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Abstract 

We investigate practical tests of market efficiency that are not subject to the joint-hypothesis 

problem inherent in tests that require the specification of an equilibrium model of asset prices. 

The methodology we propose simplifies the testing procedure considerably by reframing the 

market efficiency question into one about the existence of a local martingale measure. As a 

consequence, the need to directly verify the no dominance condition is completely avoided. 

We also investigate market efficiency in the large financial market setting with the introduction 

of notions of asymptotic no dominance and market efficiency that remain consistent with the 

small market theory. We obtain a change of numeraire characterization of asymptotic market 

efficiency and suggest empirical tests of inefficiency in large financial markets. 
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1 Introduction
An informationally efficient market is often understood to be one “in which
prices always ‘fully reflect’ available information” (Fama, 1969, Page 383).
While this description may be very helpful to the intuition, it leaves out at
least one important ingredient: the probability measure relative to which
prices are fully reflective of available information. If the probability measure
assumed is the physical or statistical measure then this description may have
more in common with the random walk hypothesis than market efficiency.
Indeed, a slightly more rigorous description of market efficiency would require
risk-adjusted asset prices to behave like martingales in the finite horizon,
complete market setting; of course, the risk-adjustment may be swept up
into an equivalent martingale measure Q, so that an alternative description
of market efficiency, assuming finite horizon and market completeness, would
require prices to evolve like martingales relative to a given information set
and an equivalent martingale measure reflecting agent’s preferences and risk
tolerance. This description of market efficiency echoes Malkiel (1991, Page
211)’s take on the subject:

A market is said to be efficient if it fully and correctly reflects
all relevant information in determining security prices. Formally,
the market is said to be efficient with respect to some information
set, φ, if security prices would be unaffected by revealing that
information to all participants. Moreover, efficiency with respect
to an information set, φ, implies that it is impossible to make
economic profits by trading on the basis of φ.

Hence, in an efficient (complete) market, risk-adjusted prices should be mar-
tingales, and it should be impossible to make economically significant profits
by trading on the basis of available information. Moreover, since prices fully
incorporate all available information at all times, there is no discrepancy be-
tween realized asset prices and prices implied by other non-price information.
In other words, since such discrepancies are non-existent, there cannot exist
trading strategies that perform better than buying and holding individual
traded assets.

This latter intuition informs the rigorous characterization of market ef-
ficiency proposed in (Jarrow & Larsson, 2012, Theorem 3.2). The authors
define a price process S as being efficient relative to a reference informa-
tion set if an economy E , determined by agents beliefs, endowments, and
preferences, and a consumption good price index may be found such that
S corresponds to equilibrium asset prices in E . From this basic definition,
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they obtain characterizations in terms of the existence of equivalent martin-
gale measures and in terms of the joint satisfaction of the no free lunch with
vanishing risk (NFLVR) condition and the no dominance (ND) condition.
NFLVR is an “absence of arbitrage” condition that ensures the existence of
an equivalent local martingale measure for S, whereas ND imposes an opti-
mality condition on asset prices.

One of the benefits of characterizing market efficiency in terms of NFLVR
and ND is that the equivalent (risk-neutral) separating probability measure
is taken out of the definition of market efficiency. From the empirical point
of view, a way of testing efficiency without running into the joint-hypothesis
issue is suggested since both NFLVR and ND are expressed entirely in terms
of the physical or statistical probability measure. The joint hypothesis prob-
lem essentially describes the unquantifiability of the misspecification error
incurred by specifying an equilibrium asset pricing model or stochastic dis-
count factor as reference for testing market efficiency.

In the present work, we further this line of research by obtaining ad-
ditional characterizations of market efficiency that have the advantage of
simplifying empirical tests. In principle, the no dominance condition has to
be verified for each asset, so that for a market with a large number of assets
testing the ND requirement may prove to be impractical. Our first insight
into the problem comes from the fact that, under the condition of no un-
bounded profit with bounded risk (NUPBR), the i-th asset Si in a market
with n distinct assets satisfies no dominance if and only if the n-dimensional
vector of asset prices S, expressed in units of (γ+(1−γ)Si), 0 < γ < 1, does
not violate the no arbitrage (NA) condition. Moreover, not only are con-
vex portfolios of undominated assets necessarily undominated (Delbaen &
Schachermayer, 1997), but the converse is also true (Corollary 2.0.1). Com-
bining, this insights with the fact that NUPBR remains invariant to a change
of numeraire, we obtain a characterization of market efficiency in terms of
NFLVR for S expressed in units of the market portfolio (Proposition 2.4).
From an empirical standpoint, this characterization obviates the need for
direct verification of the no dominance condition.

This reformulation also allows us to employ existing empirical techniques
for testing market efficiency. The empirical tests devised in (Jarrow et al.,
2012) and (Hogan et al., 2004) were originally intended to test for (statistical)
arbitrage strategies. The absence of arbitrage is not sufficient for market
efficiency. It is in fact possible for a given strategy to not be an arbitrage
while violating the ND condition for one or more assets. But since a violation
of the NA requirement for S expressed in units of the market portfolio is
equivalent to a violation of the ND condition for one or more assets, we are
able to repurpose the statistical arbitrage tests of Hogan et al. (2004) to
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perform simultaneous verifications of violations of the ND condition for all
assets. And since the NA condition is equivalent to ND for the zeroth asset,
both the NA and ND conditions can be handled within a single test.

We conclude our study of market efficiency by introducing notions of no
dominance and market efficiency to the large financial market setting of Ka-
banov & Kramkov (1994, 1998); Cuchiero et al. (2015). We refer to these
notions as asymptotic no dominance (AND) and asymptotic market efficiency
(AME), respectively. The tests of market efficiency we propose in the stan-
dard small market setting assume the investment horizon is infinite, R+, so
that they may be most appropriately used to test longer horizon strategies.
The large financial market setting makes it possible to study fixed horizon
strategies under the assumption that the number of asset in the market
tends to infinity, much like in the arbitrage pricing theory (APT) framework
of Ross (1976a,b). We obtain a further change of numeraire characterization
and suggest tests for violations of asymptotic market efficiency.

2 Efficiency in standard markets
We take as given a filtered probability basis B := (Ω,F := (Ft)t≥0,F , P )
satisfying the usual conditions. Defined on B we assume an n-dimensional
semimartingale S := (St)t≥0 representing the price process of n assets. We
will refer to the pair (S,B) as a market.

