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Abstract 

The paper presents GARCH option pricing models with Meixner-distributed innovations. The 

risk-neutral dynamics are derived by means of the conditional Esscher transform. Assessing 

the option pricing performance both in-sample and out-of-sample, we find that the models 

compare favorably against the benchmark models. Simulations suggest that the driver of these 

results is the impact of conditional skewness and conditional excess kurtosis on option prices. 
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1 Introduction

Continuous sample paths of asset prices and normality of returns have played a central

role in the pricing theory of financial derivatives. Samuelson (1965) introduced the geo-

metric Brownian motion, which is fundamental to the seminal papers of Black and Scholes

(1973) and Merton (1973). As is widely documented, however, the geometric Brownian

motion is not able to cope with volatility clustering and the stochastic nature of the volatil-

ity. To incorporate the stochasticity of volatility, three streams of literature have emerged:

continuous-time stochastic volatility models based on diffusion processes, such as that of Hull

and White (1987); discrete-time stochastic volatility models as originated by Taylor (2008);

and discrete-time generalized autoregressive conditionally heteroskedastic (GARCH) models

as introduced by Engle (1982) and Bollerslev (1986). As a distinct advantage of GARCH

models, the specification of volatility dynamics as a function of past returns allows one to

filter the volatility process very easily. This makes GARCH models particularly attractive

from the perspective of estimation and simulation.

Empirical evidence of equity markets shows that standardized GARCH residuals still ex-

hibit negative skewness and excess kurtosis, even when asymmetric variance dynamics are

employed, such as in the threshold GARCH model, which is able to reproduce unconditional

skewness and excess kurtosis. Conditional negative skewness and excess kurtosis therefore

needs to be introduced by means of skewed and heavy-tailed distributed innovations. More-

over, these distributional features are known to be crucial for accurately fitting option price

data. Accordingly, a number of alternative innovations distributions have been suggested

for GARCH-based option pricing models, such as the shifted Gamma in Siu et al. (2004),

the Inverse Gaussian in Christoffersen et al. (2006), the Generalized Hyperbolic in Chorro

et al. (2012), and the Normal Inverse Gaussian (NIG) in Stentoft (2008) and Badescu et al.

(2011).
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In this work, we develop a GARCH option pricing model with innovations that are drawn

from the Meixner distribution. The Meixner distribution is skewed and heavy-tailed, belongs

to the class of infinitely divisible distributions and therefore gives rise to a Lévy process called

the Meixner process that is studied by Schoutens and Teugels (1998) and Grigelionis (1999).

Schoutens (2002) demonstrates that the Meixner process fits historical return data of equity

indices very well and that it exhibits promising properties for option pricing. Motivated by

these findings, we incorporate the Meixner distribution into a GARCH framework for option

pricing.

We proceed by specifying a GARCH-in-mean model for the underlying asset’s return process

under the historical measure using alternative variance dynamics, such as the GARCH and

the threshold GARCH (TGARCH) of Glosten et al. (1993). The GARCH-in-mean spec-

ification is meant to capture time-varying variance risk premia – see Engle et al. (1987).

We then employ the conditional Esscher transform of Bühlmann et al. (1996) to derive the

risk-neutral pricing measure. More precisely, because the moment-generating function of the

Meixner distribution exists and is analytically tractable, we derive an analytical expression

of the Esscher transform and the Radon-Nikodym derivatives process and can characterize

the risk-neutral dynamics of logarithmic returns of the underlying asset, which turn out to

be conditional Meixner with time-varying parameters. As in Fengler et al. (2012), these re-

sults allow us to estimate the model from time series data and to price options by simulating

the transition density of stock prices and the Radon-Nikodym process under the historical

measure jointly. Consequently, we do not require a calibration of model parameters under

the risk-neutral probability measure.

Despite its evident suitability, to date, the Meixner distribution has not been much used for

asset pricing. Grigoletto and Provasi (2008) suggest GARCH models with Meixner innova-

tions to describe financial return data. Moolman (2008) considers a Meixner GARCH model

for option valuation and relies on the local risk-neutral valuation relationship (LRNVR)
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of Duan (1995) to derive the risk-neutral pricing measure. The LRNVR, however, is only

applicable if innovations are conditionally normal. In this work, we therefore develop a rig-

orous approach that is based on the Esscher transform. The use of the Esscher transform to

characterize the pricing measure is a well-established technique for non-normal innovation

processes – see, e.g., Gerber and Shiu (1994), Siu et al. (2004), Mercuri (2008), Badescu

and Kulperger (2008), Christoffersen et al. (2010), Badescu et al. (2011) and Chorro et al.

(2012). The martingale measure obtained by the conditional Esscher transform corresponds

to a specific exponential affine stochastic discount factor (Gouriéroux and Monfort, 2007).

In our empirical applications, we assess the goodness of fit and the option pricing performance

of the GARCH models in-sample and out-of-sample using S&P500 index data and price data

of options written on the S&P500 index. We find that the model compares favorably against

most of its competitors and is at par with the NIG-TGARCH model studied in Badescu

et al. (2011). In order to better understand the performance of the Meixner models, we

study the patterns of Black-Scholes implied volatility of a TGARCH model with normal and

Meixner innovations. We find that the implied volatility patterns are driven by the shape

parameters of the conditional Meixner distribution. The simulations suggest that aside from

specific forms of heteroskedasticity, conditional skewness and conditional excess kurtosis are

decisive for accurate option valuation.

