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Abstract 

We argue empirically that the U.S. treasury futures market is informational inefficient. We 

show that an intraday strategy based on the assumption of cointegrated treasury futures prices 

earns statistically significant excess return over the equally weighted portfolio of treasury 

futures. We also provide empirical backing for the claim that the same strategy, financed by 

taking a short position in the 2-Year treasury futures contract, gives rise to a statistical 

arbitrage. 
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1 Introduction
Is the U.S. treasury bond futures market informational efficient? Weak-form
informational efficiency requires all strategies that rely solely on historical
price data to be dominated by the passive strategy of holding single traded
assets or a weighted portfolio of traded assets. The notion of dominance as
it relates to asset pricing was introduced by Merton (1973) to study option
pricing formulas that are consistent with rational investor behavior. More
recently, Jarrow & Larsson (2012) obtained a characterization of informa-
tional efficiency in terms of the no dominance condition (ND) and the No
Free Lunch with Vanishing Risk condition (NFLVR) of Delbaen & Schacher-
mayer (1994). Accordingly, market inefficiency can be asserted as soon as
either the ND or NFLVR fails.

This result simplifies considerably the task of verifying market efficiency;
it belies the long held belief that in order to test for violations of market
efficiency, one must first specify a model of equilibrium prices such as the
CAPM and then test for efficiency in relation to the estimated equilibrium
model. Unfortunately, this two step procedure runs quickly into difficulties,
since it may not be possible to tell apart errors due to model misspecification
and those that are solely due to market inefficiency. This is the well-known
joint-hypothesis problem discussed in (Fama, 1969).

Moreover, the No Dominance condition itself could be dispensed with as
soon as a change of numeraire is performed. Indeed let B := (Ω,F , (Ft)t≥0, P )
denote a probability basis, and let S denote an n-dimensional semimartingale
whose components Si, 0 ≤ i < n, represent the price of n distinct assets,
expressed in units of the zeroth asset. For the sake of convenience, also
assume that at time zero, each asset is priced at one, i.e. Si0 = 1 for 0 ≤ i < n.
Now, let γ denote a positive number between zero and one, i.e. 0 < γ < 1,
and define

Zγ,i := (S, Sγ,i)(Sγ,i)−1,

where Sγ,i = γ + (1 − γ)Si. According to Dare (2017, Proposition 2.1), the
efficiency of (S,B) is equivalent to the existence of a local martingale measure
for the markets (Zγ,i,B), for 0 ≤ i < n and 0 < γ < 1.

In fact, a stronger statement can be made achieve a slightly provided
prices are expressed in units of a portfolio constructed on the basis of a
strictly positive weight vector α = (α0, · · · , αn−1), i.e. αi > 0 for 0 ≤ i < n.
Indeed if

Zα := (S, Sα)(Sα)−1,
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then according to Dare (2017, Corollary 2.2), the market (S,B) is efficient
if and only if (Zα,B) admits a local martingale measure. The choice of a
market portfolio is irrelevant so long as it assigns positive weight to each
traded asset.

We will argue for a violation of market efficiency using Dare (2017, Propo-
sition 2.1) with Si representing the price of the 2-Year U.S. Treasury futures
contract. Fortunately, since the NFLVR condition is specified in terms of the
physical measure, the joint-hypothesis issue may be avoided by evaluating
trading rule for violations of NFLVR. Using this testing approach, we make
and emprically support the claim that between April 1, 2010 and Decem-
ber 31, 2015, the equally weighted buy-and-hold strategy was out-performed
by a simple cointegration-based trading rule. Moreover, the hypothesis of
the existence of a statistical arbitrage, in the sense of (Hogan et al., 2004),
achieves a p-value less than 2%.

The trading rule we examine takes as starting point the hypothesis that
treasury bond futures are cointegrated and then attempts to profit from
deviations from the cointegrating relationships. The cointegration hypothesis
assumes, among other things, that even though prices of individual contracts
may be non-stationary, there exists at least one linear combination of these
contracts that results in a stationary price process. That is to say, it is
possible to put together a portfolio of long and short positions in individual
contracts such that the resulting market value of the portfolio is stationary.
The hypothesis of cointegrated bond prices has been examined by Bradley &
Lumpkin (1992), Zhang (1993), and many others. In these studies, the data
employed was sampled at low frequency, daily or monthly, and the hypothesis
of integrated bond prices could not be rejected . We carry out similar analysis
and find empirical support for cointegration using data sampled intra day at
one-minute intervals.

We obtain theoretical motivation for the cointegration-based trading rule
by embedding our analysis within the literature devoted to the study of the
term structure of bonds using factor models. Starting with Litterman &
Scheinkman (1991) and later Bouchaud et al. (1999) and many others, it
has been noted that between 96% and 98% of overall variance of the entire
family of treasury securities may be explained by the variance of just three
factors, the so-called level, slope, and curvature factors. The factors are so
named because of how they affect the shape of the yield curve. A shock
emanating from the first factor has nearly the same impact on contracts of
all maturities; the resulting effect is a vertical shift, upward or downward, of
the entire yield curve. The second factor affects bonds of different maturities
in such a manner as to change the steepness or slope of the curve; it does
so by affecting securities at one end of the maturity spectrum more or less
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than those at the other end. Finally, the third factor has the effect of making
the yield curve curvier; it does so by having more or less pronounced effects
on medium term bonds than on bonds situated either ends of the maturity
spectrum.

We argue that a strategy based on a cointegration hypothesis is natural
within the context of a term structure driven by common stochastic trends or
factors. In fact, the opposite is also true, that is, a common factor structure is
a natural consequence of cointegrated yields. This line of argument provides
support based on economic theory for our strategy and helps explain its
performance. Our results suggests that the futures market may be inefficient.
Market inefficiency is clearly not a desired outcome. It implies the existence
of a free lunch. Put another way, our results points to possible misallocation
of resources.

The rest of the paper proceeds as follows: in section 2, we provide a
description of the data used. Futures price data usually does not come in
continuous form for extended periods of time, so we had to make certain
choices about how available historical price data is transformed into a state
suitable for our analysis. These choices can be implemented in real-time and
are, therefore, to be considered as part of the trading rule. In section 3, we
provide theoretical foundation for our trading rule. This foundation allows
us to reach beyond our data and assert that the profitability of the trading
rule is very likely not confined to the period for which we have data. Section
4 is devoted to the implementation details of the trading rule. Section 5
summarizes our empirical results, and section 6 concludes.

2 Data

2.1 Treasury futures

CBOT Treasury futures are standardized foreward contracts for selling and
buying US government debt obligations for future delivery or settlement.
They were introduced in the nineteen-seventies at the Chicago Board of Trade
(CBOT), now part of the Chincago Merchantile Exchange (CME), for hedg-
ing short-term risks on U.S. treasury yields. They come in four tenors or
maturities: 2, 5, 10, and 30 years. In reality, each contract type is written
on a basket of U.S. treasury notes and bonds with a range of maturities and
coupon rates. For instance, the 30-Year Treasury Bond Futures contract is
written on a basket of bonds with maturities ranging from 15 to 25 years.
It is, therefore, worth keeping in mind that a study of the dynamics of the
yield curve using futures data reflects influences from a range of maturities.
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Every contract listed above except the 2-Year T-Note Futures contract,
which has a face value of $200,000, has a face value of $100,000. That is
each contract affords the buyer the right to buy an underlying treasury note
or bond with a face value of $100,000 or $200,000 in the case of the 2-Year
contract. In practice, the price of these contracts are quoted as percentages
of their par value. The minimum tick size of the 2-Year T-Note Futures is
1/128%, that of the 5-Year T-Note Futures is 1/128%, that of the 10-Year
T-Note Futures is 1/64%, and that of the 30-Year T-Bond Futures contract is
1/32%. In Dollar terms, this comes to $15.625, $7.8125, $15.625, and $31.25,
respectively, per tick movement. 1 These tick sizes are orders of maginitude
larger than those typically encounted in the equity markets.