Let λ > 0; we define λ-admissible strategies in the usual manner, i.e.,
n-dimensional predictable processes H such that the stochastic integral H •S
is well-defined, (H • S) ≥ −λ, limt→∞(H • S)t = (H • S)∞ exists, and H0 = 0.
A strategy is said to be admissible if there exists λ > 0 such that it is λ-
admissible. An arbitrage is an admissible strategy H such that (H •S)∞ ≥ 0
almost surely and (H • S)∞ > 0 holds with positive probability. A market
(S,B) is said to satisfy the no arbitrage condition (NA) if it is devoid of
arbitrage strategies. For admissible strategies, the random variable (H •S)∞
is referred to as the terminal value or payoff of strategy H. The payoff
space of 1-admissible strategies is denoted K1. The market (S,B) is said to
satisfy the no unbounded profit with bounded risk condition (NUPBR) if
K1 is bounded in probability, i.e, bounded in the set of finite valued random
variables L0(B). Now, if every sequence fn ∈ K1 satisfying ‖fn ∧ 0‖∞ → 0

must also satisfy fn
P−→ 0 then the market (S,B) is said to satisfy the no

free lunch with vanishing risk condition (NFLVR).
The NFLVR condition is a strengthening of the NA condition. As a

matter of fact, NFLVR is necessary and sufficient for both NA and NUPBR to
hold (Kabanov, 1996, Lemma 2.2). In the general unbounded semimartingale
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case, the NFLVR condition is equivalent to the existence of a probability Q
equivalent to P such that the components of S are stochastic integrals of a
predictable process with respect to a local martingale. The measure Q is said
to be an equivalent σ-martingale measure for S (Delbaen & Schachermayer,
1999, 1.1 Theorem). In the case of locally bounded S, Q is a local martingale
measure for S (Delbaen & Schachermayer, 1994, Corollary 1.2). This is
also the case for non-negative asset prices, i.e. NFLVR is equivalent to the
existence of a probability measure Q, equivalent to P , such that S is a Q
local martingale if S ≥ 0 (Ansel & Stricker, 1994, Corollary 3.5).

The basic intuition of an efficient market relative to an information set
(Ft)t∈[0,T ] (at least in the complete markets, finite horizon case) is that risk-
adjusted prices evolve over time like Ft-martingales. As a result, current
prices represent the best prediction of the future behavior of risk-adjusted
prices. This is the same as saying that any attempt, in the form of a trading
strategy based on current information, to achieve a better outcome, in the
form of superior risk-adjusted returns, than simply buying and holding the
individual traded assets would ultimately prove to be unsuccessful. Note the
close relationship between the available information set and the set of admis-
sible trading strategies. The available information set uniquely determines
the set of admissible trading strategies and vice versa. Hence, in describing
market efficiency, we may speak of trading strategies rather than informa-
tion set. Indeed, provided asset prices exist, an alternative characterization
of markets efficiency may be stated in terms of the no dominance (ND) con-
dition.

2.1 Definition (Jarrow & Larsson (2012)) Given and n-dimensional
S vector representing asset prices, the i-th component Si is undominated on
the time horizon [0, T ], T <∞, if there is no admissible strategy H such that

P ((H • S)T ≥ SiT − Si0) = 1 and P ((H • S)T > SiT − Si0) > 0. (2.1)

The market (S,B) is said to satisfy ND if Si, 0 ≤ i < n, is undominated.
We will assume in the current setting that the investment horizon is the
positive real line, in contrast to the finite horizon setup analyzed in (Jarrow
& Larsson, 2012). This modeling choice is important, since, in this section,
we are primarily interested in devising tests of market efficiency that hold
asymptotically as the investment horizon approaches infinity. We assume
that prices have been rescaled so that Si0 = 1 for 0 ≤ i < n. We also assume
that H0 = 0 for all admissible strategies. Hence, as a slight modification of
the definition of ND given above, we will say that the i-th asset is undomi-
nated if for all admissible strategies H, P ((H • S)∞ ≥ Si∞ − 1) = 1 implies
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P ((H • S)∞ = Si∞ − 1) = 1. We now state the definition of market efficiency
in our setting as follows:

2.2 Definition (Market efficiency) Let (S,B) be a market carried on
the filtered probability basis B = (Ω,F ,F, P ). It is said to be efficient if it
satisfies NFLVR and ND.

The above definition adapts the second characterization of market effi-
ciency in (Jarrow & Larsson, 2012, Theorem 3.2(ii)) to our setting where the
time horizon is infinite. Hence, a market is efficient if both NFLVR and ND
are satisfied. Here, our objective is to derive equivalent characterizations of
market efficiency that may be more suitable for empirical analysis. In the
sequel, we will assume that the vector of prices S is expressed in terms of the
asset occupying the zeroth position, so that S0

t = 1 for t ≥ 0, and that all
other assets prices are non-negative so that Sit ≥ 0 for all t ≥ 0 and 0 ≤ i < n.
Let 0 < γ < 1 and denote S̃γ,i the n+ 1 dimensional vector obtained by ap-
pending Sγ,i := (γ + (1 − γ)Si) to the end of S, i.e. S̃γ,i := (S, Sγ,i). Now
set

Zγ,i := S̃γ,i(Sγ,i)−1. (2.2)

That is, Zγ,i expresses the price process S in units of the convex portfolio
consisting of the zeroth asset and the i-th asset, Sγ,i.

2.1 Proposition If the market (S,B) is efficient then (Zγ,i,B) admits a
local martingale measure for all 0 ≤ i < n and 0 < γ < 1.

Proof. Recall that a σ-martingale measure, under which Zγ,i may be ex-
pressed as a stochastic integral with respect to a local martingale, coincides
with a local martingale measure for non-negative Zγ,i (Ansel & Stricker, 1994,
Corollary 3.5). Hence, it is only required to demonstrate NFLVR, which in
turn is equivalent to both NA and NUPBR (Delbaen & Schachermayer, 1994,
Corollary 3.8). Suppose (S,B) satisfies NFLVR and ND while (Zγ,i,B) fails
to satisfy NA for some i and 0 < γ < 1, so that there exists an admissible
strategy H for Zγ,i such that (H •Zγ,i)∞ is non-negative and strictly positive
with positive probability. We will argue as in (Delbaen & Schachermayer,
1995, Theorem 11). By rescaling H it may be assumed that H is 1-admissible
for Zγ,i. Consider the gain process

Y := (1− γ)−1(Sγ,i(H • Zγ,i + 1)− 1). (2.3)

Since Sγ,i is strictly positive and H is 1-admissible for Zγ,i, we have that
Yt ≥ −(1 − γ)−1 for t ≥ 0. Also, because H0 = 0 and Sγ,i0 = 1, we have
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that Y0 = 0. Since H is an arbitrage for Zγ,i, we have that Y∞ is at least
as great as (1− γ)−1(Sγ,i∞ − 1) = Si∞ − 1 with the inequality holding strictly
with positive probability. ND will be violated for Si if Y is representable as
a stochastic integral with respect to S. This follows from an application of
Itô’s integration by parts formula. Write H =: (Ha, Hb) where Ha denotes
the first n components of H and Hb its n+ 1-st (last) component. Then

(1− γ)Y + 1 = H • Sγ,i • Zγ,i +H • Zγ,i • Sγ,i +H • [Sγ,i, Zγ,i] + Sγ,i

= H • S̃γ,i + Sγ,i

= Ha • S +Hb • Sγ,i + Sγ,i.

So that Y = (1−γ)−1Ha •S+ (Hb + 1) •Si, which may be expressed as K •S,
where K = (1−γ)−1Ha+ In,b,i and In,b,i is the n dimensional vector which is
zero everywhere except in the i-th position where it is equal to Hb+1. Hence,
Si is dominated by the (1 − γ)−1-admissible strategy K. This contradicts
the efficiency of (S,B).

