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Abstract 

A (conservative) test is constructed to investigate the optimal lag structure for forecasting 

realized volatility dynamics. The testing procedure relies on the recent theoretical results 

that show the ability of the adaptive least absolute shrinkage and selection operator 

(adaptive lasso) to combine efficient parameter estimation, variable selection, and valid 

inference for time series processes. In an application to several constituents of the S&P 500 

index it is shown that (i) the optimal significant lag structure is time-varying and subject to 

drastic regime shifts that seem to happen across assets simultaneously; (ii) in many cases the 

relevant information for prediction is included in the first 22 lags, corroborating previous 

results concerning the accuracy and the difficulty of outperforming out-of-sample the 

heterogeneous autoregressive (HAR) model; and (iii) some common features of the optimal 

lag structure can be identified across assets belonging to the same market segment or 

showing a similar beta with respect to the market index. 
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1 Introduction

For many years the prediction of financial assets has been the goal of extensive
research. While it seems of course tempting to be able to forecast future price
movements and returns, there is consensus that a monetarily profitable way of
forecasting returns does not exist; see, e.g., Goetzmann and Jorion (1993); Nelson
and Kim (1993); Kothari and Shanken (1997); Stambaugh (1999); Torous et al.
(2004); Campbell and Yogo (2006); Ang and Bekaert (2007), among others. On the
other hand, however, it is a well known fact that the volatility of an asset’s return
series is very persistent and can be predicted relatively well by several model types.
The ability to forecast, at least approximately, the volatility of an asset’s returns
is interesting for a variety of practical reasons, most notably portfolio management
and risk management. In particular, asset managers like pension funds or hedge
funds usually profit from the ability to forecast volatility by being able to better
adjust the risk-return tradeoff in their portfolios. Moreover, any institution holding
financial assets, whether for speculation or hedging, is capable of better calculating
the risks that are introduced to their balance sheets by specific assets if volatility
estimates are available. An important practical application of this is, for example,
the Value-at-risk, which is crucially dependent on accurate volatility estimates
and forms a major part of the rules imposed by financial regulators on individual
institutions.

One of the earliest and most influential of these models is the well known
GARCH model introduced by Bollerslev (1986). Although countless extensions
and adaptations have been suggested, it is very difficult to outperform the classic
GARCH(1,1) model in terms of forecasting quality; see, for example, Hansen and
Lunde (2005).

In the last years, the focus of research on volatility has been extended beyond
modeling volatility in general stochastic volatility (SV) or GARCH settings to
the idea of computing accurate estimates of volatility using high-frequency data,
introducing the notion of realized volatility ; for more details, we refer to the seminal
works of Andersen et al. (2001b, 2003b) or Barndorff-Nielsen and Shephard (2002),
and for a more recent overview of the literature regarding realized volatility and its
estimation to McAleer and Medeiros (2008). In order to capture long memory, one
of the main stylized facts shown by assets’ realized volatility time series, the time-
varying dynamics of realized volatility are often modeled as an ARFIMA process;
see, for example, Andersen et al. (2001a). As an alternative, the most commonly
used model for realized volatility is the heterogeneous autoregressive (HAR) model
introduced by Corsi (2009). Although not formally belonging to the class of long
memory models, the HAR model is able to closely mimic the behavior shown by
realized volatility time series. Nowadays, the HAR model enjoys great popularity
because of its very good out-of-sample forecasting performance and at the same
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time its computational simplicity. Similarly to the experience with the classic
GARCH(1,1) model, the standard HAR model has been extended along different
directions in an attempt to improve its estimation and forecasting accuracy; see
Corsi et al. (2012) for a recent survey.

This paper aims to analyze whether the HAR model, which is derived based on
theoretical assumptions about the investor behavior, can also be recovered purely
by statistical means. Making use of the fact that the HAR model can be viewed as
an autoregressive process of daily realized volatility, we will analyze whether the
implied lag structure, and in particular the maximal order lag, can be recovered
based solely on statistical grounds. In order to do so, we will use the adaptive
lasso introduced by Zou (2006), a refinement of the standard lasso technique due
to Tibshirani (1996), as the estimation procedure and apply it to the set of past
lags to see whether the lags that are significantly selected are in line with the HAR
assumptions.

For the analysis, we will make use of the recently developed theory by Audrino
and Camponovo (2013) who derived a conservative testing procedure for the coeffi-
cients estimated by the adaptive lasso. As shown in Leeb and Pötscher (2006, 2008)
and Pötscher and Schneider (2009), among others, it is impossible to estimate the
distribution of lasso estimators in the uniform sense (uniformity with respect to
the underlying parameter of interest in a shrinking neighborhood of the origin).
The conservative testing procedure introduced in Audrino and Camponovo (2013)
aims to partially mitigate this problem. In particular, Audrino and Camponovo
(2013) show that under appropriate conditions, their approach ensures uniform
valid inference with respect to the selection of the adaptive lasso tuning parame-
ter. While Zou (2006) was able to prove how to test hypotheses on the active set
of parameters (the coefficients that are truly non-zero in the population), Audrino
and Camponovo (2013) extended the theory to hypothesis testing on the passive
set of variables (the coefficients that are truly identical to zero in the population),
as well. This newly developed theory now makes it possible to test hypotheses
regarding the coefficients and therefore to analyze which lags are significantly dif-
ferent from zero. For a comprehensive review of the literature regarding inference
of the adaptive lasso, we refer to Audrino and Camponovo (2013).

