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Abstract 

In highly integrated markets, news spreads at a fast pace and bedevils risk monitoring and 

optimal asset allocation. We therefore propose global and disaggregated measures of 

variance transmission that allow one to assess spillovers locally in time. Key to our approach 

is the vector ARMA representation of the second-order dynamics of the popular BEKK 

model. In an empirical application to a four-dimensional system of US asset classes - equity, 

fixed income, foreign exchange and commodities - we illustrate the second-order 

transmissions at various levels of (dis)aggregation. Moreover, we demonstrate that the 

proposed spillover indices are informative on the value-at-risk violations of portfolios 

composed of the considered asset classes.    
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Multivariate GARCH, spillover index, value-at-risk, variance spillovers, variance 

decomposition. 
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1 Introduction

The financial and banking crisis of 2008, the political controversies over the fiscal cliff

in the US in 2011, and the persistent fragility of real economic activity have raised

the concerns of corporate risk managers, central bankers, and policy makers over

measuring and monitoring economic and financial interdependence. Accordingly,

a number of dependence and association measures have been suggested over the

past years, such as the systemic expected shortfall of Acharya et al. (2010), the

conditional value-at-risk of Adrian and Brunnermeier (2011), and the spillover or

financial connectedness measures of Diebold and Yilmaz (2009, 2012, 2014).

Among these, the spillover measures of Diebold and Yilmaz (2009, 2012, 2014)

have garnered much attention, because in contrast to other measures, they allow one

to track the associations between individual variables and the system as a whole at

all levels, from pairwise to system-wide, in a mutually consistent way. Technically,

the spillover measures are derived from the forecast-error variance decomposition of

a vector autoregressive model (VAR). For an application to variance spillovers, one

therefore constructs the indices from VAR models estimated on measures of realized

variance, such as range-based variance estimates or other estimates obtained from

high-frequency intra-day data – see, among others, Yilmaz (2013), Baruńık et al.

(2014), Fengler and Gisler (2015), Louzis (2015) for recent applications.

Because the index is based on the forecast-error variance decomposition of a sin-

gle VAR, it produces static, i.e., average, spillover information. While undoubtedly

valuable, it would be of even greater use to have more timely spillover information,

especially for variance spillovers. There is ample evidence that conditional variance

is time-varying, and it is natural to expect that spillovers are as well. Diebold and

Yilmaz (2009, 2012) therefore suggest computing the indices from VAR models that

are estimated on rolling subsamples. In this way, one obtains an impression of the

time-varying patterns of spillovers, showing for instance how a certain event may

have contributed and changed the dependence structure of the system. However, as

with all rolling window approaches, the estimates reflect only the average informa-
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tion of the current estimation window. Since the subsamples must be of sufficient

length to provide reasonably accurate parameter estimates, e.g., one year of daily

data, the rolling window indices are probably more useful for a retrospective analysis

than for the timely monitoring of spillovers. For this aim, one would need a time-t

conditional spillover index.

In this paper, we propose such an index. We adopt the ideas of Diebold and

Yilmaz (2009, 2012) to construct variance spillover indices that are updated with

time-t information. To this end, we build on multivariate GARCH (MGARCH)

models of the BEKK-type (Engle and Kroner, 1995) and calculate the indices from

the forecast error decomposition that is derived from the vector moving average

(VMA) representation of the squared and vectorized return process. This process

is driven by serially uncorrelated heteroskedastic innovations and, as we show here,

its conditional covariance matrix can be derived analytically. This allows us to

absorb the regime dependence into the parameters of the VMA representation. The

variance spillover indices that are based on this time-varying VMA representation

therefore take full advantage of the time-t conditional information of the prevailing

variance regime. In contrast to rolling window estimates, they convey on-the-spot

variance spillover information. In our empirical applications, we not only show that

the time-t conditional variance spillover indices allow a study of the prompt impact

of major economic or political events, but also that they are informative about the

likelihood of value-at-risk violations. We therefore provide a new instructive tool for

the instantaneous monitoring of variance spillovers.

Aside from the value of timely spillover information, our approach differs in

methodological terms from the extant literature in that we derive the spillover in-

dices from a full-fledged model of variance-covariance dynamics. This has advantages

that are more than just conceptual. First and foremost, our variance spillover in-

dices take full advantage of the informational content embedded in covariances. It

appears commonplace to expect covariance dynamics to play a decisive role in the

mechanisms of variance spillovers. In Fengler and Gisler (2015), a first step toward
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incorporating covariances into variance spillover measures is made, but the authors

follow the traditional route in applying a VAR model to vectorized realized variance-

covariance matrices estimated from intra-day data. Thus, they do not build on a

model that ensures positive definiteness of the dynamic variance-covariance matri-

ces. Of course, the recent realized variance literature has proposed such models,

yet at the expense of nonlinear transformations of the variance-covariance matrices,

which renders the clear attribution of the shocks to specific variables intricate if not

impossible – see, e.g., Bauer and Vorkink (2011) and Golosnoy et al. (2012). The

most attractive property of the Diebold and Yilmaz (2009, 2012) framework would

thereby be lost.

With the MGARCH model, we circumvent this difficulty, because the VMA rep-

resentation of the vector collecting the squared observations and the crossproducts of

the observations remains linear in a serially uncorrelated vector innovation process.

Hence, our approach integrates familiar concepts of VAR modeling (impulse response

functions, forecast error variance decompositions) with established tools to address

key topics in empirical finance, such as the forecasting of variance-covariance matri-

ces, the determination of the value-at-risk and portfolio optimization. In summary,

our MGARCH approach to defining variance spillover indices is not only naturally

adaptive to time variation of second-order moments, but also affords a structural

perspective on the sources of risk and on risk transmission through time. In this

way, our approach complements the traditional variance transmission and contagion

literature that studies (off-diagonal) parameter significance in MGARCH models to

assess spillovers – see Pericoli and Sbracia (2003) for a survey of this rich literature.

Section 2 provides a brief sketch of the BEKK model and its translation into

a vectorized representation of the ‘squared’ multivariate GARCH process. This

representation is picked up in Section 3 to define indices of variance spillover. An

empirical analysis of returns of four major US asset classes (equity, fixed income,

foreign exchange, commodities) is provided in Section 4. Section 5 concludes.
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2 The Multivariate GARCH model in BEKK and vec

form

In this section, we discuss the so-called BEKK representation of the conditional

covariance matrix of a vector of speculative returns. We refer to Bauwens et al.

(2006) for an exhaustive presentation of the various model specifications. In addi-

tion, we are explicit about the translation of the BEKK model into the linear vec

representation of a multivariate GARCH model.

2.1 BEKK model

We consider an N -dimensional vector of returns (first differences of log asset prices)

rt = µt + εt = µt +H
1/2
t ξt, ξt

iid∼ N(0, IN ), t = 1, 2, 3, . . . , T , (1)

where both the conditional mean µt and the conditional covariance Ht are assumed

to be measurable with respect to a filtration Ft−1. We set µt = 0 and estimate the

model on the series of centered daily returns. In (1), H
1/2
t denotes the symmetric

matrix square root of Ht.
1 The innovation vector ξt is assumed to be independent

and identically normally distributed (iid). The assumption of conditional normality

of ξt is commonly adopted to implement (Quasi) Maximum Likelihood estimation

of the parameters, but it is not essential for the subsequent discussions.

