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Abstract 

We study nonparametric identification of nonseparable duration models with unobserved 

heterogeneity. Our models are nonseparable in two ways. First, genuine duration dependence 

is allowed to depend on observed covariates. Second, observed and unobserved 

characteristics may interact in an arbitrary way. Our study develops novel identification 

strategies for a comprehensive account of typical duration model settings. In particular, we 

show identification in single-spell models with and without time-varying covariates, in multiple 

models with shared frailty and lagged duration dependence, in single-spell and multiple-spell 

competing risks models, and in treatment effects models where treatment is assigned during 

the individual spell in the state of interest. 
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1 Introduction

A major strategy for identification in duration models is to impose that the hazard func-
tion of the duration variable is multiplicatively separable with respect to genuine duration
dependence, observed and unobserved covariates. The Mixed Proportional Hazard (MPH)
model, which incorporates this assumption, is the most commonly used duration model in
the econometric literature. Separability is a powerful source of identifying variation. It can
be used to distinguish between genuine duration dependence and spurious duration depen-
dence caused by dynamic selection. In models with competing risks, separability has been
used to break the nonidentification result of Tsiatis (1975).

Despite these appealing properties, multiplicative separability has two major drawbacks.
First, separating covariates from duration dependence is difficult to justify with economic
theory. In job search models, for example, this is only justified with myopic agents and
under very particular parametric assumptions, see Van den Berg (2001). These theoretical
arguments are reinforced by recent experimental studies that find that duration dependence
varies in a complex, nonproportional way with observed covariates, see Eriksson and Rooth
(2014), Farber et al. (2016) and Kroft et al. (2013). Second, separating observed and un-
observed characteristics implies that the effect of an observed covariate is the same for all
individuals with identical observed characteristics. This assumption, however, is often too
restrictive. While unobserved effect heterogeneity has been addressed by numerous stud-
ies in the context of regression models (see e.g. Matzkin (2007)), it has remained largely
unaddressed in duration context.

The objective of this paper is to develop methods that address the drawbacks of fully
separable models. I study identification of hazard models of the type

θ(t | X, V ) = λ(t,X)r(X, V ),

where θ is the structural hazard function of a duration random variable and X and V
represent observed and unobserved individual characteristics, respectively. These models
are nonseparable in the sense that they allow for (i) arbitrary observed heterogeneity in the
”true” duration dependence (through the function λ) and (ii) arbitrary interaction between
observed and unobserved covariates (through the function r). The functions λ and r are
unknown to the econometrician and are not assumed to belong to a parametric family.

This paper achieves identification in a comprehensive account of empirically relevant
settings. In particular, I develop identification strategies for single-spell models with and
without time-varying covariates, in multiple-spell models with shared frailty and lagged
duration dependence, in single-spell and multiple-spell competing risks models, as well as in
treatment effects models where treatment is assigned during the individual spell in the state
of interest.

Identification in this study relies on two main strategies. At the core of my single-spell
approaches is the mild assumption that there is one ”special” regressor, whose effect on
the individual hazard is homogeneous w.r.t. unobserved characteristics. No assumption is
imposed on the genesis of this regressor. Furthermore, this regressor is allowed to impact the
”weeding out” process (i.e. the change of the conditional distribution of V given X over time)
in an unrestricted way. This is the first paper to show identification in single-spell hazard
models with interaction between observed and unobserved characteristics. Other single-spell

3



nonparametric studies rely either on the fully separable structure of the MPH model, Elbers
and Ridder (1982), Heckman and Singer (1984), Ridder (1986), Horowitz (1999), Chiappori
et al. (2015), or at least on the multiplicative separability of the unobserved heterogeneity
as in the Mixed Hazard (MH) model, Brinch (2007), McCall (1994).

My multiple-spell models rely on a mild fixed-effects assumption and do not require a
”special” separable regressor. Multiple-spell methods are often used in labor market studies,
in particular when two or more unemployment spells per individual are available, or when
there is information on previous employment spells. I allow previous spells to impact the
hazard of subsequent spells (lagged duration dependence). My multiple-spell model can
thus be interpreted as a hazard version of a dynamic panel model with fixed-effects. In the
context of unemployment duration, lagged duration dependence, sometimes also referred to
as scarring effects, is an object of interest on its own and its analysis has a long tradition,
Heckman and Borjas (1980). Related lagged duration studies either rely on fully separable
variation in the observed heterogeneity, Honoré (1993), or at least impose separability of the
unobservables, Frijters (2002) and Picchio (2012).1,2 I show that a fixed-effects assumption
is sufficient to avoid these restrictive assumptions. Importantly, I allow the lagged duration
effect to be arbitrary heterogeneous w.r.t. observed characteristics. This assumption is
motivated by recent empirical findings in the unemployment duration literature, see e.g.
Cockx and Picchio (2013). The models in this paper also nest a nonseparable shared frailty
model, which is widely used in demographics and appropriate when multiple individuals from
the same group share unobserved characteristics, Hougaard (2000). Finally, in addition to
my identification results, I derive a novel property of nonseparable multi-spell hazard models
that can be used for graphical model diagnostics and testing.

Next, I study identification in nonseparable competing risks models. Competing risks
models arise naturally in unemployment duration context when more than one exit destina-
tion is possible, see e.g. Kyyrä and Ollikainen (2008) for an empirical example. Competing
risks models based on the separable MPH specification have been studied by Heckman and
Honoré (1989), Abbring and Van Den Berg (2003a) and Horny and Picchio (2010). I apply
the single-spell and multiple-spell results presented in this paper to achieve identification in
nonseparable competing risks models. I also give a general characterization of the single-
spell strategies that can lead to identification in competing risks models. In particular, the
special regressor assumption is necessary.

Finally, I study nonseparable duration models which allow treatments to be assigned
during the spell of observation. Typical examples for such treatments are Active Labor
Market Policies (e.g. job search trainings), or punitive reductions of unemployment benefits.
Such a setup was first studied by the seminal paper of Abbring and Van Den Berg (2003b).
They achieve identification in an augmented bivariate MPH model. This paper generalizes
their results to a nonseparble context.

In all presented models, identification of the function r draws on insights from the litera-
ture on nonaddtive random functions, see Matzkin (2003) and Chesher (2007). In particular,
r is assumed to be strictly increasing in the unobserved component. This is a natural gener-

1Frijters (2002) imposes in addition that the baseline hazard is the same for all spells.
2A nonseparable multiple-spell model is also studied in Evdokimov (2010). Identification there rules out

lagged duration dependence and relies on having at least three spells per individual.
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alization of the MPH assumption r(x, v) = id(v). Important MPH features such as spurious
negative duration dependence in the empirical hazard translate to the general nonseparable
setup in a straightforward way. Thus, this paper provides a link between the literature on
identification in duration mixture models and the literature on identification in nonseparable
regression models.

The paper is structured as follows. In section 2, we present and motivate our model. Our
identification results in single- and multiple spell single risk models are presented in sections
3. Section 4 presents applications to competing risks and duration treatment effect models.
Section 5 concludes. All proofs are in the appendix.

2 Model and motivation

For illustrative purposes, we build our exposition on a labor market example. Suppose that
n unemployed individuals are searching for a job. Denote by Ti, i = 1, . . . , n the duration of
unemployment of individual i, with T1, . . . , Tn assumed to be independent and drawn from
the same stochastic law. Let θ(t) be the unconditional hazard of Ti at elapsed length of

unemployment t ≥ 0, θ(t) = limh→0

(
P{T ∈ [t, t + h)|T ≥ t}/h

)
(we omit the index i

whenever this is possible). Let the random vector Xi represent observed characteristics of
individual i that impact the duration Ti. Xi is assumed to have realized (just) prior entry
into unemployment, so that its value is determined at t = 0. Typical examples are wage
and experience in the preceding job spell, highest degree of education obtained until the
moment of inflow into unemployment and gender. The realizations of Xi, denoted by small
letters x, are assumed to be elements of a set X ⊂ Rk, where k is a positive integer. By
way of definition, Xi is time-constant. We consider time-varying covariates in section 3.2.
Further, let Vi be a one-dimensional nonnegative unobserved random variable. Vi represents
a single index of all unobserved individual characteristics that impact Ti. A typical example
for factors contained in Vi is noncognitive skills. Analogously to the definition of Xi, Vi is
required to be time-constant and determined before the individual spell start.

Conditionally on Xi and Vi, the individual hazard is assumed fully specified. Henceforth,
we write θ(t|X, V ) to denote the individual hazard with notation in analogy to conditional
probabilities. The empirical or observed hazard is denoted by θ(t|X). Note that an im-
portant property of mixture hazard models (i.e. of hazard models allowing for unobserved
heterogeneity V ) is that T is a random variable even conditionally on realizations of X and
V . The residual randomness, referred to as ”the effect of luck” by Lancaster (1979), has been
only scarcely discussed in the literature and has no established meaning. Lancaster (1990)
interprets it as some intrinsic individual uncertainty, whereas Heckman (1991) distinguishes
between characteristics known to the individual which are captured by V , and characteristics
that are unknown to the individual and subsumed by the residual randomness. Decisions
of agents are therefore based solely on the value of X, V . Heckman (1991) acknowledges,
however, that this distinction has an arbitrary character. For the rest of the paper, we
follow Heckman (1991) and assume that the residual randomness is due to idiosyncratic
factors (noise) which are independent of the factors determining the decisions of the agents.
This interpretation is compatible with the well-known fact that the transformed duration
Θ(T |X, V ) :=

∫ T
0
θ(t|X, V ) is independent of X and V , see e.g. Lancaster (1990).
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With these preliminaries, consider the following model, which we refer to as the Gener-
alized Mixed Hazard (GMH) model:

θ(t|X, V ) = λ(t,X)r(X, V ) (1)

The functions λ and r are unknown to the econometrician. Two important special cases are
the Mixed Proportional Hazard (MPH) model,

θ(t|X, V ) = λMPH(t)θ0(X)V (2)

and the Mixed Hazard (MH) model,

θ(t|X, V ) = λMH(t,X)V. (3)

Both the MPH and MH models impose multiplicative separability of V . As observed by
Lancaster (1985) and Chesher (2002), multiplicative separability of V effectively reduces the
number of sources of stochastic variation from 2 to 1. The GMH model, on the contrary,
allowsX and V to interact through the function r in an arbitrary way. Furthermore, similarly
to the MH model, the GMH model allows the duration dependence λ to depend on observed
covariates.

In appendix section A, we briefly discuss the relation of the GMH model to other existing
models. In a nutshell, the Accelerated Time Failure (AFT) model and its generalizations the
GAFT and the EGAFT models are not nested in the GMH model. Conversely, the GMH
model is also not nested in those models.