Surprisingly, thus far there has been little research on the topic of analyzing the
validity of the assumptions of the HAR model. While Craioveanu and Hillebrand
(2010) have shown that it is only of little importance what investment horizons
are assumed for the different investor groups, that is which aggregation frequencies
are chosen in a HAR-like structure, Wang et al. (2013) show that an ARFIMA
model subject to structural breaks in the mean and the memory parameters of the
process can be approximated well by an AR model. They interpret this result as
an indirect econometric explanation for the empirical success of the HAR model.
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Finally, Hwang and Shin (2014) develop an infinite-order extension of the HAR,
called HAR(∞), and show that in estimating it using a finite-order model HAR,
the prediction error is mainly due to the estimation of the HAR coefficients rather
than to errors made in approximating the HAR(∞) process by the misspecified
finite-order HAR model, thus providing a theoretical justification for the wide use
of the standard HAR model.

The present paper is an extension of the work by Audrino and Knaus (2014)
who also analyze the validity of the lag structure implied by the HAR assumption
from a model selection perspective. In fact, Audrino and Knaus (2014) adopt a
similar approach and choose the lasso estimation procedure to recover the lags that
seem most informative for predicting future realized volatility. However, this paper
differs from Audrino and Knaus (2014) along several dimensions and, moreover,
addresses the various open points mentioned in their concluding remarks section.
First, Audrino and Knaus (2014) only analyze which lags are selected from the
lasso but do not test formally for the presence of false positives. We extend the
analysis by considering the adaptive lasso, a refinement of the lasso that should
itself help reduce the number of false positives, and additionally perform the test
on the significance of the coefficients in a statistically sound way. As we will show,
the presence of false positives is pervasive in the analysis of the lag structure of
realized volatility and, thus, must be taken seriously into account. Otherwise, we
run the risk of drawing the wrong conclusions.

Second, we extend the data set cross-sectionally by considering more individual
stocks belonging to the S&P 500. This allows us to better investigate the evolution
of the structure of the selected lags over time. In contrast to Audrino and Knaus
(2014) we can (i) verify whether there are common structural breaks affecting
simultaneously the dynamics of (almost) all assets and (ii) determine the factors, if
any exist, that are able to explain the cross-sectional differences in how structural
breaks influence the lag structure. Our results show that there are two main
structural breaks in the period under investigation ranging from January 2001
to November 2010 that divide it into three different subperiods characterized by
different market and realized volatility conditions: The first break corresponds to
the end of the US stock market downturn in 2002 following the burst of the dot-com
bubble, whereas the second break takes place with the onset of the financial crisis
in 2008, located around the bankruptcy of Lehmann Brothers. Moreover, we show
that the market sector and the beta of the individual assets are important factors
in explaining the behavior cross-sectionally of the realized volatility lag structures:
in fact, assets that belong to the same market sector or possess a similar beta with
respect to the market index show very similar structures.

The content of this paper can be summarized as follows: Section 2 presents the
theoretical foundations of both the HAR model and the adaptive lasso estimator
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and introduces the hypotheses of interest and the testing procedure. Section 3
illustrates the empirical results of the analysis by separately presenting them before
and after testing. Section 4 concludes.

2 Theoretical considerations

This section will lay out the theoretical motivation of the empirical tests that
follow. The idea is to test the validity of the HAR model by employing the adaptive
lasso as model selection device. The estimation results of the adaptive lasso will
further be analyzed regarding statistical significance both individually and jointly.
We will therefore first introduce the HAR model, then the estimation procedure
via the adaptive lasso and the conditions under which inference can be conducted.
Finally, the concept of multiple hypothesis testing will be briefly revisited.

2.1 The HAR model

In the past years, there has been a shift in the focus of the literature on modeling
and forecasting volatility. For many years after the introduction of the GARCH
model by Bollerslev (1986), the literature aimed at modeling the unobservable
volatility of an asset. However, in recent years, the concept of realized volatility
has gained popularity: in fact, by estimating the unobservable second moment
more accurately using high-frequency data, volatility has been made somehow
“observable.” Let us briefly review the concept of realized volatility.

We assume that log-prices of an asset follow the stochastic process

dp(t) = µ(t)dt+ σ(t)dW (t),

where W (t) is a standard Brownian motion and µ(t), p(t) and σ(t) satisfy the
usual regularity conditions. Under this assumption, realized volatility is defined

as the sample analogue to the integrated volatility IV
(d)
t =

√∫ t
t−1d

σ2(s)ds where

d corresponds to the time interval of interest, usually one trading day.
As has been shown in previous research on quadratic variation by, for example,

Andersen et al. (2003a) and Barndorff-Nielsen and Shephard (2002), this theo-
retical quantity can be estimated consistently by means of the sum of squared
log-returns, assuming the absence of microstructure noise and jumps. With ap-
propriately chosen ∆ and M , which reflect the length of the sampled time interval
and the sampling frequency, one can therefore define realized volatility as

RV
(d)
t =

√√√√M−1∑
j=0

r2
t−j·∆,
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where rt are the asset’s log-returns.1

When it comes to modeling realized volatility dynamics over time, one of the
most popularly used models for its simplicity and at the same time very high esti-
mation and prediction accuracy, is the heterogeneous autoregressive model, hence-
forth the HAR model, introduced by Corsi (2009). The central idea of the HAR
model is to predict future realized volatility dependent on past realized volatility
in a linear setting.

The HAR model is stated under the key assumption that the market partic-
ipants can be separated into three heterogeneous groups of traders according to
their trading horizons, i.e. daily, weekly or monthly rebalancing. It further as-
sumes that each of these groups create their own component of latent volatility and
take into account their expectation of future volatility at a lower frequency. This
cascade model of volatility can finally be written as the famous HAR equation.
Furthermore, it is common to substitute realized volatility at different frequencies
by the respective logarithms. This is done mainly for two reasons: First, the dis-
tribution of the logarithm of realized volatility more closely resembles the normal
distribution than realized volatility in its level form. Second, by modeling the log-
arithm there is no need to impose restrictions on the parameters so that resulting
estimates and forecasts are positive. After this transformation, we get:

logRV
(d)
t+1 = c+ β(d) logRV

(d)
t + β(w) logRV

(w)
t + β(m) logRV

(m)
t + εt+1 (1)

Using the fact that the logarithms of weekly and monthly realized volatility,
logRV

(w)
t and logRV

(m)
t , are defined to be the averages of the logarithms of daily

volatility over 5 and 22 days (the number of trading days in a week/month),
respectively, this model can be rewritten as a constrained linear autoregressive
(AR) process:

logRV
(d)
t+1 = βHAR0 +

22∑
i=1

βHARi logRV
(d)
t−i+1 + εt+1 (2)

with the restrictions being

βHARi =


β(d) + 1

5
β(w) + 1

22
β(m) for i = 1;

1
5
β(w) + 1

22
β(m) for i = 2, ..., 5;

1
22
β(m) for i = 6, ..., 22.