The so-called BEKK model has the attractive feature that under mild restrictions

applying to the initial conditions, the process of conditional covariancesHt is positive

definite by construction (Engle and Kroner, 1995). In addition, other multivariate

GARCH variants are special cases of the BEKK specification, for example, the

factor model of Engle et al. (1990), the orthogonal GARCH model of Alexander

(2001, pp. 21–38), its generalization introduced by van der Weide (2002) and the

Cholesky GARCH of Dellaportas and Pourahmadi (2012).

1The square root of a symmetric positive definite matrix Z is defined as Z1/2 = ΓΛ1/2Γ′, where

the columns of Γ contain the eigenvectors of Z, and Λ1/2 is diagonal with the positive square roots

of the eigenvalues on its diagonal.
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In its most flexible form, the BEKK(p, q,K) representation of the conditional

covariance Covt−1[εt] = Et−1[εtε
′
t] = Ht is given by

Ht = CC ′ +
K∑
k=1

q∑
i=1

F ′kiεt−iε
′
t−iFki +

K∑
k=1

p∑
i=1

G′kiHt−iGki . (2)

In (2), C is a lower triangular matrix and Fki and Gki are N×N parameter matrices.

In this work, we focus on the simplest case p = q = K = 1, which is also by far the

most popular model order obtaining

Ht = CC ′ + F ′εt−1ε
′
t−1F +G′Ht−1G, (3)

where we have suppressed the subscripts of the BEKK parameter matrices for

notational convenience. For this model, the parameter vector is given by γ =

(vech(C)′, vec(F )′, vec(G)′)′.2 In cases N = 2, 3 and N = 4 this amounts to 11, 24

and 42 parameters, respectively. With regard to parameter estimation, Jeantheau

(2000) and Comte and Lieberman (2003) have shown, respectively, consistency and

asymptotic normality of the (quasi) Maximum-Likelihood (QML) estimator γ̂ under

particular regularity conditions.

Encompassing all linear covariance specifications, the vec representation provides

a general framework to compare the dynamic features implied by alternative covari-

ance models, such as impulse response functions (Hafner and Herwartz, 2006). For

the derivation of the BEKK implied vec form, some elementary matrices turn out

to be useful, namely the elimination matrix LN , the duplication matrix DN and its

generalized inverse D+
N .3 Let ηt = vech(εtε

′
t) and ht = vech(Ht). Then, the vec

representation of the BEKK model in (3) is given by

ht = υ +Aηt−1 +Bht−1, (4)

2The vec-operator stacks the columns of a matrix into a vector. For a square matrix, the vech-

operator stacks the elements on and below the diagonal into a vector.
3Let N∗ = N(N + 1)/2. With reference to a symmetric square N ×N matrix Z, the N∗ ×N2

elimination matrix LN is defined by the property vech(Z) = LNvec(Z). Conversely, the (N2 ×

N∗) dimensional duplication matrix DN is defined by vec(Z) = DNvech(Z). Because D′NDN is

nonsingular, the Moore-Penrose inverse or generalized inverse of DN is D+
N = (D′NDN )−1D′N . See

Lütkepohl (1996).
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where υ = vech(CC ′), A = D+
N (F ⊗ F )′DN and B = D+

N (G⊗G)′DN .

Now consider the N∗ = N(N + 1)/2 dimensional vector of mean zero random

variables

ut = ηt − ht. (5)

The process ut can be easily shown to be free of serial correlation. Hence, using

the definition in (5) to replace ht in (4), ut serves as an innovation or forecast er-

ror process in VARMA type representations of ηt. However, due to the intrinsic

nonlinearity of εt = H
1/2
t ξt, the vector innovation process ut is not identically dis-

tributed over the time dimension. In particular, time variation of the fourth-order

moments of εt implies that the (conditional) covariance of ut is also time-varying,

i.e., Covt−1[ut] = Et−1[utu
′
t] = Σt. Below we provide an explicit representation of

Σt in terms of ht and fourth-order moments of the iid innovations ξt.

Let A = A+B and denote by L the lag operator such that Lηt = ηt−1. Substi-

tuting for ht in (4), one obtains

ηt = υ +Aηt−1 +B(ηt−1 − ut−1) + ut (6)

⇔ (I −AL)ηt = υ + (I −BL)ut (7)

⇔ ηt = (I −AL)−1υ + (I −AL)−1(I −BL)ut (8)

= υ̃ + Φ(L)(1−BL)ut, (9)

= υ̃ + Θ(L)ut, (10)

with υ̃ = (I −A)−1υ and Φ(L) = (I −AL)−1. The vector disturbance ut is serially

uncorrelated and conditionally heteroskedastic, ut ∼ (0,Σt). Moreover, in (9) the

parameter matrices specifying the operator Φ(L) = (IN − AL)−1 = IN + Φ1L +

Φ2L
2 + Φ3L

3 + Φ4L
4 + Φ5L

5 + . . . are

Φ0 = IN , Φi = AΦi−1, i = 1, 2, 3, 4, . . . .

Summarizing the autoregressive and moving average part of the vec representation,

the operator Θ(L) in (10) conforms with the parameterization

Θ0 = I, Θ1 = A−B = A, Θi = AΘi−1, i = 2, 3, . . . .
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Since the matrix Cov[ut] = Σt is typically not diagonal, the elements of ut

are simultaneously correlated. As an implication, the coefficient matrices Θk, k =

0, 1, 2, . . . are not suitable for describing how isolated shocks are transmitted to

forecast uncertainties or impulse responses attached to particular variables in ηt. To

cope with cross equation correlation, it has become a convention to extract impulse

responses from suitably orthogonalized shocks. For this purpose, the model in (10)

can be rephrased as

ηt = υ̃ + Θ(L)Σ
1/2
t Σ

−1/2
t ut (11)

= υ̃ + Ψt(L)νt, (12)

where νt = Σ
−1/2
t ut, Ψt(L) = Θ(L)Σ

1/2
t . In contrast to the elements in ut, the ele-

ments in νt are suitably orthogonalized such that it is reasonable to trace the effects

of isolated shocks on forecast uncertainties and the impulse responses attached to the

variables in ηt. Unlike standard impulse response patterns in homoskedastic VARs,

however, the operator Ψ(L) depends on Σt and, hence, is time-varying. Specifically,

we have

Ψt(L) = Ψt0 + Ψt1L+ Ψt2L
2 + Ψt3L

3 + . . . (13)

where Ψt0 = Σ
1/2
t , Ψtk = ΘkΣ

1/2
t−k. As with the usual concepts of impulse response

analysis in VAR models, the coefficients in Ψtk, k = 0, 1, 2, . . . describe how (unit)

shocks in the elements of νt impact the variables in ηt = vech(εtε
′
t) simultaneously

(k = 0) and over time (k = 1, 2, . . .). For their practical implementation, it remains

to derive Covt−1[ut] = Σt to which we turn next.

2.2 The conditional covariance of GARCH VARMA innovations

To determine Σt = Et−1[utu
′
t], we notice from symmetry of H

1/2
t that

ηt = vech(εtε
′
t) = vech(H

1/2
t ξtξ

′
tH

1/2
t ) .

