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Abstract 

We investigate the finite sample performance of causal machine learning estimators for 

heterogeneous causal effects at different aggregation levels. We employ an Empirical Monte 

Carlo Study that relies on arguably realistic data generation processes (DGPs) based on actual 

data. We consider 24 different DGPs, eleven different causal machine learning estimators, and 

three aggregation levels of the estimated effects. In the main DGPs, we allow for selection into 

treatment based on a rich set of observable covariates. We provide evidence that the 

estimators can be categorized into three groups. The first group performs consistently well 

across all DGPs and aggregation levels. These estimators have multiple steps to account for 

the selection into the treatment and the outcome process. The second group shows 

competitive performance only for particular DGPs. The third group is clearly outperformed 

by the other estimators. 

Keywords 

Causal machine learning, conditional average treatment effects, selection-on-observables, 

Random Forest, Causal Forest, Lasso 
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1 Introduction

Economists and many other professionals are interested in causal effects of policies or

interventions. This has triggered substantial advances in microeconometrics and statistics

in understanding the identification and estimation of different average causal effects in

the recent decades (see, e.g., Imbens & Wooldridge, 2009; Athey & Imbens, 2017, and

references therein). However, in most applications it is also interesting to look beyond

the average effects in order to understand how the causal effects vary with observable

characteristics. For example, finding those individuals who benefit most from active labor

market policies, promotion campaigns or medical treatments is important for the efficient

allocation of public and private resources.

In recent years, methods for the systematic estimation of heterogeneous causal effects

have been developed in different research disciplines. Those methods adapt standard

machine learning methods to flexibly estimate heterogeneity along a potentially large

number of covariates. The suggested estimators use regression trees (Su, Tsai, Wang,

Nickerson, & Li, 2009; Athey & Imbens, 2016), Random Forests (Wager & Athey, 2018;

Athey, Tibshirani, & Wager, 2018), the least absolute shrinkage and selection operator

(Lasso) (Qian & Murphy, 2011; Tian, Alizadeh, Gentles, & Tibshirani, 2014; Chen, Tian,

Cai, & Yu, 2017), support vector machines (Imai & Ratkovic, 2013), boosting (Powers et

al., 2018), neural nets (Johansson, Shalit, & Sontag, 2016; Shalit, Johansson, & Sontag,

2016; Schwab, Linhardt, & Karlen, 2018) or Bayesian machine learning (Hill, 2011; Taddy,

Gardner, Chen, & Draper, 2016).1 Recently, the first applied studies using these methods

appeared in economics (e.g., Bertrand, Crépon, Marguerie, & Premand, 2017; Davis &

Heller, 2017; Knaus, Lechner, & Strittmatter, 2017; Andini, Ciani, de Blasio, D’Ignazio, &

Salvestrini, 2018; Ascarza, 2018; Strittmatter, 2018).

In contrast to the rather mature literature about the estimation of average causal

effects, the literature on the estimation of effect heterogeneity is still lacking guidance

for practitioners about which methods are well suited for their intended applications.

Theoretical asymptotic approximations are currently either not available, incomplete, or
1Hastie, Tibshirani, and Friedman (2009) introduce the underlying machine learning algorithms. Athey
(2018) and Belloni, Chernozhukov, and Hansen (2014a) provide an overview how those methods might
be used in the estimation of average causal effects and other parameters of interest.
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they are based on non-overlapping assumptions preventing comparisons of estimators.

Furthermore, the available information about the finite sample performance is of limited

use to practitioners. Most comparisons are based on data generating processes (DGPs)

that are very unrealistic for real applications. One exception is Wendling et al. (2018)

who base their simulation study on data from medical records. However, they focus in

their study on the special case of binary outcomes and data structures that are unusual in

economics.

In this study, we categorize major approaches from different fields. We distinguish

between generic approaches that can be combined with a variety of different off-the-shelf

machine learning estimators and estimator specific approaches that modify an existing

method. The generic approaches are combined with the machine learning estimators

Random Forest and Lasso. This leads to eleven different causal machine learning estimators

under investigation. As opposed to standard simulation methods that rely on a synthetic

DGP, we investigate the finite sample performance of these estimators in an Empirical

Monte Carlo (EMCS) approach (e.g., Huber, Lechner, & Wunsch, 2013; Lechner & Wunsch,

2013). An EMCS informs the DGPs as much as possible by real data and reduces synthetic

components in the DGP to a minimum. We consider six different specifications of the

heterogeneous causal effects, two different sample sizes, and DGPs with and without

selection into treatment.2

Our contribution to the aforementioned literature is three-fold: First, we provide a

comprehensive comparison of different estimators and DGPs. Second, we consider the

finite sample properties of causal machine learning estimators for effect heterogeneity

under DGPs that are arguably realistic at least in some fields of economics. Third,

this is the first simulation study that considers also different aggregation levels of the

heterogeneous effects. In particular, we consider an intermediate aggregation level between

the most individualized causal effects and the average population effect. Such intermediate

aggregation levels are important as feasible action rules for practitioners.

Our findings suggest that no causal machine learning estimator is superior for all DGPs

and aggregation levels. However, four estimators show a relatively good performance in all
2We focus on point estimation and leave the investigation of inference methods for further research.
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settings: Random Forests combined with a doubly robust outcome modification (based on

Chernozhukov et al., 2018), Causal Forest with local centering (Athey et al., 2018), Lasso

combined with a covariate modification and efficiency augmentation (Tian et al., 2014),

and Lasso with R-learning (Nie & Wager, 2017). All those methods use multiple estimation

steps to account for the selection into treatment and the outcome process. Several other

estimators may be suitable in specific empirical settings but their performance is unstable

across different DGPs. Lasso estimators tend to be more unstable than Random Forests,

which frequently prevents them from achieving a normal distribution.

In the next section, we introduce the notation and the estimation targets. In Section 3,

we describe and categorize causal machine learning approaches to estimate heterogeneous

causal effects. In Section 4, we explain the implementation of the estimators. In Section 5,

we discuss the EMCS approach. In Section 6, we provide our simulation results. The final

Section concludes and hints at some topics for future research. Appendices A-D contain

supplementary statistics and results. Appendix A describes the data that are used for the

EMCS. Appendices B and C provide details about the DGPs and the implementation

of estimators, respectively. Finally, Appendix D shows and discusses the full simulation

results of all DGPs. We provide code that implements the estimators under investigation

in the R package CATEs on GitHub.

2 Notation and estimation targets

We describe the parameters of interest using Rubin’s (1974) potential outcome framework.

The dummy variable Di indicates a binary treatment, e.g. participation in a training

program. Let Y 1
i denote the outcome (e.g., employment) if individual i (i = 1, ..., N)

receives the treatment (Di = 1). Correspondingly, Y 0
i denotes the outcome if individual i

does not receive the treatment (Di = 0). Each individual can either receive the treatment

or not. This means that only one of the two potential outcomes (Y d
i ) is observable:

Yi = DiY
1
i + (1−Di)Y 0

i . (1)

Thus, the individual treatment effect (ITE) ξi = Y 1
i − Y 0

i of Di on Yi is never observed.
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However, the identification of expectations of ξi may be possible under plausible assump-

tions. For example, the identification of the average treatment effect (ATE), τ = E[ξi], or

the average treatment effect on the treated (ATET), θ = E[ξi | Di = 1], are standard in

microeconometrics (see, e.g., Imbens & Wooldridge, 2009).

The focus of this study is on conditional average treatment effects (CATEs). CATEs

take the expectations of ξi conditional on exogenous pre-treatment covariates.3 We call

the finest conditioning level that uses all available covariates Xi individualized average

treatment effect (IATE),

τ(x) = E[ξi | Xi = x] = µ1(x)− µ0(x), (2)

where µd(x) = E[Y d
i | Xi = x] denotes the conditional expectation of the unobserved

potential outcomes. IATEs provide an approximation of ITEs for the set of covariates

that are at the disposal of the researcher in a specific application. However, researchers

may additionally be interested in intermediate aggregation levels that are coarser than

IATEs but finer than ATEs. Especially groups based on a smaller set of pre-defined

characteristics, Gi, may be of interest if the estimated IATEs need to be summarized

for the research community, communicated to practitioners, or acted upon.4 We call the

effects defined on this aggregation level group average treatment effects (GATE),

τ(g) = E[ξi | Gi = g] =
∫
τ(x)fXi|Gi=g(x)dx. (3)

The identification of any aggregation level of individual treatment effects in observa-

tional studies is complicated by non-random treatment assignment. However, identification

of the IATE and any coarser aggregation level is still possible if the observable covariates Xi

contain all confounders.5 These are covariates that jointly affect the treatment probability

and the potential outcomes. Although there are alternative ways to identify the various

effects, here we focus on the case where all the confounders are contained in the data

available to the researcher. This means that we operate throughout the paper under the
3Covariates are also called features or predictors in parts of the machine learning literature.
4For example, if interest is in gender differences, Gi ∈ {female, male}.
5Xi represents the union of confounders and heterogeneity variables for notational convenience. In
principle, they may be completely, partly or non-overlapping (see, e.g., Knaus et al., 2017).
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following assumptions.

Assumption 1: (Conditional independence): Y 1
i , Y

0
i ⊥⊥ Di | Xi = x, for all x in the

support of Xi.

Assumption 2: (Common support): 0 < P [Di = 1 | Xi = x] = p(x) < 1, for all x in

the support of Xi.

Assumption 3: (Exogeneity of covariates): X1
i = X0

i .6

Assumption 4: (Stable Unit Treatment Value Assumption, SUTVA): Yi = Y 1
i Di +

Y 0
i (1−Di).

Assumption 1 states that the potential outcomes are independent of the treatment

conditional on the confounding covariates. According to Assumption 2, the conditional

treatment probability (often called propensity score) is bounded away from zero and one.

Assumption 3 requires that the covariates are not affected by the treatment. Assumption

4 excludes spillover effects between treated and non-treated. Under Assumptions 1-4,

E[Y d
i | Xi = x,Di = 1− d] = E[Yi | Xi = x,Di = d] = µ(d, x) (4)

⇒ τ(x) = µ(1, x)− µ(0, x), (5)

and thus IATEs, GATEs and ATE are identified from observable data. We denote the

conditional expectations of the outcomes in one treatment arm by µ(d, x) = E[Yi | Xi =

x,Di = d], the conditional expectation of the outcome as µ(x) = E[Yi | Xi = x], and the

conditional treatment probability by p(x) = P [Di = 1 | Xi = x].

3 Causal machine learning of effect heterogeneity

Equation 5 shows that the fundamental task is to estimate the difference of two conditional

expectations. However, we never observe the differences at the individual level and have

to estimate them in two different subpopulations. Thus, the estimation of IATEs is a

non-standard machine learning problem. In this section, we present different approaches

to target the estimation of IATEs. We distinguish between generic approaches and one

estimator specific approach. Generic approaches split the causal estimation problem
6The potential confounders Xd

i are defined equivalently to potential outcomes.
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into several standard prediction problems and may be combined with a large variety of

supervised machine learning estimators. On the other hand, Causal Forest Athey et al.

(2018) is a modification of a specific machine learning estimator to move the target from

the estimation of outcomes to the estimation of IATEs.

3.1 Generic approaches

A straightforward generic approach follows directly from Equation 5. Conditional mean

regressions takes the difference of conditional expectations that are estimated in the two

samples of treated and non-treated separately using off-the-shelf machine learning methods

to estimate the conditional outcome means µ̂(d, x):7

τ̂CMR(x) = µ̂(1, x)− µ̂(0, x). (6)

Conditional mean regressions are straightforward to implement. Any supervised

machine learning methods for conditional mean estimation may be used. However, their

usual target is to minimize the mean squared error (MSE) in two separate prediction

problems and they are not tailored to estimate IATEs.8 This suggests that they may

be outperformed by more specialized methods for this causal problem. Three generic

multi-step approaches that target IATE estimation are presented in the following and a

framework to summarize them is provided.

3.1.1 Modified outcome methods

Abadie (2005) introduces the idea of modifying the outcome to estimate conditional average

treatment effects on the treated in studies based on difference-in differences. For IATEs in

the experimental and observational setting, the idea is formulated by Signorovitch (2007)

and Zhang, Tsiatis, Laber, and Davidian (2012), respectively. The latter discuss two

modifications of the outcome, which we summarize as modified outcome methods (MOM).
7This approach is also referred to as T-Learner (Künzel, Sekhon, Bickel, & Yu, 2017; Nie & Wager, 2017)
or Q-Learning (Qian & Murphy, 2011).

8For an intuition why this is not optimal: Biases that for the same value of x go in the same direction are
less harmful than if they go in opposite directions. However, this cannot be accounted for by separate
MSEs that are not directly linked (for a new Causal Forest estimator that takes up this theme directly,
see Lechner (2018)).
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The first is based on inverse probability weighting (IPW) (e.g., Horvitz & Thompson, 1952;

Hirano, Imbens, & Ridder, 2003) where the modified outcome is

Y ∗i,IPW = Yi
Di − p(Xi)

p(Xi)(1− p(Xi))
. (7)

The second is based on the doubly robust (DR) estimator of Robins and Rotnitzky

(1995),

Y ∗i,DR = µ(1, Xi)− µ(0, Xi) + Di(Yi − µ(1, Xi))
p(Xi)

− (1−Di)(Yi − µ(0, Xi))
(1− p(Xi))

. (8)

The crucial insight here is that τ(x) = E[Y ∗i,IPW | Xi = x] = E[Y ∗i,DR | Xi = x]. This

means that a regression with one of these modified outcomes and covariates Xi can be

used to obtain estimates of IATEs, τ̂IPW (x) or τ̂DR(x). In practice, the researcher has

no access to the true parameters p(x) and µ(d, x), the so-called nuisance parameters.

The conditional expectations need to be approximated in a first step and plugged into

Equations 7 and 8. Any suitable prediction method can be used to estimate the nuisance

parameters as well as the IATEs.

The asymptotic properties of E[Y ∗i,DR] as estimator for ATEs are well understood

(Belloni, Chernozhukov, & Hansen, 2014b; Farrell, 2015; Belloni, Chernozhukov, Fernández-

Val, & Hansen, 2017; Chernozhukov et al., 2017, 2018). Furthermore, Abrevaya, Hsu,

and Lieli (2015) and Lee, Okui, and Whang (2017) analyze the properties of estimating

τ(z) = E[Y ∗i,IPW | Zi = z] and τ(z) = E[Y ∗i,DR | Zi = z] for a low-dimensional subset of

covariates (Zi), respectively. However, both do not consider machine learning to estimate

the nuisance parameters. We are currently not aware of theoretical results for the case

where nuisance parameters and IATEs are estimated with machine learning.

Simulation evidence of Powers et al. (2018) suggests that estimators based on Y ∗i,IPW

may exhibit high variance due to potentially extreme values of the propensity score

in the denominator. Estimators based on Y ∗i,DR might be more stable, because of the

double-robustness property, but this is unexplored until now.
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3.1.2 Modified Covariate Method

Tian et al. (2014) introduce the modified covariate method (MCM) for experiments and

Chen et al. (2017) extend it to observational studies. They show that we can estimate

IATEs by solving the objective function

min
τ

[
1
N

N∑
i=1

Ti
Di − p(Xi)

p(Xi)(1− p(Xi))

(
Yi −

Ti
2 τ(Xi)

)2]
, (9)

where Ti = 2Di − 1 ∈ {−1, 1}. The name MCM results from the practice to replace

the non-parametric function of the IATE with a linear working model, τ(x) = xβ. This

enables us to rewrite the minimization problem 9 as

β̂MCM = arg min
β

[
1
N

N∑
i=1

Ti
Di − p(Xi)

p(Xi)(1− p(Xi))
(
Yi −XMCM

i β
)2
]
, (10)

where XMCM
i = Ti/2Xi are the modified covariates. The estimated IATEs are then

obtained by τ̂MCM (x) = xβ̂MCM . The nuisance parameter p(x) needs to be estimated in a

first step using any suitable method.

In principle, rewriting 9 as

min
τ

[
1
N

N∑
i=1

Ti
Di − p(Xi)

4p(Xi)(1− p(Xi))
(2TiYi − τ(Xi))2

]
, (11)

allows to apply any machine learning estimator that is able to solve weighted mini-

mization problems. However, we are not aware of any study that notices and pursues this

possibility.

MCM does not require to specify any model of the so-called main effects µ(x) or µ(d, x).

However, Tian et al. (2014) describe that an estimate of µ(x) might be useful to increase

efficiency. The efficiency augmented version replaces the outcome Yi in Equations 9 to

11 by the residuals Yi − µ(Xi). Thus, MCM with efficiency augmentation (EA) requires

additionally to estimate the nuisance parameter µ(x) in the first step. Tian et al. (2014)

show that MCM with a linear working model provides the best linear predictor of the

potentially non-linear τ(x). However, we are not aware of any further theoretical analyses

of the statistical properties of this approach.
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3.1.3 R-learning

Nie and Wager (2017) propose R-learning that is based on the partially linear model of

Robinson (1988). It is equivalent to MCM with EA for 50:50 randomization but solves

otherwise a different minimization problem to estimate IATEs:9

min
τ

{
1
N

N∑
i=1

[(Yi − µ(Xi))− (Di − p(Xi))τ(Xi)]2
}

(12)

Like for MCM, current implementations consider a linear working model for the IATE

(Nie & Wager, 2017; Zhao, Small, & Ertefaie, 2017) and solve

β̂RL = arg min
β

{
1
N

N∑
i=1

[
(Yi − µ(Xi))−XRL

i β
]2}

, (13)

where XRL
i = (Di − p(Xi))Xi can be considered as an alternative way to modify

covariates. The estimated IATEs are then obtained by τ̂RL(x) = xβ̂RL. Similar to MCM,

12 can be rewritten as

min
τ

 1
N

N∑
i=1

(Di − p(Xi))2
[
Yi − µ(Xi)
Di − p(Xi)

− τ(Xi)
]2
 (14)

and solved with any suitable method after estimating the nuisance parameters in a

first step (see also Schuler, Baiocchi, Tibshirani, & Shah, 2018).

Nie and Wager (2017) show that R-learning can perform as good as an oracle estimator

that knows the real nuisance parameters in the special case of solving 12 with penalized

kernel regression. This result requires that the estimators of the nuisance parameters need

to be fourth root consistent in the semiparametric case.

3.1.4 Summary of generic approaches to estimate IATEs

One goal of this paper is to structure approaches that estimate IATEs coming from different

literatures. One way to put the approaches above on more common ground is by noting

that they can all be considered as solving a weighted minimization problem with modified
9Murphy (2003) and Robins (2004) develop a similar method for optimal dynamic treatment regimes
called A-Learning. It is adapted for the binary treatment case by Chen et al. (2017). We focus on
R-Learning because it explicitly applies machine learning methods in all estimation steps.
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Table 1: Summary of generic approaches to estimate IATEs

Approach wi Y ∗i

MOM IPW 1 Y ∗i,IPW

MOM DR 1 Y ∗i,DR

MCM Ti
Di − p(Xi)

4p(Xi)(1− p(Xi))
2TiYi

MCM with EA Ti
Di − p(Xi)

4p(Xi)(1− p(Xi))
2Ti(Yi − µ(Xi))

R-Learning (Di − p(Xi))2 Yi − µ(Xi)
Di − p(Xi)

outcomes:

min
τ

{
1
N

N∑
i=1

wi [Y ∗i − τ(Xi)]2
}
. (15)

Table 1 summarizes the weights, wi, and outcome modifications, Y ∗i , underlying the

different approaches. This common representation is helpful to see and understand the

differences of the methods. The two MOM methods require no additional weighting

because τ(x) = E[Y ∗i,IPW | Xi = x] = E[Y ∗i,DR | Xi = x]. For MCM, τ(x) = E[2TiYi |

Xi = x] = E[2Ti(Yi − µ(Xi)) | Xi = x] in the special case of 50:50 randomization of

the treatment (p(x) = 0.5). Any deviating assignment mechanism requires reweighting

with IPW weights to control for the deviation from 50:50 randomization. The modified

outcome of R-learning is equivalent to MCM with efficiency augmentation if p(x) = 0.5.

However, while the MCM modified outcome does not change with other propensity

scores and preserves the interpretation as mean comparison under 50:50 randomization,

E[(Yi − µ(Xi))/(Di − p(Xi)) | Xi = x] is lacking such an intuitive interpretation.

3.2 Causal Forest

Another strand of literature modifies machine learning algorithms based on regression

trees (Breiman, Friedman, Stone, & Olshen, 1984) to estimate IATEs. We focus on Causal

Forest that is a special case of the Generalized Random Forest of Athey et al. (2018) as

12



the most recent estimator in this line of research.10 Causal Forests build on the idea of

Random Forests (Breiman, 2001) and boil down to taking the difference of two weighted

means in our case of binary treatments,

τ̂CF (x) =
N∑
i=1

Diw
1
i (x)Yi −

N∑
i=1

(1−Di)w0
i (x)Yi, (16)

where the weights wdi (x) define an adaptive local neighbourhood around the covariate

value of interest, x. These weights are obtained from the tailored splitting procedure that

we describe in Section 4.1. Athey et al. (2018) show that this estimator can be consistent

and asymptotically normal for a fixed covariate space.

4 Implementation of estimators

Section 3.1 describes generic approaches to split the estimation of IATEs into several

prediction problems. The machine learning literature offers a large variety of potential

methods such that the investigation of every possible combination of approaches and

machine learning methods is not feasible given our restrictions on computational costs.

Thus, this study is restricted to two machine learning methods for the implementation of

the prediction problems. They are chosen to be representative for more general approaches.

First, we consider Random Forests (Breiman, 2001) that serve as a popular representative

for methods that attempt local approximations of conditional mean functions. Second,

we consider Lasso (Tibshirani, 1996) as a method that attempts global approximation of

conditional mean functions.11 Both methods are increasingly popular in econometrics and

are used in methodological contributions as well as in applications.

We consider the combinations of the generic approaches in Section 3.1 with Random

Forest and Lasso.12 Following Chernozhukov et al. (2018), we apply cross-fitting to all
10Previous works concerned with estimating IATEs by modifying tree-based methods are Su et al. (2009),
Athey and Imbens (2016) and Wager and Athey (2018).

11By ’local’ we mean that each point of the conditional mean function is approximated by the (weighted)
average of neighbouring observations. By ’global’ we mean the attempt to approximate the conditional
mean by a flexible functional fitted to all data simultaneously.

12We consider only ’pure’ combinations where all estimation steps are conducted with one of the two
machine learning methods and neglect the possibilities to estimate, e.g., the nuisance parameters
via Random Forests and the IATEs via Lasso. In principle, this is possible but not pursued due to
computational constraints. For the same reason, we do not pursue ensemble methods that combine

13



Table 2: List of considered causal machine learning estimators

Random Forest Lasso Cross-fitting

Infeasible benchmark x x
Conditional mean regression x x
MOM IPW x x x
MOM DR x x x
MCM x x
MCM with EA x x
R-learning x x
Causal Forest x
Causal Forest with local centering x x

approaches that require the estimation of nuisance parameters. This means that the

nuisance parameters and the IATEs are estimated in different samples to avoid overfitting.

Table 2 summarizes all estimators under investigation. We are currently not aware of a

Random Forest implementation that supports weighted minimization. Thus, we implement

MCM and R-learning only with Lasso. We add further an infeasible benchmark estimator

that has access to the true ITEs and uses them as outcome in a standard prediction

problem.

Like all machine learning methods, Random Forests and Lasso involve a variety of

choices in the implementation. The following sections briefly explain Random Forests and

Lasso, present the details of the implementation and explain the use of cross-fitting. The

resulting estimators target the estimation of IATEs. Additionally, we consider the methods

to estimate GATEs and ATE as a computationally cheap by-product of our analysis. To this

end, we average the estimated IATEs, τ̂(x), to GATEs by τ̂(g) = N−1
g

∑N
i=1 1[Gi = g]τ̂(Xi),

with Ng = 1[Gi = g], and to the ATE by τ̂ = N−1∑N
i=1 τ̂(Xi).13

different estimators for the nuisance parameters or for IATE estimation (see, e.g., Rolling, Velez, &
Yang, 2018; Schuler et al., 2018).

13Specialized estimators for GATE and ATE might outperform these aggregate estimators but this is
beyond the scope of this paper (see, e.g., Lee et al., 2017; Chernozhukov et al., 2018).
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4.1 Random Forest

The building block of Random Forests for conditional mean estimation are regression trees

(Breiman et al., 1984). Regression trees recursively partition the sample along covariates

to minimize MSE of the outcome. This leads to the tree structure and the means in the

final leaves are used as predictions (for an introduction, see Hastie et al., 2009). However,

regression trees are unstable and exhibit a high variance. The Random Forest of Breiman

(2001) addresses this issue by combining a large number of decorrelated regression trees.

The decorrelation is achieved by growing each tree on a random subsample (generated

either by bootstrapping or subsampling) and by randomly choosing the covariates for each

split decision.

The standard regression and probability forests split the trees to minimize the MSE of

the observed outcomes. Those trees can then be used to form predictions for a realization

of Xi. These predictions are formed as a weighted average of the observed outcomes where

the weights are larger, the more often the observed outcome shares a final leave with the

realization of Xi. These kind of forests are required for the conditional mean regression

and the modified outcome approaches.

The Causal Forest of Athey et al. (2018) follows a similar structure. However, instead

of splitting the sample according to observed outcomes, Causal Forests split the samples

along the gradient of the mean difference with the pseudo outcomes

ρi = (Di − D̄P )(Yi − ȲP − (Di − D̄P )β̂P )/V arP (Di), (17)

where D̄P and ȲP are averages of treatment indicator and outcome, β̂P is the mean

difference and V arP (Di) is the variance of the treatment in the parent node. This splitting

rule is tailored to maximize heterogeneity and produces splits that are used to calculate

the weights for the weighted mean comparison in Equation 16.

We also consider the Causal Forest with local centering. This means that Di and Yi

in Equation 17 are replaced by Di − p(Xi) and Yi − µ(Xi), respectively. The nuisance

parameters are again estimated in a first step and this partialling out should remove the

confounding at a high level before building the Causal Forest. Athey et al. (2018) show
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that local centering can improve the performance of Causal Forests substantially in the

presence of confounding.

We implement the regression forests for the conditional mean regression and the

modified outcomes as well as the Causal Forests using the R package grf (Athey et al.,

2018). We provide the forests with 105 baseline covariates for the prediction and set the

number of variables that are considered at each split to 70. The minimum leaf size is set

to one and one forests consists of 1,000 trees. We build honest trees such that the building

of the tree and the estimation of the parameters are conducted in separate samples (Athey

& Imbens, 2016). To this end, we split the sample randomly for each tree in three parts:

25% are used to build the tree, 25% to calculate the predictions, and 50% are left out.

4.2 Lasso

The Lasso is a shrinkage estimator and can be considered as an OLS estimator with a

penalty on the sum of the absolute coefficients. The standard least squares Lasso solves

the following minimization problem

min
β

[
N∑
i=1

wi (Yi −Xiβ)2
]

+ λ
p∑
j=1
|βj| , (18)

where wi are weights, p is the number of covariates and λ is a tuning parameter to be

optimally chosen.14 We obtain the standard OLS coefficients if the penalty term is equal to

zero and we have at least as many observations as covariates. For a positive penalty term,

at least some coefficients are shrunken towards zero to satisfy the constraint. The Lasso

serves as a variable selector because some coefficients are set to zero if the penalty term is

sufficiently increased. By incrementing the penalty term to a sufficiently large number,

eventually all coefficients besides the constant are zero. The idea of this procedure is to

shrink those variables with little or no predictive power to zero and to use the remaining

shrunken coefficients for prediction. The degree of shrinkage should be chosen to balance

the bias-variance trade-off and is the crucial tuning parameter of the Lasso.