(3)

1In the last ten years different alternative, more advanced estimators for realized volatility
have been introduced in the literature that are robust to microstructure noise and/or jumps.
Although obtaining accurate estimates of realized volatility is a central task and a deeply inves-
tigated problem in financial econometrics, this is not central to the paper at hand. In fact, the
theory developed in this section can be applied to any accurate measure of realized volatility.
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In inspecting the structural AR(22) specification implied by the HAR model,
it is obvious that if the HAR model were the correct model for realized volatility,
one would expect to observe in empirical data that indeed exactly the first 22 lags
are relevant for forecasting tomorrow’s realized volatility.2

It is now the goal to apply the adaptive lasso as a model selection device to
the time series of realized volatility. If the HAR model were the correct model,
we would expect the adaptive lasso to select exactly the first 22 lags and set the
remaining coefficients to zero. While this question was previously of interest for
Audrino and Knaus (2014), our procedure differs in two ways: First, we will use
the adaptive lasso, as opposed to the standard lasso, which was used by Audrino
and Knaus (2014) in the main analysis. Second, we will additionally apply the
newly derived theory by Audrino and Camponovo (2013) in order to check which
of the lags that have been selected by the adaptive lasso are truly significant. In
this way we will get rid of, or at least reduce the impact of, false positives (that
is, variables that are selected to be active but are in reality inactive) that affect
lasso-type approaches and can possibly lead to wrong conclusions.

2.2 The adaptive lasso

The adaptive lasso, as proposed by Zou (2006), is a generalized refinement of the
lasso that was originally introduced by Tibshirani (1996). The lasso, an acronym
for least absolute shrinkage and selection operator, can be viewed as a constrained
least squares regression problem. Since the model to be tested is linearly autore-
gressive in the regressors, i.e.

logRV
(d)
t+1 = β0 +

p∑
i=1

βi logRV
(d)
t−i+1 + εt+1, (4)

where the εi are innovation variables with mean zero, we can consequently define
the adaptive lasso estimator as

β̂AL = arg min
β


n∑
i=p

(
logRVi+1 − β0 −

p∑
j=1

βj logRV
(d)
i−j+1

)2

+ λ

p∑
j=1

λj|βj|

 (5)

with λ ≥ 0 being a tuning parameter and λj being individual weights for each of the
coefficients. The special case of the classic lasso by Tibshirani (1996) corresponds
to the setting where λj = 1 for j = 1, ..., p.

From this objective function it is obvious that setting λ = 0 will cause the lasso
estimator to coincide with the ordinary least squares estimator, β̂OLS. Usually,

2From the original assumptions it can be derived that all β(·) are strictly positive, which rules
out the scenario of any βHAR

i being 0. This has been confirmed empirically.
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this estimator will not set any of the coefficients equal to zero. However, by
choosing a strictly positive λ, all coefficients that are not equal to zero will be
penalized. Consequently, increasing λ leads to more and more coefficients that
will be set exactly to zero, therefore performing progressively stricter variable
selection. Thus, assuming sparsity, we expect the adaptive lasso to select only the
active set of regressors, i.e. the ones which are truly non-zero.

For the classical cross-sectional setting, assuming the innovation variables to be
independent and identically distributed (iid), Zou (2006) showed that the adaptive
lasso fulfills the so-called oracle properties, which means that it asymptotically
both identifies the non-zero coefficients and estimates the coefficients of the truly
active variables consistently and efficiently. This result is dependent on the fact
that the individual weights λj will be chosen data-dependent. Possible choices for
the weights are, for example, the inverse of the absolute value of the coefficients
estimated by either OLS (in the case that OLS can be performed) or the lasso
(in the high-dimensional case where one has to deal with more regressors than
observations).

However, for the specific question we are analyzing, the assumption of iid in-
novations is unrealistic. When it comes to linear time series processes, as is the
case for the AR class of models we are dealing with in this paper, as shown in the
previous section, it was further proved by Kock (2012) and Medeiros and Mendes
(2012), among others, that the adaptive lasso satisfies the oracle properties as
well.3 The adaptive lasso is therefore a theoretically sound model selection device
to investigate the validity of the HAR model for realized volatility dynamics. Note,
however, that although the adaptive lasso is able asymptotically to correctly iden-
tify the non-zero coefficients, it is not really designed to check the validity of the
parameter restrictions implied by the HAR model (that is, the same value of the
coefficients in the three different trading windows). For this purpose, alternatives
to the adaptive lasso like the clustered lasso or the group lasso can be used.

2.3 Hypotheses of interest and testing procedure

Audrino and Camponovo (2013) recently developed a conservative inference pro-
cedure for the coefficients of the adaptive lasso. While this was previously only
possible for the truly non-zero coefficients, this newly developed theory allows in-
ference on all coefficients, thus allowing in particular to test for false positives. As
we show empirically below, the presence of false positives cannot be neglected and
may cause misleading interpretations of the results. Briefly, the inference proce-
dure introduced in Audrino and Camponovo (2013) is motivated by the fact that

3Similar oracle properties have also been shown for multivariate VAR processes by Kock and
Callot (2012) and Callot and Kock (2014).
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the adaptive lasso coincides with OLS when λ = 0. The authors showed that the
standard errors of the limiting distribution of the adaptive lasso estimators for
each fixed value of λ become smaller when λ becomes greater than zero, which
is why a conservative test for the adaptive lasso coefficients can be conducted by
using the estimated OLS standard errors of the coefficients.