The paper is organized as follows. Section 2 presents the main properties of the Meixner

distribution. In Section 3, we introduce GARCH-based option pricing models with Meixner

innovations and characterize the pricing measure. The empirical part and supportive sim-

ulations are provided in Sections 4 and 5. Section 6 concludes. An appendix details the

Meixner random variables generator.
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2 The Meixner distribution

A random variable X has the Meixner distribution MD(a, b,m, d) if its probability density

function is given by:

fMD(x; a, b,m, d) =

(
2 cos

(
b
2

))2d
2aπΓ(2d)

exp

(
b
x−m
a

) ∣∣∣∣Γ(d+ i
x−m
a

)∣∣∣∣2 , (2.1)

where Γ(·) is the gamma function, i =
√
−1, a > 0, −π < b < π, m ∈ R, d > 0 and x ∈ R

– see Schoutens (2002). The Meixner distribution is infinitely divisible and gives rise to a

Lévy process studied in Schoutens and Teugels (1998) and Grigelionis (1999).

In (2.1), the parameter d influences the peakedness and the parameter b affects the skewness

of the Meixner distribution. Parameters a and m define scale and location, respectively.

Moments of all orders exist. In particular,

E[X] = m+ ad tan

(
b

2

)
= µMD ,

Var[X] =
a2d

2

1

cos2(b/2)
= σ2

MD ,

Skew[X] =

√
2

d
sin

(
b

2

)
, (2.2)

Kurt[X] = 3 +
3− 2 cos2(b/2)

d
.

The distribution is symmetric for b = 0, skewed to the left (right) for b < 0 (b > 0). The

kurtosis of the Meixner distribution always exceeds the kurtosis of the normal distribution.

The Meixner distribution has semi-heavy tails. More specifically, one has the following tail

behavior (Grigelionis, 2001):

fMD(x; a, b,m, d) ∼ C−|x|ρ exp(−σ−|x|) as x→ −∞ ,

fMD(x; a, b,m, d) ∼ C+|x|ρ exp(−σ+|x|) as x→ +∞ ,

for some ρ ∈ R and C−, C+, σ−, σ+ > 0, where ρ = 2d − 1 , σ− = (π − b)/a , σ+ =

(π + b)/a.
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The MGF of the Meixner distribution MD(a, b,m, d) exists and can be derived from the

characteristic function (Grigelionis, 2001). It is given by

E[euX ] = emu

(
cos
(
b
2

)
cos
(
b+au
2

))2d

, u ∈
(
−π − b
a

,
π − b
a

)
. (2.3)

Suppose that X ∼ MD(a, b,m, d) and Y = AX + B with A ∈ R>0 and B ∈ R. Because Y

has the density fY (x) = 1
A
fX
(
x−B
A

)
, we observe that

Y ∼MD(Aa, b, Am+B, d) . (2.4)

Hence, the parameters b and d are invariant and the Meixner distribution is closed under

affine transformations. This property allows one to define a zero mean, unit variance Meixner

distribution as

X − µMD
σMD

∼MD

(
a

σMD
, b ,

m− µMD
σMD

, d

)
. (2.5)

As can be seen from (2.2), the parameters a and m cancel out. Hence, they can be expressed

as functions of b and d:

a =

√
2 cos2

(
b
2

)
d

; (2.6)

m = − ad tan

(
b

2

)
. (2.7)

In Figure 1, we contrast the standard normal with the Meixner density function with zero

mean and unit variance, which exhibits non-zero skewness and excess kurtosis.

Because the moments take so simple forms, the Meixner parameters can be estimated easily

by method of moments techniques. In particular, in our applications, we estimate b and d by

equating the theoretical skewness and kurtosis with their sample analogues. The parameters

a and m are obtained from (2.6) and (2.7). These moment-based estimators have proved

to be useful as initial values for the maximum likelihood estimation of our models with

Meixner-distributed innovations (see Section 4).
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3 GARCH-based option pricing models with Meixner

innovations

3.1 GARCH specifications

Let (Ω,F,P) be a probability space and {Ft} be the information structure, where Ft repre-

sents the information set of all market information at time t = 1, . . . , T . Under the historical

measure P, consider a market with two assets. The riskless bond price process is specified

by

Bt = Bt−1 e
rt , (3.1)

where {rt} is a predictable process which describes the daily risk-free rate. We assume rt = r

to be constant for simplicity. The risky stock price process is given by

St = St−1 e
Xt , (3.2)

where {Xt}, the logarithmic return of the stock, is adapted to {Ft}. We assume that Xt and

the conditional variance ht have the following dynamics under the historical measure P: Xt = µt + εt ,

ht = α0 + α1ε
2
t−1 + γ11(εt−1 < 0)ε2t−1 + β1ht−1 ,

(3.3)

where µt is a Ft−1-measurable conditional mean, εt =
√
ht

Yt−µMD
σMD

is an innovation process

with zero mean and conditional variance ht, and Yt
iid.∼ MD(a, b,m, d). For γ1 = 0, the

conditional variance follows a standard GARCH specification, and for γ1 6= 0 we have the

TGARCH model of Glosten et al. (1993).

Grigoletto and Provasi (2008) consider a general GARCH-type model, namely an AR-

APARCH model, which is driven by Meixner innovations. Unlike them, we consider a

GARCH-in-mean model, in which the conditional variance feeds into the mean equation.
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This establishes a time-varying risk premium as a function of the conditional variance (En-

gle et al., 1987). We set µt = r + λ
√
ht, where λ is a parameter. For normal and shifted

Gamma innovations, we consider µt = r + λ
√
ht − 0.5ht as in Duan (1995).