We now motivate the GMH model with several empirical examples.
Example 1: unobserved treatment heterogeneity. Van den Berg and Van der

Klaauw (2006) evaluate the effect of counseling and monitoring (CM) on the re-employment
chances of unemployed workers within a social experiment in the Netherlands. At inflow
into unemployment, workers are either assigned at random to CM (Z = 1) or to a control
group with no such services (Z = 0). The model estimated in their paper is the MPH model

θ(t|X,Z, V ) = λ(t) exp{Xβ + δZ + lnV }

where X denotes a list of controls. Separability of Z and V precludes the effect of the train-
ing from depending on unobserved noncognitive abilities such as locus of control. Recent
empirical and theoretical evidence suggests however that individuals with higher levels of lo-
cus of control benefit more from the CM process through more active participation, Caliendo
et al. (2015). The simplest model that can capture this relationship is

θ(t|X,Z, V ) = λ(t) exp{Xβ + δZ + γZ lnV + lnV }. (4)

This is a hazard version of the location-scale model in quantile regression, see He (1997).
The coefficient γ captures the unobserved effect heterogeneity of Z.

Example 2: heterogeneous duration dependence. The baseline hazard function
λMPH in model (2) represents the (genuine) duration dependence of the hazard. A commonly
discussed reason for negative duration dependence of the unemployment hazard is stigma.
Stigma occurs when the willingness of employers to hire unemployed individuals decreases
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with increasing spell of unemployment. For example, screening models predict that employers
use the length of the current unemployment spell as a (hidden) productivity signal, see e.g.
Lockwood (1991). Recent experimental studies use fictitious job applications to actual job
postings to analyze the effect of unemployment duration on the call-back rate. These studies
provide evidence that the stigma-driven duration dependence might depend in a complex way
on individual characteristics, in particular on the level of education and experience, as well on
the type of occupation. As an example, Eriksson and Rooth (2014) find large drops of call-
back rates over time for low- and medium-skilled occupations but little to no effect for high
skilled jobs. Similar effects are found by Weber (2014). Farber et al. (2016) find that longer
employment histories compensate for long ongoing unemployment spells, thus reducing or
even eliminating stigma effects. Kroft et al. (2013) find significant heterogeneity of the
duration dependence across levels of tightness of the local labor market. These empircial
findings cannot be incorporated in a separable model. In particular, separability of λ and X
implies that individual characteristics only shift the level of duration dependence. We thus
complement the economic theory arguments against separability outlined in Van den Berg
(2001).

The nonseparable duration dependence λ(t,X) in model (1), on the contrary, allows for
a flexible interaction between time and observed characteristics. As an example, consider
the Weibull specification

λ(t, x) = λ0λ1(x)tλ1(x)−1 (5)

with a scale parameter λ0 and a shape parameter λ1 whose value is now allowed to depend
on the value of the observed characteristics.3 The findings of Farber et al. (2016) can now be
modeled as setting ψ1 < 1 for shorter employment histories and ψ1 = 1 for long employment
histories. Alternatively, flexibility can be achieved in a piecewise-constant bazeline hazard,
in which the coefficients depend on x.

Example 3: heterogeneous measurment error. Consider a case in which the du-
ration variable is measured with error, see e.g. Abrevaya and Hausman (1999). Common
reasons for measurement errors in duration context are time aggregation, Bergström and
Edin (1992), as well as under-reporting in retrospective surveys, Mathiowetz and Duncan
(1988) and Aı̈t-Sahalia (2007). Lancaster (1985) shows that a multiplicative measurement
error in the duration variable, together with a Weibull specification of the latent baseline haz-
ard, lead to a MPH model, with the multiplicative V being a result of the measurement error.
His model imposes that the measurement error does not depend on observed covariates. In
general, however, the measurement error will depend on demographic characteristics, Bound
et al. (1989). Accounting for that possibility naturally leads to a nonseparable model, as
we now demonstrate. Denote by T ∗ the latent duration variable, which might be measured
imprecisely. Assume that the observed duration T satisfies

T = g(T ∗, η) = T ∗(1/η),

η = k(X, V ).

3The Weibull specification, in which λ1 does not depend on x, is commonly used in empirical studies in
the context of an MPH model, see Lancaster (1979) for an early paper and Van den Berg (2001) for further
examples.
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where η is a measurement error, k is some unknown function and V ⊥⊥ (X,T ∗). Let the
conditional distribution of the latent variable follow a Weibull specification, P{T ∗ ≤ t | X =
x} = 1−exp{−tαψ(x)} with α being a (unknown) scalar and ψ an unknown function. Then
the individual hazard of T satisfies θ(t | x, v) = αtα−1ψ(x)k(x, v)α, which is a special case of
model (1) with λ(t, x) = αtα−1ψ(x) and r(x, v) = k(x, v)α.

3 Identification

3.1 Two basic assumptions

Suppose first that T is fully observed. This assumption is relaxed in section 4.1. Denote by
FT,X and FX,V the distributions of (T,X) and (X, V ), respectively, and by G the marginal
distribution of V . Following a convention in the analysis of identification, we assume that the
distribution of the observables FT,X is known to the econometrician, see e.g. Lewbel (2019).
We call a tripple S = (λ, r, FX,V ) that satisfies (1) a model structure. Each structure
implies exactly one distribution FT,X . Two structures are observationally equivalent if they
imply the same distribution FT,X . A feature of a structure, say λ, is identified under a set
of assumptions, if, under these assumptions, the value of the feature does not vary among
any set of observationally equivalent structures, Chesher (2003). We also say that model
(1) is identified under a given set of assumptions, if no two structures S ,S ′,S 6= S ′ are
observationally equivalent.

The following two assumptions are adopted in all identification results in this paper.
Assumption A1: the function r : X × R+ → R is (i) nonnegative and (ii) strictly

increasing in its second component.
A1 is trivially fulfilled for the MPH and MH models. A1(i) ensures that the hazard

function is nonnegative. A1(ii) is borrowed from the literature on nonseparable regression
models, Matzkin (2003), where it simply implies a monotonic relationship between unobserv-
ables and outcomes. In the case of duration models, however, it has an important additional
implication. Good risks (individuals with high values of V ) have a higher exit rate out of
unemployment for every fixed t and X than bad risks (low values of V ). Thus, the distri-
bution of V changes over time t spent in unemployment, with the proportion of bad risks
increasing. This process, called weeding out, Lancaster (1979), or dynamic selection, Van den
Berg (2001), creates a spurious negative duration dependence of the hazard. Formally, the
semi-elasticity of the observed hazard of the GMH model w.r.t. time fulfills

∂ ln θ(t|x)

∂t
=

∂ lnλ(t, x)

∂t
− V ar[Vx|T ≥ t,X = x]

E[Vx|T ≥ t,X = x]
λ(t, x),

where we set Vx := r(x, V ) and V ar denotes the variance of a random variable. The above

equality implies that ∂ ln θ(t|x)
∂t

< ∂ lnλ(t,x)
∂t

. Put in words, for each subgroup of individuals
characterized by a given value x, observed duration dependence is more negative than the
true duration dependence.

To describe the set of observationally equivalent models under A1, assume that the
distribution G is strictly increasing and denote by G−1 its inverse. Define the function
r̄ : X × R+ → R, r̄(x, y) = r(x,G−1(y)). Furthermore, let V̄ = G(V ). Then V̄ is uniformly
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distributed on [0, 1], r̄ is nonnegative and strictly increasing in its second argument, and it
holds

r̄(x, V̄ ) = r(x, V ) (6)

for each x ∈ X. (6) implies that identification requires either normalization of G or additional
restrictions on r. In this paper, we follow Matzkin (2003) and normalize G, see assumption
A2(i) below. Further normalization approaches discussed in Matzkin (2003) are not natural
to the context of duration models and we do not pursue them.

Assumption A2: the unobserved random variable V is (i) uniformly distributed on the
interval [0, 1] and (ii) is independent of X.

Assumption A2 (ii) is a standard assumption in the literature on hazard mixture models.
The identification of single-spell models typically depends crucially on it. Honoré (1993)
shows that multiple-spell MH models are identified without imposing A2 (ii). We come back
to this point in section 3.3.

Example 1, continued. The scale-location model (4) satisfies assumption A1 under
the restriction γZ ≥ 0.

Under A1 and A2, identification boils down to retrieving λ and r from the data. It is
clear, however, that this cannot be achieved without further assumptions. There are two
reasons for this. First, without further restrictions on λ and r, it is possible to shift separable
components depending on X between λ and r without changing the DGP. As an example,
the structures (λ1, r1), (λ2, r2) with

λ1(t, x) = ψ(t) exp{β1x1 + β2x2}, r1(x, v) = exp β3x3 + v (7)

λ2(t, x) = ψ(t) exp{β1x1}, r2(x, v) = exp β2x2 + β3x3 + v (8)

are observationally equivalent. Second, assume for the moment that r does not depend on
x, so that the problem of shifting components of x does not exist. In the following lemma,
we state that the MH model is not identified.

Lemma 1 Assume that r(x1, V ) = r(x2, V ) = r(V ) for any two x1, x2 ∈ X and define
V̄ = r(V ). Denote by Ḡ the distribution of V̄ . Then, there exists a generalized hazard λ̃ and
a distribution G̃ of a nonnegative random variable Ṽ , such that the structures (λ, Ḡ) and
(λ̃, G̃) are observationally equivalent.

Thus, identification is hampered by two distinct problems. The first one arises from the
interplay of λ and r and the second one from the MH model. Before we present solutions to
these problems in the next sections, we briefly study the relative importance of r and λ for
identification. We can state the following result.

Proposition 1 Suppose that model (1) holds.
(i) If λ is known, then under assumptions A1 and A2, the function r is identified.
(ii) If r is known, then under assumptions A1 and A2, the function λ is identified.

To interpret part (i) of proposition 1, transform model (1) in the following way

ln

∫ T

0

θ(t|X, V )dt = ln

∫ T

0

λ(t,X)dt+ ln r(X, V ). (9)
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By rearranging, we obtain

Y = k(X, V ) + ε, (10)

where Y = ln
∫ T

0
λ(t,X)dt is observed, k(X, V ) = − ln r(X, V ) and ε = ln ε = ln

∫ T
0
θ(t|X, V )dt.

The error term ε is a unit exponential r.v. and is independent of X and V . Note that the
identification result remains valid under any known distribution of ε. Thus, proposition
1 implies that the identification result of Matzkin (2003) holds even if we add a second
source of unobserved stochastic variation, as long as its distribution is known. Hence, the
doubly-stochastic regression model (10) with a known transformation behaves as a standard
nonseparable regression model. The assumptions needed for identification are identical in
those two cases.

