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Abstract

We extend the multivariate GARCH (MGARCH) specification for volatility modeling

by developing a structural MGARCH model that targets the identification of shocks

and volatility spillovers in a speculative return system. Similarly to the proxy-SVAR

framework, we leverage auxiliary proxy variables to identify the underlying shock

system. The estimation of structural parameters, including an orthogonal matrix, is

achieved through techniques derived from Riemannian optimization. Our analysis of

daily S&P 500 returns, 10-year Treasury yields, and the U.S. Dollar Index, employing

news-driven instrument variables, identifies an equity and a bond market shock.
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Knowing the main source of the decline in equity prices (and financial assets in general) may help
policymakers understand its persistence and evaluate the policy response.

ECB Economic Bulletin, Issue 4/2020.

1 Introduction

A central objective of multivariate volatility models is to accurately describe the stylized

facts of asset returns and their second-order moment dynamics, including fat tails, lever-

age effects, and time-varying cross-asset dependencies (Andersen et al., 2009; Bauwens

et al., 2012). Despite their widespread adoption, current multivariate volatility mod-

els fall short in providing a clear interpretation of the underlying shock systems due to

their reduced-form nature. This limitation curtails their applicability in areas such as

studying the transmission of specific economic shocks, investigating counterfactual poli-

cies, and analyzing variance error decompositions—domains where structural macroeco-

nomic models excel. Naturally, such applications can also be valuable in applied finance,

like in risk management and strategic asset allocation.

In this work, we take a step towards extending reduced-form multivariate volatility mod-

els of the GARCH form (MGARCH) to structural models similar to those used in macroe-

conometrics (Amisano and Giannini, 1997; Kilian and Lütkepohl, 2017). We build upon

an MGARCH model recently introduced by Hafner et al. (2022). To estimate its structural

representation, we adopt the concepts of proxy-identification, originally developed by

Romer and Romer (2010), Mertens and Ravn (2013), and Stock and Watson (2012, 2016,

2018), i.e., we leverage information embedded in external fundamental data—referred

to as proxy variables or instruments—to identify the structural parameters and, conse-

quently, the structural shocks. In utilizing meaningful instrumental variables derived

from news analytics data, we are also able to label the identified shocks.

For estimation, we formulate an augmented system that incorporates both the reduced-

form asset return shocks and instrument data and estimate the structural parameters

within an expanded parameter vector. As Angelini and Fanelli (2019, 2023) describe, this

approach enables partial, and under certain conditions, full identification of the structural
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parameters, even when not all shocks can be instrumented. The numerical aspect of our

estimation poses a significant challenge due to the inclusion of an orthogonal matrix and

a symmetric positive-definite matrix in the parameter vector. To address this challenge,

we transform the permissible parameter space into a Riemannian matrix manifold—a

smooth, locally Euclidean topological space. This transformation facilitates the applica-

tion of optimization techniques from Riemannian geometry on the constrained sets. The

remarkable efficiency of this method even supports the use of bootstrap techniques for

inference.

We apply our methodology to study a portfolio of assets, consisting of the S&P 500 in-

dex, the constant maturity yield of the U.S. 10-year Treasury notes, and the U.S. Dollar

Index. Our goal is to identify two types of shocks: an equity market shock, which refers

to events directly impacting the valuation of stocks like shifts in investor risk preferences,

and a bond market shock, intended to capture, e.g., changes in inflation expectations or

monetary policy adjustments. To identify these shocks, we leverage news analytics data

as instruments. The specific data we utilize, the Refinitiv MarketPsych news sentiment

indicators (TRMI) for the U.S. stock and U.S. bond markets, are derived from extensive

ticker news archives using advanced machine learning algorithms to classify news items

by their novelty and relevance. Along with additional over-identifying restrictions, we

estimate the structural parameters and identify three structural shocks: the equity market

shock, the bond market shock, and a third shock that lacks a priori interpretation.

As an initial insight from the identified model, the orthogonal matrix we estimate sig-

nificantly deviates from the unit matrix. This finding challenges the common adoption

of the principal matrix square root, which assumes symmetric volatility spillovers and

is a prevalent assumption in financial modeling. In other words, symmetric volatility

spillovers may not effectively capture the complex nature of shock transmission in asset

return systems.
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Next, we leverage the conditional variance dynamics of the structural MGARCH model

in two distinct ways. Firstly, we derive the dynamic impact matrix, allowing us to exam-

ine two transmission channels crucial for portfolio allocation as well as monetary policy:

the transmission of the structural bond market shock into the S&P 500 equation and the

structural equity shock into the 10-year Treasury yield return equation. Both generally

conform to the signs anticipated by economic theory, with significant time variation ob-

served across our sample period. Interestingly, the bond market shock in the S&P 500

equation occasionally exhibits periods with a reversed sign. While it is of course known

that the correlation between reduced-form yield returns and equity returns may switch

sign, we reveal this phenomenon at the level of the identified impact matrix and the struc-

tural shocks.

Secondly, we analyze volatility spillovers among these markets using conditional zero-

order variance decompositions. Such decompositions can help investors understand how

different risk sources contribute to overall portfolio volatility, thereby enabling them to

adopt more effective diversification strategies. Once again, our analysis reveals signifi-

cant variability in both the reception and transmission of volatility. For example, in terms

of volatility transmission, our findings indicate a secular decrease in the equity shock’s

relative volatility contribution to S&P 500 returns from 1998 to 2019, contrasted with an

increase in its relative impact on Treasury yield volatility. This trend may reflect a growing

interconnectedness in volatility transmission between these key asset classes, beginning

well before the 2008 financial crisis, and is also observed in similar contexts (Ehrmann

et al., 2011; Diebold and Yilmaz, 2012).

Contributions and related literature

We contribute to the literature in several ways. From a methodological standpoint, we

introduce a proxy-identification scheme for the structural MGARCH model proposed by

Hafner et al. (2022). Unlike their approach, which employs ideas from independent com-
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ponent analysis and cannot guarantee economically interpretable structural shocks, we

build on proxy-identification and integrate the model within the framework established

by Angelini and Fanelli (2019). This approach paves the way for extracting structural

shocks that are not only identifiable but also potentially economically meaningful and

labeled.

We also add to other recent advancements in proxy-identification, including Fisher and

Huh (2019), Angelini et al. (2023), Giacomini et al. (2022a), and Plagborg-Møller and Wolf

(2022) in the frequentist domain, alongside Arias et al. (2021) and Giacomini et al. (2022b)

in Bayesian econometrics. Similarly to these studies, we identify several orthogonal struc-

tural shocks using multiple instruments. This is accomplished by directly estimating a

structural orthogonal matrix in a frequentist’s sense, exploiting the information provided

by the proxy variables. Our modeling approach also applies concepts similar to those in

Carriero and Volpicella (2024)’s max share approach. Importantly, like their method, we

do not depend on a specific ordering of our variables.

Our modeling approach, focusing on speculative returns, features heteroskedasticity yet

fundamentally differs from studies that identify structural shocks through heteroskedas-

ticity. For instance, Primiceri (2005)’s model incorporates a nonstationary covariance

structure. Research initiated by Rigobon (2003) and further developed by Lanne et al.

(2010), Weber (2010), Lütkepohl and Schlaak (2021), and Lewis (2022), focuses on identi-

fying a dynamic mean equation with a constant impact matrix. Both approaches do not

align well with the perspective of return modeling in high-frequency contexts, where one

typically assumes a zero mean equation but requires rich, stationary covariance dynam-

ics.

The use of Riemannian optimization to estimate the model parameters represents a novel

approach in econometrics. While the estimation of orthogonal matrices and rotation ma-

trices has been explored in similar contexts, it is typically approached through nonlinear
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parametrizations, such as the Givens rotations, or through simulation, both of which can

become cumbersome in high dimensions (Fisher and Huh, 2019; Hafner et al., 2022; Gia-

comini et al., 2022a; Carriero and Volpicella, 2024). Riemannian optimization, on the other

hand, operates directly on the manifold, taking its local geometry into account, and thus

scales more effectively to high-dimensional spaces. Recent years have witnessed signifi-

cant advancements in adapting optimization routines from Euclidean spaces to differen-

tiable manifolds, including techniques like steepest descent, conjugate gradient, and trust

region algorithms (Adler et al., 2002; Absil et al., 2007; Huang et al., 2015). The specific

techniques we utilize are becoming increasingly popular in certain fields of data science,

such as image processing (Pennec et al., 2006), and likely have broad applicability across

various areas of econometrics.

From an empirical perspective, we propose an avenue to the daunting task of identifying

an asset return system. Indeed, the endogenous determination and rapid response of as-

set prices render the identification of an asset return system a challenging task because

the traditional set of identifying restrictions commonly employed in the SVAR literature,

including short- and long-run restrictions, sign restrictions, and exclusion or ordering re-

strictions, hardly have a justification. While significant advances have been made in un-

derstanding the effects of monetary policy decisions on equity prices, thanks to methods

like high-frequency identification and identification by heteroskedasticity (Thorbecke,

1997; Rigobon and Sack, 2004; Bernanke and Kuttner, 2005, among others), the influence

of equity prices on fixed income returns remains less investigated (Rigobon and Sack,

2003; D’Amico and Farka, 2011). Leveraging high-frequency news items for identifica-

tion therefore holds untapped potential in asset return systems. Not only does it naturally

align with the core principle in financial economics that unexpected fundamental infor-

mation drives price revisions and volatility, but it also facilitates the labeling of structural

shocks, thereby significantly enhancing their interpretability.
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The rest of the paper is organized as follows. Section 2 outlines our model and iden-

tification strategy. We discuss estimation in Section 3. Section 4 presents the empirical

results, and Section 5 concludes. Additional information on optimization on Riemannian

manifolds and tables supporting our analysis can be found in an appendix.

