to implement the constrained e¢ cient allo-
cation either with means-tested grants that depend on labor income y, human capital
investment h0 and condition on the initial state variables b and h; or with loans for hu-
man capital accumulation featuring repayment schedules that depend on y, h0, condition
on b and h and are complemented with labor income taxes that only depend on current
income.
Existing tax and subsidy systems for student loans in continental Europe and Anglo-

Saxon countries contain elements which resemble these implementation schemes. The
conditioning on bequests and human capital roughly corresponds to grants or repayment
schedules for student loans that condition on parents�permanent income (which is highly
correlated with human capital) and parents�wealth (which is correlated with bequests).26

Given the tax schedule T (b; h; y; h0), agents solve the maximization problem

W (b; h; t) = max
fb0;h0;lg

�Z
�

[U (c(�); l(�)) + �W (b0(�); h0(�); t+ 1)] dF (�)

�
s.t. b0(�) = (1 + r)b� c(�)� g(h0(�); h) + y(�)� T (b; h; y(�); h0(�)),

y(�) = Y (h; �; l(�)),

h0(�) = h0(e(�); h) so that e(�) = g(h0(�); h),

along with the terminal conditions bT+1 = 0 and WT+1 = 0. The proof that the optimal
allocation can be implemented in this way follows directly from the argument in Albanesi
and Sleet (2006), and its extension by Stantcheva (2014) to a setting with human capital.
The history dependence in our model is summarized by V , h and t. But one can de�ne
a mapping between the state vector fV; h; tg and inherited wealth b such that, when its
image is inserted in the decentralized program above, the problem W (b; h; t) corresponds
to the dual of the planner�s program � (V; h; t). For the duality principle to be satis�ed,
the resources of the family, as measured by the amount of assets at the beginning of the
period, must equal the value of the planner�s cost minimization problem, i.e., b(V; h; t) =
� (V; h; t).

Marginal taxes and wedges.� Before presenting the simulation of the decentralized
allocation, we discuss how marginal taxes relate to the respective wedges. The �rst-
26An interesting question for further research is how large the persistence of ability across generations

has to be so that the simple tax and subsidy schedules observed in reality imply sizable deviations from
the social optimum and thus substantial welfare losses.

24



order condition for labor supply and the de�nition of the labor wedge (11) imply that
the marginal income tax equals the labor wedge: @T (�)=@y = � l. Concerning � b, the
�rst-order condition with respect to b0 implies that

@u (c)

@c
= �E

��
1 + r � @T

0(�)
@b0

�
@u (c0)

@c0

�
.

The wedge for bequests � b generally has to be implemented by taxes that ensure that it
also holds ex post. Then, the Euler equation of families is satis�ed for each consumption
level at the reported ability (Kocherlakota, 2010). Otherwise families may �nd it optimal
to deviate from the social optimum by bequeathing and letting their children exert little
labor e¤ort.
To see how the marginal tax on human capital investment is related to the wedge �h,

we combine the �rst-order condition for human capital and the de�nition of the wedge
for human capital (12):

@T (�)
@h0

=
@g(h0; h)

@h0
�h � �E

"�
@y0

@h0
@T 0(�)
@y0

+
@T 0(�)
@h0

� @u(c0)
@c0

@u(c)
@c

#
. (20)

As pointed out by Stantcheva (2014), a positive wedge for human capital does not neces-
sarily imply a positive current marginal tax on human capital accumulation in a dynamic
model. The second term on the right-hand side shows that the latter also depends on
how human capital changes taxes in the next period and how these changes are correlated
with the marginal utility of consumption.
Equation (20) allows us to relate our results to Bovenberg and Jacobs (2005) who

show that education expenses should be fully tax deductible to avoid distortions of human
capital investment. We recover the analogon of this result in our model: if, as in Bovenberg
and Jacobs (2005), there are no bequests and productivity is Cobb-Douglas (� = 0),
�h = 0 and human capital accumulation is socially optimal in the laissez faire without
tax distortions. Then equation (20) reads

@T (�)
@h0

= ��E
�
@y0

@h0
@T 0(�)
@y0

+
@T 0(�)
@h0

�
E

"
@u(c0)
@c0

@u(c)
@c

#
� �
@u(c)
@c

Cov

�
@y0

@h0
@T 0(�)
@y0

+
@T 0(�)
@h0

;
@u (c0)

@c0

�
.

The current marginal tax on human capital accumulation @T (�)=@h0 is negatively related
to the expected change in the risk-adjusted return to human capital for the next generation
caused by the change in taxes. This expected change consists of two terms. The �rst term
is the expected change in taxes E

h
@y0

@h0
@T 0(�)
@y0 +

@T 0(�)
@h0

i
resulting from an additional marginal

unit of human capital. Compared with Bovenberg and Jacobs (2005), this tax change
does not only consist of the additional marginal income tax but also of the change in
taxes due to the higher human capital stock of the next generation. The second term
captures that the returns to human capital are uncertain in our model so that it matters
whether the tax changes reduce consumption risk. Hence, education should be subsidized

25



if human capital investment increases the tax burden and the future tax changes caused
by human capital accumulation do not reduce consumption risk too much.
This is not the whole story in our model, however, since � �h = �b+�i 6= 0 at the social

optimum by Proposition 4. Hence, optimal taxes or subsidies do not only try to o¤set
how human capital alter future tax payments but also account for (i) the distortions at
the intertemporal margin relative to bequests (captured by �b), and (ii) the distortions
due to changes in the power of incentives (captured by �i).

Illustration of the optimal tax schedule.�We de�ne means-tested grants as

G(y; h0jb; h) = �T (b; h; y; h0).

Figure 4 shows how means-tested grants depend on parents� assets and labor income.
Families that are poor in both dimensions receive the largest grants because they invest
more in the education of their children (see Figure 3). The grant decreases in assets
and labor income for poor families as one would expect. When families have su¢ cient
resources in terms of assets and income, the grant becomes negative so that families have
to pay for the education of their children.
The grant is always decreasing in labor income but its progressivity is decreasing in

the level of assets. Given the mapping between assets and promised utility, the planner�s
possibility to redistribute across families with higher assets is more constrained by incen-
tives. This is why the grant is progressive for most but not all combinations of assets and
income: the exception are families with high income who have to pay less if they hold
more assets.