By the definition of Σt and because vec(Ht) = DNvech(Ht) = DNht, we have

Σt = Covt−1

[
vech(H

1/2
t ξtξ

′
tH

1/2
t )− ht

]
9



= Et−1

[
(vech(H

1/2
t ξtξ

′
tH

1/2
t )− ht)(vech(H

1/2
t ξtξ

′
tH

1/2
t )− ht)′

]
= Et−1

[
LN

(
Htvec(ξtξ

′
t)−DNht

) (
vec(ξtξ

′
t)
′Ht −DNht

)
L′N
]
,

where we use result 7.3 (6) in Lütkepohl (1996, p. 100) for the calculus with vector-

ized matrices, and define the N2 ×N2 matrix Ht = H
1/2
t ⊗H1/2

t . Hence, Σt reads

as

Σt = Et−1
[
LNHtvec(ξtξ

′
t)vec(ξtξ

′
t)
′HtL′N

]
+ LNDNhth

′
tD
′
NL
′
N

− Et−1
[
LNHtvec(ξtξ

′
t)h
′
tD
′
NL
′
N

]
− Et−1

[
LNDNhtvec(ξtξ

′
t)HtL′N

]
= LNHtΩ̃HtL′N + LNDNhth

′
tD
′
NL
′
N − 2LNHtvec(IN )h′tD

′
NL
′
N , (14)

where we use E[vec(ξtξ
′
t)] = vec(IN ) in (14). In addition, replacing vec(ξtξ

′
t) by

ξt ⊗ ξt, we get

Et−1[vec(ξtξ
′
t)vec(ξtξ

′
t)
′] = Et−1[(ξtξ

′
t)⊗ (ξtξ

′
t)
′] = Ω̃ . (15)

Collecting fourth-order moments of ξt, the matrix Ω̃ in (15) is of dimension N2×N2

with typical N × N dimensional blocks Ωij , i, j = 1, 2, . . . , N . Let ω
(ij)
kl denote a

typical element of the block Ωij of Ω̃. Specifically, along the diagonal, the block

matrices Ωii have typical elements

ω
(ii)
ii = κ, ω

(ii)
jj = 1, j 6= i and ω

(ii)
ij = 0, i 6= j. (16)

The quantities ω
(ii)
ii = κ refer to the fourth-order moments of elements in ξt; under

the Gaussian assumption, we would have κ = 3. Off-diagonal blocks Ωij , i 6= j, are

such that

ω
(ij)
ij = 1, and ω

(ij)
kl = 0 for (k, l) 6= (i, j).

3 Measuring variance spillovers

3.1 A time-varying forecast-error variance decomposition of squared

returns

Conditional on time t, the G-step ahead forecast error for ηt+G reads as

ηt+G − η̂t+G|t = Ψt+G,0|tνt+G + Ψt+G−1,1|tνt+G−1 + . . .+ Ψt+1,G−1|tνt+1 . (17)
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The parameters in the ith row of the matrices Ψt+G,0|t,Ψt+G−1,1|t, . . . ,Ψt+1,G−1|t

describe how the elements in νt+G, . . . , νt+1 contribute to the forecast errors of vari-

able i at horizon G. Conditional on time t, the parameter matrices in (17) are

Ψt+1,G−1|t = ΘG−1Σ
1/2
t+1, Ψt+2,G−2|t = ΘG−2Σ̂

1/2
t+2|t, . . . , Ψt+G,0|t = Θ0Σ̂

1/2
t+G|t .

While Σt+1 is measurable with respect to information available in the forecast ori-

gin t, future covariances Σt+1,Σt+2, . . . ,Σt+G depend on the MGARCH covariances

Hs, s = t + 2, t + 3, . . . , t + G. According to the BEKK representation in (3), the

recursive one-step ahead predictors of the conditional covariances are

Ĥt+1|t = Ht+1 = CC ′ + F ′εtε
′
tF +G′HtG

and Ĥt+i|t = CC ′ + F ′Ĥ ′t+i−1|tF +G′Ĥt+i−1|tG, i = 2, 3, . . . (18)

Let ψ
(t,k,G)
ij denote a typical element of the matrix Ψt+G−k,k, k = 0, 1, . . . , G− 1.

In accordance with the VAR literature (see Lütkepohl, 2007, p. 63-64), the propor-

tion of the G-step forecast-error variance of variable i, accounted for by innovations

in variable j, is given by

λ
(G)
t,ij =

∑G
g=1

(
ψ
(t,g,G)
ij

)2
∑G

g=1

∑N∗

j=1

(
ψ
(t,g,G)
ij

)2 , (19)

where N∗ = N(N+1)/2 is the number of variables, i.e., the dimension of vech(εtε
′
t).

The time-specific measures in (19) serve as a basis for the definition of the

spillover statistics in the following section. For their actual implementation, we will

assume E[ξ4i,t] = 3, i = 1, . . . , N , in (16) to specify the conditional covariances Σt.

While this may seem rather strong an assumption, from the definition of λ
(G)
t,ij as a

ratio, one may easily imagine that the approximation error implied by the normality

assumption is minor despite the actual excess kurtosis of return innovations.4

4Indeed, when we replace E[ξ4i,t] = 3 by the empirical fourth-order moments of the leptokurtic

innovations ξi,t, i = 1, . . . , N , the mean (standard deviation) of the absolute differences between

the respective indices of total variance spillovers shown in Section 4 is 0.007 (0.003).
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3.2 Variance spillover indices

Diebold and Yilmaz (2009) motivate to use statistics of the form in (19) to define

spillover indices. It is, however, important to observe that λ
(G)
t,ij in (19) depends

on the construction of underlying shocks νt and the determination of Σ
1/2
t . Both

νt and Σ
1/2
t lack invariance under rotation, or, put differently, rival definitions are

observationally equivalent in ηt. Specifically, consider a counterpart of (11)

ηt = υ̃ + Θ(L)Σ
1/2
t QQ′Σ

−1/2
t ut, QQ

′ = I, Q 6= I, (20)

where Q is a rotation matrix. In the literature on structural VARs, the identifica-

tion of Σ
1/2
t Q has attracted huge interest (Amisano and Giannini, 1997). Typically,

external information, for instance, derived from economic theory, is employed to

address model identification. Recently, sign restrictions have become a prominent

identification approach. In this simulation based framework, those matrix candidates

Σ
1/2
t Q are considered to contribute to identification that imply impulse response pat-

terns consistent with economic theory (Faust, 1998; Uhlig, 2005). Because economic

theory of the contemporaneous relations among daily financial data is scarce, the

decomposition set out in (11) can only be justified in the light of its economic content

and the plausibility of the statistical functionals derived from the definitions in (11)

or (19). When discussing the empirical implications of our model, we will justify the

identifying content of Σ
1/2
t in the light of the detected patterns of aggregate total

variance spillovers and disaggregate asset-specific net variance spillovers.5

For the construction of the spillover index, note that we have
∑N∗

j λ
(G)
t,ij = 1 and∑N∗

i,j λ
(G)
t,ij = N∗. Let ηi,t, i = 1, . . . , N∗, denote an element of ηt. Then a measure

5As an alternative to the symmetric matrix square root, Diebold and Yilmaz (2014) build on the

Cholesky factorization for identification. Since the Cholesky factorization is order-dependent, they

justify this choice by showing that they recover very similar spillover patterns for other randomized

orderings. In the light of their Fig. 5, it seems likely that the spillover index obtained by averaging

all indices of the randomized orderings will be close to the index based on the symmetric matrix

square root.
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of total spillovers can be defined as

S(G)
t =

∑N∗

i,j=1,i6=j λ
(G)
t,ij

N∗
. (21)

In (21), S(G)
t measures the fraction of the forecast-error variance of the variables

ηi,t, i = 1, . . . , N∗, that is attributable to shocks in all other variables ηj,t, j =

1, . . . , N∗, j 6= i. Thus, it is an index of how the shocks spill across the system.

Since it is built from information conditional on time-t, it is a spot measure of

variance spillovers.