3.2 Nonparametric identification in single-spell models

In this section, we assume that the econometrican observes exactly one spell of unemployment
for each individual in the sample. At the core of our approach is the assumption that at
least one regressor, say X1, can be be excluded from the function r.

Assumption A3. There exists a random subvector X1 with dimension d1 ≥ 1 and
domain X1, such that X = (X1, X2) has realizations in X = X1 × X2 ⊂ Rd1 × Rd2 and

r(x1, x2, v) = r(x∗1, x2, v) (11)

for all x1, x
∗
1 ∈ X1, x2 ∈ X2 and all v ∈ R+.

A3 justifies the notation r(x2, V ). Unlike the special regressor assumption of Lewbel
(1998), the special treatment here relates to the effect heterogeneity and not to the joint
distribution of observables and unobservables. Therefore, knowledge of the selection process
alone is not sufficient for motivating A3. One approach to discipline the model choice is to
rely on evidence on treatment effect heterogeneity provided by studies with particularly rich
numbers of covariates. The following example illustrates this point.

Example 1, continued. In the context of example 1, suppose the researcher assumes
that the major unobservable characteristics behind V are some characteristics of the case
worker (CW) assigned to the individual. Evidence for interaction of labor market treatments
and characteristics of the CW can be found for example in Knaus et al. (2017). They
use flexible estimators and a rich administrative dataset with Swiss unemployed to study
the effect heterogeneity of job search programs. The study finds no heterogeneity of the
effect w.r.t. most of the case worker characteristics. For example, the estimated effects are
homogeneous w.r.t. tenure, age and gender of the CW, as well as w.r.t. whether CW and
the unemployed have the same gender. These results could be used to make an informed
model choice when CW characteristics are unobserved.

An important aspect of the search for separable covariates, highlighted by the above
example, is to specify in a first step what is in the error term. Having knowledge about
the nature of the error term has been often used in the literature as a source of identifying
variation, see Heckman (2008). In the following example, knowledge about the error term
together with economic theory inform the choice of the separable covariate.
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Example 4: purchase of durable goods. This example builds on the study of
Boizot et al. (2001). Consider a household that consumes a certain durable product. Let T
represent the duration to a purchase and X1 the relative price of that product with respect
to a substitute. If V captures unobserved taste for this product, then individuals with high
values of V are likely to respond differently to an increase in X1 than individuals with low
values of V . Now suppose that the product is a regularly purchased product, such as noodles.
Boizot et al. (2001) argue that in such cases, the taste can be assumed homogeneous among
households. Then V could capture instead (costly) storage space. Assume that rice is the
only substitute of noodles. Since packages of noodles and rice have a similar size, the effect
of an increase in the relative price of noodles can be safely assumed to have a similar effect
on the time to purchase for low and high values of V . In addition, it can be assumed that
the hazard of T is monotonic in available space.

We now complement assumption A3 with two ”competing” assumptions, A4 and A4’, on
the separable regressor.

Assumption A4. (i) The separable regressor X1 from assumption A3 is also separable
from the genuine duration dependence, that is

λ(t,X) = µ(t,X2)φ(X1, X2) (12)

(ii) For every x2 ∈ X2, the set {φ(x1, x2) : x1 ∈ X1} contains a non-empty open subset of
(0,∞).

Under assumptions A3 and A4 (i), model (1) can be written as

θ(t|X, V ) = θ(t|X1, X2, V ) = µ(t,X2)φ(X1, X2)r(X2, V ). (13)

For a fixed X2 = x2, (13) reduces to an MPH model. (13) can be therefore interpreted as a
generalized MPH model. Part (ii) requires that there is sufficient variation in the separable
regressor X1. This is a modification of a standard assumption in the MPH context, see e.g.
assumption 3 in Elbers and Ridder (1982) and assumption 6b in Van den Berg (2001). The
variation in φ is required for every element x2. This requires that there is variation in X1 for
each value of X2. In addition, A4 (ii) implies that (at least one element of) X1 is continuous.
A4 (ii) can be replaced with the following weaker assumption: the set X1 contains at least
two elements x1, x

′
1 such that for every x2 ∈ X2 it holds φ(x1, x2) 6= φ(x′1, x2). The elements

x1, x
′
1 can depend on x2. See also the remark in the proof of proposition 2.

The alternative assumption A4’ requires the separable covariate X1 to be time-varying,
i.e. the value of X1 depends on time, and X1 = (X1(t))t∈R+ is a stochastic process. X2 and V
are as before time-constant random variables. x1 denotes a path of X1 and is a deterministic
function of time.

Assumption A4’. (i) X1 is a predictable process. (ii) The hazard of T at each t
depends only on the value X1(t). (iii) For each x2, there are two paths of X1, z1, z2 with
z1(t) = z2(t) for all t in some fixed open interval (t0, t1) and S{t0 | z1, x2} 6= S{t0 | z2, x2},
where S(t | x1, x2) is the observed survival function.

The predictability of X1 is commonly invoked in proportional models, see e.g. Kalbfleisch
and Prentice (1980) and the discussion in section 4.2. in Van den Berg (2001). The value of
X1(t) must be known just before t. This precludes anticipation by the individual which is not
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observed by the econometrician. A typical example is when an individual expects a child,
which might affect the current job search. If this is not observed by the econometrician,
then the process is not predictable. Assumption A2 (ii) now means that V ⊥⊥ (X1(t), X2)
for each t. Together with predictability, this implies that ”only depends on past and outside
random variation”, see Van den Berg (2001) p. 3399 as well as Andersen et al. (1996).
”Outside variation” means that X1 is not determined within the model. A4’ (iii) generalizes
Condition 1 in Brinch (2007). Here, both the paths z1 and z2, as well as the interval (t0, t1),
are allowed to depend on x2. A4’ (iii) excludes processes that are constant over time (such
as initial endowments), or do not change value over individuals (such calendar time), or are
deterministic function of time (such as years of experience or age, measured throughout the
spell). These requirements make it possible to distinguish between the genuine duration
dependence and the time-varying effect of X1. In addition, processes X1 that are fully
determined by the value of X2 are also excluded. With A4’, the hazard can be written as

θ(t | X, V ) = θ(t | X1(t), X2, V ) = λ(t,X1(t), X2)r(X2, V ). (14)

There are two important implications of (14). First, at some elapsed duration t0, past
variation of X1 (i.e. variation at t < t0) impacts the hazard only through dynamic selection,
that is, through the distribution of r(x2, V ) at t0. This insight provides a source of identifying
variation. Second, information about future values X1(t), t > t0 are allowed to impact the
hazard at t0 only through X1(t0). This can be viewed as a no-anticipation assumption, see
Abbring and Van Den Berg (2003b), although strictly speaking anticipation is allowed as
long as it is symmetric between the individual and the econometrician.

Example 5: Job search on the job. To identify the effect of having children on labor
market outcomes, Lundborg et al. (2017) use exogenous variation in the number of children
caused by the randomness of an In Vitro Fertilization (IVF) process. In their setting, let T
be the duration until a new job is found while searching on the job and X1(t) the number
of children. It holds X1(t) ⊥⊥ V since the IVF process is idiosyncratic and not dependent
on factors influencing the job market history. In addition, it is plausible to assume that
only current values of X1 impact the search outcome. Past number of children impact
the current search outcome only through the current number of children. Moreover, both
predictability and no anticipation can be defended on the grounds that the IVF outcome is
equally uncertain for the individual and the econometrician. The intentions of the individual
to have additional children are known to the econometrician through inflow into the IVF
register.

In addition to assumption A4 (A4’), we need the following regularities and normalization
assumptions.

Assumption A5. The function λ obtains only nonnegative values. For each t ∈ [0,∞)
and each x ∈ X, Λ(t, x) :=

∫ t
0
λ(w, x)dw exists and is finite.

Assumption A6. For every x2 ∈ X2, there is a known x∗1 = x∗1(x2) ∈ X1 and a known
t∗ = t∗(x2) ∈ [0,∞) such that φ(x∗1, x2) = 1 and Λ(t∗, x2) = 1.

Assumption A6’. For every x2 ∈ X2, there is a known t∗ = t∗(x2) and x∗1 = x∗1(x2),
such that λ(t∗, x∗1(t∗), x2) = 1.

Assumption A7. For every x ∈ X, the random variable r(x, V ) has a finite mean.
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Assumption A5 is an innocuous regularity assumption. It generalizes a standard assump-
tion in mixture hazard models, see e.g. assumption 2 in Elbers and Ridder (1982). In the
context of assumption A4, it requires µ to be integrable for each x2 ∈ X2. In the context of
assumption A4’, it requires the integral

∫ t
0
λ(s, x1(s), x2)dt to exist for every finite positive t.

A6 and A6’ are scale normalization assumptions needed under A4 and A4’, respectively.
Consider first A6. For each X2 = x2, the conditional model is a standard MPH model. A6
reduces to a standard normalization assumption, see e.g. assumption 7 in Van den Berg
(2001). Without A6, µ and φ would be identified only up to a scale for each value x2.
Depending on the context, the researcher might be willing to choose t∗, x∗1 independently
of x2, for example t∗ = x∗ = 0. If A6’ is dropped, the class of observationally equivalent
structures (Λ, r) can be described in the following way. For a fixed x2, denote by Λx2 and
Vx2 the expressions Λ(., ., x2) and r(x2, V ), respectively. Further, let Gx2 and Lx2 be the
distribution of Vx2 and the corresponding Laplace transform. For any c > 0, it holds

S(t | x1, x2) = Lx2(Λx2(t, x1)) = Lx2(
1

c
(cΛx2(t, x1))).

Therefore, for any value x2, the strata MH models (Λx2 , Lx2) and (Λ̃x2 , L̃x2) are observa-
tionally equivalent if there exist a constant c, such that Λ̃x2 = cΛx2 and L̃x2(s) = Lx2(

1
c
s)

for every s ∈ [0,∞). Assumption A6’ normalizes the strata MH models corresponding to
different values x2.

Finally, A7 is a nontestable normalization assumption. It can be replaced by the as-
sumption of Heckman and Singer (1984) on the tail of the distribution of r(x, V ). See
Ridder (1990) for an extensive discussion. In some cases, A7 can be justified with economic
theory, see the discussion in section 5.5 of Van den Berg (2001).

With these assumptions, we can state the following result.

Proposition 2 Under assumptions A1-A3, A4, A5, A6 and A7, the GMH model (1) is
identified.

Proposition 3 Under assumptions A1-A3, A4’, A5, A6’ and A7, the GMH model (1) is
identified.