Even though most futures contracts are settled in cash at the expiration
of the contract, for a small percentage of open interests, delivery of the
underlying bond actually takes place. Given that the futures contract is
written on a basket of notes and bonds, the actual bond or note delivered is
at the discretion of the seller of the contract. In practice, the seller merely
selects the cheapest bond in the basket to deliever. For our purposes, we
shall focus on only the above listed tenors, but it is worth keeping in mind
that there is is also a 30-Year Ultra contract that is also traded at the CME.

For our analysis, we use quote data, prices and sizes, from April 1, 2010
through December 31, 2015. Even though we have at our disposal data rich
enough to allow resolution down to the nearest millisecond, we opted, arbi-
trarily, to aggregate the data into one-minute time bars. The representative
quoted price and size for each time bar is the last recorded quote falling within
that interval. Our use of quotes , bids and offers, instead of transaction data
allows the computation of a proxy for the unobserved true price, by means
of the mid-quote, at a higher frequency than transaction prices might have
allowed. Using quotes, we are also able to reflect directly a major portion of
the execution costs associated with any transaction, i.e. the bid-ask spread.

Trading in these markets primarily takes place electronically via CME
ClearPort Clearing virtually around the clock between the hours of 18:00
and 17:00 (Chicago Time), Sunday through Friday. But, the markets are
at their most active during the daytime trading hours of 7:20 and 14:00
(Chicago Time), Monday through Friday. This also the opening hours of
the open outcry trading pits. For our analysis, We use exclusively data from
the daytime trading hours. This ensures that the strategy is able to benefit
from the best liquidity these markets can offer, while mitigating the effects
of slippage (orders not getting filled at the stated price) and costs associated

1We refer the reader to more detailed information about the features of each contract
to Labuszewski et al. (2014).

6



with breaking through the Level 1 bid and ask sizes.

2.2 Continuous prices

Unlike stocks and long bonds, futures contracts tend to be short-lived, with
price histories extending over a few weeks or months. This stems from the
traditional use of futures contracts as short-term hedging instruments against
price/interest rate fluctuations. Treasury futures contracts, in particular,
have a quarterly expiration cycle in March, June, September, and December.
At any given point in time, several contracts written on the same underlying
bond, differentiated only by their expiration dates, may trade side by side.

Usually, the next contract due to expire, the so-called front-month con-
tract, offers the most liquidity. As the front-month approaches expiration,
liquidity is gradually transferred to the next contract in line to expire, the
deferred month contract. At any rate, a given contract is only actively traded
for a few months or weeks before it expires. Hence, holding a long-term po-
sition in a futures contract actually entails actively trading in and out of the
front month contract as it nears its expiration date. The implementation of
this process is known as rolling the front month forward.

For the purpose of evaluating a trading strategy over a historical period
of more than a few months, the roll can be retroactively implemented to
generate a continuous price data. The usual way to go about the roll is to
trade out of the front-month a given number of days before it expires. In the
extreme case, the roll takes place on the expiration date of the front month
contract. The downside of this type of approach is that the roll may take
place at a date when liquidity in the deferred month is not yet plentiful. The
result is that a backtest may not necessarily capture the increased trading
cost associated with the lower liquidity level.

Our preferred approach for implementing the roll is to start trading out of
the front month contract at any point during its expiration month as soon as
the open interest in the deferred month contract exceeds the open interest in
the front month contract. The data used in our backtest is spliced together
this way; the procedure is implementable in real-time and must be considered
part of the trading strategy discussed in this paper.

Now, while retroactive contract rolling may solve the problem of creat-
ing an unbroken long-term price history, it creates another: splicing prices
together as described above would invariably introduce artificial price jumps
into historical prices. To see this, consider a futures contract with price F
written on a bond with price B. Using an arbitrage argument and ignor-
ing accrued interest, the price of a futures contract at any time t may be
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expressed as:

Ft = Bte
(r−c)d, (2.1)

where c is the continuously compounded rate of discounted coupon payments
on the underlying bond, d is the number of time units before the futures
contract expires, and r is the repo rate.

Now, assuming the roll takes place in the expiration month, d for the front
month is less than 30 days, whereas for the deferred month contract, d is at
least 90 days. This results in a price differential between the two contracts,
which shows up in the price data as a jump. In reality, and assuming a
self-financing strategy, the price differential would necessitate a change in
the number of contracts held, so that overall, the return on the portfolio is
unaffected by the roll. Hence, in order to avoid fictitious gains and losses,
the price series must be adjusted to remove the roll-induced price jumps.

The most often used methods in practice applies an adjustment to prices
either prior or subsequent to the roll date. When the adjustment is applied
to prices recorded after the contract is rolled forward, the price history is said
to be adjusted forward; if on the other hand, the adjustment is applied to
prices recorded prior to the roll date then the prices are said to be adjusted
backward. The actual price adjustment, in the case of a backward adjust-
ment, is most commonly carried out in one of two ways: in the first instance,
the roll-induced price gap (price after roll minus price right after roll) is sub-
tracted from all prices recorded prior to the roll date; in the second instance,
all prices preceding the roll date are multiplied by a factor representing the
relative price level before and after the roll. The second approach is remi-
niscent of how stock prices are adjusted after a stock split. We will refer to
the first approach as the backward difference adjustment method and to the
second as the backward ratio adjustment method. Forward ratio adjustment
and forward difference adjustment are implemented similarly with the ad-
justments applied to prices recorded after the roll date. In our analysis, we
will only consider backward adjusted prices, as they appear to be the more
intuitive approach.

Both types of backward price adjustment methods are widely-used in
practice, but the ratio adjustment method has the advantage of guaranteeing
that prices, however early in the price series, always remain positive. In the-
ory, the difference adjustment approach may generate negative prices given
enough roll-induced price gaps. We mention these adjustment procedures
because they tend to affect the performance of most strategies, including the
one we study in this paper. The price adjustment procedures cannot be con-
sidered as part of a real-time trading strategy, so we report results using both
the backward ratio adjustment and the backward difference adjustment.
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3 Economic framework

3.1 The price of a futures contract

The traditional way of pricing a futures contract is via an arbitrage argument.
The argument is best illustrated via an example. Suppose an agent, at time
t (today), has a need to purchase a 10-Year Treasury note at time T1. That
is, at time T1 when the forward/futures contract expires, the treasury note
will mature in ten years at time T1 + 10. The agent could go about it by
borrowing money at time t at the repo rate to cover the full price of the
bond. The full price of the bond would include the current spot price of the
bond and accrued interest on the bond since the last coupon payment. The
accrued interest is the portion of the next coupon payment that is due to the
previous owner of the bond. Let’s denote the spot price of the bond by Bt

and the accrued interest by It. So, at time t the agent may borrow Bt + It,
using the bond as collateral against the loan.