Besides the total index (21), many other spot variance indices are possible. Fol-

lowing Diebold and Yilmaz (2012), we can therefore define directional spillovers

between all variables involved. The directional spillovers received by variable i from

all other variables j are defined as

R(G)
t,i =

∑N∗

j=1,j 6=i λ
(G)
t,ij

N∗
, (22)

whereas the directional spillovers transmitted by variable i to all other variables j

are measured by

T (G)
t,i =

∑N∗

j=1,i6=j λ
(G)
t,ji

N∗
. (23)

The directional spillovers provide decompositions of the spillover index into spillovers

coming from (or to) a specific source. Furthermore, it is meaningful to compute their

difference

N (G)
t,i = T (G)

t,i −R
(G)
t,i , (24)

because one learns about the net contribution of variable i to the entire transmission

process.

Since the elements in ηt = vech(εtε
′
t) correspond to patterns of variation and

covariation, it is of interest to further distinguish between these two groups. Let

Jcov and Icov be the sets of all i, j = 1, . . . , N∗ that index a covariance, and define

Jvar and Ivar accordingly. As suggested in Fengler and Gisler (2015), we define

R(G,cov)
t,i =

∑N∗

j∈Jcov ,j 6=i λ
(G)
t,ij

N∗
, T (G,cov)

t,i =

∑N∗

j∈Jcov ,j 6=i λ
(G)
t,ji

N∗
, (25)
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R(G,var)
t,i =

∑N∗

j∈Jvar,j 6=i λ
(G)
t,ij

N∗
, T (G,var)

t,i =

∑N∗

j∈Jvar,j 6=i λ
(G)
t,ji

N∗
, (26)

which can be interpreted as the directional spillovers received by variable i from all

covariances j (left-hand side of (25)) or transmitted by variable i to all covariances j

(right-hand side of (25)); and likewise for the variances in (26). As discussed above,

for each i, the differences among these indices, e.g., N (G,cov)
t,i = T (G,cov)

t,i −R(G,cov)
t,i ,

provide insights into the net spillovers between covariances and variances.

Based on this, one defines the following total covariance and total variance

spillover indices. An index of total own (co)variance spillovers, which measures

the spillovers between covariances (between variances, right-hand side), is given by

S(G,ocov)t =
∑
i∈Icov

∑N∗

j∈Jcov ,j 6=i λ
(G)
t,ij

N∗
, S(G,ovar)t =

∑
i∈Ivar

∑N∗

j∈Jvar,j 6=i λ
(G)
t,ij

N∗
. (27)

Moreover, the total cross (co)variance spillovers, which are spillovers from covari-

ances to variances (variances to covariances, right-hand side), is defined by

S(G,ccov)t =
∑
i∈Ivar

∑N∗

j∈Jcov ,j 6=i λ
(G)
t,ij

N∗
, S(G,cvar)t =

∑
i∈Icov

∑N∗

j∈Jvar,j 6=i λ
(G)
t,ij

N∗
. (28)

It holds that S(G)
t = S(G,ocov)t + S(G,ovar)t + S(G,ccov)t + S(G,cvar)t . The indices (27)

and (28) therefore shed light on the relative contribution of variance and covariance

spillovers to the total index. It is also useful to study the net cross spillover index

between variances and covariances given by

N (G,cross)
t =

∑
i∈Icov

(T (G,var)
t,i −R(G,var)

t,i )

= −
∑
i∈Ivar

(T (G,cov)
t,i −R(G,cov)

t,i ) = S(G,ccov)t − S(G,cvar)t .
(29)

This index decodes the total net exposure of all covariances vis-à-vis variance spillovers.
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4 Empirics

4.1 Data

For our applications, we consider the same set of four key US asset classes as in

Diebold and Yilmaz (2012): equity, fixed income, foreign exchange and commodities,

yet on a larger sample. We study returns of the S&P 500 index, the 10-year treasury

bond yields, the New York Board of Trade US dollar index futures, and the Dow-

Jones/UBS commodity index obtained from Thomson Reuters Datastream. The

sample period is from March 1, 1995, to December 31, 2014, with 5176 daily returns

altogether. See Fig. 1 for an overview of the data.

4.2 Estimation of the BEKK model

To estimate the four-dimensional variance specification for the vector of asset re-

turns, we use a modified version of the module ‘arch mg.src’ that is part of the

software JMulti (Lütkepohl and Krätzig, 2004, http://www.jmulti.de/). We verify

the estimated parameters to correspond to a maximum of the log-likelihood func-

tion by multiplying each parameter estimate with 0.995 and 1.005 and checking the

reductions of the log-likelihood. For inferential purposes, we use the estimates of the

analytical ML and QML covariance matrices as provided in Hafner and Herwartz

(2008). Given that the multivariate GARCH innovations ξt are not multivariate

Gaussian distributed, the QML covariance matrix is more reliable for diagnosing

parameter significance.

Table 2 documents estimation results. Along with the coefficient estimates, we

present ML and QML t-statistics. The BEKK parameters enter the conditional co-

variance Ht in ‘squared’ form. Hence, the diagonal entries of the matrices F and

G are in line with the common univariate GARCH estimates. In univariate appli-

cations to daily data, the news response parameter is often estimated to be about

0.05 which is close to the squared diagonal elements of F̂ . Similarly, in univariate

GARCH models, the autoregressive parameter is often found to be around 0.95 which
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accords with the squared diagonal elements of Ĝ. Apart from the autoregressive dy-

namics and the responses to own news, the BEKK model allows for cross equation

covariance dynamics. Parameterized by the off-diagonal elements of F̂ and Ĝ, such

cross equation dynamics are diagnosed significant at conventional levels. Evaluating

the significance of ML (QML) t−ratios, we find five (one) out of twelve off-diagonal

elements of F̂ to differ from zero with 10% significance. Similarly, as regards the

off-diagonal elements of Ĝ, four ML and two QML diagnostics are significant at the

10% level, respectively. In addition to testing the parameters for significance, we

find that a likelihood ratio test against the diagonal BEKK model strongly supports

the presence of off-diagonal dynamics. Log-likelihood estimates for the unrestricted

model and the diagonal BEKK model are, respectively, 69867.4 and 69825.1. Hence,

in a test of the joint insignificance of the off-diagonal elements, the respective test

statistic is 84.6, which is highly significant with respect to the critical values of a

χ2(24) distribution.6

Fig. 2 displays the estimated conditional standard deviations of the four asset

classes (upper panel), and the six BEKK implied pairwise correlations (lower panel).

The estimated conditional standard deviations reflect the typical features of volatil-

ity clustering. Starting with the subprime crises at the end of 2007, conditional

standard deviations have accelerated over all asset classes (except foreign exchange).

While conditional second-order moments of equity and fixed income indices are of

similar magnitude until 2011, for the most recent part of the sample, fixed income

risk turns out to be more pronounced in comparison with stock market volatility.

Pairwise correlations in the lower panel of Fig. 2 show that the comovements of

almost all asset classes exhibit strong time variation. With regard to the two asset

classes with highest volatility on average, it turns out that the correlation between

6The 1% critical value of a χ2(24) distribution is 42.98. The χ2(24) distribution might only

approximate the true distribution of the test statistic under the diagonal BEKK and violation of

conditional normality. However, given the magnitude of the quasi LR statistic, it is most likely

that its ’true’ distribution under the restrictive model would also indicate significant off-diagonal

dynamics at conventional nominal levels.
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equity and fixed income markets is markedly negative (positive) in the beginning (at

the end) of the sample period. The recent periods of turmoil starting in 2008 are, in

particular, characterized by strongly negative correlations among foreign exchange

markets and the remaining asset classes.