Loans with contingent repayments.� We have degrees of freedom in the implementa-
tion of the social optimum. This �exibility allows us to decompose the consolidated tax
schedule T (b; h; y; h0) into a set of �scal instruments resembling actual ones.
We introduce a tax/transfer schedule that depends solely on current labor income,

and follow the parametrization proposed by Heathcote et al. (2014) for the U.S.: T y(y) =
y � y1�� , with � = 0:15.27 Assuming that loans fully fund education expenditures, i.e.,
L(h0; h) = g(h0; h), the optimal debt-repayment schedule solves

T y(y)| {z }
Income tax

� L(h0; h)| {z }
Education loan

+D(b; h; y; h0)| {z }
Net payment

= T (b; h; y; h0)| {z }
Gross payment

.

The consolidated repayment schedule D(�) includes not only the repayment of the edu-
cation loan of the parents but also any residual payments not covered by the income tax
T y(�). We spell out the dynamic program for this implementation and sketch properties
of D(�) in appendix A.2.4.
27Observe that the schedule T y (y) is negative whenever y < 1: Given that a unit in our model corre-

sponds to mean annual earnings of high-school dropouts, as explained in Section 4, workers whose yearly
income is below $20; 241 receive positive transfers while others pay income taxes.
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Figure 4: Implementation of the social optimum with means-tested grants for families
with parents that have 13 years of education.
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Figure 5 illustrates how the implementation scheme depends on labor income for our
representative family with no assets and parents with 13 years of education. Its upper-
panel shows that education loans decrease in income because years of schooling are also
decreasing in income in the social optimum (see the left panel of Figure 2). Consistent
with the results on means-tested grants reported in Figure 4, the gross payment in Figure
5 is increasing in labor income with a declining slope. Given the progressive U.S. income
tax schedule, the net payment has to balance insurance and incentives to implement the
gross payment required in the social optimum. Since the education loan decreases in
income and the income tax is convex in income, the lower panel of Figure 5 shows that
the schedule for the net payment becomes regressive for families with more than $70; 000
in labor income. This prediction is in line with the �nding in Heathcote et al. (2014)
that the value of progressivity of the income tax that maximizes social welfare is lower
than the one observed in the data. Although the net payment compensates some of
the progressivity of observed income taxes, it provides substantial insurance: low-income
families do not have to repay the education loans of the parents but even bene�t from
small net transfers, while receiving the largest loans for the education of their children.

6 Conclusion

We have shown that human capital investment by families is not constrained e¢ cient if the
ability of generations in a family dynasty is not observable. The wedge for human capital
di¤ers from the wedge of bequests at the social optimum because human capital carries
more risk, as parents cannot diversify the risk associated with their children�s ability, and
because human capital may change incentives. Our numerical results illustrate how the
constrained e¢ cient allocation can be implemented by means-tested grants or loans with
contingent repayments. Constrained e¢ ciency requires that low-income families invest
more into the human capital of their children than high-income families: since children
from a privileged background receive larger bequests, a wealth e¤ect lowers their labor
supply so that it is less e¢ cient for the planner to invest into their human capital.
Why, instead, is human capital investment positively related to family income in the

real world? It is important to investigate this question in future research. If intergen-
erational ability is persistent and not i.i.d. as in our simulations, then the empirically
observed positive correlation between family income and human capital may be (close to)
socially optimal. If instead income-rich families invest more into their children because
credit markets are imperfect, or the timing or taxation of bequests and other intergenera-
tional transfers is suboptimal, social welfare may be improved by redistributing resources.
Distinguishing between these two possibilities is challenging, given the scarcity of data
for intergenerational analysis in many countries, but vital from a policy perspective.
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A Appendix

A.1 Proofs

Proof. Proposition 1: Since the planner�s Hamiltonian reads

H = [c (! (�)� �V 0 (�) ; y (�) ; h; �) + g(h0(�); h)� y (�) + q� (V 0 (�) ; h0(�); t+ 1)] f (�)
+� [V � ! (�) f (�)]
+� (�) [@U (c (! (�)� �V 0 (�) ; y (�) ; h; �) ; y (�) ; h; �) =@�] ,

the �rst-order conditions are�
@c (�)

@V 0 (�)
+ q

@� (V 0 (�) ; h0 (�) ; t+ 1)

@V 0 (�)

�
f(�) = �� (�) @

2U (�)
@�@c (�)

@c (�)

@V 0 (�)
; (21)�

@g(h0(�); h)

@h0(�)
+ q

@� (V 0 (�) ; h0(�); t+ 1)

@h0(�)

�
f (�) = 0; (22)
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�
@2U (�)
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@y (�)
+
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@�@l (�)

@l (�)

@y (�)

�
= �

�
@c (�)

@y (�)
� 1
�
f (�) : (23)

The costate variable satis�es

@� (�)
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= �

�
@c (�)

@! (�)
� �+ � (�)

f(�)

@2U (�)
@�@c (�)

@c (�)

@! (�)

�
f(�); (24)

with the usual boundary conditions lim�!� � (�) = 0 and lim�!� � (�) = 0: We use as-
sumption [A1] to invert the utility function

c (! (�)� �V 0 (�) ; y (�) ; h; �) = u�1 (! (�)� �V 0 (�) + v(y (�) ; h; �)) .

It follows that

@c (�)

@! (�)
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1

@u (c(�)) =@c(�)
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@V 0 (�)
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=
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@u (c (�)) =@c(�)
.

Condition for V 0: Since [A1] implies @2U (�) =(@�@c) = 0, equation (21) simpli�es to

1

@u (c (�)) =@c(�)
=
q

�

@� (V 0 (�) ; h0(e(�); h); t)

@V 0 (�)
=
q

�
�0 (�) ,

where we have used the envelope condition @� (V; h; t) =@V = �.
Condition for y: Using @2U (�) =(@�@l) = �@y

@l
@2v(y;h;�)
@�@y

in (23) yields
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@u (c (�)) =@c(�)

= �� (�)
f(�)
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.

29



Condition for h0: The following envelope condition for human capital is obtained
after substituting consumption using the promise-keeping constraint, noting that there is
a continuum of incentive-compatibility constraints and that @2U (�) = (@c (�) @�) = 0:

@� (V; h; t)

@h
=

Z
�

�
@c (�)

@h
+
@g(h0(�); h)
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�
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@�@h
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Z
�
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d�.