While detailed proofs are provided in the appendix, let us give some intuition on these
results. For a given x2, define θx2(t|x1, vx2) := θ(t|x1, x2, v) and λx2 analogously. Each of
the assumptions A4 and A4’ ensure that for each x2, the corresponding x2-strata MH model
θx2(t|x1, vx2) = λx2(t|x1)vx2 is identified (that is, that the pair (λx2 , Gx2) is identified). A4
uses the separability of x1 as in the MPH model, while A4’ the time variation of the covariates
as in Brinch (2007). The function r is identified over quantiles of the identified distributions
(Gx2)x2∈X2 . This intuition leads naturally to the following result:

Proposition 4 Let assumptions A1-A3 hold. Then the GMH model (1) is identified with
single spells if and only if for each x2 ∈ X2 the corresponding single-spell x2-strata MH model
structure (λx2 , Gx2) is identified.
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Thus, any strategy to identify the single-spell MH model can be used to identify the GMH
model (1) under assumptions A1-A3. We presented two such strategies, A4 and A4’. A
third one is the time-varying covariates strategy developed in Ruf and Wolter (2019). Their
approach relies on martingale properties of a correctly specified MH model.

Remark 1 (Overidentifying restrictions) Melino and Sueyoshi (1990) derive overiden-
tifying restrictions for the MPH model. These restrictions are helpful, as they can be used
to test the model. It is easy to see that their result caries over to the GMH model under
assumptions A3-A4, since for each value x2, the GMH model reduces to a MPH model. The
overidentification result of Melino and Sueyoshi (1990), however, does not carry over to the
model under restrictions A3-A4’, because λ is not multiplicative in X1. In the next section,
we derive a novel property for the GMH model, which can be used to derive a test-statistics.

3.3 Nonparametric identification in multiple-spells models

Let T1 and T2 be two duration variables. In this subsection, we study identification of the
following bivariate model:

θ1(t|X, V ) = λ1(t,X)r(X, V ) (15)

θ2(t|x, T1 = t1, v) = λ2(t,X)ψ(t1, X)r(x, V ) (16)

The hazard model for the first duration is the GMH model (1). The hazard model for the
second duration is an augmented GMH model which allows T1 to have an effect on the hazard
of T2. This effect may depend on X in an arbitrary way. We discuss two distinct setups of
interest which differ w.r.t to the a priori assumption on ψ. In both setups, both T1 and T2

are assumed to be fully observed.
Setup 1. Suppose that T1, T2 describe the random length of two spells of the same indi-

vidual. The first spell is finished before the begin of the second spell. As an example, T1, T2

might represent the durations of two (consecutive) unemployment spells. Alternatively, T1

might be the length of the last employment spell and T2 the length of the current unemploy-
ment spell. The spells are thus not required to be of the same type. The notation implies
that X and V realize prior to the begin of the first spell. The function ψ captures the so
called lagged duration effect. Because of the consecutive character of the spells, T1 is fully
known to the individual (and the potential employer) throughout the second spell and is
thus fully ”anticipated”. As a result, T1 has an impact on θ2 right from the beginning. This
model will be contrasted to the model in section 4.2 where T1 arrives as a surprise during
the spell of T2. Notably, λ1, λ2 are allowed to be different. The generalized error r(x, v),
on the contrary, is restricted to be the same in both spells. Thus, given the dependence of
r on X, model (15), (16) can be interpreted as a hazard version of a dynamic fixed-effects
panel data model (the analogy is not entirely correct though, since here T1 and T2 could be
outcomes of different types).

Identification of lagged duration models has been first considered by Heckman and Borjas
(1980), Honoré (1993), and more recently by Horny and Picchio (2010) and Picchio (2012).
Recent empirical studies of lagged duration dependence can be found in Doiron and Gørgens
(2008), Cockx and Picchio (2013), Dorsett and Lucchino (2018), among others.

14



Setup 2. Suppose now that T1, T2 describe duration variables of two distinct individuals.
The individuals are assumed to share (observed and) unobserved characteristics. Such a
context may arise when T1, T2 describe duration outcomes of twins, of employees in the same
firm, or individuals from some common background, see Hougaard (2000) for an overview.
Importantly, since the spells are assumed ”parallel”, i.e. one does not require sequential
realizations, it must be also assumed that there are no cross-effects, ψ = 1. In section 4.2,
we relax this assumption. To distinguish between the two setups, following the conventions
in the literature, we refer to them as lagged duration dependence model (setup 1) and shared
frailty model (setup 2).

Remark 2 (A third setup) The following combination of the two setups is also consid-
ered. As in Setup 1, let T1, T2 represent two unemployment spells of the same individual. The
experimental study of Eriksson and Rooth (2014) suggests that in certain cases employment
experienced after T1 might offset the lagged duration dependence between T1 and T2. In such
cases, ψ = 1 can be assumed. Similarly, Doiron and Gørgens (2008) find the length of that
past employment spells T1 does not matter for subsequent unemployment spells T2, as long
as one conditions on the dummy variable ”being employed”. In our model, this can be done
automatically by the sample choice when only individuals with T1 > 0 are considered.

Consider the following assumptions.
Assumption A5”. (i) For each j = 1, 2, the function λj obtains nonnegative values.

λj(t, x) is continuous in t for each x ∈ X. Λj(t, x) is finite for each x. (ii) The function ψ
takes only positive values and is differentiable in t for each x ∈ X.

Assumption A6”. For each x ∈ X and j = 1, 2 there exists known t∗j = t∗j(x) ∈ R+

such that (i.) λ1(t∗1, x),Λ2(t∗2, x) are known and (ii) ψ(t∗1, x), ∂tψ(t∗1, x) are also known, where
∂t denotes the derivative w.r.t. t..

Assumption A5” (i) is slightly stronger than A5. It can be relaxed by requiring that t can
be varied such that Λ2(t, x) obtains all values in an open interval. A5” (ii) requires smooth-
ness of ψ. This is a mild assumption. In particular, consider the case in which the lagged
duration dependence (that is, T1) is treated as any other covariate in the hazard function
of T2. Then, under the standard MPH specification λ(t, x) = h(t) expxβ, assumption A5”
(ii) is fulfilled. A6” (i) has a role equivalent to those of A6 and A6’. Assumption A6” (ii) is
a scale normalization assumption similar to the one made in Honoré (1993). A convenient
normalization is ψ(0, x) = 1 for all x, for which case no normalization of Λ2 is needed. Note
that A6” (ii) requires the same t∗ for both λ1 and ψ. This somewhat stronger assumption
can be relaxed under additional assumptions on the distribution of V , see section B in the
appendix.

We can now state the main result of this section.

Proposition 5 (i) Under assumptions A1, A5” and A6”, the functions λ1, λ2, ψ are iden-
tified. (ii) If in addition A2 is satisfied, then also the function r is identified.

We now discuss the key aspects of proposition 5 and relate them to the literature. First,
the only other study allows for interaction in observed and unobserved factors is Evdokimov
(2010). His model, however, rules out lagged duration dependence.

Second, part (i) of proposition 5 states that independence of X and V is not necessary for
identifying λ1, λ2, ψ. This result is of particular importance since most studies focus either on
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Table 1: Comparison of assumptions in the literature

Paper (a) (b) (c) (d) (e) (f) (g)
Evdokimov (2010) Yes Yes Yes No No No Yes
Model 1, Honoré (1993) No Yes Yes No No Yes No
Model 3, Honoré (1993) No No No Yes No No No
Picchio (2012) No Yes Yes Yes Yes Yes Yes
This paper Yes Yes Yes Yes Yes Yes No

Each column represents one assumption. (a) Interaction of X and V allowed. (b) Independence of
X and V not needed to identify model structure (apart from r). (c) No finite mean assumption on
the unobservables needed. (d) Model allows for lagged duration dependence. (e) Lagged duration
dependence depends on x. (f) Fixed-effects assumption needed. (g) More than two spells needed.

the genuine duration dependence or on scarring effects, and not on the effect of a particular
covariate on the hazard. In addition, independence is often hard to defend. Similarly to
our result, independence is not required in Evdokimov (2010), in the shared frailty model
(model 1) in Honoré (1993), and in Picchio (2012). However, model 1 in Honoré (1993) does
not allowed for lagged duration dependence, the approach in Evdokimov (2010) requires at
least three spells per individual, and Picchio (2012) assumes that there are recurrent data
for each outcome (i.e. at least two observations for each Ti, i = 1, 2).

Third, we do not impose a finite mean assumption on Vx. The lagged duration model
(model 3) in Honoré (1993) needs a finite mean assumption, while Evdokimov (2010), Picchio
(2012) and model 1 in Honoré (1993) do not.

Fourth, as in Picchio (2012), we allow the lagged duration dependence ψ to depend in an
arbitrary way on X. A brief comparison to proposition 2 is due. If we treat t1 in model (16)
as a regular covariate, then we obtain a model equivalent to the model under assumption
A4. In particular, ψ = φ and µ = λ. The underlying sources of identification in both models
are however fundamentally different. In the single-spell model, separable variation triggered
by φ is used to identify LG and eventually µ. In the multiple-spell model, identification of
ψ and variation in t1 are not necessary for identification of λ.

Fifth, the price for the generality of result 5 is the mild fixed-effect assumption r1 = r2 =
r, V1 = V2 = V . Similar assumptions are adopted in Picchio (2012) and in model 1 in Honoré
(1993), while Evdokimov (2010) allows the function r to vary across periods.

Table 1 provides a summary of this discussion.

Remark 3 (Alternative proof) We provide a second identification proof in the appendix
that requires independence for the identification of λ1, λ2, ψ, see the remark at the end of
the proof of proposition 5 in the appendix. The identification proof switches the order of
identification: r is identified before λ1, λ2, ψ are identified. This distinction is important when
independence can be credibly maintained and when r is not treated as a nuisance parameter
but as a parameter of interest.

Towards testing the multiple-spell model. We now introduce a general property of
the multiple-spell nonseparable model that can be used in graphical model diagnostics and
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is potentially testable. For t1, t2 ∈ R+, define

ρ(t1, t2, x) :=
∂t1S(t1, t2|x)

∂t2S(t1, t2|x)
, (17)

where S is the joint survival function

S(t1, t2|x) : = P(T1 > t1, T2 > t2|x). (18)

ρ is nonparametrically identified under mild regularity conditions (see e.g. Kalbfleisch and
Prentice (1980)), provided the denominator is not zero. It holds the following proposition.