2 Structural GARCH modeling

In this section, we discuss the identification challenges associated with MGARCH models

and proceed to introduce the structural GARCH model. Following this, we outline the

proxy-identification framework.

2.1 Rotational invariance and identification problem

We consider, for t ∈ Z, the system of n speculative (log) returns given by

rt = µt +εt (1)

where µt = E[rt|Ft−1] is the conditional mean of returns, with Ft denoting the σ-algebra

generated by the returns up to and including time t. The n-dimensional innovation vector

εt satisfies E[εt|Ft−1] = 0 and is conditionally heteroskedastic, i.e., E[εtε
⊤
t |Ft−1] = Ht ∈

Rn×n. The conditional covariance matrix Ht is assumed to be positive-definite and sym-

metric with probability one. It displays any type of parametrized dynamics belonging to

the class of stationary multivariate generalized autoregressive conditional heterskedastic-

ity models (MGARCH). In our application, we opt for the BEKK(1, 1) model as proposed

by Engle and Kroner (1995). In this case, the dynamics of Ht are represented by the form

Ht = CC⊤ + A⊤1 εt−1ε
⊤
t−1 A1 + B⊤1 Ht−1B1 , (2)
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for all t ∈ Z, where C is a lower triangular matrix and A1 and B1 are coefficient matrices

in Rn×n. The intercept matrix CC⊤ is by construction symmetric and positive-definite if

C has full rank, ensuring positive-definiteness of (Ht)t∈Z. Higher-order extensions to (2)

exist; however, this model is typically chosen, as it offers the flexibility and richness in

covariance dynamics needed for effective return modeling.

To complete the specification of (1), we let εt be generated, conditional on Ft−1, as

εt = Qtξt , (3)

where Qt ∈ Rn×n satisfies QtQ⊤t = Ht and (ξt)t∈Z is an n-dimensional strict white noise

process, i.e., a sequence of iid. shocks with E[ξt] = 0 and E[ξtξ
⊤
t ] = In, the n-dimensional

identity matrix.

From the perspective of structural modeling, the matrix Qt embodies the transmission

mechanism that translates the structural shock ξt into the observable reduced-form inno-

vation εt. The rows of Qt specify the contribution of each element in ξt to the variance of

εit, i = 1, . . . , n. While εt, as a composite of various shocks, typically lacks an economic

interpretation, ξt ideally can be given one. This characteristic allows for analyzing the

impacts of an unforeseen independent event on the asset return system.

As a matter of fact, however, the decomposition of Ht = QtQ⊤t and thus the structural

shocks are not identified. To see this, denote byMo(n) = {R ∈ Rn×n : RR⊤ = In} the set

of real orthogonal matrices. For any R ∈ Mo(n), we obtain an observationally equivalent

decomposition by substituting Qt with QtR because Ht = (QtR)(QtR)⊤ = QtQ⊤t .

For this reason, the matrix decomposition is often determined ad-hoc. Popular choices

include Qt = H1/2
t , which denotes the principal matrix square root obtained from an

eigenvalue decomposition of Ht, and the Cholesky factorization of Ht. Both choices can

be challenging to justify, yet they carry distinct modeling implications. The principal ma-

trix square root implies symmetric volatility spillovers, while the Cholesky factorization
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imposes a specific ordering of the asset returns in (1).

Motivated by these facts, Hafner et al. (2022) suggested the structural MGARCH model

εt = H1/2
t Rξt , (4)

where R ∈ Mrot(n), the set of proper rotations matrices defined by Mrot(n) = {R ∈

Rn×n : RR⊤ = In, det(R) = +1}, which is a subset of Mo(n). Of course, H1/2
t is fully

identified within the MGARCH model framework, when the principal matrix square root

of Ht is adopted. The identification of R, on the other hand, necessitates additional iden-

tifying information. To this end, Hafner et al. (2022) introduce additional structure on (4)

by assuming non-Gaussianity for the structural shock process (ξt)t∈Z and utilizing third

and fourth-order moment conditions derived from the observed data. In the following,

we develop a scheme for proxy-identification of (4).

2.2 Identification by proxy

Besides adding statistical information or restrictions, a researcher—as highlighted by

Stock and Watson (2012), Mertens and Ravn (2013), Stock and Watson (2018), among

others—may achieve identification by utilizing further external data, also called instru-

ment or proxy data. In contrast to purely statistical information, instrument data facili-

tates the labeling of identified shocks.

Under this paradigm, Angelini and Fanelli (2019, 2023) developed a framework for proxy-

SVARs. They outline the necessary and sufficient conditions for local point-identification

(up to sign normalization), encompassing both partially and fully identified systems,

when g shocks are of interest and r ≥ g external instruments are available for identifi-

cation. The main idea is the creation of an augmented system that concurrently consists

of both the primary variables of interest and the instruments. We modify this framework
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for the purpose of identifying the orthogonal matrix R and develop the corresponding

estimation strategy, which leads to full local point-identification of the structural model

in the application presented in Section 4. We comment on partial point-identification in

Section 3.4.

We adopt the following assumptions:

Assumption 2.1.

(a) The reduced-form innovations (εt)t∈Z in (1) follow the n-dimensional stationary

structural MGARCH process

εt = H1/2
t Rξt , (5)

with an associated sequence of covariance matrices (Ht)t∈Z, where Ht ∈ Rn×n and

positive-definite almost surely; H1/2
t is the principal matrix square root of Ht, R ∈

Mo(n), the set of orthogonal matrices, and (ξt)t∈Z is a vector-valued strict white

noise process of structural shocks.

(b) The parameters of the variance equation of the MGARCH model, denoted by ϑ,1

are identifiable and consistently estimable as the sample size expands, and so is the

sequence (Ht)t∈Z = (Ht(ϑ))t∈Z.

For the precise conditions underlying Assumption 2.1 (b) for quasi maximum likelihood

estimation of MGARCH models, including the BEKK model as specified in (2), we refer

to Comte and Lieberman (2003) and Hafner and Preminger (2009). Notably, our modeling

does not rely on the BEKK model; other multivariate GARCH models, such as the diag-

onal model, the vector GARCH model, or constant and dynamic conditional correlation

models, are also applicable—see Bauwens et al. (2012). In line with the approach taken by

Hafner et al. (2022), we employ the principal matrix square root. This choice implies sym-

metric volatility spillovers when R = In, making it straightforward to test for. However,

1In case of the BEKK(1,1) model in (2), this includes the matrices C, A1, and B1.
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unlike their model, we consider R ∈ Mo(n), as there appears to be no strong economic

justification to exclude reflections, which correspond to det(R) = −1.

The fundamental assumption for proxy-identification for g structural shocks is

Assumption 2.2.

(a) There exists an observable, weakly stationary instrument process (Zt)t∈Z with el-

ements in Rr, where r ≥ g ≥ 1 and g < n, which is generated by

Zt = Φξt + vt (6)

where Φ =
(
Ψ, 0r×(n−g)

)
is an r× n and Ψ an r× g full column rank matrix, (vt)t∈Z

is a strict white noise process such that vt ∼ (0, Σv), where Σv < ∞ is its positive-

definite covariance matrix.

(b) It holds that ξt ⊥ vt, conditional on Gt−1, where Gt = σ ({εs, Zs (s ≤ t)}) is an

enlarged filtration.

Partitioning ξt = (ξ⊤1:g,t,ξ
⊤
g+1:n,t)

⊤ into the g instrumented and (n− g) non-instrumented

shocks, we see that in Φ, Et−1[Ztξ
⊤
1:g,t] = Ψ embodies the relevance conditions of the in-

struments, which reflect that the instruments are informative about the structural shocks

of interest. In particular, the condition rank(Ψ) = g ensures that the instruments provide

non-redundant information about the shocks. The assumption Et−1[Ztξ
⊤
g+1:n,t] = 0r×(n−g)

imposes r(n− g) exogeneity conditions on the structural shocks (Mertens and Ravn, 2013;

Stock and Watson, 2018; Angelini and Fanelli, 2019; Giacomini et al., 2022b; Plagborg-

Møller and Wolf, 2022). Importantly, this setup does not exclude the significant case

where multiple instruments are jointly informative about a structural shock; in other

words, we do not require Ψ to be diagonal.

Without loss of generality and for the sake of clarity, we drop here that (Zt)t∈Z may be a

full-fledged VAR process or may depend on other exogenous and deterministic variables
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as well as on past structural shocks. It is important to observe that the elements of (Zt)t∈Z

do not have to be uncorrelated nor does Σv have to be diagonal. Crucially, however,

while both Zt and εt are driven by ξt, neither Zt nor vt must enter the return and variance

process (εt, Ht)t∈Z, which would violate exogeneity.