The last term captures the e¤ect of human capital on the incentive compatibility con-
straint. Note further that for deriving the envelope condition we have inverted h0(e; h)
and substituted in e = g(h0; h) and we have used that for all �

0 =

��
@c (�)

@y
� 1
�
f (�) + � (�)
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by (22) and (23). The envelope condition for human capital can then be inserted into the
optimality condition for human capital (22) to obtain
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For @2U (�) = (@c (�) @�) = 0, equation (24) implies
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Remark 1 Under assumptions [A1�] and [A2]:
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@�
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� 0 i¤ � � ��, @v(y; h; �)

@�@y
< 0.

Proof. Inverting the production function y = Y (h; l; �) = A (�; h) l, we get l = y=A (�; h)
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with A (�; h) = [��� + (1� �)h�]1=� so that
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Di¤erentiating these expressions a second time, we get
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Thus, @2v(y; h; �)= (@�@h) > 0 i¤ � � ��.

Proof. Corollary 1: Follows immediately from Remark 1 above.

Proof. Proposition 2: Bequests. The �rst-order condition for bequests reads

�@U (c; l)
@c

+ �
@W (b0; h0; t+ 1)

@b0
= 0,
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which, reinserting the envelope condition

@W (b; h; t)

@b
= (1 + r)

@U (c; l)

@c
,

yields the Euler equation

@U (c; l)

@c
= �(1 + r)

@U (c0; l0)

@c0
dF (�0) = �(1 + r)E

�
@U (c0; l0)

@c0

�
:

Labor supply. The �rst-order condition for labor supply reads

@U (c; l)

@l
+ �

@W (b0; h0; t+ 1)

@b0
@y

@l
= 0:

The results above imply

�
@W (b0; h0; t+ 1)

@b0
@y

@l
=
@y

@l
;

so that the �rst-order condition for labour supply simpli�es to the standard intratemporal
condition

@U (c; l)

@l
+
@y

@l

@U (c; l)

@c
= 0.

Human capital. The �rst-order condition for human capital accumulation is

�@g(h
0; h)

@h0
@U (c; l)

@c
+ �

@W (b0; h0; t+ 1)

@h0
= 0.

Using the envelope condition

@W (b0; h0; t+ 1)

@h0
=

Z
�

@U (c0; l0)

@c0

�
@y0

@h0
� @g(h

00; h0)

@h0

�
dF (�0) ,

then implies that the �rst-order condition for human capital simpli�es to

@g(h0; h)

@h0
@U (c; l)

@c
= �

Z
�

@U (c0; l0)

@c0

�
@y0

@h0
� @g(h

00; h0)

@h0

�
dF (�0) .

Proof. Proposition 3: The wedge � l evaluated at the solution of the planner�s prob-
lem follows immediately by using the de�nition for � l in the �rst-order condition (7) of the

planner. To derive the analogous expression for � b, we recall that �
0(�) = E

h
1

@u(c0(�0))=@c0(�0)

i
and rearrange the de�nition of � b to substitute @u (c) =@c in condition (5).

Proof. Corollary 2: To compare the labor wedge in our model with the literature, we
use de�nition (11) to derive

� l
1� � l

=
1� @v(y;h;�)=@y

@u(c)=@c

@v(y;h;�)=@y
@u(c)=@c

=
@u (c) =@c

@v(y; h; �)=@y
� l.
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Thus, (14) implies that at the solution of the planner�s problem,

� l
1� � l

= � @u (c) =@c

@v(y; h; �)=@y

@2v(yh; �)

@�@y

� (�)

f (�)
.

By Remark 1,

� l
1� � l

=
@u (c) =@c
@v(l)
@l

1
A

����1

A1+�
@v (l)

@l
�
� (�)

f (�)
= �

���

A�
@u (c) =@c

�f (�)

Z �

�

"
�� 1

@u(c(x))
@c(x)

#
dF (x),

where we have substituted in �(�) using (25).

Proof. Proposition 4: The wedge for human capital implied by the solution to the
planner�s problem is obtained adding �h on both sides of condition (6), and substituting
its de�nition on the right-hand side to get

�h =
�

@g(h0;h)
@h0

Z
�

"
@u(c0)
@c0

@u(c)
@c

�
@y0

@h0
� @g(h

00; h0)

@h0

�#
dF (�0)� 1

� q
@g(h0;h)
@h0

Z
�

 
�
@v(y0;�0;h0)

@h0

@u(c0)
@c0

� @g(h
00; h0)

@h0

!
dF (�0) + 1

� q
@g(h0;h)
@h0

Z
�

@2v(y0; �0; h0)

@�0@h0
�0 (�0) d�0.

Since the derivatives of the multivariate function v (y; h; �) in the proof of Remark 1 imply
that @v(y

0;�0;h0)
@h0 = � @y0

@h0
@v(y0;�0;h0)

@y0 , this can be rearranged as

�h =
q

@g(h0;h)
@h0

Z
�

@y0

@h0

 
1�

@v(y0;�0;h0)
@y0

@u(c0)
@c0

!
dF (�0)| {z }

��l

+
1

@g(h0;h)
@h0

Z
�

 
�
@u(c0)
@c0

@u(c)
@c

� q
!�

@y0

@h0
� @g(h

00; h0)

@h0

�
dF (�0)| {z }

��b

� q
@g(h0;h)
@h0

Z
�

@2v(y0; �0; h0)

@�0@h0
�0 (�0) d�0. (26)

The terms �l and �b capture the cross-distortion induced by the wedges for labor and
bequests, respectively. Since E

h
� @u(c

0)=@c0

@u(c)=@c
� q
i
= q �b

1��b , the de�nition (10) of the wedge

for bequests implies that �b is given by (15).
The third term on the right hand side of (26) is the overall (gross) incentive e¤ect of

h. We now show that part of it o¤sets �l and that the remaining term corresponds to
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the net wedge �i. To see this, we use results from Remark 1 to rewrite

@2v(y; �; h)

@�@h
= �@

2v(y; �; h)

@�@y

@y

@h

+
@v (l)

@l

l

A2
@A (�; h)

@�

@A (�; h)

@h

 
1�

@2A(�;h)
@�@h

A (�; h)
@A(�;h)
@�

@A(�;h)
@h

!
: (27)

The �rst-order condition (7) for output implies thatZ
�

@2v(y0; �0; h0)

@�0@y0
@y0

@h0
�0(�0)d�0 =

Z
�

"
@v(y0;�0;h0)

@y0

@u(c0)
@c0

� 1
#
@y0

@h0
f (�0) d�0:

Hence, using the decomposition (27) to compute the integral below, we �nd that, under
assumptions [A1�] and [A2],

� q
@g(h0;h)
@h0

Z
�

@2v(y0; �0; h0)

@�0@h0
�0 (�0) d�0 = ��l +�i ; (28)

where we have used that � = 1�A�h (�; h)A (�; h) = [A� (�; h)Ah (�; h)] : This decomposes
the overall incentive e¤ect of human capital investment into two components. The �rst
component, when evaluated at the optimal level of output, exactly o¤sets the distortion
for human capital investment induced by the labor wedge. This is why, when substituting
(28) into (26), we obtain (16).