4.3 Descriptive conditional spillover analysis

4.3.1 The time-varying total variance spillover index

We start the analysis by considering the time evolution of the total spillover in-

dex (21) displayed in the upper panel of Fig. 3. The index is plotted along with a

number of major political and economic events – see Table 1 for a compilation of the

events and their dates of occurrence. This follows Diebold and Yilmaz (2009, 2012)

and Yilmaz (2013); because our modeling approach allows us to compute the index

at the daily frequency, however, we can exactly spot these events and analyze their

impact to a degree of detail that is not feasible in rolling window applications. At

the same time, we can study the long-term cyclical trends of variance spillovers in

the 20 years of our sample. For the forecast horizon, we set G = 5, i.e., we consider

about a week.

According to Fig. 3, the spillovers are very moderate between 1995 and 2001,

hovering at or below 10%. Although events like the Thai Bhat devaluation (1),

which is seen as the starting point of the Asian crisis, the Russian crisis (2), the

first market disruptures at the beginning of the dot-com crisis, such as the April 14,

2000 NASDAQ crash (3), and the 09/11 twin-tower attacks (4) make the spillover

index soar, they are rather short-lived and have no long-lasting impact on variance

spillovers.

A first major period of increased variance spillovers can be detected in the fore-

front of the geopolitical tensions surrounding the pending US-led war in Iraq (5).

At the outbreak of the war, the index spikes to unprecedented levels of 40%, after

which it returns to previous levels. The most important period of increased in-

terdependence and variance spillovers by far, however, is the crisis complex of the
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subprime mortgage crunch, the banking crisis, and the US recession from Decem-

ber 2007 to June 2009, all accompanied by extraordinary US central bank measures

and by the political controversies over the impending US debt limits in 2011 and

2013.7 Several incidents can be clearly distinguished: Freddie Mac’s announcement

that it would no longer take the worst subprime risks (6); the Northern Rock cri-

sis (7); the Carlyle Capital Corporation’s press release on failing to meet margin

calls on one of its mortgage bond funds (8); the Lehman default (9). Between 2006

and the end of 2008, the index rises continuously from about 5% to about 25%,

and remains at about these levels till the end of 2012. The overall climax of the

index is reached in November 2011 with about 60%. Over this crisis, we also doc-

ument the announcements of the major monetary policy measures of the Fed, later

known as ‘quantitative easing’: the first program to purchase the direct obligations

of housing-related government-sponsored enterprises announced in November 2008

(10); the expansion of the program to buy long-term Treasury securities of Novem-

ber 2010, (11); the operation ‘twist’ to influence the term structure of interest rates

(13); the open-ended bond purchasing program of agency mortgage-backed securi-

ties of September 2012 (14). It is remarkable that despite their exceptional nature,

none of these policy announcements has any visible, ameliorating impact on variance

spillovers. It is only at the end of 2012 that the spillover index levels start to retreat.

Interestingly, the political debates about the US fiscal cliffs in 2011 (12) and 2013

(15) are also hardly detectable in the graph.

As we have argued above, using the symmetric eigenvalue decomposition of the

contemporaneous covariance Σt for identification deserves further economic under-

pinnings. As a first justification of our identification scheme, consider the lower part

of Fig. 3, which displays a 20-days moving average of the daily US Economic Policy

Uncertainty Index (EPUI) of S. R. Baker, N. Bloom, and S. J. Davis. This index

measures policy-related economic uncertainty as derived from newspaper coverage

7For these dates, we borrow from a time-line of events published on the website of the Federal

Reserve Bank at St. Louis at https://www.stlouisfed.org/financial-crisis/full-timeline and the press

releases linked to this site.
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of policy-related economic uncertainty, from expiring US federal tax code provisions

and from disagreement among economic forecasters.8 For illustrational reasons, the

index is scaled, such as to have the same standard deviation as the total spillover

index, and it is reflected along the horizontal axis.

The similarity between both graphs is striking. The total spillover index moves

almost in a one-to-one fashion with the moving average of the EPUI. While the am-

plitudes may differ in detail, both indices exhibit the same long-term trends as well

as very similar reactions to the events singled out and discussed above. The correla-

tion among both indices is indeed very high: 57%. Hence, the symmetric eigenvalue

decomposition of Σt supports the detection of an economically well-founded index

of variance spillovers.

Despite the one week ahead forecasts, the graph of the spillover index in Fig. 3

is ‘in-sample’ since the underlying parameter estimates are obtained from the full

sample. For real-time applications, it is natural to ask how much the spillover graph

would change if one worked in a framework that was entirely ex ante. To explore this

question, we employ rolling subsamples that comprise 1500 return observations each

to estimate the BEKK model as described in Section 4.2. To economize on computa-

tion time, the windows are shifted only every 250 observations after each estimation.

For given parameter estimates, the covariance paths Ht, t = 1501, 1502, . . . , T , are

determined by updating the variance-covariance dynamics with the observed time

series innovations εt.

In Fig. 4, we superimpose such a fully ex ante spillover plot with the previous

graph of Fig. 3. Due to parameter variations, we find moderate deviations between

the two indices, in particular between 2006 and 2007 and in 2014. Overall, however,

we find strong agreement between the two indices.

8Data and methodological details can be found on http://www.policyuncertainty.com/index.html.
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4.3.2 Further decompositions of the total spillover index

What drives the total variance index? This and related questions can be answered

by studying the subindices of Section 3.2. In Fig. 5, we decompose the total index

into own and cross (co)variance spillovers.

Two observations are evident. First, the major features of the total spillover in-

dex are traced out by the own covariance (S(G,ocov)t ), the cross covariance (S(G,ccov)t )

and the cross variance spillover graphs (S(G,cvar)t ). All three are approximately of

equal size, their fluctuations are highly correlated and their paths are very much akin

to the total index. Therefore each of them reflects very similar information as the

EPUI. Second, the own variance spillover index (S(G,ovar)t ) is markedly different from

the other three series. This is remarkable because the own variance spillover index

corresponds to what the standard variance spillover literature, which ignores covari-

ances when computing the total index, would report as the total variance spillover

index.9 While similar observations are also made in Fengler and Gisler (2015), in our

BEKK model with fully specified covariance dynamics, this discrepancy is even more

eye-catching. It suggests that most of the systemic interdependence is propagated

through the joint variance-covariance dynamics rather than the variance dynamics

alone. This interpretation is also confirmed by comparing the reactions of the var-

ious indices to the selected events discussed in the previous section. Nevertheless,

the plot also reveals that the net exposure of all covariances vis-à-vis the variances

(recall that N (G,cross)
t = S(G,ccov)t − S(G,cvar)t ) is negative on average; thus, overall,

the covariances receive more spillovers from the variances than they transmit back.

As a more disaggregated decomposition, we present in Fig. 6 the asset-specific

net exposures of variances N (G,var)
t,i and covariances N (G,cov)

t,i . The top left panel

reveals that generally stock markets as well as bonds are transmitters of variance

spillovers. Whereas they are of about equal size in the first half of the sample,

the bond net variance spillovers dominate since 2003. They are particularly strong

9Note, however, that the absolute scales are different, because in a spillover analysis with N

assets without covariances, one has N∗ = N instead of N∗ = N(N + 1)/2 as scaling constant.
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from 2010 to 2012, in which time the stock markets even become net receivers of

variance spillovers. It should be noted that this period falls into the times when

the Fed adopted extraordinary monetary measures to influence the bond markets

– see Table 1. It therefore appears natural that bond markets are positive net

transmitters of variance spillovers. Referring to our discussions in Section 3.2, we

read these characteristics as supportive evidence for the identification scheme based

on the symmetric eigenvalue decomposition.