Given Gt−1-measurability of Ht, define standardized residuals ut based on the initial de-

composition by

ut = H−1/2
t εt = Rξt . (7)

This allows us to define the enlarged system ηt = (u⊤t , Z⊤t )
⊤ taking values in Rm, where

m = n + r, and

ηt =

 R•,1:g R•,g+1:n 0n×r

Ψ 0r×(n−g) Σ
1/2
v


 ξt

vt

 = G

 ξt

vt

 . (8)

Here, we partition R = (R•,1:g, R•,g+1:n) into columns which are instrumented and non-

instrumented, respectively, in accordance with ξt, and Σ
1/2
v is the principal matrix square

root of Σv. Equation (8) corresponds to a VAR(0), where the first n elements of the gov-

erning shock vector are the uncorrelated, mean-zero, unit-variance structural shocks. The

remaining r elements comprise the shocks that drive the instrument process. Importantly,

the order of variables within the standardized return system (ut) does not affect this

setup.

To see the covariance restrictions of the enlarged model, define Ση = E[ηtη
⊤
t ] = GG⊤,

where

Ση =

 In R•,1:gΨ
⊤

ΨR⊤•,1:g ΨΨ⊤ + Σv

 =

 Σ11 Σ12

Σ21 Σ22

 . (9)

This shows that the covariance restrictions of the enlarged model are Σ11 = In, reflecting

the orthogonality of R, as well as Σ21 = Σ⊤12 = ΨR⊤•,1:g and Σ22 = ΨΨ⊤ + Σv, which are

provided by the instruments.
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It is well-known that the necessary condition for identification requires that m(m− 1)/2

constraints be imposed on G. This requirement arises because a total of m(m + 1)/2 pa-

rameters are determined by the orthogonality conditions on R and the parameters esti-

mated in Ση. From (8), nr+ r(n− g) zero constraints are derived due to the instrument ex-

ogeneity conditions. However, this number often falls short of the required m(m− 1)/2,

thus necessitating the imposition of additional conditions on R, Ψ, or Σv. If these ad-

ditional conditions can be found and provided Ψ has full column rank, it is possible to

identify R up to its sign.

Example 2.1. Consider the system of n = 3 assets and suppose we have r = 2 instruments

that identify g = 2 shocks. In this case, we have

G =



R11 R12 R13 0 0

R21 R22 R23 0 0

R31 R32 R33 0 0

ψ11 ψ12 0 σv,11 σv,12

ψ21 ψ22 0 σv,21 σv,22


, (10)

where the first two columns R•,1:2 refer to those identified directly by the instrumented

shocks. Although there are fewer instruments than shocks, we may be able to identify the

entire system up to sign normalization. Because m = n + r = 5, we need ten restrictions.

Eight arise from the external instruments (nr = 6 from the exogeneity of the instrument

process to the asset returns, and another r(n − g) = 2 from the orthogonality of both

instruments to the third structural shock). Moreover, imposing symmetry on Σ
1/2
v , by

requiring σv,12 = σv,21, yields (r2 − r)/2 = 1 additional restriction. Consequently, the

system would be just-identified by imposing a zero restriction, say, on ψ12. It becomes

overidentified with the addition of another zero restriction, such as on ψ21.

Both necessary and sufficient conditions for local identification are a consequence of

Rothenberg (1971). Let θ represent the free parameters to be estimated in G(·), and θ0
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their population values. Then, one needs to verify that

rank{D+
m(G0 ⊗ Im)SG} = aG , (11)

where G0 = G(θ0) must be ’regular’ in the sense that its rank does not change in a neigh-

borhood of θ0; additionally, D+
m is the Moore-Penrose generalized inverse of the duplica-

tion matrix,2 SG is a full column-rank selection matrix, which maps the aG ≤ 1
2 m(m + 1)

free parameters on vec(G)—see Angelini and Fanelli (2019).

3 Estimation strategy

We now present the estimation approach, which requires methods from Riemannian op-

timization. We briefly outline these concepts, drawing on Absil et al. (2008) and Boumal

(2023), but defer further details to Appendix A. Finally, we comment on the estimation of

partially identified systems.

3.1 Estimation of the reduced-form and structural model

We first estimate the reduced-form MGARCH model, specifically the BEKK(1, 1) given

in (2). To this end, we rely on the standard quasi-maximum likelihood method assuming

Gaussianity—see Comte and Lieberman (2003) and Hafner and Preminger (2009) for the

underlying theory. Our numerical optimization of the log-likelihood takes advantage

of the analytical derivatives provided in Hafner and Herwartz (2008). This yields the

estimates for the BEKK parameters ϑ̂ =
(

vec (Â1)
⊤

, vec (B̂1)
⊤, vech (Ĉ)⊤

)⊤
, as well as

Ĥt(ϑ̂) and the standardized reduced-form residuals ût = ût(ϑ̂) = Ĥt(ϑ̂)−1/2ε̂t. From

these, we construct the augmented system ηt =
(
û⊤t , Z⊤t

)⊤
.

2The duplication matrix Dm of size m2 × 1
2 m(m + 1) is defined by the property that vec (A) =

Dm vech (A), for any symmetric m×m matrix A.
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In the subsequent step, aiming to fully identify our model, we employ maximum like-

lihood estimation for (8) as suggested by Angelini and Fanelli (2019). Specifically, we

assume joint normality of ηt. Then, the reduced-form estimator for Ση is the sample co-

variance Σ̂η =
1
T ∑

T
t=1 ηη

⊤.

The log-likelihood of the structural model is given by

L s(θ) = −mT
2

log(2π)− T
2

log det(GG⊤)− T
2

tr{G−1Σ̂η(G−1)⊤} , (12)

where we recall that G = G(θ), i.e., G depends on the parameter vector θ ∈ RaG , aG ≤

m(m + 1)/2, and θ =
(

vec (R)⊤,ψ⊤, vec (Σ1/2
v )⊤

)⊤
. Specifically, the various elements

of θ satisfy R ∈ Mo(n), ψ ∈ Raψ , Σ
1/2
v ∈ Mspd(r), where Mo(n) is the set of n ×

n orthogonal matrices, ψ is a vector of length aψ ≤ rg, collecting the free parameters

of Ψ, not constrained to zero, and Mspd(r) denotes the set of r × r symmetric positive-

definite matrices. Thus, the structural parameter matrix R will be estimated, up to sign,

as part of the arguments that maximize the log-likelihood. This enures that the covariance

restrictions outlined in (9) are observed.

As is well-known, optimizing this log-likelihood is challenging due to the non-convex na-

ture of the orthogonality constraints and the high cost associated with maintaining them

during the iterations. The key to effective estimation lies in recognizing thatMo(n) and

Mspd(r) are not merely sets of matrices but can be transformed into Riemannian (matrix)

manifolds. While this insight may not seem profound initially, it opens the door to the

application of Riemannian optimization for maximizing the log-likelihood. By leveraging

the intrinsic geometric structure of the manifolds during iterations, Riemannian optimiza-

tion ensures that the estimates remain within the underlying manifold and avoids having

to impose cumbersome nonlinearity conditions.

14



3.2 Optimization on manifolds

A manifold is a topological space that, in an open neighborhood around any given point,

can be approximated by a Euclidean space. The specific notion of a manifold we rely on is

that of a d1-dimensional smooth submanifold embedded in an ambient Euclidean space

E of dimension d2; for our purposes, we can identify E with Rd2 .

Definition 3.1. (Boumal, 2023). A non-empty setM, embedded in E , is called a smooth

submanifold of dimension d1 ≤ d2 in either of two cases:

(i) if d1 = d2 andM is open in E ; it is then called an open submanifold in E .

(ii) If d1 < d2 and the set is of form M = {X ∈ E : h(X) = 0d2−d1}, where the

defining function h : E → Rd2−d1 is infinitely often differentiable and its Jacobian has

rank d2 − d1, for all X ∈ M.3

As we make specific in Appendix A.2, the set of symmetric positive-definite matrices is

an example of case (i), while the set of orthogonal matrices is covered by case (ii). The

two-dimensional sphere embedded in R3 is another example of a manifold of case (ii),

which we use for illustration in Figure 1.

Due to smoothness, we can locally approximate M at each point X ∈ M using a lin-

ear space known as the tangent space, which contains all vectors that tangentially pass

through X. For the sphere in Figure 1, TXkM is represented by the set of vectors or-

thogonal to Xk and depicted as a plane touching the sphere at Xk. A manifold becomes a

Riemannian manifold after endowing all tangent spaces with an inner product that varies

smoothly in X. This inner product is called the Riemannian metric.

3This notion of a manifold is greatly simplified. It is, however, adequate for our work and is still fully

compatible with the more general concept of a manifold, which does not require an embedding space and

includes charts and atlases.
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(a) Tangent space and gradients (b) Retraction step

Figure 1: Illustration of an embedded Riemannian manifold (two-dimensional sphere) with a tan-
gent space TXkM, Riemannian gradient grad f (Xk), and retraction step. Figure 1a demonstrates
how to obtain grad f (Xk) by projecting the Euclidean gradient ∇ f (Xk) onto the tangent space.
We emphasize that this particular projection step is only applicable in certain cases, which apply
here for the manifold of orthogonal matrices only—see main text and appendix for more details.
Figure 1b depicts the retraction process, returning a multiple of grad f (Xk) to the manifold.