We note that the result that the NUPBR condition is invariant to a change
of numeraire in the finite horizon setting is proved in (Takaoka & Schweizer,
2014, Proposition 2.7 (ii)) using functional analytic methods. Here, we estab-
lish the claim using more elementary arguments. To that end, suppose (S,B)
is efficient while (Zγ,i,B) fails to satisfy the NUPBR condition. In that case
there exists a sequence (Hm)m≥1 of 1-admissible strategies for Zγ,i and β > 0
such that givenN ∈ N ifm is sufficiently large then P ((Hm•Zγ,i)∞ > N) > β.
Denote

Y m := Sγ,i(Hm • Zγ,i + 1)− 1.

It is easily verified that Y m
0 = 0 and Y m

t ≥ −1, t ≥ 0. Moreover, Y m
∞ ≥

γ((Hm •Zγ,i)∞+1)−1 so that (Y m
∞ )m≥1 is an unbounded sequence in L0 (B).

Indeed, for N ∈ N, P (Y m
∞ > N) ≥ P ((Hm •Zγ,i)∞ > γ−1(N + 1)− 1), which

for sufficiently large m exceeds β. NUPBR for (S,B) will be violated as soon
as Y m is shown to be representable as a stochastic integral with respect to
S. But this follows, as in the previous paragraph, from Itô’s integration by
parts formula.

We now establish the converse to the previous claim.

2.2 Proposition If (Zγ,i,B) admits a local martingale measure for every
0 < γ < 1 and 0 ≤ i < n then (S,B) is efficient.

Proof. Suppose (Zγ,i,B) admits a local martingale measure for every i and
0 < γ < 1 while (S,B) fails to satisfy NUPBR. Then there isHm 1-admissible
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for S and β > 0 such that for sufficiently large m, P ((Hm • S)∞ > N) > β
for all N ∈ N. Consider

Y m := (Sγ,i)−1(Hm • S + 1)− 1.

Y m
t is well-defined because Sγ,it is strictly positive; Y m

t ≥ −1 because Hm

is 1-admissible for S; and Y m
0 = 0 because Hm

0 = 0 and Sγ,i0 = 1. We note
that the existence of a local martingale measure for Zγ,i is equivalent to
NFLVR. Under NFLVR (H •Zγ,i)∞ exists and is finite-valued for admissible
strategies (Delbaen & Schachermayer, 1994, Theorem 3.3). In particular Zγ,i

∞
and therefore (Sγ,i∞ )−1, for all all i, is well-defined and finite valued. Note that
(Sγ,i∞ )−1 cannot be zero with positive probability since this would imply that
P (Si∞ =∞) > 0, which would contracdict the almost sure finiteness of Zγ,i

∞ .
Hence, 0 < (Sγ,i∞ )−1 ≤ γ−1, almost surely, so that there is c > 0 sufficiently
small such that P ((Sγ,i∞ )−1 ≤ c) ≤ β/2. Hence,

P (Y m
∞ > N) > P ((Hm • S)∞ > c−1(N + 1)− 1)− P ((Sγ,i∞ )−1 ≤ c),

which for sufficiently large m is larger than β/2. That is (Y m
∞ )m≥1 is un-

bounded in L0(B).
Now let Km := (Hm, 0) denote the n+ 1-dimensional predictable process

obtained by appending 0 to Hm. It is easily seen that Km • S̃γ,i = Hm • S.
So that Y m may be written alternatively as (Sγ,i)−1(Km • S̃γ,i + 1) − 1. By
Itô’s integration by parts formula and the fact that Zγ,i = (Sγ,i)−1S̃γ,i, we
have Y m = (Km + In+1,0) • Zγ,i, where In+1,0 denotes the n+ 1 dimensional
vector with zeros everywhere except in the zeroth position where there is a 1.
Thus, (Y m

∞ )m≥1 is generated by 1-admissible strategies for Zγ,i and therefore
constitutes a violation of the NUPBR condition for Zγ,i.

We note that the NA condition is simply the ND condition for the zeroth
asset, so that demonstrating ND for 0 ≤ i < n is all that is required. To that
end, suppose there is an i and a c-admissible, c > 0, strategy H for S such
that (H • S)∞ ≥ Si∞ − 1 holds, almost surely, with the inequality holding
strictly on a set of positive probability. Observe that this implies that

(1− γ)(H • S)∞ ≥ (1− γ)(Si∞ − 1) = Sγ,i∞ − 1 (2.4)

holds almost surely with the inequality holding strictly on a set with positive
probability. Set K := (H, 0) and note that H •S = K • S̃γ,i for any 0 < γ < 1;
fix one such γ and define

Y := (Sγ,i)−1((1− γ)K • S̃γ,i + 1)− 1.

It is easily seen that Y0 = 0 and easily verified that Yt ≥ γ−1(1 − γ)(1 − c)
for t ≥ 0. It follows from (2.4) that P (Y∞ ≥ 0) = 1 and P (Y∞ > 0) > 0. It
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follows by the stochastic integration by parts formula that Y = ((1− γ)K +
In+1,0) •Zγ,i =: J •Zγ,i. Hence, J constitutes a violation of the NA condition
for Zγ,i. This completes the demonstration.

The previous two Propositions may be summarized as follows:

2.3 Proposition The market (S,B) is efficient if and only if (Zγ,i,B)
admits an equivalent local martingale measure for each 0 ≤ i < n and 0 <
γ < 1. In particular, under NUPBR, the i-th asset Si is undominated if
and only if (Zγ,i,B) satisfy NA for all 0 < γ < 1. Moreover, (S,B) satisfies
NUPBR if and only if (Zγ,i,B) satisfies NUPBR.

It is easy to see that if Proposition 2.3 holds for one γ ∈ (0, 1) then it
must hold for all 0 < γ < 1. Hence, we may restate the claim of that Propo-
sition using equally weighted portfolios of the numeraire asset and the i-th
asset. These results make it somewhat easier to test for efficiency by lever-
aging econometric techniques designed for testing arbitrage and unbounded
profit opportunities as opposed to attempting to test for the no dominance
condition directly. Still a market with n assets would require n + 1 tests to
verify efficiency. The U.S. equities market is comprised of more than five
thousand stocks, so that, in principle, a verification of market efficiency in
the U.S. equities market would require as many as five thousand separate
tests. The following characterization of market efficiency simplifies the task
considerably by reducing the number of tests to just two: NA and NUPBR.
First, we introduce some helpful notation. Let

α = (α0, · · · , αn−1)

be an n dimensional vector of real numbers such that αi > 0, and
∑n−1

i=0 αi =
1, so that α is a weight vector. Define Sα := α ·S =

∑n−1
i=0 αiS

i, i.e. Sα is the
weighted sum of the n asset prices, and it is interpreted as the value process
of the market portfolio computed using the weight vector α. Next, denote
S̃α the n + 1 dimensional price vector obtained by appending Sα to S, i.e.
S̃α := (S, Sα). Denote

Zα := S̃α(Sα)−1, (2.5)

so that Zα is a change of numeraire that restates S in units of the market
portfolio. We now have the following:

2.4 Proposition The market (S,B) is efficient if and only if (Zα,B)
admits an equivalent local martingale measure for all strictly positive weight
vectors α.
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Proof. Suppose, (Zα,B) admits a local martingale measure while there exists
a c-admissible strategy, c > 0,

H := (H0, · · · , Hn−1)

for S and at least one 0 ≤ k < n such that (H • S)∞ ≥ Sk∞ − 1 holds almost
surely, with the inequality holding strictly with positive probability. Denote
α−k the vector obtained by substituting 0 for the k-th coordinate of α. Set
K := α−k + αkH and observe that (K • S)∞ ≥ Sα∞ − 1, almost surely, with
the inequality holding strictly on a set of positive measure. Set J := (K, 0)
and note that J • S̃α = K • S. Now consider

Y = (Sα)−1(J • S̃α + 1)− 1.

