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Abstract 

We propose a non-parametric procedure for estimating the realized spot volatility of a price 

process described by an Itô semimartingale with Lévy jumps. The procedure integrates the 

threshold jump elimination technique of Mancini (2009) with a frame (Gabor) expansion of the 

realized trajectory of spot volatility. We show that the procedure converges in probability in 

L2([0, T]) for a wide class of spot volatility processes, including those with discontinuous paths. 

Our analysis assumes the time interval between price observations tends to zero; as a result, 

the intended application is for the analysis of high frequency financial data. 
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1 Introduction
Volatility estimation using discretely observed asset prices has received a
great deal of attention recently, however, much of that effort has been fo-
cused on estimating the integrated volatility and, to a lesser extent, the spot
volatility at a given point in time. Notable contributions to the literature
on volatility estimation include the papers by Foster & Nelson (1996), Fan
& Wang (2008), Florens-Zmirou (1993), and Barndorff-Nielsen & Shephard
(2004). In these studies, the object of interest is local in nature: spot volatil-
ity at a given point in time or integrated volatility up to a terminal point in
time. In contrast, estimators which aim to obtain spot volatility estimates
for entire time windows have received much less coverage. These are the
so-called “global” spot volatility estimators. These estimators derive their
name from the fact that the objects of interest are not localized. Typically,
a global estimator would be a random element whose realizations would be
elements of some function space.

There are potential benefits to adopting global estimators of spot volatil-
ity. Given a consistent global estimate of spot volatility σ2 over an interval
[0, T ], the integrated volatility at any point t within [0, T ] may be consistently
estimated by integrating σ2 over the interval [0, t]. In fact, by the contin-
uous mapping theorem, consistent estimates of continuous transformations
of σ2 are immediately available. Hence, integrated powers of spot volatility,∫ t

0
σps ds, p > 0, the running maximum of spot volatility, σ∗t := sups≤t |σs|,

and volatility in excess of a given threshold, σat := σtI{|σt|>a}, a > 0, to
name just a few, are easily obtained via the obvious transformation of the
estimated global spot volatility. This flexibility is one of the more appealing
features of this class of estimators.

The estimator by Genon-Catalot et al. (1992) is an early contribution to
the study of the realized trajectory of spot volatility. Working within the
context of continuous asset prices and deterministic spot volatility, the au-
thors decribed an estimator of the realized trajectory of spot volatility using
wavelet projection methods. Their basic framework has been extended by
Hoffmann et al. (2012), who proposed an adaptive estimator of spot volatility
for continuous asset prices subject to market microstructure noise contami-
nations.

Another important contribution to the global spot volatility estimation
literature is the estimator studied by Malliavin & Mancino (2002), which
relies on Fourier methods to estimate the realized path of spot volatility for
assets with continuous prices. In their procedure, Fourier coefficients of the
realized price path are first estimated and the used to derive expressions for
the Fourier coefficients of the realized path of spot volatility.
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In the current work, we extend the study of the realized path of spot
volatility to situations where the price process or the volatility coefficient
itself cannot be assumed to be continuous. That is we describe a procedure
for consistently estimating càdlàg volatility paths in the presence of price
jumps. By employing Gabor frames in our analysis we are able to leverage
the excellent time-frequency localization property of Gabor frames to obtain
the sparsest representation for the realized trajectories of spot volatility.

The rest of this paper is organized as follows: in Section 2 we introduce
notation and give general description of the dynamics of observed prices. In
Section 3 we introduce Gabor frames and review the basic theory required
for our subsequent analysis. We present our main results in Section 4 and
4, where we specify the estimator and give proof of its consistency. Section
6 describes simulation exercises that lend further support to the theoretical
analysis. Section 6 contains concluding remarks.

2 Prices
We fix a filtered probability space (Ω,F , {Ft}t≥0, P ) and recall the definition
of an Itô semimartingale with Lévy jumps.

2.1 Definition An R-valued process X is an Itô semimartingale with Lévy
jumps if it admits the representation:

Xt = X0 +

∫ t

0

bs ds+

∫ t

0

σs dWs + J lt + Jst , t ≥ 0, (2.1)

with

J lt := xI{|x|>1} ∗ µ :=

∫ t

0

∫
R
xI{|x|>1}µ(dx, ds),

Jst := xI{|x|≤1} ∗ (µ− ν) :=

∫ t

0

∫
R
xI{|x|≤1}(µ− ν)(dx, ds),

ν(dt, dx) = F (dx) dt,

where W is a Brownian motion, σ and b are R-valued progressively measur-
able processes, µ is an integer-valued measure induced by the jumps of X,
ν is its Lévy system, and F (dx) is a deterministic constant-in-time σ-finite
measure on R.

2.1 Remark Generally, Itô semimartingales are those with characteristic
triplet that is absolutely continuous with respect to the Lebesgue measure.
Here, we further restrict the Lévy system ν to be deterministic. This as-
sumption ensures the jump measure µ is a Poisson random measure.
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We assume prices are observed in the fixed time interval [0, 1] at discrete,
equidistant times ti = i∆n, i = 0, 1, · · · , n, where

∆n = 1/n = ti+1 − ti, i = 0, · · · , n− 1. (2.2)

Given the finite sequence {Xti , i = 0, 1, 2, · · · , n}, our aim is to estimate
the spot variance σ2 in the time interval [0, 1] by nonparametric methods.
Note that our objective is not an approximation of a point but rather the
approximation of an entire function. Thus an estimator of the spot variance
may be viewed as a random element (function), as opposed to a random
variable, that must converge in some sense to the spot variance, which itself
is a random element. We approach this task by estimating the expansion of
the spot variance using collections of Gabor frame elements.

3 Frames
Frames generalize the notion of orthonormal bases in Hilbert spaces. If
{fk}k∈N is a frame for a separable Hilbert space H then every vector f ∈ H
may be expressed as a linear combination of the frame elements, i.e.

f =
∑
k∈N

ckfk. (3.3)

This is similar to how elements in a Hilbert space may be expressed in terms of
orthonormal basis; but unlike orthonormal basis, the representation in (3.3)
need not be unique, and the frame elements need not be orthogonal. Loosely
speaking, frames contain redundant elements. The absence of uniqueness in
the frame representation is by no means a shortcoming; on the contrary, we
are afforded a great deal of flexibility and stability as a result. In fact, given
a finite data sample, the estimated basis expansion coefficients are likely to
be imprecise. This lack of precision can create significant distortions when
using an orthonormal basis. These distortions are somewhat mitigated when
using frames because of the built-in redundancy of frame elements.

Furthermore, if {fk}k∈N is a frame for H, then surjective, bounded trans-
formations of {fk}k∈N also constitute frames for H, e.g. {fk + fk+1}k∈N is a
frame. So, once we have a frame, we can generate an arbitrary number of
them very easily. We may then obtain estimates using each frame and com-
pare results. If our results using the different frames fall within a tight band,
then we are afforded some indication of the robustness of the computations.

Our discussion of frame theory will be rather brief; we only mention
concepts needed for our specification of the volatility estimator. For a more
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detailed treatment we refer the reader to (Christensen, 2008). In the sequel
if z is a complex number then we shall denote respectively by z̄ and |z|
the complex conjugate and magnitude of z. Let L2(R) denote the space of
complex-valued functions defined on the real line with finite norm given by

‖f‖ :=

(∫
R
f(t)f(t) dt

)1/2

<∞, f ∈ L2(R).

Define the inner product of two elements f and g in L2(R) as 〈f, g〉 :=∫
R f(t)g(t) dt.

Denote by `2(N) the set of complex-valued sequences defined on the set
of natural numbers N with finite norm given by

‖c‖ :=

∑
k∈N

ckck

1/2

<∞, c ∈ `2(N),

where ck is the k-th component of c. The inner product of two sequences
c and d in `2(N) is 〈c, d〉 :=

∑
k∈N ckdk. Now we may give a definition for

frames:

3.1 Definition A sequence {fk}k∈N ⊂ L2(R) is a frame if there exists
positive constants C1 and C2 such that

C1‖f‖2 ≤
∑
k∈N

|〈f, fk〉|2 ≤ C2‖f‖2, f ∈ L2(R).