Given a differentiable function defined on the manifold, f : M → R, we can define the

Riemannian gradient with the help of the Riemannian metric, similarly to the Euclidean

space. This gradient represents the direction of steepest ascent of f in TXM at X, while

taking the local geometry of M at X into account. If the Euclidean inner product of

the ambient space is selected as the Riemannian metric, the Riemannian gradient can be

derived by orthogonally projecting the Euclidean gradient of f onto TXM, as sketched in

Figure 1a. In our application, this principle is relevant toMo(n) but not toMspd(r) due to

the availability of computationally more effective choices for the Riemannian metric—see

Appendix A.2 for an explanation.

In gradient-based minimization methods for Euclidean spaces, during the kth iteration,

one updates the new point Xk+1 by adding to Xk a search step of size αk > 0 in the

direction of the negative gradient. Because this approach would lead to ’leaving’ M

due to its non-Euclidean geometry, this updating scheme cannot be applied. Instead, a
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retraction Γ is required, which is a map that takes its argument (the tangent vector) back

to the manifold, yet oriented in the direction as specified by the argument—see Figure 1b.

Given a retraction, the blueprint of a gradient descent on a Riemannian manifold, updat-

ing Xk to Xk+1, takes the form:

Xk+1 = ΓXk (−αk grad f (Xk)) ,

with the step sizeαk appropriately chosen. While different retractions can be constructed,

the key to efficiency lies in having one that is both fast and reliable to compute. In Ap-

pendix A.2, we detail the specific Riemannian metrics and retractions we use for the

present optimization problem.

Second-order accurate schemes, such as Newton’s method and trust region algorithms,

have been developed by extending these concepts to Riemannian geometry. This enables

effective optimization on manifolds (Adler et al., 2002; Absil et al., 2007; Huang et al.,

2015).

3.3 Discussion of the estimator

Building upon the framework detailed in Section 3.2 and further expanded in Appendix A,

particularly through the careful selection of suitable ambient spaces and Riemannian met-

rics, we transform the problem of optimizing the log-likelihood into a task of function

maximization over a manifold. Thus, the estimate is given by

θ̂ = arg max
θ∈Θ∩M

L s(θ) (13)

where L s(θ) is defined in (12) and θ =
(

vec (R)⊤,ψ⊤, vec (Σ1/2
v )

)⊤
. The manifoldM is

the Cartesian product manifoldM =Mo(n)×Me(aψ)×Mspd(r), constructed from the

manifolds of orthogonal matrices, the Euclidean space of dimension aψ,4 and the mani-

4The Euclidean space is an example of the (trivial) linear manifold.
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fold of symmetric positive-definite matrices. This yields a well-defined submanifold em-

bedded in the product space of the ambient vector spaces: specifically, the vector space

of n × n matrices, the Euclidean space of dimension aψ, and the vector space of r × r

symmetric matrices. We assume that Θ is a compact set within this ambient space and is

positive-definite in the coordinates associated with Σ
1/2
v .

It is important to realize that (13) is fully equivalent to maximizing the log-likelihood in a

Euclidean space, subject to additional linear and nonlinear constraints. Therefore, under

Assumptions 2.1 and 2.2, the estimate is consistent and asymptotically normal, assuming

the ’usual’ regularity conditions and provided θ0 resides in Θ ∩M (Newey and McFad-

den, 1994; Wooldridge, 1994). Note first that Θ ∩M is compact. This follows from the

fact that the orthogonality and symmetry constraints can be expressed as g(θ) = 0, which

forms a closed subset in Θ. This closed subset remains compact if Θ is compact. Thus,

consistency follows, provided the estimator over Θ is consistent. Moreover, the function g

is twice continuously differentiable and has a full-rank Jacobian—recall the rank condi-

tion of Definition 3.1 in case (ii), implying non-redundency of any of the constraints.

Hence, asymptotic normality is a direct consequence of Rothenberg (1973).

Asymptotic standard errors exploiting the expected efficiency gains can therefore be ob-

tained by evaluating the formulae for the asymptotic variance given in Rothenberg (1973)

at the optimizer. However, because our implementation is sufficiently fast and ηt con-

ditionally homoskedastic, we can, as Angelini and Fanelli (2019), take advantage of a

residual-based bootstrap, allowing us to efficiently compute the standard errors for the

estimates—see Jentsch and Lunsford (2022) for a discussion in the context of proxy iden-

tification.5 In our implementation, we derived the analytical Euclidean gradients of the

5This approach does not account for the additional error that may arise from estimating the parameters

of the MGARCH model. While the bootstrap could, in principle, be extended in this way, it will be com-

putationally cumbersome for three-dimensional MGARCH systems. Therefore, we decided against this

extension.
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likelihood function and used a trust-region algorithm, taking advantage of the Matlab

toolbox Manopt—see Boumal et al. (2014).

3.4 Partial identification

In cases of higher dimensional systems or a shortage of appropriate instruments, partial

identification may become necessary. Suppose that g < n shocks are targeted for identi-

fication, which are, without any loss of generality, ordered first in the system. Then, one

is no longer interested in estimating the entire orthogonal matrix R, but in a subset of its

parameters given by its first g columns, denoted R1. Within the augmented system, the

set of parameters to be estimated consists of the first g columns of the matrix G in (8), i.e.,

G1 =

 R1

Ψ

 . (14)

Following Angelini and Fanelli (2019), the estimation of G1 can be framed as a classi-

cal minimum distance estimator. In the present case, however, the additional complex-

ity is that the estimation must be carried out under the constraint that the tall matrix

R1 ∈ {X ∈ Rn×g : X⊤X = Ig}, where g < n. This set of matrices, known as the Stiefel

manifold, can be transformed into a Riemannian manifold by choosing a suitable Rie-

mannian metric—see Absil et al. (2008). Thus, after selecting a retraction, we can employ

Riemannian optimization as outlined above to obtain the parameter estimates.

The identification conditions remain standard. If r = g = 1, the single shock is identified.

If r = g > 1, identification requires imposing additional 1
2 g(g − 1) restrictions on G1

to identify the g shocks, which is only a necessary condition. If r > g, all g shocks are

identified, or even overidentified, without further restrictions—see Angelini and Fanelli

(2019, 2023) for the in-depth discussion, particularly regarding necessary and sufficient

conditions.
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It is therefore straightforward to accommodate a scenario of partial identification within

our current framework. In fact, as a proof-of-concept, we have already implemented this

estimator in unreported robustness checks.

4 An identified asset return system

We implement the structural proxy-MGARCH model on a three-dimensional portfolio

comprising daily returns from equity, bond yields, and foreign exchange markets. Our

objective is to identify equity and bond market shocks by means of news analytics data.

4.1 Data

The asset triple, ranging from 01/01/1998 to 12/31/2019, consists of the S&P 500 index,

the constant maturity yield of U.S. 10-year Treasury notes, and the U.S. Dollar Index,

which is a measure of the value of the U.S. Dollar relative to a currency basket of major

U.S. trade partners. The top row of Figure 2 displays the demeaned log returns of each

series. They exhibit the salient features of daily return data, including heteroskedasticity

and volatility clustering—see also the summary statistics in the left panel of Table 1.

We select the instrument data to proxy for the structural shocks of asset returns based

on a core concept in financial economics and econometrics: asset prices move in re-

sponse to new, unexpected fundamental information.6 The study of this concept has

received renewed momentum through the utilization of high-frequency intraday data

and the advent of news analytics data, which extract information from a broad spectrum

6See Grossman and Stiglitz (1980), Milgrom and Stokey (1982), and Tauchen and Pitts (1983) for early

theoretical formalizations of this idea, and Clark (1973), Engle (1982), and Engle and Ng (1993) for pioneer-

ing econometric advancements.
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Figure 2: Upper panel: Demeaned daily log returns of the S&P 500 index, the constant maturity
yield of U.S. 10 year Treasury notes, and the U.S. Dollar Index. Lower panel: standardized TRMI
U.S. stock index and TRMI U.S. bond sentiment on trading days, LOESS and VAR filtered. Data
range: 01/01/1998 to 12/31/2019.

of news sources using advanced machine learning (Groß-Klußmann and Hautsch, 2011;

Michaelides et al., 2015; Bollerslev et al., 2018; Boudoukh et al., 2018).

We therefore derive the proxy variables from the Thomson Reuters MarketPsych Indices

(TRMI). The TRMIs are constructed based on a proprietary supervised natural language

processing scheme applied to a broad range of media outlets, which includes the live

content delivered via the Thomson Reuters News Feed Direct and LexisNexis as well

as common financial news sites, such as The New York Times, The Wall Street Journal,

Financial Times, Seeking Alpha, among others.7 The algorithm organizes the gathered

news items into categories such as company, economic sector, geographical area, country,

commodity or energy subjects, and currency. It also assesses and scores all references

7For more information, see https://www.marketpsych.com/ and Peterson (2016, Appendix A).
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Descriptive statistics

Asset returns Instrument data
Statistic S&P 500 Yield USDX Equities Bonds

Min. −0.095 −0.185 −0.027 −3.098 −4.643
Max. 0.109 0.097 0.024 3.204 5.847
Mean 0.000 0.000 0.000 0.000 0.000
Median 0.000 0.000 0.000 −0.013 −0.007
Std. Dev. 0.012 0.018 0.005 1.000 1.000
Skewn. −0.239 −0.082 −0.042 0.068 0.171
Kurt. 11.100 7.037 4.499 2.486 4.088

Table 1: Descriptive statistics of the asset return system and instrument data. The first three
columns show the demeaned daily log returns of the S&P 500 index, the constant maturity yield
of the U.S. 10-year Treasury notes, and the U.S. Dollar Index (USDX). The last two columns ex-
hibit the proxy data derived from the U.S. stock index sentiment and U.S. bond sentiment (TRMI
MarketPsych indices). The sample period extends from 01/01/1998 to 12/31/2019, encompassing
N = 5544 observations. Data sources: Thomson Reuters.

in real time for their relevance, freshness of information, and sentiment—whether it is

positive, negative, or neutral.

