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Abstract

We make three contributions to the volatility impulse response function (VIRF)

developed by Hafner and Herwartz (2006). First, we derive its law for multivariate

GARCH models of the BEKK type. Second, we present a structural embedding

of the VIRF, leveraging recent advancements in the identification of MGARCH

models. Third, we show how to endow the VIRF with a causal interpretation. We

illustrate the merits of a structural VIRF analysis by investigating the impacts of

historical and out-of-sample shock scenarios on the U.S. equity, government bond,

and foreign exchange markets.

Keywords: causality in volatility, multivariate GARCH models, proxy identification,
structural identification, volatility impulse response functions

JEL Codes: C32, C58, G17

*This work was supported by the Swiss National Science Foundation [176684], Project “Structural
Models of Volatility”.

‡SFI, School of Economics and Political Science, Department of Economics, University of St. Gallen,
Bodanstrasse 6, 9000 St. Gallen, Switzerland. Phone: +41 71 224 2457, Email: matthias.fengler@unisg.ch.

§School of Economics and Political Science, Department of Economics, University of St. Gallen,
Bodanstrasse 6, 9000 St. Gallen, Switzerland. Email: jeannine.polivka@unisg.ch.

1

mailto:{matthias.fengler@unisg.ch}
mailto:{jeannine.polivka@unisg.ch}


1 Introduction

The impulse response function (IRF) is a primary tool for analyzing how dynamic

multivariate systems respond to shocks. It illustrates the effects of an unanticipated

disturbance on the modeled variables, revealing how the sign, magnitude, and overall

duration of the response evolve across the forecast horizon. In vector autoregressions,

IRF analysis focuses on feedback within the mean process (Lütkepohl, 2010; Inoue

and Kilian, 2013). However, in volatility models of high-frequency speculative asset

returns—where the mean equation often carries little significance—the second-order

response becomes the central focus. For example, a mutual fund manager might be in-

terested in how the variance matrix of specific asset classes responds to an unexpected

policy shock. In such situations, the volatility impulse response function (VIRF) is the

appropriate tool.

The VIRF, initially proposed by Hafner and Herwartz (2006), extends the concept of

the generalized IRF (GIRF) due to Koop et al. (1996) to second-order moments. By con-

ditioning on past information and an exogenous shock, it traces that shock’s nonlinear

impact on volatility dynamics. Among the various VIRF specifications proposed (Gal-

lant et al., 1993; Liu, 2018), the approach of Hafner and Herwartz (2006) is of special

significance, as it permits a closed-form solution in one of the most flexible multivari-

ate generalized autoregressive conditional heteroskedasticity (MGARCH) models: the

BEKK(p, q) model introduced by Baba, Engle, Kraft, and Kroner (Engle and Kroner,

1995).

In this work, we revisit the VIRF and contribute to the literature in three key ways:

First, we derive the VIRF’s asymptotic distribution in the BEKK model. Specifically,

we show that, like the VIRF itself, its asymptotic variance matrix can be expressed as

a function of the forecast horizon in a compact recursive form. This approach enables

an efficient numerical computation of confidence intervals, which previously required

time-intensive simulation techniques such as the bootstrap. A comparative study of
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both methods reveals that our newly available asymptotic confidence intervals pro-

vide researchers with a valuable tool for assessing the volatility impact of a given

shock within an MGARCH model.

As a second contribution, we provide the VIRF with a structural interpretation by

leveraging recent advances in the identification of MGARCH models (Hafner et al.,

2022; Fengler and Polivka, 2024). This new interpretation materially broadens its range

of applications. Traditionally, the VIRF has been used to study the impact of a realized

shock on volatility—a use case we term ‘historical VIRF analysis.’ By incorporating

identified and labeled structural shocks derived from a structural MGARCH model,

we can construct specific, interpretable shocks for scenario analyses, similar to those

in structural vector autoregressive (VAR) models (Amisano and Giannini, 2012; Kilian

and Lütkepohl, 2017). This approach allows for defining counterfactual scenarios and

assessing the expected volatility impact of well-defined shock scenarios. We introduce

the term ‘scenario VIRF’ to describe this new application framework.

Our third contribution is to equip the VIRF with a causal interpretation. Drawing

on advances in causal inference for time series by Rambachan and Shephard (2020,

2021), we examine the conditions under which the microeconometricians’ concept of

causality can be applied—specifically, when the VIRF can be understood as represent-

ing dynamic causal effects of assignments on outcomes. In other words, we provide

the conditions under which the VIRF, obtained for a given tail event, measures how

changes in shocks (i.e., assignments) dynamically cause movements in second-order

moments over a given horizon. These results align with recent efforts in macroecono-

metrics to provide a causal interpretation of impulse responses in structural VARs and

local projections—see, e.g., Cloyne et al. (2023) and Gonçalves et al. (2024).

Studying the impact of shocks on financial volatility is essential in applications across

asset pricing, risk management, and portfolio optimization. The development of tools

to measure volatility responses has thus been a longstanding focus in financial econo-

metrics, beginning with the work of Gallant et al. (1993) and Lin (1997). However, both
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approaches rely on correlated reduced-form errors, which limits the meaningful anal-

ysis of individual shock components. Hafner and Herwartz (2006) address this short-

coming by proposing a VIRF, which is based on mutually orthogonal shocks. Nev-

ertheless, their identification assumption rests solely on the principal matrix square

root of the variance matrix sequence. This limitation also applies to recent advances,

such as the VIRF for Markov-switching MGARCH models in Cavicchioli (2019) and

the asymmetric VIRF proposed by Hafner and Herwartz (2023).

Despite this history, structural advancements in volatility impulse response analysis

remain in their early stages. Initial identification efforts leveraging time-varying het-

eroscedasticity were made by Weber (2010) and Liu (2018), both within conditional

correlation models. More recently, Hafner et al. (2022) used information from third

and fourth-order moments to identify structural shocks based on independence and

non-normality assumptions. While these strategies successfully identify orthogonal

structural shocks, they lack economic interpretability and thus are limited to using

realized model-implied shocks. To address this issue, Fengler and Polivka (2024) pro-

pose employing external instrument data for identification. A major advantage of this

approach is that it yields economically labeled shocks, at least for those targeted by the

instrument data. In this work, we extend that framework by conducting a structural

VIRF analysis using labeled structural shocks.

Lastly, few studies address the asymptotic properties of the VIRF for statistical infer-

ence, with Liu (2018) being a notable exception, though based on a distinct MGARCH

model and a VIRF definition different from that of Hafner and Herwartz (2006). Ad-

ditionally, we are the first to provide a discussion of causality for VIRFs.

The remainder is organized as follows. Section 2 introduces the VIRF and presents

key results on its asymptotic distribution and connections to causal inference. Sec-

tion 3 discusses the estimation of the structural model and provides both historical

and out-of-sample scenario VIRFs for well-defined risk scenarios. Section 4 concludes.

Appendix A offers an overview of definitions, relevant matrix algebra results, and the
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proofs.

2 Volatility impulse response analysis

2.1 Modeling framework

We consider a system of n speculative (log) returns for t ∈ Z, driven by

rt = µt +εt , (1)

whereµt = E[rt|Ft−1] and Ft = σ({εs : s ≤ t}) denotes theσ-algebra generated by the

n-dimensional innovation process {εt}t∈Z up to and including time t. The innovations

εt have a conditional mean E[εt|Ft−1] = 0 and a conditional covariance Var[εt|Ft−1] =

Ht, where Ht ∈ Rn×n is almost surely symmetric and positive definite for all t. They

are assumed to follow the structural MGARCH process defined by

εt = H1/2
t R̃ξt , (2)

where R̃ is an orthogonal matrix (see Definition D.2) and {ξt}t∈Z an n-dimensional

real-valued strict white noise process of structural shocks with zero mean and iden-

tity covariance matrix, i.e., ξt
iid∼ SWN(0, In). Throughout this work, we denote by

A1/2 the principal matrix square root of a symmetric positive definite square matrix

A, which is the unique symmetric positive definite matrix such that A = A1/2 A1/2

(see Definition D.1).

The structural volatility model presented in (2) was introduced by Hafner et al. (2022),

who specify R̃ as a rotation matrix. As in Fengler and Polivka (2024), we model R̃ more

broadly as an orthogonal matrix. Like a structural VAR model, model (2) establishes

a specific shock composition mechanism, which is represented by R̃ and endows the

shocks ξt with a structural interpretation. For example, choosing R̃ as the identity

matrix implies symmetric volatility spillovers, as H1/2
t preserves the positive definite-
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ness and symmetry of Ht. With other choices of R̃, mixtures of the structural shocks

emerge, which are then transformed into the reduced-form shocks εt by H1/2
t .

Because any choice for R̃ is observationally equivalent up to second order, additional

information is required for identification. Hafner et al. (2022) develop an identification

scheme based on the assumption of non-Gaussianity of ξt. Using additional exter-

nal data sources, known as instrument or proxy variables, Fengler and Polivka (2024)

suggest a framework for proxy-identification. Proxy-identification, by not relying ex-

clusively on statistical assumptions, offers the further benefit of allowing for shock

labeling, i.e., a meaningful economic interpretation. We sketch the ideas of proxy-

identification in Section 3.1.

2.2 The volatility impulse response function

In order to assess the impact of a shock ξt on volatility given Ft−1, Hafner and Her-

wartz (2006) define the h-step ahead VIRF as the difference between the expected h-

step-ahead covariance conditioned on the shock and past information, and a natural

baseline, the expected h-step-ahead covariance conditioned on past information only.