The constants C1 and C2 are called frame bounds. If C1 = C2 then {fk}k∈N
is said to be tight. Because an orthonormal basis satisfies Parseval’s equality,
it follows that an orthonormal basis is a tight frame with frame bounds
identically equal to 1, i.e. C1 = C2 = 1. Now if {fk} is a frame, we may
associate with it a bounded operator A that maps every function f in L2(R)
to a sequence c in `2(N) in the following way:

Af = c where ck = 〈f, fk〉, k ∈ N. (3.4)

Because A takes a function defined on a continuum (R) to a sequence, which
is a function defined on the discrete set N, A is known as the analysis operator
associated with the frame {fk}k∈N. The boundedness of the analysis operator
follows from the frame bounds in Definition (3.1). Now A∗, the adjoint of A,
is well-defined and takes sequences in `2(N) to functions in L2(R). Using the
fact that A∗ must satisfy the equality 〈Af, c〉 = 〈f,A∗c〉 for all f ∈ L2(R)
and c ∈ `2(N), it may be deduced that

A∗c =
∑
k∈N

ckfk, c ∈ `2(N),
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where ck is the k-th component of the sequence c. The adjoint, A∗, may be
thought of as reversing the operation or effect of the analysis operator; for
this reason it is known as the synthesis operator.

Now an application of the operator (A∗A)−1 to every frame element fk
yields a sequence {f̃k := (A∗A)−1fk}k∈N, which is yet another frame for
L2(R). The frame {f̃k}k∈N is known as the canonical dual of {fk}k∈N. De-
noting the analysis operator associated with the canonical dual by Ã, it may
be shown1 that

A∗Ã = Ã∗A = I, (3.5)

where I is the identity operator and Ã∗ is the adjoint of the analysis operator
of the canonical dual. Furthermore, Proposition 3.2.3 of Daubechies (1992)
shows that Ã satisfies

Ã = A(A∗A)−1, (3.6)

so that the analysis operator of the canonical dual frame is fully characterized
by A and its adjoint. It is easily seen that (3.5) yields a representation result
since if f ∈ L2(R) then

f = Ã∗Af = A∗Ãf =
∑
k∈N

〈f, f̃k〉fk. (3.7)

Thus, in a manner reminiscent of orthonormal basis representations, every
function in L2(R) is expressible as a linear combination of the frame elements,
with the frame coefficients given by 〈f, f̃k〉, the correlation between the func-
tion and the elements of the dual frame. It follows from the first equality
in (3.5) and the commutativity of the duality relationship that functions in
L2(R) may also be written as linear combinations of the elements in {f̃k}k∈N,
with coefficients given by 〈f, fk〉, i.e. f =

∑
k∈N〈f, fk〉f̃k.

3.1 Gabor frames

Next, we specialize the discussion to Gabor frames. The analysis of Gabor
frames involves two operators: the translation operator T and themodulation
operatorM defined as follows:

Tbf(t) := f(t− b), b ∈ R, f ∈ L2(R), (3.8)
Maf(t) := e2πiatf(t), a ∈ R, f ∈ L2(R), (3.9)

1See for example Daubechies (1992, Proposition 3.2.3)
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where i is the imaginary number, i.e. i =
√
−1. Both T and M are shift

operators: T is a shift or translation operator on the time axis, whereas
M performs shifts on the frequency axis. A Gabor system is constructed by
fixing a, b ∈ R, and performing shifts of a single nontrivial function g ∈ L2(R)
in time-frequency space. For example, if a and b are real numbers then the
sequence of functions

{MhaTkbg}h,k∈Z,

constitutes a Gabor system.

3.2 Definition Let g ∈ L2(R), and let a > 0, b > 0 be positive real
numbers. Define for t ∈ R

gh,k(t) := e2πihatg(t− kb), h, k ∈ Z.

If the sequence {gh,k}h,k∈Z constitutes a frame for L2(R), then it is called a
Gabor frame.2

The fixed function g is known as the Gabor frame generator 3; a is known
as the modulation parameter ; and b is known as the translation parame-
ter. In order to obtain sharp asymptotic rates, we require g and its dual g̃
(see (3.7)) to be continuous and compactly supported. The following result
(Christensen, 2006, Lemma 1.2) and (Zhang, 2008, Proposition 2.4), tells us
how to construct such dual pairs.

3.1 Lemma Let [r, s] be a finite interval, let a > 0, b > 0 be positive
constants, and let g be a continuous function. If g(t) 6= 0 when t ∈ (r, s);
g(t) = 0 when t /∈ (r, s); and a, b satisfy: a < 1/(s − r), 0 < b < s − r;
then {g, g̃} is a pair of dual Gabor frame generators, with the dual Gabor
generator given by

g̃(t) := g(t)/G(t), where (3.10)

G(t) :=
∑
k∈Z

|g(t− kb)|2/a. (3.11)

Furthermore,

g̃h,k(t) := e2πihatg̃(t− kb), h, k ∈ Z (3.12)

is compactly supported.

In the sequel, we assume the Gabor frame setup in Lemma 3.1.
2It is also sometimes referred to as a Weyl-Heisenberg frame.
3It is referred to elsewhere as the window function.
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4 Volatility estimation: continuous prices
In this section we specify a consistent estimator of spot volatility within a
framework of continuous prices. That is, we simplify the general setup of
(2.1) to:

Xt = X0 +

∫ t

0

bs ds+

∫ t

0

σs dWs, t ≥ 0. (4.13)

We further restrict the processes b and σ as follows:

4.1 Assumption

1. The drift b is progressively measurable, whereas the diffusion coefficient
σ is adapted and càdlàg.

2. There is a sequence of stopping times {Tm}m∈N tending to infinity al-
most surely such that

E( sup
0≤s≤Tm

|bs − b0|4) + E( sup
0≤s≤Tm

|σs − σ0|4) <∞,

for all m.

4.1 Remark These assumptions are satisfied by a wide range of practi-
cally relevant processes; these include continuous Lévy and additive processes
with càdlàg volatility coefficients. Also included are continuous solutions of
stochastic differential equations; indeed all processes with locally bounded b
and σ satisfy these requirements.

Let {g, g̃} be a pair of dual Gabor frame generators constructed as in
Lemma 3.1, then σ2 admits a Gabor frame expansion given by:

σ2(t) =
∑
h,k∈Z

ch,k gh,k(t), where (4.14)

ch,k = 〈σ2, g̃h,k〉. (4.15)

Note that both σ2 and g̃ have compact support. Indeed σ2 has support in
[0, 1], whereas g̃ has support in [s, r]. So, ch,k 6= 0 only if the supports of σ2

and g̃h,k overlap. Furthermore, we note from (3.12) that g̃h,k+1 is simply g̃h,k
shifted by b units; so, ch,k = 0 if |k| ≥ K0 with

K0 := d(1 + |s|+ |r|)/be, (4.16)
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where dxe, x ∈ R, is the least integer that is greater than or equal to x. Thus
σ2 admits a representation of the form:

σ2(t) =
∑

(h,k)∈Z2

|k|≤K0

ch,k gh,k(t),

and for sufficiently large positive integer H,

σ2(t) ≈
∑
|h|≤H
|k|≤K0

ch,k gh,k(t).

Now, suppose n observations of the price process are available, and let

Θn := {(h, k) ∈ Z2 : |h| ≤ Hn and |k| ≤ K0}, (4.17)

where Hn is an increasing sequence in n. We propose the following estimator
of the volatility coefficient:

vn(X, t) :=
∑

(h,k)∈Θn

ĉh,k gh,k(t), t ∈ [0, 1], where (4.18)

ĉh,k :=
n−1∑
i=0

g̃h,k(ti)(Xti+1
−Xti)

2. (4.19)

So |Θn| is the number of frame elements included in the expansion. Specifi-
cally, |Θn| = (2K0 + 1)(2Hn + 1); and since K0 is a finite quantity, it follows
that |Θn| = O(Hn), i.e. the number of estimated coefficients is proportional
to Hn, and therefore, will grow with the number of observations, n. In the
next section we show that the estimator converges to σ2 on [0, 1] in proba-
bility.

4.1 Proposition Suppose the price process is specified as in (4.13) and
satisfies the conditions of Assumption 4.1. Let {g, g̃} be pair of dual Gabor
generators satisfying the conditions of Lemma 3.1 with g Lipschitz continuous
on the unit interval. If Hn ↑ ∞ satisfies

(Hn)2∆1/2
n = o(1),

then vn(X, t), defined in (4.18), converges in L2[0, 1] to σ2 in probability.

Proof. We begin by noting that

vn(X, t)− σ2(t) =
∑

(h,k)∈Θn

(ĉh,k − ch,k) gh,k(t)

−
∑

(h,k)6∈Θn

ch,k gh,k(t), (4.20)
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where

ĉh,k =
n−1∑
i=0

g̃h,k(ti)(Xti+1
−Xti)

2 and

ch,k =

∫ 1

0

g̃h,k(s)σ
2(s) ds.

We tackle the summands in (4.20) in turn starting with the first one. But
first let

Mi :=

∫ ti+1

ti

b(s) ds, and Si :=

∫ ti+1

ti

σ(s) dWs,

and note that since Xti+1
−Xti = Mi + Si, it follows that

(Xti+1
−Xti)

2 = M2
i + 2MiSi + S2

i .