Put formally, there are two hypotheses of interest for testing the validity of the
HAR model: The first hypothesis the HAR model implies is that all lags up to the
22nd matter for prediction and are therefore non-zero. The first corresponding null
hypothesis is therefore H0 : βi = 0,∀i = 1, ..., 22; a rejection of the null hypothesis
is thus a confirmation of the HAR model. The second implication of the HAR
model would be that lags beyond the 22nd should not matter for predicting future
realized volatility, that is H0 : βj = 0 for j > 22, which would be rejected if the
corresponding coefficient beyond the 22nd were found to be significantly different
from zero, thus casting doubt on the correctness of the HAR dynamics.

In order to test these hypotheses, the individual test statistics are constructed
using the results of Audrino and Camponovo (2013): The individual significance
of β̂i can be found using the test statistic

Ti =
√
n
(
β̂AL,i − βi

)
, ∀i = 1, ..., I, I >> 22, (6)

with the OLS standard errors.

2.4 Multiple hypothesis testing

It is clear that the two hypotheses introduced above can be seen as joint tests. In
particular, the second hypothesis can be rewritten asH0 : β23 = β24 = ... = 0 which
would be rejected if one of the coefficients beyond 22 were found to be significantly
different from zero, thus implying that the maximal order lag assumed under an
HAR model specification were wrong. Practically, of course, only a finite number
of lags can be tested and should be chosen sufficiently large. For the sake of the
exposition, let us assume that the first 100 lags will be considered (that is, I = 100
in (6)). In that case, the first hypothesis would be equivalent to a joint test of 78
individual hypotheses. This large number of hypotheses for the joint test justifies
the procedure of testing the hypotheses by controlling the family-wise error rate,
as suggested by Holm (1979) and Romano and Wolf (2005).

The intuition behind this procedure is that for a large number of hypotheses
one would expect to reject some test statistics in any case. The Holm procedure
corrects for this fact by imposing a threshold on the probability α that one or
more of the hypotheses are rejected. To state the exact procedure, we assume that
the p-values of the individual s statistics are sorted in ascending order, so that
p̂1 ≤ p̂2 ≤ ... ≤ p̂s. The step-wise procedure is then given by (Romano and Wolf,
2005):
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1. If p̂1 ≥ α/s, accept H1, ...Hs and stop. If p̂1 < α/s, reject H1 and test the
remaining s− 1 hypotheses at level α/(s− 1).

2. If p̂1 < α/s but p̂2 ≥ α/(s − 1), accept H2, ...Hs and stop. If p̂1 < α/s and
p̂2 < α/(s − 1), reject H2 in addition to H1 and test the remaining s − 2
hypotheses at level α/(s− 2).

3. And so on.

It needs to be stressed that this procedure is very conservative because for large
numbers of hypotheses, the critical values will become very large. This would
make the test tend to view the coefficients beyond the 22nd as not significantly
different from zero jointly. Given that the individual test statistics are already
conservative, this test could therefore be considered as too conservative in the case
at hand.

3 Empirical analysis

3.1 Data set

The data set used for the empirical analysis is an extended version of the one used
by Audrino and Knaus (2014): we consider tick prices obtained from TickData
consisting of intraday quotes of Alcoa, American Express, Baxter, Blackrock, Cit-
igroup, Coca Cola, Dow, Exxon Mobil, Gilead, Goldman Sachs, Hasbro, Harley
Davidson, Intel Corporation, Met, Microsoft, Nike, Pfizer, Verizon and Yahoo from
January 2, 2001 to November 15, 2010, which corresponds to 2472 trading days
after filtering.

The intraday quotes were used to compute daily realized variance measures
based on the two-time scales estimator by Zhang et al. (2005).4 The two chosen
scales were 2 and 20 ticks; however, the results are not sensitive to the grid size.
In order to further mitigate the effect of microstructure noise, we also disregard
the trades of the first and last 30 minutes of each trading day.

[Figure 1 about here.]

Figure 1 shows some illustrative examples of the computed realized volatility series
for Citigroup and Verizon, belonging to the financial and technological sector,
respectively.5 It can be seen that, in general, realized volatility levels are higher

4As previously mentioned, we can alternatively use any other accurate estimator of realized
volatility. As Audrino and Knaus (2014) already showed empirically, results are robust to the
choice of the estimator provided that it is accurate enough.

5The sector classifications for all assets were adopted from Yahoo Finance.
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for Citigroup than for Verizon. This is in line with expectations given the respective
sectors. Summary statistics for the series under investigation are given in Table 1.

[Table 1 about here.]

Furthermore, in the considered time period we can identify two main events
affecting realized volatility for all assets. The first is the period until roughly the
fourth quarter of 2002, which corresponds to the aftermath of the burst of the
tech bubble and the terrorist attacks on 9/11. In this period, realized volatility
levels were higher than usual for all assets and more spikes can be observed. The
subsequent period from 2003 to the end of 2007 can be viewed as relatively calm,
with realized volatility levels remaining relatively constant with only a few spikes.
The third period starts in 2008, with realized volatility reaching extremely high
levels during the start of the financial crisis. It should be noted that in this period
realized volatility returns to pre-crisis levels in 2009 for most non-financial assets,
while Citigroup and other financial assets continue to have higher than usual levels
of volatility. The mentioned properties can be observed across all assets, with only
Citigroup being an exception with a persistently high realized volatility during the
financial crisis.

[Figure 2 about here.]