Because the Meixner distribution is closed under affine transformations, the conditional

distribution of returns is given by:

Xt|Ft−1 ∼MD

(
a
√
ht

σMD
, b ,

(m− µMD)
√
ht

σMD
+ µt , d

)
. (3.4)

As discussed in Section 2, the parameters a and m are redundant, but are functions of b and

d via (2.6) and (2.7). We keep them here for the sake of clearness.

Given (2.3), it follows that the conditional MGF of Xt is

MXt|Ft−1(z) = EP[ezXt |Ft−1] = exp

{
z

(
µt +

m− µMD
σMD

√
ht

)} cos
(
b
2

)
cos

(
b+

a
√
ht

σMD
z

2

)


2d

. (3.5)

The conditional MGF is in closed form and plays a crucial role in the derivation of the

equivalent martingale measure by means of the conditional Esscher transform.

3.2 The conditional Esscher transform

Gerber and Shiu (1994) introduce the change of measure by means of the Esscher transform.

The conditional Esscher transform is first used in Bühlmann et al. (1996) and Siu et al. (2004).

An advantage of the change of measure by means of the conditional Esscher transform over

Duan’s LRNVR is that it is applicable to any distribution whenever its MGF exists.

Assume, for all t = 1, . . . , T , MXt|Ft−1(z) = EP[ezXt |Ft−1] < ∞. As in Siu et al. (2004) and

in Christoffersen et al. (2010), we define a stochastic process {Lt}, t = 1, . . . , T , by

Lt =
t∏

k=1

eθkXk

MXk|Fk−1
(θk)

, (3.6)
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where {θk} is a predictable process, L0 = 1 and EP[Lt ] = 1. Evidently, EP[Lt |Ft−1] = Lt−1,

i.e., {Lt} is a martingale with respect to the filtration {Ft}. By these properties, {Lt} defines

a change of measure by means of the Radon-Nikodym derivative

dQ
dP

= LT =
T∏
k=1

eθkXk

MXk|Fk−1
(θk)

, (3.7)

where Q is the risk-neutral or equivalent martingale measure. Taking into account that

under Q the drift of the asset price process is equal to r, we obtain the relation

EP
[

eθtXt

MXt|Ft−1(θt)
eXt
∣∣∣∣ Ft−1] = EQ[eXt∣∣Ft−1] = er . (3.8)

Hence, the predictable process {θ∗t } which solves the martingale Esscher equation

MXt|Ft−1(θt + 1)

MXt|Ft−1(θt)
= er (3.9)

parametrizes the corresponding risk-neutral measure. The existence of the solution is guar-

anteed by the existence of MXt|Ft−1(z), see Grigelionis (1999). Christoffersen et al. (2010)

prove uniqueness if the conditional log MGF is strictly convex and twice differentiable. From

(3.8), it follows that the conditional MGF of log-returns under Q is given by

MQ
Xt|Ft−1

(z) =
MXt|Ft−1(θ

∗
t + z)

MXt|Ft−1(θ
∗
t )

. (3.10)

Besides the explicit form of the conditional distribution of log-returns, this relation allows

us to characterize the risk-neutral dynamics of returns in Section 3.3.

3.3 The risk-neutral dynamics

Here we derive the risk-neutral dynamics under the GARCH framework with the Meixner

innovations. To find the Esscher parameter θ∗t , insert (3.5) into (3.9). This yields:

exp

(
µt +

m− µMD
σMD

√
ht

)
cos

(
b+

a
√
ht

σMD
θ∗t

2

)

cos

(
b+

a
√
ht

σMD
(θ∗t+1)

2

)


2d

= er . (3.11)
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Straightforward calculations show

cos

(
δt(θ

∗
t + 1) + b

2

)
= ζt cos

(
δt θ
∗
t + b

2

)
, (3.12)

where δt = a
√
ht

σMD
and ζt = exp

{(
µt − r + m−µMD

σMD

√
ht

)
/(2d)

}
. Because µt = r + λ

√
ht, the

risk-free rate r cancels out. Using a result in Schoutens (2002, p. 16), we find

θ∗t = − 2

δt
arctan

(
ζt − cos

(
δt
2

)
sin
(
δt
2

) )
− b

δt
. (3.13)

Based on (3.10), under Q, the conditional MGF of log-returns can be written as

MQ
Xt|Ft−1

(z) = exp

{
z

(
µt +

m− µMD
σMD

√
ht

)}
cos

(
b+

a
√
ht

σMD
θ∗t

2

)

cos

(
b+

a
√
ht

σMD
(θ∗t+z)

2

)


2d

. (3.14)

Hence, under Q, the conditional MGF specifies a return distribution of the form

Xt|Ft−1 ∼MD

(
a
√
ht

σMD
, b∗t ,

(m− µMD)
√
ht

σMD
+ µt , d

)
, (3.15)

where the time-varying shape parameter b∗t is defined by

b∗t = b +
a
√
ht

σMD
θ∗t . (3.16)

Importantly, the conditional Esscher transform shifts only the shape parameter b of the

Meixner distribution under P to a conditional variance-dependent parameter b∗t under Q,

while keeping all other parameters constant.

Under Q, the mean equation of the logarithmic returns can be written as:

Xt = µt + εt , (3.17)

where εt has the conditional Meixner distribution

εt|Ft−1 ∼MD

(
a
√
ht

σMD
, b∗t ,

(m− µMD)
√
ht

σMD
, d

)
. (3.18)
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Because the logarithmic returns preserve the Meixner distribution under the risk-neutral

measure, the next equations can be exploited to simulate the price process of the underlying

asset price under Q by means of Monte Carlo simulations:

Xt = µt + ε∗t , (3.19)

ht = α0 + α1(ε
∗
t−1)

2 + β1ht−1 , (3.20)

where ε∗t =
√
ht

Y ∗
t −µMD
σMD

and Y ∗t ∼ MD(a, b∗t ,m, d). The Meixner variables Y ∗t are neither

independent nor identically distributed.