A.2 Additional results (Web-Appendix)

A.2.1 Foundations for Figure 1

We show that, after the perturbation described in the main text, the allocation remains
incentive compatible only if A(�; h) is Cobb Douglas, i.e., if � = 0. Let

w (r) = u (c (r)) + �
0 (r) ;

where r is the report. The reporting problem of the dynasty is


 (�) = max
r
w (r)� v (y (r) ; �; h)

s.t. v (y (r) ; �; h) = v

�
y (r)

A (�; h)

�
:

The �rst-order condition evaluated at the truthful � reads

@w (r) =@r

@y (r) =@r

����
r=�

=
@v (y (r) ; �; h)

@y

����
r=�

: (29)
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Consider the following perturbation of increasing human capital, increasing output such
that labor supply remains constant, and holding consumption and the continuation value
w constant:

h� = h+ �; y� (�) = y (�)
A
�
�; h�

�
A (�; h)

; l� (�) = l (�) ; w� (�) = w (�) :

Then

@v
�
y� (�) ; �; h�

�
@y

=

@v

�
y�(�)

A(�;h�)

�
@y

=
@v (l (�)) =@�

A (�; h�)
=
@v (y (�) ; �; h)

@y

A (�; h)

A (�; h�)
. (30)

Since � @y (�) =@� = @l(�)
@�
A (�; h) + l (�) @A(�;h)

@�

@y� (�) =@� = @l(�)
@�
A (�; h�) + l (�)

@A(�;h�)
@�

,

(29) implies

@w (r) =@r

@y (r) =@r

����
r=�

=

24 @l(�)
@�
A (�; h) + l (�) @A(�;h)

@�

@l(�)
@�
A (�; h�) + l (�)

@A(�;h�)
@�

35 @w� (r) =@r
@y� (r) =@r

����
r=�

.

Reinserting this condition along with (30) into the �rst-order condition (29), we get24 @l(�)
@�
A
�
�; h�

�
+ l (�)

@A(�;h�)
@�

@l(�)
@�
A (�; h) + l (�) @A(�;h)

@�

35 @w� (r) =@r
@y� (r) =@r

����
r=�

=
@v
�
y� (�) ; �; h�

�
@y

A
�
�; h�

�
A (�; h)

: (31)

In general, this condition is not compatible with the �rst-order condition for truthful
reporting after the perturbation:

@w� (r) =@r

@y� (r) =@r

����
r=�

=
@v
�
y� (�) ; �; h�

�
@y

. (32)

Hence, the allocation after the perturbation is not incentive compatible.
Let us now illustrate this using the CES production technology speci�ed in [A2]. Then

A� (�; h) = ��
��1A (�; h)1�� which can be reinserted into (31) to obtain"

@l(�)
@�
A
�
�; h�

�
+ l (�) ����1A

�
�; h�

�1��
@l(�)
@�
A (�; h) + l (�) ����1A (�; h)1��

#
@w� (r) =@r

@y� (r) =@r

����
r=�

=
@v
�
y� (�) ; �; h�

�
@y

A
�
�; h�

�
A (�; h)

,

which is equivalent to"
@l(�)
@�
+ l (�) ����1A

�
�; h�

���
@l(�)
@�
+ l (�) ����1A (�; h)��

#
@w� (r) =@r

@y� (r) =@r

����
r=�

=
@v
�
y� (�) ; �; h�

�
@y

.

35



This condition di¤ers from (32) but for the special case where A (�) is Cobb-Douglas since
then � = 0, and the ratio in square brackets collapses to unity as one recovers (32).
The perturbed allocation thus remains incentive compatible only for the Cobb-Douglas
speci�cation. Conversely when � 6= 0 we have

@l(�)
@�
+ l (�) ����1A

�
�; h�

���
@l(�)
@�
+ l (�) ����1A (�; h)��

? 1 when � 7 0

and
@w� (r)

@r

����
r=�

7
@v
�
y� (�) ; �; h�

�
@y

@y� (r)

@r

����
r=�

when � 7 0:

If � < 0, this proves that the marginal cost of reporting one�s type on the right-hand
side exceeds the marginal gain on the left-hand side. Hence, families �nd it optimal to
underreport their type.
For the graphical representation, we illustrate the problem in the fy; wg plane. Then

the maximization problem reads


 (�) = max
y
w (y)� v (y; �; h)

s.t. v (y; �; h) = v

�
y

A (�; h)

�
,

and the �rst-order condition reads

@w (y)

@y
=
@v (y; �; h)

@y
: (33)

In the �gures, the term on the left-hand side, @w (y) =@y, determines the slope of the
allocation curve. The term on the right-hand side, @v (y; �; h) =@y, determines the slope
of the indi¤erence curve.

A.2.2 Liquidity constraints

In this subsection we show how our results modify if we impose the constraint b0 � 0. In
the laissez faire each family then solves the maximization problem

W (b; h; t) = max
fb0;h0;lg

�Z
�

U (c; l) + �W (b0; h0; t+ 1) dF (�)

�
s.t. b0 = (1 + r)b� c� e+ y,

b0 � 0,

y = Y (h; �; l),

h0 = h0(e; h) so that e = g(h0; h),

where the multiplier � > 0 if the liquidity constraint is binding.
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Proposition 5 If bequests are required to be non-negative, the laissez faire is character-
ized by the following �rst-order conditions for bequests, human capital and labor supply:

@U (c; l)

@c
= �(1 + r)E

�
@U (c0; l0)

@c0

�
+ �;

@g(h0; h)

@h0

�
@U (c; l)

@c
� �
�

= �E
�
@U (c0; l0)

@c0

�
@y0

@h0
� @g(h

00; h0)

@h0

��
;

�@U (c; l)
@l

=
@y

@l

�
@U (c; l)