So, (4.20) may be written as

vn(X, t)− σ2(t) = B1,n(t) +B2,n(t) +B3,n(t) +B4,n(t),

where

B1,n(t) :=
∑

(h,k)∈Θn

gh,k(t)

n−1∑
i=0

g̃h,k(ti)S
2
i − ch,k

 ,

B2,n(t) := 2
∑

(h,k)∈Θn

gh,k(t)

n−1∑
i=0

g̃h,k(ti)SiMi

 ,

B3,n(t) :=
∑

(h,k)∈Θn

gh,k(t)

n−1∑
i=0

g̃h,k(ti)M
2
i

 ,

B4,n(t) := −
∑

(h,k)6∈Θn

gh,k(t)ch,k. (4.21)

We start by recalling the well-known fact that frame expansions converge
unconditionally in L2[0, 1], that is, the expansion converges regardless of the
order of summation (Christensen, 2008, Theorem 5.1.7). Hence,

‖B4,n‖L2[0,1] = oa.s.(1).
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We now obtain an estimate for B3,n(t). Suppose without loss of generality
that b0 = σ0 = 0 and let {Tm}m∈N be a localizing sequence for b and σ. Then,
by Jensen’s inequality

E

(∫ ti+1

ti

bs∧Tm ds

)2

≤ ∆nE

(∫ ti+1

ti

b2
s∧Tm ds

)

≤ ∆n

∫ ti+1

ti

E(b2
s∧Tm) ds

≤ ∆n

∫ ti+1

ti

E( sup
u≤Tm

b4
u)

1/2 ds

≤ c∆2
n, (4.22)

where the change in the order of integration is justified by Fubini’s theorem,
and c denotes a generic constant. In the sequel, in expressions containing
more than one inequality, c will denote the maximum or minimum, as the
case may be, of the constants appearing in each inequality. Set Mm

i =∫ ti+1

ti
b2
s∧Tm ds and

Bm
3,n(t) =

∑
(h,k)∈Θn

gh,k(t)

n−1∑
i=0

g̃h,k(ti)(M
m
i )2


and note that given η > 0,

P ( sup
t∈[0,1]

|B3,n(t)| > η) ≤ P (Tm ≤ 1) + P ( sup
t∈[0,1]

|Bm
3,n(t)| > η),

for any m ∈ N. Since Tm ↑ ∞ a.s., the first term on the right becomes
arbitrarily small as m tends to infinity. Now since gh,k and g̃h,k are bounded
independently of h and k, and n∆n = 1, it follows by Markov’s inequality
and (4.22) that

P ( sup
t∈[0,1]

|Bm
3,n(t)| > η) ≤ cHn∆n.

Hence,

sup
t∈[0,1]

|B3,n(t)| = oP (1). (4.23)

We now tackle B2,n(t). To that end, denote Smi :=
∫ ti+1

ti
σs∧TmdWs and note
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that

E((Smi )2) = E

(∫ ti+1

ti

σ2
s∧Tm ds

)

=

∫ ti+1

ti

E(σ2
s∧Tm) ds

≤
∫ ti+1

ti

(E( sup
u∧Tm

σ4
u)

1/2) ds

≤ c∆n. (4.24)

By Hölder’s inequality, (4.22), and (4.24), we have

E(Mm
i S

m
i ) ≤ (E(Mm

i )2E(Smi )2)1/2

≤ c∆3/2
n . (4.25)

Next, set

Bm
2,n(t) := 2

∑
(h,k)∈Θn

gh,k(t)

n−1∑
i=0

g̃h,k(ti)S
m
i M

m
i

 .

Then for each m, because gh,k and g̃h,k are bounded independently of h and
k, and n∆n = 1, we conclude by an appeal to Markov’s inequality that
P (supt∈[0,1] |Bm

2,n(t)| > η) ≤ cHn∆
1/2
n . By the previously used localization

argument,

sup
t∈[0,1]

|B2,n(t)| = oP (1). (4.26)

Now we tackle the final piece B1,n(t). Let

An :=
n−1∑
i=0

g̃h,k(ti)S
2
i −

∫ 1

0

σ2(s)g̃h,k(s) ds. (4.27)

We will first obtain an upper bound for An; we proceed by adding and sub-
tracting

∑n−1
i=0

∫ ti+1

ti
g̃h,k(ti)σ

2(s) ds from A to yield:

An =
n−1∑
i=0

g̃h,k(ti)

(
S2
i −

∫ ti+1

ti

σ2(s) ds

)

+
n−1∑
i=0

(∫ ti+1

ti

σ2(s){g̃h,k(ti)− g̃h,k(s)} ds

)
=: An1 + An2 .
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We obtain estimates in turn for the summands. By Assumption 4.1, σ is
càdlàg so that it is almost surely bounded on [0, 1]; by the continuity of g̃h,k
and Lemma (9.1), we have

An2 =
n−1∑
i=0

∫ ti+1

ti

σ2(s){g̃h,k(ti)− g̃h,k(s)} ds

≤ cω̄(g̃h,k,∆n), a.s.,

where ω̄(g̃h,k,∆n) is the modulus of continuity of g̃h,k on an interval of length
∆n. By the Lipschitz continuity of g we have,

An2 = Oa.s.(ω̄(g,∆n)) = Oa.s.(∆n).

Now, we obtain an estimate for An1 . First, let Dn
i : Ω × [0, 1] → R for

i = 0, · · · , n− 1 be defined as follows:

Dn
i (t) := g̃h,k(ti)

(∫ t

ti

σu∧Tm dWu

)
1(ti,ti+1](t). (4.28)

Dn
0 (0) := 0. (4.29)

So, Dn
i (t) is 0 on [0, 1] except when t is in (ti, ti+1]. Moreover

Dn
i (t)Dn

j (t) = 0, i 6= j,

for t in [0, 1]. Now, for each i, 0 ≤ i < n, if t ∈ (ti, ti+1], we have

E(Dn
i (t)4) = g̃h,k(ti)

4
1(ti,ti+1](t)E

(∫ t

ti

σu∧Tm dWu

)4


≤ c1(ti,ti+1](t)E

(∫ t

ti

σ2
u∧Tm du

)2
 B.D.G

≤ c(t− ti)1(ti,ti+1](t)E

(∫ t

ti

σ4
u∧Tm du

)
Jensen

≤ c∆n1(ti,ti+1](t)

∫ ti+1

ti

E
(
σ4
u∧Tm

)
du Fubini

≤ c1(ti,ti+1](t)∆
2
n (4.30)

where the application of Fubini’s theorem (Halmos, 1950, Theorem VII.36.B)
is justified by the fact that σ4 is non negative and measurable with respect
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to the product σ-algebra on [0, 1]×Ω. Now, using Itô’s integration by parts
formula, we may write

E((An1 )2) = E

2
n−1∑
i=0

∫ ti+1

ti

g̃h,k(ti)

(∫ s

ti

σu∧Tm dWu

)
σs∧Tm dWs

2

= 4E

∫ 1

0

n−1∑
i=0

Dn
i (s)σs∧Tm dWs

2

≤ c

∫ 1

0

n−1∑
i=0

E(Dn
i (s)2σ2

s∧Tm) ds

≤ c

∫ 1

0

n−1∑
i=0

(E(Dn
i (s)4))1/2(E(σ4

s∧Tm))1/2 ds

≤ c

∫ 1

0

n−1∑
i=0

1(ti,ti+1](s)∆n ds

≤ c∆n.

By Chebyshev’s inequality and the previously used stopping time argument,
we have An = OP (∆n). By the boundedness of gh,k, we have

sup
t∈[0,1]

|B1,n(t)| = oP (1).

Hence, Bj,n(t) for j = 1, · · · , 4, tends to zero in L2[0, 1] in probability.

5 Volatility estimation: discontinuous prices
In this section we specify a global spot volatility estimator for possibly dis-
continuous Itô semimartingale price processes. That is, for t ≥ 0,

Xt = X0 +

∫ t

0

bsds+

∫ t

0

σsdWs + xI{|x|>1} ∗ µt + xI{|x|≤1} ∗ (µ− ν)t

with ν(dt, dx) = F (dx)dt for a determinsistic and constant-in-time σ-finite
measure F . We assume σ and b satisfy the requirements of Assumption 4.1,
and we further restrict the Lévy system of X as follows:

5.1 Assumption The Lévy measure F satisfies the following condition
(x2I{|x|≤u}) ∗ νt =

∫ t
0

∫ u
−u x

2F (dx) dt = O(u) as u→ 0.
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5.1 Remark The requirement is satisfied if F is absolutely continuous
with bounded density f , as is the case with the Gaussian distribution; more
generally, it is satisfied if f(x) = O(x−2) as x → 0; these include the Lévy
(γ, δ) distribution with density

f(x) = (γ/2π)1/2(x− δ)−3/2 exp(−γ/2(x− δ)), x ∈ R,

and the Cauchy(γ, δ) distribution with density

f(x) = (γ/π)(γ2 + (x− δ)2)−1, x > δ.