Because J0 = 0 and Sα0 = 1, we have Y0 = 0. Because H is c-admissible
and 0 < (Sαt )−1 ≤ (α0)

−1, we have Yt ≥ (α0)
−1(1− α0)(1− c), and P (Y∞ ≥

0) = 1 with P (Y∞ > 0) > 0 because H • S dominates Sk. By the stochastic
integration by parts formula, Y = (J+In+1,0) •Zα. That is, Y is an arbitrage
for Zα.

Now suppose (Hm)m≥1 violates NUPBR for S. Then there is β > 0
such that for all N ∈ N, P ((Hm • S)∞ > N) > β for sufficiently large
m. Let Y m = (Sα)−1(Km • S̃α + 1) − 1, where Km = (Hm, 0). It is easy
to see that Y m

0 = 0, and Y m
t ≥ −1. Under the assumption of NFLVR,

(Sα∞)−1 is well-defined, finite-valued, and contained in (0, α−10 ] (Delbaen &
Schachermayer, 1994, Theorem 3.3). Hence, there is a sufficiently small c
such that P ((Sα∞)−1 > c) > 1− β/2. Hence, for sufficiently large m,

P (Y m
∞ > N) > P ((Km • S̃α)∞ > c−1(N + 1)− 1)− P ((Sα∞)−1 ≤ c),

which eventually exceeds β/2. Using Itô’s integration by parts formula, it
may be easily seen that Y m is expressible as a stochastic integral with respect
to Zα.

Now suppose (S,B) is efficient but for some α, (Zα,B) admits an arbi-
trage. So that there is 1-admissible H such that (H •Zα)∞ ≥ 0 almost surely
with the inequality holding strictly with strict probability. Then it is easily
verified, arguing as in the previous paragraphs, that Y := (Sα)(H •Zα+1)−1
is equal to K • S where K is 1-admissible for S. Because H is an arbitrage
for Zα, we have that Y∞ = (K • S)∞ ≥ Sα∞ − 1, with the inequality hold-
ing strictly with positive probability. Hence, Sα is dominated by K. That
ND fails for at least one asset now follows from (Delbaen & Schachermayer,
1997, Proposition 2.12). Indeed, denote J := α−1n−1(K−

∑n−2
i=0 αi) and observe

that (J • S)∞ ≥ Sn−1∞ − 1, almost surely, with the inequality holding strictly
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with positive probability. By the non negativity of Sn−1, we also have that
(J • S)∞ ≥ −1; by Proposition 2.11 of Delbaen & Schachermayer (1997),
(J •S)t ≥ −1 on R+, so that J is 1-admissible. This is a contradiction of the
no dominance assumption on Sn−1.

Now, if (Hm)m≥1 is a violation of NUPBR for Zα then (Y m)m≥1, where
Y m = (Sα)(Hm • Zα + 1)− 1 violates NUPBR for S.

As a corollary to the previous claim, we now have the following:

2.0.1 Corollary Under the assumption of NUPBR for S, (S,B) is efficient
if and only if Sα is undominated for every strictly positive weight vector α.

Proof. The necessity of the claim follows as in Proposition 2.4. On the other
hand if Si is dominated by H then K • S, where K = α−i + αiH and α−i is
the portfolio weight α with 0 substituted for αi, dominates Sα.

The next result shows that the choice of weight vector is irrelevant.

2.0.2 Corollary Let α be a srictly positive weight vector. (Zα,B) satisfies
NFLVR if and only if (Zκ,B) satisfies NFLVR for all strictly positive weight
vectors κ.

Proof. Sufficiency is obvious. Suppose (Zκ,B) fails to satisfy NUPBR for a
strictly positive weight vectors κ. Let (Hm)m≥1 denote the sequence yielding
unbounded profits in the market (Zκ,B). Then using familiar arguments, it
is easily verified that Y m := (Sκ)(Hm • Zκ + 1)− 1 constitutes a violation of
NUPBR for (S,B). By Proposition 2.4, (Zα,B) cannot satisfy NFLVR.

Suppose (Zκ,B) satisfies NUPBR but fails to satisfy NA. Then arguing
as in Proposition 2.4, it is easily seen that Sκ is dominated. By Corollary
2.0.1, (S,B) cannot be efficient. By Proposition 2.4, (Zα,B) cannot satisfy
NFLVR.

The next characterization of market efficiency is perhaps the most in-
tuitive. It states that in a complete market setting, a market is efficient if
and only if there exists Q equivalent to P such that all asset prices are uni-
formly integrable Q martingales. Hence, not only must risk-adjusted prices
be unpredictable, they must also have constant unconditional risk-adjusted
expectation across time and at infinity. This result is the infinite horizon
counterpart of (Jarrow & Larsson, 2012, Theorem 3.2 (iii)).

2.5 Proposition The market (S,B) is efficient if and only if there exists
an equivalent local martingale measure Q for S such that S is a uniformly
integrable martingale under Q.
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Proof. The claim follows from (Delbaen & Schachermayer, 1995, Theorem
13). Indeed, by Proposition 2.4, efficiency is equivalent to (Zα,B) admitting a
local martingale measure. Let Q′ be a local martingale measure for Zα. Since
0 < (Sα)−1 ≤ α−10 on R+, it follows in particular that (Sα)−1 is a uniformly
integrable martingale under Q′ (Protter, 2004, Theorem 51). Define dQ =
(Sα∞)−1dQ′. That Sα is uniformly integrable follows from the fact that for
all stopping times τ , EQ(Sατ ) = 1. Since 0 ≤ αiS

i ≤ Sα, we have that Si is
uniformly integrable as well. Moreover, S̃α = Zα(Sα) is a Q local martingale
(He et al., 1992, Theorem 12.12). In particular, S is a Q local martingale.
Hence, Q is an equivalent local martingale measure for S.

Suppose Q is a uniformly integrable martingale measure for S. Then
Q doubles as a local martingale measure for S, so that NFLVR is satisfied
(Delbaen & Schachermayer, 1999, Theorem1.1). It remains to show prices
are not dominated. Suppose there is K admissible for S such that

P ((K • S)∞ ≥ Si∞ − 1) = 1, (2.6)

with the inequality holding strictly with positive probability for some 0 ≤
i < n. Because S is a local martingale under Q, it follows that K • S is
a σ-martingale, so that by (Ansel & Stricker, 1994, Corollary 3.5) it is a
local martingale. Moreover, since it is bounded below, K • S is a super-
martingale. Hence, under the assumption of uniformly integrable Si, we
have EQ((K • S)∞ − (Si∞ − 1)) = EQ((K • S)∞) ≤ EQ((K • S)0) = 0. Since
(2.6) holds and P ∼ Q, it must be the case that P ((K •S)∞ = Si∞−1) = 1.