We use data at daily frequency, which only captures news items published until 3:30 p.m.

Eastern Time. While this timing is not perfectly aligned with the end of the core trad-

ing session of the NYSE at 4:00 p.m. Eastern Time, it precludes a forward-looking bias.

While it is impossible to test whether the selected TRMIs form valid instruments, by the

way the TRMIs are constructed from live-feed news ticker data, it appears plausible that

the unobservable structural shocks we aim to identify drive returns and enter a feed of

unexpected sentimentally-charged news items, as required by Assumptions 2.1 and 2.2.

TRMIs are employed by a burgeoning empirical literature (Michaelides et al., 2015; Sun

et al., 2016; Audrino and Tetereva, 2019; Michaelides et al., 2019).

To identify a structural equity market shock, which may signal shifts in investor risk

preferences or significant macroeconomic events influencing stock valuations, we select
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TRMI’s U.S. stock index sentiment as an instrumental variable. To identify a structural

bond market shock, aimed at capturing shocks to bond prices such as changes in the

real interest rate, inflation expectations, or monetary policy shocks, we select TRMI’s U.S.

bond sentiment as an instrumental variable. Both sentiment indices aggregate all relevant

scored positive references, net of all negative references, made within news items in their

respective subject areas, and are normalized to range from [−1, 1]. Thus, positive values

indicate upbeat sentiment and negative values negative sentiment.

As outlined in Example 2.1 and discussed in more detail in Section 4.2, two instruments

are sufficient for local point-identification. To account for the possibility of a slowly time-

varying mean component in the instrument data, we filtered the time series using a local

polynomial (LOESS) regression. We also eliminated any (cross-)dynamics in the mean

by fitting high-order VAR models.8 The unexpected innovation to the U.S. stock index

sentiment and the U.S. bond sentiment, standardized to unit variance, serves as our in-

strumental variable—see the right panel of Table 1 and the lower panel of Figure 2.

4.2 Structural model estimates and identified shocks

Given the asset return system, where the S&P 500 equation is ordered first, the 10-year

Treasury note second, followed by the U.S. Dollar Index, we first estimate the BEKK(1,1)

model. As reported in Table 2, the diagonal parameters and selected off-diagonal pa-

rameters of the coefficient matrices are statistically significant at conventional levels. The

Akaike criterion speaks in favor of the full BEKK specification, leading us to base the

further analysis on this model.

With n = 3 assets and g = 2 shocks instrumented with r = 2 proxy variables, the ap-

8We also explored alternative approaches, including moving average filtering and ARMA modeling,

both with and without prior nonparametric demeaning, which lead to qualitatively very similar results.
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plication corresponds to Example 2.1. In our overidentified model, we impose ten zero

constraints and enforce symmetry on Σv, i.e.,ϖ = σv,12 = σv,21. We thus estimate

G =



R11 R12 R13 0 0

R21 R22 R23 0 0

R31 R32 R33 0 0

ψ11 0 0 σv,11 ϖ

0 ψ22 0 ϖ σv,22


. (15)

Table 3 displays the estimates.9 Because the first n columns of G can only be identified

up to sign, we obtain the column signs by specifically considering the economic meaning

behind the diagonal elements of R.10 Given our association of ξ1 with an equity shock,

identified through a market sentiment variable, a positive shock is anticipated to have

a positive effect on the S&P 500 equation; hence, we choose the sign of R̂•1 such that

R̂11 > 0. Regarding ξ2, a positive realization is expected to inversely affect the yield.

Consequently, we set the sign such that R̂22 < 0. Lastly, we make sure R̂33 > 0, consistent

with the interpretation that a positive shock increases the U.S. Dollar Index, which, by

construction of the index, implies that the U.S. Dollar gains value compared to the cur-

rencies of major U.S. trading partners. In Appendix B, we analyze financial news from

days coinciding with the tail events of the shocks. This analysis bolsters these interpreta-

tions and also suggests that ξ3 may exhibit characteristics of a currency shock.

As Table 3 shows, the orthogonal matrix has the largest entries along the diagonal, in-

dicating that the nth equation is most strongly impacted by the nth structural shock.

This appears plausible, considering the interpretation of the shocks. Judged by the boot-

9To verify the necessary and sufficient condition for identification as described by Rothenberg (1971),

we evaluate (11) using the estimate. Examination of its singular values and condition number suggests that

rank{D+
m(Ĝ⊗ Im)SG} = 15, which supports identification.

10The signs of column n+ 1, . . . , n+ r are fixed because Σ̂
1/2
v is estimated as a symmetric positive-definite

matrix.
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strapped standard errors, the diagonal entries of the matrix are significantly different

from either 1 or −1, whereas the off-diagonal elements are clearly non-zero. This sug-

gests that spillovers may not be symmetric, as would be implied by an estimate of R close

to the unit matrix (up to sign). We test this hypothesis below.

The estimates ψ̂11 and ψ̂22 are significant, implying that the null hypothesis of ’no rele-

vance’ of the instruments is soundly rejected. It is worth noting that R̂22 is estimated to

have a sign opposite to ψ̂22, a difference that stems naturally from the instrument being a

bond price sentiment, while we model the yield. This is in contrast to R̂11 and ψ̂11, which

have the same sign because the instrument is an equity market sentiment.

In Table 4, we present the descriptive statistics related to the inferred structural shocks,

including the correlations among the shocks as well as their correlations with the proxy

variables. The structural shocks are mutually uncorrelated, and additional tests, not

shown, suggest white noise characteristics. The correlation patterns with the proxy vari-

ables conform to the diagonal structure imposed on Ψ. Notably, the correlations between

Z1 and ξ̂1, and between Z2 and ξ̂2 are strongly significant. Conversely, the remaining

correlations are negligibly small. While this follows by assumption in the overidentified

system, we can also confirm it in the just-identified models.

As discussed, the model is specified with one more constraint than necessary for exact

identification. To assess overidentification, we employ the likelihood ratio statistic LRT =

−2(L s(θ̂)−L (θ̃)), which is approximately distributed as a χ2(1) variable, where L (θ̃)

denotes the reduced-form log-likelihood, with θ̃ = vech(Σ̂η). The test statistic, shown in

the lower part of Table 3, indicates that the model is well-specified.

25



Ĉ
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Lastly, we evaluate the symmetric spillover hypothesis, which posits that R = I3. Nat-

urally, due to sign normalization, this hypothesis is equivalent to flipping any of the

signs in I3. This test, which can be considered another overidentification test, can be

evaluated using the likelihood ratio statistic LRT = −2(L s(θ̆) −L s(θ̂)), where θ̆ =(
Ψ̆, vech(Σ̆1/2

v )
)⊤

is an estimate of the shortened parameter vector obtained under the

restriction R = I3. Because R, as an orthogonal matrix, has n(n − 1)/2 = 3 degrees of

freedom, this LR test has an asymptotic χ2(3) distribution. As evidenced in Table 3, the

data support the estimated model more than they do a symmetric one. This is in line with

what we expected from our earlier analysis of the individual elements in R̂.

Following our identification strategy, we categorize the targeted shocks ξ1 and ξ2 as a

structural equity market shock and a structural bond market shock, respectively. To gain

deeper insights into these shocks, we also examined the financial news on days linked

to their tail events. Our analysis, given in Appendix B, reveals that the tail events of

these structural shocks are indeed associated with distinct categories of news, specifically

affecting either equity or bond valuations. Additionally, in the case of the non-targeted

shock ξ3, which lacks an a priori interpretation, we observe that it mostly associates with

news items about currency markets, but also involves news about the oil and gold mar-

kets. Despite that ambiguity, as we discuss in Appendix B, the observations lend support

to the interpretation that this shock exhibits characteristics of a currency shock, a label we

henceforth adopt for brevity.