@c
� �
�
:

Proof. Bequests. The �rst-order condition for bequests reads

�@U (c; l)
@c

+ �
@W (b0; h0)

@b0
+ � = 0,

which, reinserting the envelope condition

@W (b; h)

@b
= (1 + r)

@U (c; l)

@c
,

yields the Euler equation

@U (c; l)

@c
= �(1 + r)

@U (c0; l0)

@c0
dF (�0) + � = �(1 + r)E

�
@U (c0; l0)

@c0

�
+ � :

Labor supply. The �rst-order condition for labor supply reads

@U (c; l)

@l
+ �

@W (b0; h0)

@b0
@y

@l
= 0 :

The results above imply

�
@W (b0; h0)

@b0
@y

@l
=
@y

@l

�
@U (c; l)

@c
� �
�

so that the �rst-order condition for labour supply simpli�es to the standard intratemporal
condition

@U (c; l)

@l
+
@y

@l

�
@U (c; l)

@c
� �
�
= 0.

Human capital. The �rst-order condition for human capital accumulation is

�

�
�@g(h

0; h)

@h0
@W (b0; h0)

@b0
+
@W (b0; h0)

@h0

�
= 0.

The envelope condition is

@W (b0; h0)

@h0
=

Z
�

@U (c0; l0)

@c0

�
@y0

@h0
� @g(h

00; h0)

@h0

�
dF (�0) .
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Noting that
@U (c; l)

@c
� � = �@W (b0; h0)

@b0

then implies that the �rst-order condition for human capital simpli�es to

@g(h0; h)

@h0

�
@U (c; l)

@c
� �
�
= �

Z
�

@U (c0; l0)

@c0

�
@y0

@h0
� @g(h

00; h0)

@h0

�
dF (�0) .

The modi�ed de�nitions of the wedges are as follows:

De�nition 2 If bequests are required to be non-negative, the wedges for bequests � cb, labor
supply � cl and human capital �

c
h are

� cb � 1� q

�

@u (c) =@c� �
E [@u (c0) =@c0]

, (34)

� cl � 1� @v(y; h; �)=@y
@u (c) =@c� � , (35)

� ch � �
@g(h0;h)
@h0

Z
�

"
@u(c0)
@c0

@u(c)
@c

� �

�
@y0

@h0
� @g(h

00; h0)

@h0

�#
dF (�0)� 1. (36)

Combining the results of Propositions 1 and 5, we then �nd:

Proposition 6 If bequests are required to be non-negative, the �rst-order conditions of
the planner�s problem imply under assumptions [A1] and [A2] that

� c;�b = 1� 1

E
�

1
@u(c0)
@c0

�
E
h
@u(c0)
@c0

i + �

�
q
E
h
@u(c0)
@c0

i , (37)

� c;�l = �@
2v(y; h; �)

@�@y

� (�)

f (�)
� �

@u(c)
@c

� �

@v(y;h;�)
@y

@u(c)
@c

, (38)

� c;�h = �c
b +�

c
i +�c, (39)

with

�c
b � q

@g(h0;h)
@h0

E
�
@y0

@h0
� @g(h

00; h0)

@h0

�
� �b

1� � �b

+
�

@g(h0;h)
@h0

@u(c)
@c

Cov

�
@u (c0)

@c0
;
@y0

@h0
� @g(h

00; h0)

@h0

�
,

�c
i � � q

@g(h0;h)
@h0

�

Z
�

l0 (�0)
dv (l0 (�0))

dl0

@A(�0;h0)
@�0

@A(�0;h0)
@h0

A (�0; h0)
2 �0 (�0) d�0;

�c � �
@u(c)
@c

� �
�

@g(h0;h)
@h0

Z
�

"
@u(c0)
@c0

@u(c)
@c

�
@y0

@h0
� @g(h

00; h0)

@h0

�#
dF (�0) .
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Proof. We derive the wedge � cl evaluated at the solution of the planner�s problem using
the de�nition for � cl in the �rst-order condition (7) of the planner. Condition (7) implies

1�
@v(y;h;�)

@y

@u(c)
@c

+

@v(y;h;�)
@y

@u(c)
@c

� �
�

@v(y;h;�)
@y

@u(c)
@c

� �
= �@

2v(y; h; �)

@�@y

� (�)

f (�)

which, using the de�nition of the wedge � cl , becomes

� cl = �
@2v(y; h; �)

@�@y

� (�)

f (�)
+

@v(y;h;�)
@y

@u(c)
@c

�
@v(y;h;�)

@y

@u(c)
@c

� �
.

Simplifying, we get

� cl = �
@2v(y; h; �)

@�@y

� (�)

f (�)
� �

@u(c)
@c

� �

@v(y;h;�)
@y

@u(c)
@c

,

where @u(c)
@c

� � > 0 since @W (b0;h0)
@b0 > 0. To derive the analogous expression for � cb, we

recall that �0(�) = E
�

1
@u(c0)
@c0

�
and rearrange the de�nition of � cb to substitute @u (c) =@c in

condition (5). Condition (5) implies

@u (c)

@c
=

�=q

E
�

1
@u(c0)
@c0

� .
The de�nition of the wedge � cb can be rearranged to

@u (c) =@c = (1� � cb)
�

q
E [@u (c0)) =@c0] + �.

so that substituting out @u (c(�)) =@c(�) yields

�=q

E
�

1
@u(c0)
@c0

� = (1� � cb) �q E [@u (c0) =@c0)] + �.
Solving this expression for � cb results in

� cb = 1�
1

E
�

1
@u(c0))
@c0

�
E [@u (c0)) =@c0]

+
�

�
q
E [@u (c0) =@c0]

.