According to Proposition 2.5, the equivalence holds only if there exists
an equivalent probability measure Q such that prices, in addition to being
martingales, are also uniformly integrable. Indeed, the following is a coun-
terexample taken from (Delbaen & Schachermayer, 1999).

2.1 Example Let (εm)m≥1 be independent and identically distributed
Bernoulli sequence taking values 1 and -1 with equal probability (P ). Let
c denote a real number satisfying 0 < c < 1 and define the price process
(Sm)m≥1 recursively as follows: S0 = 1 and Sm = c if εm = 1, and Sm =
2Sm−1−c otherwise. Now consider an economy with two assets (1, S). Denote
Fm the σ-algebra generated by εm and observe that E(Sm|Fm−1) = 1/2(c+
2Sm−1 − c) = Sm−1. So that (1, S) is a martingale for (Fm)m≥1 under P .
Meanwhile, note that S∞ = c < 1 almost surely since the probability of all
occurrences of εm being -1 is zero. Hence, S is strongly dominated by 1. That
is (1, S) fails to satisfy ND and, therefore, market efficiency even though it
is a martingale.
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2.1 Statistical inference for market efficiency

In the asset management industry, an arbitrage is often understood, at least
implicitly, as a trading strategy capable of generating positive expected excess
return beyond the level implied by its exposure to a set of risk factors. The
set of risk factors is often the return of a market index such as the S&P
500 together with the size and value factors of Fama & French (1993). This
excess positive return beyond the level prescribed by the benchmark index or
factors is often denoted α and the strategy as a whole is often referred to as
an alpha. The economic appeal of an arbitrage is the possibility of achieving
positive excess returns while incurring a less than commensurate amount of
risk.

In other words, an arbitrage is a free lunch. Clearly, the free lunch inter-
pretation of an arbitrage only makes sense to the extent that the benchmark
factors accurately represent the sources of systematic risk present in the econ-
omy. As a case in point, a strategy based on the “small size effect” (Banz,
1981) produces positive alpha when systematic risk is proxied with the return
on a market index; of course, the positive alpha vanishes in the multi-factor
model of Fama & French. Hence, a true determination of an alpha, at least in
the multi-factor framework, is only possible if the underlying risk factors are
known and measurable with accuracy. Another, way to state the same thing
is to consider the fact that in an exponentially affine multi-factor framework,
the logarithm of the Radon-Nikodym derivative of the risk-neutral measure,
is given by

m = a+
k∑
i=1

bifi

where a and bi are constants and fi, 0 < i ≤ k, is a systematic/priced risk.
Hence, a choice of (fi)0<i≤k may be viewed as expressing an opinion about
m or indeed the risk-neutral measure Q since

Q(A) =

∫
A

exp(m)dP (2.7)

for all events A.
In practice, the pricing kernel m is unobservable so that the choice of risk

factors (fi)0<i≤k is subject to error; indeed the choice of a linear relationship
itself is subject to error. A means by which the misspecification error may be
sidestepped is suggested by the local martingale characterization of market
efficiency, i.e. a market is efficient in large financial markets if NA, ND,
and NUPBR hold. These conditions are expressed in terms of the physical
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measure, so that, by formulating empirical tests based on these concepts the
misspecification error inherent in trying to estimate the pricing kernel m may
be avoided.

By Proposition 2.4, if the aim is to study efficiency in the market (S,B)
then it may prove to be more efficient to first perform a change of numeraire,
using the market portfolio as the new numeraire, and then studying the
market (Zα,B). This approach has the benefit of obviating the need to
perform the ND test for each asset, since each violation of ND translates into
a violation of NA for Zα. To that end we have the following lemma.

2.6 Proposition Let (Hm)m≥1 be a sequence of admissible simple strategy
for Zα, that is Hm admits the representation Hm =

∑nm

i=1 ζiIKτi−1,τiK, where
nm ↑ ∞, τi is a stopping time, and ζi is Fτi−1

measurable. Further suppose
that

EP ((V m
τm)2) <∞,

where V m
τm

:= (Hm •Zα)τm. Suppose there is an admissible strategy H for Zα

such that Hm • S
ucp−→ H • S. Then H constitutes a violation of NA for Zα if

and only if

lim
m
EP (V m

τm) > β for some β > 0, (2.8)

lim
m
P (V m

τm < 0) = 0. (2.9)

Moreover, if (Hm)m≥1 denotes a sequence of 1-admissible simple strategies
for Zα such that

EP (V m
τm) <∞.

Then (Hm)m≥1 constitutes a violation of NUPBR for Zα if and only if

lim
m
EP (V m

τm) =∞. (2.10)

Proof. These statements follow directly form the definitions of NA and
NUPBR.

The simplest way to verify (2.8), (2.9), and (2.10) is probably to specify a
parametric model for the incremental payoffs of Hm. This is the approached
taken in Jarrow et al. (2012) to study statistical arbitrage opportunities. Let
(εi)1≤i≤nm denote a sequence of independent standard normal variables and
define

∆V m
τi

:= V m
τi
− V m

τi−1
= µiθ + σiγεi, (2.11)
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where µ, θ, σ, and γ are constants. This specification is the unconstrained
mean (UM) model of Hogan et al. (2004); this basic setup may be modified
to accommodate more complicated behaviors such as correlated errors and
coefficients that change from one small market to the next. Observe that V m

τm

is normally distributed with mean µ
∑nm

i=1 i
θ and variance

∑nm

i=1(σi
γ)2. The

log likelihood function is given by

L(Θ) := −2−1
nm∑
i=1

log(σiγ)2 − (2σ2)−1
nm∑
i=1

i−2γ(∆V m
τi
− µiθ)2.

where Θ := (µ, θ, σ, γ). The parameter vector may be estimated in the usual
manner by setting the gradient of L(Θ) to zero and solving a system of four
equations in four unknowns to obtain an estimate Θ̂ := (µ̂, θ̂, σ̂, γ̂).

Now observe that if both µ and θ are positive then (Hm)m≥1 constitutes a
violation of the NUPBR condition for Zα. If µ > 0, γ < 0, and θ is sufficiently
large then (Hm) converges to an arbitrage for Zα and, by Proposition 2.4,
a violation of market efficiency for (S,B). In (Hogan et al., 2004, Theorem
6), it is shown that θ > γ − 1/2 ∨ −1 is sufficient to ensure convergence
to an arbitrage. The above considerations are summarized in the following
Proposition.

2.7 Proposition Under the assumptions of Lemma 4.1, if the incremental
payoffs of Hm satisfy (2.11) then the null hypothesis of market efficiency may
be rejected with 1− α confidence if either one of the joint tests

1. H1 : µ̂ > 0 and H2 : θ̂ > 0, or

2. H ′1 : γ̂ < 0, H ′2 : µ̂ > 0, H ′3 : θ̂ > γ̂ − 1/2 ∨ −1.

achieve a combined p-value of less than α.