Figure 2 shows an example of the autocorrelation function for the time series of
realized volatility of Verizon. This demonstrates that the autocorrelation function
is very slowly decaying and confirms the well documented long-memory shown
by realized volatility series. Moreover, it also provides clear evidence for the high
correlation present among near lags of realized volatility. From an estimation point
of view, this will lead to highly collinear regressors in our AR setting, which makes
the isolation of the individual effects more difficult. This point must be carefully
taken into account when discussing the results of the adaptive lasso analysis, in
particular those related to the validity of the HAR when using the first testing
hypothesis introduced in Section 2.3.

3.2 Rolling window analysis

The empirical analysis is conducted using a rolling window procedure to overcome
problems related to the possible non-stationarity of the realized volatility series:
see the discussion after Figure 1 and the extensive literature about structural
breaks in realized volatility series such as Hillebrand and Medeiros (2014) and
Bertram et al. (2013) and the references therein. The first step is the estimation
of the adaptive weights λi. In this case, the OLS estimator is chosen in accordance
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with Audrino and Camponovo (2013), although theoretically any
√
n-consistent

estimator would be a valid choice as well.6

Estimating the regression of the time series on its first I = 100 lags by OLS,
the resulting coefficients are inverted in absolute value to obtain the weights:

λi = 1/|β̂OLS,i|, i = 1, . . . , 100. (7)

These weights are then used to fit an adaptive lasso to the model, which of course
still depends on the tuning parameter λ.

We choose λ based on the one-standard-error rule via cross-validation. All
estimations are conducted in R via the glmnet package: see Friedman et al. (2010).7

3.2.1 Adaptive lasso estimation

In a first step, we will analyze which lags are selected by employing the adaptive
lasso in the spirit of Audrino and Knaus (2014). The above-mentioned procedure
was conducted on a rolling window basis, with a window length of 1000 trading
days (that is, about 4 years), rolled over day by day.8 The top panels in Figures 3
through 5 show the lags that are selected (blue rectangles) by the adaptive lasso
for our illustrative examples, namely Citigroup, Verizon and Exxon Mobil. The
same plots for the rest of the assets are reported in the appendix.

[Figure 3 about here.]

[Figure 4 about here.]

[Figure 5 about here.]

Each column corresponds to the selected lags for one rolling window, with the
start date and end date given at the top and bottom of the plot, respectively.
Additionally, we mark four events in the timeline and the dates at which they
left (entered) the rolling windows: 9/11, the end of the stock market downturn
(we choose the day when the S&P500 reached its lowest level), and the collapse

6Empirically, it turns out that the choice of this first-step estimator is of very little importance
and produces almost identical final results, as for example from using the standard lasso or other
valid estimators.

7Alternative ways of finding λ, for example based on the minimization of the BIC, have proved
to be very similar after testing. Before testing, however, the adaptive lasso generally selects many
more variables when minimizing the BIC than when applying the one-standard-error rule. We
interpret this result as a signal that optimizing the shrinkage parameter using the BIC generally
leads to many more false positives than when using cross-validation.

8Similarly to what has been shown by Audrino and Knaus (2014), choosing a different window
length does not qualitatively alter the main results and conclusions.
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of Bear Stearns (BS) and Lehman Brothers (LB). The diagonal dotted lines have
slope one and help to illustrate how individual events propagate through the lag
structure over time. The red line indicates the maximal order lag implied by the
HAR model assumption.

Inspecting the plots of the results, we can make three key observations: First,
we see that generally not all of the first 22 lags are selected by the adaptive
lasso. This confirms the findings by Audrino and Knaus (2014). In fact, usually
no more than 5 or 6 lags among the first 22 are selected by the adaptive lasso.
Moreover, generally these active lags are among the first ten. This contradicts
the implications of the HAR model. However, given the high multicollinearity of
the lags of realized variance, it needs to be emphasized that this result should
be viewed with caution: Since the lags are highly correlated and given that the
adaptive lasso is not enforcing the parameter restrictions implied by the HAR
model, it is to be expected that the estimation procedure will select only a few
of these lags and that these will be highly significant. In other words, due to the
penalization of any non-zero coefficient, it is not surprising that the adaptive lasso
selects only a few of these lags that seem to have a highly similar informational
content. Thus, the fact that the adaptive lasso does not select all the necessary lags
should not be viewed as strong evidence against the validity of the HAR model.

Second, we see that the adaptive lasso selects many lags beyond the 22nd for
many assets. In fact, it sometimes selects lags that are considerably far beyond the
22nd, for example for Citigroup and Verizon. These lags are not in line with the
implications of the HAR model and furthermore appear to be relatively stable over
long periods of time. This, as well, confirms the results by Audrino and Knaus
(2014). Overall, the lags selected by the adaptive lasso therefore seem to provide
evidence against the validity of the HAR model.

The third observation that can be made by inspecting the rolling window plots
is that two structural breaks are clearly visible across almost all assets which divide
the time period under investigation into three subperiods. It appears that the end
of the stock market downturn and the collapse of Lehman Brothers mark two
break points at which the lag structure selected by the adaptive lasso significantly
changes. The effect of the collapse of Lehman Brothers is best visible by inspecting
the lags selected for Citigroup in Figure 3: In the third period, right after the
collapse and along the diagonal lines, the shocks to volatility propagate through
the lag structure and remain for a short period. This pattern is, not surprisingly,
also easily visible for the other financial titles.

The breakpoint dividing the first and the second subperiod appears to be the
end of the stock market downturn during the final months of 2002. This is in line
with the results of Hillebrand and Medeiros (2014) and Audrino and Knaus (2014)
who also confirm the presence of a structural break in realized volatility around
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the end of 2002. In general, across many assets, it can be observed that larger
lags tend to be selected as active variables by the adaptive lasso more often in
the first and the third period than in the second. Throughout the second period
there is very little variation in the lags selected, which is not surprising given that
this period is characterized by calm market conditions. Furthermore, across assets
the adaptive lasso selects only very few and very short lags in this period: for
many assets, in fact, only up to the third lag. In other terms, it seems that during
such a quiet period, characterized by low levels of realized volatility, very simple
autoregressive processes perform best at predicting volatility. In fact, recalling the
plot of realized volatility series during the 2003-2007 subperiod, we see that the
persistence of the series is significantly lower than that observed in the preceding
and following periods. The more quickly decreasing autocorrelation function in
that period is therefore in line with the smaller order of the autoregressive process.