Proposition 6 Suppose that for t1, t2, y1, y2 ∈ R+ the quantities ρ(t1, t2, x), ρ(y1, y2, x), ρ(t1, y2, x)
and ρ(y1, t2, x) are well defined. In addition, suppose that the hazards of T1 and T2 satisfy
the model assumptions (15) and (16), respectively. Then:

(i) if ψ = 1, it holds

ρ(t1, t2, x)ρ(y1, y2, x)− ρ(t1, y2, x)ρ(y1, t2, x) = 0 a.e ., (19)

(ii) if ψ is allowed to vary with t and x, then property (19) holds only if either (a) Λ2(t, x)
does not depend on t given x, i.e. Λ2(t, x) = f(x) where f is a function of x, or (b)
λ1(t, x) = g(x) and ψ′(t, x) = k(x), where g and k are functions of x, or (c) ψ and λ1 are
proportional in t and x and the parts depending on t are equal, that is

λ1(t, x) = η(t)φ1(x) (20)

ψ′(t, x) = η(t)φ2(x), (21)

where η is common and φ1 and φ2 might be different.

The choice of t1, t2, y1, y2 is arbitrary as long as all quantities are well-defined. Thus, propo-
sition (6) states a property that can be used to test the model under both setups 1 and 2.
Deriving the explicit test statistic and its properties is not in the scope of this paper.

4 Applications to competing risks and treatment ef-

fects models

4.1 Identification in nonseparable competing risks models

An individual might consider several destinations of the transition out of unemployment.
As an example, elderly unemployed might choose to search for a new job or to withdraw
from the labor force, Kyyrä and Ollikainen (2008). In addition, the researcher might want to
distinguish between full-time employment, part-time employment, employment on a short-
term/long-term contract, and other forms of employment, see e.g. Portugal and Addison
(2008). These destinations are typically modeled as competing risks. The main feature of a
competing-risks model is that the duration under each risk is latent and only the duration
until the first cause of exit is observed. Without further structure, the competing risks
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model is nonparametrically nonidentified, Tsiatis (1975). We now apply the identification
strategies discussed in the previous section to achieve identification of the GMH competing
risks model.

Single-spell setting. Consider a single-spell setting with only two risks, A and B.
A generalization to a case with more than two risks is straightforward. Denote by Ti the
latent duration under risk i = A,B. For each individual in the sample, the researcher
observes T̃ := min{TA, TB} and the indicator function 1{TA < TB} which informs about
the cause of exit. Thus, instead of the joint survival function P{TA > tA, TB > tB}, the
econometrician ”knows” the crude survival functions P{Ti > t, Tj > Ti}, i, j = A,B, i 6= j.
Denote by VA and VB the risk-specific unobserved characteristics that impact TA and TB,
respectively. We assume that (X, Vi) fully determine the distribution of Ti and that TA and
TB are conditionally independent given (X, VA, VB). VA and VB are allowed to be dependent,
while X ⊥⊥ (VA, VB). This is the standard setup in competing risks models with covariates,
see Abbring and Van Den Berg (2003a), Heckman and Honoré (1989), Horny and Picchio
(2010). We assume the bivariate GMH model

θA(t|X, VA, VB) = θA(t|X, VA) = λA(t,X)rA(X, VA) (22)

θB(t|X, VA, VB) = θB(t|X, VB) = λB(t,X)rB(X, VB). (23)

ri and λi are allowed to be risk-specific. We can now state the following result.

Proposition 7 Suppose that VA, VB fulfill assumptions A2 and A7, and let each of the haz-
ards θA, θB satisfy assumptions A1, A3-A6, where A4 (ii) is replaced by the condition

A4 (ii)’: for each x2 ∈ X2, the set {(φA(x, x2), φB(x, x2)) : x ∈ X1} contains a nonempty
open subset of R+ × R+.

Then, µi, θi, ri, i = A,B are identified from the data.

Proposition 7 is a generalization of proposition 2 in Abbring and Van Den Berg (2003a).
Note that identification of φA, φB does not require independence of X and VA, VB and the
variation condition A4 (ii)’.

Multiple-spells setting. Consider now a setting with competing risks and multiple
spells. In particular, for i = A,B, we assume the model

θi1(t|X, Vi) = λi1(t,X)ri(X, Vi) (24)

θi2(t|X,Ti1 = t∗i1, Vi) = λi2(t,X)ψi(t
∗
i1, X)ri(X, Vi). (25)

The researcher observes (X, T̃k = min{TAk, TBk},1{TAk < TBk}), k = 1, 2. (TA1, TA2)
are conditionally independent from (TB1, TB2) given X, VA, VB. However, conditionally on
(X, VA, VB), Ti1 may impact Ti2. We can state the following result.

Proposition 8 Assume that both (TA1, TA2, X, VA) and (TB1, TB2, X, VB) satisfy the condi-
tions of proposition 5. (i) Then for i = A,B, k = 1, 2, λik and ψi are identified from the
data. (ii) If in addition the following condition holds:

A5” (iii): for each x ∈ X, the set

{(ΛA1(t, x) + ψA(t, x)ΛA2(t̃, x),ΛB1(t, x) + ψB(t, x)ΛB2(t̃, x)) : t, t̃ ∈ R+}

contains a nonempty open subset of R+ × R+,
then also rA, rB are identified.
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A comparison to existing results should provide some intuition. The closest setup to the
one considered in proposition 8 is the one studied in Horny and Picchio (2010). They prove
identification in a competing risk model with multiple spells using the MPH model structure,
thus generalizing the single-risk results by Honoré (1993) (see his proposition 5 and our
discussion in section 3.3). In the models of Honoré (1993) and Horny and Picchio (2010), it
is crucial to identify the joint distribution of the unobservables in order to distinguish between
the lagged duration dependence ψi and the genuine duration dependence in the first spell
λi1. To identify the distribution of the unobservables in those models, separable variation
in x is necessary. This separable variation is provided by the structure of the MPH model.
In the GMH model studied in this section, we do not dispose of such variation. Instead,
we restrict the functions rik and the unobservables Vik to be the same for both spells, i.e.
ri1 = ri2 and Vi1 = Vi2 for each i = A,B. This leads to identification of λi1, ψi. Identification
of ri is achieved subsequently. Thus, the fixed-effects assumption is the price for the higher
flexibility. Similar source of identifying variation is employed by Abbring and Van Den Berg
(2003a) in their multiple-spell model. Our model, however, is substantially richer. We allow
X to interact with V and we allow for lagged duration dependence. Both these aspects are
not allowed by Abbring and Van Den Berg (2003a). Intuitively, distinguishing between λi1
and ψi is possible, because the ratio of the subsurvival functions of the two spells depends
on ψi in a way that varies with the elapsed duration in the second spell, which is not the
case for λi1.

Discussion on (non)identification with time-varying covariates. We showed thus
far that both our strategy under assumption A4 and having multiple spells as in section 3.3
lead to identification in the GMH competing risks model. This is not the case for our strategy
under assumption A4’. The following discussion should provide the intuition. Identification
with risk-specific unobservables requires variation on an open subset of R+ × R+. This
variation is necessary to identify the bivariate Laplace transform of the joint distribution of
the unobservables. However, due to the censoring problem, the subsurvival function restricts
the variation to depend on a single time argument t. Thus, without separable variation in
x, no identification of the distribution of the unobservables is possible. Hence, the bivariate
version of the MH model considered by Brinch (2007) (and in general, of any single-spell MH
model with risk-specific unobservables but without separable x-variation) is not identified.
Since the MH model is nested in the GMH model, the single-spell GMH model is not identified
with competing risks under assumption A4’.

4.2 Nonparametric identification of treatment effects when the
treatment is assigned during the spell

Thus far, we considered effects of variables X, V that realize prior to or at begin of the spell
in the state of interest. However, a factor that impacts the hazard might materialize during
the individual spell. The effect of such variable (in the following referred to as treatment)
would typically depend on the precise timing, i.e. on the elapsed duration until the exposure
begins and on the duration of the exposure.

Example 6: Job Creation Schemes (JCS) Bergemann et al. (2017) study the effect
of JCS on job search outcomes in East Germany shortly after the German reunification.
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The typical JCS consisted of temporary work opportunities for the unemployed in the public
and nonprofit sector. Bergemann et al. (2017) find that the elapsed unemployment duration
until program matters: the longer it takes until the program starts, the more negative are
the associated lock-in effects of the JCS. In addition, the effect varies with the length of the
exposure, with negative effects in the first 11 months followed by positive but insignificant
effect for later months.

Formally, let the r.v. Si denote the time since entry into the state of interest (e.g.
unemployment) until exposure to a treatment for individual i begins. Si is a duration
variable that might be censored by the duration in the state of interest T . In the example
above, S is the random time until an individual starts temporary work as part of a JCS,
and T is the duration of unemployment. Denote the hazard of S by θS and define the
vector V = (VT , VS), where VT , VS are two unobserved scalar r.v.. We consider the following
bivariate duration model:

θT (t|S = s,X = x, V ) =

{
λT (t, x)rT (x, VT ) if t < s

λT (t, x)δ(t, s, x)rT (x, VT ) if t ≥ s.
(26)

θS(t|X = x, V ) = λS(t, x)rS(x, VS). (27)

Equation (27) specifies the hazard of the treatment variable S. This is the nonseparble
GMH model (1) studied in the previous sections. It depends on V only through the S-
specific unobservables VS. Equation (26) specifies the hazard of T . It is an augmented GMH
model. Before the treatment has been assigned (t < s), this is simply the GMH model (1).
After the begin of the exposure, the hazard function is modified by the component δ, which
can be interpreted as a treatment effect. Conditionally on X and V , S can impact T only
through δ. The effect δ is allowed to depend on the elapsed time s until exposure begins
and on the elapsed exposure time that is inferred from (t, s). δ is also allowed to depend on
observed heterogeneity x. Since for (t < s) there is no treatment effect, model (26) can be
interpreted as satisfying the ”No Anticipation” assumption: the treatment is not anticipated
by individuals or individuals cannot act upon their information about its timing, see Abbring
and Van Den Berg (2003b) for a discussion. VS and VT are allowed to be dependent, so that
the model allows for endogenous selection into the treatment.

Model (26), (27) is a generalization of the widely-used bivariate MPH model considered
in the seminal paper of Abbring and Van Den Berg (2003b) (see their model 1A on page
1503). In particular, unlike Abbring and Van Den Berg (2003b), I allow for (i) interaction
of observed covariates X and genuine duration dependence t through the functions λj and
(ii) interaction of observed and unobserved heterogeneity, X and V , through the functions
rj, j = T, S.

Note the difference to the lagged duration model (15), (16). The treatment effect δ
appears only for values t > s, while the lagged duration effect ψ appears at any elapsed
duration of the second duration variable. This difference reflects the conceptual difference
in the timing of the two models. While in the treatment effect model the treatment arrives
during the spell of unemployment, in the lagged duration model, the treatment has realized
prior to the begin of the spell of unemployment.