We also remark that for general semimartingales (x2∧1)∗νt is increasing
and locally integrable. By the Lévy assumption, we simply have that (x2 ∧
1) ∗ ν is finite. In addition, it is a consequence of the Lévy assumption that
the price process has no fixed time of discontinuity (Jacod & Shiryaev, 2003,
II.4.3). Hence, by Itô’s integration by parts formula

E((x2 ∧ 1) ∗ µt) = t(x2 ∧ 1) ∗ ν = O(t), t ≥ 0. (5.31)

As in the preceeding section, we observe a realization of the price process
at n + 1 equidistant points ti, i = 0, 1, · · · , n. The observation interval is
normalized to [0, 1] with no loss of generality. The estimator proposed in
the previous section, where there is no jump activity, will not do here. It is
inconsistent on account of the presence of jumps; its quality deteriorates as a
function of how active the jumps of X are. We will counter this phenomenon
with a modified spot variance estimator, but first we introduce the following
notation. Let ∆iX denote Xti+1

−Xti for i = 0, 1, · · · , n − 1, and let un be
a positive decreasing sequence such that

un = O(∆β
n), where 0 < β < 1. (5.32)

We specify the jump-robust global estimator of spot volatility as follows:

Vn(X, t)(t) :=
∑

(h,k)∈Θn

âh,k gh,k(t), ∀t ∈ [0, 1], where (5.33)

âh,k :=
n−1∑
i=0

g̃h,k(ti)(∆iX)2I{(∆iX)2≤un}, (5.34)

where {gh,k, g̃h,k} is a pair of dual Gabor frames constructed as in Lemma
(3.1); Θn retains its meaning from (4.17); and I{(∆iX)2≤un} is one if (∆iX)2

is less than or equal to un and zero otherwise.
There are obvious similarities between vn(X, t), defined at (4.18), and

Vn(X, t) with the key difference being that Vn(X, t) discards realized squared
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increments over intervals that likely contain jumps; un determines the thresh-
old for what is included in the computation and what is not. This determi-
nation becomes more accurate as the observation interval becomes infinites-
simally small. Clearly it makes sense to use vn(X, t) if we have reason to
believe that the price process is not subject to jumps; vn(X, t) will always
employ all available data and therefore may be assumed to produce more
accurate results.

We now proceed to prove the consistency of the estimator. First we
introduce the following notation and prove an intermediate lemma.

Xc
t := X0 +

∫ t

0

bs ds+

∫ t

0

σs dWs,

J lt := xI{|x|>1} ∗ µt,
Xf
t := Xc

t + J lt . (5.35)

5.1 Lemma Let Xf be specified as in (5.35) with σ and b satisfying As-
sumption 4.1. Let {g, g̃} denote a pair of dual Gabor generators satisfying
the conditions of Lemma (3.1) with g Lipschitz continuous on the unit in-
terval. Let {Hn} be an increasing sequence and {un} a decreasing sequence
satisfying un = O(∆β

n) with 0 < β < 1. If

u−1/2
n (Hn)2∆1/2

n = o(1)

then Vn(Xf , t) as defined in (5.33) converges in L2[0, 1] in probability to σ2.

Proof. We have

Vn(Xf , t)− σ2(t) = {Vn(Xf , t)− Vn(Xc, t)}+ {Vn(Xc, t)− vn(Xc, t)}
+ {vn(Xc, t)− σ2(t)}. (5.36)

That the third summand on the right converges to zero in L2[0, 1] in probabil-
ity is the content of Proposition 4.1. Set b̂h,k :=

∑n−1
i=0 g̃h,k(ti)(∆iX

c)2I{(∆iXc)2≤un}

and d̂h,k :=
∑n−1

i=0 g̃h,k(ti)(∆iX
c)2. Now note that Vn(Xc, t) − vn(Xc, t) =∑

(h,k)∈Θn
(b̂h,k − d̂h,k) gh,k(t) with

b̂h,k − d̂h,k =
n−1∑
i=0

g̃h,k(ti){(∆iX
c)2I{(∆iXc)2≤un} − (∆iX

c)2}

=
n−1∑
i=0

g̃h,k(ti)(∆iX
c)2I{(∆iXc)2>un}.

17



Without loss of generality, suppose b0 = σ0 = 0; let {Tm} be a localizing
sequence for b and σ. Set ∆iSm :=

∫ ti+1

ti
σs∧Tm dWs, ∆iMm :=

∫ ti+1

ti
bs∧Tm ds,

and ∆iX
c
m := ∆iMm + ∆iSm. Define b̂mh,k − d̂mh,k as above by substituting

∆iX
c
m for ∆iX

c. Now note the following

E(|b̂mh,k − d̂mh,k|) ≤ cnE((∆iX
c
m)2I{(∆iXc

m)2>un})

≤ cn(E((∆iX
c
m)4))1/2(P ((∆iX

c
m)2 > un))1/2

≤ cnu−1/2
n (E((∆iX

c
m)4))1/2(E((∆iX

c
m)2))1/2.

Arguing as in Proposition 4.1, it is easily verified that E((∆iX
c
m)4) ≤ c(∆4

n+

∆3
n + ∆2

n) and E((∆iX
c
m)2) ≤ c(∆2

n + ∆
3/2
n + ∆n). Hence, E(|b̂mh,k − d̂mh,k|) ≤

cnu
−1/2
n ∆

3/2
n = cu

−1/2
n ∆

1/2
n . Because g̃h,k is bounded, this allows us to con-

clude by way of Markov’s inequality that given η > 0,

P ( sup
t∈[0,1]

|Vn(Xc, t)− vn(Xc, t)| > η) ≤ P (Tm ≤ 1) + cu−1/2
n Hn∆1/2

n ,

which becomes arbitrarily small as m and n tend to infinity simultaneously.
To obtain an estimate for the first summand in (5.36), denote êh,k :=∑n−1
i=0 g̃h,k(ti)(∆iX

f )2I{(∆iXf )2≤un} and observe that Vn(Xf , t) − Vn(Xc, t) =∑
(h,k)∈Θn

(êh,k − b̂h,k) gh,k(t) with

êh,k − b̂h,k =
n−1∑
i=0

g̃h,k(ti){(∆iX
f )2I{(∆iXf )2≤un} − (∆iX

c)2I{(∆iXc)2≤un}}.

By definition Xf = Xc + J l, where J l represents the jumps of X in excess of
1. We may write (∆iX

f )2I{(∆iXf )2≤un}−(∆iX
c)2I{(∆iXc)2≤un} = γ1

i +2γ2
i +γ3

i

with

γ1
i := (∆iX

c)2(I{(∆iXf )2≤un} − I{(∆iXc)2≤un}),

γ2
i := (∆iX

c∆iJ
l)I{(∆iXf )2≤un},

γ3
i := (∆iJ

l)2I{(∆iXf )2≤un}. (5.37)

Because, X is càdlàg, there is at most a finite number of jumps in excess
of 1 per outcome in [0, 1]. For sufficiently large n, each interval (ti, ti+1]
contains at most one jump. If the i-th interval does not contains a jump
then γ2

i = γ3
i = 0 because ∆iJ

l = 0. If the i-th interval contains a jump, we
have

|∆iX
f | = |∆iJ

l + ∆iX
c| ≥ 1− |∆iX

c|. (5.38)
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Now observe that becauseXc has continuous paths, it is uniformly continuous
on the compact domain [0, 1], so that as n tends to infinity, 1−supi<n |∆iX

c| ↑
1; meanwhile, u1/2

n ↓ 0. Hence, for n large enough, we have |∆iX
f | > u

1/2
n so

that, almost surely, γ2
i and γ3

i , for all i, are uniformly eventually zero.
To pin down γ1

i , we introduce the following events

Ω1
n := {ω : µ(ω, (ti, ti+1]× {|x| > 1}) ≤ 1, for all i < n}, n ∈ N,

Ω2
n := {ω : |∆iX

c(ω)| < 1− u1/2
n , for all i < n}, n ∈ N,

Ωk := {ω : µ(ω, [0, 1]× {|x| > 1}) ≤ k}. k ∈ N.

Set Ωn := Ω1
n∩Ω2

n. As previously argued (see (5.38)), P (Ω2
n)→ 1 as n→∞.