It should be noted that under Q the conditional expectation

EQ[Xt|Ft−1] = µt +
sin
(
b∗t−b
2

)
sin
(
b∗t
2

) √2dht (3.21)

and the conditional variance of the log-returns

VarQ[Xt|Ft−1] =
cos2

(
b
2

)
cos2

(
b∗t
2

) ht =
1 + cos(b)

1 + cos(b∗t )
ht (3.22)

become time-varying, which leads to highly non-linear risk-neutral dynamics of the condi-

tional variance process. Because ht is not the conditional variance process under Q, (3.20)

is only an updating equation and no longer has the interpretation of a conditional vari-

ance process. See Chorro et al. (2012, p. 1087) for similar observations on their generalized

hyperbolic GARCH model.

Referring to Equations (2.2), we can conclude that the time-varying parameter b∗t implies

a time-varying skewness and kurtosis under the risk-neutral measure. Moreover, because

stock returns are typically negatively skewed, i.e., b < 0, the Esscher parameter (3.13) yields

negative values for −π/2 < b < 0. Hence, from (3.16), in most empirical cases, we obtain

b∗t < b < 0. This result implies that the risk-neutral density is more negatively skewed

and has a larger conditional variance than does the historical one. These observations give

important insights into the dynamics of the risk-neutralized process and how it is distinct

from GARCH models with normal innovations.
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3.4 Interpretation of the Esscher transform as an exponential

affine stochastic discount factor

Gouriéroux and Monfort (2007) consider asset pricing using a stochastic discount factor

(SDF). If an agent makes investments at date t based on an information set Ft then, in the

absence of arbitrage, the prices of assets satisfy the valuation formula:

Ct (gt+1) = EP [Mt,t+1 gt+1 |Ft ] , (3.23)

where the SDF Mt,t+1 is a function of the updated information Ft+1 and gt+1 is a payoff at

date t+ 1. Gouriéroux and Monfort (2007) suggest an exponential affine form of the SDF:

Mt,t+1 = eαt+1Xt+1+βt+1 , (3.24)

where Xt+1 is a logarithmic return and the coefficients αt+1 and βt+1 are Ft-measurable

variables.

The conditional Esscher transform conforms to (3.24) by setting

αt+1 = θ∗t+1 , βt+1 = − log
(
MXt+1|Ft(θ

∗
t+1)
)
− r. (3.25)

The Esscher parameter θ∗t in (3.13) depends on the conditional variance as well as the

parameters of the Meixner distribution. Consequently, the dynamics of the process {θ∗t }

also depend on the dynamics of the historical variance process. The exponential affine SDF

Mt,t+1 is, therefore, a function of θ∗t , Xt+1, the Meixner parameters and the historical variance

process embedded into the conditional parametric MGF.

The exponential affine SDF (3.25) is related to the Radon-Nikodym derivative in (3.7) via

Mt,t+1 =
Lt+1

Lt

e−r. (3.26)

By the law of iterated expectations, it follows that the price of a (T − t) - period payoff with

a payoff function gT is given by

Ct (gT ) = EP [Mt,t+1 . . .MT−1,T gT |Ft ] . (3.27)
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4 Model implementation

4.1 Estimation

The conditional distribution (3.4) of asset returns and property (2.4) of the Meixner density

function permit an estimation of the parameters under the historical measure by means of

the Maximum Likelihood method based on observed returns. As a first step, we use Quasi

Maximum Likelihood Estimation (QMLE) to obtain the parameters (λ, α0, α1, β1) from a

GARCH model with normal innovations and to extract the residuals ε̂t from the mean

equation Xt = r+ λ
√
ht + εt. Using the QMLE residuals ε̂t, we calculate the moment-based

estimators of b and d by equating the sample skewness and kurtosis with (2.2). In a second

step, we use the estimated parameters (λ̂, α̂0, α̂1, β̂1, b̂, d̂) of the previous step as the initial

values for an exact MLE of the GARCH model with Meixner innovations. The log-likelihood

function is given by

LT (x|λ, α0, α1, β1, b, d) = −1

2

T∑
t=1

log

(
ht
σ2
MD

)
+

T∑
t=1

log fMD

(
Xt − µt√

ht
σMD + µMD

)
, (4.1)

where T is the sample size and fMD(x; a, b,m, d) is the Meixner density function defined

in (2.1). The Meixner moments µMD and σMD are defined in (2.2) and a and m are given by

(2.6) and (2.7).

In GARCH-in-mean models, the information matrix is not block diagonal. Thus, asymptotic

efficiency and consistent estimation of the parameters require that both the conditional mean

and variance functions be estimated jointly. Asymptotic properties of the QML estimator

in GARCH-type models have been investigated in Francq and Zaköıan (2004), who study

the linear ARMA-GARCH case and prove strong consistency and asymptotic normality of

the QML estimator under weak moment conditions. Similarly, Meitz and Saikkonen (2011)

develop an asymptotic estimation theory for nonlinear AR(p)-GARCH(1,1) models in pro-

viding conditions comparable to those established by Francq and Zaköıan (2004). The most

12



recent contributions to the asymptotic theory of QMLE in GARCH-in-mean models have

been made by Conrad and Mammen (2015). They derive conditions that ensure consistency

and asymptotic normality of the QMLE in the special case of a GARCH(1,1) process when

the mean function does not grow too fast. These results ensure that the first-step QMLE

estimates are consistent.