The main result of this section is stated in the following proposition.
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Proposition 9 Assume that the functions λj, rj, j = S, T and the joint distribution of
rT (X, VT ) and rS(X, VS) are known. Then, the treatment effect δ is identified from the
data.

The proof of this proposition is novel and does not follow the steps of the proof in Abbring
and Van Den Berg (2003b). The strategy for identifying the full model, however, does lean
on the insights in Abbring and Van Den Berg (2003b) and consists of two steps. In a first
step, consider model (26), (27) for values t < s. For such values, the model represents a
GMH competing risks model. Under the assumptions from section 4.1, we can identify this
model, i.e. we can identify λj, rj, j = T, S and the joint distribution of rT (X, VT ), rS(X, VS).
In a second step, we can identify the treatment effect δ due to proposition (9). The following
proposition states identification of the full model.

Proposition 10 Suppose that for t < s, the bivariate GMH competing-risks model (26),
(27) is characterized by the assumptions of either proposition 7 or proposition 8. Then,
λj, rj, j = S, T , the joint distribution of rT (X, VT ) and rS(X, VS), as well as δ are identified
from the data.

5 Discussion

In this paper, we provided identification results for nonseparable duration models. Our mod-
els are nonseparable in two ways. First, genuine duration dependence is allowed to depend
on observed covariates. Second, observed and unobserved characteristics may interact in
an arbitrary way. The models considered in the paper constitute a comprehensive set of
settings considered in theoretical and applied duration studies. In particular, we showed
identification in single-spell models with and without time-varying covariates, in multiple
models with shared frailty and lagged duration dependence, in single-spell and multiple-
spell competing risks models, and in treatment effects models where treatment is assigned
during the individual spell in the state of interest. A natural follow-up of our results would be
to additionally allow unobserved heterogeneity to interact with duration dependence. This
remains a question for future research.

A Appendix: Relation to existing models

In this subsection, we study the relation of the GMH model to the following alternative
models:

1. The accelerated failure time (AFT) model imposes the nonparametric regression rela-
tion

lnT = − ln θ0(X) + lnT0, (28)

with T0 being some unobserved baseline duration variable with an unspecified distri-
bution and θ0 an unknown function, see Kalbfleisch and Prentice (1980).
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2. The generalized AFT (GAFT) model, developed by Ridder (1990) is characterized by
the regression

ln

∫ T

0

ψ(s)ds = − ln θ0(X) + U, (29)

where U is unobserved stochastic variation and ψ is a positive unknown function.
This model nests the AFT (ψ = 1) and the MPH (U = − lnV + ln

∫ T
0
θ(s | x, v)ds)

models. It was developed because of the observation, that although the MPH has a
more general regression form than the AFT, it does not nest it because of implicit
restrictions imposed on the generalized error term U .4 The GAFT model is closely
related to the transformation models studied in Horowitz (1996),

Λ(T ) = Xβ + U, (30)

with Λ an unknown (monotone) transformation.

3. The extended GAFT (EGAFT) model, studied by Brinch (2011) imposes

P{T ≥ t | X = x} = T(Λ(t, x)), (31)

where T is any positive, strictly decreasing, continuously differentiable function with
T(0) and Λ(t, x) =

∫ t
0
λ(s, x)ds. The EGAFT model nests the GAFT and the MH

models.

For the analysis of the relations between the GMH and these models, it is useful to write the
GMH in a regression form with transformed duration. Denote by ε the transformed duration
ln
∫ T

0
θ(s | x, v)ds. As noted above, it has a type-I extreme-value distribution. Moreover, ε

is independent of (X, V ) per construction. The GMH model can be written as

ln Λ(T,X) = − ln r(X, V ) + ε. (32)

Our first observation is that the AFT model is not nested in the GMH model. The line of
reasoning is analogous to the result in Ridder (1990). In particular, assume that lnT0 in (28)
has a standard normal distribution. Then model (32) cannot be written in the form (28),
precisely due to the distribution of ε. In obvious notation, with AFT ⊂ GAFT ⊂ EGAFT,
we obtain that the GAFT, EGAFT models are also not nested in the GMH model.

Second, the GMH model is not nested in the EGAFT model. To see this, note that under
model (1) we can write for the observed survival function

P{T ≥ t | X = x} =

∫
ΩV

P{T ≥ t | X = x, V = v}dGV (v) =

=

∫
ΩV

(1− exp{−Λ(t, x)r(x, v)})dGV (v). (33)

If for some x1 6= x2, the values Λ(t, x1) and Λ(t, x2) are equal, then the values of (33) at
(t, x1) and (t, x2) will in general be different due to the presence of r(x, v) (unless a very
specific form of r is chosen). Thus, in the context of the GMH model, there exists no map
T : R+ → R+ which satisfies the conditions of the EGAFT model.

4In the MPH model, U cannot be a normal distribution because ln
∫ T

0
θ(s | x, v)ds is distributed as type-I

extreme-value distribution.
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B An alternative identification approach for the mul-

tiple spell lagged duration model

In the following, we state an assumption on the distribution of V which helps identify the
model without the normalization requirement A6” (ii).

A8 For each t1 and x ∈ X, it holds

E[V |T2 ≥ t, T1 = t1, X = x] = E[V |T1 ≥ t,X = x] (34)

A8 contains two parts. First, the conditional distribution of V given T2 and X does not
depend on X. T1 impacts the hazard of T2 through ψ though (direct effect). It is excluded
from determining the dynamic selection, once X is accounted for. In this sense, T1 can be
viewed as an exclusion restriction with respect to the structure determining G|T2 ≥ t,X.

Define the difference D(t1, t2, t∗, x) := ln θ2(t2|x, T1 = t∗, x) − ln θ1(t1|x). D is nonpara-
metrically identified from the data. It holds the following proposition.

Proposition 11 (i) Under assumptions A1, A5” (ii) and A8, it holds:

ψ(t′, x) = exp{D(t, t, t′, x) + w(x)}, (35)

where t is arbitrary and w : X→ R is a function of x.
(ii) Furthermore, if for any x there is a t̃ = t̃(x) such that ψ(t̃, x) is known, then under

A1, A5” and A6” (i), the functions λ1, λ2, ψ are identified.
(iii) If in addition to the assumptions in (ii) also assumption A2 holds, then also r is

identified.

A discussion of (11) is due. Result (i) is closely related to the first-difference approach in
panel data. Under A8 the fixed effect (the averaged r(x, V )) cancels out. Result (i) also
implies that the model is overidentified. In particular,

∂t lnψ(t′, x) = ∂t′ lnD(t, t, t′, x) (36)

does not depend on t. This property can be useful for testing the hypothesis

H0 : θ2(t|x, t1, v) = λ(t, x)ψ(t, x)r(x, V ).

Consider namely the more general model

θ1(t|x, v) = λ1(t, x)r(x, V ) (37)

θ2(t|x, t1, v) = λ2(t, x, t1)r(x, V ) (38)

Corollary 1 Within the class of models described by equations (37) and (38), under A8,
H0 is true iff ∂t′ lnD(t, t, t′, x) does not depend on t.
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C Proofs

C.1 Proofs of results in section 3.1

Proof of lemma 1. Assume that r(x, V ) does not depend on x, r(x, V ) = r(V ) and set
Ṽ = r(V ). The model transforms into the standard MH model,

θ(t | X, Ṽ ) = λ(t,X).Ṽ , (39)

where now Ṽ has an unknown distribution G. Let S(t | X) be the (observed) survival
function of T given X, S(t | X) = P{T ≥ t | X}, and LG the Laplace transform of Ṽ ,
defined as

LG(s) =

∫ ∞
0

e−svdG(v).

Define Λ(t, x) =
∫ t

0
λ(s, x)ds. Further, let G̃ be some other distribution. We obtain

S(t | X) = LG(Λ(t,X)) = LG̃(L−1

G̃
(LG(Λ(t,X)))). (40)

(40) shows, that (Λ,LG) and (L−1

G̃
◦ LG ◦ Λ,LG̃) are observationally equivalent.

Proof of proposition 1. (i) For X = x, set Yx = Λ(T, x) and Vx = kx(V ) := k(x, V ).
Because ε is independent of V , it is also independent of Vx for each x. Moreover, the
moment-generating functions MYx , MVx and Mε of respectively Yx, Vx and ε satisfy

MYx(s) = MVx+ε(s) = MVx(s)Mε(s) (41)

for all admissible s. It holds thus MVx(s) = MYx(s)/Mε(s), and therefore MVx is identified
(the distributions of both Yx and ε are known: the first per assumption and the second
per construction). Since a moment-generating function uniquely determines the distribution
function, the distribution function FVx of Vx is identified. Finally, for some q and a fixed x,
it holds

FVx(q) = P{Vx ≤ q} = P{k(x, V ) ≤ q} = P{V ≥ k−1(x, q)} = 1− k−1(x, q), (42)

where the inverse is taken with respect to the second element. The third equality utilizes
the strict monotonicity of k and the last equality is due to the uniform distribution of V .
This identifies k and therefore r.

(ii) The proof of (ii) is trivial and follows from S(t | X = x) = LGV x (Λ(t, x)), where GV x

is the distribution function of r(x, V ). Since LGV x is known, varying t identifies Λ(, x) for
each x, see Elbers and Ridder (1982).

C.2 Proofs of results in section 3.2

Proof of proposition 2. The proof proceeds in three steps.
Step 1. Let S(t|x) := P(T > t|x) and Ψ(t, x2) :=

∫ t
0
µ(s, x2)ds. We have for all t > 0

and x ∈ X
S(t|x) =

∫ ∞
0

exp(−φ(x1, x2)Ψ(t, x2)r(x2, v))dv, (43)
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(the conditional density of V is equal to 1 because of assumption A2). Let x2 ∈ X2 be
arbitrary element and choose x∗1 such that φ(x∗1, x2) = 1 (A6 (i)). It is straightforward to
show that for almost any x ∈ X, t ∈ R+

∂tS(t|x)

∂tS(t|x∗1, x2)
=
φ(x1, x2)

∫∞
0
r(x2, v) exp(−φ(x1, x2)Ψ(t, x2)r(x2, v))dv

1
∫∞

0
r(x2, v) exp(−1Ψ(t, x2)r(x2, v))dv

, (44)

where the notation ∂t is used for the partial derivative with respect to t. Letting t → 0
under A7 we identify the function φ.