Note that, although the VIRF bears the term volatility in its name, it is, in fact, a vector

of impulse responses of the conditional (co)variances to the shock ξt = ξ̄∗.

Definition 2.1. Let h ∈ N. The h-step ahead VIRF is given by

Vt+h(ξ̄
∗) := E[vech(Ht+h)|Ft−1,ξt = ξ̄

∗]− E[vech(Ht+h)|Ft−1] (3)

and its dimension is n∗ = n(n+1)
2 (see Definition D.4 for the vech-operator). This

definition follows the tradition of the GIRF as developed by Koop et al. (1996).

By definition, the VIRF represents the expectation of possible future scenarios, condi-

tioned on the history and a shock. Depending on the stance a researcher takes regard-

ing the conditioning sets, different use cases of the VIRF can be imagined.1 In most

1See Koop et al. (1996, Sections 4.1-4.2) for further discussions of this aspect.
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current applications, Ft−1 is treated as the realized history, and the shock occurring at

time t is selected, i.e., ξ̄∗ = ξ̂t, which implies that the conditioning set in the left-hand

side expectation equals Ft.2 The VIRF then traces the volatility response of the system

to an actual shock, given information accumulated by time t − 1. We want to call this

use case the ‘historical VIRF.’

Alternatively, one can adopt a scenario perspective, where ξ̄∗ is not equal to ξ̂t but is

instead specified by the researcher. In this case, the challenge lies in selecting the shock

of interest, as impulse responses in multivariate models depend on the entire shock

vector composition rather than on a single component. Ideally, one would choose a

shock from the sample of estimated shocks. Without an identified model, however,

this is impossible because ξt = R̃⊤H−1/2
t εt is unobserved and, up to second order,

observationally equivalent for any choice of R̃.

Structural MGARCH models address the composition effect problem by offering a

strategy to identify and estimate R̃, and thus enable the construction of synthetic but

economically meaningful structural shocks. Under the conditions provided in Sec-

tion 2.5, the VIRF can be interpreted causally, allowing these shocks to be treated as

counterfactuals. We introduce the term ‘scenario VIRF’ for this application framework

and demonstrate its usefulness in Section 3.3.2.

2.3 The BEKK(p, q) model and its VIRF

To derive a closed-form expression for the VIRF, we must select a model for the dy-

namics of the conditional variance matrix process. BEKK GARCH models are espe-

cially popular (Bauwens et al., 2006) and appear to be the most commonly employed

for VIRFs in the literature (Jin et al., 2012; Olson et al., 2014; Hafner and Herwartz,

2023).

2See, inter alia, Lin (1997), Hafner and Herwartz (2006), Le Pen and Sévi (2010), or Jin et al. (2012).
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The n-dimensional process {εt}t∈Z in (2) admits a BEKK(p, q) specification if Ht satis-

fies for all t ∈ Z:

Ht = CC⊤ +
p

∑
i=1

A⊤
i εt−iε

⊤
t−i Ai +

q

∑
j=1

B⊤
j Ht− jB j (p, q ∈ N) , (4)

where C is a lower triangular matrix and Ai, i = 1, . . . , p, and B j, j = 1, . . . , q, are

coefficient matrices in Rn×n (Engle and Kroner, 1995). The intercept matrix CC⊤ is

symmetric and positive semi-definite by construction, and strictly positive definite if

C has full rank, which ensures the positive definiteness of {Ht}t∈Z.

Denote the vectorized parameter vector of (4) by η =
(
vec(C)⊤, vec(Ai)

⊤, vec(B j)
⊤)⊤,

where i = 1, . . . , p; j = 1, . . . , q.3 We adopt the following assumptions:

Assumption 2.1.

(1) The population parameter η0 is in the interior of a compact parameter space.

(2) η0, and hence Ht(η0), are identifiable.

(3) {ξt}t∈Z is a centered i.i.d. sequence; all ξt are absolutely continuous with respect

to the Lebesgue measure and admit a density function such that E ∥ξt∥2 ≤ ∞
and Var[ξt] = In.

(4) {εt}t∈Z is strictly stationary and ergodic, and E ∥εt∥6 ≤ ∞.

These assumptions ensure the consistency and asymptotic normality of the quasi-

maximum likelihood estimator (Hafner and Preminger, 2009). In reference to Assump-

tion 2.1(2), identifying the BEKK(p, q) model necessitates additional sign restrictions

on its parameter matrices due to the model’s quadratic structure. For example, in the

BEKK(1, 1) model, it is usually assumed that the diagonal elements of C and the top

left matrix entries of A1 and B1 be positive—see Engle and Kroner (1995) for a de-

tailed discussion. For Assumption 2.1(4), strict stationarity and ergodicity follow from

mild regularity conditions detailed in Hafner and Preminger (2009). Furthermore, as

3See D.3 for a definition of vec(·)-operator.
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discussed in Boussama et al. (2011, Theorem 2.4), the BEKK GARCH process is both

strictly and weakly stationary if the eigenvalues of ∑
p
i=1 Ai ⊗ Ai +∑

q
j=1 B j ⊗ B j are less

than one in modulus.4

The subsequent exposition requires the VMA(∞) representation of the ‘squared’ BEKK

process defined by Xt := vech(εtε
⊤
t ). Additionally, define the process Yt := Xt −

vech(Ht), which is a weak white noise under Assumption 2.1. Denote by Dn the du-

plication matrix and by D+
n its Moore-Penrose inverse (see Definition D.6), and recall

that n∗ = n(n+1)
2 .

Proposition 2.1. The VMA(∞) representation of the ‘squared’ BEKK(p, q) process is given

by

Xt = vech(H) +
∞
∑
i=0

ΨiYt−i (5)

where H = Var[εt]. The (n∗ × n∗) coefficient matrices Ψi are given by Ψ0 = In∗ and Ψi =

−B̃i + ∑
i
j=1
(

Ã j + B̃ j
)
Ψi− j, where Ã j = D+

n
(

A j ⊗ A j
)⊤ Dn and B̃ j = D+

n
(

B j ⊗ B j
)⊤ Dn

are matrices of size n∗ × n∗, with the convention that Ã j = 0 for j > p and B̃ j = 0 for j > q.

For the BEKK(1, 1) model, these expressions simplify to Ψ0 = In∗ , Ψ1 = Ã1 and Ψi =(
Ã1 + B̃1

)
Ψi−1 =

(
Ã1 + B̃1

)i−1 Ã1 where i ≥ 2.

Proof. See Appendix A.2.

A closed-form expression for the h-step ahead VIRF exists for the BEKK(p, q) model.

For completeness, we provide a rigorous derivation in the appendix, adapted to the

case of a structural model as given in (2). This derivation will be of further value in

Section 2.4.

Proposition 2.2. Assume that εt in (2) follows a BEKK(p, q) GARCH. Denote by {Ψi}i∈N

the coefficients of its VMA(∞) representation as provided in Proposition 2.1. Then the h-step

4For matrices A ∈ Rm×n and B ∈ Rp×q, A ⊗ B denotes the Kronecker product, which is the (mp)×

(nq) matrix formed by multiplying each element ai j of A by the entire matrix B.
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ahead VIRF given a structural shock ξ̄∗ is

Vt+h(ξ̄
∗) = Ψh D+

n

(
H1/2

t ⊗ H1/2
t

)
Dn vech

(
R̃ξ̄∗ξ̄∗⊤R̃⊤ − In

)
. (6)

Proof. See in Appendix A.2.

Notably, the VIRF is a nonlinear but even function of the structural shock. The persis-

tence of a shock to volatility is governed by the moving average matrices Ψh, h ≥ 0.

Remark 1. Owing to the simpler structure of its VMA(∞) coefficients (see Proposi-

tion 2.1), the VIRF in the BEKK(1, 1) model can be represented by the following recur-

sion (Hafner and Herwartz, 2006):

Vt+1(ξ̄
∗) = Ã1D+

n

(
H1/2

t ⊗ H1/2
t

)
Dn vech(R̃ξ̄∗ξ̄∗⊤R̃⊤ − In)

Vt+h(ξ̄
∗) =

(
Ã1 + B̃1

)
Vt+h−1(ξ̄

∗) (h ≥ 2).
(7)

This follows from setting the BEKK(1, 1) model in its vech form—see Equation (30) in

the proof of Proposition 2.1—and inserting the VMA(∞) coefficients into (6).

Remark 2. The VIRF of the BEKK model is invariant to rotations and reflections, and

thus independent of the structural model, if, as in the historical VIRF analysis, the

realized shock is chosen. If ξ̄∗ = ξ̂t, we have

Vt+h(ξ̂t) = Ψh D+
n

(
H1/2

t ⊗ H1/2
t

)
Dn vech

(
R̃ξ̂tξ̂

⊤
t R̃⊤ − In

)
(8)

= Ψh vech
(

H1/2
t

(
R̃ξ̂tξ̂

⊤
t R̃⊤ − In

)
H1/2

t

)
(9)

= Ψh vech(ε̂tε̂
⊤
t − Ht) (10)

where the second line follows from an application of (18) and (20). Thus, when ε̂t

is known or can be estimated, this expression remains unaffected by the structural

mechanism encoded by R̃. This property no longer holds in the case of the scenario

VIRF, where ξ̄∗ ̸= ξ̂t.
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2.4 Asymptotic results

As central contribution, we complete the notion of the VIRF by providing its asymp-

totic theory. Estimation of the BEKK model, as with MGARCH models in general,

typically proceeds by quasi-maximum likelihood (QML) estimation assuming multi-

variate normality of ξt. The QML estimator is defined as maximizing the log likeli-

hood given by LT(η) = − 1
2T ∑

T
i=1 ℓt(η), where ℓt(η) = log(det(Ht)) + ε⊤t H−1

t εt and

Ht = Ht(η). For the VIRF, we will now use the notation Vt+h(ξ̄
∗; η) to emphasize the

dependence of Vt+h on the parameter vector η of the underlying MGARCH model.