At time T1, the loan used by the agent to fund the purchase would have
accrued interest of its own and would have grown to (Bt + It)e

r(T1−t). Here,
we are assuming a fixed repo rate r. On the other hand, taking procession of
the treasury note endows the agent with the right to receive coupon payments
generated by the note. Coupon rates are usually a fixed percentage of the
par value of the bond. In practice, this is usually around 6% and payable
semiannually; for this illustration, we will imaging that the coupon payments
are payed continuously at the instantaneous rate of c. To recap, at time T1,
the loan balance grows to (Bt+It)e

r(T1−t), but it is offset by coupon payments
of Ke−c(T1−t), where K denotes the par value of the bond. Hence, at time T1,
for the agent to own the treasury bond outright, she simply needs to repay
the loan, but because of the accrued interets she would only be out of pocket
F := (Bt + It)e

r(T1−t) −Ke−c(T1−t). Hence, at time t it only makes economic
sense to enter a futures contract if it is priced in such a way as to equate the
cost of replicating it, that is, F .

The above analysis demonstrates that the price of a futures contract may
be written in terms of the price of the underlying bond. In fact, by denoting C
the continuously discounted present value of all coupon payments generated
by the bond, we may write:

Ft = (Bt − C)erd, (3.2)

where d is the amount of time left before the futures contract expires. It is
worth noting that the foregoing analysis relies on the assumption of constant
interest rate. It is also to be noted that the price of a futures contracts using
a no-arbitrage argument may differ from the price of a forward contract in an
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environment with stochastic time varying interest rates. We refer the reader
to Cox et al. (1981) for a lucid discussion of this point. For the intuition
we wish to develop, the assumption of a constant in time interest rate is
tolerable.

Returning to (3.2), and taking the natural logarithm of both sides of the
equation, and assuming that the face value of the bond is much larger than
the present value of future coupon payments, we may write

ft ≈ bt − c+ rd, (3.3)

where bt := log(Bt) and c := log(C). Note that bt = −Tyt, where yt is the
yield to maturity at time t of the bond. The quantity rd−c is usually referred
to variously in the empirical literature as the carry or the basis. Looking at
actual price data, the carry would fluctuate from time to time usually around
a long term mean. The basic idea of a mean-reverting carry is the motivation
behind the so-called carry-trade, which is implemented by going short the
futures and long the bond when the carry is high and doing the opposite
when the carry is deemed too low. The strategy reviewed subsequently, is
only related to this trade by the fact that it relies on mean-reversion to be
profitable.

Returning to (3.3) it is apparent that besides the variation in the carry,
variations in the logarithm of the futures price comes about because of vari-
ations in the logarithm of the bond price, which is itself driven by the yield
to maturity of the bond. Usually, the carry does not vary by a whole lot and
it is often modeled as a constant as we have done here unless, of course, the
object of the analysis is to study the carry itself. Given these considerations
we may model the logarithm of the price of the futures contract directly and
exclusively in terms of the yield to maturity with no significant loss in rigor.
That is, we may write

ft = α + βyt, (3.4)

where α and β are constant terms and yt is the yield to maturity of the
underlying bond. The constant α is simply the carry and whatever needs
to be added or subtracted in order to make the approximation in (3.3) an
equality. The constant β is in this setting equal to −T , that is, negative the
tenor of the underlying bond.

The preceding reformulation of the logarithm of the price of a futures
contract in terms of the yield to maturity of the underlying bond allows us
to use the theoretical machinery developed to study the term structure of
interest rates to motivate the trading system that we discuss subsequently.
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3.2 Factor model of the yield curve

Factor modeling of the yield curve has a rich history in the financial lit-
erature. The extant models may be broadly classified under three main
headings: statistical, no-arbitrage, and hybrid models. The static Nelson &
Siegel (1987) (NS) model of the yield curve and its modern counterpart, the
Dynamic Nelson-Siegel (DNS) model, proposed by Diebold & Li (2006) are
prototypes of the class of statistical factor models of the interest rate term
structure. They, especially the static Nelson & Siegel, are widely used both
by financial market practitioners and central banks to set interest rates and
forecast yields. Despite their popularity and appealing statistical properties,
they tend to give rise to violations of the no-arbitrage condition2.

The dynamic term structure models (DTSM) studied in (Singleton, 2006,
Chapter12), of which the yield-factor model of Duffie & Kan (1996) is an
early example, constitute the class of arbitrage-free models. These models
derive a functional form of the yield curve in terms of state variables or
factors, which also govern the market price of risk linking the local martin-
gale measure to the historical measure. They are, therefore, by construction
arbitrage-free. Despite their economic soundness, these models tend to have
sub-par empirical performance. For instance, Dybvig et al. (1996) showed in
the discrete-time setting that in an arbitrage-free model, long forward and
zero-coupon rates can never fall; working in the general setting of continu-
ous trading, Hubalek et al. (2002) arrived at a similar conclusion regarding
the monotonicity of long forward rates under the no-arbitrage assumption.
Clearly, this implication of the no-arbitrage framework is often contradicted
by the empirical evidence that zero-coupon rates do in fact fall. Furthermore,
negative rates and unit roots are ruled out. As (Diebold & Rudebusch, 2013,
p. 13) put it

Economic [no-arbitrage] theory strongly suggests that nominal
bond yields should not have unit roots, because the yields are
bounded below by zero, whereas unit root processes have random
walk components and therefore will eventually cross zero almost
surely.

Negative interest rates post 2008 financial crisis are a mainstay of many
developed economies, including Switzerland. Moreover, the task of fitting
arbitrage-free models to interest rate data can be very difficult since they tend
to be over-parametrized and, typically, would generate multiple likelihood
maxima (Diebold & Rudebusch, 2013, p. 55).

2See (Filipović, 1999) for such violations in the case of DNS models.
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Lastly, the Arbitrage-Free Nelson-Siegel (AFNS) model proposed by Chris-
tensen et al. (2011) is a prototype of the hybrid class of models. It main-
tains the parsimonious parametrization of the DNS model while remaining
arbitrage-free. The AFNS differs, at least in the functional form of the yield
curve, from the standard DNS model only by the inclusion of an extra term
known as the “yield adjustment factor”. Intuitively, the AFNS model may
be thought of as the projection of an arbitrage-free affine term structure
model, namely the Duffie & Kan (1996) model, onto the DNS model with
the orthogonal component swept into the yield adjustment factor.

The factor models briefly surveyed above motivate the trading rule adopted
in this paper; it relies on the hypothesis that the term structure of interest
rates can be described by an affine function of a set of state variables, no-
tably the level, slope, and curvature principal components. Moreover, there
is ample empirical evidence suggesting that the term structure is cointe-
grated. In particular, using monthly Treasury bill data from January 1970
until December 1988, Hall et al. (1992) observed that yields to maturity of
Treasury bills are cointegrated and that during periods when the Federal
Reserve specifically targeted short-term interest rates, the spreads between
yields of different maturities defined the cointegrating vector.