In contrast to stocks and bonds, over the entire sample, the commodity market

is a net transmitter and the foreign exchange market a net receiver of variance

spillovers (top right element in Fig. 6). Moreover, both net variance spillovers exhibit

pronounced trends from 1995 to about 2010/2012, which reflects their increasing

importance for investors as asset classes. The net receiver position of the foreign

exchange market becomes particularly pronounced from 2008 onward. Because the

Fed’s quantitative easing programs that were effective since then, as a side effect,

tended to weaken the dollar against other major currencies, the net receiver position

of the foreign exchange market is again economically plausible, which supports the

adopted identification scheme.

Finally, the lower panel of Fig. 6 shows the net covariance spillovers N (G,cov)
t,i .

Overall, they fluctuate around zero, but with deviations of about two percent around

zero, they are of smaller size than the variance net spillovers N (G,var)
t,i . This implies,

interestingly, that covariance spillovers – in contrast to the variance spillovers – are

generally less asymmetric among the different asset classes.

4.4 Informational content of time-t conditional variance spillovers:

the case of value-at-risk predictions

The indices of spot variance transmission introduced in Section 3 might be used

for a real time (daily) assessment of potential threats to risk monitoring. In the

following, we assess whether the proposed indices of risk transmission can contribute

to an informationally efficient evaluation of portfolio risks.
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4.4.1 Value-at-risk

In financial practice and particularly in risk management, GARCH models have

become a standard econometric tool to evaluate risk measures such as the value-at-

risk (VaR) – see Andersen et al. (2013) for a discussion of GARCH-based approaches

to quantify the VaR. For a portfolio with shares wt and conditional on time t − 1,

the VaR at level α is the (negative) return quantile

VaR
(α)
t = −qε(α)st , (30)

where st is the conditional standard deviation, st =
√
w′tHtwt, and qε(α) is the

empirical α-quantile of standardized portfolio returns {εt = w′trt/st}Tt=1. We con-

sider three portfolios with time-invariant composition wt = w, namely (i) a portfolio

assigning equal weight to all asset classes: equity, bonds, foreign exchange and com-

modities (denoted by ewp); (ii) a portfolio consisting only of equity (eqp); and (iii)

a portfolio assigning equal weight to all asset classes except equity (noeq). In ad-

dition, we consider the minimum variance portfolios (mvp) with portfolio weights

wt = H−1t 1/c, where c = 1′H−1t 1 and 1 is a four-dimensional vector of ones (see,

e.g., Campbell et al., 1997, Chap. 5).

4.4.2 Value-at-risk diagnosis

The backtesting of VaR estimates relies on the series of binary auxiliary variables,

so-called VaR hits,

ỹt,α = I(w′trt ≤ −VaR
(α)
t ) . (31)

An unconditionally valid risk assessment requires that the mean of the hit process

in (31) be α. For an informationally efficient risk assessment, it is required that

conditional on time t − 1 information, deviations of the hit process ỹt,α from its

unconditional expectation α be first-order unpredictable. For an assessment of the

VaR estimates, we apply the dynamic quantile (DQ) test introduced in Engle and

Manganelli (2004), because informational efficiency can be tested within this frame-

work in a straightforward manner. Under the null hypothesis of the DQ test, the
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VaR model is (conditionally and unconditionally) well specified. Specifically, it is

tested whether the centered hits, yt,α = ỹt,α − α, follow a martingale difference

sequence conditional on information that is available in time t − 1. Established

indicators of informational inefficiency comprise the history of the VaR hit process

yt−i,α, i = 1, 2, . . . , k. In the present framework, it is natural to regard (lagged) in-

dices of variance transmission as indicators of informational inefficiency of the VaR.

In summary, we consider the following DQ regression model

yt,α = β0 +
5∑

k=1

βkyt−k,α + x′t−1δ + et , (32)

where the Q-dimensional vector xi,t−1 collects predetermined measures of risk trans-

mission as introduced in Section 3.10 The null hypothesis of correct conditional and

unconditional coverage of the model reads as H0 : βk = 0, ∀ k = 0, 1, . . . , 5, and δq =

0, ∀ q = 1, 2, . . . , Q. Because the regression is specified for centered binary variables,

the significance of β̂0 indicates in a separate test that the VaR model violates the

unconditional coverage criterion. We assess the martingale property for the hit

processes derived from three levels of VaR coverage, namely α = 0.010, 0.025 and

α = 0.050.

Table 3 documents some diagnostic results for the standardized portfolio returns

(innovations) εt = w′trt/(w
′
tHtwt). In case of a valid specification of the dynamic

covariance process, these innovations should have mean zero and unit variance and

should not indicate any kind of non-modeled or remaining conditional heteroskedas-

ticity. The documented moments of εt show that for almost all portfolios, the

standard error of portfolio innovations is close to unity. As the only exception,

the second-order moments of the equity portfolio have a standard error of 0.95.

10While DQ regressions have turned out to dominate rival VaR diagnostics in terms power against

misspecified VaRs (Berkowitz et al., 2011), their implementation relies on the binary hit processes

ỹt,α. As it is visible from (31) their determination comes along with a substantial loss of information.

Against this background, the VaR diagnostic introduced by Gaglianone et al. (2011) promises further

power improvements in comparison with the DQ-test, since it addresses directly the conditional

validity of the quantile VaR
(α)
t . Our empirical results, however, suggest that the DQ test based on

the spillover indices is sufficiently powerful as a diagnostic checking of the VaR.
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Higher order moments reveal some negative skewness of portfolio innovations, and

the fourth-order moments are between four and five for all considered portfolios.

For some portfolios, we diagnose patterns of remaining heteroskedasticity in

return innovations. In particular, the portfolios including equity show significant

ARCH-LM diagnostics at order five, while low-order diagnostics do not indicate

departures from an iid distribution. This may reflect the presence of outliers or

the fact that the BEKK model is symmetric, i.e., positive and negative shocks of

a given magnitude impact symmetrically on the conditional second-order moments.

In summary, both in-sample and ex ante portfolio innovations indicate that the

employed four-dimensional BEKK model is largely suitable for extracting second-

order characteristics of portfolio returns.

The DQ diagnostics are shown in Tables 4 to 6. Subjecting the model-implied

VaR estimates to the DQ tests shows that for most portfolios, the process of VaR

hits does not exhibit significant serial patterns. Autoregressive models of order five

mostly lack any significant explanatory content for the process of centered VaR

hits. Moreover, the mean hit frequencies are in line with the nominal VaR levels.11

The purely autoregressive DQ test regression indicates with 5% significance some

misspecification of the risk model applied to in-sample portfolios that include equity

components. However, since the full sample covers a period of almost 20 years, the

significance of the DQ statistics might be due to violations of model stability.