We apply the R package glmnet to produce the predictions in the different approaches
14For the estimation of the propensity score, we use the equivalent logistic regression.
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(Friedman, Hastie, & Tibshirani, 2010). We provide the estimator a set of 1,749 potential

covariates including second order interactions and up-to fourth order polynomials.15 The

tuning parameter is selected via 10-fold cross-validation.

4.3 Cross-fitting

Some approaches require the estimation of the nuisance parameters in a first step. We

follow Chernozhukov et al. (2018) and apply cross-fitting to remove bias due to overfitting

that is induced if nuisance and main parameters are estimated using the same observations.

We implement a 50:50 version of their DML1 procedure. This means that we split the

sample in two parts of the same size. In the first half, we estimate models for the nuisance

parameters. We take these models to predict the nuisance parameters in the second half.

These predicted nuisance parameters are then used in the estimation of the IATEs, τ̂1(x).

We reverse the role of the two halves to obtain τ̂2(x). The estimates of the IATE are then

calculated as τ̂(x) = 1/2(τ̂1(x) + τ̂2(x)).

4.4 Alternative estimation approaches

Table 2 above lists all estimators that we consider in this study. This list comprises not all

alternatives, because we are not able to consider all estimators that have been proposed or

would be possible combinations of the generic approaches and existing machine learning

methods. We do not consider methods that are tailored for experimental studies (e.g.,

Imai & Ratkovic, 2013; Grimmer, Messing, & Westwood, 2017; McFowland, Somanchi,

& Neill, 2018). Furthermore, restrictions in computation power force us to commit to

approaches where we can leverage synergies in the implementation as illustrated in Figure

C.1 of Appendix C. Thus, we are not able to consider the X-learner of Künzel et al.

(2017), the three conditional outcome difference methods proposed by Powers et al. (2018),

Orthogonal Random Forests (Oprescu, Syrgkanis, & Wu, 2018), Penalized Causal Forests

(Lechner, 2018), methods based on neural nets (e.g., Johansson et al., 2016; Shalit et al.,

2016; Schwab et al., 2018), Bayesian approaches like those based on Bayesian additive
15We exclude binary variables that represent less than 1% of the observations. Furthermore, we keep only
one variable of variable combinations that show correlations of larger magnitude than ±0.99 to speed
up computation.

17



regression trees (BART) (Hill, 2011; Hahn, Murray, & Carvalho, 2017) or Bayesian forests

(Taddy et al., 2016), and potentially other approaches that we are currently not aware of.

Further, the generic approaches discussed in Section 3.1 could be implemented using

different machine learning algorithms like Boosting, Elastic Nets, Neural Nets, Ridge or

any other supervised machine learning algorithm that minimizes the required loss functions

(see for an overview Hastie et al., 2009).

5 Simulation set-up

5.1 Previous Empirical Monte Carlo Study

The simulation study of Wendling et al. (2018) is close in spirit to our approach, in the

sense that their and our DGP relies as much as possible on real data. They compare

eight conditional outcome difference estimators for binary outcomes, i.e., they focus on

probability models. Their four DGPs are based on the covariates and the observational

treatment assignment of four medical datasets. Thus, the IATEs and the resulting binary

potential outcomes are the only components that need to be specified. The outcomes

are simulated based on predictions of µ(0, x) and µ(1, x) from logistic neural networks

(for more details, see Wendling et al., 2018).16 This is a realistic approach in the medical

context. However, it removes two important features from the true outcome generating

process. First, the projection of the outcome on observable covariates removes the impact of

unobservable variables. Second, the true error structure is lost by imposing a logistic error

term. Our EMCS aims to preserve these features of the data at least for the non-treatment

outcome. Wendling et al. (2018) find that conditional mean regressions (implemented

with BART, see Hill, 2011) and causal boosting (Powers et al., 2018) perform consistently

well, while causal MARS (Powers et al., 2018) and Causal Forests (Athey et al., 2018)

are found to be competitive for complex IATE but perform poorly if the variance of the

IATE is relatively low. We implement conditional mean regressions and Causal Forests,

but omit causal boosting and MARS because of computational restrictions.
16Nie and Wager (2017) use a similar EMCS for binary outcomes to assess the performance of different
implementations of R-learning. However, they do not estimate the IATE but specify it to depend on
two covariates.
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5.2 Empirical Monte Carlo Study

Similar to Wendling et al. (2018) for the medical context, our study aims to approximate

a real application in economic policy evaluation as close as possible. The idea of an EMCS

is introduced by Huber et al. (2013) and Lechner and Wunsch (2013). It aims to take

as many components of the DGP as possible from real data. We build this EMCS on

96,298 observations of Swiss administrative social security data that is already used in

previous evaluation studies (Behncke, Frölich, & Lechner, 2010a, 2010b; Huber, Lechner,

& Mellace, 2017). In particular, the EMCS mimics an evaluation of job search programs

as in Knaus et al. (2017). The interest is in the heterogeneous effects of such a program

on employment over the 33 months after the program start.17

Before we describe and motivate our EMCS approach, we list the general steps to

evaluate estimators for IATEs, GATEs and ATEs in Table 3. We leave out a validation

sample (10,000 randomly drawn observations) to compare the estimated IATEs against

the true ITEs, while previous EMCS compare in-sample estimates to true values of a

known IATE. This modification is intended to focus on the out-of-sample predictive power

of the estimated causal effects. The advantage of this procedure is that we can specify the

ITEs as ground truth without knowing the IATE as we describe below.

After removing the 10,000 observations of our validation sample, the remaining 78,844

observations form our ’population’ from which we draw random subsamples of size 1,000

and 4,000 for estimation. We replicate this 2,000 times for the smaller and 500 times for

the larger samples. The precision of the estimators and the computational costs increase

with the sample size. Thus, we reduce the number of replications when we increase the

sample size to restrict the latter. In case of
√
N -convergence, this will keep the simulation

error approximately constant. Table 5 below shows the variants of the DGP for different

Ns, R, p(x) and ξi. Before, we explain the specification of the two latter functions.

5.2.1 Propensity score

The ’population’ propensity score is estimated in the full sample with 7,454 treated and

88,844 controls. After this estimation step, all treated are removed from the sample. The
17Appendix A provides more details about the outcomes and the rest of the dataset.
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Table 3: Empirical Monte Carlo Study

1. Take the full sample and estimate the propensity score, pfull(x), using the method
and specification of choice.

2. Remove all treated and keep only the Nnt non-treated observations. This means
that Y 0

i is observed for all members of the remaining subpopulation.
3. Specify the true ITEs, ξi.
4. Calculate the potential outcome under treatment as Ŷ 1

i = Y 0
i + ξi for all

observations.
5. Set aside a random validation sample of Nv observations. Remove this validation

sample from the main sample.
6. Calculate any other parameters of interest in the validation sample as benchmark.

Like GATEs as τ(g) =
(∑Nv

i=v 1[Gv = g]
)−1∑Nv

v=1 1[Gv = g]ξv or ATEs as τ =
N−1
v

∑Nv
v=1 ξv.

7. Draw a random sample of size Ns from the remaining Nnt −Nv observations.
8. Simulate pseudo treatment indicators Di ∼ Bernoulli(psim(x)), where psim(x) is a

potentially modified version of pfull(x) to control the ratio of treated and controls
or other features of the selection process.

9. Use the observation rule in 1 to create the observable outcome Yi.
10. Use the Ns observations to estimate τ(x) with all estimators of interest.
11. Predict τ̂(x) for all observations in the validation sample and use them to calculate

τ̂(g) as well as τ̂ for each estimator.
12. Repeat steps 7 to 11 R times.
13. Calculate performance measures.

specification of the propensity score is taken from Huber et al. (2017) and estimated using

a standard logistic regression. We manipulate the constant to create a 50:50 split into

treated and non-treated in the simulated samples.18 Appendix B.1 provides the details

of the specification of the original propensity score and the distribution of the modified

propensity score.

5.2.2 Specification of ITE

We are not able to observe the ITEs or any of its aggregates in a real world dataset.

Therefore, we either need to estimate or to specify them. We choose the latter because

estimation might favor similar estimators under investigation. Thus, our goal is to create
18We remove the 342 observations with a modified propensity score below 5% and above 95%. We deviate
at this point from the real dataset and make the problem better behaved than in reality in terms of
common support (see discussion in, e.g., Lechner & Strittmatter, 2017). We leave the investigation of
performance in the presence of unbalanced ratios and insufficient common support for future studies
and focus here on a relatively nice setting to start with.
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a challenging synthetic ITE that uses components from real data. In observational studies,

the estimators must be able to disentangle selection bias and effect heterogeneity. We make

it hard for the estimators by using the ’population’ propensity score pHLM(x) directly to

calculate the ITEs. To this end, the propensity score is normalized and put into a sine

function

ω(x) = sin

(
1.25π pHLM(x)

max(pHLM(x))

)
+ εi, (19)

where εi is random noise. This highly non-linear function of the propensity score is

standardized to have mean zero and variance one before it is scaled by the parameter α:

Ω(x) = α
ω(x)− ω̄
SD(ω(x)) , (20)

where ω̄ is the mean of ω(x) and SD(ω(x)) is its standard deviation. Finally, we

force the ITEs to respect two features of our outcome variable. This means that they are

rounded to the next integer and that they must respect that Ŷ 1
i falls between zero and

33.19 Thus, the final ITEs take the form

ξ(x, y0) =


bΩ(x)e if 0 ≤ y0 + bΩ(x)e ≤ 33

−y0 if y0 + bΩ(x)e < 0

33− y0 if y0 + bΩ(x)e > 33,

(21)

where b·e indicates that we round to the nearest integer.

ξ(x, y0) is highly non-linear and complicated due to the logistic function, the sine

function and the rounding. Additionally, enforcement of the censoring makes it dependent

on Y 0
i that is taken directly from the data and thus depends on the covariates in an

unknown fashion. Thus, we know the true ITEs but we do not know the functional form

of the true IATE.

The true ITEs depend on the observables Xi and additionally on some unobservables
19The histogram of the (observed) Y 0

i is provided in Figure A.1. Given the censored and integer nature of
the outcome, we considered also using Poisson Lasso to estimate the outcome regressions. However,
the computation time compared to least squared Lasso is substantially longer, while the predictive
performance is very similar for our outcomes. Thus, we chose the least squares version for the simulations.
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through Y 0
i .20 This means that the estimators approximate ξ(x, y0) using observables and

produce estimates τ̂(x) of τ(x). The goal of the EMCS is to figure out which estimators

approximate the ITE comparatively well in this arguably realistic setting. The relative

performance of the estimators translate then directly into the ability to approximate the

unknown IATEs because estimators that minimize the MSE of the ITE also minimize the

MSE of the IATE (see, e.g., Künzel et al., 2017). Note that the aggregation of IATEs

to GATEs and ATE in step 6 of Table 3 can be considered as true values because the

influence of Y 0
i is averaged out for them asymptotically. This implies that the MSE of

GATEs and ATEs would be approximately zero if τ̂(x) = τ(x), while the MSE of ITEs

might still be positive in this case.

We consider three different values of α in Equation 31 to vary the size of the ITEs: α = 0

(ITE0), α = 2 (ITE1) and α = 8 (ITE2). Additionally, we create one specification without

random noise and one with error term in Equation 30, εi = 0 and εi ∼ 1− Poisson(1),

respectively. Table 4 reports basic descriptive statistics of the resulting potential outcomes,

ITEs, and GATEs. ITE0 without random noise creates a benchmark scenario that is most

likely to be informative about which estimators are prone to confuse effect heterogeneity

with selectivity. ITE1 leads to a scenario with moderate variance of the resulting ITEs.

Their standard deviation amounts to about 14% of the non-treatment outcome. ITE2

produces bigger ITEs with a standard deviation of about 6, which is roughly 50% of the

standard deviation of the non-treatment outcome. Thus, they should be less difficult to

detect.

The ITEs without and with random noise are created to be similar in their first two

moments. However, they differ substantially in their variation that can be explained by

observables. The influence of Y 0
i on the ITEs is substantial because between 27% and 44%

of the observations are censored for the non-zero ITEs. This explains why ITE1 and ITE2

without random noise are not deterministic either and therefore not perfectly predictable

by Xi. Still, the out-of-sample R2 of Random Forest and Lasso predictive regressions

shown in Table B.2 document that we can explain between about 50% and 70% of the
20These unobservables do not invalidate the CIA in our simulated samples, as Y 0

i and thus the unobservables
are not part of the population propensity score. The alternative to ensure a valid CIA in an EMCS is to
keep the true treatment allocation structure and to specify the potential outcomes as function of the
observables. This is the approach of Wendling et al. (2018) that is discussed in 5.1.
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Table 4: Descriptive statistics of simulated outcomes and ITEs

Mean Std. Dev. Skewness Kurtosis Percent censored
Without random noise (εi = 0):
Y 0 in all DGPs 16.1 12.8 -0.1 1.4 -
Y 1 in ITE0 16.1 12.8 -0.1 1.4 -
Y 1 in ITE1 16.3 12.6 -0.1 1.4 -
Y 1 in ITE2 16.3 12.6 0.1 1.5 -
ITE0 0.0 0.0 - - 0.0
ITE1 0.1 1.8 -0.3 2.3 39.2
ITE2 0.2 6.4 -0.4 2.5 43.7
GATE0 0.0 0.0 - - -
GATE1 -0.4 1.8 -0.1 2.0 -
GATE2 -1.8 6.2 -0.3 2.1 -
With random noise (εi ∼ 1− Poisson(1)):
Y 1 in ITE0 16.2 12.7 -0.1 1.4 -
Y 1 in ITE1 16.3 12.6 -0.1 1.4 -
Y 1 in ITE2 16.5 12.3 0.0 1.5 -
ITE0 0.1 0.9 -1.2 5.1 26.6
ITE1 0.1 1.8 -1.0 4.9 36.7
ITE2 0.3 6.3 -1.0 4.8 41.1
GATE0 0.0 1.1 -1.2 3.5 -
GATE1 0.0 1.7 -0.7 3.2 -
GATE2 0.0 5.8 -0.6 3.7 -

Notes: Potential outcomes and ITEs are considered for all observations.
GATEs are considered for the validation sample.

ITEs with our covariates. With random noise, this explainable part decreases to close to

zero for ITE0 and 6.3% for ITE1. We consider the latter to be a more realistic scenario

because the individual component is expected to be relatively large.21 Thus, we select

ITE1 and ITE2 with random noise as our baseline DGPs additionally to the benchmark

scenario ITE0 without random noise.

The first column of Table 4 shows that we specify the mean of the ITEs, the ATE,

close to zero.22 Appendix B.3 describes how we aggregate the ITEs into 64 groups with

sizes between 32 and 420 observations to specify the true GATEs.

In summary, we consider six different scenarios defined by different choices for the scale
21For example, Djebbari and Smith (2008) provide evidence that the ITEs in their applications show only
little systematic variation.

22Appendix B.2 shows in detail how the ITEs and potential outcomes are distributed, how the ITEs are
related to the propensity score and Y 0

i , as well as an interpretation of the simulated selection behavior
of caseworkers. Note that the lower standard deviations of Y 1

i compared to Y 0
i result from the censoring

that moves mass away from the bounds (see Figures B.4 and B.5).
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Table 5: List of DGPs

Ns α in 31 Propensity score R εi in 30
With selection and without random noise:
ITE0* 1,000 α = 0 pHLM(x) 2,000 εi = 0
ITE1 1,000 α = 2 pHLM(x) 2,000 εi = 0
ITE2 1,000 α = 8 pHLM(x) 2,000 εi = 0
ITE0* 4,000 α = 0 pHLM(x) 500 εi = 0
ITE1 4,000 α = 2 pHLM(x) 500 εi = 0
ITE2 4,000 α = 8 pHLM(x) 500 εi = 0
With selection and random noise:
ITE0 1,000 α = 0 pHLM(x) 2,000 εi ∼ 1− Poisson(1)
ITE1* 1,000 α = 2 pHLM(x) 2,000 εi ∼ 1− Poisson(1)
ITE2* 1,000 α = 8 pHLM(x) 2,000 εi ∼ 1− Poisson(1)
ITE0 4,000 α = 0 pHLM(x) 500 εi ∼ 1− Poisson(1)
ITE1* 4,000 α = 2 pHLM(x) 500 εi ∼ 1− Poisson(1)
ITE2* 4,000 α = 8 pHLM(x) 500 εi ∼ 1− Poisson(1)
With random assignment and without random noise:
ITE0 1,000 α = 0 0.5 2,000 εi = 0
ITE1 1,000 α = 2 0.5 2,000 εi = 0
ITE2 1,000 α = 8 0.5 2,000 εi = 0
ITE0 4,000 α = 0 0.5 500 εi = 0
ITE1 4,000 α = 2 0.5 500 εi = 0
ITE2 4,000 α = 8 0.5 500 εi = 0
With random assignment and random noise:
ITE0 1,000 α = 0 0.5 2,000 εi ∼ 1− Poisson(1)
ITE1 1,000 α = 2 0.5 2,000 εi ∼ 1− Poisson(1)
ITE2 1,000 α = 8 0.5 2,000 εi ∼ 1− Poisson(1)
ITE0 4,000 α = 0 0.5 500 εi ∼ 1− Poisson(1)
ITE1 4,000 α = 2 0.5 500 εi ∼ 1− Poisson(1)
ITE2 4,000 α = 8 0.5 500 εi ∼ 1− Poisson(1)

Notes: Asteriks mark the baseline DGPs.

of the ITEs and the random noise variables. Additionally to the DGP with selection into

the treatment, we consider also the case of an experiment with 50:50 random assignment.

These twelve different DGPs are considered for the sample sizes of 1,000 and 4,000

observations leading to a total number of 24 different settings. Table 5 summarizes all

parameter settings in which the eleven estimators are compared.

5.2.3 Performance measures

We consider three major performance measures: mean squared error (MSE), absolute

bias (|Bias|) and standard deviation (SD) for the prediction of each observation v in the

24



validation sample:23

MSEv = 1
R

R∑
r=1

[
ξ(xv, y0

v)− τ̂(xv)r
]2

(22)

|Biasv| = |
1
R

R∑
r=1

τ̂(xv)r︸ ︷︷ ︸
¯̂τ(xv)r

−ξ(xv, y0
v)| (23)

SDv =

√√√√ 1
R

R∑
r=1

[
τ̂(xv)r − ¯̂τ(xv)r

]2
(24)

Most simulation studies are interested in only few parameters such that the performance

measure for each parameter can be reported and interpreted. However, in our case we

have 10,000 parameters such that we need to summarize the performance over the whole

validation sample by taking the averages MSE, |Bias| and SD.24 Additionally, we apply

the Jarque-Bera test (JB) to the distribution of predictions for each observation v in the

validation sample and report the fraction of observations for which normality is rejected

at the 5% confidence level.25

6 Results

6.1 IATE estimation

Table 6 shows the main performance measures for the three baseline DGPs.26 At first,

we compare estimators within similar approaches to identify the competitive versions.

Afterwards, we compare the competitive versions over all approaches to identify those

estimators that show an overall good performance and provide a general comparison of

Random Forest and Lasso based methods.
23The formulas are written for the ITE. The same measures are used for GATE and ATE.
24For example, MSE = N−1

v

∑Nv

v=1 MSEv.
25Appendix D discusses and provides also alternative performance measures.
26The full tables with more performance measures are provided in Tables D.1 for ITE0, D.5 for ITE1, and
D.6 for ITE2.
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Table 6: Simulation results of ITE estimation for baseline DGPs

1000 observations 4000 observations

MSE |Bias| SD JB MSE |Bias| SD JB

ITE0 with selection and without random noise

Random Forest:
Infeasible No variation in dependent variable
Conditional mean regression 3.69 0.62 1.78 6% 2.79 1.33 1.49 4%
MOM IPW 10.52 2.05 2.16 18% 5.76 1.89 1.74 12%
MOM DR 2.00 0.40 1.35 7% 1.16 0.85 1.03 8%
Causal Forest 3.52 0.75 1.69 12% 2.31 1.21 1.29 6%
Causal Forest with local centering 3.42 0.34 1.81 10% 2.05 1.13 1.40 9%
Lasso:
Infeasible No variation in dependent variable
Conditional mean regression 11.21 0.69 3.19 91% 6.14 1.92 2.30 35%
MOM IPW 11.31 1.09 2.99 100% 5.02 1.56 1.93 100%
MOM DR 45.39 0.60 6.31 100% 0.51 0.51 0.62 35%
MCM 13.03 1.50 3.05 100% 5.79 1.65 1.94 100%
MCM with efficiency augmentation 2.08 0.42 1.36 100% 0.48 0.49 0.62 97%
R-learning 2.03 0.45 1.33 100% 0.47 0.49 0.61 97%

ITE1 with selection and random noise

Random Forest:
Infeasible 2.98 1.29 0.15 71% 2.93 1.30 0.11 26%
Conditional mean regression 7.04 1.45 1.78 8% 6.05 1.44 1.49 4%
MOM IPW 12.92 2.26 2.20 16% 8.42 1.76 1.77 11%
MOM DR 5.08 1.36 1.33 8% 4.17 1.32 1.01 9%
Causal Forest 6.86 1.49 1.68 12% 5.61 1.48 1.29 6%
Causal Forest with local centering 6.50 1.35 1.79 12% 5.10 1.32 1.39 10%
Lasso:
Infeasible 3.00 1.28 0.21 100% 2.93 1.28 0.16 83%
Conditional mean regression 14.26 1.46 3.16 90% 9.20 1.43 2.30 36%
MOM IPW 15.69 1.56 3.12 100% 8.03 1.46 2.01 100%
MOM DR 48.76 1.40 6.32 100% 3.66 1.34 0.64 96%
MCM 15.31 1.72 3.10 100% 8.14 1.51 1.96 100%
MCM with efficiency augmentation 5.27 1.37 1.36 100% 3.62 1.33 0.63 98%
R-learning 5.16 1.38 1.29 100% 3.65 1.34 0.63 98%

ITE2 with selection and random noise

Random Forest:
Infeasible 38.46 4.43 0.52 66% 37.86 4.43 0.41 31%
Conditional mean regression 43.74 4.58 1.74 8% 42.26 4.54 1.46 5%
MOM IPW 46.83 4.83 2.23 16% 42.69 4.54 1.80 11%
MOM DR 41.45 4.50 1.32 10% 40.03 4.45 1.03 11%
Causal Forest 43.87 4.61 1.66 12% 42.34 4.58 1.29 7%
Causal Forest with local centering 42.84 4.50 1.78 12% 41.05 4.46 1.40 9%
Lasso:
Infeasible 38.66 4.42 0.71 100% 37.84 4.40 0.53 84%
Conditional mean regression 50.11 4.52 3.15 92% 44.31 4.46 2.33 34%
MOM IPW 49.82 4.50 3.20 100% 43.21 4.43 2.17 97%
MOM DR 537.16 4.55 5.04 100% 40.11 4.48 0.76 97%
MCM 49.25 4.47 3.18 100% 42.63 4.41 2.07 100%
MCM with efficiency augmentation 41.99 4.51 1.41 100% 40.04 4.47 0.75 99%
R-learning 42.13 4.54 1.35 100% 40.25 4.49 0.74 98%

Notes: MSE shows the mean MSE of all 10,000 observations in the validation sample, |Bias| denotes
the mean absolute bias, SD the mean standard deviation, and JB the fraction of observations for which
the Jarque-Bera test is rejected at the 5% level. Bold numbers indicate the best performing estimators
in terms of MSE and estimators within two standard (simulation) errors of the lowest MSE.
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6.1.1 Conditional mean regressions

The Random Forest version of conditional mean regressions clearly outperforms the Lasso

version in terms of mean MSE. The differences are particularly striking in the smaller

sample estimation of ITE0 where the mean MSE of the Lasso version is more than three

times larger compared to the Random Forest version. The substantially worse performance

of the Lasso version is consistently observed over all baseline DGPs and sample sizes. This

is is mostly driven by a substantially lower mean SD of Random Forest based conditional

mean regressions that is thus the dominant choice within the two considered versions of

conditional mean regressions.

6.1.2 Modified outcome methods

The ranking of the MOM estimators depends on the sample size. Table 6 shows that

Random Forests are superior to the Lasso versions in the smaller samples. Especially

the DR modification with Random Forest performs well due to relatively low mean SD.

In contrast, the Lasso equivalent is by far the worst estimator in the smaller samples.

It has up to twice as large mean SD compared to the next worst estimator and shows

consequently a very high mean MSE. One potential reason is that only the DR estimators

require the estimation of µ(d, x) as a nuisance parameter. These predictions are then based

on only 250 observations when using cross-fitting, while µ(x) and p(x) are based on 500

observations. The instability of the Lasso as outcome predictor in small samples seems to

spillover to the IATE estimation.27 The results for the larger sample size indicate that the

poor performance is a small sample issue. The DR modification with Lasso outperforms

the other versions of MOM in ITE0 and ITE1 and is also close to its Random Forest

equivalent for ITE2. The good performance is mainly driven by relatively low mean SDs.

As expected from the results of Powers et al. (2018), the IPW modification has relatively

high mean SD and is therefore not competitive. This is despite the fact that our DGP

does not lead to extreme propensity scores and creates thus a relatively favorable setting
27Chernozhukov et al. (2018) observe a similar problem of global approximations for the estimation of
average effects. See also Waernbaum and Pazzagli (2017) for conditions under which a poor approximation
of the outcome leads to worse performance of DR estimators compared to IPW. Similarly, Kang and
Schafer (2007) demonstrate that double robust methods can perform poorly if both nuisance parameters
are misspecified.
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for IPW. Therefore, the DR modification seems to be in general the dominant choice as

long as the Lasso version is not used in small samples.

6.1.3 MCM and R-learning

The results of the three estimators with modified covariates are similar to the results for

the MOM. The MCM is clearly outperformed by its efficiency augmented version and

R-learning that both use the outcome regression additionally to the propensity score as a

nuisance parameter. For MCM, the efficiency augmentation more than halves the mean

SD in all baseline DGPs. Thus, the additional computational effort is fruitful when using

MCM. For all DGPs, efficiency augmented MCM and R-learning perform very similar

along all dimensions. This finding is in line with the synthetic simulation in Appendix D

of Chen et al. (2017) who find also very similar results for those two.

6.1.4 Causal Forests

The Causal Forest is specialized to maximize heterogeneity in experimental settings but it

is not build to explicitly account for selection. Thus, it is prone to choose splits that do

not sufficiently remove selection bias. However, Causal Forests with local centering address

this problem by partialling out the selection effects in a first step. They are specialized

to maximize effect heterogeneity and to account for selection bias. Consequently, they

uniformly perform better than Causal Forests. This is driven by a relatively low mean

absolute bias, but higher mean SD partly offsets this advantage. However, the differences

between the two Causal Forest versions are moderate but the version with local centering

is the dominant choice if the goal is to minimize mean MSE. However, the improvement

comes at the cost of estimating additionally two nuisance parameters before estimating

the Causal Forest.28

28Together with the conditional mean regression based on Random Forests, the Causal Forest is thus
attractive if computation time is a concern. Appendix D.4 shows that both require very similar
computation time and are the fastest Random Forest based estimators under consideration.
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6.1.5 Overall comparison

The results in Table 6 show that no estimator is uniformly superior for all sample sizes

and DGPs. However, we can categorize the estimators into those that show a relatively

good performance in all settings, the volatile ones with outstanding performance only in

particular settings, and those that are never competitive.