We treat R̃ as known, which, in light of Remark 2, corresponds to the historical VIRF

analysis.

2.4.1 Consistency of the VIRF

Proposition 2.3. Let h ∈ N, ξ̄∗ ∈ Rn arbitrary and fixed, and η̂ the QML estimator of η. If

Vt+h(ξ̄
∗, η) continuous in η, it is consistent under Assumptions 2.1, i.e.,

Vt+h(ξ̄
∗; η̂)

p−→ Vt+h(ξ̄
∗; η0) (h ∈ N) . (11)

Proof. Follows from the consistency of the QML estimation (Hafner and Preminger,

2009), continuity, and the continuous mapping theorem.

Remark 3. Because the VIRF in the BEKK(p, q) model is continuous in η, its VIRF is

consistent.

2.4.2 Asymptotic normality of the BEKK VIRF

Given the QML estimator η̂ of the parameters of the BEKK model, we can deduce the

asymptotic distribution of the VIRF.

Theorem 1. Let h ∈ N and ξ̄∗ ∈ Rn arbitrary and fixed. Under Assumptions 2.1, we have:
√

T (Vt+h(ξ̄
∗; η̂)− Vt+h(ξ̄

∗; η0))
d−→ N

(
0,VηH−1IH−1V ⊤

η

)
(12)
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where Vη(ξ̄∗; η0) =
∂Vt+h(ξ̄

∗ ;η0)
∂η⊤

denotes the n∗ × m Jacobian matrix of the VIRF with respect

to η ∈ Rm; H(η0) = − E
[

∂2ℓt(η0)
∂η∂η⊤

]
is the Hessian matrix of the log-likelihood contribution

ℓt, and I(η0) = E
[

∂ℓt(η0)
∂η

∂ℓt(η0)
∂η⊤

]
the Fisher information matrix.

The (n∗ × m) Jacobian is given by

∂Vt+h(ξ̄
∗; η)

∂η⊤
=
(

Vt(ξ̄
∗; η)⊤ ⊗ In∗

)
∂ vec(Ψh)

∂η⊤
+ Ψh

∂Vt(ξ̄∗; η)
∂η⊤

, (13)

where

∂Vt(ξ̄∗; η)
∂η⊤

= D+
n

{[(
H1/2

t R̃ξ̄∗ξ̄∗⊤R̃⊤ ⊗ In

)
+
(

In ⊗ H1/2
t R̃ξ̄∗ξ̄∗⊤R̃⊤

)]
×
[(

H1/2
t ⊗ In

)
+
(

In ⊗ H1/2
t

)]−1
− In2

}
∂ vec(Ht)

∂η⊤

and {Ψi}i∈N denote the coefficients of the VMA(∞) representation of the BEKK(p, q) model.

The expression for ∂ vec(Ψh)
∂η⊤

is derived in Appendix A.3, and the derivatives of the BEKK(p, q)

model with respect to its parameters, i.e., ∂ vec(Ht)
∂η⊤

, are found in Hafner and Herwartz (2008).

For the BEKK(1, 1) model, we have

∂Vt+h(ξ̄
∗; η)

∂η⊤
=
(

Vt+h−1(ξ̄
∗; η)⊤ ⊗ In∗

) ∂ vec(Ã1 + B̃11{h>1})

∂η⊤

+
(

Ã1 + B̃11{h>1}

)
∂Vt+h−1(ξ̄

∗; η)
∂η⊤

,
(14)

where 1A denotes the indicator function, which is equal to one if the event A is true and zero

otherwise.

Proof. See Appendix A.3.

The asymptotic distribution of the VIRF estimator allows us to construct pointwise

and simultaneous confidence intervals for the volatility impulse responses of asset

returns to structural shocks, as we demonstrate in Section 3.

Remark 4. Although Theorem 1 is tailored to the BEKK model, it is in fact more general.

It applies to any MGARCH model that satisfies the high-level Assumptions 2.1 and has

a so-called VEC representation. This is evident from the proof of Theorem 1, where, as

a first step, the VEC representation of the BEKK model is derived—see (30).
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2.5 Causal interpretation of the VIRF

Our volatility impulse response analysis aligns with recent advances in causal infer-

ence, where model outcomes are interpreted as resulting from different assignments in

treatment variables. By comparing different states of the world, each linked to distinct

values of the causing variable, this notion of causality contrasts with Granger-Sims

causality, which focuses on predictability.5

A causal interpretation requires additional identifying assumptions that allow one to

relate the observed data to the distribution of the potential outcome variables. Ram-

bachan and Shephard (2020, 2021) provide conditions under which the GIRF of Koop

et al. (1996) can be endowed with a causal interpretation. In contrast to the GIRF,

which addresses the conditional mean, the VIRF traces the dynamic effects of a shock

on the conditional second-order moments. In this section, we develop the framework

that provides a causal interpretation for the VIRF.6

2.5.1 Definitions and assumptions

To frame our variables of interest within the context of causal inference, we interpret

the structural shocks ξt as treatment variables, with the treatment being continuous.

Additionally, we regard the vectorized outer products of the demeaned return vectors

εt, i.e., Xt := vech(εtε
⊤
t ), as the observable, continuously valued, multidimensional

outcomes. The outcomes are linked to the treatment variables through the potential

outcome process, which specifies the outcome that would be observed for a given

path of the treatment variable. We begin by adapting the definitions and assumptions

of Rambachan and Shephard (2020, 2021) to our framework:

Definition 2.2. Let ξ := {ξt}t≥1, ξt ∈ Wξ ⊆ Rn, denote a stochastic treatment path.

5See Lechner (2010) for an overview of causality in econometrics.
6In macroeconomics, similar efforts have recently been made for local projections (Cloyne et al.,

2023; Gonçalves et al., 2024).
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For any deterministic trajectory ξ̄ := {ξ̄t}t≥1, ξ̄t ∈ Wξ , the potential outcome path is

given by X(ξ̄) := {Xt({ξ̄s}s≥1)}t≥1.

As this notation makes clear, in general, potential outcomes may also be influenced by

future treatments. This is ruled out by

Assumption 2.2 (Time series non-interference7). For each t ≥ 1 and all deterministic

{ξ̄t}t≥1, {ξ̄ ′t}t≥1 with ξ̄t, ξ̄ ′t ∈ Wξ :

Xt({ξ̄s}1≤s≤t, {ξ̄s}s≥t+1) = Xt({ξ̄s}1≤s≤t, {ξ̄ ′s}s≥t+1) almost surely.

Assumption 2.2 is analogous to the non-interference assumption in classical causal

inference (Rubin, 1980). It restricts the potential outcomes to depend only on past

and contemporaneous treatments; therefore, we can drop any dependence on future

assignments.

The potential outcomes evaluated at the treatments yield the outcome process:

Assumption 2.3 (Outcomes). The outcome at time t is defined as Xt := Xt({ξs}1≤s≤t),

and the outcome process is X(ξ) := {Xt({ξs}0≤s≤t)}t≥0.

Because our treatment variable is continuous, unlike in Rambachan and Shephard

(2020, 2021), we formulate the probabilistic assumptions for Borel sets. Let B(ξ̄∗,ϵ) =

{ξ ∈ Wξ : d(ξ̄∗,ξ) < ϵ} be an ϵ-neighborhood of some fixed, structural shock of in-

terest ξ̄∗ ∈ Wξ , where d is some metric on Rn and ϵ > 0, allowing for arbitrarily small

sets. The assignment of the treatments is assumed to be sequentially probabilistic, i.e.,

at time t, any treatment vector ξt ∈ B(ξ̄∗,ϵ) can be realized with positive probability,

given the history generated by both X(ξ) and ξ :

Assumption 2.4 (Positivity). For each t ∈ Z and h ≥ 0, the stochastic treatment path

satisfies, for any ϵ > 0 and any ξ̄∗ ∈ Wξ ,

0 < Pr(ξt+h ∈ B(ξ̄∗,ϵ)|Gt−1) < 1

7Also termed ‘non-anticipating potential outcomes’ in Rambachan and Shephard (2020, 2021).
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where Gt := σ(Xs,ξs : s ≤ t − 1).

The next assumption requires that the assignment of the treatment depends solely on

past outcomes and past treatments, conditioned on Gt−1:

Assumption 2.5 (Time series unconfoundedness). For each t ∈ Z, h ≥ 0, and ξ̄s ∈ Wξ ,

ξt ⊥⊥
(
{ξs}t+1≤s≤t+h, Xt+h({ξs′}1≤s′≤t−1, {ξ̄s}t≤s≤t+h)

)
|Gt−1 ,

where ξs′ ∈ Gt−1 for s′ ≤ t − 1.

Assumption 2.5 defines non-anticipating treatment paths conditional on the informa-

tion available up to time t − 1. From a time series perspective, one could say that

future potential outcomes do not Granger-cause the current treatment ξt.