In general, given a N ∈ N bonds, with N not necessarily finite, a factors
model of the yield curve would represent the yield on the i-th bond as:

yi,t = αt +

q∑
j=1

βi,jfj,t + εi,t, (3.5)

where α is deterministic, q is a small number, fj for j = 1, · · · , q, are fac-
tors βi,j is the contribution of the jth factor to the ith bond, and εi is the
component of the ith bond that is apart from any other bond. For our pur-
poses, it does not actually matter whether the factors are macroeconomic or
statistical in nature, but to fix ideas we assume q = 3 and the factors are
the level, slope, and curvature factors of Litterman & Scheinkman (1991).
By substituting the expression in (3.5) into equation (3.4), we obtain the log
futures price in terms of the level, slope, and curvature of the term structure.
That is,

fi,t = µt +
3∑
j=1

γi,jfj,t + εi,t.

3.3 Factor extraction

Using Principal Component Analysis (PCA), it is possible to transform the
original time series of futures prices into a set of orthogonal time series known
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as principal components. Because of the orthogonality property, the origi-
nal time series may be expressed uniquely as a linear combination of the
principal components. This representation motivates the interpretation of
the principal components as the latent risk factors driving observed price
fluctuations.

The analysis starts with n observations from an m-dimensional random
vector, the original time series data. Then, assuming that the original time
series admits a stationary distribution with finite first and second moments,
the covariance matrix is estimated using an unbiased and consistent estima-
tor. In our setting, the assumption of stationarity applied directly to the
logarithm of futures prices is hard to justify. Prices generally trend upward,
and the same may be expected for their log-transformed versions. Using
the Augmented Dickey-Fuller (ADF) statistics with constant drift, we test
the hypothesis that the lag polynomial characterizing the underlying data
generating process has a unit root.

A quick scan of Table 1 reveals that for the most part the unit root as-
sumption cannot be rejected. The only exception seems to be the 2 Year and
the 5 Year futures price data for the year 2015, for which the assumption of
a unit root may be rejected at the 5% confidence level. We think this out-
come is a temporary fluke since for the previous five years the null hypothesis
could not be rejected. We have also looked at different subsamples of the
2015 data, and for the most part the assumption of a unit root could not be
rejected.

Under the circumstances, carrying on with the analysis of the principal
components of the original price series may not be advisable. Without the
stationarity assumptions, it is very likely the case that the usual estimator
of the covariance matrix would yields estimates that may be substantially
off the mark. Meanwhile, taking the first difference of the logarithm of the
price series seems to produce time series that display very little persistence
as may be observed from an inspection of Figure 1. Hence, the assumption
of stationarity may be more appropriate only after differencing the data. We
have substantiated this assumption using the ADF test and the unit root
assumption was rejected at the 1% confidence level.

Clearly, taking differences of the log price data entails a loss of informa-
tion. Nevertheless, an analysis of the differenced data could still yield insight
into the factor structure of the original price data since the property could
be expected to be shared by both the differenced data and the data in levels.
This observation is easily confirmed by means of simple algebraic manipula-
tions. Naturally, the factors that may be extracted from the differenced data
would bear very little resemblance to the factors present in the levels data,
so that there are limits to how much can be inferred about the data in levels
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Table 1: Augmented Dickey-Fuller Tests

(a) 2010
a t(a) lag t(lag) 5% c.value(a) 5% c.value(lag)

2 Yr 0.00 2.17 -0.00 -2.16 4.59 -2.86
5 Yr 0.00 2.01 -0.00 -2.00 4.59 -2.86
10 Yr 0.00 2.05 -0.00 -2.05 4.59 -2.86
30 Yr 0.00 2.03 -0.00 -2.02 4.59 -2.86

(b) 2011
a t(a) lag t(lag) 5% c.value(a) 5% c.value(lag)

2 Yr 0.00 0.96 -0.00 -0.96 4.59 -2.86
5 Yr 0.00 0.62 -0.00 -0.61 4.59 -2.86
10 Yr 0.00 0.56 -0.00 -0.54 4.59 -2.86
30 Yr 0.00 0.36 -0.00 -0.33 4.59 -2.86

(c) 2012
a t(a) lag t(lag) 5% c.value(a) 5% c.value(lag)

2 Yr 0.01 2.51 -0.00 -2.51 4.59 -2.86
5 Yr 0.00 1.31 -0.00 -1.31 4.59 -2.86
10 Yr 0.00 1.22 -0.00 -1.21 4.59 -2.86
30 Yr 0.00 1.36 -0.00 -1.36 4.59 -2.86

(d) 2013
a t(a) lag t(lag) 5% c.value(a) 5% c.value(lag)

2 Yr 0.00 1.45 -0.00 -1.45 4.59 -2.86
5 Yr 0.01 1.85 -0.00 -1.85 4.59 -2.86
10 Yr 0.00 1.65 -0.00 -1.65 4.59 -2.86
30 Yr 0.00 1.24 -0.00 -1.25 4.59 -2.86

(e) 2014
a t(a) lag t(lag) 5% c.value(a) 5% c.value(lag)

2 Yr 0.00 1.06 -0.00 -1.05 4.59 -2.86
5 Yr 0.00 1.46 -0.00 -1.46 4.59 -2.86
10 Yr 0.00 1.74 -0.00 -1.73 4.59 -2.86
30 Yr 0.00 1.95 -0.00 -1.93 4.59 -2.86

(f) 2015
a t(a) lag t(lag) 5% c.value(a) 5% c.value(lag)

2 Yr 0.01 2.88 -0.00 -2.88 4.59 -2.86
5 Yr 0.01 3.01 -0.00 -3.01 4.59 -2.86
10 Yr 0.01 2.76 -0.00 -2.76 4.59 -2.86
30 Yr 0.00 1.65 -0.00 -1.65 4.59 -2.86
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Figure 1: Changes in log prices

(a) 2 Yr Treasury Note (b) 5 Yr Treasury Note

(c) 10 Yr Treasury Bond (d) 30 Yr Treasury Bond
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once it has been differenced.
Proceeding with the differenced data, we estimate the covariance matrix

by means of the unbiased estimator

Σ := (n− 1)−1
n∑
i=1

xix
′
i,

where x is the normalized data series. In the final step we obtain a spectral
decomposition of the covariance matrix. That is

Σ =
m∑
i=1

λiviv
′
i, (3.6)

where λ1/21 ≥ · · · ≥ λ
1/2
m are the nonnegative eigenvalues of Σ in descending

order of magnitude, and vi, i = 1, . . . ,m, are the corresponding eigenvectors.
The eigenvectors are orthonormal, that is they have length one and form a
linearly independent set. Hence, from the representation in (3.6), the contri-
bution of the i-th principal factor to the overall variance of the differenced
log price data is λi. The j-th component of each the i-th eigenvector is the
factor loading or beta of the j-th security with respect to the i-th principal
component. That is, the components of the eigenvectors summarize expo-
sure levels. For instance, the second element of the third eigenvector is the
exposure of the 5 Year Treasury Note Futures contract to the third principal
component or risk factor, the so-called curvature factor.