The first category comprises Random Forest MOM DR, MCM with efficiency augmen-

tation, R-learning and Causal Forest with local centering. These four estimators are in

a similar range over all DGPs and sample sizes and belong consistently to the five best

estimators. Thus, they seem to be reasonable choices to estimate IATEs. Causal Forest

with local centering is the only one of those four that shows never the best performance in

terms of mean MSE. This is driven by a larger mean SD that works against the very com-

petitive mean absolute bias. The feature that unifies all four best performing estimators

is that they use propensity score and outcome regressions as nuisance parameters in the

estimation process.

The MOM DR with Lasso belongs to the second category because it is very competitive

for larger samples but the worst choice in smaller samples. Thus, it remains a risky choice

for applications because the critical sample size for good performance may depend on the

particular dataset.

Finally, conditional mean regressions, MOM IPW with Lasso and Causal Forest should

not be considered in settings like ours if minimizing MSE has a high priority. However, if

computational constraints are binding, conditional mean regressions with Random Forests

and Causal Forests can be attractive options.

6.1.6 Random Forest vs. Lasso

A direct comparison of Random Forest and Lasso is possible for conditional mean regressions

and MOM. For the smaller sample size, Random Forest clearly outperforms the Lasso

based versions. This is driven by the substantially lower mean SD of Random Forest based

estimators. The reason is that the global approximations of Lasso are rather instable for

small samples. This instability is reduced for larger samples and the Lasso based MOM

performs better than the Random Forest equivalents for ITE0 and ITE1.
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This dependence on the sample size is not observed for the Lasso specific estimators

MCM with efficiency augmentation and R-learning. Both show competitive performance

regardless of the sample size. This is particularly surprising given the highly non-linear

ITEs. However, all Lasso based methods are far from being normally distributed. For

at least 30% of the validation observations, the JB test rejects normality. For many

estimators it is even rejected for all observations in the validation sample, while we would

expect only a fraction of 5% to be rejected under normality. Columns 9 in the Tables of

Appendix D show that this is due to excess kurtosis, which indicates that the Lasso based

methods are prone to produce outliers. It is mitigated for the sample size of 4,000 but still

the JB test is rejected for a large majority. This reflects the theoretical results of Leeb

and Pötscher (2005, 2008) that shrinkage estimators like Lasso exhibit non-normal finite

sample distributions.

In contrast, all Random Forest based estimators appear to be approximately normally

distributed. This is also reflected by a mean skewness close to zero and a kurtosis close to

three. Decently performing Random Forest based estimators might be therefore preferable

to slightly better performing Lasso based estimators. The former produce less outliers

and seem therefore more reliable and robust in empirical applications as well as more

amendable to statistical inference.

6.2 GATE and ATE estimation

Table 7 shows the main performance measures of GATE estimation for the three baseline

DGPs.29 We observe similar patterns as for the IATE estimation and the categorization

of estimators in Section 6.1.5 remains by and large the same. The four estimators that

show a consistently good performance for IATEs are also good choices for the estimation

of GATEs.

For GATE estimation, we observe a new candidate with outstanding performance in a

particular setting. MCM performs remarkably well for ITE2 showing the second lowest

mean MSE. The mean absolute bias of MCM is already competitive for the estimation of
29The full tables with more performance measures are provided in Tables D.15 for ITE0, D.19 for ITE1,
and D.20 for ITE2. The results for all DGPs are provided in Appendix D.2.
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Table 7: Simulation results of GATE estimation for baseline DGPs

1000 observations 4000 observations

MSE |Bias| SD JB MSE |Bias| SD JB

GATEs from ITE0 with selection and without random noise

Random Forest:
Conditional mean regression 1.77 0.55 1.19 22% 1.07 0.49 0.86 8%
MOM IPW 4.44 1.59 1.16 47% 1.12 0.67 0.66 6%
MOM DR 0.87 0.38 0.85 20% 0.30 0.25 0.48 14%
Causal Forest 1.44 0.70 0.96 17% 0.74 0.64 0.53 0%
Causal Forest with local centering 1.08 0.33 0.99 8% 0.35 0.22 0.54 3%
Lasso:
Conditional mean regression 3.35 0.55 1.70 34% 1.45 0.47 1.06 6%
MOM IPW 3.15 0.78 1.50 100% 1.19 0.53 0.87 86%
MOM DR 38.85 0.59 6.20 100% 0.30 0.31 0.45 38%
MCM 4.56 1.20 1.62 100% 1.65 0.75 0.92 94%
MCM with efficiency augmentation 1.04 0.41 0.93 66% 0.27 0.26 0.45 55%
R-learning 1.04 0.44 0.92 73% 0.27 0.28 0.44 25%

GATEs from ITE1 with selection and random noise

Random Forest:
Conditional mean regression 2.30 0.85 1.18 20% 1.53 0.76 0.86 6%
MOM IPW 3.84 1.41 1.17 41% 0.99 0.54 0.67 11%
MOM DR 1.16 0.59 0.83 20% 0.49 0.42 0.48 17%
Causal Forest 2.04 1.01 0.95 19% 1.26 0.93 0.53 2%
Causal Forest with local centering 1.38 0.56 0.97 17% 0.58 0.44 0.54 5%
Lasso:
Conditional mean regression 3.68 0.78 1.69 41% 1.66 0.60 1.06 14%
MOM IPW 3.03 0.65 1.53 100% 1.17 0.47 0.89 77%
MOM DR 39.33 0.79 6.20 100% 0.59 0.50 0.46 42%
MCM 3.98 0.93 1.65 97% 1.31 0.52 0.93 91%
MCM with efficiency augmentation 1.40 0.62 0.93 80% 0.55 0.47 0.45 39%
R-learning 1.45 0.68 0.91 75% 0.61 0.51 0.45 48%

GATEs from ITE2 with selection and random noise

Random Forest:
Conditional mean regression 5.28 1.57 1.15 20% 3.97 1.44 0.85 22%
MOM IPW 3.75 1.25 1.18 41% 1.72 0.95 0.68 14%
MOM DR 3.50 1.29 0.84 23% 2.19 1.08 0.49 23%
Causal Forest 5.33 1.71 0.94 25% 4.17 1.60 0.53 8%
Causal Forest with local centering 3.74 1.28 0.98 11% 2.43 1.12 0.55 9%
Lasso:
Conditional mean regression 5.73 1.34 1.71 42% 2.59 0.95 1.09 11%
MOM IPW 4.00 1.01 1.59 100% 1.92 0.82 0.96 45%
MOM DR 30.36 1.43 4.71 100% 2.71 1.23 0.52 69%
MCM 3.65 0.66 1.67 100% 1.58 0.61 0.97 81%
MCM with efficiency augmentation 3.94 1.35 0.95 72% 2.63 1.22 0.51 67%
R-learning 4.27 1.43 0.93 72% 2.95 1.29 0.50 50%

Notes: MSE shows the mean MSE of all 10,000 observations in the validation sample, |Bias| denotes
the mean absolute bias, SD the mean standard deviation, and JB the fraction of observations for
which the Jarque-Bera test is rejected at the 5% level. Bold numbers indicate the best performing
estimators in terms of MSE and estimators within two standard (simulation) errors of the lowest
MSE.
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IATEs of ITE2 in Table 6. However, the mean SD is more than twice as large compared to

the best estimators, which prevents a competitive performance in terms of mean MSE. The

averaging of these noisy but relatively unbiased estimators seems to produce a competitive

estimator for the higher aggregation level. Still, MCM performs poorly for the other DGPs.

The averaging improves also the performance of locally centered Causal Forests relative

to its uncentered version. The results for the estimation of IATEs show that the advantage

in terms of mean absolute bias is partly offset by a higher variability. The aggregation

step reduces this difference such that the lower bias translates also into a substantially

lower mean MSE.

The aggregation leads further to a substantial reduction in the excess kurtosis of all

Lasso estimators (see Tables of Appendix D.2). However, the JB test is still rejected for

most observations. Note that we observe for all estimators a substantial amount of bias

although the influence of Y 0
i and the irreducible noise is averaged out to a large extent.

This indicates that the estimators are not able to completely remove the selection bias,

which is particularly problematic if we would be interested in statistical inference. The

results for ITE0 without noise and with random assignment in Appendix D.2 provide

evidence in this direction.

The results for the estimation of ATEs in Appendix D.3 are mostly in line with those for

GATEs. Again, MCM is highly competitive and provides the best performing estimators

for ITE2. Also the benefits of averaging the locally centered Causal Forest are observed.

The bias is halved compared to their uncentered version while both show similar SDs.

The skewness and kurtosis show that the ATE estimators are mostly normally dis-

tributed with mean skewness close to zero and mean kurtosis close to three. The obvious

exception is MOM DR with Lasso for which also averaging the IATEs does not mitigate

the bad performance due to extreme outliers.

Finally, we note that the comparison of the mean MSE for the two sample sizes indicates

that GATEs and ATEs estimators show a substantially faster convergence rate compared

to the respective IATE estimators. This indicates that the additional averaging of noisily

estimated IATEs results in faster convergence and the ATEs may be estimable with close

to parametric rates. However, we do not overemphasize this finding as it is only based on
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two sample sizes.

6.3 Alternative DGPs

The discussions in the previous section focus on the results of the three baseline DGPs.

This section summarizes the major insights from the alternative DGPs. Their results are

provided in Appendices D.1.1 to D.3.4 where we also discuss details and peculiarities of the

specific DGPs and aggregation levels. In general, the four estimators that are identified as

the best performing for the baseline DGPs belong also to the best performing ones in the

alternative DGPs.

For the estimation of IATEs, we observe new candidates that are only successful

in particular DGPs with selection into treatment. For example, Random Forest MOM

IPW performs very good for ITE2 without noise. However, these and other peculiarities

discussed in the Appendix hold only for either mean MSE or median MSE, while the four

best performing candidates are usually competitive in both measures. Additionally, we

assess whether our findings stay robust if we ignore the natural bounds of our outcome

variable when creating the DGP. The results in Appendix D.1.5 show that this is the case

in a DGP that allows treated outcomes outside the natural bounds of the original outcome

when defining the ITEs.

We also consider all previously discussed DGPs with random treatment assignment.

This means that the estimation problem becomes easier because selection bias is no longer

a concern. By and large the results are in line with the respective results for the DGPs with

selection into treatment, especially the conclusions about the best performing estimators

are not changed. As expected, the mean MSEs for the DGP with random assignment

are lower for most of the estimators and thus closer to the infeasible benchmark. This is

always driven by a lower mean absolute bias while the mean SDs are very similar to the

equivalent DGPs with selection. This suggests that the methods are not able to completely

remove the selection bias.

Two other differences to the baseline DGPs are noteworthy. First, MOM DR with

Lasso shows competitive performance already in small samples. This indicates that the

bad performance is related to large errors made in the outcome and the selection equation
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in small samples, which is in line with the simulation evidence of Kang and Schafer (2007)

for DR ATE estimators. Second, Causal Forest and its locally centered version show a

nearly identical performance. This illustrates that local centering is only beneficial when

there is selection into treatment.

The results for GATE and ATE estimators confirm the observation in the baseline

DGPs that IATE estimators with low bias but high variance can provide competitive

estimators if they are averaged to higher aggregation levels. In particular, averaging MCM

IATEs shows in many alternative DGPs a relatively good performance. However, MCM

performs worst in some other DGPs in a non-systematic way. Thus, the results show that

noise can be averaged out for these higher aggregation levels but there is no guarantee for

this. The estimators that are already successful for the IATEs remain the most reliable

choices for GATEs and ATEs.

In general, we find that the differences between the estimators become smaller, the

more the IATEs are aggregated. Especially, the SDs become more similar by averaging

IATEs such that the differences between the estimators are mainly driven by bias.

7 Conclusion

This is the first comprehensive simulation study in economics that investigates the finite

sample performance of a large number of different causal machine learning estimators.

We rely on arguably realistic DGPs that have potentially more external validity than the

mostly synthetic DGPs considered so far in the limited simulation literature for these

estimators. We consider DGPs with and without selection into treatment. Our main

goal is to estimate individualized average treatment effects. Additionally, we report the

performance of estimators that aggregate individualized average treatment effects to an

intermediate and the population level.

We do not find any single causal machine learning estimator that consistently out-

performs all other estimators. However, we do find a group of four estimators that show

competitive performance for all DGPs. This group includes the Causal Forest with local

centering, Random Forest based MOM DR, MCM with efficiency augmentation, and
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R-learning. These estimators explicitly use both, the outcome and the treatment equations

in a multiple step procedure. The estimators that use the Lasso have heavy tails in the

smaller samples.

The best performing estimators for the individualized average treatment effects produce

also the most reliable estimators for higher aggregation levels. However, in some settings

also noisily estimated individualized average treatment effects with low bias produce

competitive estimators for higher aggregates because the noise is averaged out.

Despite relying as much as possible on arguably realistic DGPs, the external validity of

every simulation study is uncertain. Future research will show if our findings hold in other

empirical settings. Furthermore, it may be possible to improve the performance of each

method with more tailored implementations. Finally, we focus in this study on the finite

sample performance of point estimates and leave the investigation of inference procedures

to future research.
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Appendices

A Data

A.1 Dataset

The data we use includes all individuals who are registered as unemployed at Swiss regional

employment agencies in the year 2003. The data contains rich information from different

unemployment insurance databases (AVAM/ASAL) and social security records (AHV).

This is the standard data used for many Swiss ALMP evaluations (e.g., Gerfin & Lechner,

2002; Lalive, van Ours, & Zweimüller, 2008; Lechner & Smith, 2007). We observe (among

others) residence status, qualification, education, language skills, employment history,

profession, job position, industry of last job, and desired occupation and industry. The

administrative data is linked with regional labour market characteristics, such as the

population size of municipalities and the cantonal unemployment rate. The availability of

extensive caseworker information and their subjective assessment of the employability of

their clients distinguishes our data. Swiss caseworkers employed in the period 2003-2004

were surveyed based on a written questionnaire in December 2004 (see Behncke et al.,

2010a, 2010b). The questionnaire contained questions about aims and strategies of the

caseworker and the regional employment agency.

In total, 238,902 persons registered as being unemployed in 2003. We only consider

the first unemployment registration per individual in 2003. Each registered unemployed

person is assigned to a caseworker. In most cases, the same caseworker is responsible

for the entire unemployment spell of her/his client. If this is not the case, we focus on

the first caseworker to avoid concerns about (rare) endogenous caseworker changes (see

Behncke et al., 2010a). We only consider unemployed aged between 24 and 55 years who

receive unemployment insurance benefits. We omitted unemployed persons who apply

for disability insurance benefits, when the responsible caseworker is not clearly defined,

or when their caseworkers did not answer the questionnaire (the response rate is 84%).

We drop unemployed foreigners with a residence permit that is valid for less than a year.
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Finally, we drop unemployed persons from five regional employment agencies that are not

comparable to the other regional employment agencies. This sample is identical to the data

used in Huber et al. (2017) and contains 100,120 unemployed persons. We drop further

3,822 observations that participated in alternative treatments. This leaves us with 96,298

to estimate the propensity score. After dropping 342 observations with propensity score

below 5% and above 95% and dropping the treated, we are left with 88,844 observations

for the simulation. 10,000 are used as validation sample and 78,844 to draw the simulation

samples.

A.2 Descriptive statistics

This Appendix provides descriptive statistics of the dataset that is used to build the EMCS.

Table A.1 shows the mean and the standard deviation of the outcome, the estimated

propensity score, and the variables that are used to estimate the propensity score. Other

variables and transformations that are part of the 1,749 covariates for the heterogeneity

analysis are omitted. The last column reports standardized differences to illustrate covariate

imbalances between treated and controls. Standardized differences normalize the absolute

mean difference between two groups by the square root of their mean variance:

Std. Diff. = | X̄1 − X̄0 |√
1/2(V ar(X1) + V ar(X0))

· 100 (25)

We observe that the estimated propensity score is highly imbalanced with a standardized

difference of 77, while already a value of 20 is considered as indication for large imbalances

(Rosenbaum & Rubin, 1985). This shows that we operate in a setting of high selectivity.

The imbalances are mainly driven by differences in the language regions, the previous

labor market history and employability of the unemployed.

Figure A.1 shows the distribution of the observed non-treated outcomes that are used

in the EMCS. We observe mass points at the bounds of the outcome variable. Nearly 30%

of the unemployed find no job at all in the 33 months after the start of the job search

program and roughly 10% find a job right away and stay employed for the whole period.

Finally, the absolute correlations of the 105 available covariates are visualized as a
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so-called heatmap in Figure A.2. The dark spots indicate that some of the covariates are

highly correlated.

Table A.1: Descriptive statistics

Treated Controls

Mean SD Mean SD Std. Diff.

Cumulated months of employment: 33 months 16.8 12.8 16.1 12.8 4.8

Propensity score in population 0.11 0.06 0.07 0.05 77.0

Covariates: Characteristics of unemployed persons

Female 0.46 0.50 0.44 0.50 3.4
*French 0.03 0.16 0.11 0.31 32.1
*Italian 0.01 0.10 0.04 0.18 16.1
Mother tongue other than German, French, Italian 0.26 0.44 0.32 0.47 13.6
*French 0.02 0.14 0.07 0.26 26.1
*Italian 0.01 0.08 0.02 0.15 13.4
Unskilled 0.21 0.40 0.23 0.42 5.5
*French 0.02 0.15 0.05 0.22 13.7
*Italian 0.01 0.10 0.03 0.16 12.4
Qualification: semiskilled 0.13 0.34 0.16 0.37 7.8
*French 0.01 0.11 0.04 0.21 18.9
*Italian 0.002 0.05 0.01 0.08 6.7
Qualification: skilled without degree 0.03 0.17 0.05 0.21 8.3
*French 0.002 0.05 0.02 0.13 15.8
*Italian 0.002 0.04 0.01 0.08 6.3
# of unemp. spells in last 2 years 0.49 1.09 0.58 1.21 7.6
*French 0.05 0.40 0.17 0.72 20.0
*Italian 0.02 0.26 0.06 0.42 10.6
Fraction of months emp. in last 2 years 0.84 0.22 0.79 0.25 18.2
*French 0.05 0.20 0.18 0.35 47.7
*Italian 0.02 0.12 0.06 0.21 23.2
Employability rating low 0.11 0.32 0.14 0.34 6.9
*French 0.01 0.08 0.02 0.14 12.4
*Italian 0.004 0.06 0.01 0.10 6.8
Employability rating medium 0.76 0.43 0.74 0.44 3.7
*French 0.05 0.22 0.19 0.39 43.6
*Italian 0.01 0.12 0.04 0.20 17.6
Education: above vocational training 0.45 0.50 0.44 0.50 3.0
*French 0.03 0.17 0.10 0.30 28.6
*Italian 0.01 0.08 0.02 0.15 13.6
Education: tertiary track 0.23 0.42 0.24 0.43 0.6
*French 0.02 0.13 0.09 0.29 31.9
*Italian 0.003 0.06 0.02 0.12 13.0
Vocational training degree 0.28 0.45 0.23 0.42 11.7
*French 0.002 0.05 0.01 0.11 12.1
*Italian 0.01 0.11 0.04 0.19 17.2
Age in 10 year 3.70 0.87 3.66 0.87 5.2
Age squared / 10,000 0.14 0.07 0.14 0.07 5.0
Married 0.45 0.50 0.49 0.50 8.2
Foreigner with B permit 0.10 0.29 0.14 0.35 13.3
Foreigner with C permit 0.21 0.41 0.25 0.43 9.2
Lives in big city 0.14 0.35 0.17 0.37 7.6
Lives in medium sized city 0.17 0.37 0.13 0.34 9.9
Past income (in CHF 10,000) 0.46 0.20 0.42 0.21 20.5

Continued on next page
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Table A.1 – continued from previous page
Treated Controls

Mean SD Mean SD Std. Diff.

Number of employment spells in last 5 years 0.10 0.13 0.12 0.15 15.1
Previous job in primary sector 0.06 0.24 0.09 0.29 12.3
Previous job in secondary sector 0.15 0.35 0.13 0.34 3.6
Previous job in tertiary sector 0.64 0.48 0.58 0.49 11.5
Foreigner with mother tongue in canton’s language 0.12 0.32 0.11 0.32 1.6
Previous job self-employed 0.003 0.06 0.01 0.08 4.5
Previous job manager 0.08 0.28 0.07 0.26 4.1
Previous job skilled worker 0.65 0.48 0.61 0.49 8.4
Previous job unskilled worker 0.24 0.43 0.29 0.45 10.7

Covariates: Allocation of unemployed to caseworkers

By industry 0.68 0.47 0.54 0.50 30.2
*French 0.03 0.18 0.10 0.29 24.9
*Italian 0.01 0.10 0.03 0.18 16.5
By occupation 0.59 0.49 0.56 0.50 5.2
*French 0.05 0.21 0.17 0.37 39.7
*Italian 0.01 0.11 0.04 0.21 20.3
By age 0.03 0.18 0.03 0.18 0.6
By employability 0.06 0.23 0.07 0.25 4.1
By region 0.09 0.28 0.12 0.32 10.5
Other 0.07 0.25 0.07 0.26 2.9

Covariates: Caseworker characteristics

Age in years 44.68 11.54 44.35 11.60 2.8
*French 2.89 11.60 11.04 20.20 49.5
*Italian 0.95 6.44 3.24 11.61 24.3
Female 0.47 0.50 0.41 0.49 11.5
*French 0.02 0.13 0.09 0.28 32.2
*Italian 0.01 0.10 0.02 0.15 9.8
Tenure (in years) 5.63 3.14 5.83 3.31 6.2
*French 0.37 1.59 1.54 3.03 48.2
*Italian 0.18 1.26 0.57 2.23 21.9
Own unemp. experience 0.63 0.48 0.63 0.48 0.1
*French 0.04 0.20 0.16 0.37 40.7
*Italian 0.02 0.13 0.05 0.21 17.1
Indicator for missing caseworker characteristics 0.04 0.20 0.04 0.20 0.7

Covariates: Local labour market characteristics

French speaking REA 0.06 0.24 0.24 0.43 52.2
Italian speaking REA 0.02 0.15 0.08 0.26 24.9
Cantonal unemployment rate (in %) 3.55 0.75 3.74 0.86 24.5
*French 0.23 0.93 1.02 1.84 53.9
*Italian 0.10 0.64 0.32 1.13 24.4
Cantonal GDP per capita (in CHF 10,000) 0.51 0.09 0.49 0.09 12.0

Number of observations 7,545 88,844

Notes: SD means standard deviation. Std. Diff. stands for standardized differences and are calcualted
according to Equation 25.
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Figure A.1: Histogram of observed Y 0
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Notes: Histogram of the non-treated outcomes counting the months of employ-
ment in the 33 months after the start of the job search program.

Figure A.2: Heatmap of baseline covariates
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B DGP

B.1 Propensity score

Table B.1 shows the estimated propensity score using the specification of Huber et al.

(2017). Many variables have sizeable and statistically significant coefficients that create

the selection into the treatment. Figure B.1 shows the distribution of the propensity score

after the manipulations described in Section 5.2.1. Figure B.1 shows that our setting does

not creates problems due to extreme propensity scores or no overlap.

Table B.1: Propensity score

(1) (2)

Coefficients Marginal effects

Characteristics of unemployed persons

Female 0.140*** 0.00683***
(0.0294) (0.00145)

*French -0.0813 -0.00383
(0.105) (0.00481)

*Italian -0.0562 -0.00266
(0.167) (0.00770)

Mother tongue other than German, French, Italian -0.239*** -0.0112***
(0.0393) (0.00177)

*French -0.0312 -0.00150
(0.119) (0.00561)

*Italian 0.0151 0.000735
(0.203) (0.00995)

Unskilled 0.115*** 0.00576**
(0.0447) (0.00230)

*French 1.019*** 0.0756***
(0.130) (0.0136)

*Italian 0.441** 0.0259*
(0.206) (0.0144)

Qualification: semiskilled -0.134*** -0.00622***
(0.0436) (0.00195)

*French 0.893*** 0.0631***
(0.144) (0.0139)

*Italian 0.693** 0.0459*
(0.289) (0.0251)

Qualification: skilled without degree 0.0718 0.00358
(0.0828) (0.00426)

*French -0.0561 -0.00265
(0.288) (0.0133)

*Italian 0.313 0.0175
(0.318) (0.0202)

# of unemp. spells in last 2 years 0.0105 0.000511
(0.0131) (0.000634)

*French 0.0482 0.00234
(0.0364) (0.00176)

*Italian 0.105* 0.00510*
Continued on next page
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Table B.1 – continued from previous page
(1) (2)

Coefficients Marginal effects

(0.0558) (0.00270)
Fraction of months emp. in last 2 years 0.225*** 0.0109***

(0.0640) (0.00310)
*French -0.108 -0.00522

(0.199) (0.00967)
*Italian -0.0512 -0.00248

(0.334) (0.0162)
Employability rating low -0.641*** -0.0255***

(0.0562) (0.00184)
*French 1.323*** 0.115***

(0.248) (0.0335)
*Italian 1.335*** 0.118***

(0.291) (0.0404)
Employability rating medium -0.310*** -0.0161***

(0.0414) (0.00232)
*French 0.879*** 0.0558***

(0.194) (0.0157)
*Italian 0.773*** 0.0519***

(0.224) (0.0200)
Education: above vocational training 0.0594* 0.00289*

(0.0311) (0.00152)
*French 0.115 0.00581

(0.139) (0.00733)
*Italian 0.131 0.00674

(0.198) (0.0107)
Education: tertiary track 0.167*** 0.00843***

(0.0380) (0.00200)
*French -0.285* -0.0125**

(0.151) (0.00592)
*Italian -0.281 -0.0121

(0.274) (0.0104)
Vocational training degree 0.120*** 0.00601***

(0.0308) (0.00158)
*French -0.332 -0.0139

(0.267) (0.00963)
*Italian 0.125 0.00638

(0.180) (0.00965)
Age in 10 year 0.0955 0.00463

(0.136) (0.00662)
Age squared / 10,000 -0.814 -0.0395

(1.755) (0.0851)
Married -0.0235 -0.00114

(0.0292) (0.00141)
Foreigner with B permit -0.187*** -0.00852***

(0.0511) (0.00219)
Foreigner with C permit -0.0815** -0.00388**

(0.0376) (0.00176)
Lives in big city -0.138*** -0.00640***

(0.0414) (0.00185)
Lives in medium sized city 0.223*** 0.0117***

(0.0361) (0.00203)
Past income (in CHF 10,000) 0.754*** 0.0366***

(0.0763) (0.00371)
Number of employment spells in last 5 years -0.649*** -0.0314***

Continued on next page
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Table B.1 – continued from previous page
(1) (2)

Coefficients Marginal effects

(0.105) (0.00511)
Previous job in primary sector -0.263*** -0.0116***

(0.0619) (0.00247)
Previous job in secondary sector 0.198*** 0.0103***

(0.0481) (0.00266)
Previous job in tertiary sector 0.113*** 0.00545***

(0.0373) (0.00178)
Foreigner with mother tongue in canton’s language 0.302*** 0.0163***

(0.0430) (0.00257)
Previous job self-employed -0.884*** -0.0295***

(0.236) (0.00509)
Previous job manager -0.480*** -0.0195***

(0.0970) (0.00326)
Previous job skilled worker -0.306*** -0.0153***

(0.0841) (0.00436)
Previous job unskilled worker -0.309*** -0.0141***

(0.0896) (0.00388)

Allocation of unemployed to caseworkers

By industry 0.349*** 0.0167***
(0.0296) (0.00142)

*French 0.114 0.00579
(0.107) (0.00563)

*Italian -0.529*** -0.0207***
(0.175) (0.00540)

By occupation 0.201*** 0.00963***
(0.0280) (0.00134)

*French 0.487*** 0.0275***
(0.122) (0.00792)

*Italian -0.463*** -0.0186***
(0.171) (0.00566)

By age -0.0511 -0.00243
(0.0720) (0.00334)

By employability -0.362*** -0.0153***
(0.0549) (0.00201)

By region -0.349*** -0.0151***
(0.0451) (0.00173)

Other -0.260*** -0.0114***
(0.0512) (0.00204)

Caseworker characteristics

Age (in 10 years) -0.000912 -4.42e-05
(0.00136) (6.60e-05)

*French 0.0217*** 0.00105***
(0.00547) (0.000264)

*Italian 0.00413 0.000200
(0.0109) (0.000528)

Female 0.205*** 0.0101***
(0.0276) (0.00139)

*French -0.272** -0.0119**
(0.118) (0.00466)

*Italian 0.469*** 0.0279**
(0.172) (0.0123)

Tenure (in years) 0.0266*** 0.00129***
Continued on next page
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Table B.1 – continued from previous page
(1) (2)

Coefficients Marginal effects

(0.00425) (0.000206)
*French -0.0749*** -0.00363***

(0.0196) (0.000946)
*Italian 0.00549 0.000266

(0.0276) (0.00134)
Own unemp. experience 0.0251 0.00121

(0.0281) (0.00135)
*French -0.00642 -0.000311

(0.115) (0.00556)
*Italian 0.627*** 0.0395**

(0.197) (0.0157)
Indicator for missing caseworker characteristics 0.0950 0.00479

(0.0759) (0.00398)

Local labour market characteristics

French speaking REA -1.346*** -0.0497***
(0.496) (0.0143)

Italian speaking REA -3.548*** -0.0628***
(1.035) (0.00636)

Cantonal unemployment rate (in %) 0.215*** 0.0104***
(0.0256) (0.00124)

*French -0.690*** -0.0334***
(0.0666) (0.00314)

*Italian -0.00787 -0.000381
(0.179) (0.00869)

Cantonal GDP per capita (in CHF 10,000) -3.805*** -0.184***
(0.232) (0.0113)

Constant -1.700***
(0.290)

Number of observations 96,298 96,298

Notes: Coefficients and average marginal effects of the propensity score based on the
specification of Huber et al. (2017). Standard errors are in parentheses. ***/**/*
indicate statistical significance at the 1%/5%/10%-level.