4.3 Dynamic impact matrix

In Figure 3, we display the elements of the dynamic impact matrix Qt = H1/2
t R. To under-

stand the patterns, it useful to observe that H1/2
t is symmetric, with its diagonal entries

being strictly positive and the largest within their respective rows and columns. This fol-
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proxy MGARCH model

Ĝ =

 R̂•,1:2 R̂•,3 03×2

Ψ̂ 02×1 Σ̂
1/2
v


0.9149 0.3622 0.1781 0 0
0.3846 −0.9162 −0.1128 0 0
−0.1223 −0.1717 0.9775 0 0

0.3532 0 0 0.9337 0.0612
0 0.1698 0 0.0612 0.9838

Bootrapped std. errors

0.0141 0.0346 0.0482
0.0314 0.0163 0.0720
0.0358 0.0783 0.0162
0.0116 0.0080 0.0065

0.0137 0.0065 0.0118

LRT p-value
Overidentification test, χ2(1) 1.13 [0.29]
Symmetry test, χ2(3) 149.41 [0.00]

Table 3: Estimation results of the structural MGARCH model of the demeaned daily log returns of
the S&P 500, the constant maturity yield of U.S. 10-year Treasury notes, and the U.S. Dollar Index
from 01/01/1998 to 12/31/2019, when using the stock market sentiment (Z1) and bond market
sentiment (Z2) TRMIs as proxy variables. The upper panel shows the estimated elements in G,
including the orthogonal matrix, the estimated relevance parameters, and the symmetric matrix
decomposition of the instruments error variance. The lower panel exhibits the bootstrapped stan-
dard errors obtained with 999 replications.

lows from the positive-definiteness of Ht and our selection of the principal matrix square

root for H1/2
t . Consequently, and due to the patterns in R̂, the trajectories of the diagonal

elements, displayed in Figures 3a, 3e, and 3i, are the predominant elements in each row

and column. For example, as depicted in Figure 3a, qt,11 indicates that a unit equity shock

leads to approximately a 1% change in the S&P 500, with the response remaining rela-

tively stable, except in periods of crisis. Figure 3e reveals that a unit bond market shock

reduced 10-year yields by 1% until 2007. Since 2008, the yields became significantly more

responsive to bond market shocks, particularly so in 2009 and 2012, during which the
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U.S. Federal Reserve implemented a series of quantitative easing measures. Lastly, a unit

shift in the third shock contributes approximately 0.05% to the appreciation of the USD,

as reflected by the U.S. Dollar Index.

Comparing the off-diagonal elements of our study with those found in the existing liter-

ature offers valuable insights. Although the evidence seems to be scarce, the prevailing

view suggests that a positive equity market shock leads to higher yields. This is because

monetary authorities, while not directly targeting the stock market, closely watch its im-

pact on economic output and inflation, which may prompt a tightening of monetary pol-

icy. Consistent with this perspective, Figure 3d demonstrates that a unit equity shock

exerts a positive influence on long-term yield changes. Remarkably, this finding is in

concordance with Rigobon and Sack (2003) and D’Amico and Farka (2011), albeit these

studies utilize different data types, short-dated yields, and distinct identification strate-

gies. However, unlike their constant estimates, our analysis uncovers considerable time

variation in the strength of this impact. This is consistent with Boyd et al. (2005), who find

evidence of strong responses in the U.S. equity market to macroeconomic news, varying

with economic conditions.

Conversely, Figure 3a illustrates the influence of the bond market shock on the S&P 500,

which, when compared to the more pronounced effects of the equity shock, appears sub-

dued. Generally, the impact is positive, suggesting that a positive bond market shock, by

lowering yields, favorably affects the stock market. This finding is consistent with a broad

literature—see, inter alia, Thorbecke (1997), Rigobon and Sack (2004), and Bernanke and

Kuttner (2005). Notably, our dynamic model identifies specific intervals where the impact

switches sign, such as after the dot-com crisis and between 2010 and 2013, a nuance not

captured by the aforementioned studies.11

11We emphasize that our discussion does not assert a specific sign of the conditional correlation between

reduced-form yield changes and S&P 500 returns. This correlation is governed by Covt[εt+1,1,εt+1,2] =

29



Lastly, examining the third structural shock, we note that a positive shock, resulting in

an appreciation of the USD, positively affects the S&P 500 return and, generally, has a

negative effect on the 10-year yields. This pattern is consistent with a demand-based

interpretation, wherein an increased demand for the USD, leading to its appreciation,

positively impacts U.S. equity and bond prices. It supports the characterization of ξ3 as

a currency shock. However, as detailed in Section 4.4, the variance contribution of this

shock is minor.

4.4 Volatility spillovers

An important application of MGARCH models is the analysis of volatility spillovers be-

tween markets (Bauwens et al., 2006). In our identified model, volatility spillovers can be

effectively demonstrated through variance decompositions. These decompositions pro-

vide valuable insights for investors by breaking down the sources of variability in asset

returns. This enables them to identify the factors driving volatility and assess their im-

pact on portfolio performance. Additionally, understanding the variance components can

help investors construct hedging strategies to mitigate specific risks.

To quantify volatility spillovers, we define the following two measures for volatility re-

ception and transmission. Let i, j ∈ {1, . . . , n}; then volatility reception and transmission

between i and j is measured by

VRt,i← j =
q2

t,i j

∑
n
l=1 q2

t,il
(volatility reception) (16)

VTt,i→ j =
q2

t,i j

∑
n
l=1 q2

t,l j
(volatility transmission) (17)

where qt,i j denote the matrix entries of the identified Qt = H1/2
t R. Volatility reception

qt,11qt,21 + qt,12qt,22 + qt,13qt,23, and thus, it depends on the signs and magnitudes of multiple components

in Qt.
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measures the variance share of the impact of the jth structural shock on the ith return

in relation to the variance of all shocks on the ith return equation. Volatility transmission

measures the variance share of the ith structural shock on the jth return in relation to its

variance impact on all returns in the system. The volatility reception in (16) corresponds to

a conditional 0-order forecast error variance decomposition. The definitions follow similar

concepts as introduced by Diebold and Yilmaz (2012) and Fengler and Herwartz (2018).

Figures 4 and 5 show the volatility reception and transmission implied by the structural

model. We focus first on volatlity reception in Figure 4, proceeding row by row. Natu-

rally, the equity shock contributes the most to S&P 500 return fluctuations, about 80% or

more—see Figure 4a. This dominance is most pronounced from the financial crisis of 2008

through 2013. In addition to the equity shock, the bond market shock contributes notably,

especially during calm market periods (see Figure 4b). Regarding the relative influence of

ξ3, the currency shock, on the S&P 500 returns, there appears to be a relatively stable base

level of volatility reception at around 7% (see Figure 4c). These low contributions from

currency shocks are consistent with the U.S. being a large and relatively closed economy;

they may also reflect that the USD is the world’s most traded currency.

In examining the second row, we note in Figure 4d that the Treasury yield return volatility

is significantly influenced by the equity shock, with an average contribution of around

20%. This influence notably intensifies during the DotCom crisis from 2000 to 2003, the

financial crisis (2007-2008) and throughout the Eurozone crisis (2009-2014). As depicted in

Figure 4e, the bond market shock plays the dominant role in affecting yield movements.

In contrast, the currency shock appears to have a negligible impact on yield fluctuations,

as shown in Figure 4f. The observation regarding the minimal impact of the currency

shock aligns with the findings reported by Cenedese and Mallucci (2016).

The third row, beginning with Figure 4g, indicates a minimal impact of the equity shock

on U.S. Dollar Index volatility until 2008. From September 2008 to May 2013—a period
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marked by major fluctuations of the USD exchange rate—the impact rises to 20%. Fig-

ure 4h shows a sizeable bond market shock effect on U.S. Dollar Index volatility, echoing

findings like those in Andersen et al. (2003) about U.S. macroeconomic policies influenc-

ing the USD-EUR rate. Figure 4i reveals that the third shock is the primary driver of U.S.

Dollar Index return fluctuations, underscoring our interpretation as a currency shock.

Figure 5 documents the volatility transmission. As a salient observation, we note the

long-term trends in the volatility transmission of the equity shock to equity and fixed in-

come markets—compare Figures 5a and Figures 5d. Specifically, over the sample period,

the relative importance of the equity shock on the S&P 500 return decreases in relation to

its impact on all return components in the system and declines from approximately 80%

to 50%. Conversely, the relative importance of the equity shock on the Treasury yield in-

creases from 20% to a level of more than 50%. This finding aligns with a body of literature

suggesting an increasingly tighter link between fixed income and equity markets over the

past decades—see, e.g., Ehrmann and Fratzscher (2009) or Ehrmann et al. (2011).

As regards the bond market shock, its transmission to the S&P 500 return weakens over

time, decreasing from levels of around 20% at the turn of the millennium to close to zero

by 2009—see Figure 5b. Figure 5e shows that this shift, over time, is accompanied by a

stronger transmission of the bond market shock to the Treasury yield return. Plausibly,

the contributions of both the equity and bond market shocks to U.S. Dollar Index return

fluctuations are negligible, as illustrated in Figures 5g and 5h.

Lastly, the third shock exhibits a distinct volatility transmission pattern on each return

component, different from the other two shocks. The strongest total shock contribution

is to the U.S. Dollar Index—see Figure 5i, fluctuating around a level of about 70%. In

contrast, transmission to S&P 500 and Treasury yield returns is more variable. To the

S&P 500 return, it surges during 1998 to 2004, from 2006 to 2009, and towards the end of

the sample. While the transmission level to the Treasury yield returns is generally low, it
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increases markedly in the aftermath of the financial crisis, reaching a maximum of 60%

during the Euro zone crisis in 2012. These observations support the interpretation of the

third shock primarily as a currency shock, given the Euro’s predominance in the U.S.

Dollar Index.

5 Conclusion

We have introduced a proxy-based structural MGARCH model that extends the reduced-

form MGARCH model to a structural model in the macroeconometric sense. It ensures

flexible modeling of the multivariate volatility dynamics of daily returns, while simulta-

neously identifying the underlying shock system. Because it is based on proxy variables

serving as instrument data, it offers the potential to deliver labeled structural shocks.