Recall that the eigenvectors are orthonormal so that the associated eigen-
values represent the variance contribution of each principal components to
the variance of the differenced log price data. By taking the ratio of indi-
vidual eigenvalues to the sum of all four eigenvalues, we may estimate the
percentage contribution of each principal component to the overall variance.
The output of this analysis using subsamples corresponding to each calendar
year in our data set is recorded in Figure 2. What is immediately apparent
from these figures is that an overwhelming majority of variability is directly
attributable to the first component; this component contributes between 90
to 93% of total variability, followed by the second component contributing
between 4.8 and 12%. The contributions due to the third and fourth compo-
nents are fairly modest. The third component contributes between 0.5 and
3%, whereas the fourth component accounts for less than 0.5%. This result
is in agreement with previous works such as Litterman & Scheinkman (1991)
and Bouchaud et al. (1999) studying the term structure using lower frequency
data. By now, this is a stylized fact of the term structure of interest rates,
our results confirm this fact for higher frequency data.
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Figure 2: Variance contributions

(a) 2010 (b) 2011

(c) 2012 (d) 2013

(e) 2014 (f) 2015
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Figure 3: Factor loadings by contract

(a) 2010 (b) 2011

(c) 2012 (d) 2013

(e) 2014 (f) 2015
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Figure 3, reports the loadings associated with each principal component
for a variety of subsamples. The loading for the first fact is fairly stable across
maturity and time. The weights are uniformly close to 0.5 so that the effects
of shocks emanating from the first factor are felt uniformly across maturities.
The loadings associated with the second and third principal components show
a great deal of variation across time. In 2010, the effect of a shock emanating
from the second factor had the most impact on long bonds than short bonds.
The situation was reserved in the following year. A similar reversal may be
observed for the third component which in 2010 had a greater impact on
medium term bonds than on both long and short bonds.

This empirical analysis of the factors underlying the data forms the basis
of the strategy we discuss in the sequel.

3.4 Factor structure implies cointegration

In this subsection we shall study the link between a factor structure de-
scription of the yield curve and the existence of cointegrating relationships
between contracts of different tenors. An n × 1 vector time series y is coin-
tegrated if each component of y is integrated of order p > 0, but there is k,
strictly less than n, independent linear combinations of the components of y
that result in processes that are integrated of order q, where q is strictly less
than p. For our purposes, we shall assume that p is one and q is zero. Hence,
cointegration in our setting means that y is a unit root process whose compo-
nents can be combined linearly in k independent ways to produce stationary
processes. The vector of cointegrating relationships are usually normalized
and grouped together as the columns of an n × k matrix denoted β. By
definition, β has linearly independent columns, therefore, it has rank k < n.

Consider the following model of the yield on n bonds:

yt = Aft + ut, (3.7)

where y is an n × 1 random vector of yields of varying maturities, A is an
n×k matrix of factor weights, f is a k×1 random vector of common factors,
and u is an n × 1 stationary random vector. Without loss of generality, we
may assume that each of the k components of f are unit root processes;
otherwise, if only r < k components of f are unit root processes and the
remaining k − r are stationary, then we may simply re-write (3.7)

yt = Bht + vt,

with vt = Cgt + ut, f ′t = [h′t, g
′
t], and A′ = [B′, C ′], where A′ is the matrix

transpose of A, B and C are, respectively, the n×r and n×(k−r) submatrices
of A, and h and g are, respectively, r and k − r subvectors of f .
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Returning to equation (3.7), the vector of factors may be assumed to be
a multivariate random walk, i.e.,

ft = ft−1 + φ(L)εt,

where φ(L) is a lag polynomial, ε is white noise, and φ(L)ε is stationary.
There some empirical evidence in our data that this assumption is not un-
justifiable. Using a matrix analysis argument, details of which may be found
in Theorem 3.1 of Escribano & Pena (1993), it is easy to verify that y may
be written as a sum of a stationary process and a unit root process:

yt = wt + zt,

where w ∼ I(1) and z ∼ I(0). Both w and z may be computed explic-
itly given the matrix of factor loadings as follows: wt = AA′yt and zt =
(A⊥)′A⊥yt, where A⊥ is the orthogonal complement of A, i.e. (A⊥)′A = 0.
Now, setting β := (A⊥)′, it is easily seen that βyt = βzt ∼ I(0), so that β is
a matrix of cointegrating vectors. Hence, cointegration of the vector of yields
is a consequence of the factor structure of the yield curve.

The analysis in the previous section provides some indirect empirical sup-
port for the existence of orthogonal risk factors underlying the dynamics of
the term structure. Recall that our analysis of the factors employed differ-
enced price data. So, direct measurements of the risk factors is not an option,
but we could at least extract the differenced factors and compute their cu-
mulative sum. While this approach may lack rigor, it nevertheless provides a
glimpse of what the original factors might look like. Using the reconstructed
risk factors, we test the hypothesis that the level, slope, and curvature factors
are unit root processes. The result of this analysis is recorded in Table 2.
The results show that the hypothesis of unit root for the risk factors may not
be reject at any reasonable level for any of the six calendar years included in
our data set.

3.5 Cointegration implies a factor structure

In the previous section, we argued that cointegration is natural assuming the
underlying data admits a factor structure. In this section, we argue that the
converse is also true. Starting with the assumption that the components of
y are integrated of order one, y may be expressed, using lag polynomials, as:

(1− L)yt = Φ(L)εt, (3.8)

where ε is n × 1 iid noise, L is the lag operator, Φ(L) =
∑∞

j=1 ΦjL
j, Φj is

n× n matrix, and Φ0 is the n× n identity matrix. The last condition is an
accommodation for the presence of a deterministic linear trend.
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Cointegration entails a restriction of the process Φ(L)ε, and on Φ(1) in
particular. Indeed, writing Φ(L) = Φ(1) + (1 − L)Φ∗(L), where Φ∗(L) :=
(1− L)−1(Φ(L)− Φ(1)), equation (3.8) may be expressed as:

(1− L)yt = Φ(1)εt + (1− L)Φ∗(L)εt. (3.9)

Solving (3.9) by recursive substitution yields

yt = Φ(1)zt + Φ∗(L)εt, (3.10)

where zt :=
∑t−1

i=0 εt−i. Now, cointegration implies the existence of an n× k
matrix β, the matrix of cointegrating vectors, such that β′yt is integrated of
order 0; but since zt is a multivariate random walk, it must be the case that
β′Φ(1) = 0. Now, since β has rank r and Φ spans the subspace orthogonal
to its column space, it must be the case that Φ(1) has rank n− k.

Using the Jordan canonical form, we may write

Φ(1) = AJA−1

where J is a (n − k) × (n − k) diagonal matrix containing the non-zero
eigenvalues of Φ(1), A the corresponding n× (n− k) matrix of eigenvectors,
and A−1 is the right inverse of A. This decomposition is possible because Φ
only has n − 1 non-zero eigenvalues. Now setting ut := JA−1εt and νt :=
Φ∗(L)εt, and substituting into (3.10) yields

yt = Aft + νt, (3.11)

where ft = ft−1 + ut. The interesting thing about (3.11) is that f is an
(n − k) × 1 unit root process driving y. That is cointegration implies a
factor structure. This result appears at various levels of generality in Stock
& Watson (1988) and Escribano & Pena (1993).