A plausible explanation for the fact that in this calm period only the shortest
lags are selected is that there are far fewer spikes of volatility observable than
in more hectic times, such as the first and the third period: The second period
is characterized by a relatively constant level of volatility, which means that only
very few events occur which affect volatility. Therefore, the time series of volatility
is very smooth and given the lack of events with big impact, the preceding day’s
level of volatility is a high quality forecast. On the other hand, for the more
hectic periods, there are many events that occur at a high frequency which lead
to volatility spikes. Given the persistence of volatility in these periods, longer lags
therefore have much greater forecasting power. With respect to the high number
of volatility spikes, it is thus intuitively compelling that larger lags are also selected
by the adaptive lasso, as compared to the calmer period.

Fourth, while this general pattern seems to hold across most of the assets in our
sample, we also detect two other factors that have an impact on the lags selected by
the adaptive lasso in the different subperiods: the market sector and the beta of the
individual assets. Figure 6 shows how the adaptive lasso estimates for the financial
stocks compare to those for the stocks of the basic materials sector. We can observe
that generally many more large lags are selected for the financial assets than for
the basic materials assets, across all periods. An intuitive explanation for this
behavior is that compared to financial companies, basic materials companies are
less subject to particular financial and/or economic events that have a big impact
on volatility. Therefore, volatility progresses more smoothly and the shorter lags
are much more valuable for forecasting than the large ones. On the other hand,
the larger lags selected for the financial stocks, in particular those that propagate
over the rolling windows, usually identify particular events yielding large spikes
in realized volatility. For example, we see that the collapse of Lehman Brothers
visibly propagates through the lag structure of the financial assets but does not
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have any effect on the basic materials assets.

[Figure 6 about here.]

A second relevant factor impacting the lag structure selected by the adaptive
lasso is the asset’s beta. Figure 7 shows the grouped plots of the adaptive lasso
estimates of the four assets with the highest betas (top) and the four assets with
the lowest betas (bottom). In order to isolate the effect of beta from the effect
of the sector, the plots show the assets with the highest and lowest betas from
different sectors. We can see from these plots that the third period of the financial
crisis is actually not only related to the sector but also to the beta. For the low
beta assets, in contrast to the high beta assets, virtually no lags beyond the 22nd
are selected in that period. This can again be explained by the fact that low beta
assets are less influenced by market turbulence and therefore show fewer significant
spikes of volatility in that period. While we can see that the sector and the beta
have an influence on the lag structure that is selected by the adaptive lasso, we
find that other factors such as liquidity and value do not seem to show visible
effects.

[Figure 7 about here.]

3.2.2 Testing for false positives

Having obtained the adaptive lasso estimates, we now test to see whether these
estimates are indeed significantly different from zero or can be classified as false
positives. We therefore test the two hypotheses of interest using the procedure
described in section 2. This is done by dividing each estimate β̂AL,i by its respec-
tive OLS standard error that was previously computed. The absolute value of the
resulting quantity is then compared to the normal quantiles at the desired signif-
icance level; in our case we test at confidence level 95%. The plots reporting the
significantly selected lags after testing are drawn in the bottom panels of Figures 3
through 5 for the three illustrative examples Citigroup, Verizon and Exxon Mobil,
respectively. The same plots for the rest of the assets are reported in the appendix.

Analyzing these plots, we can revisit the discussion of the previous subsection
after controlling for false positives (although in a conservative way). To begin
with, the first hypothesis is generally rejected because not all of the first 22 lags
are selected by the adaptive lasso. We now see that most of these lags are also found
to be significant, with some of the very short lags being the most significant. We
can therefore conclude that much of the information contained in the lag structure
is in fact due to the shorter lags. Nevertheless, similarly to what we discussed
above, given that short lags are highly correlated, this result cannot be seen as
strong evidence against the HAR model.
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Second, while the adaptive lasso estimates seem to reject the second hypothesis,
we now see that after testing we indeed fail to reject it at a significance level of
95% for most assets at most times. After testing, we observe that almost all lags
that are selected beyond the 22nd are insignificant at the 95% level and can be
generally interpreted as false positives. Except for a very few very short periods
of time, the lags disappear completely, which therefore supports the validity of
the HAR model. In fact we see that only four of the 19 assets retain a large lag
that remains significant for a long period. On the other hand, however, given that
we are using a conservative procedure favoring the null hypothesis of no active
lags beyond 22, those exceptions can be interpreted as strong evidence against the
HAR for the corresponding assets and subperiods.

Overall, the results regarding the significant lags provide a very good expla-
nation as to why the HAR model performs so well in practice in the different
forecasting applications: usually all the lags that are significantly selected by the
adaptive lasso for forecasting tomorrow’s realized variance are among the first 22
lags. The subset of lags that the HAR model focuses on therefore appears to
contain all the relevant information. Due to the fact that these lags are highly
correlated, it is also not as important which of these lags are used. Thus, it does
not make a crucial difference that the HAR model, as opposed to the adaptive
lasso, focuses on all of the first 22 lags. Since the HAR model imposes restrictions
on the estimated parameters, it is nonetheless very parsimonious. This finding also
explains the results found by Craioveanu and Hillebrand (2010) who show that the
choice of the aggregation frequencies does not make a significant difference for the
performance of the HAR model.

Finally, we see that while most of the large lags are found to be insignificant,
we still observe two breaks in structure among the significant ones. This is best
seen by acknowledging the fact that the short lags that are significantly selected
also usually change when the breaks occur.