It is worth noting that since these tests involve the specification of a
model for the incremental payoffs of the target strategies, they are subject
to misspecification errors. Hence, these tests also involve testing a joint-
hypothesis. The advantage of the current tests over traditional tests that
require the specification of a model for the stochastic discount factor is that,
the misspecification error incurred in the tests proposed here may be ana-
lyzed and tested; this is so because they only require observable (at least
at discrete times) data: prices and portfolio returns. This is in contrasts to
the “unmeasurable” misspecification error incurred in traditional tests which
rely on estimates of unobservable quantities such as the stochastic discount
factor underlying the market.
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Moreover, the incremental payoff specification in (2.11) is just one exam-
ple. Another reasonable model that may be analyzed by maximum likelihood
methods would involve modeling incremental payoffs as the sum of an expo-
nential random variable and a Gaussian random variable. The positivity of
the volatility of the Gaussian component can then be tested as m tends to
infinity to verify violations of the no arbitrage condition. Clearly, the model
that is ultimately selected would depend on how well it fits the data being
analyzed.

3 Market efficiency in large financial markets
The theory of large financial markets is a modern re-imagining of the ar-
bitrage pricing theory (APT). The APT (Ross, 1976a,b) was devised as an
alternative to the capital asset pricing model (CAPM) of Sharpe (1964) and
Lintner (1965); it aims to obviate the need for accurate measures of the mar-
ket portfolio and to relax some of the assumptions underlying the CAPM.
It assumes that changes in individual asset returns are due to changes in a
fixed number of factors plus an uncorrelated idiosyncratic component. Under
the assumption of no arbitrage (Huberman, 1982), the security-market line
is approximated arbitrarily well, as the number of assets increases without
bound.

The APT is fundamentally a discrete time theory. The theory of large
financial markets was introduced in (Kabanov & Kramkov, 1994, 1998) as
a dynamic continuous-trading extension of the APT. In this modern incar-
nation, the APT employs the tools of mathematical finance pioneered by
Harrison & Pliska (1981). A large financial market is defined as a sequence
of small markets (Sn,Bn, T n), n ∈ N, where 0 < T n ≤ ∞ is the terminal time
in the n-th small market, Sn is a dn-dimensional vector of asset prices and
Bn is a filtered probability basis (Ωn,Fn,Fn, P n). In the sequel, we adopt
the large financial market on one probability space setting of Cuchiero et al.
(2015) with dn = n, n ∈ N, i.e. T n = T < ∞, Bn = B, n ∈ N, and (Sn)n≥1
forms a nested sequence of n-dimensional asset prices, so that the i-th price
process in Sn is indistinguishable from the i-th coordinate of Sm whenever
0 ≤ i ≤ n ≤ m.

In the classic small market setup treated in the previous section, market
efficiency is characterized in terms of NFLVR and the no dominance condi-
tion. We introduce a similarly motivated definition of market efficiency in
large financial markets in terms of asymptotic no free lunch with vanishing
risk (ANFLVR), the large financial market counterpart of NFLVR (Cuchiero
et al., 2015), and asymptotic no dominance (AND) defined below (Definition
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4.1). We begin with the introduction of large financial market notation and
definitions.

3.1 Large financial market payoff space

We adopt the notation of Cuchiero et al. (2015). Given the n-th small mar-
ket (Sn,B), where Sn is an n-dimensional semimartingale representing asset
prices, a λ-admissible strategy, λ > 0, is a predictable process H such that
H0 = 0, the stochastic integral H • Sn is well-defined, and H • Snt ≥ −λ for
all 0 ≤ t ≤ T . We will call Xn := H • Sn an admissible gain process if H
is λ-admissible for some positive real λ. We will denote by X n

λ the set of λ-
admissible gain processes and by X n the collection of all admissible processes
in (Sn,B), i.e.

X n :=
⋃
λ>0

X n
λ =

⋃
λ>0

λX n
1 .

Small market payoff spaces are denoted Kn and Kn1 and defined as the ter-
minal values of small market gain processes:

Kn := {XT : X ∈ X n}, and Kn1 := {XT : X ∈ X n
1 }.

The space of small market dominated payoffs are defined in the classical
manner:

Cn0 := {f − g : f ∈ Kn and g ∈ L0
+(B)},

Cn := {f : f ∈ Cn0 and f ∈ L∞(B)}.

Now for an adapted càdlàg process X carried on the basis B, denote (X)∗T :=
sups≤T |Xs| and define

‖X‖ucp = E(min((X)∗T , 1)).

The functional ‖ · ‖ucp is a quasi-norm, and it induces a complete metric
ducp(X, Y ) := ‖X − Y ‖ucp on the space of adapted càdlàg processes. We
employ the notation Xn ucp−→ X to denote convergence with respect to this
topology. A predictable process H will be called simple if there exists F-
stopping times 0 = S0, · · · , Sk+1 = T , and ξi ∈ FSi

with ‖ξi‖∞ <∞, 0 ≤ i ≤
k, such that

Ht = ξ0IJ0K(t) +
k∑
i=1

ξi1KSi,Si+1K(t).

18



In the sequel, ξ0 is assumed to be identically zero. We denote by Λ the set of
B-predictable simple processes. Next, for a càdlàg adapted process X, define

‖X‖S := sup{‖H ·X‖ucp : H ∈ Λ, |H| ≤ 1}.

The functional ‖ · ‖S induces a complete metric space on the space of semi-
martingales referred to interchangeably as the Emery or semimartingale topol-
ogy. We employ the notation Xn S−→ X to denote convergence with respect
to this topology. Now, a process X is said to be a 1-admissible general-
ized gain process if there exists a sequence of small market wealth portfolios
Xn ∈ X n

1 such that

Xn S−→ X,

that is, X is a limit point in the semimartingale topology of
⋃
n≥1X n

1 . We
denote the set of λ-admissible generalized wealth portfolios by Xλ and the
set consisting of all admissible generalized wealth portfolios by X , i.e.

X :=
⋃
λ>0

Xλ =
⋃
λ>0

λX1.

We now define the payoff spaces K and K1 as the terminal values of general-
ized wealth portfolios:

K := {XT : X ∈ X}, and K1 := {XT : X ∈ X1}.

Given the above, we define the set of large financial market dominated payoffs
as follows:

C0 := {f − g : f ∈ K and g ∈ L0
+(B)},

C := {f : f ∈ C0 and f ∈ L∞(B)}.

3.2 Arbitrage pricing in large financial markets

We now recall the fundamental theorem of asset pricing for large financial
markets (Cuchiero et al., 2015, Theorem 1.1). That is, necessary and suf-
ficient conditions with acceptable economic interpretations under which the
existence of a pricing functional (equivalent separating measure) is assured.
Since zero is contained in C, we would like the pricing functional or more
specifically the P -equivalent probability measure Q to satisfy EQ(f) ≤ 0 for
all f ∈ C. In order to make these statements precise in the large financial
market setting, we require the following definitions and lemmas.
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3.1 Lemma If f ∈ C0 then there exists fn ∈ Cn0 , n ∈ N, such that fn
P−→ f .

Proof. Suppose f ∈ C0. Then there is X ∈ X and random variable
g ∈ L0

+(B) such that f = XT − g. Since X ∈ X , there is Xn ∈ X n such that
‖Xn −X‖S → 0. This in turn implies that Xn ucp−→ X, so that Xn

T
P−→ XT .