4 Methodology
The basic trading mechanism consists of two main steps. The first step tests
for cointegration between the four futures prices and estimates the paramters
of a stationary portfolio of the four contracts under the hypothesis of cointe-
grated prices. The portfolio weights are the components of the cointegration
vector. We use a month’s worth of daytime (7:30 to 14:00 CT) trading data
sampled at one minute intervals for this step. This period is the so-called for-
mation period. Besides estimating the cointegration vector, we also estimate
the first two central moments of the stationary portfolio.
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Table 2: Augmented Dickey-Fuller Tests

(a) 2010
Level Slope Curvature

intercept 0.00 0.00 0.00
t-stat (intercept) 2.32 2.10 1.87

lag -0.00 -0.00 -0.00
t-stat(lag) -2.08 -1.97 -1.88

(b) 2011
Level Slope Curvature

intercept 0.00 -0.00 -0.00
t-stat (intercept) 1.78 -1.74 -1.52

lag -0.00 -0.00 -0.00
t-stat(lag) -0.46 -0.31 -0.24

(c) 2012
Level Slope Curvature

intercept 0.00 0.00 0.00
t-stat (intercept) 1.01 1.04 0.85

lag -0.00 -0.00 -0.00
t-stat(lag) -1.30 -1.30 -1.50

(d) 2013
Level Slope Curvature

intercept -0.00 -0.00 -0.00
t-stat (intercept) -1.26 -1.34 -1.33

lag -0.00 -0.00 -0.00
t-stat(lag) -1.51 -1.21 -0.79

(e) 2014
Level Slope Curvature

intercept 0.00 0.00 -0.00
t-stat (intercept) 2.34 2.62 -2.71

lag -0.00 -0.00 -0.00
t-stat(lag) -1.75 -2.03 -2.31

(f) 2015
Level Slope Curvature

intercept 0.00 0.00 0.00
t-stat (intercept) 1.89 0.34 1.37

lag -0.00 -0.00 -0.00
t-stat(lag) -2.27 -1.56 -1.42
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In the second step, we start monitoring prices immediately after the for-
mation period to identify price configurations that may be too rich or too
cheap according to our estimates of the first two moments from the forma-
tion period. This so-called trading period lasts for about three weeks (100
daytime trading hours) from the end of the formation period. Specifically,
we consider the price configuration to present a buy opportunity, if the price
of the stationary portfolio falls below two standard deviations of the sam-
ple mean computed on the basis of the data generated during the formation
period. There is a sell opportuitity if the price climbs beyond two standard
deviations of the mean price from the formation period. Hence, a position is
entered into whenever the price of the synthetic asset, constructed from the
cointegration vector, veers outside the two standard deviation band; the po-
sition is long or short according to whether the price configuration is deemed
cheap or rich. Short-sale constraints are almost non-existent in the futures
market, so they do not enter into our analysis.

Position are opened at any time during the trading period; they are closed
as soon as the price of the synthetic asset experiences a large enough cor-
rection after its excursion away from the sample mean estimated from the
formation period. Specifically, a position is closed as soon as the price falls
within the one standard deviation band. Hence, after each correction, at
least one standard deviation is earned on the round-trip trade. This process
is continued until the end of the trading period at which time all open po-
sitions are liquidated at the quoted price. Generally, this is the only time a
loss can be registered, since a correction might not have taken place prior to
the end of the trading period.

The entire process is repeated on a rolling window from the start of the
sample (1 April 2010) to the end of the sample (31 December 2015). In
both steps we use exclusively quote data as opposed to transaction data. An
advantage of using quote data is that the data is simply more plentiful and
may better accurately represent the state of the market as perceived by an
agent at any given moment. During the synthetic portfolio formation stage,
the cointegration vectors and the first two moments are estimated using the
midpoint of the best bid and ask prices. During the trading stage, positions
are opened and closed using quoted bid and ask prices: a long position is
entered into at the ask and shorts executed at the bid.

The evaluation of the strategy using quotes prices is imperative given the
short-term nature of the strategy. All positions are opened for at most 100
daytime trading hours. Theoretically, a position could be entered into and
exited the very next minute. For such short investment horizons, the bid-ask
spread looms very large. By using quote data, execution costs arising from
the bid-ask spread is automatically taken into account. Of course, there are
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other types of execution costs, but the bid-ask spread is usually the largest
source of execution costs, and the use of quoted prices takes care of it right
away.

5 Results

5.1 Return calculation

Evaluating the performance of a trading strategy that may involve long and
short positions is not altogether a straight foreword matter. In fact, the
literature gives little guidance on how to define the one-period return of a
portfolio consisting of long and short positions. The issue is without com-
plications for a portfolio consisting entirely of long positions; the one-period
return is simply the difference between the starting and ending value of the
portfolio divided by its starting value. Unfortunately, this definition presents
difficulties as soon as portfolios with both long and short positions are con-
sidered. For such portfolios, the initial investment could be arbitrarily small,
zero, or even negative due to the offsetting effects of long and short posi-
tions. In the case of a zero-cost portfolio, the period return is ether positive
infinity or negative infinity, regardless of the actual change in the value of
the portfolio.

It is easy to see that the standard definition is problematic for portfolios
with both long and short positions because the value of the portfolio at the
start of the period is always taken as the basis for measuring the performance
of the portfolio over the period. By reconsidering the investment simply in
terms of cash inflows and outflows much of the difficulties of the standard
approach may be overcome. The cash flow perspective, assumes that the
entire portfolio is marked to market at the end of each investment period, so
that there is a cash flow at the start and end of each period. Cash inflows
and outflows are defined from the perspective of the investor. A long position
involves an initial cash outflow followed by a cash inflow at the end of the
period. The situation is reversed for short positions: an initial cash inflow
followed by a cash outflow at the end of the period. Given a portfolio of long
and short positions, the one period return is simply the natural logarithm
of the ratio of the total cash inflows, from both types of positions, to the
total cash outflows, also from both long and short positions. This measure is
approximately equal to the ratio of the difference between cash inflows and
outflows to cash outflows for the period. That is

rt = log

(
Inflowst
Outflowst

)
≈ Inflowst −Outflowst

Outflowst
. (5.12)
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While this definition of period return may seem reasonable for perfor-
mance measurement in the majority of spot/cash markets, it is not without
controversy where futures markets are concerned. Black (1976) observed that
it is, in principle, impossible to define fractional or percentage returns for a
position in futures contracts. This is because, the time t quoted price of a
futures contract is merely the price at which the underlying instrument may
be exchanged at an agreed upon future date; no actual transactions occur
immediately, so that there are no cash outlays at time t. There is only one
transaction, and it occurs at the end of the contract in the form of an out-
flow or inflow but not both. In practice, both the long and the short sides
of a futures contract are required by the trading venue to post collateral to
offset the risk of default. Ordinarily, there is a mandated minimum collateral
required by the brokerage firm used by the investor. This minimal collateral
is otherwise known as the initial margin.

A position in futures contracts is marked to market daily, so that favor-
able price moves results in credits and unfavorable price moves as debits to
the margin account. To prevent the margin account from being entirely de-
pleted in the event of a succession of unfavorable price moves, the exchange
may set a maintenance margin, which is a minimum balance that must be
maintained in the margin account at all times after the initial transaction.
Usually, the maintenance margin is the same amount as the initial margin,
but it may sometime lower. Margin requirements may differ according to
whether the investor is classified as a member of the exchange or a non-
member speculator. In 2016, the margin requirements for investors without
membership licenses to the Chicago Mercantile Exchange(CME) is 10% more
than the margin requirement for members of the CME.