Lastly, we require continuity assumptions to avoid ambiguities in defining conditional

distributions, when conditioning on events with measure zero—see Gill and Robins

(2001) for an in-depth discussion:

Assumption 2.6 (Continuity). For any t ∈ Z and h ≥ 0, the law of ξt+h|Gt−1 is con-

tinuous (with respect to weak convergence) in the joint support of the conditioning

variables that generate Gt. Likewise, the joint law of(
{ξs}t+1≤s≤t+h, Xt+h({ξs′}1≤s′≤t−1, {ξ̄s}t≤s≤t+h)

)
|Gt−1

can be chosen continuous in the conditioning variables embedded in Gt−1.

Given this framework, we define our potential outcome process as Xt(ξ̄) =

vech(H1/2
t ξ̄tξ̄

⊤
t H1/2

t ), where Ht follows (4). It is deterministic, nonlinear in the as-

signment for every t, and satisfies Assumption 2.2, as Xt depends on past shocks only

due to the VMA(∞) representation (Proposition 2.1).

We observe the outcome (ξt, Xt) = (ξt, Xt(ξt)). Assumptions 2.4 and 2.5 hold be-

cause, under Assumption 2.1, the structural shocks ξt are independently and identi-

cally distributed, serially independent, and the MGARCH process admits a strictly
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stationary and non-anticipative solution.8 This guarantees the independence of ξt

from future treatments and the associated potential outcomes. Lastly, it holds that

Gt ⊆ σ(εs : s ≤ t) = Ft, implying that the usual filtration for the MGARCH model

nests Gt. Assumption 2.6 regarding continuity appears natural when modeling return

data.

2.5.2 Causal effect

A dynamic causal treatment effect compares potential outcomes along an assignment

path to those along a counterfactual path. Given the infinite number of possible

paths, we define—similarly to Rambachan and Shephard (2020)—a filtered treatment

effect that averages over all possible future assignments and contrasts it with the sce-

nario of averaging over all potential interventions, conditional on (t − 1)-information.

Thus, the assignment path we consider is given by ({ξs}1≤s≤t−1, ξ̄∗, {ξs}t+1≤s≤t+h),

while Xt+h(ξ̄
∗) := Xt+h({ξs}1≤s≤t−1, ξ̄∗, {ξs}t+1≤s≤t+h) is the (t + h)-potential out-

come along this path. Observe that Xt+h = Xt+h(ξt). This leads to

Definition 2.3. (Causal effect) For any t ∈ Z, h ≥ 0, and any ξ̄∗ ∈ Wξ , define the

filtered causal effect, conditional on (t − 1)-information, as

E[Xt+h(ξ̄
∗)− Xt+h|Ft−1] .

The next proposition demonstrates that the VIRF, when applied to a structural shock

of interest ξ̄∗, can be decomposed into the filtered treatment effect and a selection bias

term, which vanishes under time series unconfoundedness:

Proposition 2.4. Let Assumptions 2.1-2.6 hold, let h ≥ 0, and assume that E[Xt+h(ξ̄
∗)−

Xt+h|Ft−1] < ∞. Then it holds:

Vt+h(ξ̄
∗) = E[Xt+h(ξ̄

∗)− Xt+h|Ft−1] + ∆t+h(ξ̄
∗|Ft−1)

8This means that the process {εt}t∈Z is such that εt = H1/2
t R̃ξt is a measurable function of ξt−s

for s ≥ 0, with H1/2
t ⊥⊥ σ(ξt+h : h ≥ 0) and εt ⊥⊥ σ(ξt+h : h > 0)—see Francq and Zakoı̈an (2010,

Thm. 11.5) and Boussama et al. (2011).
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where ∆t+h(ξ̄
∗|Ft−1) is a selection bias which vanishes under Assumption 2.5.

Proof. The proof is given in Section A.4.

In summary, under the present assumptions, the VIRF is a filtered treatment effect and

thus has a causal meaning.

Remark 5. Our discussion on providing the VIRF with a causal interpretation is not

confined to the BEKK model. For instance, it also extends to the asymmetric VIRF in-

troduced by Hafner and Herwartz (2023), which accounts for the leverage effect com-

monly observed in financial data. Their assumptions regarding the structural shock

system align with those in our framework, and their leverage function is continuous

element-wise with respect to the shocks, ensuring that Assumptions 2.2-2.6 are satis-

fied.

3 Empirical Application

We now present a structural VIRF analysis using a system of daily asset returns across

three key asset classes: equity, fixed income, and foreign exchange markets. These as-

set classes are not only central to portfolio optimization but are also vital components

in financial stress tests mandated by central banks (Kremer et al., 2012).

3.1 Identification and estimation of the structural MGARCH model

To achieve an economically interpretable structural model, Fengler and Polivka (2024)

propose identifying and estimating the orthogonal matrix R̃ using proxy variables

(also known as instruments). The approach proceeds as follows: assume the objective

is to identify n− 1 structural shocks, denoted byξ1t. For this, partition the vectorξ⊤t =

(ξ⊤1t ,ξ2t)
⊤, where ξ2t represents the shock that is not of primary interest. Moreover,
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assume there exists a centered, (n − 1)-dimensional, stationary instrument process

Z = (Zt)t∈I , generated as

Zt = Φξt + vt ,

where Φ = (Ψ, 0n−1×1) is an (n − 1)× n matrix and Ψ an (n − 1)× (n − 1) full col-

umn rank matrix. The process (vt)t∈I is strict white noise, vt ∼ (0, Σv), where Σv is

a positive-definite covariance matrix. Additionally, ξt is assumed to be independent

of vt.

It follows that E[Ztξ
⊤
1t ] = Ψ, with the rank condition on Ψ ensuring that the instru-

ments offer non-redundant information about the structural shocks of interest. The

fact that E[Ztξ2t] = 0(n−1)×1 imposes exogeneity restrictions, which formalize the idea

that the instrument is uninformative about the non-targeted shock. This framework

allows multiple instruments to jointly convey information about a structural shock, so

Ψ is not required to be diagonal. In our empirical application, however, an overidenti-

fication test suggests that this assumption is appropriate. This identification approach

leverages methods from proxy identification in structural VAR models (see, inter alia,

Stock and Watson, 2012, Mertens and Ravn, 2013, Angelini and Fanelli, 2019, and Gia-

comini et al., 2022).

For estimation, one proceeds in two steps. First, estimate the MGARCH model using

QML with R̃ = In, which provides estimates of ut = H−1/2
t εt. In the second step,

define an augmented model by introducing the expanded system ζt = (u⊤
t , Z⊤

t )
⊤,

taking values in Rm, where m = 2n − 1. The augmented model can be written as

ζt =

 R̃•,1:n−1 R̃•,n 0n×n−1

Ψ 0n−1×1 Σ
1/2
v


 ξt

vt

 = G

 ξt

vt

 , (15)

where R̃ = (R̃•,1:n−1, R̃•,n) is partitioned into columns that align with the instru-

mented and non-instrumented components of ξt, respectively, and Σ
1/2
v is the prin-

cipal matrix square root of Σv. Equation (15) represents a VAR(0), where the first n

elements of the governing shock vector are the uncorrelated, mean-zero, unit-variance

structural shocks. The remaining n − 1 elements comprise the shocks driving the in-
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strument process. Notably, the order of variables within either the return system or

the instruments does not impact this setup.

Identification requires that m(m − 1)/2 constraints be imposed on G. This need arises

because a total of m(m + 1)/2 parameters are governed by the orthogonality of R̃ and

the estimated parameters in Σζ = E[ζtζ
⊤
t ] = GG⊤. From (15), (n + 1)(n − 1) zero con-

straints are derived from the instrument exogeneity conditions. However, this number

may not suffice to meet the required m(m − 1)/2, necessitating additional conditions

on R̃, Ψ, or Σv. If such conditions can be established and if Ψ has full column rank, it

is possible to identify R̃ up to column signs.9 In Section 3.2, we discuss how we derive

these additional restrictions within our application.

The quasi log-likelihood of the structural model is given by

L s
T(θ) = −mT

2
log(2π)− T

2
log det(GG⊤)− T

2
tr{G−1Σ̂ζ(G−1)⊤} . (16)

Note that G depends on the parameter vector θ =
(

vec (R̃)⊤,ψ⊤, vec (Σ1/2
v )⊤

)⊤
,

where ψ represents a vector collecting the free (non-zero) parameters of Ψ. Conse-

quently, the structural parameter matrix R̃ will be estimated, up to sign, as part of the

parameters that maximize the log-likelihood. The challenge of maximizing the log-

likelihood arises from the non-convexity of the orthogonality constraints. As high-

lighted in Fengler and Polivka (2024), this issue can be efficiently addressed using

methods from Riemannian optimization.

3.2 Data and estimation

We borrow elements of the empirical analysis from Fengler and Polivka (2024) and

examine a system of daily returns computed from the Standard and Poor’s 500 Com-

posite Index, the yield of the U.S. constant maturity 10-year Treasury note, and the

9See Angelini and Fanelli (2019) and Fengler and Polivka (2024) for further discussion of local point

identification.
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Figure 1: Upper panel: Demeaned daily log returns of the S&P 500 Composite Index, the yield
of the U.S. constant maturity 10-year Treasury note, and the USD Index from 1/1/1998 to
12/31/2014. Lower panel: TRMI U.S. stock index sentiment and TRMI U.S. bond sentiment
on trading days (demeaned, ARMA filtered, standardized). Data sources: Bloomberg and
Thomson Reuters (TRMI).