4.2 Option pricing

Option prices can be computed by simulations, which are performed either under P or under

Q. Due to positivity and tractability of the exponential affine SDF, we prefer the first

approach for pricing European options in our Meixner GARCH models.

Under P, the option price is given by (3.27), in conjunction with (3.25). The SDF generates

the Radon-Nikodym derivative LT = dQ
dP defined in (3.7). Therefore, the evaluation method

can be based on the Monte Carlo approximation

e−rT
1

N

N∑
n=1

L
(n)
T g(S

(n)
T ) −→ Ct (g(ST )) , forN →∞ , (4.2)

where L
(n)
T is the nth path of the Radon-Nikodym derivative calculated from the simulated

volatility dynamics under P, S
(n)
T is the nth stock price path simulated under P and the

payoff function is defined as g(S
(n)
T ) = (S

(n)
T −K)+ for call options and g(S

(n)
T ) = (K−S(n)

T )+

for put options with strike price K.

We employ the following Monte Carlo option pricing strategy for European put and call

options where the stock or index returns follow the (T)GARCH models.

1. Estimate the model parameters by MLE using return data. Then generate the (T − t)

Meixner distributed random variables
(
z
(n)
t+1, . . . , z

(n)
T

)
with zero mean and unit variance

using the rejection method (see Appendix) for each simulation n.
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2. Simulate recursively h
(n)
k and X

(n)
k using the (T)GARCH specification in which ε

(n)
k =

z
(n)
k

√
h
(n)
k , k = t+ 1, . . . , T .

3. The nth path of X
(n)
k and h

(n)
k generates the stock price ST = St exp

(∑T
k=t+1X

(n)
k

)
,

the Esscher parameter θ
(n)
k by formula (3.13) and the Radon-Nikodym derivative L

(n)
T

by formula (3.7).

4. From N simulated paths, we find the option price at time t as given by (4.2).

To reduce the Monte Carlo variance, we use the empirical martingale simulation (EMS)

method proposed by Duan and Simonato (1998). Fengler et al. (2012) emphasize the appli-

cation of the EMS scheme due to the following representation of the call option price

e−rT
1

N

N∑
n=1

L
(n)
T (S

(n)
T −K)+ = e−rT

1

N

N∑
n=1

(L
(n)
T S

(n)
T − L

(n)
T K)+ , (4.3)

where the scheme is applied to both the discounted process {LtSt} and the process {Lt}

under P. Applying the EMS method in this way, we preserve the martingale property of

these two processes. Hence, this strategy guarantees that the put-call parity holds for the

simulated prices.

5 Empirical analysis on S&P 500 index options

5.1 Data

For our application, we consider S&P 500 index closing prices. The index price data consists

of 5 044 daily observations taken from January 2, 1990, to January 5, 2010. Descriptive

statistics of the daily logarithmic returns are given in Table 1.

We use European-style options on the S&P 500 index to test the models. To that end, we

consider the closing prices of out-of-the-money (OTM) put and call options of each first
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Wednesday of every month from January 6, 2010, to December 29, 2010. In general, OTM

options are more liquid and more actively traded than in-the-money options. Option data

and zero coupon data are downloaded from OptionMetrics. As option price we take the

average of the bid and ask price. Following Barone-Adesi et al. (2008), options with time to

maturity less than 10 days or longer than 360 days, zero traded volume, implied volatility

larger than 70%, or prices less than $0.3 are discarded, which yields a sample of 2571 options.

Put and call option are represented in the sample in the ratio 60.5% and 39.5%, respectively.

The option data are categorized according to time to maturity (DTM), measured in calendar

days, and moneyness (M), defined as the ratio of the strike price over the index price, K/St.

A put option is said to be OTM if M < 1. The moneyness range of put options is divided into

three intervals: M < 0.9 (656 options), 0.9 6 M < 0.95 (437 options) and 0.95 6 M < 1

(462 options). A call option is said to be OTM if M > 1. The moneyness range of call

options is divided into the intervals: 1 < M 6 1.05 (430 options), 1.05 < M 6 1.1 (373

options) and 1.1 < M (213 options). An option is short maturity if DTM < 60 days (1520

options), medium maturity if 60 6 DTM < 160 days (720 options) and long maturity if

160 6 DTM days (331 options). Average option prices range from $7.39 for short maturity

options to $47.48 for long maturity options and from $5.59 for deep OTM options to $30.25

for options with moneyness close to 1.

5.2 Model fits and in-sample option pricing evaluations

We compare our Meixner models (MXN-GARCH and MXN-TGARCH) with the following

benchmarks: (i) the models with normal innovations (GARCH and TGARCH) of Duan

(1995); (ii) the models with shifted Gamma innovations (SG-GARCH and SG-TGARCH) of

Siu et al. (2004); (iii) the models with NIG innovations (NIG-GARCH and NIG-TGARCH)

which performs best according to Badescu et al. (2011, see their Table 2, p. 695). In all
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cases, the SDF is identified by means of the Esscher transform.1

The GARCH and TGARCH model parameters are estimated by exact MLE. For the models

with Meixner and NIG innovations, we use the exact MLE estimation procedure described

in Section 4.1. To compute the standard errors of the Meixner parameters a and m (NIG: a

and b), we employ the Delta method. The shifted Gamma models are estimated based on the

QMLE approach of Siu et al. (2004). Because the estimated parameters of the SG-GARCH

and SG-TGARCH models coincide with the corresponding parameters of the GARCH and

TGARCH models, we only report the parameters of models with normal innovations. The

additional Gamma parameter estimates are a = 24.938, b = 0.200 for the SG-GARCH and

a = 24.302, b = 0.203 for the SG-TGARCH model (using the notation in of Siu et al., 2004).