Because X is càdlàg, µ([0, 1] × {|x| > 1}) is almost surely finite, so that
P (Ω1

n)→ 1 as n→∞. Hence, P (Ωn)→ 1 as n→∞. It is also the case that
P (Ωk)→ 1 as k →∞ since X is càdlàg and the number of jumps larger than
one in any bounded interval must be finite almost surely. Now, recall that
{Tm} is a localizing sequence for b and σ; set Ω(m,n, k) := Ωn∩Ωk∩{Tm > 1}
and note that P (Ω(m,n, k))→ 1 as n,m, k →∞. Thus, on Ω(m,n, k) there
is at most k jumps larger than one with no more than one jump per interval;
the increments of Xc are small enough to ensure the increments of Xf exceed
u

1/2
n ; and the processes σ4 and b4 are integrable.
Set γ1

i (n,m, k) = γ1
i IΩ(m,n,k) and denote Gi := {|∆iJ

l| > 0}. By the tri-
angle inequality, E(|γ1

i (n,m, k)|) ≤ E(|γ1
i (n,m, k)IGi

|)+E(|γ1
i (n,m, k)IGc

i
|).

Clearly, γ1
i (n,m, k) = 0 on Gc

i so that

n−1∑
i=0

g̃h,k(ti)E(|γ1
i (n,m, k)|) ≤

n−1∑
i=0

g̃h,k(ti)E(|γ1
i (n,m, k)IGi

|)

=
k∑
i=1

g̃h,k(ti)E((∆iX
c
m)2I{(∆iXc

m)2≤un}IGi
)

≤
k∑
i=1

g̃h,k(ti)E((∆iX
c
m)2)

≤ ck∆n.

Hence, given η > 0,

P ( sup
t∈[0,1]

|Vn(Xf , t)− Vn(Xc, t)| > η) ≤ P (Ω(m,n, k)c) + cHnk∆n.

By taking m,n, k large enough, the first term can be made as small as re-
quired; for fixed m, k, letting n→∞ will make the second term as small as
desired. This completes the proof.
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We now prove consistency for the estimator when the price process admits
both large and small jumps. That is

Xt = X0 +Xc
t + J lt + Jst .

where J lt := (xI{|x|>1}) ∗ µt and Jst := (xI{|x|≤1}) ∗ (µ− ν)t. We now give the
main result of the paper.

5.1 Proposition Let the price process X be specified as in (2.1). We
assume that the requirements of Assumption 4.1 and 5.1 are met. Let {g, g̃}
be pair of dual Gabor generators satisfying the conditions of Lemma (3.1)
with g Lipschitz continuous on the unit interval. Let {Hn} be an increasing
sequence and {un} a decreasing sequence statisfying un = O(∆β

n) with 0 <
β < 1. If

u−1/2
n (Hn)2∆1/2

n = o(1),

(Hn)2u1/2
n = o(1) (5.39)

then Vn(X, t) defined in (5.33) converges in L2[0, 1] in probability to σ2.

Proof. We argue along the lines of Theorem 4 of Mancini (2009). First,
consider the following decomposition of the process X:

X = Xf + Js, (5.40)
Xf = Xc + J l, (5.41)

where Xc
t =

∫ t
0
bs ds+

∫ t
0
σs dWs, J lt = (xI|x|>1) ∗µt, and Jst = (xI|x|≤1) ∗ (µ−

ν)t. By localization, it is enough to assume σ4 and b4 are integrable. Let t
be a point in the unit interval, then

Vn(X, t)− σ2
t =

∑
(h,k)∈Θn

(âh,k − ch,k)gh,k(t)−
∑

(h,k)6∈Θn

ch,kgh,k(t), (5.42)

with âh,k and ch,k defined by (5.33) and (4.15), respectively. The last term
tends to zero, almost surely, in L2[0, 1] as n → ∞ because Gabor frames
converge unconditionally.

To obtain a bound on the first item on the right of (5.42), we may use
(5.40) to write∑

(h,k)∈Θn

(âh,k − ch,k)gh,k(t) =
∑

(h,k)∈Θn

(wh,k + xh,k + yh,k + zh,k)gh,k(t),

(5.43)
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where

wh,k :=
n−1∑
i=0

g̃h,k(ti)(∆iX
f )2I{(∆iXf )2≤4un} −

∫ 1

0

σ2(s)g̃h,k(s) ds

xh,k :=
n−1∑
i=0

g̃h,k(ti)(∆iX
f )2(I{(∆iX)2≤un} − I{(∆iXf )2≤4un})

yh,k := 2
n−1∑
i=0

g̃h,k(ti)∆iX
f∆iJ

sI{(∆iX)2≤un}

zh,k :=
n−1∑
i=0

g̃h,k(ti)(∆iJ
s)2I{(∆iX)2≤un}. (5.44)

By Lemma 5.1, if δ > 0 then P (supt∈[0,1] |
∑

(h,k)∈Θn
wh,kgh,k(t)| > δ) → 0

as n tends to infinity. It remains to show that the last three terms on the
right of (5.43) converge to zero in probability. Starting with the second
summand, denote Ai := {(∆iX)2 ≤ un}, Bi := {(∆iX

f )2 ≤ 4un} and note
that IAi

− IBi
= IAi∩Bc

i
− IAc

i∩Bi
. Hence, we may write

∑
(h,k)∈Θn

xh,kgh,k(t) =
∑

(h,k)∈Θn

n−1∑
i=0

g̃h,k(ti)(x
i,1 − xi,2)gh,k(t)

where xi,1 := (∆iX
f )2IAi∩Bc

i
and xi,2 := (∆iX

f )2IAc
i∩Bi

. It is now easily
verified using the reverse triangle inequality that Ai ∩Bc

i ⊂ {|∆iJ
s| > u

1/2
n }.

So that,

(∆iX
f )2IAi∩Bc

i
≤ (∆iX

f )2I{(∆iJs)2>un} (5.45)

≤ 2(∆iX
c)2I{(∆iJs)2>un} + 2(∆iJ

l)2I{(∆iJs)2>un}

=: vi + wi. (5.46)

It thus follows that

∑
(h,k)∈Θn

n−1∑
i=0

g̃h,k(ti)x
i,1gh,k(t) ≤

∑
(h,k)∈Θn

n−1∑
i=0

g̃h,k(ti)(vi + wi)

 gh,k(t).

We proceed by using Hölder’s inequality and (5.31) to write

E(vi) ≤ c(E((∆iX
c)4))1/2P ((∆iJ

s)2 > un)1/2

≤ cu−1/2
n E((∆iX

c)4)1/2E((∆iJ
s)2)1/2

≤ cu−1/2
n ∆3/2

n . (5.47)
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Hence, by Markov’s inequality and the boundedness of gh,k

sup
t∈[0,1]

∑
(h,k)∈Θn

n−1∑
i=0

g̃h,k(ti)vigh,k(t) = OP (u−1/2
n Hn∆1/2

n ), (5.48)

which by assumption tends to zero in probability.
As for the term involving wi, recall that because µ is a Poisson random

measure, if A and B are disjoint measurable sets in R+ × R then µ(A) is
independent of µ(B). Using this fact, we may write given η > 0

P ( sup
t∈[0,1]

|
∑

(h,k)∈Θn

n−1∑
i=0

g̃h,k(ti)wigh,k(t)| > η)

≤ P
(
∪i{µ((ti, ti+1]× {|x| > 1}) > 0, (∆iJ

s)2 > un}
)

≤ nP (µ([0, t1]× {|x| > 1}) > 0)E((Jst1)
2)u−1

n

≤ c∆nu
−1
n ,

which clearly tends to zero in n. This concludes the demonstration that∑
(h,k)∈Θn

∑n−1
i=0 g̃h,k(ti)x

i,1gh,k(t) tends to zero in probability. To tackle the
term

∑
(h,k)∈Θn

∑n−1
i=0 g̃h,k(ti)x

i,2gh,k(t), we start with the following definitions:

Ω1
n := {ω : |∆iX

c(ω)| < 1− 2u1/2
n , for all i < n},

Ω2
n := {ω : µ(ω, (ti, ti+1]× {|x| > 1}) ≤ 1,∀i < n},

∀n ∈ N. These sets are clearly measurable. Denote

Ωn := Ω1
n ∩ Ω2

n. (5.49)

Since there can be at most a finite number of jumps larger than 1 in magni-
tude on [0, 1], and 1− 2u

1/2
n ↑ 1 while ∆iX

c ↓ 0 uniformly on [0, 1], it follows
that P (Ωn)→ 1 as n→∞. Now note that

Aci ∩Bi ∩ Ωn ⊂ {(∆iX
c + ∆iJ

s)2 > un}
⊂ {(∆iX

c)2 > un/4} ∪ {(∆iJ
s)2 > un/4}.