Set fn := Xn
T − g. Then fn ∈ Cn0 , and fn

P−→ f .

Hence, the dominated payoff of a generalized gain process may be viewed
as the limit of dominated payoffs in small markets. The next lemma shows
that the same can be said for the bounded portion of C0.

3.2 Lemma If f ∈ C then there exists fn ∈ Cn such that fn
P−→ f .

Proof. Let f ∈ C, then f ∈ C0 and f ∈ L∞(B), i.e. there exists a K < ∞
such that f ≤ K almost surely. Because f ∈ C0, there exists, by Lemma
(3.1), gn ∈ Cn0 such that gn

P−→ f . Set fn := gn − (gn − K)I{gn≥K}. Then
fn ∈ Cn, and fn

P−→ f .

3.1 Definition A large financial market (Sn,B)n≥1 is said to possess the
(Asymptotic) No Arbitrage (ANA) property if there does not exist Xn ∈ X n

1 ,
n ∈ N, and X ∈ X1 such that ‖Xn −X‖S → 0 and

lim sup
n

P (Xn
T < 0) = 0, (3.12)

lim inf
n

P (Xn
T > α) > α, (3.13)

for some α > 0.

It is easily verified that the definition of ANA given here is equivalent to
the more familiar functional analysis definition:

K1 ∩ L0
+(Ω,F , P ) = {0}.

Because our interests are econometrically motivated, Definition 3.1 is more
natural. The next definition is the large market counterpart of NUPBR.

3.2 Definition A large financial market (Sn,B)n≥1 is said to satisfy the
No Unbounded Profit with Bounded Risk (NUPBR) condition if K1 is bounded
in L0(B).

These two notions of arbitrage are equivalent to our next notion of arbi-
trage (Cuchiero et al., 2015, Proposition 4.4).
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3.3 Definition A large financial market (Sn,B)n≥1 is said to possess the
Asymptotic No Free Lunch with Vanishing Risk (ANFLVR) property if

C ∩ L∞+ (Ω,F , P ) = {0},

where L∞+ (Ω,F , P ) denotes the set of essentially bounded nonnegative random
variables on B and C is the norm closure of C in L∞(Ω,F , P ).

It is shown in (Cuchiero et al., 2015, Theorem 1.1) that a version of
the fundamental theorem of asset pricing holds in the large financial market
setting: ANFLVR is necessary and sufficient for the existence of an equivalent
separating measure (ESM), where an ESM is a probability Q equivalent to
P such that EQ(f) ≤ 0 for f ∈ C.

4 Asymptotic Market efficiency
In the standard small market setting, the simultaneous satisfaction of the
NFLVR condition and the ND property for all assets is equivalent to market
efficiency. In the case of non-negative asset prices, it is also the case that
there exists a Q equivalent to P such that prices are uniformly integrable
martingales (Proposition 2.5). Here, our objective is to extend these notions
to the framework of large financial markets. We start with an adaptation of
the ND condition to the large financial market setting. For each n we as-
sume that Sn is an n-dimensional semimartingale with the zeroth component
Sn,0 = 1 on [0, T ]. So that, we have dn = n. For all 0 ≤ i < n, the i-th asset
price satisfies Sn,it ≥ 0 for t ∈ [0, T ]. We also assume time zero prices are
deterministic and that the entire price process is normalized so that Sn,i0 = 1
for 0 ≤ i < n ∈ N.

4.1 Definition (Asymptotic No Dominance (AND)) A large financial
market payoff f ∈ K is said to be (asymptotically) undominated if for all
g ∈ K if g ≥ f , a.s., then it must also be the case that g = f almost surely.

Now let Ak := {a0, a1, · · · , ak−1} and denote an arbitrary set of k > 0
distinct natural numbers including 0; we adopt the convention

a0 = 0.

Now let

αk := (αa0 , αa1 , · · · , αak−1
)
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denote a strictly positive weight vector, that is
∑k−1

j=0 αaj = 1, and αaj > 0

for 0 ≤ j < k. Now, for n ≥ max{a : a ∈ Ak} define

Sαk =
k−1∑
j=0

αajS
n,aj .

We will refer to Sαk as the convex portfolio generated by (Ak, αk). Note
that because (Sn)n≥1 is a nested sequence, Sαk is up to an evanescent set
independent of n for n ≥ max{a : a ∈ Ak}.
4.2 Definition (Asymptotic Market Efficiency (AME)) A large fi-
nancial market (Sn,B)n≥1 is said to be asymptotically efficient on [0, T ] if

1. ANFLVR holds for (Sn,B)n≥1, and

2. for all convex portfolios Sαk , the payoff Sαk
T − 1 is asymptotically un-

dominated.

Now denote Sn,αk the n + 1 dimensional vector obtained by appending
Sαk to Sn, that is Sn,αk = (Sn, Sαk). Define

Zn,αk = Sn,αk(Sαk)−1.

Hence, Zn,αk expresses Sn in units of Sαk .

4.1 Proposition The large financial market (Sn,B)n≥1 satisfies NUPBR
if and only if (Zn,αk ,B)n≥nk

with nk = max{a : a ∈ Ak} satisfies NUPBR for
all Zn,αk .

Proof. Suppose (Hn)n≥1 violates NUPBR for (Sn,B)n≥1. Then there exists
β > 0 such that for N ∈ N and sufficiently large n, we have P ((Hn • Sn)T >
N) > β. Consider

Y n := (Sαk)−1(Hn • Sn + 1)− 1.

Because all prices have initial value 1 and Hn
0 = 0, we have Y n

0 = 0. Because
(Sαk)−1T is finite-valued, (Y n

T )n≥1 is unbounded in L0(B). Because Hn is 1-
admissible, Y n ≥ −1 on [0, T ]. By Itô’s integration by parts formula and the
fact that Zn,αk = Sn,αk(Sαk)−1, we have Y n = Kn • Zn,αk for a predictable
Kn. Hence, (Kn)n≥nk

violates NUPBR for (Zn,αk ,B)n≥nk
.

For the converse denote (Hn)n≥nk
a violation of NUPBR for (Zn,αk ,B)n≥nk

and consider

Y n := (Sαk)(Hn • Zn,αk + 1)− 1.

That (Y n)n≥1, with Y n = 0 for n < nk, constitutes a violation of NUPBR for
(Sn,B)n≥1 follows by repeating the arguments of the previous paragraph.
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4.2 Proposition Suppose n ≥ max{a : a ∈ Ak} =: nk. Then Sαk is
asymptotically undominated if and only if (Zn,αk ,B)n≥nk

satisfies ANA.