USD Index.10 The data cover the period from 1/1/1998 to 12/31/2014—see Figure 1

for the log returns.

We select the proxy variables in accordance with a core tenet of financial economet-

rics: fundamental news drives stock returns—see Jeon et al. (2021) for evidence on

the link between news and significant intraday stock returns. Our goal is to identify

two types of shocks—an equity price shock that is informative about the economic

fundamentals of equities, and a bond price shock that reflects shifts, e.g., in real in-

terest rates, inflation expectations, or monetary policy. To achieve this, we use two

series of news analytics data from the Thomson Reuters MarketPsych Indices (TRMI)

as proxies for the underlying structural shocks, specifically the U.S. stock index news

sentiment and U.S. bond news sentiment. The TRMIs are constructed by means of

10The USD Index is a measure of the U.S. Dollar’s value relative to a basket of currencies from U.S.

trade partners, increasing as the U.S. Dollar strengthens against these currencies.
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Descriptive statistics

Asset returns Instrument data
Statistic S&P 500 Yield USDX Equities Bonds

Min. −0.095 −0.185 −0.027 −3.134 −4.830
Max. 0.109 0.089 0.024 3.375 5.600
Median 0.000 0.000 0.000 −0.010 −0.047
Std. Dev. 0.013 0.018 0.005 1.000 1.000
Skewn. −0.203 −0.136 −0.034 0.056 0.238
Kurt. 10.929 8.454 4.491 2.533 4.231

Table 1: Descriptive statistics of asset returns and instrument data. The first three columns
present the daily log returns of the S&P 500 index, the U.S. 10-year Treasury constant maturity
yield, and the USD Index. The final two columns display proxy data based on U.S. stock
index sentiment and U.S. bond sentiment (TRMI MarketPsych indices). The sample covers the
period from 01/01/1998 to 12/31/2014, with a total of N = 4435 observations. Data sources:
Thomson Reuters.

a proprietary supervised natural language processing scheme applied to news items

from a broad range of media outlets. Each item is scored for relevance, novelty, and

sentiment to construct the indices.11 The TRMI data are available at a daily frequency,

and we apply flexible autoregressive moving average (ARMA) models to extract the

unexpected innovations, which we use as proxies.

As discussed above, to achieve identification, we require m(m− 1)/2 = 10 constraints,

because m = 2n − 1 = 5 with n = 3 returns and n − 1 = 2 instruments. The zero

constraints provide (n + 1)(n − 1) = 8 of these—see (15). One additional constraint is

obtained by imposing symmetry on Σ
1/2
v . Consequently, the system is just-identified

by applying a single zero restriction on Ψ. However, we impose diagonality on Ψ,

which introduces two zero constraints and results in an overidentified system.

For the MGARCH dynamics, we estimate the BEKK(1, 1) specification of (4) as re-

11This includes, but is not limited to, live content delivered via the Thomson Reuters News Feed

Direct, LexisNexis, and financial news sites such as The New York Times, The Wall Street Journal, Fi-

nancial Times, and Seeking Alpha. See https://www.marketpsych.com/ and Peterson (2016, Appendix

A) for further details.

21

https://www.marketpsych.com/


ported in Table 2 and Figure 2. Table 3 presents the structural model estimates. The

orthogonal matrix diverges from the identity matrix, indicating a departure from the

symmetric volatility spillover pattern that would result if R̃ = In. This shift reallocates

mass asymmetrically from the unit diagonal entries of the identity matrix to the off-

diagonal elements of the orthogonal matrix. Additionally, the significant estimates of

the diagonal elements in Ψ̂ confirm that the chosen TRMI series Z1 and Z2 are indeed

relevant instruments (Table 3). A likelihood ratio test assessing the overidentifying

restriction supports the diagonal structure of Ψ, as the test statistic LRT = 0.44 corre-

sponds to a p-value under the χ2(1) distribution.

Due to the identification strategy of using stock market news sentiment for ξ1 and

bond price sentiment for ξ2, we refer to these shocks as the equity price shock and

bond price shock, respectively. The remaining shock is identified too, although it is not

directly targeted by our identification approach. As visible in the orthogonal matrix

in Table 3, this shock has the largest impact on the USD Index equation, suggesting it

may represent a currency shock. However, we refer to it simply as the ‘third’ shock.
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proxy MGARCH model

Ĝ =

 R̂•,1:2 R̂•,3 03×2

Ψ̂ 02×1 Σ̂
1/2
v


0.9127 0.3276 0.2443 0 0
0.3705 −0.9156 −0.1563 0 0

−0.1725 −0.2332 0.9570 0 0
0.3347 0 0 0.9405 0.0574

0 0.1950 0 0.0574 0.9793

Bootstrapped std. errors

0.0158 0.0373 0.0478
0.0339 0.0183 0.0667
0.0414 0.0701 0.0199
0.0133 0.0095 0.0073

0.0150 0.0073 0.0136

Table 3: The estimation results of the structural MGARCH model are based on the demeaned
daily log returns of the S&P 500, the U.S. 10-year Treasury constant maturity yield, and the U.S.
Dollar Index for the period from 01/01/1998 to 12/31/2014, using stock market sentiment
(Z1) and bond market sentiment (Z2) TRMIs as proxy variables. The upper panel presents
the estimated elements of G, including the orthogonal matrix, relevance parameters, and the
symmetric decomposition of the instrument error variance. The lower panel provides the boot-
strapped standard errors derived from 999 replications.

3.3 Structural volatility impulse response analysis

One of the key applications of MGARCH models is analyzing how volatility responds

to shocks (Bauwens et al., 2006). By utilizing identified labeled shocks, we can offer a

more refined analysis of the VIRF patterns than has been possible to date. We begin

with historical VIRFs, followed by scenario-based VIRFs.

3.3.1 Historical VIRFs

We consider three historical events from our sample: First, we analyze the NASDAQ

crash on April 14, 2000, which marked the bursting of the Dotcom bubble, as an ex-

ample of a 1% marginal equity price shock. Second, we examine the semiannual mon-
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Event

Shock and Dotcom crisis Greenspan speech EU debt crisis
return vector 04/14/2000 03/07/2002 08/04/2011

ξt

Equity −4.4292 0.6765 −4.4881
Bond −0.0120 −2.5068 0.5808
Third −1.6040 −3.3369 0.7663

εt

S&P 500 −0.0602 −0.0047 −0.0492
Yield −0.0150 0.0314 −0.0663
USD Index −0.0044 −0.0101 0.0155

Table 4: Structural shock vectors selected for the historical VIRF analysis with corresponding
returns.

etary policy report delivered by Federal Reserve Chairman Alan Greenspan to the US

Senate on March 7, 2002, illustrating a 1% tail event in both the bond price shock and

the third shock. Lastly, we investigate the concerns in the US equity markets over the

European debt crisis on August 4, 2011, as another example of an equity price shock.

The corresponding shock vectors are documented in Table 4. In Figure 2, the selected

case studies are indicated by red vertical lines, placing these days in the context of the

filtered variance and covariance evolutions.

Figures 3 to 5 present the resulting VIRFs (solid black lines). Additionally, each plot

includes the following 95% confidence intervals: the individual asymptotic point-

wise 95% confidence intervals (black dashed line), based on the QML variance ma-

trix; the individual pointwise 95% confidence intervals (light grey area) obtained from

the residual bootstrap procedure, as described in Hafner and Herwartz (2023); and, for

completeness, the simultaneous (i.e., across all VIRFs) asymptotic confidence intervals

(dot-dashed blue line), derived from the χ2(6) approximation of the Wald statistic, also

based on the QML variance matrix.12

The structural shock of the NASDAQ crash on 04/14/2000 initially leads to a strong

12The degrees of freedom follow from the dimension of the estimated VIRF vector—see Lütkepohl

et al. (2015) for further discussions.
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positive response in the predicted variance of the S&P 500, which is statistically signif-

icant at the 5% level, regardless of the confidence interval used (see Figure 3). While

the significance diminishes after 50 days when judged by the joint confidence inter-

val, the impulse to the level of volatility in the S&P 500 remains significant for 90-100

days based on the individual pointwise intervals. The strong reaction in the covari-

ance of the S&P 500 and the 10-year Treasury yield returns is marginally significant

for about 10-15 days according to the simultaneous intervals, and between 50 and 75

days according to the pointwise asymptotic confidence intervals.

The remaining shocks to variance are ambiguous, as the confidence intervals point

in contradictory directions. Notably, although the third shock is relatively large at

1.6 standard deviations (see Table 4), its impact on the USD Index and its VIRF is

dampened due to the nonlinear nature of shock propagation within the BEKK model.

For our second case study, we focus on 03/07/2002, when the chair of the Federal

Reserve Board, Alan Greenspan, made an appearance in Congress that caught markets

off guard. In his speech to the Senate, he presented a much more optimistic view of the

economic outlook than he had in his testimony to the House of Representatives just

seven days earlier. The structural shock associated with this event was moderately

positive in the equity coordinate, but very large and negative in the coordinates of the

bond price shock and the third shock (see Table 4). This resulted in a minor shock to

the S&P 500, a strong increase in yields (as a negative shock to bond sentiment implies

higher yields), and a depreciation of the U.S. Dollar relative to the currencies of major

trading partners.