Hence, by successive applications of Hölder and Markov inequalities,

E((∆iX
f )2IAc

i∩Bi∩Ωn) = E((∆iX
c)2IAc

i∩Bi∩Ωn)

≤ E((∆iX
c)2I{(∆iXc)2>un/4}) + E((∆iX

c)2I{(∆iJs)2>un/4})

≤ c∆3/2
n u−1/2

n .
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Let η be a given positive number; it is now clear that

P ( sup
t∈[0,1]

|
∑

(h,k)∈Θn

n−1∑
i=0

g̃h,k(ti)x
i,2gh,k(t)| > η) ≤ P (Ωc

n) + cu−1/2
n Hn∆1/2

n ,

which tends to zero. This completes the demonstration that

P ( sup
t∈[0,1]

|
∑

(h,k)∈Θn

xh,kgh,k(t)| > η)→ 0. (5.50)

Now we show the third summand in (5.43) tends to zero. First, denote
Ci := {(∆iJ

s)2 ≤ 4un}, ph,k := 2
∑n−1

i=0 g̃h,k(ti)∆iX
f∆iJ

sIAi∩Ci
, and qh,k :=

2
∑n−1

i=0 g̃h,k(ti)∆iX
f∆iJ

sIAi∩Cc
i
. Clearly,∑

(h,k)∈Θn

yh,kgh,k(t) =
∑

(h,k)∈Θn

(ph,k + qh,k)gh,k(t).

Treating the term involving qh,k first, note that by the reverse triangle in-
equality, we may write Ai ∩ Cc

i ⊂ {u
1/2
n < |∆iX

f |} ⊂ {u1/2
n /2 < |∆iX

c|} ∪
{u1/2

n /2 < |∆iJ
l|} =: G1

i ∪G2
i . So that

∆iX
f∆iJ

sIAi∩Cc
i
≤ ∆iX

f∆iJ
s(IG1

i
+ IG2

i
)

≤ ∆iX
c∆iJ

s(IG1
i

+ IG2
i
) + ∆iJ

l∆iJ
s(IG1

i
+ IG2

i
)

=: γ1
i + γ2

i + γ3
i + γ4

i .

Hence,

∑
(h,k)∈Θn

qh,kgh,k(t) ≤
∑

(h,k)∈Θn

(
n−1∑
i=0

g̃h,k(ti)(γ
1
i + γ2

i + γ3
i + γ4

i ))gh,k(t).

We show in turn that each summand converges to zero. First, observe that

E(γ1
i ) ≤ E((∆iX

cIG1
i
)2)1/2E((∆iJ

s)2)1/2

≤ E((∆iX
c)4)1/4E(IG1

i
)1/4E((∆iJ

s)2)1/2

≤ c∆1/2
n (u−1/2

n ∆1/2
n )∆1/2

n

≤ cu−1/2
n ∆3/2

n . (5.51)

Hence, given positive η,

P ( sup
t∈[0,1]

|
∑

(h,k)∈Θn

n−1∑
i=0

g̃h,k(ti)γ
1
i gh,k(t)| > η) ≤ cHn(u−1

n ∆n)1/2. (5.52)
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Secondly, we have

E(γ2
i ) = E(∆iX

c∆iJ
sIG2

i
)

≤ E((∆iX
c)2IG2

i
)1/2E((∆iJ

s)2)1/2

≤ E((∆iX
c)4)1/4P (∆iJ

l > u1/2
n /2)1/4E((∆iJ

s)2)1/2

≤ cu−1/8
n ∆5/4

n .

So that given positive η,

P ( sup
t∈[0,1]

|
∑

(h,k)∈Θn

n−1∑
i=0

g̃h,k(ti)γ
2
i gh,k(t)| > η) ≤ cHn(u−1/2

n ∆n)1/4. (5.53)

Moreover,

P ( sup
t∈[0,1]

|
∑

(h,k)∈Θn

n−1∑
i=0

g̃h,k(ti)γ
3
i gh,k(t)| > η)

≤ P (∪i{µ((ti, ti+1]× {|x| > 1}) > 0, (∆iX
c)2 > un/4})

≤ c∆nu
−1
n . (5.54)

Finally,

P ( sup
t∈[0,1]

|
∑

(h,k)∈Θn

n−1∑
i=0

g̃h,k(ti)γ
4
i gh,k(t)| > η)

≤ P (∪i{µ((ti, ti+1]× {|x| > 1}) > 0, (∆iJ
s)2 > un/4})

≤ c∆nu
−1
n . (5.55)

We conclude by reference to the estimates in (5.52), (5.53), (5.54), and (5.55)
that supt∈[0,1] |

∑
(h,k)∈Θn

qh,kgh,k(t)| tends to zero in probability.
We now show that

∑
(h,k)∈Θn

ph,kgh,k(t) tends to zero uniformly in proba-
bility. To that end, let Ψn := {ω : |∆iX

c(ω)| > u
1/2
n for some i < n}. It now

follows by Markov’s inequality that

P (Ψn) ≤
n−1∑
i=0

P (|∆iX
c| > u1/2

n )

≤ u−3/2(1−β)
n

n−1∑
i=0

E((∆iX
c)3/(1−β))

≤ c∆1/2
n . (5.56)
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Hence, P (Ψn)→ 0. On Ai ∩Ci ∩Ψc
n, it is easily seen that |∆iJ

l| − |∆iX
c +

∆iJ
s| < |∆iX| ≤ u

1/2
n , so that |∆iJ

l| ≤ u
1/2
n + |∆iX

c|+ |∆iJ
s|. It is therefore

the case that |∆iJ
l| = O(u

1/2
n ). Let rh,k := 2

∑n−1
i=0 g̃h,k(ti)∆iX

c∆iJ
sIAi∩Ci∩Ψc

n

and sh,k := 2cu
1/2
n

∑n−1
i=0 g̃h,k(ti)∆iJ

sIAi∩Ci∩Ψc
n
. Then given δ > 0 and ε > 0,

P ( sup
t∈[0,1]

|
∑

(h,k)∈Θn

ph,kgh,k(t)| > δ)

≤ P (Ψn) + P ( sup
t∈[0,1]

|
∑

(h,k)∈Θn

rh,kgh,k(t)| > δ/2)

+ P ( sup
t∈[0,1]

|
∑

(h,k)∈Θn

sh,kgh,k(t)| > δ/2). (5.57)

Now consider that
∑

(h,k)∈Θn
rh,kgh,k(t) ≤ cHn

∑n−1
i=0 |∆iX

c∆iJ
sIAi∩Ci∩Ψc|;

this implies that

P (|
∑

(h,k)∈Θn

rh,kgh,k(t)| > δ/2) ≤ P (cHn

n−1∑
i=0

|∆iX
c∆iJ

sIAi∩Ci∩Ψc| > δ/2)

≤ P


n−1∑

i=0

(∆iX
c)2

1/2n−1∑
i=0

(∆iJ
sIAi∩Ci∩Ψc)2

1/2

> δ(2Hnc)−1

 .

We now use the well-known fact that
∑n−1

i=0 (∆iX
c)2(t) converges to

∫ t
0
σ2(s) ds

in probability uniformly on compact intervals (Protter, 2004, Theorem II.22).
That is, there is a sufficiently large N and C such that if n is larger than
or equal to N then P (|(

∑n−1
i=0 (∆iX

c)2)1/2 − (
∫ 1

0
σ2(s) ds)1/2| > C) ≤ ε/12,

and because integrated volatility is almost surely finite, there is a sufficiently
large K satisfying K/2 > C such that P (

∫ 1

0
σ2(s) ds > K/2) ≤ ε/12. Hence,

we may write

P (|
∑

(h,k)∈Θn

rh,kgh,k(t)| > δ/2)

≤ P
(

(x2I{|x|≤1∧2u
1/2
n }) ∗ µ1 > δ2(KHnc)−2

)
+ ε/6

≤ c(Hn)2E
(

(x2I{|x|≤1∧2u
1/2
n }) ∗ µ1

)
+ ε/6

≤ c(Hn)2(x2I{|x|≤1∧2u
1/2
n }) ∗ ν1 + ε/6

which for sufficiently large n is less than ε/3 by Assumption 5.1 and (5.39).
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Now it is easily seen that for sufficiently large c

P (|
∑

(h,k)∈Θn

sh,kgh,k(t)| > δ/2) ≤ P (
n−1∑
i=0

∆iJ
sIAi∩Ci∩Ψc > (cHnu1/2

n )−1δ)

≤ cun(Hn)2E
(

(x2I{|x|≤1∧2u
1/2
n }) ∗ µ1

)
≤ cun(Hn)2(x2I{|x|≤1∧2u

1/2
n }) ∗ ν1 (5.58)

which, as above, is eventually less than ε/3. Hence, each summand on the
right hand side of (5.57) tends to zero. This concludes the demonstration
that

P ( sup
t∈[0,1]

|
∑

(h,k)∈Θn

yh,kgh,k(t)| > δ)→ 0.