The wedge for human capital implied by the solution to the planner�s problem is obtained
by adding � ch on both sides of condition (6):

� ch = � ch �
q

@g(h0;h)
@h0

Z
�

 
�
@v(y0;�0;h0)

@h0

@u(c0)
@c0

� @g(h
00; h0)

@h0

!
dF (�0) + 1

� q
@g(h0;h)
@h0

Z
�

�0 (�0)
@2v(y0; �0; h0)

@�0@h0
d�0.
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Substituting in the de�nition of the wedge � ch on the right-hand side, we get

� ch =
�

@g(h0;h)
@h0

Z
�

"
@u(c0)
@c0

@u(c)
@c

� �

�
@y0

@h0
� @g(h

00; h0)

@h0

�#
dF (�0)� 1

� q
@g(h0;h)
@h0

Z
�

 
�
@v(y0;�0;h0)

@h0

@u(c0)
@c0

� @g(h
00; h0)

@h0

!
dF (�0) + 1

� q
@g(h0;h)
@h0

Z
�

�0 (�0)
@2v(y0; �0; h0)

@�0@h0
d�0

which, using
@u(c0)
@c0

@u(c)
@c

� �
=

@u(c0)
@c0

@u(c)
@c

+
�

@u(c)
@c

� �

@u(c0)
@c0

@u(c)
@c

,

can be rearranged to

� ch =
q

@g(h0;h)
@h0

Z
�

@y0

@h0

 
1�

@v(y0);�0;h0)
@y0

@u(c0)
@c0

!
dF (�0)

+
1

@g(h0;h)
@h0

Z
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�
@u(c0)
@c0

@u(c)
@c

� q
!�

@y0

@h0
� @g(h

00; h0)

@h0

�
dF (�0)

� q
@g(h0;h)
@h0

Z
�

@2v(y0; �0; h0)

@�0@h0
�0 (�0) d�0

+
�

@u(c)
@c

� �
�

@g(h0;h)
@h0

Z
�

"
@u(c0)
@c0

@u(c)
@c

�
@y0

@h0
� @g(h

00; h0)

@h0

�#
dF (�0) .

Using the de�nition of the labor wedge (11) in the unconstrained case, the �rst term
captures the cross-distortion induced by the labor wedge as in the case without constraints
(compare equation (26) in the proof of Proposition 4). The second term captures the
cross-distortion introduced by the wedge for bequests. This term equals �c

b using that

E (xy) = Cov(x; y) +E (x)E (y) and E
�
�

@u(c0)
@c0
@u(c)
@c

� q
�
= q �b

1��b , where we use the de�nition

(10) of the wedge for bequests in the unconstrained case. The third term of � ch can be
combined with the �rst term, following the same steps as in the proof of Proposition 4,
to derive �c

i . The fourth term equals �c.

Thus, if the liquidity constraint for a family is binding (� > 0), the wedge on labor
decreases ceteris paribus as the planner encourages more labor earnings to alleviate the
constraint. The wedge for bequests and human capital increase ceteris paribus since a
binding liquidity constraint implies that the future generation has more resources than
would be socially optimal.
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A.2.3 Persistent types

We now turn our attention to the general case where types are correlated from one gener-
ation to the next. For simplicity we abstract from liquidity constraints. The analysis with
persistent types draws on results by Kapiµcka (2013), applied to dynamic optimal taxation
problems by Farhi and Werning (2013), Golosov et al. (2013) and, in work independent
from ours, by Stantcheva (2014). Following Pavan et al. (2014), the envelope condition
in the problem with persistent shocks is:

@! (�)

@�
=
@U (c; y; h; �)

@�
+ �

Z
�

! (�0)
@f(�0j �)
@�

d�0. (40)

This condition serves as local incentive compatibility constraint in the relaxed problem
based on the �rst-order approach. The recursive formulation with persistent types requires
that � and V are treated as state variables where

�(�) �
Z
�

! (�)
@f(�j ��)
@��

d�,

so that
@! (�)

@�
=
@U (c; y; h; �)

@�
+ ��0.

As before we consider the relaxed planner�s problem, with local constraints evaluated at
the truthful equilibrium reports, and apply optimal control techniques. The recursive
problem is

� (V;�; ��; h; t) (41)

= min
fc;y;h0;�0;V 0g

�Z
�

[c+ g(h0; h)� y (�) + q� (V 0;�0; �; h0; t+ 1)] dF (�j ��)
�

s:t: ! (�) = U (c; y; h; �) + �V 0,

V =

Z
�

! (�) dF (�j ��) ,

� =

Z
�

! (�)
@f(�j ��)
@��

d�,

@! (�)

@�
=

@U (c; y; h; �)

@�
+ ��0.

As before, we substitute consumption with the promise-keeping constraint, de�ning
consumption c (! (�)� �V 0; y; h; �) as an implicit function of other control and state vari-
ables. This enables us to write the Hamiltonian associated with the planner�s problem
as

H = [c (! (�)� �V 0; y; h; �) + g(h0; h)� y + q� (V 0;�0; �; h0; t+ 1)] f (�j ��)

+�(��) [V � ! (�) f(�j ��)] + 
(��)
�
�� ! (�) @f(�j ��)

@��

�
+� (�)

�
@U (c (! (�)� �V; y; h; �) ; y; h; �)

@�
+ ��0

�
:
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The costate variable satis�es

@� (�)

@�
= �

"
1

@u (c) =@c
� �(��)� 
(��)

@f( �j��)
@��

f(�j ��)
+

� (�)

f(�j ��)
@2U (�)
@�@c

@c

@! (�)

#
f(�j ��);

(42)
with lim�!� � (�) = 0 and lim�!� � (�) = 0: The �rst-order conditions read

@H (�)
@V 0

=

�
@c

@V 0
+ q

@� (V 0;�0; �; h0; t+ 1)

@V 0

�
f(�j ��) + � (�)

@2U (�)
@�@c

@c

@V 0
= 0 ;

@H (�)
@�0 =

�
q
@� (V 0;�0; �; h0; t+ 1)

@�0

�
f(�j ��) + �� (�) = 0 ;

@H (�)
@y

=

�
@c

@y
� 1
�
f(�j ��) + � (�)

�
@2U (�)
@�@c

@c

@y
+
@2U (�)
@�@l

@l

@y

�
= 0 ;

@H (�)
@h0

=
@g(h0; h)

@h0
+ q

@� (V 0;�0; �; h0; t+ 1)

@h0
= 0 .