51



Figure B.1: Propensity scores by treatment status
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the treated (right).
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B.2 Description of ITEs

This Appendix complements the basic statistics of the baseline DGP provided in Table 4

in the main text. Figures B.2 and B.3 show the histograms of the baseline ITE1 and ITE2

with random noise, respectively. We observe a bunching of ITEs at zero because we force

the observations to respect the bounds of the outcome variable (see Figure A.1).

Figures B.4 and B.5 compare the cumulative density functions of Y 0
i and Y 1

i in the

population for the baseline ITE1 and ITE2, respectively. Adding the ITEs to Y 0
i while

respecting the bounds results in more mass of Y 1
i away from the bounds.30 Further, we

observe that the impact of ITE1 on the distribution of the potential outcomes is moderate,

while the larger ITE2 changes the potential outcome distribution substantially.

Figure B.6 shows the relation of the propensity score with the ITEs. The ’simulated’

caseworkers in our setting are rather successful in identifying unemployed with gains from

the program. Those unemployed with a probability of lower than 50% of being send to

the program have on average also negative IATEs, which is evident from the dashed lines

of the treated potential outcomes being below the solid line of the non-treated potential

outcomes. In contrast, the unemployed that participate with a probability of more than

50% benefit on average from the job search program. The simulated assignment mechanism

is therefore favorable for most unemployed. However, we build in one feature that is

often observed in applications, namely ’cream-skimming’ (see, e.g., Bell & Orr, 2002).

This means that unemployed persons with good labour market opportunities (a high Y 0
i )

have a greater probability to participate in a JSP. However, the effect of the program is

not necessarily positive for participants with good labour market opportunities because

these participants would have good labour market opportunities even in the absence of

training and just suffer from the lock-in effect (see e.g., Card, Kluve, & Weber, 2017). The

downward sloping average potential outcomes for very high propensity scores reflect this

empirical observations.

Finally, Table B.2 provides an idea about how much of the variation in the potential

outcomes, ITEs and the treatment can be explained by the observable characteristics at our

disposal. Potential outcomes are relatively hard to approximate. The potential outcome of
30This is also the reason for the lower standard deviations of the Y 1

i s in Table 4.
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Figure B.2: Histogram of ITE1
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Figure B.3: Histogram of ITE2
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non-treated that is taken from real data shows an out-of-sample R2 of at most about 10%.

The ITEs without noise are easier to explain with up to about 70% explainable variation of

ITE2. As we add these systematically varying ITE to the non-treated outcomes to obtain

the treated outcomes, the different Y 1
i are easier to approximate compared to Y 0

i with
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explained variation of up to 30%. The picture is changed if we add random noise to create

the baseline ITE1 and ITE2. This makes the ITEs and the respective Y 1
i s much harder

to approximate with R2 of at most 11%. The propensity score is the component that is

most easy to approximate. The Lasso is even able to explain 80% of the variation. The

reason is that the Lasso has access to all relevant variables and uses the true link function.

However, it may not recover exactly the true model due to the shrunken coefficiencts.

Table B.2: Out-of-sample R-squared of different components in %

Sample size: 1000 4000
Machine learner: Random Forest Lasso Random Forest Lasso
Without random noise (εi = 0):
Y 0 7.6 6.5 10.6 10.7
Y 1 ITE1 9.4 8.2 12.5 13.1
Y 1 ITE2 16.5 22.0 25.2 30.5
ITE1 56.8 62.3 62.1 67.7
ITE2 55.0 59.9 60.2 65.4
Propensity score 56.8 62.9 75.2 80.3
With random noise (εi ∼ 1− Poisson(1)):
Y 0 7.6 6.5 10.6 10.7
Y 1 ITE0 8.1 6.6 10.9 10.7
Y 1 ITE1 8.4 6.9 11.2 11.1
Y 1 ITE2 7.1 5.8 9.7 10.3
ITE0 0.04 0.02 0.3 0.1
ITE1 4.8 4.2 6.3 6.3
ITE2 3.2 2.7 4.7 4.8
Propensity score 56.8 62.9 75.2 80.3

Notes: Table shows the average out-of-sample R-squared in the valida-
tion sample over all replications.
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Figure B.4: Cumulative density functions of the potential outcomes of ITE1
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Figure B.5: Cumulative density functions of the potential outcomes of ITE2
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Figure B.6: Relation of propensity score and potential outcomes
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B.3 Specification and description of GATEs

We want to create a setting where we need to summarize the heterogeneity over groups

that are of interest to the policy maker and might be used by caseworkers to assign

program participation. We consider the scenario where we categorize the unemployed

by six characteristics: employability, gender, age, qualification, foreigner and language

region. This splits the 10,000 validation observations into 64 groups of sizes 32 to 420

(histogram in Figure B.7) by using the following combinations: employability (three

categories) x female (binary) x foreigner (binary) x some qualification degree (binary).

The biggest group with medium employability is additionally interacted with three age

groups (< 30, 30− 40, > 40) and the German speaking cantons of Switzerland (binary).

Figures B.8 and B.9 show the histogram of the distribution of the resulting GATEs of the

baseline ITE1 and ITE2.

Figure B.7: Histogram of group sizes used to calculate true GATEs
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Figure B.8: Histogram of the GATEs of ITE1
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Figure B.9: Histogram of the GATEs of ITE2
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C Implementation

This Appendix provides a brief description of the implementation steps of the compared

estimators.31 Before, Figure C.1 provides a graphical summary how different parameters

enter the estimation as either the only inputs, as necessary, or as optional nuisance

parameters. It shows also how we can use one input for multiple estimators such that

the estimation of IATEs requires at most one more step after having µ̂d(x), p̂(x) or µ̂(x).

These synergies are important to keep computational time under control.

Figure C.1: Overview of inputs and estimators

Random Forest

Lasso

ˆ ( )d xµ ˆ ( )xµˆ ( )p x

ˆ ( )CM xτ

ˆ ( )CM xτ

ˆ ( )CF xτˆ ( )MOM xτ

ˆ ( )MOM xτ ˆ ( )MCM xτ ˆ ( )RL xτ

Inputs

Notes: Solid lines indicate that this is the only input. Dashed
lines represent necessary nuisance parameters. Dotted lines indicate
optional nuisance parameters. τMOM(x) summarizes IPW and DR
versions of MOM approaches.

Table C.1: Conditional mean regression

1. Regress Yi on Xi in the non-treated sample to obtain a prediction model for µ̂(0, x).
2. Regress Yi on Xi in the treated sample to obtain a prediction model for µ̂(1, x).
3. Calculate τ̂CMR(x) = µ̂(1, x)− µ̂(0, x) for each observation in the validation sample.

Table C.2: Causal Forest

1. Apply Algorithm 1 of Athey et al. (2018) with the pseudo outcomes of Equation 17
in the so-called labeling step.

2. Calculate τ̂CF (x) for each observation in the validation sample according to 16 using
the weights obtained in step 1.

31We do not repeat the tuning parameter choices at each prediction step because they follow always the
procedures that are described in Section 4.1 for Random Forest and Section 4.2 for Lasso. Similarly, we
omit the cross-fitting steps because the basic principle is already explained in Section 4.3.

60



Table C.3: Causal Forest with local centering

1. Regress Di on Xi to obtain a prediction model for p̂(x).
2. Regress Yi on Xi to obtain a prediction model for µ̂(x).
3. Apply Algorithm 1 of Athey et al. (2018) with the pseudo outcomes of Equation 17

but replacing Di and Yi with Di − p(Xi) and Yi − µ(Xi).
4. Calculate τ̂CF_LC(x) for each observation in the validation sample according to 16

using the weights obtained in step 3.

Table C.4: MOM with IPW

1. Regress Di on Xi to obtain a prediction model for p̂(x).
2. Create the modified outcome Y ∗i,IPW by replacing p(x) with p̂(x) in Equation 7.
3. Regress Y ∗i,IPW on Xi to obtain τ̂IPW (x) and use it to calculate the IATE for each

observation in the validation sample.

Table C.5: MOM with DR

1. Regress Di on Xi to obtain a prediction model for p̂(x).
2. Regress Yi on Xi in the non-treated sample to obtain a prediction model for µ̂(0, x).
3. Regress Yi on Xi in the treated sample to obtain a prediction model for µ̂(1, x).
4. Create the modified outcome Y ∗i,DR by replacing the nuisance parameters by their

estimates p̂(x), µ̂(0, x), and µ̂(1, x) in Equation 8.
5. Regress Y ∗i,DR on Xi to obtain τ̂DR(x) and use it to calculate the IATE for each

observation in the validation sample.

The following three tables indicate two different ways to implement the estimators.
Either by modifying the covariates (indicated by a) or by modifying the outcomes (indicated
by b).

Table C.6: MCM

1. Regress Di on Xi to obtain a prediction model for p̂(x).
2a. Modify the covariates as XMCM

i = Ti/2Xi.
2b. Modify the outcome as Y ∗MCM = 2TiYi.
3a. Use p̂(x) and XMCM

i to obtain β̂MCM from Equation 10.
3b. Use p̂(x) and Y ∗MCM to obtain β̂MCM from Equation 11 with τ(x) = xβ.
4. Calculate the IATE for each observation in the validation sample as τ̂MCM(x) =

xβ̂MCM .
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Table C.7: MCM with efficiency augmentation

1. Regress Di on Xi to obtain a prediction model for p̂(x).
2. Regress Yi on Xi to obtain a prediction model for µ̂(x).
3a. Modify the covariates as XMCM

i = Ti/2Xi.
3b. Modify the outcome as Y ∗MCMEA

= 2Ti(Yi − µ(Xi)).
4a. Use p̂(x) and XMCM

i to obtain β̂MCM_EA from Equation 10 with Yi being replaced
by Yi − µ̂(x).

4b. Use p̂(x) and Y ∗MCMEA
to obtain β̂MCM_EA from Equation 11 with τ(x) = xβ.

5. Calculate the IATE for each observation in the validation sample as τ̂MCM_EA(x) =
xβ̂MCM_EA.

Table C.8: R-learning

1. Regress Di on Xi to obtain a prediction model for p̂(x).
2. Regress Yi on Xi to obtain a prediction model for µ̂(x).
3a. Modify the covariates as XRL

i = (Di − p(Xi))X.

3b. Modify the outcome as Y ∗RL = Yi − µ(Xi)
Di − p(Xi)

.

4a. Use p̂(x), µ̂(x) and XRL
i to obtain β̂RL from Equation 13.

4b. Use p̂(x), µ̂(x) and Y ∗RL to obtain β̂RL from Equation 14 with τ(x) = xβ.
5. Calculate the IATE for each observation in the validation sample as τ̂RL(x) = xβ̂RL.

D More results

This Appendix provides the results for all settings with the full set of performance measures.

Additionally to the basic measure of Section 5.2.3, we calculate and report the following

performance measures for IATEs and GATEs.

To understand simulation noise, we calculate the standard error of our main measure,

MSE, by

SE(MSE) =

√√√√ 1
R

R∑
r=1

[MSEr −MSE]2, (26)

where MSEr = 1
Nv

∑Nv
v=1[ξ(xv, y0

v)− τ̂(xv)r]2.32 This measure indicates how precise the

mean MSE is measured and is used to asses whether the performance differs significantly or
32This can also be regarded as the standard error of the mean Precision in Estimation of Heterogenous
Effect (PEHE) introduced by Hill (2011). Note that the mean MSE and mean PEHE result in the same
number.
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just up to noise. Furthermore, instead of taking the mean over all validation observations

v, we consider the median (Median(MSEv)). This measure leads sometimes to different

orderings of the estimators compared to MSE, which indicates that outliers play a role in

measuring the performance.

Additionally to the mean absolute bias, we report the mean bias:

Bias = 1
Nv

Nv∑
v=1

[
1
R

R∑
r=1

τ̂(xv)r − ξ(xv, y0
v)
]

(27)

Additionally to the fraction of rejected JB tests, we report the mean skewness and

mean kurtosis over the validation sample.

All previous measures summarize the performance over all individuals. However, the

measures in the last two columns in the following tables summarize the performance on

the replication level. One is the correlation between the estimated and the true ITEs

(Corr.) and one is the variance ratio of the estimated and the true ITEs (Var. Ratio),

Corr. = 1
R

R∑
r=1

ρτ̂r,ξ, (28)

where ρX,Y denotes the correlation between two variables and τ̂r and ξ are vectors of

length Nv containing the estimated ITEs in replication r and the true ITEs, respectively.

Var. Ratio = 1
R

R∑
r=1

V ar(τ̂r)
V ar(ξ) , (29)

where V ar(·) is the variance of the respective vector.

D.1 Results for IATE estimation

The Appendices D.1.1 to D.1.4 show the full results for IATE estimation in the 24 DGP-

sample size combinations. The correlations as additional performance measure in columns

10 show that the estimated IATEs are mostly positively correlated with the true ITEs.

This shows that the considered estimators find systematic variation. However, the size of

the correlations vary for the different settings. They are larger for the DGP without noise

and for larger sample sizes, as expected.
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The variance ratios in columns 11 show that estimators tend to overshoot and to create

IATEs that vary more than the true ITEs. This is reflected in variance ratios of above one

that are particularly prevalent for ITE0 and ITE1. This suggests that estimators tend

to overshoot in settings with little variation of the ITEs relative to the variation in the

outcome. Especially, both MOM IPW estimators and MCM are prone to create highly

variable IATEs. This is in line with the high mean SD of these methods that use only the

inverse propensity score to correct for selection bias.
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D.1.1 ITE with selection and without random noise

Table D.1 provides additional information for the baseline ITE0. The alternative per-

formance measures confirm the results in the main text. Furthermore, note that the

substantial positive mean bias suggests that the estimators are not able to completely re-

move the positive selection bias which is created by the positive relation between propensity

score and ITEs.

The results for ITE1 without random noise are very similar to the baseline results for

ITE1 (Table D.2). However, ITE2 without random noise shows some notable differences

to its baseline version with random noise. Random Forest based MOM IPW seems to

work quite well for ITE2 as it shows the lowest mean MSE (Table D.3). However, the

median MSE in column three suggests that this is driven by some outliers because the

outstanding performance is not observed for this measure.
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Table D.1: Performance measure for ITE0 with selection and without random noise (baseline)

MSE SE(MSE) Median MSE |Bias| Bias SD JB Skew. Kurt. Corr. Var. ratio

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1000 observations

Random Forest:
Infeasible No variation in dependent variable
Conditional mean regression 3.69 0.04 3.60 0.62 0.60 1.78 6% 0.0 3.0 - -
MOM IPW 10.52 0.08 8.52 2.05 0.71 2.16 18% 0.0 3.1 - -
MOM DR 2.00 0.02 1.94 0.40 0.40 1.35 7% 0.0 3.0 - -
Causal Forest 3.52 0.04 3.44 0.75 0.75 1.69 12% 0.0 3.1 - -
Causal Forest with local centering 3.42 0.03 3.29 0.34 0.34 1.81 10% 0.0 3.0 - -
Lasso:
Infeasible No variation in dependent variable
Conditional mean regression 11.21 0.11 10.28 0.69 0.60 3.19 91% -0.1 3.9 - -
MOM IPW 11.31 0.28 9.69 1.09 0.61 2.99 100% 0.7 18.7 - -
MOM DR 45.39 43.11 37.31 0.60 0.60 6.31 100% 41.1 1794.2 - -
MCM 13.03 0.27 10.46 1.50 0.45 3.05 100% -0.1 7.5 - -
MCM with efficiency augmentation 2.08 0.05 1.91 0.42 0.42 1.36 100% 0.0 8.7 - -
R-learning 2.03 0.05 1.85 0.45 0.45 1.33 100% 0.0 9.4 - -

4000 observations

Random Forest:
Infeasible No variation in dependent variable
Conditional mean regression 2.79 0.04 2.64 0.61 0.53 1.49 4% 0.0 3.0 - -
MOM IPW 5.76 0.06 4.44 1.31 0.53 1.74 12% 0.0 3.1 - -
MOM DR 1.16 0.01 1.10 0.28 0.28 1.03 8% 0.0 3.0 - -
Causal Forest 2.31 0.03 2.24 0.72 0.70 1.29 6% 0.0 3.0 - -
Causal Forest with local centering 2.05 0.02 1.94 0.24 0.24 1.40 9% 0.0 3.0 - -
Lasso:
Infeasible No variation in dependent variable
Conditional mean regression 6.14 0.08 5.62 0.65 0.49 2.30 35% 0.0 3.4 - -
MOM IPW 5.02 0.17 4.31 0.82 0.45 1.93 100% 0.2 7.9 - -
MOM DR 0.51 0.02 0.43 0.31 0.31 0.62 35% 0.0 3.4 - -
MCM 5.79 0.22 4.28 1.03 0.34 1.94 100% 0.0 6.5 - -
MCM with efficiency augmentation 0.48 0.02 0.42 0.26 0.26 0.62 97% 0.0 8.7 - -
R-learning 0.47 0.02 0.42 0.28 0.28 0.61 97% 0.1 8.7 - -

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over 2000 replications for the sample size of 1000 observations
and 500 replications for the sample size of 4000 observations. Bold numbers indicate the best performing estimators in terms of MSE and
estimators within two standard (simulation) errors of the lowest MSE.
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Table D.2: Performance measure for ITE1 with selection and without random noise

MSE SE(MSE) Median MSE |Bias| Bias SD JB Skew. Kurt. Corr. Var. ratio

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1000 observations

Random Forest:
Infeasible 1.34 0.00 0.92 0.98 0.00 0.14 59% 0.0 3.1 0.76 0.48
Conditional mean regression 7.22 0.05 4.86 1.54 1.16 1.81 7% 0.0 3.0 0.14 0.98
MOM IPW 10.20 0.08 7.35 1.80 1.16 2.24 17% 0.0 3.1 0.60 4.03
MOM DR 4.80 0.03 2.88 1.37 0.75 1.33 11% 0.0 3.0 0.18 0.45
Causal Forest 7.21 0.05 4.65 1.63 1.36 1.70 12% 0.0 3.1 0.16 0.82
Causal Forest with local centering 6.22 0.04 4.43 1.35 0.72 1.79 12% 0.0 3.0 0.13 0.88
Lasso:
Infeasible 1.17 0.00 0.68 0.83 0.01 0.33 67% 0.0 3.5 0.79 0.60
Conditional mean regression 14.64 0.12 13.09 1.41 1.01 3.30 90% -0.1 4.3 0.15 3.76
MOM IPW 13.57 0.30 11.72 1.21 0.94 3.24 100% 0.3 18.0 0.39 4.30
MOM DR 44.64 39.07 34.97 1.48 0.87 6.03 100% 40.5 1760.1 0.10 2.04
MCM 13.08 0.22 11.18 1.11 0.57 3.19 100% -0.1 6.6 0.42 4.54
MCM with efficiency augmentation 5.31 0.06 3.04 1.42 0.70 1.41 100% -0.1 9.4 0.11 0.46
R-learning 5.35 0.06 2.83 1.47 0.79 1.34 100% 0.0 10.3 0.08 0.39

4000 observations

Random Forest:
Infeasible 1.17 0.00 0.73 0.90 0.00 0.12 22% 0.0 3.0 0.79 0.54
Conditional mean regression 5.85 0.05 3.81 1.47 1.04 1.51 4% 0.0 3.0 0.21 0.88
MOM IPW 6.16 0.06 4.48 1.30 0.82 1.80 10% 0.0 3.0 0.55 2.45
MOM DR 3.50 0.02 2.10 1.24 0.50 1.02 11% 0.0 3.1 0.29 0.36
Causal Forest 5.68 0.05 3.30 1.55 1.29 1.31 7% 0.0 3.0 0.25 0.64
Causal Forest with local centering 4.50 0.03 3.07 1.25 0.55 1.40 10% 0.0 3.0 0.21 0.65
Lasso:
Infeasible 1.00 0.00 0.50 0.77 0.01 0.23 17% 0.0 3.1 0.82 0.66
Conditional mean regression 8.41 0.08 7.55 1.20 0.73 2.41 33% -0.1 3.3 0.31 2.46
MOM IPW 6.94 0.16 5.92 1.01 0.67 2.21 98% 0.1 6.1 0.49 2.51
MOM DR 3.45 0.03 1.95 1.36 0.47 0.72 99% -0.3 9.3 0.24 0.14
MCM 6.42 0.15 5.00 0.96 0.39 2.09 100% -0.1 5.6 0.46 2.33
MCM with efficiency augmentation 3.40 0.02 2.05 1.35 0.43 0.72 99% -0.1 7.8 0.24 0.14
R-learning 3.56 0.03 1.87 1.39 0.53 0.70 98% -0.1 8.2 0.19 0.12

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over 2000 replications for the sample size of 1000 observations
and 500 replications for the sample size of 4000 observations. Bold numbers indicate the best performing estimators in terms of MSE and
estimators within two standard (simulation) errors of the lowest MSE.
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Table D.3: Performance measure for ITE2 with selection and without random noise

MSE SE(MSE) Median MSE |Bias| Bias SD JB Skew. Kurt. Corr. Var. ratio

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1000 observations

Infeasible 18.84 0.01 12.79 3.66 -0.04 0.54 39% 0.0 3.1 0.74 0.47
Conditional mean regression 37.71 0.11 17.19 4.55 2.24 1.89 20% -0.1 3.0 0.50 0.15
MOM IPW 30.30 0.09 19.54 4.10 2.25 2.37 17% 0.0 3.1 0.66 0.59
MOM DR 37.78 0.07 12.38 4.61 1.64 1.36 29% 0.0 3.1 0.47 0.06
Causal Forest 43.79 0.12 16.98 4.94 2.85 1.77 35% -0.1 3.1 0.41 0.10
Causal Forest with local centering 37.05 0.09 14.05 4.46 1.59 1.90 36% 0.0 3.1 0.45 0.12
Lasso:
Infeasible 16.81 0.01 10.78 3.22 -0.03 1.23 71% 0.0 3.4 0.77 0.57
Conditional mean regression 37.10 0.12 26.65 3.93 1.46 3.68 84% -0.1 3.8 0.52 0.64
MOM IPW 38.53 0.29 28.54 3.86 1.77 3.95 100% -0.1 10.4 0.55 0.71
MOM DR 78.97 39.21 47.70 4.54 1.32 6.25 100% 37.1 1574.6 0.42 0.27
MCM 36.49 0.15 25.60 3.91 0.97 3.60 100% -0.1 5.7 0.50 0.53
MCM with efficiency augmentation 38.48 0.09 14.41 4.55 1.30 1.91 100% -0.1 6.7 0.41 0.11
R-learning 40.18 0.10 14.21 4.68 1.53 1.80 100% 0.0 7.7 0.38 0.09

4000 observations

Random Forest:
Infeasible 16.68 0.01 11.34 3.43 -0.04 0.45 15% 0.0 3.0 0.78 0.52
Conditional mean regression 27.75 0.09 16.09 4.08 1.62 1.58 6% 0.0 3.0 0.64 0.31
MOM IPW 24.08 0.07 14.71 3.69 1.47 1.92 10% 0.0 3.0 0.70 0.50
MOM DR 27.19 0.07 11.84 4.14 0.97 1.15 12% 0.0 3.0 0.66 0.18
Causal Forest 34.53 0.15 16.01 4.46 2.47 1.51 17% -0.1 3.0 0.60 0.17
Causal Forest with local centering 25.17 0.08 14.39 3.96 0.97 1.61 10% 0.0 3.0 0.67 0.29
Lasso:
Infeasible 14.49 0.01 8.35 3.00 -0.03 0.87 16% 0.0 3.1 0.81 0.63
Conditional mean regression 24.47 0.07 17.85 3.48 0.84 2.58 19% 0.0 3.1 0.68 0.69
MOM IPW 25.33 0.12 18.22 3.47 1.18 2.71 76% -0.1 4.2 0.68 0.68
MOM DR 25.62 0.08 12.79 4.02 0.62 1.30 85% -0.1 4.9 0.66 0.23
MCM 27.86 0.12 17.80 3.78 0.62 2.50 95% -0.1 4.4 0.61 0.38
MCM with efficiency augmentation 26.79 0.08 12.27 4.09 0.71 1.30 88% 0.0 4.4 0.65 0.20
R-learning 27.77 0.09 12.04 4.13 0.87 1.32 92% 0.0 4.9 0.64 0.18

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over 2000 replications for the sample size of 1000 observations
and 500 replications for the sample size of 4000 observations. Bold numbers indicate the best performing estimators in terms of MSE and
estimators within two standard (simulation) errors of the lowest MSE.
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D.1.2 ITE with selection and random noise

ITE0 with random noise (Table D.4) shows the same pattern as the baseline ITE0 without

noise, only that the levels of mean MSE and mean bias are higher. This is expected

because this ITE0 consists mainly of irreducible noise.