Proof. Suppose Sαk is dominated by X ∈ X . Since X ∈ X , there is λ > 0
and Xn ∈ X n

λ , n ≥ nk, such that ‖Xn − X‖S → 0. Because Xn ∈ X n
λ , we

have Xn = Hn • Sn for Hn that is λ-admissible for Sn. Define Jn := (Hn, 0)
and observe that Jn • Sn,αk = Hn • Sn. Consider

Y n := (Sαk)−1(Jn • Sn,αk + 1)− 1. (4.14)

Then Y n
0 = 0, and Y n

t ≥ (αa0)
−1(1 − λ) − 1 for t in [0, T ]. By Itô’s inte-

gration by parts formula and the fact that Zn,αk = (Sαk)−1Sn,αk , there is a
predictable Gn such that Y n = Gn • Zn,αk . By the foregoing, Gn is admissi-
ble for (Zn,αk ,B)n≥1. Because of the stability of convergence in the Emery
topology (Kardaras, 2013, Proposition 2.10), we have Y n = Gn • Zn,αk

S−→
(Sαk)−1(W + 1) − 1 =: Y . Hence, Y is a generalized gain process for Sαk .
Because W dominates Sαk , we see that Y is an arbitrage for (Zn,αk ,B)n≥nk

.
Now suppose (Zn,αk ,B)n≥1 fails to satisfy arbitrage, so that the constant

1 is dominated by XT where X is a 1-admissible generalized gain process
for (Zn,αk ,B)n≥nk

. Then there is (Hn)n≥nk
such that Hn • Zn,αk =: Xn is a

1-admissible gain process for Zn,αk , and Xn S−→ X. Consider

Y n := Sαk(Hn • Zn,αk + 1)− 1.

Then Y n
0 = 0, and Y n ≥ −1 on [0, T ]. By Itô’s integration by parts formula,

there is predictable Kn such that Y n = Kn • Sn is well-defined. We have by
(Kardaras, 2013, Proposition 2.10 ) that Y n S−→ Sαk(X + 1)− 1 =: Y . Since
XT is a nonnegative and strictly positive with positive probability, we have
that YT dominates Sαk

T − 1.

4.1 Theorem The large financial market (Sn,B)n≥1 is asymptotically ef-
ficient if and only if (Zn,αk ,B)n≥nk

satisfies ANFLVR for all (Ak, αk).

Proof. This follows from Proposition 4.1, 4.2, and (Cuchiero et al., 2015,
Proposition 4.4).

4.1 Statistical inference for asymptotic market efficiency

The small market tests discussed in the previous section hold under the
assumption that the time horizon tends to infinity while the number of assets
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remains fixed. We perhaps draw an analogy with the time series regression
tests of discrete-time empirical asset pricing (Cochrane, 2001, Chapter 12). In
the current large financial market setup, the time horizon is held fixed while
the number of assets is allowed to grow without bound. The empirical tests
we propose in this section may be analogized to the cross-section regression
tests of discrete-time empirical asset pricing theory.

Because the time horizon is assumed fixed, these tests may be particularly
well-suited for analyzing strategies with short investment horizons. Also,
since the cross-section is assumed to grow without bound, they may be more
appropriate for studying strategies involving a great number of asset. In
particular, strategies that involve sorting a great number of asset according
some indicator of performance such as previous-year return. Examples of
such strategies include mean-reversion and momentum strategies.

4.1 Lemma Let (Ak, αk) be given and let (Hn)n≥nk
be a sequence of small

market strategies for (Zn,αk ,B)n≥nk
converging in the semimartingale topol-

ogy to a generalized gain process Y . Suppose

E((V n
T )2) <∞,

where V n
T := (Hn • Zn,αk)T . Then YT constitutes a violation of ANA for

(Zn,αk ,B)n≥nk
if and only if

lim
n
E(V n

T ) > β for some β > 0, (4.15)

lim
n
P (V n

T < 0) = 0. (4.16)

Moreover, if (Hn)n,nk
is a sequence of 1-admissible strategies for Zn,αk such

that

E(V n
T ) <∞

then (Hn • Zn,αk)n≥nk
violates NUPBR for (Zn,αk ,B)n≥nk

if and only if

lim
n
En(V n

T ) =∞. (4.17)

Proof. These statements follow directly form the definitions of ANA and
NUPBR.

The simplest way to determine whether a given strategy verifies the re-
quirements of either (4.15), (4.16), or (4.17), is to specify a parametric model
of its incremental payoffs. As a simple example, we may suppose that

∆V i
T := V i

T − V i−1
T = µiθ + σiγεi, (4.18)
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where µ, θ, σ, and γ are constants, (εi) is i.i.d, and εi is a standard normal
random variable for i ≥ nk.

Now note that under the assumption of normally distributed εi, V n
T is

normally distributed with log likelihood given by

L(Θ) := −2−1
n∑
i=1

log(σiγ)2 − (2σ2)−1
n∑
i=1

i−2γ(∆V i
T − µiθ)2.

where Θ := (µ, θ, σ, γ). The parameter vector may be estimated in the usual
fashion by setting the gradient of L(Θ) to zero and solving a system of four
equations in four unknowns to obtain an estimate Θ̂ := (µ̂, θ̂, σ̂, γ̂). We
summarize the preceding considerations as follows:

Now observe that if both µ and θ are positive then (Hn)n≥nk
constitutes

a violation of the NUPBR condition for (Zn,αk ,B)n≥nk
. If µ > 0, γ < 0,

and θ is sufficiently large then (Hn • Zn,αk)n≥nk
converges to an arbitrage

for (Zn,αk ,B)n≥nk
and, by Theorem 4.1, a violation of market efficiency for

(Sn,B)n≥1. In (Hogan et al., 2004, Theorem 6), it is shown that θ > γ −
1/2∨−1 is necessary to ensure convergence to an asymptotic arbitrage. The
above considerations are summarized in the following Proposition.

4.3 Proposition Under the assumptions of Lemma 4.1, if the incremental
payoffs of Hm satisfy (4.18) then the null hypothesis of market efficiency may
be rejected with 1− α confidence if either one of the joint tests

1. H1 : µ̂ > 0 and H2 : θ̂ > 0, or

2. H ′1 : γ̂ < 0, H ′2 : µ̂ > 0, H ′3 : θ̂ > γ̂ − 1/2 ∨ −1.

achieve a combined p-value of less than α.

5 Conclusion
In a finite horizon complete market setting, market efficiency is equivalent to
asset prices admitting a martingale measure. This basic definition motivates
traditional tests of market efficiency. These tests must by necessity postulate
an equilibrium model of asset prices or a stochastic discount factor as a
reference. Naturally, such a procedure is subject to a misspecification which
cannot be assessed due to the fact that the stochastic discount factor (SDF)
is unobservable. Hence, traditional tests of market efficiency are in fact joint
tests of the fit of the particular model selected and deviations from market
efficiency. This is the well-known joint hypothesis problem.
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We have contributed to the growing literature that aims to devise tests
of market efficiency that do not suffer from the joint-hypothesis problem.
We have obtained further characterizations of market efficiency that in turn
suggest simplifications of empirical tests of market efficiency. These char-
acterizations involve a change of numeraire that boils down to normalizing
asset prices with respect to the market portfolio prior to investigating vi-
olations of market efficiency. Our analysis may be extended to the large
financial market setting. We define the no dominance condition as well as
market efficiency in the large financial market framework. We show that the
no dominance condition can be characterized in terms of the no arbitrage
condition after a change of numeraire. This result suggest empirical tests of
asymptotic market efficiency similar to those proposed in the small market
setting. The practical importance of the large financial market theory is that
for certain strategies, taking limits as the time horizon tends to infinity may
be inappropriate. Provided the number of assets involved in the execution of
the strategy is very large then the large financial market tests we proposed
may be more adequate.
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