The results are shown in Table 2. The MXN-TGARCH and NIG-TGARCH models provide

the best information criteria values and the highest value of the log-likelihood function among

all models. The persistence is similar across all models and ranges from 0.9890 to 0.9965 as

often found in the literature. Figure 2 exhibits the quantile-quantile plots of the estimated

residuals of all models. As is visible, models with normal and shifted Gamma innovations do

not properly capture the heavy-tailed returns distribution. The models with Meixner and

NIG innovations provide a good fit thanks to their ability to capture negative conditional

skewness.

To compare the option pricing performance of the models in-sample, we study European

put and call options taken from the filtered data for January 6, 2010. These data consist

of 212 options. The strike prices range from $910 to $1350. Time to maturity is from 10

to 346 days. The closing price is S0 = $1137.14. The annual risk-free rates for each time

to maturity are taken from the zero coupon yields. Dividend yields are calculated from the

put-call parity for each time to maturity. We employ the option pricing strategy described

above and take the value of the estimated variance at January 5, 2010, as the initial value

1The Esscher transform and Duan’s LRNVR coincide with normal innovations (Siu et al., 2004).
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of the conditional variance for stock returns simulations. The option prices are estimated by

simulating 20 000 paths. We measure the performance of the models in terms of the dollar

root mean squared error (RMSE)

RMSE =

√√√√ 1

M

M∑
k=1

(
CModel
k − CMarket

k

)2
, (5.1)

where M is the number of options in the sample.

Tables 3 and 4 present the in-sample pricing errors by moneyness and maturity. Figure 3

illustrates the pricing errors which are defined as the difference between the model and the

market price for the TGARCH models.2 As can be observed, the asymmetric models with a

leverage effect in the variance equation strictly outperform the symmetric GARCH models

for conditionally normal, NIG and Meixner innovations. Similar results are known in the

literature (Härdle and Hafner, 2000; Christoffersen and Jacobs, 2004). The models with

shifted Gamma innovations perform poorly, especially for long maturity options and for

OTM put options. Intuition suggests that the conditional distribution of returns is not the

shifted Gamma one. Because this distribution does not have infinite support, it does not fit

the conditional distribution of returns properly.

Comparing the models, we see a visible performance impact after introducing the NIG and

the Meixner distribution into the (T)GARCH specifications – see Table 3. Most noticeable

improvements are in the pricing of puts and deep OTM calls. Across the different moneyess,

NIG and the Meixner model are very close, with the NIG-TGARCH model being somewhat

better for OTM puts and the Meixner for OTM calls. Looking at Table 4, which shows

the results across the maturity classes, we see again that the MXN-TGARCH and the NIG-

TGARCH models are superior and on par. MXN-TGARCH model does better for short

and middle maturity puts, where as NIG-TGARCH prices better long maturity puts and

short maturity calls. Figure 3 illustrates the appreciable advantage of the NIG and the

2Given the inferiority of GARCH models, we provide plots on the TGARCH models only.
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MXN-TGARCH model. All models, however, tend to underprice put OTM options.

5.3 Out-of-sample option pricing evaluation

In this section, we study the out-of-sample performance for S&P 500 put and call options. We

take the option data of the first Wednesday of each month, i.e., we consider 11 Wednesdays

from February 3, 2010, to December 1, 2010. To evaluate the option prices, we use the

in-sample parameters estimated under the historical measure at January 6, 2010. We follow

the same pricing strategy as for the in-sample analysis.

Tables 5 and 6 show the out-of-sample pricing errors by moneyness and maturity categories.

Overall, the results confirm the outcomes of the in-sample analysis. Asymmetric models

with leverage effect outperform the symmetric GARCH specification with normal, shifted

Gamma, NIG and Meixner innovations. The MXN-TGARCH model outperforms all the

other models, for both put and long maturity call options, and exhibits considerably low

pricing errors for long time to maturity put options, especially for deep OTM puts, but is

closely followed by the NIG model. Generally, the normal and the SG model underprice put

options and show a poor performance in pricing long maturity options. All models capture

the OTM call option prices and the short maturity option prices well. Averaging over

all moneyness and maturity buckets, the MXN-TGARCH provides the lowest pricing error

(about $4.50). Finally, Figures 4 and 5 present the deviations of model prices from market

prices for the TGARCH models as a function of moneyness and maturity, respectively. The

plots underpin furthermore the properties of the Meixner and the NIG model to capture the

term structure of option prices very well.

Overall, we may thus conclude that the fitting ability of the new Meixner model, both in-

sample and out-of-sample, is at par with that of the NIG model, which is ranked best in

Badescu et al. (2011). We conjecture that this is because both distributions share a number
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of similarities. They both belong to the class of semi-heavy tailed distributions and, in

the present setting, share the same (and very small) number of free parameters, thereby

avoiding overfitting. The Meixner distribution therefore is an attractive alternative to the

NIG distribution for GARCH-based option pricing.