Tables D.5 and D.6 provide additional information for the baseline ITE1 and ITE2,

respectively. The alternative performance measures confirm the results in the main text

of ITE1. However, Random Forest conditional mean regression and Causal Forest show

highly competitive median MSE for both sample sizes, which is in contrast to their mean

MSE.
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Table D.4: Performance measure for ITE0 with selection and random noise

MSE SE(MSE) Median MSE |Bias| Bias SD JB Skew. Kurt. Corr. Var. ratio

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1000 observations

Random Forest:
Infeasible 0.79 0.00 0.82 0.62 0.00 0.05 83% -0.2 3.2 0.04 0.00
Conditional mean regression 4.50 0.04 3.75 0.85 0.60 1.78 6% 0.0 3.0 -0.01 3.47
MOM IPW 11.62 0.08 8.84 2.17 0.71 2.18 17% 0.0 3.1 -0.03 12.11
MOM DR 2.74 0.02 2.11 0.75 0.39 1.33 8% 0.0 3.0 0.00 1.65
Causal Forest 4.30 0.04 3.47 0.90 0.74 1.69 13% 0.0 3.1 -0.01 2.96
Causal Forest with local centering 4.16 0.03 3.59 0.73 0.33 1.80 11% 0.0 3.0 0.00 3.34
Lasso:
Infeasible 0.79 0.00 0.86 0.62 0.00 0.05 100% -1.3 21.3 0.02 0.00
Conditional mean regression 11.85 0.11 10.88 0.90 0.60 3.17 90% -0.1 4.0 -0.01 12.78
MOM IPW 12.20 0.30 10.45 1.25 0.60 2.99 100% 0.7 19.8 0.00 13.12
MOM DR 1346.38 1343.32 24.83 0.87 0.63 7.92 100% 39.5 1703.1 0.00 1636.00
MCM 13.79 0.26 11.26 1.57 0.42 3.05 100% -0.1 7.4 0.00 15.41
MCM with efficiency augmentation 2.83 0.06 2.17 0.76 0.42 1.34 100% 0.0 9.0 0.00 1.50
R-learning 2.80 0.05 2.11 0.77 0.45 1.32 100% 0.0 9.7 0.00 1.45

4000 observations

Random Forest:
Infeasible 0.78 0.00 0.78 0.62 0.00 0.04 30% -0.2 3.1 0.06 0.00
Conditional mean regression 3.58 0.03 2.86 0.86 0.53 1.49 4% 0.0 3.0 -0.01 2.97
MOM IPW 6.71 0.06 4.89 1.50 0.53 1.76 12% 0.0 3.1 -0.02 6.83
MOM DR 1.92 0.01 1.39 0.71 0.27 1.02 7% 0.0 3.0 0.00 1.19
Causal Forest 3.09 0.03 2.26 0.89 0.70 1.29 6% 0.0 3.0 -0.01 2.10
Causal Forest with local centering 2.81 0.02 2.31 0.70 0.23 1.39 9% 0.0 3.0 0.00 2.32
Lasso:
Infeasible 0.78 0.00 0.82 0.62 0.00 0.04 100% -0.1 7.1 0.04 0.00
Conditional mean regression 6.84 0.08 6.12 0.88 0.49 2.28 35% 0.0 3.4 -0.01 7.17
MOM IPW 5.81 0.17 4.81 1.03 0.45 1.92 100% 0.2 7.8 0.00 5.91
MOM DR 1.31 0.02 0.69 0.72 0.31 0.63 94% -0.1 11.1 0.00 0.33
MCM 6.34 0.20 4.64 1.16 0.31 1.90 100% -0.1 6.4 0.00 6.75
MCM with efficiency augmentation 1.26 0.02 0.73 0.71 0.26 0.62 96% 0.0 8.3 0.00 0.31
R-learning 1.26 0.02 0.72 0.71 0.28 0.62 96% 0.1 8.1 0.00 0.30

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over 2000 replications for the sample size of 1000 observations and
500 replications for the sample size of 4000 observations. Bold numbers indicate the best performing estimators in terms of MSE and estimators
within two standard (simulation) errors of the lowest MSE.
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Table D.5: Performance measure for ITE1 with selection and random noise (baseline)

MSE SE(MSE) Median MSE |Bias| Bias SD JB Skew. Kurt. Corr. Var. ratio

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1000 observations

Random Forest:
Infeasible 2.98 0.00 1.03 1.29 0.01 0.15 71% -0.2 3.2 0.23 0.03
Conditional mean regression 7.04 0.04 4.58 1.45 0.80 1.78 8% 0.0 3.0 0.02 0.88
MOM IPW 12.92 0.08 8.65 2.26 0.87 2.20 16% 0.0 3.1 0.18 3.34
MOM DR 5.08 0.02 2.92 1.36 0.52 1.33 8% 0.0 3.0 0.03 0.42
Causal Forest 6.86 0.04 4.23 1.49 0.96 1.68 12% 0.0 3.1 0.03 0.75
Causal Forest with local centering 6.50 0.03 4.48 1.35 0.48 1.79 12% 0.0 3.1 0.02 0.83
Lasso:
Infeasible 3.00 0.00 1.08 1.28 0.01 0.21 100% -0.5 7.7 0.21 0.04
Conditional mean regression 14.26 0.11 11.96 1.46 0.76 3.16 90% -0.1 4.1 0.02 3.23
MOM IPW 15.69 1.46 11.75 1.56 0.73 3.12 100% 0.1 30.3 0.12 3.99
MOM DR 48.76 43.14 38.41 1.40 0.70 6.32 100% 40.9 1783.4 0.01 2.17
MCM 15.31 0.26 12.32 1.72 0.46 3.10 100% -0.1 7.1 0.14 4.10
MCM with efficiency augmentation 5.27 0.06 3.14 1.37 0.52 1.36 100% -0.1 9.2 0.02 0.40
R-learning 5.16 0.05 2.89 1.38 0.58 1.29 100% 0.0 9.5 0.01 0.34

4000 observations

Random Forest:
Infeasible 2.93 0.00 1.27 1.30 0.01 0.11 26% -0.1 3.1 0.25 0.06
Conditional mean regression 6.05 0.04 3.63 1.44 0.73 1.49 4% 0.0 3.0 0.02 0.76
MOM IPW 8.42 0.06 5.38 1.76 0.63 1.77 11% 0.0 3.0 0.15 1.92
MOM DR 4.17 0.02 2.02 1.32 0.35 1.01 9% 0.0 3.0 0.05 0.30
Causal Forest 5.61 0.04 3.01 1.48 0.91 1.29 6% 0.0 3.0 0.05 0.54
Causal Forest with local centering 5.10 0.02 3.08 1.32 0.35 1.39 10% 0.0 3.0 0.03 0.59
Lasso:
Infeasible 2.93 0.00 1.08 1.28 0.01 0.16 83% -0.1 4.0 0.25 0.06
Conditional mean regression 9.20 0.08 7.16 1.43 0.60 2.30 36% 0.0 3.4 0.04 1.87
MOM IPW 8.03 0.17 5.81 1.46 0.53 2.01 100% 0.1 7.4 0.13 1.75
MOM DR 3.66 0.02 1.31 1.34 0.37 0.64 96% -0.3 10.1 0.03 0.09
MCM 8.14 0.19 5.44 1.51 0.32 1.96 100% -0.1 6.2 0.15 1.90
MCM with efficiency augmentation 3.62 0.02 1.22 1.33 0.33 0.63 98% 0.0 8.7 0.03 0.08
R-learning 3.65 0.02 1.07 1.34 0.38 0.63 98% 0.1 8.6 0.02 0.08

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over 2000 replications for the sample size of 1000 observations
and 500 replications for the sample size of 4000 observations. Bold numbers indicate the best performing estimators in terms of MSE and
estimators within two standard (simulation) errors of the lowest MSE.
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Table D.6: Performance measure for ITE2 with selection and random noise (baseline)

MSE SE(MSE) Median MSE |Bias| Bias SD JB Skew. Kurt. Corr. Var. ratio

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1000 observations

Infeasible 38.46 0.01 8.96 4.43 0.09 0.52 66% -0.2 3.2 0.19 0.02
Conditional mean regression 43.74 0.05 12.15 4.58 1.24 1.74 8% 0.0 3.0 0.04 0.07
MOM IPW 46.83 0.08 19.41 4.83 1.23 2.23 16% 0.0 3.1 0.17 0.31
MOM DR 41.45 0.03 12.25 4.50 0.82 1.32 10% 0.0 3.0 0.05 0.03
Causal Forest 43.87 0.06 11.76 4.61 1.43 1.66 12% 0.0 3.1 0.04 0.06
Causal Forest with local centering 42.84 0.04 13.72 4.50 0.81 1.78 12% 0.0 3.0 0.04 0.07
Lasso:
Infeasible 38.66 0.01 8.89 4.42 0.08 0.71 100% -0.6 8.3 0.18 0.03
Conditional mean regression 50.11 0.11 22.97 4.52 1.12 3.15 92% -0.1 4.1 0.04 0.26
MOM IPW 49.82 0.25 24.14 4.50 1.02 3.20 100% 0.5 13.9 0.11 0.33
MOM DR 537.16 494.76 21.20 4.55 0.92 5.04 100% 31.9 1310.9 0.03 11.94
MCM 49.25 0.22 23.98 4.47 0.52 3.18 100% -0.1 6.8 0.13 0.35
MCM with efficiency augmentation 41.99 0.06 12.63 4.51 0.79 1.41 100% 0.0 9.2 0.04 0.04
R-learning 42.13 0.06 11.73 4.54 0.89 1.35 100% 0.1 10.1 0.03 0.03

4000 observations

Random Forest:
Infeasible 37.86 0.00 6.30 4.43 0.07 0.41 31% -0.2 3.1 0.22 0.04
Conditional mean regression 42.26 0.05 11.94 4.54 1.12 1.46 5% 0.0 3.0 0.06 0.06
MOM IPW 42.69 0.06 13.91 4.54 0.88 1.80 11% 0.0 3.0 0.16 0.18
MOM DR 40.03 0.02 12.21 4.45 0.56 1.03 11% 0.0 3.1 0.10 0.03
Causal Forest 42.34 0.05 11.14 4.58 1.36 1.29 7% 0.0 3.0 0.07 0.05
Causal Forest with local centering 41.05 0.03 12.80 4.46 0.63 1.40 9% 0.0 3.0 0.07 0.05
Lasso:
Infeasible 37.84 0.00 6.68 4.40 0.07 0.53 84% -0.1 4.2 0.22 0.04
Conditional mean regression 44.31 0.07 16.52 4.46 0.82 2.33 34% -0.1 3.3 0.10 0.17
MOM IPW 43.21 0.15 15.02 4.43 0.74 2.17 97% 0.1 5.8 0.14 0.19
MOM DR 40.11 0.03 12.55 4.48 0.54 0.76 97% -0.2 9.9 0.08 0.01
MCM 42.63 0.16 14.91 4.41 0.34 2.07 100% -0.1 5.6 0.14 0.18
MCM with efficiency augmentation 40.04 0.03 12.45 4.47 0.51 0.75 99% 0.0 7.5 0.08 0.01
R-learning 40.25 0.03 11.78 4.49 0.63 0.74 98% -0.1 7.9 0.07 0.01

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over 2000 replications for the sample size of 1000 observations
and 500 replications for the sample size of 4000 observations. Bold numbers indicate the best performing estimators in terms of MSE and
estimators within two standard (simulation) errors of the lowest MSE.
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D.1.3 ITE with random assignment and without random noise

Table D.7 provides the results for the baseline ITE0 with random assignment. The relative

performance order remains unchanged. However, the striking difference is that the mean

absolute bias and the mean bias are both close to zero for all estimators. This shows that

the interpretation of the results for DGPs with selectivity in D.1.1 is correct and that the

observed biases are driven by remaining selection bias.

The comparison of ITE1 with its selective equivalents shows that the remaining mean

absolute bias is lower because of the absence of selection bias, which is also reflected in

the close to zero mean bias. However, the mean absolute bias remains substantial, which

suggest that approximation errors and the irreducible noise play a significant role. The

relative performance of the estimators is similar for ITE1. This is not true for ITE2 where

conditional mean regression based on Random Forests show the lowest mean MSE. This

suggests that settings with large and informative ITEs favor conditional mean regression

because the systematic part in the outcomes can be exploited. However, this is the least

realistic setting and this locally good performance of conditional mean regression is not

confirmed for ITE2 with random noise in the next section.
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Table D.7: Performance measure for ITE0 with random assignment and without random noise

MSE SE(MSE) Median MSE |Bias| Bias SD JB Skew. Kurt. Corr. Var. ratio

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1000 observations

Infeasible No variation in dependent variable
Conditional mean regression 3.25 0.03 3.15 0.03 0.01 1.80 6% 0.0 3.0 - -
MOM IPW 4.04 0.03 3.84 0.03 0.01 1.99 10% 0.0 3.1 - -
MOM DR 1.88 0.02 1.81 0.02 0.01 1.37 6% 0.0 3.0 - -
Causal Forest 2.92 0.03 2.80 0.02 0.01 1.70 10% 0.0 3.1 - -
Causal Forest with local centering 2.97 0.02 2.83 0.03 0.02 1.71 11% 0.0 3.1 - -
Lasso:
Infeasible No variation in dependent variable
Conditional mean regression 10.40 0.11 9.48 0.06 0.01 3.16 87% 0.0 4.0 - -
MOM IPW 3.83 0.14 3.29 0.03 0.01 1.90 100% -0.1 19.4 - -
MOM DR 1.65 0.05 1.52 0.02 0.01 1.27 100% 0.0 9.4 - -
MCM 3.62 0.11 3.09 0.03 0.01 1.84 100% 0.1 15.4 - -
MCM with efficiency augmentation 1.58 0.04 1.43 0.02 0.02 1.24 100% 0.0 8.4 - -
R-learning 1.55 0.04 1.42 0.02 0.02 1.23 100% 0.0 8.1 - -

4000 observations

Random Forest:
Infeasible No variation in dependent variable
Conditional mean regression 2.29 0.03 2.20 0.06 0.02 1.50 6% 0.0 3.0 - -
MOM IPW 2.47 0.02 2.28 0.06 0.03 1.55 7% 0.0 3.0 - -
MOM DR 0.99 0.01 0.94 0.04 0.02 0.99 6% 0.0 3.0 - -
Causal Forest 1.68 0.01 1.59 0.05 0.03 1.29 7% 0.0 3.0 - -
Causal Forest with local centering 1.73 0.01 1.62 0.05 0.02 1.31 8% 0.0 3.0 - -
Lasso:
Infeasible No variation in dependent variable
Conditional mean regression 5.64 0.07 5.16 0.09 0.02 2.31 32% 0.0 3.3 - -
MOM IPW 0.80 0.05 0.67 0.04 0.03 0.87 100% 0.0 12.6 - -
MOM DR 0.35 0.02 0.32 0.03 0.02 0.59 32% 0.0 3.3 - -
MCM 0.79 0.05 0.63 0.04 0.03 0.85 100% 0.0 13.2 - -
MCM with efficiency augmentation 0.36 0.02 0.31 0.02 0.02 0.59 98% 0.0 8.8 - -
R-learning 0.36 0.02 0.31 0.02 0.02 0.59 99% -0.1 9.1 - -

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over 2000 replications for the sample size of 1000 observations
and 500 replications for the sample size of 4000 observations. Bold numbers indicate the best performing estimators in terms of MSE and
estimators within two standard (simulation) errors of the lowest MSE.
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Table D.8: Performance measure for ITE1 with random assignment and without random noise

MSE SE(MSE) Median MSE |Bias| Bias SD JB Skew. Kurt. Corr. Var. ratio

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1000 observations

Random Forest:
Infeasible 1.34 0.00 0.92 0.98 0.00 0.14 59% 0.0 3.1 0.76 0.48
Conditional mean regression 5.54 0.03 4.64 1.21 0.05 1.81 6% 0.0 3.0 0.18 0.93
MOM IPW 6.56 0.03 5.88 1.25 0.05 2.02 10% 0.0 3.1 0.12 1.16
MOM DR 4.27 0.02 3.08 1.25 0.05 1.35 6% 0.0 3.0 0.18 0.45
Causal Forest 5.24 0.03 4.41 1.22 0.05 1.71 11% 0.0 3.1 0.17 0.79
Causal Forest with local centering 5.23 0.02 4.40 1.22 0.06 1.71 12% 0.0 3.1 0.17 0.81
Lasso:
Infeasible 1.17 0.00 0.68 0.83 0.01 0.33 66% 0.0 3.5 0.79 0.60
Conditional mean regression 12.87 0.11 12.01 1.12 0.02 3.26 86% 0.0 4.1 0.15 3.53
MOM IPW 6.72 0.12 5.61 1.31 0.03 1.93 100% 0.0 14.8 0.06 1.06
MOM DR 4.57 0.04 3.25 1.31 0.03 1.32 100% 0.0 9.0 0.11 0.38
MCM 6.64 0.12 5.52 1.34 -0.02 1.85 100% 0.0 16.1 0.03 0.98
MCM with efficiency augmentation 4.49 0.04 3.22 1.32 0.04 1.28 100% 0.0 8.0 0.11 0.36
R-learning 4.52 0.04 3.29 1.32 0.04 1.29 100% -0.1 8.2 0.11 0.37

4000 observations

Random Forest:
Infeasible 1.17 0.00 0.73 0.90 0.00 0.12 22% 0.0 3.0 0.79 0.54
Conditional mean regression 4.24 0.03 3.51 1.13 0.06 1.52 5% 0.0 3.0 0.29 0.86
MOM IPW 4.81 0.02 4.07 1.21 0.07 1.58 7% 0.0 3.0 0.18 0.83
MOM DR 3.20 0.01 2.18 1.21 0.05 0.99 7% 0.0 3.0 0.29 0.34
Causal Forest 3.78 0.02 2.96 1.17 0.06 1.31 7% 0.0 3.0 0.27 0.60
Causal Forest with local centering 3.78 0.02 2.99 1.16 0.06 1.32 9% 0.0 3.0 0.27 0.61
Lasso:
Infeasible 1.00 0.00 0.49 0.77 0.01 0.23 15% 0.0 3.1 0.82 0.66
Conditional mean regression 7.39 0.07 6.73 0.96 0.03 2.40 26% 0.0 3.3 0.32 2.31
MOM IPW 3.71 0.05 2.18 1.32 0.05 0.92 100% -0.2 11.9 0.12 0.25
MOM DR 3.15 0.02 1.79 1.29 0.04 0.70 100% -0.2 7.1 0.26 0.14
MCM 3.80 0.06 2.15 1.34 -0.01 0.88 100% -0.1 14.1 0.06 0.23
MCM with efficiency augmentation 3.20 0.02 1.81 1.30 0.04 0.69 100% -0.2 8.0 0.23 0.13
R-learning 3.19 0.02 1.81 1.30 0.04 0.69 99% -0.2 7.9 0.24 0.13

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over 2000 replications for the sample size of 1000 observations
and 500 replications for the sample size of 4000 observations. Bold numbers indicate the best performing estimators in terms of MSE and
estimators within two standard (simulation) errors of the lowest MSE.

75



Table D.9: Performance measure for ITE2 with random assignment and without random noise

MSE SE(MSE) Median MSE |Bias| Bias SD JB Skew. Kurt. Corr. Var. ratio

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1000 observations

Random Forest:
Infeasible 18.84 0.01 12.79 3.66 -0.04 0.54 39% 0.0 3.1 0.74 0.47
Conditional mean regression 26.71 0.05 15.28 3.93 0.04 1.92 14% 0.0 3.0 0.62 0.29
MOM IPW 36.35 0.06 17.07 4.42 0.09 2.06 15% 0.0 3.1 0.38 0.13
MOM DR 31.96 0.06 13.75 4.32 0.08 1.45 19% 0.0 3.0 0.56 0.10
Causal Forest 29.83 0.07 15.28 4.13 0.06 1.92 32% 0.0 3.1 0.57 0.19
Causal Forest with local centering 29.16 0.07 15.57 4.09 0.06 1.93 38% 0.0 3.1 0.58 0.21
Lasso:
Infeasible 16.81 0.01 10.77 3.22 -0.03 1.23 72% 0.0 3.4 0.77 0.57
Conditional mean regression 31.81 0.10 25.66 3.64 -0.02 3.54 78% 0.0 3.6 0.57 0.66
MOM IPW 41.74 0.12 20.93 4.61 0.03 2.37 100% -0.2 12.2 0.25 0.14
MOM DR 33.63 0.18 16.60 4.30 0.02 2.00 100% -0.2 17.0 0.51 0.15
MCM 43.79 0.12 20.62 4.76 -0.03 2.11 100% -0.1 11.6 0.13 0.10
MCM with efficiency augmentation 34.08 0.08 16.63 4.34 0.02 1.92 100% 0.0 5.6 0.49 0.14
R-learning 34.08 0.09 16.66 4.34 0.03 1.93 100% 0.0 7.0 0.49 0.14

4000 observations

Random Forest:
Infeasible 16.68 0.01 11.34 3.43 -0.04 0.45 15% 0.0 3.0 0.78 0.52
Conditional mean regression 21.70 0.03 13.64 3.65 0.01 1.57 8% 0.0 3.0 0.70 0.51
MOM IPW 29.57 0.09 13.96 4.15 0.08 1.69 8% 0.0 3.0 0.57 0.17
MOM DR 23.51 0.05 13.50 3.91 0.03 1.16 8% 0.0 3.0 0.69 0.25
Causal Forest 22.07 0.04 14.11 3.75 0.01 1.53 8% 0.0 3.0 0.70 0.41
Causal Forest with local centering 21.75 0.04 14.24 3.72 0.00 1.54 10% 0.0 3.0 0.70 0.43
Lasso:
Infeasible 14.49 0.01 8.33 3.00 -0.03 0.86 15% 0.0 3.1 0.81 0.63
Conditional mean regression 22.63 0.06 16.83 3.30 -0.02 2.56 23% 0.0 3.2 0.70 0.70
MOM IPW 30.93 0.14 15.01 4.22 0.02 1.70 99% 0.0 5.4 0.56 0.15
MOM DR 23.61 0.06 13.54 3.86 -0.01 1.38 85% 0.0 4.1 0.69 0.27
MCM 36.54 0.14 15.71 4.56 -0.03 1.36 100% 0.0 7.7 0.43 0.06
MCM with efficiency augmentation 24.21 0.06 13.76 3.91 0.00 1.36 89% -0.1 4.4 0.68 0.26
R-learning 24.21 0.06 13.76 3.91 0.00 1.36 89% 0.0 4.4 0.68 0.26

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over 2000 replications for the sample size of 1000 observations
and 500 replications for the sample size of 4000 observations. Bold numbers indicate the best performing estimators in terms of MSE and
estimators within two standard (simulation) errors of the lowest MSE.
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D.1.4 ITE with random assignment and random noise

The relative performances for the ITEs with noise but randomized treatment assignment

are very close to their selective equivalents. The mean SDs in the selective and randomized

settings are very similar. Also within the randomized setting, the mean absolute biases

are nearly identical for all estimators. The differences between selective and randomized

settings are thus only driven by different capabilities of the estimators to correct for

selection bias.
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Table D.10: Performance measure for ITE0 with random assignment and random noise

MSE SE(MSE) Median MSE |Bias| Bias SD JB Skew. Kurt. Corr. Var. ratio

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1000 observations

Random Forest:
Infeasible 0.79 0.00 0.82 0.62 0.00 0.05 83% -0.2 3.2 0.04 0.00
Conditional mean regression 4.04 0.03 3.75 0.62 0.02 1.80 6% 0.0 3.0 0.00 3.36
MOM IPW 4.89 0.03 4.51 0.62 0.01 2.01 10% 0.0 3.1 0.00 4.40
MOM DR 2.64 0.02 2.43 0.62 0.01 1.36 6% 0.0 3.0 0.00 1.67
Causal Forest 3.71 0.03 3.43 0.62 0.01 1.70 9% 0.0 3.1 0.00 2.90
Causal Forest with local centering 3.71 0.02 3.41 0.62 0.01 1.70 10% 0.0 3.1 0.00 2.97
Lasso:
Infeasible 0.79 0.00 0.86 0.62 0.00 0.05 100% -1.3 21.4 0.02 0.00
Conditional mean regression 11.07 0.10 10.13 0.63 0.01 3.14 87% 0.0 4.0 0.00 12.32
MOM IPW 4.54 0.12 3.92 0.62 0.01 1.89 100% 0.1 15.4 0.00 3.94
MOM DR 2.45 0.05 2.17 0.62 0.02 1.27 100% 0.1 9.7 0.00 1.33
MCM 4.50 0.11 3.86 0.61 -0.02 1.86 100% 0.1 14.3 0.00 3.88
MCM with efficiency augmentation 2.35 0.04 2.07 0.62 0.02 1.23 100% 0.0 8.3 0.00 1.22
R-learning 2.32 0.04 2.03 0.62 0.02 1.22 100% 0.1 8.1 0.00 1.18

4000 observations

Random Forest:
Infeasible 0.78 0.00 0.78 0.62 0.00 0.04 30% -0.2 3.1 0.06 0.00
Conditional mean regression 3.08 0.03 2.76 0.63 0.03 1.50 5% 0.0 3.0 0.00 2.76
MOM IPW 3.30 0.02 2.91 0.63 0.03 1.57 7% 0.0 3.0 0.00 3.03
MOM DR 1.75 0.01 1.54 0.63 0.02 0.98 6% 0.0 3.0 0.00 1.09
Causal Forest 2.47 0.01 2.19 0.63 0.02 1.29 7% 0.0 3.0 0.00 1.97
Causal Forest with local centering 2.49 0.01 2.22 0.63 0.02 1.30 7% 0.0 3.0 0.00 2.01
Lasso:
Infeasible 0.78 0.00 0.82 0.62 0.00 0.04 100% -0.1 7.1 0.04 0.00
Conditional mean regression 6.33 0.07 5.78 0.64 0.02 2.29 33% 0.0 3.4 0.00 6.90
MOM IPW 1.57 0.05 1.30 0.63 0.03 0.86 100% -0.1 13.2 0.00 0.81
MOM DR 1.15 0.02 1.05 0.62 0.02 0.59 98% 0.1 8.2 0.00 0.29
MCM 1.55 0.05 1.30 0.62 0.00 0.84 100% 0.0 14.2 0.00 0.79
MCM with efficiency augmentation 1.13 0.02 1.03 0.62 0.02 0.58 97% 0.0 9.0 0.00 0.27
R-learning 1.13 0.02 1.03 0.62 0.02 0.57 96% -0.1 8.7 0.00 0.27

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over 2000 replications for the sample size of 1000 observations
and 500 replications for the sample size of 4000 observations. Bold numbers indicate the best performing estimators in terms of MSE and
estimators within two standard (simulation) errors of the lowest MSE.
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Table D.11: Performance measure for ITE1 with random assignment and random noise

MSE SE(MSE) Median MSE |Bias| Bias SD JB Skew. Kurt. Corr. Var. ratio

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1000 observations

Random Forest:
Infeasible 2.98 0.00 1.03 1.29 0.01 0.15 71% -0.2 3.2 0.23 0.03
Conditional mean regression 6.28 0.03 4.22 1.28 0.04 1.79 7% 0.0 3.0 0.02 0.84
MOM IPW 7.16 0.03 5.50 1.27 0.03 2.01 10% 0.0 3.0 0.01 1.11
MOM DR 4.88 0.02 2.76 1.27 0.03 1.35 6% 0.0 3.0 0.02 0.42
Causal Forest 5.94 0.03 3.91 1.27 0.03 1.70 10% 0.0 3.1 0.02 0.73
Causal Forest with local centering 5.93 0.02 3.92 1.27 0.03 1.70 12% 0.0 3.1 0.02 0.74
Lasso:
Infeasible 3.00 0.00 1.08 1.28 0.01 0.21 100% -0.5 7.7 0.21 0.04
Conditional mean regression 13.26 0.10 11.73 1.28 0.03 3.14 87% 0.0 4.0 0.02 3.10
MOM IPW 6.99 0.13 5.34 1.28 0.02 1.92 100% -0.2 17.2 0.01 1.04
MOM DR 4.78 0.05 2.74 1.28 0.03 1.28 100% 0.1 9.8 0.01 0.34
MCM 6.78 0.11 5.27 1.27 -0.04 1.85 100% 0.1 15.1 0.00 0.96
MCM with efficiency augmentation 4.69 0.04 2.67 1.28 0.03 1.24 100% 0.0 8.5 0.01 0.32
R-learning 4.65 0.04 2.64 1.28 0.03 1.23 100% 0.0 8.4 0.01 0.31