While the standard DQ diagnostic indicates accuracy of the employed risk mod-

els, the indices of risk transmission carry predictive content for the dynamic pat-

terns of centered VaR hits. For the smallest coverage level (α = 0.01), overall, four

spillover indices (the receiver variance R(G,var)
t , receiver covariance R(G,cov)

t , trans-

mitter covariance T (G,cov)
t , and net variance N (G,var)

t ) contribute significantly to the

explanation of the occurrence of overly negative returns. By means of these indi-

cators, risk model misspecifications can be diagnosed at the 5% significance level

11In Tables 4 to 6, we do not document specific tests of the unconditional coverage. However, all

t-statistics of the intercept estimates β̂0 of the DQ regression indicate insignificance at conventional

levels. Detailed results on testing for unconditional coverage are available upon request.
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for the equal weight and equity portfolio (ex ante), the portfolio excluding equity

(in-sample and ex ante) and the minimum variance portfolio (in-sample). At the

coverage level of α = 0.025, VaR dynamics for the portfolio excluding equity (in-

sample) are significantly explained by particular spillover indices. For the highest

VaR level (α = 0.05), the equal weight portfolios (ex ante) indicate misspecification

of the risk model.

The DQ diagnostics show that the VaR estimates may suffer from violations

of informational efficiency, but the evidence is only mildly specific on the particular

indices of variance transmission that are most informative for the process of VaR hits.

In this context, it is worthwhile to recall that the DQ tests indicate joint significance

(or insignificance) of both the autoregressive patterns and the spillover statistics. To

shed light on the marginal explanatory content of the autoregressive parameters on

the one hand, and the indices of variance transmission on the other hand, the lower

panels of Tables 4 to 6 document statistics that are derived from the marginal degrees

of explanation in the DQ regressions. To be specific, we provide
√
R2 statistics for

regressions such that VaR hits are either explained by autoregressive patterns or by

the lagged variance spillover indices.12 The largest statistics are printed in bold.

Purely autoregressive DQ regressions which have higher explanatory content than

all regressions that condition exclusively on variance indices are rare (three out of

thirty). For the vast majority of the regressions, the highest degrees of explanation

are obtained by conditioning on indices of variance spillover.13

Distinguishing the particular indices with highest explanatory content, it turns

out that generally covariance spillovers (in comparison to variance spillovers) have

some lead in explaining the VaR hit processes. Similarly, indices of variance trans-

12The R2 statistics are unadjusted for the number of explanatory variables. Given the size of the

sample, numerical differences between adjusted and unadjusted degrees of explanation are negligible.
13Relating the TR2 with the critical values from χ2 distributions of either four or six degrees of

freedom, we find that about one third of the 7 × 5 × 2 × 3=210 statistics (seven groups of spillover

indices, five portfolios, in-sample vs ex ante, three nominal VaR levels) are significant at the 5%

level.
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mission have stronger explanatory content in comparison to indices of variance re-

ception. From an overall perspective, the measure of net covariance transmission

(N (G,cov)
t ) appears to have the highest explanatory content. Of all employed groups

of VaR hit indicators for 11 (out of 30) regression models (portfolios), this set of

indicators obtains the highest marginal degree of explanation in DQ regressions.

In particular, we find that the overall index of variance spillovers (S(G)
t ) has

only minor content to unravel informational inefficiency of the VaR estimates. As

it is visible for the case of the minimum variance portfolios, the horizon G to which

the spillover statistics refer has only negligible impact on the DQ diagnosis. For

the alternative choices G = 1 and G = 5, the inferential outcomes and degrees of

explanation are rather close to one other.

5 Concluding remarks

In this work, we have proposed a variance spillover index which is derived from

the forecast-error variance decomposition of the squared returns of a multivariate

GARCH model of the BEKK class. On this basis, our variance spillover indices are

time-t conditional and take full advantage of time-varying covariance information.

Empirically, we study a system of four major US asset classes. As they are highly

responsive to the news innovation process, our indices allow one to simultaneously

study the immediate impact of singular, surprising events at the daily frequency, the

implications of lingering times of political and economic uncertainty, and long-term

secular trends of market interdependence. In an application to risk management,

we demonstrate that the indices are informative about the likelihood of value-at-risk

violations. Hence, they are not only of interest in a descriptive-analytic sense, but

also for predictive purposes in standard problems of empirical finance.

Analytically, our approach is attractive because we rely on the very general vec

representation of the multivariate GARCH model. It is therefore not limited to the

BEKK class: any multivariate GARCH model having a vec representation could be

treated in this way. As a potential shortcoming, the curse of dimensionality could
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be cited as a problem known to afflict such models. Using covariance targeting

strategies and suitable parameter restrictions, one might shift the limits further

than we do. We leave this for future research.
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Tables and figures

Event Date Description

(1) Jul 02, 1997 Thai Bhat devaluation, start of the 1997 Asian crisis

(2) Aug 17, 1998 Russia defaults on domestic debt, start of Russian crisis

(3) Apr 14, 2000 NASDAQ crash, dot-com crisis till March 2003

(4) Sep 11, 2001 09/11 attacks

(5) Mar 20, 2003 US-led war in Iraq

(6) Feb 27, 2007 Freddie Mac refuses to take worst subprime risks

(7) Sep 14, 2007 Northern Rock crisis

(8) Mar 05, 2008 Carlyle Capital Corp. fails to meet margin calls on a mortgage

bond fund

(9) Sep 15, 2008 Lehman Brothers default

(10) Nov 25, 2008 Quantitative easing 1: Fed buys mortgage-backed securities

(11) Nov 03, 2010 Quantitative easing 2: Fed buys long-term Treasury bonds

(12) Aug 01, 2011 Fiscal cliff 2011: House passes 2011 debt ceiling bill

(13) Sep 21, 2011 Fed announces operation Twist

(14) Sep 13, 2012 Quantitative easing 3: open-ended bond purchasing program of

agency mortgage-backed securities

(15) Jul 22, 2013 Fiscal cliff 2013: House passes 2013 Continuing Appropriations Act

Table 1: Calendar of political and economic events highlighted in Figs. 3, 4, and 5.
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In-sample BEKK estimates Ex ante BEKK estimates

ewp eq noeq mvp ewp eq noeq mvp

G 1 1 1 1 1 1 1 1

std(ε) 0.996 0.993 0.993 1.011 0.994 0.950 1.009 0.989

ε3 -0.214 -0.457 -0.018 -0.202 -0.185 -0.403 0.004 -0.114

ε4 4.217 4.692 4.045 4.294 4.273 4.112 4.613 4.005

LM(1) 0.213 0.112 0.283 0.015 0.276 0.245 0.255 0.040

LM(5) 0.001 0.002 0.274 0.089 0.007 0.012 0.289 0.129

Table 3: The table shows the descriptive statistics of the standardized portfolio re-

turns (standard deviation, third and fourth-order moment, ARCH-LM tests of order

1 and 5). Four portfolio compositions are considered: equal weight (ewp), only eq-

uity (eqp), equal weight without equity (noeq), minimum variance portfolio (mvp).