3.2.3 Multiple testing

As mentioned in the theoretical section, the second hypothesis amounts to a joint
test of 78 individual hypotheses. This would justify the procedure of controlling
the family-wise error rate instead of the individual ones. We report the results for
all assets for a significance level of 95% in Figure 8.

[Figure 8 about here.]

For the lags beyond the 22nd, the plots report the lags that are significant
after multiple testing, while for the lags up to the 22nd, they report the ones
that are significant after individual testing. Inspecting the figures, we see that
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after multiple testing all the lags beyond the 22nd are insignificant for most assets
most of the time. One exception would be Microsoft, for example, for which a
large lag is significantly selected throughout the first and second period. It is
not surprising that generally most of the large lags turn out to be insignificant
after testing multiply, given that the test procedure, as previously mentioned, is
very conservative. Together with the already conservative way of estimating the
standard errors, this amounts to a test which is too conservative in the sense that
the critical values for the lags become extremely high.
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4 Conclusion

The goal of this paper was to analyze whether the structural assumptions that
the HAR model implies can be recovered using solely statistical techniques. In
particular, the HAR model assumptions are equivalent to stating that the dynamics
of realized volatility follows a constrained AR(22) process.

For the empirical investigation, we employ the adaptive lasso as a selection
device for the past lags that are most relevant for prediction. We make the obser-
vation that the lags selected for the 19 stocks under investigation generally do not
corroborate the validity of the HAR model: For most assets, lags far beyond the
22nd are selected and not all of the first 22 are selected either.

We further observe in the rolling window analysis that the lags selected are
generally relatively stable over time. However, there appear to be two structural
breaks, which significantly affect the lag structure across all assets, with the first
one occurring at the end of the stock market downturn at the end of 2002 and the
second one coinciding with the collapse of Lehman Brothers in 2008. We further
see that for almost all assets, during the middle period, which is very calm in terms
of realized volatility, only very short lags are selected by the adaptive lasso. This
is in contrast to the more volatile periods in the beginning and the end in which
for some assets very large lags are selected additionally. A likely explanation for
this observation is that the larger lags are related to the frequency of spikes of
volatility: In calm periods, a simple autoregressive process of small order is a very
good predictor of the future behavior because volatility progresses very smoothly.
For the more volatile periods in the beginning and in the end, large spikes of
volatility cause the adaptive lasso to attribute predictive power even to very large
lags.

Another observation that can be made is that the sector and the beta seem
to have an effect on how the lag structure is affected by the structural breaks.
Comparing the results of financial assets with basic materials assets, we see that
for basic materials assets, significantly fewer large lags are generally selected. This
can again be attributed to the fact that fewer spikes of volatility occur for these
assets. Furthermore, for the financial titles, we see that the collapse of Lehman
Brothers clearly propagates through the lag structure. In fact, the effect of the
financial crisis is also closely linked to the size of the beta: We see that for low
beta assets, in contrast to high beta assets, even across sectors virtually no large
lags are selected in the final period.

Finally, we find that for almost all assets over all time windows, the large
lags that are inconsistent with the HAR model are statistically insignificant. This
explains the good empirical performance of the HAR model because it shows that
the model focuses on the right subset of the lags that are significant for forecasting.
The fact that not all of the first 22 lags are significant should not be overrated
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given that the HAR model puts constraints on the autoregressive process and the
fact that the first lags are highly correlated. The HAR model therefore focuses
in a parsimonious way on the subset of lags that contain the most important
information for forecasting.
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Appendix: Additional results

In Figures 9 and 10 we report the results of the adaptive lasso estimates before
and after testing for false positives at the 95% confidence level, respectively, for
the whole data set under investigation.

[Figure 9 about here.]

[Figure 10 about here.]
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AA AXP BAX BLK C DOW GILD GS HAS HOG

Total

Mean 168.84 149.89 108.87 132.66 244.08 143.78 170.91 153.32 133.06 146.72
SD 98.14 111.32 56.70 93.98 293.89 81.38 85.58 119.87 75.83 86.31

Min 49.38 22.77 29.11 0.41 33.06 33.49 43.11 31.08 18.33 35.92
Max 1405.28 1219.51 1016.44 771.15 3233.65 926.15 1394.36 2118.57 776.32 748.34

Period 1

Mean 181.13 194.03 137.94 116.12 187.50 181.89 279.92 175.96 201.22 169.23
SD 67.66 75.82 75.77 90.55 80.21 72.95 95.02 73.92 91.70 69.87

Min 65.63 52.51 29.11 0.41 45.59 51.11 100.49 46.15 62.65 42.84
Max 442.67 565.51 1016.44 562.54 889.96 696.40 748.41 961.02 776.32 615.55

Period 2

Mean 134.37 109.57 99.27 113.67 113.26 110.62 151.60 124.59 107.43 110.01
SD 56.33 71.15 41.51 61.96 80.67 46.59 41.91 63.66 47.31 45.18

Min 49.38 22.77 34.35 6.67 33.06 33.49 43.11 31.08 18.33 35.92
Max 952.57 635.93 475.88 438.40 1017.87 498.73 436.94 678.88 376.38 372.56

Period 3

Mean 252.99 224.85 112.08 197.38 644.88 204.01 137.54 213.70 149.10 228.93
SD 144.21 161.40 66.12 132.58 396.51 109.67 98.30 207.97 86.78 115.74

Min 90.21 49.21 33.22 51.73 227.66 72.96 44.43 49.23 41.94 66.33
Max 1405.28 1219.51 597.71 771.15 3233.65 926.15 1394.36 2118.57 620.93 748.34

INTC KO MET MSFT NKE PFE VZ XOM YHOO

Total

Mean 157.83 94.48 154.49 125.83 122.88 121.24 118.20 114.61 188.35
SD 73.93 50.32 124.83 68.12 65.37 60.13 69.22 71.00 104.29