4000 observations

Random Forest:
Infeasible 2.93 0.00 1.27 1.30 0.01 0.11 26% -0.1 3.1 0.25 0.06
Conditional mean regression 5.31 0.03 3.33 1.28 0.05 1.50 5% 0.0 3.0 0.03 0.70
MOM IPW 5.57 0.02 3.74 1.28 0.04 1.57 6% 0.0 3.0 0.02 0.77
MOM DR 4.00 0.01 1.90 1.28 0.04 0.98 6% 0.0 3.0 0.04 0.28
Causal Forest 4.70 0.01 2.67 1.28 0.04 1.29 7% 0.0 3.0 0.03 0.50
Causal Forest with local centering 4.71 0.01 2.69 1.28 0.04 1.29 8% 0.0 3.0 0.03 0.51
Lasso:
Infeasible 2.93 0.00 1.08 1.28 0.01 0.16 82% -0.1 4.0 0.25 0.06
Conditional mean regression 8.67 0.08 7.30 1.28 0.03 2.33 32% 0.0 3.3 0.04 1.83
MOM IPW 3.89 0.05 1.86 1.28 0.04 0.86 100% 0.0 11.7 0.01 0.21
MOM DR 3.46 0.02 1.41 1.28 0.04 0.59 98% -0.1 8.8 0.02 0.07
MCM 3.92 0.05 1.86 1.27 -0.02 0.86 100% 0.0 13.8 0.01 0.21
MCM with efficiency augmentation 3.45 0.02 1.44 1.28 0.03 0.58 99% 0.0 9.0 0.02 0.07
R-learning 3.46 0.02 1.43 1.28 0.03 0.59 98% -0.1 8.7 0.02 0.07

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over 2000 replications for the sample size of 1000 observations
and 500 replications for the sample size of 4000 observations. Bold numbers indicate the best performing estimators in terms of MSE and
estimators within two standard (simulation) errors of the lowest MSE.
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Table D.12: Performance measure for ITE2 with random assignment and random noise

MSE SE(MSE) Median MSE |Bias| Bias SD JB Skew. Kurt. Corr. Var. ratio

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1000 observations

Random Forest:
Infeasible 38.46 0.01 8.96 4.43 0.09 0.52 66% -0.2 3.2 0.19 0.02
Conditional mean regression 41.88 0.03 13.82 4.44 0.12 1.76 6% 0.0 3.0 0.06 0.07
MOM IPW 43.04 0.03 14.92 4.44 0.12 2.01 11% 0.0 3.0 0.04 0.09
MOM DR 40.76 0.02 12.86 4.44 0.10 1.35 5% 0.0 3.0 0.06 0.04
Causal Forest 41.67 0.03 13.85 4.44 0.11 1.69 9% 0.0 3.0 0.06 0.06
Causal Forest with local centering 41.68 0.02 13.84 4.44 0.12 1.70 10% 0.0 3.0 0.06 0.06
Lasso:
Infeasible 38.66 0.01 8.88 4.42 0.08 0.71 100% -0.6 8.3 0.18 0.03
Conditional mean regression 48.39 0.10 21.71 4.43 0.11 3.13 89% 0.0 3.9 0.05 0.26
MOM IPW 43.34 0.13 16.17 4.46 0.10 1.94 100% -0.2 16.9 0.02 0.08
MOM DR 41.11 0.04 13.50 4.46 0.11 1.32 100% 0.0 7.9 0.04 0.03
MCM 43.26 0.12 16.45 4.47 -0.08 1.87 100% 0.0 14.3 0.01 0.08
MCM with efficiency augmentation 41.09 0.04 13.51 4.46 0.11 1.30 100% 0.0 8.2 0.04 0.03
R-learning 41.09 0.04 13.50 4.46 0.11 1.30 100% 0.0 8.2 0.04 0.03

4000 observations

Random Forest:
Infeasible 37.86 0.00 6.30 4.43 0.07 0.41 31% -0.2 3.1 0.22 0.04
Conditional mean regression 40.51 0.03 11.74 4.43 0.13 1.47 5% 0.0 3.0 0.10 0.07
MOM IPW 41.23 0.02 13.48 4.43 0.12 1.57 6% 0.0 3.0 0.06 0.06
MOM DR 39.63 0.02 11.70 4.43 0.10 0.99 6% 0.0 3.0 0.10 0.03
Causal Forest 40.15 0.02 11.72 4.43 0.12 1.30 7% 0.0 3.0 0.09 0.05
Causal Forest with local centering 40.17 0.02 11.68 4.43 0.11 1.32 8% 0.0 3.0 0.09 0.05
Lasso:
Infeasible 37.84 0.00 6.69 4.40 0.07 0.53 84% -0.1 4.2 0.22 0.04
Conditional mean regression 43.27 0.07 14.64 4.42 0.09 2.33 27% 0.0 3.3 0.11 0.18
MOM IPW 40.27 0.05 12.33 4.46 0.12 0.94 100% -0.3 11.6 0.05 0.02
MOM DR 39.67 0.02 11.83 4.45 0.11 0.73 99% -0.1 6.8 0.09 0.01
MCM 40.38 0.05 11.46 4.47 -0.06 0.87 100% -0.3 13.4 0.02 0.02
MCM with efficiency augmentation 39.74 0.02 11.81 4.45 0.11 0.73 100% 0.0 7.8 0.08 0.01
R-learning 39.73 0.02 11.86 4.45 0.11 0.73 100% 0.0 7.7 0.08 0.01

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over 2000 replications for the sample size of 1000 observations
and 500 replications for the sample size of 4000 observations. Bold numbers indicate the best performing estimators in terms of MSE and
estimators within two standard (simulation) errors of the lowest MSE.
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D.1.5 ITE without censoring

This appendix shows the results for an alternative DGP that ignores the natural bounds

of our outcome variable. It takes the following form similar to Equations 30 to 21:

ω(x) = sin

(
1.25π pHLM(x)

max(pHLM(x))

)
, (30)

Ω(x) = α
ω(x)− ω̄
SD(ω(x)) + εi, (31)

ξnc(x) =


bΩ(x) if Ω(x)− bΩ(x) < ui

Ω(x)e if Ω(x)− bΩ(x) ≥ ui

(32)

where ui is uniformly distributed between zero and one. It is similar to the baseline

ITE1 without the censoring.

We run this robustness check for two purposes. First, to investigate whether our results

are sensitive to such modifications of the DGP. Second, we know the true IATE in this

formulation because ξnc(x) does not depend on the non-treated outcome Y 0
i via censoring.

Table D.13 shows the performance measure as in all tables above comparing the

estimated IATEs to the true ITEs in the validation sample. The only striking difference

to the other results is the very high mean MSE of Lasso MOM IPW. This is driven by

extreme outliers as indicated by the median MSE that is comparable to other methods.

Table D.14 shows the performance measures when comparing the estimated IATEs

to the true IATEs. The only differences compared to Table D.13 are the lower MSE

measures that are driven by lower mean absolute biases. Although the level of these

measures is changed, the ordering remains the same. This is expected because we get rid

of the irreducible noise component that enters as bias if the true ITEs is considered as

benchmark. This exercise illustrates that the performance measures based on the true

ITEs as benchmark lead to the same conclusions as if we would know the true IATE.
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Table D.13: Performance measure for ITE1 without censoring

MSE SE(MSE) Median MSE |Bias| Bias SD JB Skew. Kurt. Corr. Var. ratio

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1000 observations

Random Forest:
Infeasible 2.17 0.00 0.92 1.15 0.00 0.19 79% -0.1 3.2 0.77 0.49
Conditional mean regression 9.50 0.06 5.98 1.92 1.34 1.86 7% 0.0 3.0 0.18 0.66
MOM IPW 10.83 0.08 7.73 1.85 1.31 2.29 17% 0.0 3.1 0.62 2.60
MOM DR 6.75 0.03 4.28 1.78 0.88 1.35 12% 0.0 3.0 0.22 0.29
Causal Forest 9.57 0.06 5.79 2.00 1.55 1.75 14% 0.0 3.1 0.19 0.54
Causal Forest with local centering 8.21 0.04 5.89 1.76 0.84 1.84 15% 0.0 3.1 0.16 0.56
Lasso:
Infeasible 1.86 0.00 0.90 1.01 0.00 0.42 75% -0.1 3.5 0.80 0.61
Conditional mean regression 16.87 0.12 14.74 1.68 1.12 3.43 90% -0.1 4.0 0.20 2.50
MOM IPW 1048.99 1034.37 12.59 1.41 1.10 5.09 100% 1.0 41.5 0.41 200.92
MOM DR 8.83 0.80 6.12 1.86 0.80 1.80 100% -8.4 223.4 0.13 0.38
MCM 13.67 0.21 11.87 1.27 0.68 3.17 100% -0.1 6.9 0.42 2.68
MCM with efficiency augmentation 7.35 0.05 5.17 1.85 0.79 1.43 100% -0.2 7.8 0.15 0.28
R-learning 7.59 0.06 5.12 1.89 0.90 1.39 100% -0.1 10.6 0.11 0.26

4000 observations

Random Forest:
Infeasible 1.91 0.00 0.86 1.07 0.00 0.16 29% -0.1 3.1 0.80 0.55
Conditional mean regression 7.80 0.06 4.77 1.83 1.20 1.56 5% 0.0 3.0 0.26 0.61
MOM IPW 6.89 0.05 4.87 1.42 0.91 1.84 9% 0.0 3.0 0.59 1.66
MOM DR 5.12 0.03 3.28 1.63 0.58 1.05 15% 0.0 3.1 0.35 0.25
Causal Forest 7.77 0.06 4.26 1.91 1.47 1.36 8% 0.0 3.0 0.29 0.44
Causal Forest with local centering 6.14 0.03 4.24 1.62 0.64 1.44 11% 0.0 3.1 0.28 0.44
Lasso:
Infeasible 1.59 0.00 0.73 0.95 0.00 0.28 16% 0.0 3.1 0.83 0.67
Conditional mean regression 9.93 0.09 8.44 1.38 0.78 2.53 35% -0.1 3.3 0.38 1.79
MOM IPW 7.63 0.14 6.27 1.19 0.74 2.19 97% 0.1 5.4 0.53 1.61
MOM DR 5.34 0.04 3.08 1.76 0.51 0.85 99% -0.4 9.3 0.31 0.14
MCM 7.34 0.14 5.80 1.20 0.49 2.09 100% -0.1 5.4 0.49 1.44
MCM with efficiency augmentation 5.28 0.03 2.95 1.77 0.47 0.82 99% -0.2 7.6 0.30 0.13
R-learning 5.49 0.03 3.22 1.81 0.60 0.79 99% -0.2 7.5 0.27 0.11

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over 2000 replications for the sample size of 1000 observations
and 500 replications for the sample size of 4000 observations. Bold numbers indicate the best performing estimators in terms of MSE and
estimators within two standard (simulation) errors of the lowest MSE.
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Table D.14: Performance measure for ITE1 without censoring with true IATE as benchmark

MSE SE(MSE) Median MSE |Bias| Bias SD JB Skew. Kurt. Corr. Var. ratio

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1000 observations

Random Forest:
Infeasible 0.98 0.00 0.48 0.77 0.00 0.19 79% -0.1 3.2 0.77 0.49
Conditional mean regression 8.31 0.06 5.26 1.69 1.34 1.86 7% 0.0 3.0 0.18 0.66
MOM IPW 9.64 0.08 7.19 1.66 1.31 2.29 17% 0.0 3.1 0.62 2.60
MOM DR 5.56 0.03 3.42 1.56 0.88 1.35 12% 0.0 3.0 0.22 0.29
Causal Forest 8.37 0.06 4.96 1.77 1.55 1.75 14% 0.0 3.1 0.19 0.54
Causal Forest with local centering 7.01 0.04 5.09 1.54 0.84 1.84 15% 0.0 3.1 0.16 0.56
Lasso:
Infeasible 0.68 0.00 0.41 0.53 0.00 0.42 75% -0.1 3.5 0.80 0.61
Conditional mean regression 15.68 0.12 14.08 1.44 1.12 3.43 90% -0.1 4.0 0.20 2.50
MOM IPW 1047.83 1034.38 11.76 1.19 1.10 5.09 100% 1.0 41.5 0.41 200.92
MOM DR 7.64 0.80 4.77 1.68 0.80 1.80 100% -8.4 223.4 0.13 0.38
MCM 12.49 0.21 10.94 0.95 0.68 3.17 100% -0.1 6.9 0.42 2.68
MCM with efficiency augmentation 6.16 0.05 3.91 1.66 0.79 1.43 100% -0.2 7.8 0.15 0.28
R-learning 6.40 0.06 3.72 1.71 0.90 1.39 100% -0.1 10.6 0.11 0.26

4000 observations

Random Forest:
Infeasible 0.72 0.00 0.33 0.64 0.00 0.16 29% -0.1 3.1 0.80 0.55
Conditional mean regression 6.60 0.06 4.18 1.59 1.20 1.56 5% 0.0 3.0 0.27 0.61
MOM IPW 5.72 0.05 4.34 1.15 0.91 1.84 9% 0.0 3.0 0.59 1.66
MOM DR 3.92 0.03 2.76 1.41 0.58 1.05 15% 0.0 3.1 0.35 0.25
Causal Forest 6.57 0.06 3.57 1.67 1.47 1.36 8% 0.0 3.0 0.29 0.44
Causal Forest with local centering 4.94 0.03 3.68 1.39 0.64 1.44 11% 0.0 3.1 0.28 0.44
Lasso:
Infeasible 0.42 0.00 0.20 0.39 0.00 0.28 16% 0.0 3.1 0.83 0.67
Conditional mean regression 8.75 0.09 7.84 1.10 0.78 2.53 35% -0.1 3.3 0.38 1.79
MOM IPW 6.47 0.14 5.63 0.88 0.74 2.19 97% 0.1 5.4 0.52 1.61
MOM DR 4.15 0.04 2.94 1.56 0.50 0.85 99% -0.4 9.3 0.31 0.14
MCM 6.17 0.14 4.92 0.87 0.49 2.09 100% -0.1 5.4 0.49 1.44
MCM with efficiency augmentation 4.09 0.03 3.00 1.57 0.47 0.82 99% -0.2 7.6 0.30 0.13
R-learning 4.31 0.03 2.87 1.61 0.60 0.79 99% -0.2 7.5 0.27 0.11

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over 2000 replications for the sample size of 1000 observations
and 500 replications for the sample size of 4000 observations. Bold numbers indicate the best performing estimators in terms of MSE and
estimators within two standard (simulation) errors of the lowest MSE.
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D.2 Results for GATE estimation

The Appendices D.2.1 to D.2.4 show the full results for GATE estimation in the 24

DGP-sample size combinations. The performance measures are the same as for IATE

estimation. However, we omit the infeasible benchmark because it is not clear how it

should be constructed for GATEs.

D.2.1 GATEs from ITE with selection and without random noise

The additional performance measures for the baseline ITE0 do not change the conclusions

in the main text. The mean bias shows that the substantial positive biases remain due to

selection bias. This is in line with the IATE results and shows that averaging the IATEs

does not remove the selection bias.

Also the GATE estimation of ITE1 and ITE2 without random noise shows patterns

that are already observed for their baseline equivalents with noise. We observe that some

estimators that show low mean absolute bias but high mean SD for the IATEs become

competitive by averaging out the noise. In particular, Random Forest MOM IPW shows

very low mean MSE for ITE1 with 4,000 observations and ITE2 with 1,000 observations.

Similarly, Lasso mean regression is locally very successful for ITE2 in the 4,000 observations

sample. While such competitive performances are usually not consistent for mean MSE

and median MSE in the case of IATE estimation, they are confirmed for GATE estimation.

However, we observe no systematic pattern that explains under which circumstances which

noisy IATE estimator provides a good GATE estimator. Thus, the four consistently well

performing IATE estimators seem to be also the dominant choice for the GATE estimation.
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Table D.15: Performance measures for GATE of ITE0 with selection and without random noise (baseline)

MSE SE(MSE) Median MSE |Bias| Bias SD JB Skew. Kurt. Corr. Var. ratio

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1000 observations

Random Forest:
Conditional mean regression 1.77 0.03 1.32 0.55 0.55 1.19 22% 0.0 3.1 - -
MOM IPW 4.44 0.05 2.12 1.59 0.05 1.16 47% -0.1 3.2 - -
MOM DR 0.87 0.02 0.93 0.38 0.38 0.85 20% 0.0 3.1 - -
Causal Forest 1.44 0.03 1.22 0.70 0.70 0.96 17% 0.0 3.1 - -
Causal Forest with local centering 1.08 0.02 1.03 0.33 0.33 0.99 8% 0.0 3.0 - -
Lasso:
Conditional mean regression 3.35 0.04 1.77 0.55 0.54 1.70 34% 0.0 3.1 - -
MOM IPW 3.15 0.07 1.72 0.78 0.32 1.50 100% -0.1 4.6 - -
MOM DR 38.85 37.73 6.13 0.59 0.59 6.20 100% 43.1 1901.5 - -
MCM 4.56 0.10 1.93 1.20 0.03 1.62 100% -0.3 4.0 - -
MCM with efficiency augmentation 1.04 0.03 1.02 0.41 0.41 0.93 66% -0.1 3.5 - -
R-learning 1.04 0.03 1.01 0.44 0.44 0.92 73% -0.1 3.7 - -

4000 observations

Random Forest:
Conditional mean regression 1.07 0.03 1.01 0.49 0.47 0.86 8% 0.0 3.1 - -
MOM IPW 1.12 0.02 0.92 0.67 0.21 0.66 6% 0.0 3.0 - -
MOM DR 0.30 0.01 0.55 0.25 0.25 0.48 14% 0.0 3.1 - -
Causal Forest 0.74 0.03 0.86 0.64 0.64 0.53 0% 0.0 2.9 - -
Causal Forest with local centering 0.35 0.01 0.59 0.22 0.22 0.54 3% 0.0 3.0 - -
Lasso:
Conditional mean regression 1.45 0.03 1.16 0.47 0.42 1.06 6% 0.0 3.1 - -
MOM IPW 1.19 0.04 1.06 0.53 0.26 0.87 86% -0.1 3.7 - -
MOM DR 0.30 0.02 0.54 0.31 0.31 0.45 38% 0.0 3.4 - -
MCM 1.65 0.06 1.14 0.75 0.07 0.92 94% -0.1 3.8 - -
MCM with efficiency augmentation 0.27 0.01 0.51 0.26 0.26 0.45 55% -0.1 3.7 - -
R-learning 0.27 0.02 0.52 0.28 0.28 0.44 25% 0.1 3.4 - -

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over 2000 replications for the sample size of 1000 observations
and 500 replications for the sample size of 4000 observations. Bold numbers indicate the best performing estimators in terms of MSE and
estimators within two standard (simulation) errors of the lowest MSE.
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Table D.16: Performance measures for GATE of ITE1 with selection and without random noise

MSE SE(MSE) Median MSE |Bias| Bias SD JB Skew. Kurt. Corr. Var. ratio

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1000 observations

Random Forest:
Conditional mean regression 4.39 0.06 1.84 1.41 1.40 1.20 22% 0.0 3.1 -0.11 0.33
MOM IPW 3.19 0.04 1.55 1.10 0.72 1.18 44% -0.1 3.2 0.56 1.85
MOM DR 2.66 0.04 1.30 1.09 1.04 0.83 22% -0.1 3.1 -0.06 0.09
Causal Forest 4.40 0.06 1.85 1.62 1.62 0.96 20% 0.0 3.1 -0.22 0.14
Causal Forest with local centering 2.87 0.04 1.36 1.08 1.01 0.98 14% 0.0 3.0 -0.03 0.12
Lasso:
Conditional mean regression 5.11 0.06 2.24 1.17 1.15 1.76 42% -0.1 3.1 0.07 0.95
MOM IPW 3.50 0.06 1.83 0.89 0.89 1.60 100% -0.1 4.2 0.32 1.15
MOM DR 37.54 34.31 6.07 1.26 1.21 5.91 100% 42.8 1887.4 -1.16 0.09
MCM 3.43 0.07 1.71 0.58 0.45 1.68 100% -0.3 3.9 0.43 1.52
MCM with efficiency augmentation 3.06 0.04 1.42 1.16 1.03 0.95 78% -0.1 3.8 -1.42 0.08
R-learning 3.34 0.05 1.47 1.23 1.14 0.93 78% -0.1 3.8 -1.62 0.06

4000 observations

Random Forest:
Conditional mean regression 3.15 0.05 1.46 1.26 1.23 0.88 6% 0.0 3.1 0.03 0.31
MOM IPW 1.09 0.03 0.93 0.69 0.69 0.68 16% 0.0 3.1 0.52 0.65
MOM DR 1.47 0.03 0.90 0.87 0.75 0.48 25% 0.0 3.2 0.26 0.08
Causal Forest 3.27 0.06 1.62 1.51 1.51 0.54 3% 0.0 3.0 -0.05 0.12
Causal Forest with local centering 1.67 0.03 0.96 0.91 0.80 0.55 8% 0.0 3.1 0.19 0.09
Lasso:
Conditional mean regression 2.08 0.04 1.38 0.77 0.76 1.11 8% 0.0 3.1 0.34 0.67
MOM IPW 1.43 0.04 1.20 0.65 0.65 0.96 64% 0.0 3.5 0.46 0.74
MOM DR 1.90 0.04 0.89 1.03 0.79 0.50 69% -0.1 3.5 -1.41 0.04
MCM 1.28 0.04 1.00 0.42 0.40 0.97 67% -0.1 3.4 0.47 0.72
MCM with efficiency augmentation 1.81 0.04 0.89 1.01 0.75 0.49 69% -0.1 3.4 -0.77 0.04
R-learning 2.09 0.04 0.94 1.09 0.87 0.48 66% -0.1 3.8 -1.29 0.03

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over 2000 replications for the sample size of 1000 observations
and 500 replications for the sample size of 4000 observations. Bold numbers indicate the best performing estimators in terms of MSE and
estimators within two standard (simulation) errors of the lowest MSE.
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Table D.17: Performance measures for GATE of ITE2 with selection and without random noise

MSE SE(MSE) Median MSE |Bias| Bias SD JB Skew. Kurt. Corr. Var. ratio

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1000 observations

Random Forest:
Conditional mean regression 19.52 0.14 3.50 3.30 3.05 1.29 28% 0.0 3.1 0.28 0.08
MOM IPW 8.38 0.09 2.54 2.30 2.30 1.24 45% -0.1 3.1 0.56 0.34
MOM DR 19.64 0.09 2.71 3.44 2.68 0.85 41% -0.1 3.1 0.24 0.03
Causal Forest 27.12 0.15 3.87 3.97 3.84 1.02 44% -0.1 3.2 0.00 0.04
Causal Forest with local centering 17.59 0.12 2.75 3.20 2.54 1.06 47% -0.1 3.2 0.32 0.05
Lasso:
Conditional mean regression 9.28 0.10 2.51 1.88 1.77 1.88 30% 0.0 3.1 0.52 0.28
MOM IPW 9.81 0.12 2.77 2.14 2.11 1.84 97% -0.1 3.7 0.51 0.29
MOM DR 51.94 34.59 6.64 3.25 2.35 5.97 100% 41.5 1810.7 0.11 0.05
MCM 9.29 0.12 2.35 1.95 1.53 1.80 94% -0.2 3.6 0.52 0.21
MCM with efficiency augmentation 17.87 0.13 2.93 3.27 2.34 1.18 94% -0.2 3.6 0.12 0.04
R-learning 20.45 0.14 2.86 3.50 2.63 1.14 84% -0.2 3.6 -0.20 0.03

4000 observations

Random Forest:
Conditional mean regression 8.44 0.12 2.91 2.26 2.10 0.94 19% 0.0 3.1 0.55 0.20
MOM IPW 5.23 0.08 1.62 1.78 1.68 0.73 17% -0.1 3.1 0.60 0.25
MOM DR 7.77 0.09 1.92 2.18 1.60 0.58 2% 0.0 3.0 0.59 0.13
Causal Forest 16.66 0.19 3.38 3.21 3.16 0.72 16% 0.0 2.9 0.40 0.10
Causal Forest with local centering 5.36 0.09 1.55 1.76 1.41 0.71 3% 0.1 3.0 0.62 0.20
Lasso:
Conditional mean regression 2.64 0.05 1.48 0.96 0.89 1.11 5% 0.0 3.0 0.65 0.40
MOM IPW 3.51 0.07 1.72 1.35 1.33 1.05 25% 0.0 3.2 0.63 0.36
MOM DR 5.50 0.09 1.81 1.85 1.19 0.71 27% 0.0 3.2 0.64 0.16
MCM 6.41 0.13 1.88 1.85 1.21 1.08 48% -0.1 3.4 0.61 0.17
MCM with efficiency augmentation 6.60 0.09 2.02 2.05 1.35 0.69 36% 0.0 3.2 0.62 0.14
R-learning 7.86 0.11 2.17 2.23 1.55 0.72 41% 0.1 3.2 0.60 0.12

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over 2000 replications for the sample size of 1000 observations
and 500 replications for the sample size of 4000 observations. Bold numbers indicate the best performing estimators in terms of MSE and
estimators within two standard (simulation) errors of the lowest MSE.
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D.2.2 GATEs from ITE with selection and random noise

The GATE results for ITE0 with random noise are very similar to the baseline without

noise. Besides Lasso MOM DR that performs even worse, all estimators show very similar

performance with differences only at the second digit of most performance measures. This

shows how the additional noise is averaged out on the group level.