Technically, the margin is not to be taken as an initial investment, but it
may be argued that it is the amount of cash required to make the transaction
possible; without it, the position can not be established. Arguing in this
manner, we may define the return of a long position in a futures contract
at time t to be the change in the price of the contract divided by the initial
margin. That is

rt =
Ft − Ft−1

M
, (5.13)

where M is the initial margin and Ft is the price at the end of time t of
the futures contract. For a short position, the numerator above is multiplied
by negative one. This basic definition is also plagued by the usual problems
encountered when computing the return generated by a portfolio of both
long and short positions. Reasoning as in (5.12), the return metric defined
in (5.13) based on the timing of cash flows may be modified to only take
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into account the direction of cash flows. Hence, given n different futures
contracts, we may define the performance metric

rt =

∑n
i (Inflowsi,t −Outflowi,t)∑

i Leverage Ratioi,t × Par Valuei,t ×Qi,t

. (5.14)

where the leverage ratio is simply the ratio of the initial margin of the i-th
contract to the par value of the underlying bond, and Qi,t is the exposure, in
terms of number of contracts, to the i-th contract at time t. In our setting n
is four and the contracts are distinguished by their tenors. Definition (5.12)
is a special case of the above; it holds when the position is fully founded,
that is, when the leverage ratio is one.

Table 3: Time-averaged CME margin requirements between 1 April 2010 and 12
December 2015.

Initial margin
Contracts Notional value Members Speculators

2 Yr 200000 448 493
5 Yr 100000 818 900
10 Yr 100000 1323 1456
30 Yr 100000 2647 2912

The initial margins are ordinarily not the same across contracts and,
therefore, must be handled carefully. For instance, in the last quarter of 2016,
the initial margin for the 30-Year Treasury Bond Futures contract was $4000,
whereas the initial margin of the 2-Year Treasury Note Futures contract was
only $550. Beside the differences in initial margins by contract types, there
are also variations over time. For most of 2010, the initial margin requirement
for the 5-Year Treasury Note Futures contract was $800 for investors with
membership licenses and $880 for non-members. Meanwhile, for all of 2014,
the initial margin for the same contract was $900. To simplify our analysis,
we compute a time-weighted average of the initial margin for the time period
between 1 April 2010 and 31 December 2015 for each contract type. The time
weighted average for members and non-members of the CME are recorded in
Table 3. As may be expected, margin requirements increase with the tenor
of the underlying, because the price of contracts with longer maturities are
more likely to experience large price swings.

As previously stated, the initial margin is merely the minimum collateral
required to initiate a transaction in one futures contract. An investor may
chose to apply however much collateral he or she desires. If each transaction
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is fully funded, i.e., if the exact amount of the exposure to each contract
is always set aside for each transaction, then the appropriate performance
measure would be a slight modification of the formula given in (5.12). That
is

rt =

∑n
i (Inflowsi,t −Outflowi,t)∑

iOutflowi,t

. (5.15)

We remark that the use of fully funded accounts in the treasury futures
market is not very common. Consider that the notional value of the 2-Year
treasury futures contract is $200,000 and $100,000 for the others. Hence,
putting together a portfolio consisting of even a small number of contracts
quickly becomes prohibitively capital intensive. Meanwhile, treasury futures,
even those written on long bonds, have relatively stable long-term prices. As
a result, investments in the treasury futures market are most often under-
taken using leverage or a margin account.

We conclude this section with a remark on the distinction between an
investment period and a trading period. Trading periods are fixed: they are
exactly 6000 daytime trading minutes, approximately 14 trading days. An
investment period is simply the time between when a position is opened and
the time when it is closed. Positions are opened when the price configurations
of the four securities indicate a departure from the stable relationship estab-
lished during the preceding formation period. The positions are closed when
the stable relationship is restored. This deviation and restoration towards a
stable relationship may occur several times during a single trading period,
thereby creating multiple opportunities and, hence, investment periods.

The return formulas in (5.14) and (5.15) relate to the return over a single
investment period. For trading periods with multiple periods, we compute
the return over the trading period as the sum of the individual returns gener-
ated from each investment period contained within the trading period. That
is

rt =

q∑
i=1

ri,t

where ri,t is the return, computed via formula (5.14) or (5.15), of the i-th
investment period of the t-th trading period, and q is the total number of
investment periods occurring in the t-th trading period.

5.2 Excess returns

We summarize the distribution of returns generated by backtesting the coin-
tegration strategy described in the previous section in Table 4. The backtest
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Table 4: Annualized (100 trading hours) returns on initial margin and fully funded
account.

Panel A: Fully-funded excess return over the equal-weighted portfolio

Ratio Difference

Average return 0.0604 0.05995
Standard error (Newey-West) 0.02625 0.02737
t-Statistic 2.3012 2.18984
Excess return distribution

Median 0.04749 0.03655
Standard deviation 0.30453 0.35263
Skewness 2.12072 1.66976
Kurtosis 14.58188 9.49711
Minimum -0.68255 -0.75226
5% Quantile -0.29139 -0.35234
95% Quantile 0.51928 0.61858
Maximum 1.85812 1.79468
% of negative excess returns 40.625 44.79167

Panel B: Return on margin account

Ratio Difference

Average return 15.12327 14.95951
Standard error (Newey-West) 3.87113 4.13448
t-Statistic 3.90668 3.61823
Excess return distribution

Median 0.6238 0
Standard deviation 46.01987 51.17213
Skewness 1.63053 1.29959
Kurtosis 10.99074 7.87337
Minimum -105.68033 -110.64147
5% Quantile -51.1802 -70.32086
95% Quantile 83.25456 96.94193
Maximum 259.66658 250.56902
% of negative excess returns 14.58333 16.66667
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is run over daytime trading hours between April 1, 2010 and December 31,
2015. The entire period is divided into 96 hundred-hour trading periods
lasting approximately three business weeks. The figures shown in the table
are the annualized hundred-hour returns. We show cash flow-based returns
computed on a fully funded account in the first panel of the table; the second
panel displays the distribution of cash flows-based returns computed using
the initial margin as the cost basis. Each panel reports two sets of backtest
results: one for prices adjusted backwards by the application of a propor-
tional factor (Ratio) and the other for prices shifted in levels backward by
the amount of the roll-induced price gap (Difference).

Now, the annualized excess return over the equally weighted portfolio
of all four contracts, assuming a fully-funded account, are 6.01% and 6.00%
respectively for the ratio and the difference price adjustment procedures. The
Newey-West adjusted t statistics are 2.3 and 2.2, respectively. Given this
result, the hypothesis that the cointegration strategy dominates the equal-
weighted portfolio, cannot be rejected. The idea is that one may short as
many of the equal-weighted portfolio as necessary and use the proceeds to
set up the cointegration strategy without incurring a loss.

Meanwhile, the annualized return using the initial margin as the cost basis
are, respectively, 1500% and 1490%. These returns are not as preposterous as
they first seem. Consider that the leverage factor implicit in the initial margin
for the 2-Year contract is 446 and that of the 5-Year contract is 122. The
inflated returns are, therefore, merely a consequence of the inflated leverage
factors. The t statistics in both cases are in excess of 2. Also, note that
the out-sized returns that may be achieved by trading on the initial margin
come at the expense of taking significant risks: consider that the standard
deviation of the returns on initial margin are 159.17 times the volatility of the
return on the fully funded account. Clearly, in practice, what an investor ends
up doing would be somewhere between trading a fully-funded account and
posting the minimum required collateral. At any rate, our analysis provides
a starting point for reasoning about how to incorporate leverage in a more
realistic real world strategy.