We now tackle the last remaining summand in (5.43). Note that we may
write zh,k = ah,k + bh,k with ah,k :=

∑n−1
i=0 g̃h,k(ti)(∆iJ

s)2IAi∩Ci
and bh,k :=∑n−1

i=0 g̃h,k(ti)(∆iJ
s)2IAi∩Cc

i
. Then for positive δ

P ( sup
t∈[0,1]

|
∑

(h,k)∈Θn

zh,kgh,k(t)| > δ) ≤ P ( sup
t∈[0,1]

|
∑

(h,k)∈Θn

ah,kgh,k(t)| > δ/2)

+ P ( sup
t∈[0,1]

|
∑

(h,k)∈Θn

bh,kgh,k(t)| > δ/2).

Now consider the event Ωn from (5.49), and note that Ai ∩ Cc
i ∩ Ωn ⊂

{µ((ti, ti+1]× {|x| > 1} > 0} ∩ Cc
i . Hence,

P (|
∑

(h,k)∈Θn

bh,kgh,k(t)| > δ/2)

≤ P
(
∪i{I{|x|>1} ∗ µ((ti, ti+1]× R) > 0, (∆iJ

s)2 > 4un}
)

+ P (Ωc
n)

≤ nP (I{|x|>1} ∗ µ([0, t1]× R) > 0)E((Jst1)
2)(4un)−1 + P (Ωc

n)

≤ c∆nu
−1
n + P (Ωc

n). (5.59)

which can be made as small as desired. Now consider

P (|
∑

(h,k)∈Θn

ah,kgh,k(t)| > δ/2)

≤ P (
n−1∑
i=0

(∆iJ
s)2I{|∆iJs|≤2u

1/2
n } > δ(2cHn)−1)

≤ cHnE
(
x2I{|x|≤1∧2u

1/2
n } ∗ µ1

)
≤ cHn(x2I{|x|≤1∧2u

1/2
n } ∗ ν)1

≤ cHnu1/2
n
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which can be made arbitrarily small by the constraints onHn. This completes
the demonstration that

P ( sup
t∈[0,1]

|
∑

(h,k)∈Θn

zh,kgh,k(t)| > δ)→ 0. (5.60)

6 Simulation

6.1 Continuous prices

In this section, we confirm via simulations the results established analytically.
We will first focus on the continuous case to mirror Proposition (4.1). Specif-
ically, we will demonstrate that the mean integrated square error (MISE),
the square bias, and the variance of the frame-based estimator tends to zero
as the number of obervations increases. We use prices generated by 4 com-
monly used models of asset prices, namely, the arithmetic Brownian motion
(ABM), the Ornstein-Uhlenbeck process (OU), the geometric Brownian mo-
tion (GBM), and the Cox-Ingersoll-Ross (CIR) process.

We simulate prices using the following stochastic differential equations:

Xt = 0.8 + 0.5t+ 0.2Wt, (ABM)

Xt = 0.8−
∫ t

0

4Xs ds+

∫ t

0

0.2 dWs, (OU)

Xt = 0.8 +

∫ t

0

0.5Xs ds+

∫ t

0

0.2Xs dWs, (GBM)

Xt = 0.8 +

∫ t

0

(0.1− 0.5Xs) ds+

∫ t

0

0.2
√
Xs dWs, (CIR)

where Wt is a standard Brownian motion. For convenience, the observation
interval is set to the unit interval [0, 1]. In all 4 cases, X0 = 0.8. For each price
model, we obtain estimates for the MISE, the square bias, and the variance
of the estimator when the number of observations are 500, 5000, and 50000,
respectively. In a high-frequency framework, 500 observations for an actively
traded stock is likely too small; 5,000 is about right, but 50,000 is not entirely
unheard of. At any rate, our objective is not to capture the average number
of trades of any particular security, but rather, to obtain support for our
asymptotic results by showing an inverse relationship between the number of
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Figure 1: Estimated vs. actual spot volatility
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observations and the MISE, and thereby gain a better understanding of the
finite sample behavior of the estimator.

The starting point for constructing the estimator is to fix a generator
for the Gabor frame. We have denoted the generator and its dual by g and
g̃, respectively. For our purposes, any continuous and compactly supported
function would work.
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Table 1: Mean integrated square error (MISE) of vn(X, t).

ABM OU

n MISE Sq. Bias Var MISE Sq. Bias Var

500 1.30× 10−4 2.86× 10−6 1.27× 10−4 1.43× 10−4 1.19× 10−5 1.31× 10−4

5000 1.41× 10−5 1.11× 10−6 1.30× 10−5 1.45× 10−5 1.62× 10−6 1.28× 10−5

50000 2.32× 10−6 1.02× 10−6 1.30× 10−6 2.36× 10−6 1.12× 10−6 1.23× 10−6

GBM CIR

n MISE Sq. Bias Var MISE Sq. Bias Var

500 2.18× 10−4 4.18× 10−6 2.14× 10−4 6.26× 10−5 8.51× 10−7 6.17× 10−5

5000 2.33× 10−5 1.58× 10−6 2.17× 10−5 6.82× 10−6 6.00× 10−7 6.22× 10−6

50000 4.66× 10−6 1.02× 10−6 3.64× 10−6 1.46× 10−6 6.06× 10−7 8.52× 10−7

Note: The mean of the integrated square errors are obtained by taking an average over 100 sample paths generated for each model/number
of observations pair.
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From an implementation perspective, using a B-spline makes the con-
struction of a dual frame generator a trivial matter. This is a consequence of
Theorems 2.2 and 2.7 in Christensen (2006), which together specify a very
simple rule for constructing dual pairs: Let a > 0 and b > 0 denote transla-
tion and modulation parameters, and let h be a B-spline of order p. Define
the dilation operator Dc as follows:

Dcf(x) = c−1/2f(x/c). (6.61)

If 0 < ab ≤ 1/(2p− 1) then {Dah,Dah̃}, where

h̃(x) = abh(x) + 2ab

p−1∑
n=1

h(x+ n), x ∈ R, (6.62)

is a pair of dual Gabor frame generators. So if we start with a B-spline h then
the dual generator will be a finite linear combination of scaled translates of
h; consequently, the dual generator will be a spline, with similar regularity
properties. For our simulation, we used a third-order B-spline. Our choice
of the third order B-spline is motivated by a desire for a generator with a
Fourier transform that decays like a quadratic polynomial. Specifically, we
set

h(x) =


x2/2 x ∈ (1, 0]
(−2x2 + 6x− 3)/2 x ∈ (2, 1]
(3− x2)/2 x ∈ (3, 2]
0 x 6∈ (3, 0]

, (6.63)

with h̃ computed as in (6.62) above. Our choice of the modulation and
translation parameters is rather arbitrary. The only constraint is that 0 <
ab ≤ 1/(2p − 1) = 1/5; from our experimentation with different values,
performance seems to be about the same for different choices satisfying the
inequality; we settled on a = 1/5 and b = 1/3. Ideally Hn, the order of the
number of frequency domain shifts, would be selected optimally to minimize
MISE while balancing integrated variance and integrated square bias; this is
an open research question. For the time being we set Hn naively equal to 50.

The simulation results indicate that the Gabor frame estimator performs
satisfactorily. Figure 1 displays, for each of the 4 price models (ABM, OU,
GBM, and CIR), simulated spot variance sample paths plotted against spot
variance paths produced by the Gabor frame estimator. A visual inspection
shows that the estimator produces a relatively good fit even with the naive
selection of Hn. This claim is further corroborated by the analysis of the the
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integrated mean aquare error (MISE), the integrated square bias, and the
integated variance summarized in Table 1.We found that the variance, esti-
mated in the foregoing manner, is only approximately the difference between
the MISE and the integrated square bias. The reported figures for variance
are in fact the difference between the MISE and the integrated square bias.
The discrepancy is rather slight and does not materially change the result.
In all 4 model, an inverse relation between MISE, square bias, and variance
may be read off from the table. As was established mathematically, we ex-
pect MISE to vanish if the number of price observations were made to grow
without bound.

6.2 Prices with jumps

We continue our investigation by simulating prices with jumps.

Xt = 0.8 + 0.5t+ 0.2Wt +
N∑
i=1

Yi, (ABM + JMP)

Xt = 0.8−
∫ t

0

4Xs ds+

∫ t

0

0.2 dWs +
N∑
i=1

Yi, (OU + JMP)

Xt = 0.8 +

∫ t

0

0.5Xs ds+

∫ t

0

0.2Xs dWs +
N∑
i=1

Yi, (GBM + JMP)

Xt = 0.8 +

∫ t

0

(0.1− 0.5Xs) ds+

∫ t

0

0.2
√
Xs dWs +

N∑
i=1

Yi, (CIR + JMP)

wher N is a Poisson random variable with intensity 5 and Yi, 1 ≤ i ≤ N , is
a normal random variable with mean zero and standard deviation 0.4.