5.4 Stylized implied volatility patterns

As is observed in the in-sample and out-of-sample analysis, the TGARCH and MXN-

TGARCH models exhibit marked pricing differences for long-dated options. In order to

obtain insights into the drivers of this finding, we compare the implied volatility patterns

of these models. We simulate both models using the same parameters and interpret the

Meixner shape parameters b and d as free variables. We set the parameter b equal to −0.2

and −0.6, which corresponds to increasing the negative skewness of the Meixner density

function; the parameter d is changed from to 0.1 and 0.9, which diminishes the peakedness

of the Meixner density function (decreases both skewness and kurtosis – see (2.2)). Option

prices are computed as described in Section 3.5. We simulate 20 000 Monte Carlo paths.

Figure 6 shows the implied volatility pattern across different moneyness for options with

about one year to expiry. Here and in all plots, the TGARCH model with normal innovations

serves as a benchmark. We see that b, the skewness parameter, has the most visible impact.

Making the conditional density more skewed results into a substantially steeper implied

volatility skew, while the impact of d is less visible. How is the term structure impacted? In

Figure 7, we present the implied volatility term structure for OTM puts and in Figure 8 that

of at-the-money options. Again the skewness parameter is most important, but the impact

of d is also clearly discernible. Combinations of the Meixner parameters, which define more

skewed and more heavy-tailed distributed innovations, imply a much slower decay of the

skew for OTM options, while on the other hand implied volatility levels of at-the-money

options increase more strongly. In this way, we can attribute the better performance of the

19



MXN-GARCH models directly to the shape parameters of the Meixner distribution.

6 Conclusions

We present GARCH-based models with Meixner innovations for option pricing. To derive the

risk-neutral pricing measure, we make use of the conditional Esscher transform. We deduce

that under the risk-neutral measure, logarithmic returns are still Meixner distributed, albeit

with time-varying parameters. Our results allow us to estimate the model parameters from

time-series observations and to price options by simulating the physical return process and

the Radon-Nikodym derivatives process jointly. We compare the empirical performance of

the considered models with others frequently cited in the literature, namely the (T)GARCH

models with normal, shifted Gamma, and normal inverse Gaussian (NIG) innovations.

Our in-sample and out-of-sample study of S&P 500 index options demonstrates that the

asymmetric variance dynamics along with asymmetric Meixner innovations capture skewness

and excess kurtosis of asset returns very well. The Meixner model provides, along with the

NIG model, the best fit to option prices. The outperformance is particularly large for long

maturity options and out-of-the-money put options. The results of the in-sample analysis

remain robust for the out-of-sample option pricing performance. By means of simulations, we

provide supportive evidence that the better option pricing performance is due to conditional

skewness and excess kurtosis of the Meixner distributed innovations.

Although the GARCH models with Meixner innovations perform remarkably well, there are

still discrepancies for at-the-money options and out-of-the money call options. This could

be due to a limitation in that the Esscher transform implies an exponential affine pricing

kernel. Indeed, recent research suggests the nonlinear pricing kernels may in addition improve

on the pricing accuracy, e.g., see Christoffersen et al. (2010) and Babaoglou et al. (2014).

Alternatively, one could consider more general specifications of linear pricing kernels, e.g.,
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see Christoffersen et al. (2013), Majewski et al. (2015) and Badescu et al. (2015). We leave

this for future research.

A Meixner random variable generator

Grigoletto and Provasi (2008) suggest a fast generator of Meixner random variables by means

of a rejection method. The approach assumes the existence of another density function g(x)

and a constant c > 1 such that fMD(x) 6 cg(x). A suitable choice is when g(x) belongs to

the Johnson translation family of unbounded functions

g(x; ξg, λg, γg, δg) =
δg

λg
√

2π
√
u2 + 1

exp

(
−1

2

(
γg + δg sinh−1(u)

)2)
, u =

x− ξg
λg

, (A.1)

where ξg, λg > 0, γg, δg > 0 are (real) parameters. The algorithm of Grigoletto and Provasi

(2008) is as follows:

1. Determine the parameters ξg, λg, γg, δg assuming that the first four moments of the

fMD(x) and g(x) are equal.

2. Derive the constant c from the equation

c = sup

(
fMD(x; a, b,m, d)

g(x; ξg, λg, γg, δg)

)
. (A.2)

3. Generate random variables u ∼ U(0, 1), z ∼ N(0, 1) and then x̄ using the transform

x̄ = ξg + λg sinh((z − γg)/δg) . (A.3)

4. Accept x̄ as a random variable from MD(a, b,m, d) if the next inequality holds:

u 6
1

c

(
fMD(x̄; a, b,m, d)

g(x̄; ξg, λg, γg, δg)

)
, (A.4)

otherwise, repeat the algorithm from the previous step.
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Figures and Tables
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Figure 1: Comparison of the standard normal density and the Meixner density with zero

mean and unit variance for different values of the shape parameters b and d. The bottom

panel presents the Meixner density function with the parameters obtained from the maximum

likelihood estimation of the S&P500 index price data in the MXN-GARCH model.
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Figure 2: Quantile-quantile plots of estimated residuals in the (T)GARCH models with

normal, shifted Gamma, Meixner and NIG innovations on S&P 500 index prices: January

2, 1990 - January 6, 2010.

26



Asset Mean Med. Min. Max. Std. Skew. Kurt.