This shock vector triggered remarkably complex patterns of shock propagation in the

system (see Figure 4). Despite the relatively small equity component of the shock,

we observe a slight but statistically significant decrease in the predicted variance of

the S&P 500. Based on the pointwise intervals, the effect persisted for about 10-40

days before becoming insignificant and converging to zero. Thus, this serves as a rare

example of a shock having a calming effect on equity market variance, likely driven by
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the outlook for an accelerated recovery in the US economy.

At the same time, the sharp negative shock to the bond market triggered a substan-

tial short-term rise in predicted yield volatility, which remained significant for at least

50 days, likely reflecting market uncertainty regarding future rate hikes. Increases

in yield (return) volatility following Federal Open Market Committee (FOMC) an-

nouncements and monetary policy reports have, of course, been well-documented in

the literature—see, e.g., Jones et al. (1998) and Rosa (2013), along with the references

therein.

The predicted covariance impulse responses of the S&P 500 returns with yield returns

and with USD Index returns are both significant but relatively short-lived. In contrast,

the structural shock had a more lasting impact, with a positive effect on the predicted

variance of the USD Index return and a negative effect on the covariance between the

USD Index and the yield returns. The latter decline may appear counterintuitive, as

standard exchange rate models tend to suggest a positive relationship between yields

and the domestic currency—see the lower right panel in Figure 2; however, the VIRF

does not provide insights into the levels of covariance, but merely indicates a negative

impulse to them.

We now turn to our third case study, the structural shock observed during the Euro-

pean debt crisis (see Figure 5). With the exception of the equity price shock, the other

components of the structural shock on 08/04/2011 remain well within one standard

deviation around zero (see Table 4). Nevertheless, the shock had strong, statistically

significant effects on the predicted (co-)variances of all asset return components.

In Figure 5, we observe a positive impact on the predicted variances of the S&P 500

returns, the Treasury yield returns, and their covariance. This pattern is consistent

with heightened market concerns over potential European debt defaults, as well as

flight-to-safety investments driven by declining equity markets amid the European

debt crisis.
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The impact on the USD Index return variance is only significant when judged by the

pointwise confidence intervals. In contrast, we find a significant and pronounced de-

crease in the predicted covariance between the S&P 500 and the USD Index returns.

This aligns with the literature documenting that volatility spillover effects between

equity and foreign exchange markets are typically small during normal market con-

ditions but become stronger in periods leading up to crises (see, e.g., Grobys, 2015

and Cenedese and Mallucci, 2016). The even sharper drop in the predicted covariance

between the USD Index and the 10-year Treasury yield returns reflects two factors:

a surge in the U.S. Dollar relative to the Euro, as evidenced by the positive USD In-

dex return on the shock date, and a decline in yields, potentially driven by increased

demand for safe-haven investments (see Table 4).

In summary, our historical VIRF analysis underscores the importance of considering

confidence intervals to fully appreciate volatility impulse responses. The bootstrapped

and asymptotic confidence intervals (based on the QML variance matrix) align well,

particularly given the highly nonlinear transformation of the model’s parameters into

the VIRF. The bootstrap intervals, however, tend to be slightly tighter. The largest

discrepancies between the two methods arise when, after the initial impact, the boot-

strap method samples parameter constellations that result in VIRFs exhibiting always

the same sign. In contrast, the asymptotic intervals, being symmetric by construction,

tend to eventually cover zero.

Moreover, the discussion underscores the value of having an economic interpreta-

tion of the shocks—a feature lacking in the existing VIRF literature. Our structural

model provides this by identifying which specific shocks impacted which returns, and

thereby offers a broader understanding of portfolio risks.
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3.3.2 Scenario VIRFs

Historical VIRFs are valuable for understanding past volatility events, but their utility

is limited since events like those highlighted in Section 3.3 are unlikely to recur. How-

ever, as discussed in Section 2.5, the structural model enables the analysis of causal

effects from meaningful shock scenarios, whether in an out-of-sample context or as

counterfactuals.

For illustration, we adopt a risk manager’s perspective and investigate the VIRFs un-

der two scenarios: (a) a 1% marginal equity price shock, and (b) a 1% marginal bond

price shock, both on the out-of-sample date 01/02/2015. Assuming independence, we

estimate the multivariate density of the structural shocks by fitting the marginal dis-

tributions with a Gaussian kernel density estimator. We use these estimates to draw

independent 10,000 observations from the 1% quantile of the shock component of in-

terest, while sampling from the full distribution for the remaining components. This

approach avoids setting other structural shocks to zero. To illustrate the responses, we

compute the pointwise median VIRFs, along with the 25% and 75% quantile VIRFs for

each forecast horizon h. Additionally, we include the analytical asymptotic simulta-

neous 95% confidence intervals for the median target VIRF, calculated following Fry

and Pagan (2011). It is important to note that these confidence intervals reflect the

parameter estimation uncertainty of a single VIRF—the median target VIRF—and are

therefore unrelated to the interquartile range, which is computed across the VIRFs

based on different shock vectors.

Figure 6 displays the VIRFs resulting from shock scenario (a). According to our anal-

ysis in Section 2.5, these responses represent the causal effects associated with the

1% quantile of the equity price shock. We observe a pronounced positive median

impact on the forecasted conditional (co-)variances of S&P 500 and Treasury yield

returns, with a more muted effect on the (co-)variances involving the USD Index.

Given the prevailing conditional covariance patterns, such a shock scenario may be
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expected to increase the variance levels of both equity and fixed income markets, as

well as their correlation, over the medium term. Consequently, the risk manager might

consider implementing further diversification strategies to reduce exposure to equity

price shocks.

In contrast, Figure 7 shows that the bond price shocks sampled from the 1% quantile in

scenario (b) have a negligible impact on the predicted conditional covariance between

the Treasury yield and the S&P 500 returns, as well as the forecasted conditional vari-

ance of the S&P 500 returns. However, there is a strong positive effect on the predicted

variance of yield returns and the predicted conditional covariance with the USD Index

returns. In this scenario, the shock-induced increase in covariance between the fixed

income and FX markets could be a primary concern for risk assessment.

In summary, Figures 6 and 7 demonstrate that different shock scenarios lead to dis-

tinct predictions for (co-)variance levels in the asset return system, providing valuable

insights for risk managers to take scenario-specific precautions.

4 Conclusion

In this paper, we revisited the VIRF introduced by Hafner and Herwartz (2006), a

useful tool for analyzing the impact of shocks on conditional variance matrices in

MGARCH models. By deriving the asymptotic distribution of the VIRF within the

BEKK model, we enhance its potential by offering asymptotic confidence intervals.

We demonstrate that the asymptotic variance matrix, similar to the VIRF itself, can be

expressed as a function of the forecast horizon in a compact recursive form, enabling

efficient numerical evaluation.

Building on recent advances in identifying MGARCH models, we extend the VIRF to

take advantage of structural volatility models. With interpretable, labeled shocks and

clearly defined structural propagation channels, we broaden the VIRF’s application
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to include counterfactual and out-of-sample scenario analyses. Beyond the structural

interpretation, we demonstrate how to provide the VIRF with a causal interpretation.

This approach enables the application of the microeconometricians’ concept of causal-

ity for assessing the impact of well-defined shock scenarios. In an empirical applica-

tion to an identified system of equity, government bond, and foreign exchange returns,

we illustrate two key use cases: the historical VIRF and the scenario VIRF. Our appli-

cations highlight the importance of assessing the statistical significance of volatility

impulse responses.
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Figure 2: Left panel: Filtered variance paths of the BEKK model estimated on the returns of the
S&P 500, 10-year Treasury yields, and the USD Index. Right panel: Estimated covariance paths.
The red lines mark the selected days for the historical VIRF analysis. From left to right: Dotcom
bubble burst (NASDAQ crash on 04/14/2000), Greenspan’s speech to the Senate (03/07/2002),
and the onset of the European debt crisis (08/04/2011)—see also Table 4.
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Figure 3: The predicted 500-step ahead VIRFs (solid black line) are driven by the structural
shock on 04/14/2000, marking the NASDAQ crash at the onset of the Dotcom bubble burst
(see Table 4). The dotted black line represents the 95% pointwise asymptotic confidence in-
tervals, the grey area denotes the 95% pointwise bootstrapped confidence intervals, and the
dot-dashed blue line shows the asymptotic simultaneous confidence intervals across all VIRFs,
based on a χ2(6) approximation. The return system includes the S&P 500, the yield of the US
constant maturity 10-year Treasury note, and the USD Index.
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Figure 4: The predicted 500-step ahead VIRFs (solid black line) are driven by the structural
shock on 03/07/2002 in response to the Greenspan testimony to the Senate (see Table 4). The
dotted black line represents the 95% pointwise asymptotic confidence intervals, the grey area
denotes the 95% pointwise bootstrapped confidence intervals, and the dot-dashed blue line
shows the asymptotic simultaneous confidence intervals across all VIRFs, based on a χ2(6)
approximation. The return system includes the S&P 500, the yield of the US constant maturity
10-year Treasury note, and the USD Index.
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Figure 5: The predicted 500-step ahead VIRFs (solid black line) are driven by the structural
shock on 08/04/2011, during the onset of the EU debt crisis (see Table 4). The dotted black line
represents the 95% pointwise asymptotic confidence intervals, the grey area denotes the 95%
pointwise bootstrapped confidence intervals, and the dot-dashed blue line shows the asymp-
totic simultaneous confidence intervals across all VIRFs, based on a χ2(6) approximation. The
system includes returns of the S&P 500, the yield of the US constant maturity 10-year Treasury
note, and the USD Index.
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Figure 6: Predicted 500-step ahead VIRFs in response to a scenario family of 1% structural
equity price shocks on the out-of-sample date 01/02/2015: median scenario VIRF (solid black
line) with pointwise 25% and 75% quantiles (salmon) and corresponding median target VIRF
(dashed green line) with asymptotic 95% confidence intervals, simultaneous across all VIRFs
(dot-dashed blue). The system includes returns of the S&P 500, the yield of the US constant
maturity 10-year Treasury note, and the USD Index.
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Figure 7: Predicted 500-step ahead VIRFs in response to a scenario family of 1% structural
bond price shocks on the out-of-sample date 01/02/2015: median scenario VIRF (solid black
line) with pointwise 25% and 75% quantiles (salmon) and corresponding median target VIRF
(dashed green line) with asymptotic 95% confidence intervals, simultaneous across all VIRFs
(dot-dashed blue). The system includes returns of the S&P 500, the yield of the US constant
maturity 10-year Treasury note, and the USD Index.
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A Appendix