For the optimality condition for human capital, we use the envelope condition

@� (V;�; ��; h; t)

@h
=

Z
�

�
@c

@h
+
@g(h0; h)

@h

�
dF (�j ��) +

Z
�

�(�)
@2U (�)
@�@h

d�

=

Z
�

�
@v(y; h; �)=@h

@u (c) =@c
+
@g(h0; h)

@h

�
dF (�j ��)�

Z
�

�(�)
@2v(y; h; �)

@�@h
d�

+

Z
�

�(�)
@2u (�)
@�@c

@c

@h
d� :

Imposing [A1] and using the envelope conditions @� (�) =@V = �(��) and @� (�) =@� =

(��) allows us to derive the system of �rst-order conditions analogous to Proposition 1
but with persistent types:

@H (�)
@V 0

=

�
� �

@u (c (�)) =@c(�)
+ q�0(�)

�
f(�j ��) = 0 ; (43)

@H (�)
@�0 = q
0 (�) f(�j ��) + �� (�) = 0 ; (44)

@H (�)
@y

=

�
@v(y; h; �)=@y

@u (c) =@c
� 1
�
f(�j ��)�

@2v(y; h; �)

@�@y
� (�) = 0 ; (45)

@H (�)
@h0

=
@g(h0; h)

@h0
+ q

Z
�

 
@v(y0;�0;h0)

@h0

@u(c0)
@c0

+
@g(h00; h0)

@h0

!
dF (�0j �) (46)

� q

Z
�

�0 (�0)
@2v(y0; �0; h0)

@�0@h0
d�0 = 0:

The system of equations is similar to the system derived for i.i.d. types but note that
persistence of types alters the multiplier of the incentive compatibility constraint � (�).
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Using (42) to substitute out �(�) in equation (45), we get"
@v(y;h;�)

@y

@u(c)
@c

� 1
#
f(�j ��) =

@2v(y; h; �)

@�@y

Z �

�

"
� 1
@u(c(x))
@c(x)

+ �(��) + 
(��)

@f( �j��)
@��

f(xj ��)

#
f(xj ��)dx.

The labor wedge is analogous to the one derived by Farhi and Werning (2013), Propo-
sition 2, so that we omit its derivation for brevity and focus on the wedge for human
capital.

Proposition 7 If types � are persistent, and assumptions [A1] and [A2] hold, the human
capital wedge can be decomposed as

� p;�h = �p
b +�

p
i

with

�p
b � q

@g(h0;h)
@h0

E�
�
@y0

@h0
� @g(h

00; h0)

@h0

�
� pb

1� � pb

+
�

@g(h0;h)
@h0

@u(c)
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�
@u (c0)

@c0
;
@y0

@h0
� @g(h

00; h0)

@h0

�
,

�p
i � � q

@g(h0;h)
@h0

�

Z
�

l0 (�0)
dv (l0 (�0))

dl0

@A(�0;h0)
@�0

@A(�0;h0)
@h0

A (�0; h0)
2 �0 (�0) d�0,

where the dependence of the expectations and covariance on the current realization of � is
denoted by the subscript.

Proof. Adding the wedge for human capital, analogous to the de�nition in (12), on both
sides of (46) and rearranging, we �nd that

� ph =
q

@g(h0;h)
@h0

Z
�

@y0

@h0

 
1�

@v(y0);�0;h0)
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+
1
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@u(c)
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� q
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� @g(h

00; h0)

@h0

�
f(�0j �)d�

� q
@g(h0;h)
@h0

Z
�

�0(�0)
@2v(y0; �0; h0)

@�0@h0
d�0.

Using the de�nition of the labor wedge, the �rst term captures the cross-distortion induced
by the labor wedge analogous as in the case without persistence (compare to equation (26)
in the proof of Proposition 4). The second term captures the cross-distortion introduced
by the wedge for bequests. This term equals�p

b using that E (xy) = Cov(x; y)+E (x)E (y)
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and E
�
�

@u(c0)
@c0
@u(c)
@c

� q
�
= q �b

1��b , where we use the de�nition (10) of the wedge for bequests

in the unconstrained case. The third term of � ph is the gross incentive wedge. Combining
this wedge with the �rst term, following the same steps as in the proof of Proposition 4,
we derive �p

i . The �rst term equals �p
l using the de�nition of the labor wedge analogous

to (11) in the unconstrained case. The second term equals �p
b using that E (xy) =

Cov(x; y)+E (x)E (y) and that E
�
�

@u(c0)
@c0
@u(c)
@c

� q
�
= q �b

1��b , where we use the de�nition (10)

of the wedge for bequests in the unconstrained case. The third term of � ph can be combined
with the �rst term, following the same steps as in the proof of Proposition 4, to derive
�p
i .

Besides the net wedge �p
i emphasized in the previous proposition, also the gross incen-

tive wedge contains interesting insights. Developing the gross wedge further shows how
persistence alters the incentive problem.

Corollary 3 The overall incentive e¤ect of human capital accumulation, or the gross
incentive wedge, reads

�p
i;gross = � q
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!
.

Proof. As shown in the proof of Proposition 7, the gross incentive wedge is

�p
i;gross � �

q
@g(h0;h)
@h0

Z
�

�0(�0)
@2v(y0; �0; h0)

@�0@h0
d�0. (47)

Integrating by parts:Z
�

�0(�0)
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�
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������0
�0
�
Z
�

@�0(�0)
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d�0.

The �rst term on the right-hand side is equal to zero because of the boundary conditions
for �0 (�0). Thus,

�p
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=
q
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Since by (43) and (44),
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where the second equality follows from"
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:

In order to further simplify, note that, analogous to the case without persistent types, we
have Z

�

�
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� �
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With persistence there is an additional term. Since the changes @f(�0j �)=@� in the density
have to sum to zero across all �0 so that
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It follows that Z
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Hence, the expression for �p
i;gross in the corollary follows.

Compared with the results for i.i.d types, the e¤ect of human capital on the incentive-
compatibility constraint in �p

i,gross also depends on the current labor wedge �
p
l if ability

types are persistent and 
(�) > 0. For the sign of this additional e¤ect, it matters
how the likelihood ratio @f( �0j�)

@�
=f(�0j �) covaries with the e¤ect of human capital on the

disutility of labor @v(y0; �0; h0)=@h0 as �0 changes. The following corollary speci�es su¢ cient
conditions under which human capital investment mitigates the incentive problem if ability
is persistent across generations.

Corollary 4 Under assumptions [A1], [A1�] and [A2], �p
i,gross � 0 if: (i) � � ��,

(ii) @f( �0j�)
@�

=f(�0j �) monotonically increases in �0 and (iii) the labor wedge � pl � 0. The
planner then has a motive to increase human capital accumulation in order to relax the
incentive compatibility constraint.

Proof. The sign of the gross incentive wedge �p
i;gross depends on the sign of the two

covariances. Since

sgn
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!!
= sgn

�
@2v(y0; h0; �0)
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�
,

the �rst term in �p
i;gross is negative i¤ � � ��, by Remark 1 in Appendix A.1. The

second term is negative as well for a positive labor wedge � pl if the ratio
@f( �0j�)
@�

=f(�0j �)

is increasing in �0 so that Cov�

�
@f( �0j�)

@�

f( �0j�) ;
@v(y0;�0;h0)

@h0

�
> 0.