Step 2. For any x2 ∈ X2, denote by Gx2 the distribution of the quantity r(x2, V ) and
let Vx2 := r(x2, V ). In view of the above definitions we can write

S(t|x) =

∫ ∞
0

exp(−φ(x1, x2)Ψ(t, x2)vx2)dGx2(vx2) (45)

Let Lx2 denote the Laplace Transfrom of Gx2 . It holds

S(t|x) = S(t|x1, x2) = Lx2(φ(x1, x2)Ψ(t, x2)) (46)

By choosing t∗ such that Ψ(t∗, x2) = 1 (A6) and varying x1 on an open interval (A4 (ii)),
we can identify the Lx2 and consequently the cumulative distribution function Gx2 for all
x2 ∈ X2. Then, by making use of (46) the identification of Ψ follows.

Step 3. Next, denote by τ(x2, .) the inverse map of r(x2, .) (A1). One can write for each
ω ∈ R+

P(r(x2, V ) ≤ ω) = Gx2(ω) (47)

The above implies
P(V ≤ τ(x2, ω)) = Gx2(ω). (48)

Exploiting the fact that V follows the standard uniform distribution (A2) we obtain

τ(x2, ω) = Gx2(ω) (49)

The right hand side is known which yields identification of τ and consequently of the function
r.

Remark. An alternative step 2 would require the following weaker assumption about
the variation of X1: the set X1 contains at least two elements x1, x

′
1 such that for every

x2 ∈ X2 it holds φ(x1, x2) 6= φ(x′1, x2). The elements x1, x
′
1 can depend on x2. The proof in

step 2 proceeds then as in the appendix of Elbers and Ridder (1982).
Proof of proposition 3. Let x2 be a chosen fixed value of X2. Furthermore, let S be
the set of all feasible tuples (Λx2 ,Lx2) in the corresponding x2-strata-MH model. Define
the relation ∼ on S in the following way: (Λx2 ,Lx2) ∼ (Λ̃x2 , L̃x2) if there exists a positive
number c, such that Λ̃x2 = cΛx2 and L̃x2(s) = Lx2(

1
c
s) for every s ∈ [0,∞). Thus, ∼ is an

equivalence relation on S and it induces a partition P of S . Further, let F be the set of
all possible conditional distributions of T given X. Theorem 1 in Brinch (2007) states that
under assumptions A1-A3, A4’, A5, A6’ and A7 the map ζ : P → F is injective. Under
the normalization assumption A6’, each equivalence class in P consists of a single element.
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This identifies Λx2 and Gx2 for each x2. Following step 3 from the proof of proposition 2,
identification of r follows under assumptions A1 and A2.
Proof of proposition 4. Suppose that for each x2, the x2-strata MH model structure
(λx2 , Gx2) is identified. This implies that λ is identified. Thus, with proposition 1 (i), r is
identified too. Alternative proof follows the lines of Step 3 in the proof of proposition 2.

Suppose that for one x̄2, the corresponding (λx̄2 , Gx̄2) are not identified. Then there are
functions λ̃x̄2 , G̃x̄2 , such that the two x̄2-strata MH models are observationally equivalent.
Define λ̂ := λ for all x2 6= x̄2 and λ̂(t, x1, x̄2) = λ̃x̄2(t, x1) for all t, x1. Define analogously r̂.
Then the structures (λ, r) and (λ̂, r̂) are observationally equivalent.

C.3 Proofs of results in section 3.3

Proof of proposition 5. The proof proceeds in 3 steps.
Step 1: identifying Λ2 Define the quantities

Θ1(t|x, V1) :=

∫ t

0

θ1(ω|x, V )dω.

Θ2(t|x, t1, V1) :=

∫ t

0

θ1(ω|x, t1, V )dω.

S(t1, t2|x)= EV [exp(−Θ1(t1|x, V )−Θ2(t2|x, t1, V ))] . (50)

Under the model assumptions (15), (16), we have

S(t1, t2|x)= EV [exp(−Λ1(t1, x)r(x, V )− Λ2(t2, x)ψ(t1, x)r(x, V ))] . (51)

For t1, t2 ∈ R+, define

ρ(t1, t2, x) :=
∂t1S(t1, t2|x)

∂t2S(t1, t2|x)
(52)

ρ is nonparametrically identified under mild regularity conditions (see e.g. Kalbfleisch and
Prentice (1980)), provided the denominator is not zero. Simple algebra gives

ρ(t1, t2, x) =
EV [(λ1(t1, x) + ∂tψ(t1, x)Λ2(t2, x))r(x, V ) exp(−Θ1(t1|x, V )−Θ2(t2|x, t2, V ))]

EV [ψ(t1, x)λ2(t2, x)r(x, V ) exp(−Θ1(t1|x, V )−Θ2(t2|x, t1, V ))]
.

(53)
which simplifies to

ρ(t1, t2, x) =
λ1(t1, x) + ∂tψ(t1, x)Λ2(t2, x)

ψ(t1, x)λ2(t2, x)
. (54)

For a given x, choose t∗1 according to A6”. Denote by a(x), b(x) and c(x) the known values
λ1(t∗(x), x), ∂tψ(t∗(x), x) and ψ(t∗(x), x), respectively, and by g(t2, x), g̃(t2, , x) the functions
ρ(t∗1(x), t2, x) and c

b
ρ(t∗1(x), t2, x). Ignoring the dependence on x, (54) can be written as

g(t2) =
a+ bΛ2(t2)

cλ2(t2)
. (55)
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If b = 0, then λ2(t2) = a
cg(t2)

. If b 6= 0, then by multiplying both sides of (55) by c/b, we
obtain

g̃(t2) =
a+ bΛ2(t2)

bλ2(t2)
. (56)

It follows from (56) that we can write

g̃(t2) =
∂ln(a+ bΛ2(t2))

∂t
. (57)

so that ln(a+bΛ2(t2)) =
∫ t2

0
g̃(t)dt+d for some unknown constant d. Using the normalization

on Λ2 we get the constant d by choosing t2 appropriately. This identifies Λ2 and thus λ2.
Step 2: Identifying λ1 and ψ Ignoring the dependence on x, define k(t, t̃) := ρ(t, t̃)λ2(t̃).

Since λ2 is identified, k is a known function. Multiplying (54) on both sides with λ2(t̃), we
obtain

k(t, t̃) =
λ1(t) + ∂tψ(t)Λ2(t̃)

ψ(t)
. (58)

Letting t̃→ 0 and varying t identifies the ratio λ1(t)
ψ(t)

= k(t, 0). Observing that

k(t, t̃)− k(t, 0)

Λ2(t̃)
=
∂tψ(t)

ψ(t)
=
∂ lnψ(t)

∂t
,

and using the normalization restrictions, we identify ψ. Then, λ1 is identified from (79).
Analogous steps lead to identification of ψ and λ1.

Step 3: Identifying r For a given x, it follows from (51) that

S(t1, t2|x) = LGx(Λ1(t1, x) + Λ2(t2, x)ψ(t1, x)), (59)

which identifies LGx since the functions Λ1(t1, x),Λ2(t2, x), ψ(t1, x) are identified. Identi-
fication of r(x, V ) follows the lines of Step 3 in the proof of proposition 2. The proof is
complete.

Remark 4 Here are alternative steps 2, 3 and 4 that switch the order of identification and
use the stronger independence assumption

Alternative step 2: identifying r. Consider the marginal survival function S2(t|x) :=
P(T2 > t|x) and denote by Gx the cumulative distribution function of r(x, V ) for each x ∈ X.
The Laplace Transform of the latter is denoted by Lx. It holds

S2(t|x, t1) = Lx(Λ2(t, x)ψ(t1, x)). (60)

Choosing t∗1 according to assumption A6” (ii) and varying t on an open interval traces out
Lx and consequently Gx for any x ∈ X. By using analogous arguments to step 3 in the proof
of proposition 2, we identify the function r.

Alternative step 3: identifying ψ. Since Lx and Λ2 are now identified, ψ is now
identified from equality (60).

Alternative step 4: identifying λ1. Using (54), we identify λ1. Remark. An
alternative approach to the identification of λ1, that does not require identification of ψ, uses
the equality

S1(t|x) = Lx(Λ1(t, x)). (61)
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Proof of proposition 6. Consider equality (54) in the proof of proposition 5. If ψ = 1,
then

ρ(t1, t2, x) =
λ1(t1, x)

λ2(t2, x)
. (62)

and the validity of (19) is evident.
Now let ψ be allowed to vary with t and x. In the following, we ignore the dependence

on x. Define
D = ρ(t1, t2)ρ(y1, y2)− ρ(t1, y2)ρ(y1, t2). (63)

We consider solutions of D = 0. The denominators of ρ(t1, t2, x)ρ(y1, y2) and ρ(t1, y2)ρ(y1, t2)
are equal, so setting D = 0 cancels them out. Consider the nominator of D. Canceling out
equal parts and rearranging, we obtain that D = 0 is equivalent to

(λ1(t1)ψ′(y1)− λ1(y1)ψ′(t1))(Λ2(y2)− Λ2(t2)) = 0. (64)

This is trivially fulfilled if Λ2(t, x) = f(x), i.e. if it is constant for each x. It is also trivially
fulfilled if λ1(t, x) = g(x) and ψ′(t, x) = k(x). If this is not the case, we obtain

λ1(t1)

λ1(y1)
=
ψ′(t1)

ψ′(y1)
, (65)

where by ψ′ we denote the derivative of ψ w.r.t. t. Denote for a fixed y∗ the values
λ1(y∗), ψ′(y∗) by a and b, respectively. Then λ1(t) = cψ′(t), where c = a/b. Thus, the
only solution that satisfies (65) consists of the functions

λ1(t, x) = η(t)φ1(x) (66)

ψ′(t, x) = η(t)φ2(x), (67)

where η is common and φ1 and φ2 might be different.

C.4 Proofs of results in section 4.1

Proof of proposition 7. For i, j = A,B, j 6= i, define the subsurvival functions

∂tQi(t|x) = P{Ti > t, Tj > Ti}.