A.1 Notation and results from matrix algebra

Definition D.1. Principal matrix square root. Any real symmetric (n × n) matrix M
can be factorized as M = ΓΛΓ⊤ where Γ is an orthogonal (n × n) matrix with the nor-
malized eigenvectors of M as columns and Λ the diagonal matrix of the eigenvalues.
The principal matrix square root of M is defined as ΓΛ1/2Γ⊤ where Λ1/2 denotes the
diagonal matrix of the square root of the eigenvalues of M. It is the unique matrix
square root which has non-negative eigenvalues, see Horn and Johnson (2012, Theo-
rem 7.2.6).

Definition D.2. Orthogonal matrix. An orthogonal matrix R is a real (n × n) matrix
satisfying R⊤R = RR⊤ = In.

Definition D.3. vec(·) operator. The operation vec(M) stacks, starting with the first
column, the columns of an (n × n) matrix M in an n2-dimensional vector. It is a linear
operator.

Definition D.4. vech(·) operator. The operation vech(M) stacks, starting with the
first column, the lower triangular part of a symmetric (n × n) matrix M in an n∗-
dimensional vector where n∗ = n(n+1)

2 .
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Definition D.5. Moore-Penrose inverse. The Moore-Penrose inverse of an (m × n)
matrix M with M⊤M non-singular is defined as

M+ = (M⊤M)−1M⊤. (17)

It has size (n × m).

Definition D.6. Duplication matrix. For any symmetric (n × n) matrix M, the dupli-
cation matrix Dn denotes the unique

(
n2 × n∗) matrix, where n∗ = n(n+1)

2 , such that

vec(M) = Dn vech(M). (18)

The Moore-Penrose inverse of the duplication matrix is denoted by D+
n .

Definition D.7. Commutation matrix. For every (m × n) matrix M, the (mn × mn)
commutation matrix Kmn is defined by

Kmn vec(M) = vec(M⊤). (19)

For n = m, we use the abbreviation Kn for Knn.

Result R.1. vec(·) operations. For appropriately defined matrices A, B, and C and for
some (n × n) matrices M and P:

vec(ABC) =
(

C⊤ ⊗ A
)

vec(B) (20)

vec(A⊤ ⊗ A⊤) = vec((A ⊗ A)⊤) (21)

vec(M ⊗ P) = (In ⊗ Kn ⊗ In) [vec(M)⊗ vec(P)] . (22)

See Magnus and Neudecker (1988, Theorem 3.10) for a proof of (22).

Result R.2. Matrix derivatives results.

1. For n × n matrices X and Z, Z symmetric, it holds:

∂ vec(XZX)

∂ vec(X)⊤
= (X⊤Z ⊗ In) + (In ⊗ XZ) (23)

by an application of the product rule in conjunction with two applications of (20).

2. For any symmetric, positive semidefinite n × n matrix H with principal square
root H1/2, it holds:

∂ vec(H1/2)

∂ vec(H)⊤
=
[(

In ⊗ H1/2
)
+ (H1/2 ⊗ In)

]−1
(24)

which can be derived by solving a Sylvester type equation for the differential.

3. For any (n × n) matrices M and P, it holds:

∂ vec(M)⊗ vec(P)
∂ vec(M)⊤

= In ⊗ vec(P). (25)
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4. For any (n × n) matrix M:

∂ (vec(M)⊗ vec(M))

∂ vec(M)⊤
= In ⊗ vec(M) + vec(M)⊗ In (26)

by (25) and the product rule.

5. For any (n × n) matrix M:
∂ vec(M⊤)

∂ vec(M)⊤
= Kn. (27)

A.2 Prerequisites for the VIRF

Proof of Proposition 2.1. Apply the vec-operator to (4), which yields

vec(Ht) = vec(CC⊤) +
p

∑
i=1

vec(A⊤
i εt−iε

⊤
t−i Ai) +

q

∑
j=1

vec(B⊤
j Ht− jB j). (28)

Using (20) and (18), we get:

Dn vech(Ht) = Dn vech(CC⊤) +
p

∑
i=1

(Ai ⊗ Ai)
⊤ Dn vech(εt−iε

⊤
t−i)

+
q

∑
j=1

(
B j ⊗ B j

)⊤ Dn vech(Ht− j).
(29)

Multiplication by D+
n , the Moore-Penrose inverse of the duplication matrix, yields the

VEC representation of the BEKK model:

vech(Ht) = vech(CC⊤)︸ ︷︷ ︸
=:c

+
p

∑
i=1

D+
n (Ai ⊗ Ai)

⊤ Dn︸ ︷︷ ︸
=:Ãi

vech(εt−iε
⊤
t−i)

+
q

∑
j=1

D+
n
(

B j ⊗ B j
)⊤ Dn︸ ︷︷ ︸

=:B̃ j

vech(Ht− j)

(30)

Using the definitions of Xt and Yt, we can rearrange (30) to yield:

Xt = c +
max(p,q)

∑
i=1

(
Ãi + B̃i

)
Xt−i −

q

∑
j=1

B̃ jYt− j + Yt (31)
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where Ãi = 0 for i > p and B̃i = 0 for i > q. By stationarity of (4), this can be rewritten
in VMA(∞) form using the lag operator L:(

In∗ −
max(p,q)

∑
i=1

(
Ãi + B̃i

)
Li

)
︸ ︷︷ ︸

=:Φ(L)

Xt = c +

(
In∗ −

q

∑
j=1

B̃ jL j

)
︸ ︷︷ ︸

=:Θ(L)

Yt

⇔ Xt = Φ(1)−1c +Φ(L)−1Θ(L)︸ ︷︷ ︸
=:Ψ(L)

Yt

= vech(H) +
∞
∑
i=0

ΨiYt−i ,

(32)

where H satisfying vech(H) = Φ(1)−1c denotes the long-run covariance matrix. The
(n∗ × n∗) coefficient matrices Ψi are determined recursively by coefficient matching
(Lütkepohl, 2005).

Proof of Proposition 2.2. Recall that Xt = vech(εtε
⊤
t ) and Yt = Xt − vech(Ht) and h ≥

1. Then, we have

E[vech(Ht+h)|Ft−1] = E[E[Xt+h|Ft+h−1]|Ft−1] = E[Xt+h|Ft−1]. (33)

Using the VMA(∞) representation of Proposition 2.1, we obtain for the VIRF in (3)

Vt+h(ξ̄
∗) = E

[ ∞
∑
i=0

ΨiYt+h−i

∣∣∣∣∣Ft−1,ξt = ξ̄
∗
]
− E

[ ∞
∑
i=0

ΨiYt+h−i

∣∣∣∣∣Ft−1

]
. (34)

Under Assumptions 2.1, we have Var(Yt) < ∞, implying that the absolute moments
of Yt are uniformly bounded. Hence, we can interchange the infinite summation and
the conditional expectation:

Vt+h(ξ̄
∗) =

∞
∑
i=0

Ψi (E [Yt+h−i|Ft−1,ξt = ξ̄
∗]− E[Yt+h−i|Ft−1])

= Ψh (E [Yt|Ft−1,ξt = ξ̄
∗]− E[Yt|Ft−1]) .

(35)

This follows from E [Yt+h−i|Ft−1,ξt = ξ̄∗]−E[Yt+h−i|Ft−1] = 0 for all (t+ h− i) ≤ t−
1 due to measurability given Ft−1 and E [Yt+h−i|Ft−1,ξt = ξ̄∗]− E[Yt+h−i|Ft−1] = 0
for all (t + h − i) ≥ t + 1 by the tower property. Using predictability13 and tower

13Note that H1/2
t is Ft−1-measurable. The measurability follows from the Ft−1-measurability of Ht

and because the principal square root is a (uniformly) continuous operator in the space of positive
definite matrices. Matrix multiplication with R̃ preserves measurability.
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property arguments, and incorporating model (2), we obtain:

Vt+h(ξ̄
∗) = Ψh (E [Xt − vech(Ht)|Ft−1,ξt = ξ̄

∗]− E[Xt − vech(Ht)|Ft−1])

= Ψh

(
E
[
vech(εtε

⊤
t )|Ft−1,ξt = ξ̄

∗
]
− E

[
vech(εtε

⊤
t )|Ft−1

])
= Ψh

(
E
[

vech
(

H1/2
t R̃ξ̄∗ξ̄∗⊤R̃⊤H1/2

t
⊤
)
|Ft−1

]
− E [vech(Ht)|Ft−1]

)
= Ψh

(
vech

(
H1/2

t R̃ξ̄∗ξ̄∗⊤R̃⊤H1/2
t

⊤
)
− vech

(
H1/2

t R̃R̃⊤H1/2
t

⊤
))

= Ψh vech
(

H1/2
t (R̃ξ̄∗ξ̄∗⊤R̃⊤ − In)H1/2

t
⊤
)

.