The additional performance measures for the baseline ITE1 and ITE2 confirm the

results that are discussed in the main text.
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Table D.18: Performance measures for GATE of ITE0 with selection and random noise

MSE SE(MSE) Median MSE |Bias| Bias SD JB Skew. Kurt. Corr. Var. ratio

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1000 observations

Random Forest:
Conditional mean regression 1.75 0.03 1.30 0.53 0.53 1.18 25% 0.0 3.1 0.01 1.09
MOM IPW 4.57 0.05 2.09 1.61 0.02 1.16 41% -0.1 3.2 -0.01 4.95
MOM DR 0.84 0.02 0.92 0.35 0.35 0.84 20% 0.0 3.1 0.02 0.26
Causal Forest 1.41 0.03 1.18 0.68 0.68 0.95 16% 0.0 3.1 0.03 0.40
Causal Forest with local centering 1.06 0.02 1.02 0.30 0.30 0.98 20% 0.0 3.1 0.02 0.41
Lasso:
Conditional mean regression 3.28 0.04 1.74 0.54 0.52 1.69 33% 0.0 3.1 0.01 3.00
MOM IPW 3.14 0.07 1.71 0.80 0.29 1.49 100% -0.1 4.5 0.02 2.90
MOM DR 72.02 70.92 6.06 0.60 0.60 7.64 100% 43.0 1900.7 0.13 17.68
MCM 4.55 0.09 1.91 1.20 -0.03 1.61 98% -0.3 3.9 0.01 4.74
MCM with efficiency augmentation 1.03 0.03 1.01 0.39 0.39 0.93 75% 0.0 3.6 0.09 0.22
R-learning 1.03 0.03 1.01 0.42 0.42 0.92 73% 0.0 3.7 0.11 0.21

4000 observations

Random Forest:
Conditional mean regression 1.06 0.03 1.01 0.48 0.45 0.86 6% 0.0 3.0 0.01 0.88
MOM IPW 1.16 0.02 0.96 0.69 0.19 0.66 6% 0.0 3.0 -0.01 1.17
MOM DR 0.30 0.01 0.54 0.24 0.23 0.48 13% 0.0 3.0 0.03 0.12
Causal Forest 0.72 0.03 0.85 0.62 0.62 0.53 2% 0.1 2.9 0.03 0.21
Causal Forest with local centering 0.35 0.01 0.59 0.21 0.20 0.54 5% 0.1 3.0 0.02 0.17
Lasso:
Conditional mean regression 1.43 0.03 1.15 0.45 0.41 1.05 14% 0.0 3.1 0.01 1.39
MOM IPW 1.20 0.04 1.06 0.54 0.24 0.87 91% 0.0 3.9 0.02 1.23
MOM DR 0.30 0.02 0.54 0.29 0.29 0.45 42% 0.1 3.5 0.20 0.05
MCM 1.60 0.06 1.10 0.75 0.03 0.90 89% -0.2 3.6 0.02 1.78
MCM with efficiency augmentation 0.27 0.01 0.51 0.24 0.24 0.45 28% 0.0 3.4 0.14 0.05
R-learning 0.28 0.01 0.52 0.26 0.26 0.44 14% 0.1 3.2 0.19 0.04

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over 2000 replications for the sample size of 1000 observations
and 500 replications for the sample size of 4000 observations. Bold numbers indicate the best performing estimators in terms of MSE and
estimators within two standard (simulation) errors of the lowest MSE.
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Table D.19: Performance measures for GATE of ITE1 with selection and random noise (baseline)

MSE SE(MSE) Median MSE |Bias| Bias SD JB Skew. Kurt. Corr. Var. ratio

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1000 observations

Random Forest:
Conditional mean regression 2.30 0.04 1.41 0.85 0.84 1.18 20% 0.0 3.1 -0.04 0.28
MOM IPW 3.84 0.04 1.89 1.41 0.26 1.17 41% -0.1 3.1 0.20 1.43
MOM DR 1.16 0.02 1.01 0.59 0.59 0.83 20% 0.0 3.1 -0.03 0.07
Causal Forest 2.04 0.04 1.32 1.01 1.01 0.95 19% 0.0 3.1 -0.06 0.11
Causal Forest with local centering 1.38 0.03 1.11 0.56 0.56 0.97 17% 0.0 3.1 -0.02 0.10
Lasso:
Conditional mean regression 3.68 0.05 1.92 0.78 0.76 1.69 41% -0.1 3.1 -0.01 0.77
MOM IPW 3.03 0.06 1.70 0.65 0.51 1.53 100% -0.2 5.3 0.09 0.84
MOM DR 39.33 37.80 6.18 0.79 0.79 6.20 100% 43.0 1899.5 -0.30 0.08
MCM 3.98 0.09 1.79 0.93 0.11 1.65 97% -0.2 4.1 0.15 1.32
MCM with efficiency augmentation 1.40 0.03 1.11 0.62 0.61 0.93 80% -0.1 3.7 -0.32 0.06
R-learning 1.45 0.03 1.13 0.68 0.67 0.91 75% 0.0 3.6 -0.31 0.05

4000 observations

Random Forest:
Conditional mean regression 1.53 0.04 1.11 0.76 0.74 0.86 6% 0.0 3.1 -0.02 0.23
MOM IPW 0.99 0.02 0.81 0.54 0.37 0.67 11% 0.0 3.0 0.17 0.39
MOM DR 0.49 0.02 0.61 0.42 0.41 0.48 17% 0.0 3.1 0.02 0.04
Causal Forest 1.26 0.04 1.00 0.93 0.93 0.53 2% 0.0 3.0 -0.03 0.06
Causal Forest with local centering 0.58 0.02 0.67 0.44 0.42 0.54 5% 0.1 3.0 0.01 0.05
Lasso:
Conditional mean regression 1.66 0.03 1.27 0.60 0.57 1.06 14% 0.0 3.1 0.03 0.39
MOM IPW 1.17 0.04 1.04 0.47 0.38 0.89 77% 0.0 3.7 0.13 0.41
MOM DR 0.59 0.02 0.61 0.50 0.47 0.46 42% 0.0 3.5 -0.37 0.02
MCM 1.31 0.05 1.03 0.52 0.13 0.93 91% -0.1 3.6 0.16 0.53
MCM with efficiency augmentation 0.55 0.02 0.58 0.47 0.42 0.45 39% 0.0 3.3 -0.39 0.01
R-learning 0.61 0.02 0.61 0.51 0.48 0.45 48% 0.0 3.4 -0.60 0.01

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over 2000 replications for the sample size of 1000 observations
and 500 replications for the sample size of 4000 observations. Bold numbers indicate the best performing estimators in terms of MSE and
estimators within two standard (simulation) errors of the lowest MSE.
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Table D.20: Performance measures for GATE of ITE2 with selection and random noise (baseline)

MSE SE(MSE) Median MSE |Bias| Bias SD JB Skew. Kurt. Corr. Var. ratio

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1000 observations

Random Forest:
Conditional mean regression 5.28 0.06 1.70 1.57 1.51 1.15 20% 0.0 3.1 -0.05 0.02
MOM IPW 3.75 0.04 1.61 1.25 0.77 1.18 41% -0.1 3.1 0.16 0.15
MOM DR 3.50 0.04 1.32 1.29 1.10 0.84 23% -0.1 3.1 -0.02 0.01
Causal Forest 5.33 0.06 1.65 1.71 1.69 0.94 25% 0.0 3.1 -0.07 0.01
Causal Forest with local centering 3.74 0.05 1.40 1.28 1.10 0.98 11% 0.0 3.0 -0.01 0.01
Lasso:
Conditional mean regression 5.73 0.06 2.15 1.34 1.29 1.71 42% -0.1 3.1 0.02 0.07
MOM IPW 4.00 0.06 1.94 1.01 0.95 1.59 100% -0.1 4.1 0.09 0.09
MOM DR 30.36 26.20 4.28 1.43 1.24 4.71 100% 40.2 1737.8 -0.47 0.13
MCM 3.65 0.06 1.84 0.66 0.37 1.67 100% -0.3 4.0 0.13 0.12
MCM with efficiency augmentation 3.94 0.05 1.42 1.35 1.10 0.95 72% -0.1 3.7 -0.39 0.01
R-learning 4.27 0.05 1.46 1.43 1.22 0.93 72% -0.1 3.7 -0.45 0.01

4000 observations

Random Forest:
Conditional mean regression 3.97 0.06 1.45 1.44 1.36 0.85 22% 0.0 3.2 0.01 0.02
MOM IPW 1.72 0.03 1.14 0.95 0.76 0.68 14% -0.1 3.0 0.15 0.05
MOM DR 2.19 0.03 0.95 1.08 0.81 0.49 23% 0.0 3.1 0.08 0.01
Causal Forest 4.17 0.06 1.47 1.60 1.59 0.53 8% 0.0 3.0 -0.02 0.01
Causal Forest with local centering 2.43 0.04 1.00 1.12 0.90 0.55 9% 0.0 3.0 0.06 0.01
Lasso:
Conditional mean regression 2.59 0.05 1.39 0.95 0.89 1.09 11% 0.0 3.0 0.11 0.05
MOM IPW 1.92 0.04 1.33 0.82 0.71 0.96 45% 0.1 3.4 0.14 0.06
MOM DR 2.71 0.04 1.02 1.23 0.85 0.52 69% -0.1 3.6 -0.33 0.00
MCM 1.58 0.04 1.15 0.61 0.33 0.97 81% -0.1 3.6 0.16 0.06
MCM with efficiency augmentation 2.63 0.04 1.04 1.22 0.81 0.51 67% -0.1 3.4 -0.24 0.00
R-learning 2.95 0.04 1.07 1.29 0.94 0.50 50% -0.1 3.5 -0.33 0.00

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over 2000 replications for the sample size of 1000 observations
and 500 replications for the sample size of 4000 observations. Bold numbers indicate the best performing estimators in terms of MSE and
estimators within two standard (simulation) errors of the lowest MSE.
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D.2.3 GATEs from ITE with random assignment and without random noise

The GATE estimation with random assignment and without noise shows similar patterns

as for the IATE estimation discussed in D.1.3. However, the outstanding performance of

Lasso conditional mean regression for the large ITE2 is even more pronounced with mean

absolute biases of less than halve of the next best estimator. Furthermore, both versions

of Causal Forest perform best for ITE1 with 4,000 observations.
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Table D.21: Performance measures for GATE of ITE0 with random assignment and without random noise

MSE SE(MSE) Median MSE |Bias| Bias SD JB Skew. Kurt. Corr. Var. ratio

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1000 observations

Conditional mean regression 1.43 0.03 1.20 0.02 0.01 1.19 23% 0.0 3.1 - -
MOM IPW 1.13 0.02 1.05 0.01 0.01 1.06 28% 0.0 3.1 - -
MOM DR 0.75 0.02 0.87 0.01 0.01 0.87 0% 0.0 3.0 - -
Causal Forest 0.94 0.02 0.97 0.01 0.01 0.97 11% 0.0 3.1 - -
Causal Forest with local centering 0.90 0.02 0.94 0.02 0.01 0.94 2% 0.0 3.0 - -
Lasso:
Conditional mean regression 2.90 0.04 1.64 0.02 0.01 1.68 20% 0.0 3.1 - -
MOM IPW 1.09 0.03 1.00 0.01 0.01 1.04 100% 0.0 4.3 - -
MOM DR 0.78 0.02 0.88 0.01 0.01 0.88 61% 0.0 3.5 - -
MCM 1.04 0.03 0.96 0.01 0.01 1.01 100% 0.0 4.3 - -
MCM with efficiency augmentation 0.74 0.02 0.85 0.02 0.02 0.86 64% 0.0 3.4 - -
R-learning 0.73 0.02 0.85 0.02 0.02 0.86 56% 0.0 3.4 - -

4000 observations

Random Forest:
Conditional mean regression 0.76 0.02 0.84 0.04 0.02 0.86 6% 0.0 3.1 - -
MOM IPW 0.33 0.01 0.57 0.03 0.03 0.57 11% 0.0 3.2 - -
MOM DR 0.20 0.01 0.45 0.02 0.02 0.45 2% 0.0 3.0 - -
Causal Forest 0.26 0.01 0.52 0.03 0.03 0.51 0% 0.1 3.0 - -
Causal Forest with local centering 0.25 0.01 0.50 0.02 0.02 0.50 3% 0.1 3.0 - -
Lasso:
Conditional mean regression 1.13 0.02 1.03 0.05 0.01 1.05 6% 0.0 3.0 - -
MOM IPW 0.24 0.01 0.46 0.03 0.03 0.48 59% 0.1 4.7 - -
MOM DR 0.17 0.01 0.41 0.02 0.02 0.41 6% 0.1 3.0 - -
MCM 0.23 0.01 0.45 0.03 0.03 0.47 56% 0.2 4.4 - -
MCM with efficiency augmentation 0.16 0.01 0.40 0.02 0.02 0.40 14% 0.1 3.1 - -
R-learning 0.16 0.01 0.40 0.02 0.02 0.40 17% 0.1 3.1 - -

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over 2000 replications for the sample size of 1000 observations
and 500 replications for the sample size of 4000 observations. Bold numbers indicate the best performing estimators in terms of MSE and
estimators within two standard (simulation) errors of the lowest MSE.
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Table D.22: Performance measures for GATE of ITE1 with random assignment and without random noise

MSE SE(MSE) Median MSE |Bias| Bias SD JB Skew. Kurt. Corr. Var. ratio

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1000 observations

Random Forest:
Conditional mean regression 2.27 0.03 1.42 0.79 0.31 1.19 17% 0.0 3.1 0.24 0.30
MOM IPW 2.12 0.03 1.33 0.85 0.34 1.05 22% 0.0 3.1 0.19 0.18
MOM DR 1.74 0.02 1.19 0.85 0.34 0.86 2% 0.0 3.0 0.28 0.09
Causal Forest 1.84 0.03 1.24 0.80 0.32 0.97 9% 0.0 3.1 0.30 0.13
Causal Forest with local centering 1.78 0.02 1.23 0.80 0.33 0.94 6% 0.0 3.0 0.29 0.13
Lasso:
Conditional mean regression 3.47 0.04 1.84 0.57 0.20 1.71 16% 0.0 3.1 0.22 0.86
MOM IPW 2.39 0.03 1.38 0.97 0.38 1.04 100% -0.1 4.3 0.02 0.15
MOM DR 2.09 0.03 1.27 0.97 0.38 0.90 77% -0.1 3.5 0.06 0.07
MCM 2.43 0.03 1.41 1.02 0.34 1.02 100% 0.0 4.4 0.02 0.13
MCM with efficiency augmentation 2.05 0.03 1.25 0.97 0.39 0.87 67% 0.0 3.5 0.06 0.06
R-learning 2.05 0.02 1.25 0.97 0.39 0.87 75% -0.1 3.5 0.06 0.06

4000 observations

Random Forest:
Conditional mean regression 1.34 0.03 1.10 0.65 0.26 0.87 8% 0.0 3.1 0.37 0.30
MOM IPW 1.22 0.02 0.94 0.79 0.33 0.58 11% 0.0 3.2 0.34 0.10
MOM DR 1.04 0.02 0.87 0.78 0.32 0.45 0% 0.1 3.0 0.47 0.07
Causal Forest 0.97 0.02 0.84 0.70 0.30 0.52 8% 0.0 3.1 0.48 0.10
Causal Forest with local centering 0.95 0.02 0.83 0.70 0.29 0.52 5% 0.0 3.1 0.48 0.10
Lasso:
Conditional mean regression 1.28 0.02 1.13 0.25 0.09 1.07 5% 0.0 3.0 0.47 0.61
MOM IPW 1.58 0.02 1.07 0.98 0.40 0.51 80% -0.2 4.9 -0.01 0.04
MOM DR 1.36 0.02 0.97 0.92 0.37 0.46 48% -0.1 3.3 0.12 0.03
MCM 1.63 0.02 1.09 1.02 0.36 0.48 69% 0.0 4.7 0.05 0.03
MCM with efficiency augmentation 1.39 0.02 0.98 0.93 0.38 0.45 53% -0.1 3.3 0.21 0.03
R-learning 1.38 0.02 0.98 0.93 0.38 0.45 44% -0.1 3.3 0.34 0.03

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over 2000 replications for the sample size of 1000 observations
and 500 replications for the sample size of 4000 observations. Bold numbers indicate the best performing estimators in terms of MSE and
estimators within two standard (simulation) errors of the lowest MSE.

94



Table D.23: Performance measures for GATE of ITE2 with random assignment and without random noise

MSE SE(MSE) Median MSE |Bias| Bias SD JB Skew. Kurt. Corr. Var. ratio

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1000 observations

Random Forest:
Conditional mean regression 5.26 0.05 2.03 1.66 0.53 1.26 8% 0.0 3.0 0.66 0.19
MOM IPW 13.35 0.06 2.98 3.01 1.09 1.06 27% 0.0 3.1 0.56 0.04
MOM DR 10.96 0.06 2.59 2.74 0.99 0.92 39% 0.0 3.1 0.64 0.05
Causal Forest 8.07 0.07 2.22 2.21 0.77 1.15 59% -0.1 3.1 0.66 0.11
Causal Forest with local centering 7.41 0.07 2.12 2.10 0.73 1.13 55% -0.1 3.1 0.66 0.12
Lasso:
Conditional mean regression 4.52 0.04 1.97 0.95 0.21 1.74 19% 0.0 3.1 0.65 0.33
MOM IPW 16.87 0.10 3.37 3.39 1.20 1.25 100% -0.1 4.4 0.43 0.03
MOM DR 10.78 0.09 2.72 2.65 0.93 1.20 100% -0.1 3.6 0.64 0.07
MCM 19.02 0.09 3.64 3.67 1.24 1.13 100% -0.1 4.4 0.16 0.02
MCM with efficiency augmentation 11.17 0.09 2.79 2.71 0.96 1.18 100% -0.1 3.4 0.60 0.06
R-learning 11.14 0.09 2.79 2.71 0.96 1.18 100% -0.1 3.4 0.62 0.06

4000 observations

Random Forest:
Conditional mean regression 1.70 0.03 1.01 0.73 0.13 0.88 17% 0.0 3.1 0.69 0.37
MOM IPW 8.08 0.09 2.14 2.36 0.84 0.67 11% 0.0 3.2 0.67 0.08
MOM DR 3.63 0.06 1.46 1.49 0.48 0.59 3% 0.1 3.0 0.69 0.19
Causal Forest 1.97 0.03 1.19 1.02 0.23 0.67 5% 0.1 3.0 0.70 0.30
Causal Forest with local centering 1.74 0.03 1.18 0.96 0.18 0.65 3% 0.1 3.0 0.70 0.32
Lasso:
Conditional mean regression 1.45 0.02 1.17 0.44 0.02 1.05 11% 0.0 3.0 0.70 0.41
MOM IPW 8.95 0.15 2.47 2.47 0.88 0.86 47% -0.1 3.3 0.66 0.08
MOM DR 3.49 0.05 1.51 1.48 0.49 0.69 25% 0.0 3.2 0.69 0.19
MCM 14.26 0.14 3.18 3.23 1.10 0.71 83% 0.0 3.8 0.58 0.02
MCM with efficiency augmentation 3.73 0.06 1.56 1.54 0.52 0.68 25% 0.0 3.2 0.69 0.18
R-learning 3.74 0.06 1.56 1.54 0.53 0.69 22% 0.0 3.2 0.69 0.18

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over 2000 replications for the sample size of 1000 observations
and 500 replications for the sample size of 4000 observations. Bold numbers indicate the best performing estimators in terms of MSE and
estimators within two standard (simulation) errors of the lowest MSE.
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D.2.4 GATEs from ITE with random assignment and random noise

The relative performances for the GATE estimators for ITEs with noise but randomized

treatment assignment are very close to their selective equivalents. The only exception is

ITE2 with 4,000 observations where the two Causal Forest versions perform best instead

of MCM in the selective case. The latter is in the randomized setting the worst estimator.

This emphasizes again that the averaging of noisy estimators is not always successful.
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Table D.24: Performance measures for GATE of ITE0 with random assignment and random noise

MSE SE(MSE) Median MSE |Bias| Bias SD JB Skew. Kurt. Corr. Var. ratio

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1000 observations

Random Forest:
Conditional mean regression 1.43 0.02 1.20 0.08 0.00 1.19 20% 0.0 3.1 0.00 1.02
MOM IPW 1.15 0.02 1.06 0.08 -0.01 1.06 30% 0.0 3.1 0.00 0.63
MOM DR 0.76 0.02 0.87 0.08 -0.01 0.86 8% 0.0 3.1 0.01 0.26
Causal Forest 0.95 0.02 0.97 0.08 -0.01 0.97 13% 0.0 3.1 0.00 0.37
Causal Forest with local centering 0.89 0.02 0.94 0.08 0.00 0.94 6% 0.0 3.0 0.01 0.37
Lasso:
Conditional mean regression 2.87 0.03 1.63 0.08 0.00 1.67 20% 0.0 3.1 0.00 2.86
MOM IPW 1.09 0.03 1.01 0.08 -0.01 1.03 100% 0.1 4.4 0.01 0.54
MOM DR 0.79 0.02 0.88 0.09 0.00 0.88 63% 0.0 3.6 0.04 0.21
MCM 1.06 0.03 0.97 0.09 -0.04 1.02 100% 0.0 4.2 0.01 0.50
MCM with efficiency augmentation 0.75 0.02 0.86 0.09 0.00 0.86 61% 0.0 3.5 0.02 0.17
R-learning 0.74 0.02 0.86 0.09 0.00 0.85 58% 0.0 3.5 0.02 0.17

4000 observations

Random Forest:
Conditional mean regression 0.77 0.02 0.84 0.09 0.01 0.86 11% 0.0 3.1 0.00 0.80
MOM IPW 0.35 0.01 0.59 0.08 0.01 0.58 11% 0.0 3.2 0.01 0.25
MOM DR 0.21 0.01 0.45 0.08 0.00 0.44 0% 0.1 3.0 0.01 0.10
Causal Forest 0.27 0.01 0.51 0.08 0.01 0.50 3% 0.1 3.0 0.01 0.15
Causal Forest with local centering 0.25 0.01 0.50 0.08 0.01 0.49 5% 0.1 3.0 0.01 0.15
Lasso:
Conditional mean regression 1.12 0.02 1.03 0.09 0.01 1.04 9% 0.0 3.1 0.01 1.24
MOM IPW 0.24 0.01 0.47 0.08 0.01 0.48 63% 0.1 4.4 0.03 0.11
MOM DR 0.18 0.01 0.42 0.09 0.00 0.41 6% 0.1 3.0 0.03 0.04
MCM 0.23 0.01 0.46 0.09 -0.02 0.47 59% 0.1 4.4 0.00 0.10
MCM with efficiency augmentation 0.17 0.01 0.41 0.09 0.00 0.40 22% 0.1 3.1 0.03 0.03
R-learning 0.17 0.01 0.41 0.08 0.00 0.40 13% 0.1 3.0 0.06 0.03

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over 2000 replications for the sample size of 1000 observations
and 500 replications for the sample size of 4000 observations. Bold numbers indicate the best performing estimators in terms of MSE and
estimators within two standard (simulation) errors of the lowest MSE.
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Table D.25: Performance measures for GATE of ITE1 with random assignment and random noise

MSE SE(MSE) Median MSE |Bias| Bias SD JB Skew. Kurt. Corr. Var. ratio

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1000 observations

Random Forest:
Conditional mean regression 1.55 0.02 1.23 0.32 0.12 1.18 17% 0.1 3.1 0.02 0.26
MOM IPW 1.27 0.02 1.09 0.32 0.11 1.06 23% 0.0 3.1 0.02 0.16
MOM DR 0.89 0.02 0.91 0.32 0.11 0.86 5% 0.0 3.0 0.03 0.07
Causal Forest 1.07 0.02 1.01 0.31 0.11 0.96 6% 0.0 3.1 0.03 0.09
Causal Forest with local centering 1.02 0.02 0.99 0.31 0.11 0.94 6% 0.0 3.0 0.03 0.10
Lasso:
Conditional mean regression 2.93 0.03 1.65 0.26 0.09 1.66 19% 0.0 3.1 0.02 0.72
MOM IPW 1.25 0.03 1.07 0.35 0.12 1.03 100% 0.0 4.4 0.01 0.14
MOM DR 0.98 0.02 0.95 0.36 0.13 0.88 64% 0.0 3.6 -0.06 0.05
MCM 1.24 0.03 1.04 0.37 0.07 1.01 100% 0.0 4.4 0.00 0.13
MCM with efficiency augmentation 0.94 0.02 0.93 0.37 0.13 0.86 59% 0.0 3.5 -0.04 0.05
R-learning 0.93 0.02 0.92 0.36 0.13 0.86 64% 0.0 3.5 -0.09 0.04

4000 observations

Random Forest:
Conditional mean regression 0.89 0.02 0.92 0.29 0.12 0.86 11% 0.0 3.1 0.03 0.21
MOM IPW 0.48 0.01 0.65 0.31 0.12 0.58 13% 0.0 3.1 0.03 0.07
MOM DR 0.34 0.01 0.52 0.31 0.11 0.45 0% 0.1 3.0 0.05 0.03
Causal Forest 0.39 0.01 0.58 0.29 0.11 0.51 3% 0.1 3.0 0.06 0.04
Causal Forest with local centering 0.38 0.01 0.57 0.29 0.11 0.50 3% 0.1 3.0 0.06 0.04
Lasso:
Conditional mean regression 1.19 0.02 1.07 0.19 0.04 1.05 6% 0.0 3.0 0.06 0.34
MOM IPW 0.43 0.01 0.60 0.37 0.14 0.48 70% 0.1 4.3 -0.08 0.03
MOM DR 0.36 0.01 0.52 0.36 0.14 0.41 14% 0.0 3.0 -0.10 0.01
MCM 0.42 0.01 0.60 0.37 0.09 0.47 59% 0.1 4.3 0.00 0.03
MCM with efficiency augmentation 0.36 0.01 0.52 0.36 0.13 0.40 14% 0.1 3.1 -0.10 0.01
R-learning 0.36 0.01 0.51 0.37 0.14 0.40 17% 0.1 3.1 -0.04 0.01

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over 2000 replications for the sample size of 1000 observations
and 500 replications for the sample size of 4000 observations. Bold numbers indicate the best performing estimators in terms of MSE and
estimators within two standard (simulation) errors of the lowest MSE.
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Table D.26: Performance measures for GATE of ITE2 with random assignment and random noise

MSE SE(MSE) Median MSE |Bias| Bias SD JB Skew. Kurt. Corr. Var. ratio

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1000 observations

Random Forest:
Conditional mean regression 2.89 0.03 1.47 1.04 0.41 1.16 14% 0.0 3.1 0.06 0.02
MOM IPW 2.82 0.03 1.38 1.07 0.40 1.05 17% 0.0 3.1 0.05 0.01
MOM DR 2.44 0.02 1.24 1.07 0.39 0.86 6% 0.0 3.0 0.07 0.01
Causal Forest 2.51 0.03 1.29 1.03 0.38 0.96 11% 0.0 3.1 0.08 0.01
Causal Forest with local centering 2.46 0.03 1.28 1.02 0.39 0.94 8% 0.0 3.0 0.08 0.01
Lasso:
Conditional mean regression 3.83 0.04 1.85 0.81 0.31 1.67 13% 0.0 3.0 0.08 0.07
MOM IPW 3.18 0.03 1.47 1.19 0.43 1.04 100% -0.1 4.6 -0.07 0.01
MOM DR 2.85 0.03 1.38 1.17 0.43 0.90 77% 0.0 3.5 -0.01 0.01
MCM 3.15 0.03 1.51 1.22 0.27 1.01 100% 0.0 4.2 0.01 0.01
MCM with efficiency augmentation 2.83 0.03 1.37 1.18 0.44 0.88 72% -0.1 3.5 -0.07 0.01
R-learning 2.81 0.03 1.37 1.17 0.43 0.88 77% 0.0 3.5 -0.06 0.01

4000 observations

Random Forest:
Conditional mean regression 1.86 0.03 1.13 0.89 0.36 0.84 9% 0.0 3.1 0.12 0.03
MOM IPW 1.87 0.02 1.00 1.01 0.39 0.58 8% 0.0 3.1 0.10 0.01
MOM DR 1.67 0.02 0.91 0.99 0.36 0.45 0% 0.1 3.0 0.13 0.01
Causal Forest 1.58 0.02 0.88 0.93 0.35 0.53 9% 0.0 3.1 0.14 0.01
Causal Forest with local centering 1.54 0.02 0.87 0.92 0.34 0.52 3% 0.0 3.0 0.14 0.01
Lasso:
Conditional mean regression 1.59 0.03 1.19 0.55 0.18 1.04 5% 0.0 3.0 0.15 0.05
MOM IPW 2.33 0.02 1.16 1.18 0.44 0.51 84% -0.3 4.8 -0.07 0.00
MOM DR 2.06 0.03 1.09 1.11 0.41 0.47 66% 0.0 3.4 0.00 0.00
MCM 2.38 0.02 1.22 1.23 0.29 0.48 67% -0.1 4.7 -0.05 0.00
MCM with efficiency augmentation 2.09 0.02 1.09 1.12 0.41 0.46 72% 0.0 3.6 -0.01 0.00
R-learning 2.09 0.02 1.08 1.12 0.41 0.46 63% 0.0 3.6 -0.03 0.00

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over 2000 replications for the sample size of 1000 observations
and 500 replications for the sample size of 4000 observations. Bold numbers indicate the best performing estimators in terms of MSE and
estimators within two standard (simulation) errors of the lowest MSE.
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D.3 Results for ATE estimation

The Appendices D.3.1 to D.3.4 show the full results for ATE estimation in the 24 DGP-

sample size combinations. Compared to IATEs and GATEs, the ATE performance measures

require no averaging over several validation observations and provides the standard MSE,

bias and SD for a point estimate. Also the summary of the fraction of observations with

rejected JB test is not applicable in this case. Instead, we provide the p-value of the JB

test to investigate whether the ATE estimators constructed as the average of the different

IATEs are normally distributed.