S&P 500 0.00023 0.00049 -0.0947 0.1096 0.0117 -0.1990 12.1709

Table 1: Summary statistics of daily index returns.
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Figure 3: In-sample deviation of model prices from market prices. Left panel: TGARCH

and SG-TGARCH. Right panel: TGARCH models with Meixner and NIG innovations.
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Model

Moneyness

Put options Call options

< 0.90 0.90− 0.95 0.95− 1.0 1.0− 1.05 1.05− 1.10 1.10 <

GARCH 8.1110 7.8486 7.0086 1.9835 1.7082 3.0135

TGARCH 6.6177 6.8563 7.6286 3.2567 2.2374 2.0250

SG-GARCH 10.1530 10.2846 9.6743 3.1713 1.8458 2.6757

SG-TGARCH 9.9463 10.4802 11.9276 6.4299 4.7901 2.6926

MXN-GARCH 7.0829 7.2171 6.7856 2.1168 1.4322 2.5418

MXN-TGARCH 3.0947 3.8731 4.1933 2.0731 1.4588 0.8873

NIG-GARCH 7.7514 7.8579 7.87120 2.0612 1.4873 2.7433

NIG-TGARCH 2.6973 3.6765 3.8680 2.0193 1.4596 0.9440

Table 3: In-sample RMSE($) for different levels of moneyness on S&P 500 index prices:

January 2, 1990 - January 6, 2010.
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Model Options
Maturity

Overall
DTM < 60 60<DTM<160 160 < DTM

GARCH

Put 2.1667 6.0735 16.6624 7.7341

Call 1.2775 1.8160 3.7969 2.0581

Overall 1.9048 5.0516 13.6890 6.3779

TGARCH

Put 1.8567 5.3345 15.1973 6.9878

Call 0.4944 2.5133 5.5367 2.6594

Overall 1.5269 4.5785 12.7390 5.8695

SG-GARCH

Put 2.6581 7.8057 21.8078 10.0624

Call 1.3745 2.2211 5.2451 2.6493

Overall 2.2942 6.4789 17.9432 8.2948

SG-TGARCH

Put 2.4922 7.4347 23.8475 10.6988

Call 0.9089 4.0864 12.0554 5.4189

Overall 2.0823 6.4976 20.5802 9.2282

MXN-GARCH

Put 1.9802 5.6050 15.1196 7.0430

Call 1.1623 1.7713 3.7115 1.9829

Overall 1.7396 4.6738 12.4478 5.8205

MXN-TGARCH

Put 1.1400 3.8738 7.0297 3.6745

Call 0.4300 2.2008 2.9147 1.7190

Overall 0.9547 3.4010 5.9487 3.1416

NIG-GARCH

Put 1.9042 5.8303 17.1563 7.8182

Call 1.1657 1.7353 3.7038 1.9720

Overall 1.6842 4.8484 14.0757 6.4355

NIG-TGARCH

Put 1.3100 4.1607 5.5551 3.3709

Call 0.3778 2.0758 2.9901 1.6866

Overall 1.0808 3.5931 4.8316 2.9034

Table 4: In-sample RMSE($) for different time to maturity and overall pricing errors.
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Model
Moneyness

Put options Call options

< 0.90 0.90− 0.95 0.95− 1.0 1.0− 1.05 1.05− 1.10 1.10 <

GARCH 7.6727 7.8646 7.0172 6.2046 6.2657 6.1143

TGARCH 5.9587 7.6050 7.4558 5.0419 4.4060 3.5389

SG-GARCH 8.9386 10.1455 8.5246 5.2437 6.1497 7.7342

SG-TGARCH 8.9641 11.2797 11.1405 6.9530 5.9287 4.1944

MXN-GARCH 5.9389 6.9348 6.6173 5.5184 6.3039 6.2532

MXN-TGARCH 3.0984 4.9469 5.2749 5.2066 4.2522 3.8881

NIG-GARCH 5.9452 7.0069 6.7750 5.5971 6.4021 8.3742

NIG-TGARCH 3.2624 4.9361 5.7177 5.3699 4.7013 4.6699

Table 5: Out-of-sample RMSE($) for different levels of moneyness on S&P 500 index prices:

January 2, 1990 - January 6, 2010.
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Figure 4: Out-of-sample deviation of model prices from market prices. Left panel: TGARCH

with normal and SG innovations. Right panel: TGARCH with Meixner and NIG innovations.
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Model Options
Maturity

Overall
DTM < 60 60<DTM<160 160 < DTM

GARCH

Put 3.2800 7.6434 17.5410 7.5385

Call 4.5422 6.2747 10.2632 6.2077

Overall 3.7796 7.0362 14.7590 7.0380

TGARCH

Put 2.5242 6.5651 16.8923 6.9051

Call 3.5423 4.1812 7.6009 4.5229

Overall 2.9288 5.5780 13.5753 6.0685

SG-GARCH

Put 3.1680 9.1692 22.2071 9.1728

Call 5.0504 7.1048 7.6368 6.1813

Overall 3.9450 8.2677 17.3222 8.1128

SG-TGARCH

Put 3.0103 9.6091 25.9476 10.3144

Call 3.7558 4.4852 13.3132 6.0763

Overall 3.1002 7.6515 21.2839 8.8704

MXN-GARCH

Put 2.6278 6.6772 15.0119 6.4314

Call 5.0490 7.6386 8.1688 6.4757

Overall 3.6696 7.1432 12.4465 6.4491

MXN-TGARCH

Put 2.4281 5.1298 9.4963 4.4583

Call 3.5497 5.3878 6.3049 4.5500

Overall 2.9234 5.2524 8.2674 4.4970

NIG-GARCH

Put 2.7156 6.7465 15.1072 6.5040

Call 5.0724 7.7531 8.4088 6.5719

Overall 3.7325 7.2350 12.5809 6.5312

NIG-TGARCH

Put 2.4378 5.2830 9.4637 4.5843

Call 4.1257 5.4294 6.6507 4.9868

Overall 3.1465 5.3520 8.3326 4.7489

Table 6: Out-of-sample RMSE($) for different time to maturity and overall pricing errors.
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