(36)
By the symmetry of (R̃ξ̄∗ξ̄∗⊤R̃⊤ − In) and H1/2

t and using (20), we get:

Vt+h(ξ̄
∗) = Ψh D+

n

(
H1/2

t ⊗ H1/2
t

)
Dn vech(R̃ξ̄∗ξ̄∗⊤R̃⊤ − In). (37)

A.3 Asymptotic theory for VIRFs

Proof of Theorem 1. The result follows from applying the Delta method in conjunction
with the asymptotic normality of the QML estimator.

To derive the Jacobian, denote the vector of stacked parameters of the BEKK(p, q)
model by η =

(
vec(C)⊤, vec(A1)

⊤, . . . , vec(Ap)⊤, vec(B1)
⊤, . . . , vec(Bq)⊤

)⊤
, sup-

posing that η ∈ Rm. Then, expressing the VIRF in (9) with the help of the vec-operator
yields:

Vt+h(ξ̄
∗; η) = ΨhD+

n

(
vec(H1/2

t R̃ξ̄∗ξ̄∗⊤R̃⊤(H1/2
t )⊤)− vec(Ht)

)
(38)

where {Ψh}h∈N are given in Proposition 2.1.

To calculate the derivative of the VIRF with respect to η, we make use of (23) and (24).
Then, for the VIRF at time h = 0:

∂Vt(ξ̄∗; η)
∂η⊤

= D+
n

[
∂ vec

(
H1/2

t R̃ξ̄∗ξ̄∗⊤R̃⊤H1/2
t

)
∂ vec

(
H1/2

t

)⊤ ∂ vec
(

H1/2
t

)
∂ vec (Ht)

⊤
∂ vec(Ht)

∂η⊤
− ∂ vec(Ht)

∂η⊤

]

= D+
n

{[(
H1/2

t R̃ξ̄∗ξ̄∗⊤R̃⊤ ⊗ In

)
+
(

In ⊗ H1/2
t R̃ξ̄∗ξ̄∗⊤R̃⊤

)]
×
[(

H1/2
t ⊗ In

)
+
(

In ⊗ H1/2
t

)]−1
− In2

}
∂ vec(Ht)

∂η⊤
. (39)

For the analytical expressions of ∂ vec(Ht)
∂η⊤

within the BEKK model, see Hafner and Her-
wartz (2008).
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Now let h ∈ N. Utilizing the recursive definition of the VMA coefficients Ψi, i =

1, . . . , h, the derivative of the BEKK(p, q) VIRF can be derived using the product rule
(Magnus and Neudecker, 1988, Theorem 5.12):

∂Vt+h(ξ̄
∗; η)

∂η⊤
=
(

V⊤
t ⊗ In∗

)
∂ vec(Ψh)

∂η⊤
+ Ψh

∂Vt(ξ̄∗; η)
∂η⊤

(40)

Moreover, we can establish the recursion

∂ vec(Ψh)

∂η⊤
=

∂ vec(−B̃h)

∂η⊤
+

h

∑
j=1

∂ vec
((

Ã j + B̃ j
)
Ψh− j

)
∂η⊤

=
∂ vec(−B̃h)

∂η⊤
+

h

∑
j=1

{(
Ψ⊤

h− j ⊗ In∗

) ∂ vec
(

Ã j + B̃ j
)

∂η⊤

+
[
In∗ ⊗

(
Ã j + B̃ j

)] ∂ vec
(
Ψh− j

)
∂η⊤

}
.

(41)

For evaluation, we derive
∂ vec(Ã j)

∂η⊤
and

∂ vec(B̃ j)
∂η⊤

, j = 1, . . . , h. To achieve the first, insert

the definition of Ã j = D+
n
(

A j ⊗ A j
)⊤ Dn and utilize (20), (21), and (22) to perform the

following transformations:

∂ vec
(

Ã j
)

η⊤
=

∂ vec
(

D+
n
(

A j ⊗ A j
)⊤ Dn

)
∂η⊤

=
(D⊤

n ⊗ D+
n )∂ vec

(
A⊤

j ⊗ A⊤
j

)
∂η⊤

= (D⊤
n ⊗ D+

n ) (In ⊗ Kn ⊗ In)
∂

(
vec(A⊤

j )⊗ vec(A⊤
j )
)

∂η⊤
, (42)

where Kn denotes the commutation matrix defined in Definition D.7. Finally, applying
(26) and (27) yields:

∂

(
vec(A⊤

j )⊗ vec(A⊤
j )
)

∂η⊤
= Kn ⊗ vec(A⊤

j ) + vec(A⊤
j )⊗ Kn . (43)

The derivations for B̃ j = D+
n
(

B j ⊗ B j
)⊤ Dn follow a similar manner. Therefore,

∂ vec
(

B̃ j
)

η⊤
= (D⊤

n ⊗ D+
n ) (In ⊗ Kn ⊗ In)

[
Kn ⊗ vec(B⊤

j ) + vec(B⊤
j )⊗ Kn

]
. (44)

In summary, based on (39), the recursion for the derivative of the BEKK(p, q) VIRF is
given by (40). It can be implemented utilizing (41), (42), (43), and (44).
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For the BEKK(1, 1) model, there is a more compact recursion for ∂Vt+h(ξ̄
∗ ;η)

∂η⊤
based on (7).

Let h ∈ N. By an application of the product rule, it holds:

∂Vt+h(ξ̄
∗; η)

∂η⊤
=

∂ vec
((

Ã1 + B̃11{h>1}

)
Vt+h−1(ξ̄

∗; η)
)

∂η⊤

=
(

Vt+h−1(ξ̄
∗; η)⊤ ⊗ In∗

) ∂ vec
(

Ã1 + B̃11{h>1}

)
η⊤

+
(

Ã1 + B̃11{h>1}

)
∂Vt+h−1(ξ̄

∗; η)
∂η⊤

.

In this case, we need to calculate
∂ vec(Ã1+B̃11{h>1})

η⊤
only once to establish the recursion

for ∂Vt+h(ξ̄
∗ ;η)

∂η⊤
. This completes the proof.

A.4 Causality of the VIRF

Proof of Proposition 2.4. Denote by Eξt+1 ,...,ξt+h|(ξt=ξ̄∗)[Xt+h|Ft−1] an expectation opera-
tor that integrates over the arguments of ξt+1, . . . ,ξt+h, using the Ft−1-conditional
joint density of all ξt, . . . ,ξt+h, however, with the argument referring to ξt set to ξ̄∗.
Furthermore, denote by pξt(ξ̄

∗|Ft−1) the marginal density of ξt, conditioned on Ft−1

and evaluated at ξ̄∗.

We have
Vt+h(ξ̄

∗) = E[vech(Ht+h)|Ft−1,ξt = ξ̄
∗]− E[vech(Ht+h)|Ft−1]

= E[Xt+h|Ft−1,ξt = ξ̄
∗]− E[Xt+h|Ft−1]

= E[Xt+h(ξt, {ξs}t+1≤s≤t+h)|Ft−1,ξt = ξ̄
∗]− E[Xt+h|Ft−1]

=
Eξt+1 ,...,ξt+h|(ξt=ξ̄∗)[Xt+h(ξ̄

∗)|Ft−1]

pξt(ξ̄
∗|Ft−1)

− E[Xt+h|Ft−1]

=
Eξt+1 ,...,ξt+h|(ξt=ξ̄∗)[Xt+h(ξ̄

∗)|Ft−1]

pξt(ξ̄
∗|Ft−1)

+
pξt(ξ̄

∗|Ft−1) E[Xt+h(ξ̄
∗)|Ft−1]− pξt(ξ̄

∗|Ft−1) E[Xt+h(ξ̄
∗)|Ft−1]

pξt(ξ̄
∗|Ft−1)

− E[Xt+h|Ft−1]

= E[Xt+h(ξ̄
∗)− Xt+h|Ft−1] + ∆t+h(ξ̄

∗|Ft−1)

where ∆t+h(ξ̄
∗|Ft−1) :=

Eξt+1,...,ξt+h |(ξt=ξ̄∗)[Xt+h(ξ̄
∗)|Ft−1]

pξt (ξ̄
∗|Ft−1)

− E[Xt+h(ξ̄
∗)|Ft−1]. The first two

lines apply the definition and properties of the VIRF. Line three invokes Assump-
tion 2.3, while line four utilizes the definition of conditional densities. The final lines
involve rearranging the terms.

Assumption 2.5 asserts that the contemporaneous treatment ξt is jointly independent
of all future treatments and potential outcomes. This ensures that for all h > 0, the
joint density factors such that

Eξt+1 ,...,ξt+h|(ξt=ξ̄∗)[Xt+h(ξ̄
∗)|Ft−1] = pξt(ξ̄

∗|Ft−1) E[Xt+h(ξ̄
∗)|Ft−1] ,
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implying ∆t+h(ξ̄
∗|Ft−1) = 0. Lastly, it is important to note that, under the main-

tained continuity conditions in Assumption 2.6, the conditional densities are uniquely
defined—see Gill and Robins (2001). Hence, the VIRF identifies a meaningful causal
treatment effect.
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