It seems natural that f�(�
0j �)=f(�0j �) increases in �0 since this implies that the plan-

ner is more likely to observe higher future output of dynasties that have high current
ability. See, for example, the interpretation of the monotone likelihood ratio assumption
in Rogerson (1985). With persistence of ability types, the planner thus has an additional
incentive to subsidize education for reducing information rents of the future generation,
and this incentive is stronger the larger is the current labor wedge � pl .
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Concerning the wedge for bequests, we impose assumption [A1], use equation (42)
and follow the steps of the derivations of the reciprocal Euler equation noting that
E�
h
@f( �0j�)
@�

=f(�0j �)
i
= 0. This establishes that the wedge for bequests � pb > 0 also in

the case with persistent types. See also Stantcheva (2014).

A.2.4 Implementation

We derive how the debt-repayment schedule depends on income and education expen-
ditures if the social optimum is implemented with loans and contingent payments as in
Section 5. The maximization problem of the family is

W (b; h; t) = max
fb0;h0;lg

�Z
�

u(c)� v(l) + �W (b0; h0; t+ 1) dF (�)

�
s.t. b0 = (1 + r)b� c� g(h0; h) + L(h0; h) + y � T y(y)�D(b; h; y; h0),

y = Y (h; �; l),

h0 = h0(e; h) so that e = g(h0; h).

The �rst-order condition with respect to l is
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�
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+
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�
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�
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@l
= 0.

Using the de�nition of the labor wedge, we �nd that the debt-repayment schedule depends
on income in the following way:

@D(b; h; y; h0)

@y
= � l �

@T y(y)

@y
. (48)

The �rst-order condition with respect to h0 is
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Using (48) and the assumption that loans fully fund education expenditures, so that
L(h0; h) = g(h0; h), the debt-repayment schedule depends on human capital accumulation
as follows:
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Figure 6: Investment in children�s human capital and wedges for human capital, as a
function of labor income for parents with zero assets and 13 years of schooling.

A.3 Numerical solution and further numerical results (Web-
Appendix)

Since the algorithm closely follows Farhi and Werning (2013), we succinctly describe its
structure and refer readers to their paper for a thorough description of the numerical
approach. The simulation proceeds by backward induction starting from the last peri-
od/generation T , with the normalization VT+1 = 0. It proves convenient for computational
purposes to replace the promised value V with the multiplier � associated to the promise
keeping constraint (3) : In each period t, arbitrary values are set for the minimum and
maximum values of the two states variables �t and ht. Only the lower bound for human
capital at zero has a natural interpretation. The resulting vectors are discretized and
combined to construct a grid of points that cover a region of the state space.
Then the boundary value problem de�ned in equation (8) is solved for each point of

the grid by applying the following procedure. To compute the law of motion of the costate
�t, we �rst use the �rst-order conditions (6) and (7) to determine the optimal values of yt
and ht+1: These solutions allow us to infer optimal consumption ct and thus to determine
the value of the multiplier �t using the �rst-order condition (5). This, in turn, gives us
the law of motion of the costate �t: The solver iterates until the starting guess for !t (�)
yields a solution that is consistent with the terminal condition in (8). The �nal solutions
are stored and integrated over the interval

�
�; ��
�
so as to obtain the continuation values

for the solution of the problem in the previous period (next iteration). These steps are
repeated until the initial date t = 1 is reached.

The dynasty horizon T .�We solve the problem for a horizon of T = 4. This is
equivalent to assuming that agents are altruistic towards their great-grandchildren but not
towards their great-great-grandchildren. This arbitrary limit is chosen for computational
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Figure 7: Decomposition of the wedge for human capital as a function of ability � for
parents with zero assets and 13 years of schooling when � = �0:1:

reasons, since the state space has to be enlarged as the horizon increases, so as to avoid
corner solutions. Fortunately, the impact of T on the numerical solution decreases rapidly
because generations are separated by a period that is 30 years long. Hence, the discount
factor �T converges quickly to zero as T increases so that in t = 1 the utility of the
fourth and �fth generation only obtains a weight of 7% and 2:9%, respectively. Extending
the horizon T to more than four generations should thus have only a small e¤ect on the
numerical solution.
This intuition is con�rmed by Figure 6 which plots human capital investment and the

related wedge � �h for the di¤erent horizons T = 2; 3; 4. The upper-panel shows that the
investment in education is increasing in T . This is intuitive since a longer horizon extends
the bene�ts from human capital investment for the planner. As expected, the change in
human capital investment is much larger for a change in the horizon from T = 2 to T = 3,
than from T = 3 to T = 4. The small changes between T = 3 and T = 4 suggest that the
solution for the horizon T = 4 is already quite a good approximation for longer horizons.
This is con�rmed by the results for the human capital wedge, reported in the lower

panel of Figure 6. We see that an increase in the horizon from T = 2 to T = 3 has a
large e¤ect on � �h for low types with low income levels. But again, the impact of a longer
horizon T is very small when the horizon increases from T = 3 to T = 4. The results
reported in Figure 6 hence suggest that the chosen horizon T = 4 strikes a reasonable
balance between computing time and numerical accuracy.

Complementarity between ability and human capital �.� Since estimates on the degree
of complementarity between ability and education are scarce and hard to map into our
model, we have based our calibration on the Cobb-Douglas speci�cation, setting � = 0
in [A2]. We now check robustness of our results if human capital and ability are more
complementary than in the Cobb-Douglas case, as suggested by evidence in Cunha et al.
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(2006). Then � < 0 and the constrained e¢ cient wedge for human capital � �h = �b +�i,
where the incentive term �i > 0.
Figure 7 reports � �h along with its two components �b and �i, when � = �0:1,

T = 2 and all the other parameters are as in Table 1. As expected, the incentive term
�i now drives a positive wedge between � �h and �b: This wedge shrinks as � increases
because children of talented parents provide less e¤ort on average, and thus derive less
bene�ts from the complementarity between � and h: The shape of � �h remains very similar
compared with the benchmark case in Figure 6. By contrast, the level of � �h is smaller
because more complementarity makes human capital more risky: if children turn out to
have low ability, more complementarity lowers the return to human capital investment.
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