Our model formulation results in an estimation problem characterized by constraints

on parts of the parameter vector that correspond to orthogonal and symmetric positive-

definite matrices. To tackle this, we employ sophisticated techniques of Riemannian op-

timization. We expect these methods, currently underutilized in econometrics, to hold

considerable potential for broader application within the field, especially to ordering-

invariant identification in structural VAR models.

In the empirical application to a speculative return system consisting of S&P 500, 10 year

Treasury yield, and U.S. Dollar Index returns, we obtain structural shocks interpretable

as an equity market and a bond market shock. We study the dynamic impact matrix

and estimate the structural volatility reception and volatility transmission between the

three markets. Notably, the structural orthogonal matrix we estimate deviates signifi-

cantly from symmetry, casting doubt on the appropriateness of employing the spectral

decomposition—the commonly used approach in MGARCH modeling.
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In his presidential address, Shiller (2017) highlighted the value of narrative measures to

identify exogenous shocks to the economy. Our identification strategy, based on news-

related proxy variables, affirms their potential and opens multiple avenues for further

research. For example, the shocks we identify are very general, whereas the recent litera-

ture on monetary policy emphasizes a variety of different shocks, making a more nuanced

analysis essential (Ferreira, 2022). In this regard, news analytics data and identification

strategies similar to ours could provide a promising path for future research.
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Structural shocks

ξ̂1 ξ̂2 ξ̂3

Mean −0.0015 0.0106 0.0012
Median 0.0433 0.0361 0.0214
Minimum −7.6653 −4.6669 −6.9155
Maximum 3.7471 6.9360 4.4969
Std. Dev. 1.0012 0.9941 1.0031
Skewness −0.5728 −0.0789 −0.1810
Kurtosis 5.1164 4.6004 4.2905

Correlations
ξ̂1 1.0000
ξ̂2 0.0060 1.0000
ξ̂3 0.0014 0.0009 1.0000

t-statistics
ξ̂1

ξ̂2 0.446
ξ̂3 0.104 0.067

Correlations
Z1 0.3527 −0.0013 0.0006
Z2 −0.0068 0.1683 0.0000

t-statistics
Z1 28.064 −0.097 0.043
Z2 −0.509 12.711 0.003

Table 4: Descriptive statistics of the identified structural shocks of the structural MGARCH model
of the demeaned daily log returns of the S&P 500 index, the constant maturity yield of U.S. 10-
year Treasury notes, and the U.S. Dollar Index. Regarding the proxy variables, Z1 denotes the
TRMI-based stock market sentiment and Z2 the TRMI-based bond market sentiment. Sample:
from 01/01/1998 to 12/31/2019.
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(a) qt,11 (b) qt,12 (c) qt,13

(d) qt,21 (e) qt,22 (f) qt,23

(g) qt,31 (h) qt,32 (i) qt,33

Figure 3: Elements of Qt = H1/2
t R as estimated by the structural MGARCH model of the daily log

returns of the S&P 500, the constant maturity yield of U.S. 10-year Treasury notes, and the U.S.
Dollar Index. Sample from 01/01/1998 to 12/31/2019.
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(a) VR of ε1 from ξ1 (b) VR of ε1 from ξ2 (c) VR of ε1 from ξ3

(d) VR of ε2 from ξ1 (e) VR of ε2 from ξ2 (f) VR of ε2 from ξ3

(g) VR of ε3 from ξ1 (h) VR of ε3 from ξ2 (i) VR of ε3 from ξ3

Figure 4: Volatility reception (VR) of the structural MGARCH model of the daily log returns of
the S&P 500, the constant maturity yield of U.S. 10-year Treasury notes, and the U.S. Dollar In-
dex. Volatility reception measures the share of the impact of the jth structural shock on the ith
return in relation to the impact of all other shocks on this component. Sample from 01/01/1998 to
12/31/2019.
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(a) VT from ξ1 to ε1 (b) VT from ξ2 to ε1 (c) VT from ξ3 to ε1

(d) VT from ξ1 to ε2 (e) VT from ξ2 to ε2 (f) VT from ξ3 to ε2

(g) VT from ξ1 to ε3 (h) VT from ξ2 to ε3 (i) VT from ξ3 to ε3

Figure 5: Volatility transmission (VT) of the structural MGARCH model of the daily log returns
of the S&P 500, the constant maturity yield of U.S. 10-year Treasury notes, and the U.S. Dollar
Index. Volatility transmission measures the share of the impact of the ith structural shock on the
jth return component in relation to its impact on all return components in the system. Sample
from 01/01/1998 to 12/31/2019.
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A Riemannian manifolds

We provide a concise overview of the essential facts about Riemannian manifolds neces-

sary for understanding optimization on these structures, drawing upon Absil et al. (2008)

and Boumal (2023). In Section A.2, we discuss in greater detail the manifolds pertinent

to our structural model. We also outline the specific choices of Riemannian metrics and

retractions implemented in our optimization procedure.

A.1 General framework

The notion of a manifold we adopt is that of a d1-dimensional smooth submanifold em-

bedded in an ambient Euclidean space E of dimension d2. Here, E ∼= Rd2 , i.e., we can

identify E with Rd2 . For precision, we reiterate Definition 3.1 from the main text, refining

it with the concept of a differential. For a function h : Rm → Rn, the differential D h(X)

at a point X ∈ Rm is the linear operator D h(X) : Rm → Rn, mapping V to D h(X)[V],

defined as D h(X)[V] = lims→0
h(X+sV)−h(X)

s , s ∈ R. The expression D h(X)[V] ∈ Rn is

called the directional derivative of h along V.

Definition A.1. A non-empty setM, embedded in E , is called a smooth submanifold of
dimension d1 ≤ d2 in either of two cases:

(i) if d1 = d2 andM is open in E ; it is then called an open submanifold in E .

(ii) If d1 < d2 and the set is of form M = {X ∈ E : h(X) = 0d2−d1}, where the
defining function h : E → Rd2−d1 is infinitely often differentiable and its differential
D h(X) has rank d2 − d1, for all X ∈ M.

The tangent space TXM offers a local vector space approximation ofM at X ∈ M. For-

mally, given a point X ∈ M, let γ : R → M be a smooth curve such that γ(0) = X

and denote its derivative at 0 by γ̇(0). The space spanned by all vectors γ̇(0) defines the

tangent space TXM at X and it has the same dimension asM. For open submanifolds,
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one identifies the ambient space as the tangent space: TxM ∼= E .12 For an embedded

submanifold of dimension d1 < d2, the tangent spaces are linear subspaces of E and can

equivalently be characterized by the kernel of D h(X)—see Absil et al. (2008).

Because the TXM is a linear space, we can endow it with an inner product ⟨·, ·⟩X, where

the notation emphasizes that the inner product depends on X. If ⟨·, ·⟩X varies smoothly in

X ∈ M, it is called a Riemannian metric and the pair (M, ⟨·, ·⟩X) a Riemannian manifold.

The Riemannian metric can be—but does not have to be—inherited from the ambient

vector space.

Optimization on a manifold requires the definition of a gradient of a differentiable func-

tion f : M → R. To this end, on a Riemannian manifold, the Riemannian metric

is used. The Riemannian gradient is the uniquely defined vector grad f (X) such that

D f (X)[T] = ⟨grad f (X), T⟩X for all T ∈ TXM and all X ∈ M.13 It represents the di-

rection of steepest ascent of f in TXM at X, taking into account the local geometry ofM

at X. If the Euclidean inner product of the ambient space is selected as the Riemannian

metric, the Riemannian gradient can be derived by orthogonally projecting the Euclidean

gradient of f onto TXM, as sketched in Figure 1a. This approach is viable if f is well-

defined in an open neighborhood in E around X ∈ M, which is often the case in much

applied work. From a computational perspective, however, this is not always the optimal

choice—see Section A.2 for further discussion.

Because of the non-Euclidean geometry of M, the updating scheme of a Riemannian

12TXM is a subset of E by definition. It is easy to show that E is also a subset of TXM, from which the
claim follows—see Boumal (2023), Prop. 3.15.

13Let V be a tangent vector at X, i.e., V ∈ TXM. Then exists a smooth curve γ onM satisfying γ(0) = X
and γ̇(0) = V. Moreover, given a smooth function f : M → R, s 7→ f (γ(s)) defines a smooth curve on
R by composition. This curve passes through f (X) = f (γ(0)) with a certain velocity, which is a tangent
vector of R at f (X). This tangent vector is called the differential of f at X along V.

Formally, for a smooth function f : M → R, the differential D f (X) is a linear operator from TXM to
T f (X)R ∼= R defined by D f (X)[V] = d

d t f (γ(t))
∣∣∣
t=0

. It can be shown that this definition is independent

from γ and that D f (X) is indeed linear (Boumal, 2023).
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optimization step requires a retraction. A retraction is a map ΓX : TXM → M that, for

each curve γ(s) = ΓX(sT), s ∈ R and T ∈ TXM, satisfies γ(0) = X and γ̇(0) = T, for

all X ∈ M. Given a retraction, the updating step of a gradient descent on a Riemannian

manifold, updating Xk to Xk+1, takes the form Xk+1 = ΓXk (−αk grad f (Xk)), where the

step sizeαk must be appropriately chosen.

Advanced methods of Riemannian optimization also leverage second-order information

about f , akin to the classical Newton’s method. However, they necessitate a concept of a

Riemannian Hessian and, consequently, a more sophisticated toolset. Subject to smooth-

ness of f and further technical conditions, these methods are known to converge to a local

minimum of f on M. Hence, the optimization on a manifold is not inherently distinct

from optimizing in a Euclidean space—see Absil et al. (2008) for an in-depth discussion.