5.3 Statistical Arbitrage

Stephen Ross (1976) gave the first serious treatment of the concept of arbi-
trage. While his treatment might have been of a heuristic nature, it never-
theless conveyed the essence of an arbitrage, which is a trading strategy that
yields a positive payoff with little to no downside risk. The first rigorous
definition appeared in Huberman (1982), where it was defined in the context
of an economy with asset generated by a set of risk factors as a sequence of
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portfolios with payoffs φn such that E(φn) tends to +∞ while Var(φn) tends
to 0. The concept has undergone numerous changes in the literature, see for
example Kabanov (1996), but the essential meaning of the term as a low risk
risk investment still remains. We focus on a special type of arbitrage known
in the empirical asset pricing literature as a statistical arbitrage, which Hogan
et al. (2004) defines as a zero-cost, self-financing strategy whose cumulative
discounted value v(t) satisfies:

1. v(0) = 0,

2. limt→∞E(vt) > 0,

3. limt→∞ P (vt < 0) = 0, and

4. if v(t) can become negative with positive probability, then Var(vt <
0)/t→ 0 as t→∞.

Even though the above notion of arbitrage bears resemblance to the original
definition given by Huberman (1982), it is worth noting that there is a cru-
cial difference between the two concepts. In the first instance, the limit is
taken with respect to the cross-section of the economy, i.e. the sequence of
small economies is assumed to expand without bound, whereas the definition
given above requires the investment horizon to tend to infinity. It is easily
verified that the first three conditions, assuming the existence of the first
moment correspond to the definition of an arbitrage in the classical sense
of (Delbaen & Schachermayer, 1994). Chapter 2 of Dare (2017), obtains a
series of equivalent characterizations of market efficiency. In particular, Dare
(2017, Proposition 2.1) shows that a necessary condition for market efficiency
is the existence of a local martingale measure after expressing asset prices
in units of any strictly positive convex portfolio of the zeroth asset and any
other asset (possibly itself). To apply this result, we express prices in units
of the 2-Year treasury futures contract and attempt to exhibit a violation of
the no-arbitrage condition.

Following Hogan et al. (2004) we propose to test market efficiency under
the assumption that the change in the discounted cumulative gains of the
strategy satisfies:

vt − vt−1 = µ+ σtλzt, (5.16)

where t is an integer; σ, λ, and µ are real numbers; and zt is an i.i.d. se-
quence of standard normal random variables. The model allows for determin-
istic time variation in the second moment, but makes the seemingly strong
assumption that there is no serial correlation between returns. Our own
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simulations reveal that the effects of serial correlations are slight. In fact,
assuming z were generated by an AR(1), differences of more than 10% on
average standard errors only start to occur for values of the autoregressive
parameter in excess of 0.9 in absolute value. Since, the sample autocorre-
lation of the returns of the strategy is only -0.158, it is likely the case that
serial autocorrelation is a minor issue.

The inference strategy we have adopted is not without weaknesses. A
stylized empirical fact of financial markets is that asset returns generally have
fat-tail distributions. The normality assumption may therefore seem overly
restrictive. Moreover, the adopted parametric model may itself be a source of
misspecification errors. A more sophisticated analysis would perhaps employ
robust tools such as the bootstrap.

While the above criticisms may be valid, note that the test statistics
discussed in Hogan et al. (2004) and Dare (2017, Chapter 2) are very con-
servative because they rely on the Bonferroni criterion, which stipulates that
in compound tests involving a joint-hypothesis, the sum of the p-values of
the individual tests is an upper limit for the Type I error of the compound
test (Casella & Berger, 1990, p.11).

The test of efficiency then consists of estimating the parameters of (5.16)
and then testing for

1. µ > 0, and

2. λ < 0.

For, under the null hypothesis, the cumulative returns will increase with-
out bound as the variance of the cumulative gain tends to zero. Under the
assumption of normally distributed zt, the test can be carried out by max-
imum likelihood estimation. Table 5 summarizes the results of estimating
model (5.16). The p-value of the joint test using the Bonferonni correction,
which consists of adding up the p-values from each sub-hypothesis, of the
presence of a statistical arbitrage is approximately 0.02 in both the ratio and
difference-adjusted price series.

Table 5: Test for statistical arbitrage

Difference Ratio
Par. Estimate Std Error p-value Estimate Std Error p-value

µ 0.3351 0.0108 <0.01 0.3735 0.0106 <0.01
σ 1.151 0.5397 0.041 4.98 3.2077 0.1195
λ -0.6808 0.1288 <0.01 -1.0353 0.1779 <0.01
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The p-value for the estimates of σ are relatively large, estecially for the
ratio adjusted price series. This is to be extected since for large t, the volatil-
ity of incremental payoffs is mostly determined by the term tλ and not σ.
We conduct a separate test with σ restricted to 1. The output of that test is
recorded in Table 6. The estimates and p-value obtained from the restricted
model match the estimates from the unrestricted model. These results pro-
vide a strong indication that the strategy not only earns positive excess return
over the equal weighted portfolios, but also, a positive free-lunch.

Table 6: Test for statistical arbitrage (σ = 1)

Difference Ratio
Par. Estimate Std Error p-value Estimate Std Error p-value

µ 0.333 0.0082 <0.01 0.3474 0.0104 <0.01
λ -0.6452 0.0199 <0.01 -0.5885 0.0204 <0.01

6 Conclusion
Starting with the assumption that interest rates and, therefore, bond futures
prices admit a factor structure, we evaluate a trading strategy based on the
assumption of cointegrated bond futures prices. We argue that coitegration is
natural if in fact the dynamics of the yield curve is driven by orthogonal risk
factors which together form a jointly unit root process. Direct verification
of this hypothesis is difficult because the price series and its log transfomed
counterparts are likely not stationary. On the other, the stationary assump-
tion can be made and tested using the change in log prices. Using differenced
price data, we argued empirically that the vast majority of the volatility ex-
perienced by the changes in log prices may arise from three dominant risk
factors. Since the factors are othogonal and the differenced log prices may
be assumed to be stationary, there is very little doubt that the factors con-
tained in the differenced log prices are stationary. To test the claim for the
log prices in evels, we estimated the factors in levels by taking cumulative
sums of the factors estimated using differenced log prices. For these proxies
of the factors in levels, the assumption of unit roots could not be rejected at
reasonable significant levels.

With the choice of cointegrating strategy properly motivated, we pro-
ceeded to evaluate a simple trading strategy based on the cointegration hy-
pothesis. The crust of the strategy consists in opening a position as soon
the price configuration appears to deviate from an estimated stable cointe-
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gration relationship. The strategy is evaluated by computing the ratio of
cash-equivalent inflows to outflows. We also consider a return metric based
on the initial margin required to take either a short or a long position in
one futures contract. Our results reveal that the gains from this strategy
are both economically and statistically significant. This exercise allows to
argue along the lines innitiated by Jarrow & Larsson (2012) that the U.S.
treasury bond futures market, for the period for which we have data, was
not informationally efficient.
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