Min 55.12 22.80 22.64 35.77 37.18 44.87 34.16 29.32 52.27
Max 1017.91 627.35 1086.87 1325.89 656.84 991.75 811.64 1420.57 1501.75

Period 1

Mean 228.77 134.83 164.05 171.64 159.84 148.56 162.33 138.94 333.43
SD 85.43 51.49 66.52 64.65 62.66 55.59 70.84 56.54 93.63

Min 64.84 49.47 55.83 48.98 42.35 72.28 60.00 41.65 155.58
Max 982.62 404.98 484.59 748.56 387.83 521.40 445.49 387.19 713.50

Period 2

Mean 129.57 80.88 111.07 102.66 101.43 98.54 103.61 101.88 149.65
SD 38.56 31.11 51.87 45.20 43.11 40.25 47.97 43.33 56.17

Min 55.12 22.80 22.64 45.18 37.18 44.87 34.16 29.32 52.27
Max 468.39 406.00 491.75 1325.89 318.68 789.05 407.87 599.81 672.48

Period 3

Mean 178.88 99.70 265.18 152.80 152.15 161.50 123.13 130.10 179.32
SD 91.05 69.96 205.15 90.81 89.18 76.56 96.31 118.25 113.30

Min 55.23 28.48 49.34 35.77 46.39 59.69 36.09 30.74 63.33
Max 1017.91 627.35 1086.87 952.95 656.84 991.75 811.64 1420.57 1501.75

Table 1: Descriptive statistics of the realized volatility series for all assets under
investigation. The top panel contains statistics for the entire time period from
January 2, 2001 to November 15, 2010, the second panel for subperiod 1 up to
the end of the US stock market downturn in 2002 (2002/10/09), the third for
subperiod 2 between the end of the stock market downturn and the collapse of
Lehman Brothers (2008/09/15), and the fourth for the final subperiod after the
collapse of Lehman Brothers.
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Figure 1: Time series of realized volatility for Citigroup (black) and Verizon (red)
for the time period from January 2, 2001, to November 15, 2010.
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Figure 2: Autocorrelation function of realized volatility for Verizon up to lag 100.
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Figure 3: Lags selected by the adaptive lasso (top) and lags significant at the 95%
significance level (bottom) for Citigroup: The blue rectangles correspond to the
lags selected by the adaptive lasso. The top (bottom) axis contains the start (end)
dates of the respective rolling windows. The red line is drawn after the 22nd lag.
Additionally, four events are highlighted: 9/11, the end of the US stock market
downturn in 2002, and the collapse of Bear Stearns (BS) and Lehman Brothers
(LB).
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Figure 4: Lags selected by the adaptive lasso (top) and lags significant at the 95%
significance level (bottom) for Verizon: The blue rectangles correspond to the lags
selected by the adaptive lasso. The top (bottom) axis contains the start (end)
dates of the respective rolling windows. The red line is drawn after the 22nd lag.
Additionally, four events are highlighted: 9/11, the end of the US stock market
downturn in 2002, and the collapse of Bear Stearns (BS) and Lehman Brothers
(LB).
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Figure 5: Lags selected by the adaptive lasso (top) and lags significant at the 95%
significance level (bottom) for Exxon: The blue rectangles correspond to the lags
selected by the adaptive lasso. The top (bottom) axis contains the start (end)
dates of the respective rolling windows. The red line is drawn after the 22nd lag.
Additionally, four events are highlighted: 9/11, the end of the US stock market
downturn in 2002, and the collapse of Bear Stearns (BS) and Lehman Brothers
(LB).
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Figure 6: Lags selected by the adaptive lasso for financial (top) and basic materials (bottom)
assets: The blue rectangles correspond to the lags selected by the adaptive lasso. The top
(bottom) axis contains the start (end) dates of the respective rolling windows. The red line is
drawn after the 22nd lag. Additionally, four events are highlighted: 9/11, the end of the US
stock market downturn in 2002, and the collapse of Bear Stearns (BS) and Lehman Brothers
(LB).
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Figure 7: Lags selected by the adaptive lasso for high beta (top) and low beta (bottom) assets
from different sectors: The blue rectangles correspond to the lags selected by the adaptive lasso.
The top (bottom) axis contains the start (end) dates of the respective rolling windows. The red
line is drawn after the 22nd lag. Additionally, four events are highlighted: 9/11, the end of the
US stock market downturn in 2002, and the collapse of Bear Stearns (BS) and Lehman Brothers
(LB).
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Figure 8: Lags that are significantly selected after testing the lags beyond the 22nd multiply at
the 95% significance level: The blue rectangles correspond to the lags selected by the adaptive
lasso. The top (bottom) axis contains the start (end) dates of the respective rolling windows.
The red line is drawn after the 22nd lag. Additionally, four events are highlighted: 9/11, the end
of the US stock market downturn in 2002, and the collapse of Bear Stearns (BS) and Lehman
Brothers (LB).
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Figure 8: (continued)
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Figure 9: Lags selected by the adaptive lasso for the rest of the assets: The blue rectangles
correspond to the lags selected by the adaptive lasso. The top (bottom) axis contains the
start (end) dates of the respective rolling windows. The red line is drawn after the 22nd lag.
Additionally, four events are highlighted: 9/11, the end of the US stock market downturn in
2002, and the collapse of Bear Stearns (BS) and Lehman Brothers (LB).
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Figure 9: (continued)
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Figure 10: Lags selected by the adaptive lasso that are significant at the 95% level for the rest
of the assets: The blue rectangles correspond to the lags selected by the adaptive lasso. The
top (bottom) axis contains the start (end) dates of the respective rolling windows. The red line
is drawn after the 22nd lag. Additionally, four events are highlighted: 9/11, the end of the US
stock market downturn in 2002, and the collapse of Bear Stearns (BS) and Lehman Brothers
(LB).
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Figure 10: (continued)
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