A.2 Discussion of the Riemannian manifolds utilized

Linear (sub)space of Rn

The Riemannian geometry encompasses the Euclidean geometry as special case. There-

fore, as the simplest example, any linear (sub)space of Rn admits a linear manifold struc-

ture. For any X ∈ Rn, we have TXRn ∼= Rn and an obvious retraction is ΓX = X + sT,

T ∈ TXRn and s ∈ R.

The set of symmetric positive-definite matricesMspd

Mspd(d2) = {X ∈ S(d2) : a⊤Xa > 0, a ∈ Rd2} is an example of an open submanifold.

It is an open set in S(d2) = {X ∈ Rd2×d2 : X = X⊤}, the vector space of symmetric

matrices of size d2 × d2. Therefore, TXMspd(d2) ∼= S(d2), for any X ∈ Mspd(d2). Because

the natural inner product on S(d2) is the Frobenius inner product ⟨A, B⟩ = tr(A⊤B),

where A, B ∈ S(d2), one could also use the Frobenius inner product on the tangent

spaces of the manifold of positive-definite matrices. In our Riemannian optimization,
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however, we employ a different metric—specifically, the affine invariant metric, given

by ⟨A, B⟩aff
X = tr(X−1 AX−1B), for X ∈ Mspd and A, B ∈ TXMspd—see Moakher (2005)

and Pennec et al. (2006). The rationale is that the distance induced by this metric makes

Mspd a complete metric space, by rejecting any element of S(d2) with zero or infinite

eigenvalues to an infinite distance from any element in Mspd.14 This property effec-

tively prevents the optimizer from ‘leaving’ the open convex cone Mspd, which is of

considerable convenience during optimization. Because the affine invariant metric is em-

ployed instead of the Frobenius inner product, the Riemannian gradient is not accessible

through projection. Nevertheless, it can be proved that under the affine invariant metric,

grad f (X) = X∇ f (X)X, where ∇ f (X) denotes the Euclidean gradient of f at X—see

Boumal (2023, p. 328-329). A good retraction is given by ΓX(A) = X + A + 1
2 AX−1 A,

where X ∈ Mspd and A ∈ TXMspd—see Jeuris et al. (2012) and Sra and Hosseini (2015).

The set of orthogonal matricesMo

The defining function of Mo(d2) is given by h(X) = X⊤X − In, which maps any X ∈

Rd2×d2 into S(d2). The directional derivative of h at X along Z, where Z ∈ Rd2×d2 ,

is D h(X)[Z] = X⊤Z + Z⊤X. Hence, the tangent spaces are given by TXMo(d2) =

{Z ∈ Rd2×d2 : X⊤Z + Z⊤X = 0}. Moreover, the rank of D h(X), seen as the lin-

ear map Rd2×d2 → S(d2), is 1
2 d2(d2 + 1), because D h(X)[Z] is surjective for any Z ∈

Rd2×d2 ;15 hence, dim(Mo(d2)) = d1 = d2
2 −

1
2 d2(d2 + 1) = 1

2 d2(d2 − 1). In this case, one

typically inherits the Frobenius inner product from Rd2×d2 to the Riemannian manifold

(Mo(d2), ⟨·, ·⟩), implying that we can obtain the Riemannian gradient by projecting the

Euclidean gradient on the tangent space, as we illustrate in Figure 1a for the case of the

two-dimensional sphere embedded in R3. A standard retraction for Mo is the Q-factor

retraction, which is the function that sends a square matrix A onto the orthogonal matrix

14See Bhatia (2009, Chap. 6). The geodesic distance, i.e., the minimum distance between A and B while

traversing on the manifold, induced by ⟨·, ·⟩aff
X is given by d(A, B) =

(
∑

d2
i=1 log2 λi(A−1B)

)1/2
, where

λi(A−1B) denote the eigenvalues of A−1B, which explains this aforementioned property.
15To see this, take Z = 1

2 XS, for any S ∈ S(d2).
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Q obtained by means of its QR decomposition, i.e., by decomposing into A = QR, where

R is upper triangular with nonnegative diagonal entries. The Q-factor retraction is also

applicable when retracting toMrot (Absil et al., 2008).

Mo poses a particular challenge for gradient-based optimization methods because it in-

cludes two disconnected parts: the orthogonal matrices with determinant +1 and the

orthogonal matrices with determinant −1. Because the gradient descent and its variants

make small, continuous adjustments to improve the objective function, it cannot ‘leap’

from one part to the other. Therefore, the starting point of the optimizer must be carefully

selected. For our application, this issue is immaterial because we can identify the columns

of the orthogonal matrix only up to sign. We later select these signs based on economic

considerations—see the main text.

Product manifolds

A Riemannian manifold can also be constructed as Cartesian product of Riemannian

manifolds. Thus, if M1 and M2 are two submanifolds embedded in E1 and E2 , re-

spectively, MΠ = M1 ×M2 is a submanifold of dim(MΠ) = dim(M1) + dim(M2),

embedded in E1 × E2, and has tangent spaces T(X1 ,X2)MΠ = TX1M1 × TX2M2, for any

(X1, X2) ∈ MΠ. A Riemannian metric on MΠ is, e.g., the product metric given by

⟨(T1, S1), (T2, S2)⟩MΠ

(X1 ,X2)
= ⟨T1, T2⟩M1

X1
+ ⟨S1, S2⟩M2

X2
, for (X1, X2) ∈ MΠ and (Ti, Si) ∈

T(X1 ,X2)MΠ, where ⟨·, ·⟩Mi
X are the Riemannian metrics onMi, for i = 1, 2.

For a smooth function f : MΠ → R, the gradient is given by the pair grad f (X1, X2) =(
grad

(
X1 7→ f (X1, X2)

)
, grad

(
X2 7→ f (X1, X2)

))
, where the barred arrow notation X1 7→

f (X1, X2) denotes the function obtained by fixing the second argument, and vice versa for

X2 7→ f (X1, X2). On the product manifold, a retraction Γ(X1 ,X2) : T(X1 ,X2)MΠ →MΠ can

be constructed by Γ(X1 ,X2)

(
(T1, T2)

)
=

(
ΓX1(T1), ΓX2(T2)

)
, for (T1, T2) ∈ T(x1 ,x2)MΠ.

We employ this framework to construct a product manifold consisting of the Euclidean
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space manifold, the orthogonal matrices manifold, and the positive-definite matrices man-

ifold. It is on this combined geometric structure that we derive the estimates presented in

the main text.

B Narrative corroboration

We interpret ξ1 as a structural equity market shock and ξ2 as a structural bond market

shock, while ξ3 does not readily lend itself to an a priori interpretation. To gain a deeper

understanding of these shocks, we analyzed the news archives on days corresponding to

the tail events of the shocks. We emphasize that this analysis is not intended to recover the

news items that were informative about the structural shock and triggered the subsequent

drawdown or price rally. Instead, the objective is to confirm that on these days, the market

indeed experienced an event, supporting the suggestion that a structural shock of the

indicated type likely impacted the market.

For the purpose of the analysis, we use the lower 0.85%-quantile for ξ1, the upper 0.85%-

quantile for ξ2, and—because its nature is unknown—both the lower and upper 0.5%-

quantiles for ξ3. The findings, presented in Tables 5, 6, 7, and 8, show that we can asso-

ciate the structural shocks’ tail events with distinct categories of news.

Table 5 documents that ξ1 encompasses news items concerning the current and prospec-

tive financial solidity of major U.S. banks and companies and as well as entire sectors,

including the housing market. News items that shape investor risk preferences, such as

global political uncertainties and domestic issues like the U.S. fiscal cliff and trade anxi-

eties, also play a significant role. Furthermore, news items significantly impacting equity

valuations, specifically those related to the economic outlook, appear. This corroborates

the equity shock interpretation.
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In line with expectations, the upper tail events of ξ2 are associated with bond price rallies

as well as lower yields and monetary policy rates—see Table 6. A significant portion of the

news items pertains to Federal Reserve announcements and key communications from

the Fed’s top officials. Furthermore, inflation data, along with payroll and employment

reports, play a significant role. A smaller portion of news items references events that

threaten global economic stability and hence prompted ’flight to safety’ responses from

investors. This underscores the characterization of this shock as a bond market shock.

Lastly, we consider ξ3 which is not directly targeted in our identification scheme. As

documented in Tables 7 and 8, the tail events of ξ3 frequently correspond to news re-

flecting fluctuations in the currency markets. Specifically, extreme negative shocks are

linked to declines in the U.S. currency, whereas positive shocks align with appreciations

in its value. In addition, we also observe headlines referring to substantial corrections in

gold and oil prices. This observation appears plausible, considering gold’s near-currency

status and the predominant use of the USD in energy trading. Moreover, an oil price

increase corresponds to a devaluation of the USD relative to oil. Consequently, Table 7

often records upward movements in oil prices, while Table 8 details declines in oil prices.

Similar considerations apply to gold. The findings are, however, not in all instances fully

consistent in this respect; e.g., on July 1, 2001, we record a major negative shock and a

major gold price loss—see Table 7.

Despite these limitations, it seems plausible that ξ3 exhibits characteristics of a currency

shock.
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