Qi is nonparametrically identified from the data. We will use the equality

∂tQi(t|x) = ∂tiS(t, t) for i = A,B, (68)

see Tsiatis (1975). Furthermore, it holds

S(tA, tB|x) =

∫
R+×R+

exp{−ΨA(tA, x2)φA(x1, x2)rA(x2, vA) (69)

−ΨB(tB, x2)φB(x1, x2)rB(x2, vB)}dGVA,VB(vA, vB).
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For a given x and any v, define V x
i := ri(x, Vi), G

x
i (v) := P{V x

i < v}, i = A,B, Gx
va,vb

:=
P{V x

A < va, V
x
B < vb} and Lx the bivariate Laplace transform of Gx

va,vb
. With this notation,

(69) can be rewritten as

S(tA, tB|x) = Lx(ΨA(tA, x2)φA(x1, x2),ΨB(tB, x2)φB(x1, x2)), (70)

and with (68), we obtain

∂tQi(t|x) = µi(t, x2)φi(x1, x2)DiLx(ΨA(t, x2)φA(x1, x2),ΨB(t, x2)φB(x1, x2)), (71)

where with Di the derivative w.r.t. to the i-th component, i = A,B. Choose x∗1 = x∗1(x2)
such that φA(x∗1, x2) = 1. It follows that

∂tQA(t|x1, x2)

∂tQA(t|x∗1, x2)
= (72)

φA(x1, x2)DALx(ΨA(t, x2)φA(x1, x2),ΨB(t, x2)φB(x1, x2))

DALx(ΨA(t, x2),ΨB(t, x2)φB(x∗1, x2))
. (73)

Letting t→ 0 leads to identification of φA. The identification of φB follows analogously. Re-
peating steps 2 and 3 of the proof of proposition 2 for each of the components of the bivariate
Laplace Lx leads to identification of Lx, the joint distribution Gx

va,vb
and the functions rA

and rB.
Finally, pick an arbitrary x̄2 ∈ X2 and hold it fest. The biivariate GMH model reduces

to a bivariate MPH model (that depends on the value x̄2). For this model, it remains to
identify Ψx̄2

A (t),Ψx̄2
B (t) with Ψx̄2

i (t) := Ψi(t, x̄2), i = A,B. Identification of Ψx̄2
i (t) follows

from part (c) of the proof of proposition (2 ) in Abbring and Van Den Berg (2003a). Since
the choice of x̄ is arbitrary, this leads to identification of ΨA,ΨB. The proof is complete.
Proof of proposition 8. (i) It holds for the conditional survival function

S(t1, t2, t3, t4|x) := P{TA1 > t1, TB1 > t2, TA2 > t3, TB2 > t4|x}
= EVA,VB [exp−ΘA1(t1|x, VA)−ΘB1(t2|x, VB)−ΘA2(t3|x, VA)−ΘB2(t4|x, VB)].

Define the ”two-period” subsurvival functions

QA1(tA1; t3, t4|x) := P{TA1 > tA1, TB1 > TA1, TA2 > t3, TB2 > t4}
QA2(tA2; t1, t2|x) := P{TA1 > t1, TB1 > t2, TA2 > tA2, TB2 > TA2}.

QB1, QB2 are defined equvalently. It is trivial to show that

S(t, t, t3, t4|x) = QA1(t; t3, t4|x) +QB1(t; t3, t4|x) (74)

S(t1, t2, t, t|x) = QA2(t; t1, t2|x) +QB2(t; t1, t2|x) (75)

and consequently

∂tQA1(t; t3, t4|x) = ∂t1S(t, t, t3, t4|x)

∂tQA2(t; t1, t2|x) = ∂t3S(t1, t2, t, t|x),

29



with analogous equalities for B. Furthermore, for a given x, we use the notation V x
i , G

x
i . . . ,

etc., introduced in the previous proof. Thus, it holds

S(t1, t2, t3, t4|x) = Lx{ΛA1(t1, x) + ψA(t1, x)ΛA2(t3, x),ΛB1(t2, x) + ψB(t2, x)ΛB2(t4, x)},(76)

and hence

∂tQA1(t; t3, t4|x) = (λA1(t, x) + ∂tψA(t, x)ΛA2(t3, x))DALx{ΛA1(t, x)

+ψA(t, x)ΛA2(t3, x),ΛB1(t, x) + ψB(t, x)ΛB2(t4, x)}
∂tQA2(t; t1, t2|x) = ψA(t1, x)λA2(t, x)DALx{ΛA1(t1, x)

+ψA(t1, x)ΛA2(t, x),ΛB1(t2, x) + ψB(t2, x)ΛB2(t, x)}

and as a result

∂tQA1(t; t̃, t̃|x)

∂tQA2(t̃; t, t|x)
=
λA1(t, x) + ∂tψA(t, x)ΛA2(t̃, x)

ψA(t, x)λA2(t̃, x)
(77)

and from (54) in the proof of proposition 5, we obtain

∂tQA1(t; t̃, t̃|x)

∂tQA2(t̃; t, t|x)
= ρ(t, t̃, x). (78)

Since QA1(t; t̃, t̃|x) and QA2(t̃; t, t|x) are identified from the data, (78) implies that ρ is
also identified. As a result, identification of ΛA2 can be derived in an equivalent way to
identification of Λ2 in step 1 in the proof of proposition 5. Identification of ΛB2 is achieved
analogously.

Next, ignoring the dependence on x, define k(t, t̃) := ∂tQA1(t;t̃,t̃|x)

∂tQA2(t̃;t,t|x)
λA2(t̃, x). Since λA2(t̃, x)

is identified, k is a known function. By multiplying (77) on both sides with λA2(t̃, x), we
obtain

k(t, t̃) =
λA1(t) + ∂tψA(t)ΛA2(t̃)

ψA(t)
. (79)

Letting t̃→ 0 and varying t identifies the ratio λA1(t)
ψA(t)

= k(t, 0). Observing that

k(t, t̃)− k(t, 0)

ΛA2(t̃)
=
∂tψA(t)

ψA(t)
=
∂ lnψA(t)

∂t
,

and using the normalization restrictions, we identify ψA. Then, λA1(t, x) is identified from
(79). Analogous steps lead to identification of ψB and λB1(t, x).

(ii) Under condition A5” (iii), Lx can be identified from

S(t, t, t̃, t̃|x) = Lx{ΛA1(t, x) + ψA(t, x)ΛA2(t̃, x),ΛB1(t, x) + ψB(t, x)ΛB2(t̃, x)}. (80)

by varying t and t̃. This leads to identification of Gx
va,vb

. The identification of rA, rB follows
as in step 3 of the proof of proposition 2. The proof is complete.
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Proof of proposition 11. First, it holds per definition

D(t, t, t∗, x) = ln θ2(t|x, T1 = t∗, x)− ln θ1(t|x)

= lnλ1(t, x) + lnψ(t∗, x) + lnE[r(x, V )|T2 ≥ t, T1 = t∗, x]

− lnλ2(t, x)− lnE[r(x, V )|T1 ≥ t, x]

= lnψ(t∗, x) + lnλ1(t, x)− lnλ2(t, x),

where in the last equality we used assumption A8. This proves (i). Thus, ψ is identified up
to a scale that depends on x. Under the normalization assumption in this proposition, the
scale w(x) is identified. Thus, ψ is identified.

Next, consider equality (54) in step 1 of the proof of proposition 5. Since we identified
ψ, ∂tψ is also identified. For each x, choose t∗1 such that λ1(t∗1, x) is known. This leads to
expression 55 in the proof of proposition 5, where now the constants a, b and c are identified
and hence known. Identifying λ2 now follows the same steps as in the proof of proposition 5.
The identification of λ1 follows from equality (54). This proves (ii). Finally, r follows from
(60) analogously as in the proof of proposition 5.

C.5 Proofs of propositions in section 4.2

Proof of proposition 9. Define the crude survival functions

QT,S(t, s) := P{T > t, S > s, T > S}
QS(s) := QT,S(0, s) = P{S > s, T > S}
QT (t) := P{T > t, T < S}.

All three quantities are nonparametrically identified from the data: the first two because
T > S implies that both T and S are observed and the third one because T is observed. For
t > s, it holds

1{T > t}1{S > s} = 1{T > t}1{T > s}1{S > s}
= 1{T > t}1{T > s}1{S > s}(1{S > T}+ 1{T > S})
= 1{T > t}1{T > s, S > T}+ 1{T > t}1{S > s, T > S}
= 1{T > t, S > T}+ 1{T > t, S > s, T > S},

so that

P{T > t, S > s} = QT (t) +QT,S(t, s) (81)

and hence

∂P{T > t, S > s}
∂t

= Q′T (t) +
∂QT,S(t, s)

∂t
. (82)

Equality (82) implies that ∂P{T>t,S>s|x}
∂t

is identified. All relationships above hold also con-

ditionally on x, which implies that ∂P{T>t,S>s|x}
∂t

is also identified. In the following, we omit
the dependence on x whenever clear from the context.
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Further, define Λi(t, x) =
∫ t

0
λi(r, x)dr for i = T, S, Y(t|s, x) :=

∫ t
s
λT (r, x)δ(r, s, x)dr,

V x
T := rT (x, VT ), V x

S := rS(x, VS) and let gV x
T ,V

x
S

be the joint density of V x
T , V

x
S . For the

observed conditional joint survival function P{T > t, S > s|x}, we have for all t > s

P{T > t, S > s|x} = P{T > t|S > s|x}P{S > s|x} (83)

=

∫ ∞
0

∫ ∞
0

exp{−(ΛT (s, x) + Y(t|s, x))vxT − ΛS(s, x)vxS}gV x
T ,V

x
S

(vxT , v
x
S)dvxTdv

x
S, (84)

and therefore

∂P{T > t, S > s|x}
∂t

= −∂Y(t|s, x)

∂t
DTLV x

T ,V
x
S

(ΛT (s, x) + Y(t|s, x),ΛS(s, x)), (85)

which is equivalent to

−
∂P{T>t,S>s|x}

∂t

DTLV x
T ,V

x
S

(ΛT (s, x) + Y(t|s, x),ΛS(s, x))
=
∂Y(t|s, x)

∂t
(86)

whenever the denominator is different than 0.
In the rest part of the proof, we show that Y(t|s, x) is a unique solution to a differential

equation. Consider x and s as fix and define the function

g(t, y) = −
∂P{T>t,S>s}

∂t

DTLV x
T ,V

x
S

(c1 + y, c2)
(87)

where we omit x and s for simplicity of notation. If c1 and c2 are two known constants,
then the function g is fully known. LV x

T ,V
x
S

has derivatives of all orders which implies that
for any t g(t, y) is Lipschitz continuous w.r.t to y on any compact set where it is defined.
Using standard theory of differential equations (see e.g. chapter 12.3 in Fitzpatrick (2009)),
it follows that the differential equation

g(t,Y(t)) =
∂Y(t)

∂t
(88)

has a unique solution Y(t) (note that Y(0) = 0). Setting c1 = ΛT (s, x) and c2 = ΛS(s, x)
completes the proof.
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Heckman, J. J. and Honoré, B. E. (1989). The identifiability of the competing risks model.
Biometrika, 76(2):325–330.

Heckman, J. J. and Singer, B. (1984). The identifiability of the proportional hazard model.
Review of economic studies, 51:231–241.
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