The findings are similar to the findings for the GATE estimation. The differences in SD

over all ATE estimators are minor making the bias the decisive component. This means

that the estimators that account best for the selection bias perform best in the settings

with selectivity. Like for the GATEs, we observe that averaging noisy IATE estimates can

provide competitive ATE estimators. In particular, MCM shows consistently small bias

for the ATE. As the bias drops close to zero in the randomized settings, there remains

hardly any difference between the estimators.
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D.3.1 ATEs from ITE with selection and without random noise

Table D.27: Performance measures for ATE of ITE0 with selection and without
random noise (baseline)

MSE Bias SD Skew. Kurt. p-value JB

(1) (2) (3) (4) (5) (6)

1000 observations

Random Forest:
Conditional mean regression 0.97 0.60 0.78 -0.1 3.0 0.31
MOM IPW 1.18 0.71 0.82 0.0 3.1 0.34
MOM DR 0.68 0.40 0.72 -0.1 3.1 0.21
Causal Forest 1.20 0.75 0.80 -0.1 3.1 0.25
Causal Forest with local centering 0.77 0.34 0.81 0.0 3.0 0.39
Lasso:
Conditional mean regression 1.00 0.60 0.80 0.0 3.0 0.42
MOM IPW 1.10 0.61 0.86 0.0 3.2 0.07
MOM DR 38.75 0.60 6.20 43.4 1921.8 0.00
MCM 0.94 0.45 0.86 -0.1 3.1 0.08
MCM with efficiency augmentation 0.87 0.42 0.83 0.0 3.1 0.24
R-learning 0.88 0.45 0.82 0.0 3.1 0.21

4000 observations

Random Forest:
Conditional mean regression 0.43 0.53 0.38 0.1 2.7 0.14
MOM IPW 0.46 0.53 0.41 0.2 2.8 0.07
MOM DR 0.21 0.28 0.37 0.1 2.8 0.17
Causal Forest 0.66 0.70 0.40 0.1 2.6 0.06
Causal Forest with local centering 0.22 0.24 0.40 0.1 2.8 0.24
Lasso:
Conditional mean regression 0.39 0.49 0.39 0.0 2.9 0.39
MOM IPW 0.37 0.45 0.41 0.2 3.0 0.13
MOM DR 0.26 0.31 0.41 0.1 2.9 0.36
MCM 0.29 0.34 0.42 0.2 2.9 0.17
MCM with efficiency augmentation 0.23 0.26 0.40 0.1 3.0 0.38
R-learning 0.24 0.28 0.41 0.1 3.0 0.29

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over
2000 replications for the sample size of 1000 observations and 500 replications for the
sample size of 4000 observations.
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Table D.28: Performance measures for ATE of ITE1 with selection and without
random noise

MSE Bias SD Skew. Kurt. p-value JB

(1) (2) (3) (4) (5) (6)

1000 observations

Random Forest:
Conditional mean regression 1.94 1.16 0.77 -0.1 3.0 0.32
MOM IPW 2.01 1.16 0.81 -0.1 3.1 0.20
MOM DR 1.06 0.75 0.70 -0.1 3.1 0.14
Causal Forest 2.48 1.36 0.79 0.0 3.1 0.30
Causal Forest with local centering 1.16 0.72 0.80 0.0 3.0 0.38
Lasso:
Conditional mean regression 1.67 1.01 0.80 0.0 3.0 0.40
MOM IPW 1.61 0.94 0.85 -0.1 3.2 0.02
MOM DR 35.55 0.87 5.90 43.3 1913.6 0.00
MCM 1.06 0.57 0.85 -0.1 3.2 0.04
MCM with efficiency augmentation 1.17 0.70 0.83 0.0 3.2 0.13
R-learning 1.30 0.79 0.82 0.0 3.2 0.12

4000 observations

Random Forest:
Conditional mean regression 1.23 1.04 0.38 0.1 2.7 0.10
MOM IPW 0.83 0.82 0.41 0.1 2.8 0.15
MOM DR 0.38 0.50 0.36 0.1 2.9 0.23
Causal Forest 1.83 1.29 0.39 0.1 2.6 0.06
Causal Forest with local centering 0.46 0.55 0.40 0.0 2.8 0.27
Lasso:
Conditional mean regression 0.68 0.73 0.40 0.0 2.8 0.35
MOM IPW 0.61 0.67 0.41 0.2 3.0 0.10
MOM DR 0.38 0.47 0.40 0.1 2.9 0.30
MCM 0.33 0.39 0.42 0.2 3.1 0.13
MCM with efficiency augmentation 0.34 0.43 0.40 0.1 3.0 0.29
R-learning 0.44 0.53 0.40 0.1 3.1 0.25

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over
2000 replications for the sample size of 1000 observations and 500 replications for the
sample size of 4000 observations.
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Table D.29: Performance measures for ATE of ITE2 with selection and without
random noise

MSE Bias SD Skew. Kurt. p-value JB

(1) (2) (3) (4) (5) (6)

1000 observations

Random Forest:
Conditional mean regression 5.62 2.24 0.76 0.0 3.1 0.31
MOM IPW 5.70 2.25 0.79 -0.1 3.0 0.33
MOM DR 3.17 1.64 0.68 -0.1 3.0 0.18
Causal Forest 8.72 2.85 0.77 0.0 3.1 0.35
Causal Forest with local centering 3.13 1.59 0.77 0.0 3.0 0.42
Lasso:
Conditional mean regression 2.75 1.46 0.79 0.0 3.0 0.41
MOM IPW 3.85 1.77 0.85 -0.2 3.3 0.00
MOM DR 36.56 1.32 5.90 43.3 1912.9 0.00
MCM 1.68 0.97 0.86 -0.1 3.1 0.17
MCM with efficiency augmentation 2.35 1.30 0.80 -0.1 3.3 0.02
R-learning 3.00 1.53 0.80 0.0 3.1 0.29

4000 observations

Random Forest:
Conditional mean regression 2.79 1.62 0.39 0.1 2.8 0.13
MOM IPW 2.31 1.47 0.40 0.1 2.8 0.13
MOM DR 1.07 0.97 0.35 0.1 2.8 0.28
Causal Forest 6.24 2.47 0.40 0.1 2.6 0.05
Causal Forest with local centering 1.08 0.97 0.38 0.1 2.8 0.14
Lasso:
Conditional mean regression 0.84 0.84 0.37 0.1 2.8 0.22
MOM IPW 1.56 1.18 0.41 0.2 3.0 0.04
MOM DR 0.52 0.62 0.38 0.1 2.9 0.19
MCM 0.56 0.62 0.42 0.2 3.0 0.16
MCM with efficiency augmentation 0.65 0.71 0.38 0.2 3.0 0.10
R-learning 0.90 0.87 0.39 0.2 3.1 0.08

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over
2000 replications for the sample size of 1000 observations and 500 replications for the
sample size of 4000 observations.
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D.3.2 ATEs from ITE with selection and random noise

Table D.30: Performance measures for ATE of ITE0 with selection and random
noise

MSE Bias SD Skew. Kurt. p-value JB

(1) (2) (3) (4) (5) (6)

1000 observations

Random Forest:
Conditional mean regression 0.96 0.60 0.78 -0.1 3.1 0.27
MOM IPW 1.17 0.71 0.82 -0.1 3.1 0.22
MOM DR 0.66 0.39 0.71 -0.1 3.1 0.22
Causal Forest 1.18 0.74 0.79 0.0 3.1 0.35
Causal Forest with local centering 0.76 0.33 0.80 0.0 3.1 0.29
Lasso:
Conditional mean regression 0.98 0.60 0.79 0.0 3.0 0.39
MOM IPW 1.08 0.60 0.85 -0.1 3.2 0.05
MOM DR 60.69 0.63 7.77 43.9 1949.8 0.00
MCM 0.91 0.42 0.86 -0.1 3.2 0.05
MCM with efficiency augmentation 0.87 0.42 0.83 0.0 3.1 0.23
R-learning 0.88 0.45 0.82 0.0 3.2 0.20

4000 observations

Random Forest:
Conditional mean regression 0.43 0.53 0.38 0.1 2.7 0.12
MOM IPW 0.45 0.53 0.42 0.2 2.7 0.07
MOM DR 0.21 0.27 0.37 0.1 2.8 0.16
Causal Forest 0.64 0.70 0.39 0.1 2.7 0.09
Causal Forest with local centering 0.21 0.23 0.40 0.1 2.8 0.19
Lasso:
Conditional mean regression 0.39 0.49 0.39 0.1 2.8 0.35
MOM IPW 0.37 0.45 0.41 0.2 2.9 0.15
MOM DR 0.26 0.31 0.40 0.1 2.9 0.27
MCM 0.27 0.31 0.42 0.2 3.0 0.16
MCM with efficiency augmentation 0.23 0.26 0.40 0.1 3.0 0.30
R-learning 0.24 0.28 0.41 0.1 3.0 0.22

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over
2000 replications for the sample size of 1000 observations and 500 replications for the
sample size of 4000 observations.
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Table D.31: Performance measures for ATE of ITE1 with selection and random
noise (baseline)

MSE Bias SD Skew. Kurt. p-value JB

(1) (2) (3) (4) (5) (6)

1000 observations

Random Forest:
Conditional mean regression 1.24 0.80 0.77 -0.1 3.1 0.24
MOM IPW 1.42 0.87 0.81 0.0 3.1 0.31
MOM DR 0.77 0.52 0.71 0.0 3.1 0.22
Causal Forest 1.55 0.96 0.79 -0.1 3.1 0.24
Causal Forest with local centering 0.86 0.48 0.80 0.0 3.1 0.31
Lasso:
Conditional mean regression 1.20 0.76 0.79 0.0 3.0 0.44
MOM IPW 1.25 0.73 0.85 -0.1 3.3 0.00
MOM DR 38.89 0.70 6.20 43.4 1922.0 0.00
MCM 0.94 0.46 0.85 -0.1 3.2 0.05
MCM with efficiency augmentation 0.95 0.52 0.83 0.0 3.2 0.15
R-learning 1.00 0.58 0.82 0.0 3.2 0.17

4000 observations

Random Forest:
Conditional mean regression 0.67 0.73 0.38 0.1 2.7 0.15
MOM IPW 0.57 0.63 0.42 0.1 2.8 0.14
MOM DR 0.26 0.35 0.37 0.1 2.9 0.27
Causal Forest 0.99 0.91 0.40 0.1 2.7 0.11
Causal Forest with local centering 0.29 0.35 0.40 0.1 2.8 0.26
Lasso:
Conditional mean regression 0.52 0.60 0.39 0.0 2.9 0.42
MOM IPW 0.44 0.53 0.41 0.2 3.0 0.12
MOM DR 0.30 0.37 0.40 0.1 3.0 0.34
MCM 0.28 0.32 0.42 0.2 3.1 0.16
MCM with efficiency augmentation 0.27 0.33 0.40 0.1 3.0 0.36
R-learning 0.31 0.38 0.40 0.1 3.0 0.32

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over
2000 replications for the sample size of 1000 observations and 500 replications for the
sample size of 4000 observations.
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Table D.32: Performance measures for ATE of ITE2 with selection and random
noise (baseline)

MSE Bias SD Skew. Kurt. p-value JB

(1) (2) (3) (4) (5) (6)

1000 observations

Random Forest:
Conditional mean regression 2.13 1.24 0.77 -0.1 3.1 0.24
MOM IPW 2.15 1.23 0.81 -0.1 3.0 0.31
MOM DR 1.17 0.82 0.71 -0.1 3.1 0.05
Causal Forest 2.64 1.43 0.78 -0.1 3.1 0.23
Causal Forest with local centering 1.29 0.81 0.80 -0.1 3.0 0.23
Lasso:
Conditional mean regression 1.88 1.12 0.80 -0.1 3.0 0.31
MOM IPW 1.75 1.02 0.84 -0.1 3.2 0.01
MOM DR 23.44 0.92 4.75 42.5 1867.4 0.00
MCM 0.99 0.52 0.85 -0.1 3.2 0.02
MCM with efficiency augmentation 1.29 0.79 0.82 -0.1 3.2 0.07
R-learning 1.46 0.89 0.81 -0.1 3.1 0.12

4000 observations

Random Forest:
Conditional mean regression 1.41 1.12 0.38 0.0 2.7 0.16
MOM IPW 0.94 0.88 0.41 0.0 2.8 0.31
MOM DR 0.44 0.56 0.36 0.0 2.9 0.39
Causal Forest 1.99 1.36 0.39 0.1 2.7 0.18
Causal Forest with local centering 0.55 0.63 0.39 0.0 2.9 0.42
Lasso:
Conditional mean regression 0.83 0.82 0.39 0.0 2.8 0.28
MOM IPW 0.71 0.74 0.41 0.1 3.0 0.26
MOM DR 0.46 0.54 0.41 0.1 3.1 0.37
MCM 0.29 0.34 0.42 0.3 3.0 0.03
MCM with efficiency augmentation 0.42 0.51 0.40 0.1 2.9 0.29
R-learning 0.56 0.63 0.40 0.1 2.9 0.27

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over
2000 replications for the sample size of 1000 observations and 500 replications for the
sample size of 4000 observations.
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D.3.3 ATEs from ITE with random assignment and without random noise

Table D.33: Performance measures for ATE of ITE0 with random assignment
and without random noise

MSE Bias SD Skew. Kurt. p-value JB

(1) (2) (3) (4) (5) (6)

1000 observations

Random Forest:
Conditional mean regression 0.62 0.01 0.79 0.0 3.1 0.38
MOM IPW 0.66 0.01 0.81 0.0 3.1 0.23
MOM DR 0.55 0.01 0.74 0.0 3.0 0.36
Causal Forest 0.66 0.01 0.81 0.0 3.1 0.23
Causal Forest with local centering 0.60 0.02 0.78 0.0 3.0 0.47
Lasso:
Conditional mean regression 0.62 0.01 0.79 0.0 3.1 0.40
MOM IPW 0.67 0.01 0.82 0.0 3.1 0.29
MOM DR 0.63 0.01 0.79 0.0 3.0 0.48
MCM 0.67 0.01 0.82 0.0 3.1 0.26
MCM with efficiency augmentation 0.61 0.02 0.78 0.0 3.0 0.44
R-learning 0.61 0.02 0.78 0.0 3.0 0.43

4000 observations

Random Forest:
Conditional mean regression 0.14 0.02 0.37 0.1 2.9 0.30
MOM IPW 0.14 0.03 0.38 0.1 2.9 0.18
MOM DR 0.12 0.02 0.35 0.1 2.9 0.29
Causal Forest 0.15 0.03 0.38 0.1 2.9 0.33
Causal Forest with local centering 0.13 0.02 0.37 0.1 2.9 0.26
Lasso:
Conditional mean regression 0.14 0.02 0.37 0.1 2.9 0.39
MOM IPW 0.15 0.03 0.38 0.2 3.0 0.18
MOM DR 0.14 0.02 0.37 0.1 2.8 0.29
MCM 0.15 0.03 0.38 0.2 2.9 0.17
MCM with efficiency augmentation 0.14 0.02 0.37 0.1 2.8 0.27
R-learning 0.14 0.02 0.37 0.1 2.8 0.28

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over
2000 replications for the sample size of 1000 observations and 500 replications for the
sample size of 4000 observations.
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Table D.34: Performance measures for ATE of ITE1 with random assignment
and without random noise

MSE Bias SD Skew. Kurt. p-value JB

(1) (2) (3) (4) (5) (6)

1000 observations

Random Forest:
Conditional mean regression 0.62 0.05 0.78 0.0 3.1 0.30
MOM IPW 0.65 0.05 0.81 0.0 3.1 0.17
MOM DR 0.54 0.05 0.73 0.0 3.1 0.35
Causal Forest 0.65 0.05 0.81 0.0 3.1 0.19
Causal Forest with local centering 0.59 0.06 0.77 0.0 3.0 0.46
Lasso:
Conditional mean regression 0.61 0.02 0.78 0.0 3.0 0.42
MOM IPW 0.66 0.03 0.81 0.0 3.1 0.26
MOM DR 0.62 0.03 0.79 0.0 3.0 0.47
MCM 0.66 -0.02 0.81 0.1 3.1 0.23
MCM with efficiency augmentation 0.61 0.04 0.78 0.0 3.1 0.40
R-learning 0.60 0.04 0.77 0.0 3.1 0.38

4000 observations

Random Forest:
Conditional mean regression 0.13 0.06 0.36 0.1 3.0 0.40
MOM IPW 0.15 0.07 0.38 0.1 3.0 0.27
MOM DR 0.12 0.05 0.34 0.1 2.9 0.29
Causal Forest 0.14 0.06 0.37 0.1 2.9 0.34
Causal Forest with local centering 0.13 0.06 0.36 0.1 3.0 0.36
Lasso:
Conditional mean regression 0.13 0.03 0.36 0.1 3.0 0.41
MOM IPW 0.15 0.05 0.38 0.1 3.0 0.25
MOM DR 0.13 0.04 0.36 0.1 2.8 0.33
MCM 0.14 -0.01 0.38 0.1 3.0 0.21
MCM with efficiency augmentation 0.14 0.04 0.37 0.1 2.9 0.31
R-learning 0.14 0.04 0.37 0.1 2.9 0.30

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over
2000 replications for the sample size of 1000 observations and 500 replications for the
sample size of 4000 observations.
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Table D.35: Performance measures for ATE of ITE2 with random assignment
and without random noise

MSE Bias SD Skew. Kurt. p-value JB

(1) (2) (3) (4) (5) (6)

1000 observations

Random Forest:
Conditional mean regression 0.57 0.04 0.76 0.0 3.1 0.28
MOM IPW 0.66 0.09 0.81 0.0 3.2 0.12
MOM DR 0.52 0.08 0.72 0.0 3.1 0.25
Causal Forest 0.63 0.06 0.79 0.1 3.1 0.20
Causal Forest with local centering 0.56 0.06 0.74 0.0 3.1 0.27
Lasso:
Conditional mean regression 0.55 -0.02 0.74 0.0 3.0 0.46
MOM IPW 0.66 0.03 0.81 0.1 3.1 0.07
MOM DR 0.59 0.02 0.77 0.0 3.1 0.34
MCM 0.67 -0.03 0.82 0.1 3.0 0.17
MCM with efficiency augmentation 0.58 0.02 0.76 0.1 3.1 0.24
R-learning 0.58 0.03 0.76 0.1 3.1 0.18

4000 observations

Random Forest:
Conditional mean regression 0.12 0.01 0.35 0.1 3.0 0.37
MOM IPW 0.14 0.08 0.37 0.1 3.0 0.28
MOM DR 0.11 0.03 0.33 0.1 3.0 0.39
Causal Forest 0.13 0.01 0.36 0.1 2.9 0.39
Causal Forest with local centering 0.12 0.00 0.35 0.1 3.1 0.37
Lasso:
Conditional mean regression 0.12 -0.02 0.35 0.1 3.1 0.38
MOM IPW 0.14 0.02 0.38 0.1 3.0 0.23
MOM DR 0.12 -0.01 0.35 0.0 3.0 0.49
MCM 0.14 -0.03 0.38 0.1 3.0 0.24
MCM with efficiency augmentation 0.13 0.00 0.36 0.1 3.0 0.43
R-learning 0.13 0.00 0.35 0.1 3.0 0.43

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over
2000 replications for the sample size of 1000 observations and 500 replications for the
sample size of 4000 observations.
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D.3.4 ATEs from ITE with random assignment and random noise

Table D.36: Performance measures for ATE of ITE0 with random assignment
and random noise

MSE Bias SD Skew. Kurt. p-value JB

(1) (2) (3) (4) (5) (6)

1000 observations

Random Forest:
Conditional mean regression 0.62 0.02 0.79 0.0 3.1 0.40
MOM IPW 0.66 0.01 0.81 0.0 3.2 0.18
MOM DR 0.54 0.01 0.74 0.0 3.0 0.41
Causal Forest 0.65 0.01 0.81 0.0 3.2 0.18
Causal Forest with local centering 0.59 0.01 0.77 0.0 3.0 0.47
Lasso:
Conditional mean regression 0.61 0.01 0.78 0.0 3.1 0.40
MOM IPW 0.66 0.01 0.81 0.0 3.1 0.25
MOM DR 0.62 0.02 0.79 0.0 3.1 0.44
MCM 0.67 -0.02 0.82 0.0 3.1 0.23
MCM with efficiency augmentation 0.61 0.02 0.78 0.0 3.0 0.45
R-learning 0.60 0.02 0.78 0.0 3.1 0.42

4000 observations

Random Forest:
Conditional mean regression 0.13 0.03 0.36 0.1 2.9 0.32
MOM IPW 0.14 0.03 0.38 0.1 2.9 0.23
MOM DR 0.12 0.02 0.34 0.1 2.9 0.25
Causal Forest 0.14 0.02 0.38 0.1 2.9 0.27
Causal Forest with local centering 0.13 0.02 0.36 0.1 2.9 0.29
Lasso:
Conditional mean regression 0.13 0.02 0.37 0.1 2.9 0.39
MOM IPW 0.14 0.03 0.38 0.1 2.9 0.20
MOM DR 0.13 0.02 0.36 0.1 2.8 0.26
MCM 0.15 0.00 0.38 0.2 2.9 0.17
MCM with efficiency augmentation 0.13 0.02 0.37 0.1 2.8 0.29
R-learning 0.13 0.02 0.37 0.1 2.8 0.28

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over
2000 replications for the sample size of 1000 observations and 500 replications for the
sample size of 4000 observations.
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Table D.37: Performance measures for ATE of ITE1 with random assignment
and random noise

MSE Bias SD Skew. Kurt. p-value JB

(1) (2) (3) (4) (5) (6)

1000 observations

Random Forest:
Conditional mean regression 0.61 0.04 0.78 0.0 3.1 0.25
MOM IPW 0.65 0.03 0.81 0.0 3.1 0.26
MOM DR 0.54 0.03 0.73 0.0 3.1 0.32
Causal Forest 0.64 0.03 0.80 0.0 3.1 0.24
Causal Forest with local centering 0.59 0.03 0.77 0.0 3.0 0.46
Lasso:
Conditional mean regression 0.60 0.03 0.78 0.0 3.1 0.39
MOM IPW 0.65 0.02 0.81 0.0 3.1 0.27
MOM DR 0.62 0.03 0.79 0.0 3.0 0.49
MCM 0.66 -0.04 0.81 0.0 3.1 0.26
MCM with efficiency augmentation 0.60 0.03 0.78 0.0 3.0 0.43
R-learning 0.60 0.03 0.77 0.0 3.0 0.42

4000 observations

Random Forest:
Conditional mean regression 0.14 0.05 0.37 0.1 2.9 0.20
MOM IPW 0.15 0.04 0.38 0.2 2.8 0.12
MOM DR 0.12 0.04 0.34 0.1 2.9 0.26
Causal Forest 0.14 0.04 0.38 0.1 2.9 0.21
Causal Forest with local centering 0.13 0.04 0.36 0.1 3.0 0.36
Lasso:
Conditional mean regression 0.13 0.03 0.37 0.1 3.0 0.30
MOM IPW 0.15 0.04 0.38 0.2 2.9 0.15
MOM DR 0.13 0.04 0.36 0.1 2.8 0.23
MCM 0.15 -0.02 0.38 0.2 2.9 0.17
MCM with efficiency augmentation 0.14 0.03 0.37 0.1 2.8 0.25
R-learning 0.14 0.03 0.37 0.1 2.8 0.24

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over
2000 replications for the sample size of 1000 observations and 500 replications for the
sample size of 4000 observations.
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Table D.38: Performance measures for ATE of ITE2 with random assignment
and random noise

MSE Bias SD Skew. Kurt. p-value JB

(1) (2) (3) (4) (5) (6)

1000 observations

Random Forest:
Conditional mean regression 0.61 0.12 0.77 0.0 3.1 0.28
MOM IPW 0.65 0.12 0.80 0.0 3.2 0.12
MOM DR 0.54 0.10 0.73 0.0 3.0 0.34
Causal Forest 0.64 0.11 0.79 0.0 3.1 0.17
Causal Forest with local centering 0.60 0.12 0.76 0.0 3.1 0.28
Lasso:
Conditional mean regression 0.60 0.11 0.77 0.0 3.1 0.39
MOM IPW 0.65 0.10 0.80 0.1 3.1 0.18
MOM DR 0.62 0.11 0.78 0.0 3.1 0.40
MCM 0.66 -0.08 0.81 0.0 3.1 0.26
MCM with efficiency augmentation 0.60 0.11 0.77 0.0 3.0 0.36
R-learning 0.60 0.11 0.76 0.0 3.1 0.29

4000 observations

Random Forest:
Conditional mean regression 0.15 0.13 0.36 0.1 2.7 0.11
MOM IPW 0.15 0.12 0.37 0.2 2.8 0.10
MOM DR 0.12 0.10 0.34 0.1 2.8 0.22
Causal Forest 0.15 0.12 0.37 0.1 2.9 0.27
Causal Forest with local centering 0.14 0.11 0.36 0.1 2.7 0.15
Lasso:
Conditional mean regression 0.14 0.09 0.36 0.1 2.8 0.18
MOM IPW 0.15 0.12 0.37 0.1 2.9 0.17
MOM DR 0.14 0.11 0.36 0.1 2.7 0.14
MCM 0.15 -0.06 0.38 0.1 3.0 0.32
MCM with efficiency augmentation 0.14 0.11 0.36 0.1 2.6 0.10
R-learning 0.14 0.11 0.36 0.1 2.6 0.09

Notes: Table shows the performance measures defined in Sections 5.2.3 and D.1 over
2000 replications for the sample size of 1000 observations and 500 replications for the
sample size of 4000 observations.
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D.4 Computation time

This appendix shows the average computation times (in seconds) of the different estimation

approaches. We computed all our results on a SWITCHengines cloud with 8 cores and

8GB RAM. It is difficult to compare the computation times between Random Forests and

Lasso, because they depend strongly on the selection of the tuning parameters. The Lasso

becomes slow when it selects many variables. The Causal Forests and MOM approaches

differ in the way how they estimate the nuisance parameters.

Table D.39: Average computation time of one replication in seconds

ITE0 w/o noise ITE1 w/ noise ITE2 w/ noise

(1) (2) (3)

1000 observations

Random Forest:
Infeasible 1.1 2.6 2.8
Conditional mean regression 4.0 4.1 4.0
MOM IPW 5.2 5.1 5.2
MOM DR 8.2 8.2 8.1
Causal Forest 3.9 3.9 3.9
Causal Forest with local centering 5.2 5.2 5.2
Lasso:
Infeasible - 26.8 29.5
Conditional mean regression 7.6 7.7 7.7
MOM IPW 12.4 12.3 12.3
MOM DR 17.9 17.9 17.9
MCM 11.3 11.3 11.3
MCM with efficiency augmentation 17.4 17.4 17.4
R-learning 17.4 17.4 17.4

4000 observations

Random Forest:
Infeasible 3.2 8.6 9.7
Conditional mean regression 11.2 11.4 11.3
MOM IPW 17.0 17.0 17.0
MOM DR 32.4 33.1 32.8
Causal Forest 11.6 11.8 11.7
Causal Forest with local centering 18.3 18.3 18.3
Lasso:
Infeasible - 40.5 46.4
Conditional mean regression 24.2 24.1 24.2
MOM IPW 49.6 49.4 49.2
MOM DR 68.0 67.9 67.9
MCM 51.8 51.7 51.5
MCM with efficiency augmentation 67.4 67.2 67.2
R-learning 67.4 67.2 67.3
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