Second-order characteristics of portfolio returns are evaluated by means of full sam-

ple information (left-hand side), or using ex ante BEKK parameters determined by

means of rolling sample windows.
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In-sample BEKK estimates Ex ante BEKK estimates

ewp eq noeq mvp ewp eq noeq mvp

G 1 1 1 1 5 1 1 1 1 5

Dynamic Quantile (DQ) diagnostics (p-values times 100)

AR 0.018 0.614 37.38 7.812 10.43 5.857 15.95 49.32

R(G,var)
t 0.122 2.461 32.25 3.253 3.272 28.50 10.40 12.17 47.70 45.70

R(G,cov)
t 0.007 0.199 9.082 9.593 9.855 14.90 1.869 11.75 48.39 47.29

T (G,var)
t 0.013 1.233 4.958 7.746 8.091 8.704 21.93 8.489 41.33 50.91

T (G,cov)
t 0.006 0.361 1.296 6.647 6.451 2.738 5.658 2.614 50.26 57.79

N (G,var)
t 0.034 0.828 15.21 3.570 3.986 6.588 14.76 7.640 39.00 47.12

N (G,cov)
t 0.029 1.075 1.691 2.484 3.374 18.75 2.893 10.89 36.97 35.51

S(G)
t 0.040 0.806 42.10 12.39 12.40 16.06 8.564 18.87 60.28 60.99

Marginal
√
R2 (times 100)

AR 7.276 5.996 3.578 4.781 5.507 5.927 5.002 3.900

R(G,var)
t 2.298 1.980 3.243 4.565 4.560 2.503 3.104 4.170 3.718 3.827

R(G,cov)
t 5.267 5.067 4.991 4.222 4.190 4.409 5.978 4.971 4.450 4.518

T (G,var)
t 4.159 2.969 4.868 3.725 3.682 4.193 2.068 4.289 4.011 3.583

T (G,cov)
t 5.383 4.718 6.148 4.580 4.601 6.004 5.033 6.137 4.384 4.058

N (G,var)
t 3.619 3.275 4.017 4.463 4.371 4.682 2.713 4.510 4.113 3.767

N (G,cov)
t 4.705 3.989 6.015 5.381 5.152 4.334 5.642 4.910 4.962 5.050

S(G)
t 0.107 1.224 1.224 0.032 0.019 0.387 1.538 1.130 0.439 0.123

Table 4: Inferential (p-values) and descriptive (marginal R2) statistics from DQ regressions

for VaR estimates with nominal coverage α = 1%. All DQ regressions include autoregressive

dynamics up to order 5. Additional joint misspecification indicators included in enhanced

DQ regressions are listed rowwise. The degrees of freedom for testing the null hypothe-

sis of a conditionally valid VaR model are 6 for the purely autoregressive design, and 10

and 12, respectively, for enhanced DQ regressions comprising either (four) variance or (six)

covariance spillovers. The lower panel documents the degrees of explanation for the autore-

gressive DQ model (‘AR’ ) and marginal degrees of explanation for the group of spillover

indices achieved within enhanced DQ regressions. Entries in bold face indicate the group of

DQ misspecification indicators with highest marginal explanatory content. G is the horizon

of variance spillovers. DQ regressions for in-sample and ex ante analysis comprise 5176 and

3676 observations, respectively. For further notes, see Table 3.
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In-sample BEKK estimates Ex ante BEKK estimates

ewp eq noeq mvp ewp eq noeq mvp

G 1 1 1 1 5 1 1 1 1 5

Dynamic Quantile diagnostics (p-values times 100)

AR 1.435 3.757 68.00 32.72 40.81 8.927 92.31 54.48

R(G,var)
t 3.730 15.25 36.29 9.118 9.409 31.78 17.11 48.15 39.35 32.46

R(G,cov)
t 0.109 8.998 8.126 5.139 5.561 14.62 16.91 80.39 71.23 62.20

T (G,var)
t 0.174 2.131 1.232 17.94 18.74 36.50 23.21 13.43 44.22 58.79

T (G,cov)
t 0.085 4.937 0.175 17.19 15.91 16.65 20.83 8.368 55.19 28.98

N (G,var)
t 0.510 5.157 3.710 11.27 11.41 15.37 10.18 12.24 57.78 73.02

N (G,cov)
t 0.630 14.24 0.248 5.277 7.987 18.02 8.112 19.33 40.39 39.01

S(G)
t 2.323 6.363 72.64 41.03 41.05 42.74 8.836 94.45 64.76 65.80

Marginal
√
R2 (times 100)

AR 5.568 5.089 2.782 3.683 4.083 5.488 2.318 3.700

R(G,var)
t 2.499 1.374 3.526 4.641 4.615 3.942 3.265 4.477 3.872 4.183

R(G,cov)
t 5.740 3.406 5.323 5.593 5.541 5.504 4.192 3.921 3.259 3.682

T (G,var)
t 4.855 3.850 5.894 3.957 3.910 3.417 2.614 5.901 3.693 3.060

T (G,cov)
t 5.849 3.828 7.145 4.606 4.675 5.158 3.577 6.794 3.973 5.003

N (G,var)
t 4.333 3.014 5.294 4.438 4.424 4.797 4.024 5.970 3.099 2.298

N (G,cov)
t 4.977 2.801 6.916 5.595 5.293 5.347 5.006 6.093 4.490 4.552

S(G)
t 0.544 0.267 0.868 0.735 0.735 1.228 2.393 0.860 0.543 0.256

Table 5: Inferential (p-values) and descriptive (marginal R2) statistics of the dy-

namic quantile regressions for the hit processes of VaR estimates with nominal cov-

erage α =2.5%. For further notes, see Table 4.
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In-sample BEKK estimates Ex ante BEKK estimates

ewp eq noeq mvp ewp eq noeq mvp

G 1 1 1 1 5 1 1 1 1 5

Dynamic Quantile diagnostics (p-values times 100)

AR 0.026 0.006 90.28 31.17 19.24 15.19 63.07 70.23

R(G,var)
t 0.048 0.037 80.29 13.75 13.90 0.467 8.438 11.30 22.76 12.26

R(G,cov)
t 0.000 0.058 55.38 6.678 7.310 0.031 16.23 56.03 63.28 48.50

T (G,var)
t 0.004 0.011 14.86 24.27 25.64 10.32 40.70 13.33 29.00 33.94

T (G,cov)
t 0.001 0.075 8.177 7.936 6.249 1.336 19.16 25.70 47.30 26.63

N (G,var)
t 0.003 0.045 34.14 21.00 21.89 2.443 23.21 8.391 37.76 58.45

N (G,cov)
t 0.001 0.222 30.75 3.732 5.611 0.005 19.57 12.83 35.79 37.04

S(G)
t 0.049 0.015 93.31 41.40 41.33 10.46 19.40 62.10 75.37 76.68

Marginal
√
R2 (times 100)

AR 7.056 7.493 2.053 3.714 4.801 5.041 3.373 3.209

R(G,var)
t 3.576 2.483 2.888 4.205 4.194 6.697 4.692 5.494 5.207 5.775

R(G,cov)
t 6.776 3.267 4.162 5.304 5.240 8.459 4.633 4.102 4.226 4.770

T (G,var)
t 4.996 3.502 4.969 3.524 3.460 4.179 2.048 5.539 4.871 4.697

T (G,cov)
t 6.186 2.948 5.850 5.166 5.337 6.339 4.221 5.528 4.767 5.585

N (G,var)
t 5.269 2.302 4.287 3.731 3.682 5.569 3.470 5.933 4.563 3.734

N (G,cov)
t 6.556 1.967 4.886 5.704 5.438 9.280 4.486 6.092 5.264 5.201

S(G)
t 0.607 0.074 0.780 0.322 0.348 2.474 1.568 1.832 1.124 0.964

Table 6: Inferential (p-values) and descriptive (marginal R2) of the dynamic quantile

regressions for the hit processes of VaR estimates with nominal coverage α =5.0%.

For further notes, see Table 4.
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Figure 2: Estimated BEKK implicit correlations of the four asset classes: equity

(eq), bonds (bd), foreign exchange (fx), and commodities (cd). Sample from March

1, 1995, to December 31, 2014.
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Figure 6: Net variance N (5,var)
t,i (top panel) and net covariance N (5,cov)

t,i (lower panel)

spillovers aggregated per asset class: equity (eq), bonds (bd), foreign exchange (fx),

and commodities (cd). Sample from March 1, 1995, to December 31, 2014.
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