We construct the dual Gabor frames as in the previous subsection using
the third order B-Spline specified in (6.63). With the introduction of jumps
into the simulation, we found out that better results may be obtained by
varying tha parameters a, b, and Hn. We settled on a = 1/7, b = 1/25,
and Hn = 50. The jump threshold is obtained by setting un = nα, where
α = −0.9. The results of the simulations are recorded in Table 2. We also
produce a graph of a single observations (paths) in Figure 2.
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Figure 2: Estimated vs. actual spot volatility
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Table 2: Mean integrated square error (MISE) of Vn(X, t).

ABM + JMP OU + JMP

n MISE Sq. Bias Var MISE Sq. Bias Var

500 1.53× 10−4 8.95× 10−6 1.44× 10−4 8.51× 10−4 1.31× 10−4 7.20× 10−4

5000 2.19× 10−5 2.27× 10−6 1.96× 10−5 5.48× 10−5 9.76× 10−6 4.50× 10−5

50000 2.13× 10−6 9.00× 10−8 2.04× 10−6 6.61× 10−6 2.65× 10−6 3.97× 10−6

GBM + JMP CIR + JMP

n MISE Sq. Bias Var MISE Sq. Bias Var

500 6.13× 10−3 8.70× 10−4 5.26× 10−3 3.74× 10−4 2.32× 10−4 1.43× 10−4

5000 3.42× 10−4 4.07× 10−5 3.02× 10−4 1.12× 10−5 8.29× 10−6 2.95× 10−6

50000 7.11× 10−5 6.36× 10−6 6.47× 10−5 7.05× 10−6 5.64× 10−6 1.40× 10−6

Note: The mean of the integrated square errors are obtained by taking an average over 50 sample paths generated for each model/number
of observations pair.
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Table 3: Descriptive statistics of S&P 500 data at 15 seconds resolution between
May 5th and 6th of 2010.

Variable Min. 25% perc. Median Mean 75% perc. Max

X 1066 1119 1153 1143 1166 1176
(4X)2 0.001 0.010 0.063 0.511 0.260 183.6

7 Empirical illustration - Flash Crash of 2010
On May 6, 2010, the S&P 500 index lost around 9% of its value in a matter
of minutes; the index rebounded to its pre-crash level a few minutes later.
Between 2:32 p.m. EDT and 3:08 p.m. EDT, the index fluctuated 100
points between 1160 and 1060. The erasure of value in the index has been
so precipitous that it has been dubbed the Flash Crash of 2010.

The relatively quick subsequent rebound of the index to its pre-crash level
suggests that the crash in the value of the index is likely not spurred by a
fundamental change in the intrinsic value of U.S. equities. The deviation of
realized prices from their fundamental or intrinsic values is the hallmark of a
liquidity crash. In this section, we study the trajectory of the spot volatility
of the S&P 500 index prior to, during, and after the Flash Crash of 2010
using our Gabor frame estimator.

Specifically, we sampled the S&P 500 index every 15 seconds during the
hours of 8:30 CT to 15:00 CT from May 5, 2010 to May 7, 2010. This resulted
in a sample of 4562 observations of the index around the time of the crash.
Table 3 provides descriptive statistics of the data. We obtained estimates
of realized volatility using Hn = 50, a = 1/5 and b = 1/7. We vary the
threshold parameter un to obtain four estimates of spot volatility. In the
first instance, un is set equal to infinity so that the estimate obtained in this
instance coincides with vn(X, t). The other estimates correspond to Vn(X, t)
with un set equal to 50, 25, and 12.5, respectively.

The estimates are graphed in Figure 3. The x-axis of the graph represents
trading hours between 8:30 a.m. to 3.00 p.m. normalized to one time unit,
so that values between 0 and 1 represent May 5, 2010 and so on till May
7, 2010. Overall, the graphs of all estimates of realized spot volatility look
qualitatively similar. In all instances, spot volatility is seen to start to ascend
toward the start of the crisis and to achieve a pronounced peak as prices
bottom out in the afternoon of May 6, 2010. The second but smaller peak
in the graph of realized volatility ndicate that markets remained agitated
throughout the following day.
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Figure 3: Realized spot volatility of the S&P500 Index from May 4, 2010 to May
7, 2010. Realized spot volatility is estimated with Hn = 50, a = 1/7, b = 1/5.
Trading hours from 8:30 to 15:00 is normalized to one time unit.
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8 Conclusion
We have investigated estimators of the instantaneous volatility of asset prices
for entire time windows based on Gabor frame expansions of the realized
trajectory of spot volatility. The main practical advantage of this type of
estimator is their versatility. Once an estimate obtained various functionals
of instantaneous volatility such as the ubiquitous integrated volatility are
obtained immediately. We derived our estimators of global instantaneous
volatility under the assumption that the price process is an Itô semimartin-
gale with Lévy jumps. We have also assumed that the densities of the first
and second predictable characteristics belong to the localized class of pro-
cesses with finite fourth moment.

We proposed a preliminary version of the estimator to be used in sit-
uations where the assumption of continuous asset prices hold. Under the
assumption that observations of the asset price occur at discrete equidistant
intervals with a mesh tending to zero within a fixed time interval, we have
shown using standard arguments that the estimator converges in probability
in L2[0, 1]. In the case of asset prices with discontinuous prices, we modified
the basic estimator to require the computation of the Gabor frame coeffi-
cients to depend on a threshold. The threshold itself is allowed to shrink
to zero at a sufficiently slow rate to ensure consistency of the estimator in
L2[0, 1].
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9 Appendix
9.1 Lemma Let the dual Gabor frame generator g̃ be constructed as in
(3.10). If ω̄(g, δ) denotes the modulus of continuity of g, i.e. ω̄(g, δ) :=
sup{|g(t)− g(t′)| : t, t′ ∈ R and |t− t′| < δ}, then

ω̄(g̃j,k, δ) ≤ Cω̄(g, δ) h, k ∈ Z,
where C is a positive constant.
Proof. G is bounded away from zero. To see this, note that since g has
support in [r, s], the series on the left hand side of (3.11) has finitely many
terms for each t. In addition, it is straight forward to verify that G(t) =
G(t+ b) for all t; so, G is periodic with period b. It is also clear that because
g is continuous, so is G. It follows that G attains its min and max on any
interval of length b. Let Ib denote the interval [(s + r − b)/2, (s + r + b)/2],
then

min
t∈R

G(t) = min
t∈Ib

G(t)

≥ a−1 min
t∈Ib
|g(t)|2.

Because g is continuous and g doesn’t vanish in (r, s), we conclude that G∗ :=
mint∈RG(t) > 0. It is also straight forward that G∗ := maxt∈RG(t) < ∞.
Now, let t, t′ ∈ R, t > t′, such that |t− t′| ≤ δ, then

|g̃(t)− g̃(t′)| = |(G(t)G(t′))−1(g(t)G(t′)− g(t′)G(t))|
≤ (G−2

∗ ){|g(t)||G(t)−G(t′)|+ |G(t)||g(t)− g(t′)|}.
(9.64)

For a real number x, denote bxc the largest integer less than or equal to x and
dxe the smallest integer that is greater than or equal to x. Now, Let A denote
the set of integers i such that r < t− ib < s. By definition of g, g(t− jb) = 0,
whenever j 6∈ A. Since b > 0, A contains at most d(1 + |s|+ |r|)/be number
of elements. Let τ := min{t − ib : i ∈ A}, i.e. τ is the smallest t − ib such
that i ∈ A. Because A contains at most a finite number of elements, there
exists an integer k such that τ = t− kb. Set τ ′ := t′ − kb.

It is straight forward to verify that |τ − τ ′| ≤ δ and

a|G(t)−G(t′)| ≤
d(1+|s|+|r|)/be∑

j=0

|g(τ + jb)2 − g(τ ′ + jb)2|

≤
d(1+|s|+|r|)/be∑

j=0

|g(τ + jb)− g(τ ′ + jb)||g(τ + jb) + g(τ ′ + jb)|

≤ 2d(1 + |s|+ |r|)/beg∗ω̄(g, δ), (9.65)
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where g∗ := maxt∈R |g(t)|. Returning to (9.64), we see that

|g̃(t)− g̃(t′)| ≤ Cg̃ω̄(g, δ),

where Cg̃ = G2
∗(2a(d(1 + |s|+ |r|)/be)(g∗)2 +G∗). Now let h, k ∈ Z, then

|g̃h,k(t)− g̃h,k(t′)| = |e2πihat(g̃(t− kb)− g̃(t′ − kb))|
≤ |g̃(t− kb)− g̃(t′ − kb)| ≤ Cg̃ω̄(g, δ). (9.66)

The last inequality follows because translating a function leaves its modulus
of continuity unchanged.
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