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Abstract 

Paying farmers for measured outcomes – i.e., results, not actions − is promoted for reducing 

risk and raising flexibility in addressing agriculture’s environmental damages. One key design 

choice is how exactly to reward those measured results. Continuous rewards are possible 

yet, in practice, observed species outcomes have been rewarded using a single threshold 

(compliant/not) or, to move toward continuity, a few thresholds (e.g., low-medium-high). We 

assess whether more continuous rewards – specifically, multiple target thresholds for plant 

species − raised bird diversity. We study a pilot scheme in Germany’s Lower Saxony, where 

an incentive with one threshold is the baseline. Using citizen-science bird data (offering over 

6.7m entries across 16 years), we find that the pilot scheme using multiple target thresholds 

for plant species raised bird diversity versus the single-threshold baseline (same lower 

threshold, but no further thresholds). Our findings show potential for benefits from even small 

shifts in incentive designs. 
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1. Introduction 

Intensive agriculture threatens biodiversity (Foley et al., 2011; Pe’er et al., 2014; Leclère et al., 

2020). In response, governments have implemented agri-environmental policies worldwide to 

reduce this pressure on nature (Pe'er et al., 2022, Baylis et al., 2022, Pannell and Rogers, 

2022; Elmiger et al., 2023). Such efforts are significant in scale, globally, including for instance 

15.4b Euros spent by the European Union (EU) in 2023 to support “green measures” in the 

agriculture sector (European Commission et al., 2023) to move toward achieving international 

commitments under the Kunming-Montreal Global Biodiversity Framework (UN, 2022) and the 

UN Decade on Ecosystem Restoration (2021–2030) (IUCN, 2022). An important such tool is 

agri-environmental schemes. To date, these schemes mostly reward farmers for the 

implementation of desired practices, though some also include result-based payments. 

However, the payments’ effectiveness is questioned, in general, and potential gains from 

shifting design have been poorly understood (Navarro and López-Bao, 2019; Pe’er et al., 2019, 

2020, 2022).  

Result-based payments are, themselves, a significant design shift that could increase impact 

relative to more common action-based payments (Burton and Schwarz, 2013; Elmiger et al., 

2023; Kelemen et al., 2023; Sattler et al., 2023). In the latter, farmers are paid for what they 

do, regardless of outcomes. In the former, farmers are paid for achieving predefined outcomes.  

To date, the relatively few result-based payments in agriculture often use vascular plants as 

indicators of biodiversity (Burton and Schwarz, 2013; Elmiger et al., 2023). Typically, a count 

of distinct plant species determines whether any farmer’s field is eligible for result-based 

payments. For example, farmers are paid if at least 4 of 40 listed, desired species are present 

in a given field. To increase the chance of being paid, farmers might adjust a field’s 

management to make it more “flora-friendly”, which can also lead to spillover benefits for 

different taxa, including birds (Kleijn and Sutherland, 2003; Vickery et al., 2004; Birrer et al., 

2007; Baker et al., 2012).  
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A key policy-design choice, in the context of result-based payments, is how exactly to reward 

results. Schemes can reward simply the achievement of a single threshold (like 4 out of 40 

listed species). Yet they could instead offer different rewards for different targets, i.e., move 

toward continuity in rewards by paying more for higher numbers of species (e.g., out of 40 

listed species, more for 6 than for 4). 

Yet, despite the push to use payments based on measured desired results, there are not many 

such schemes and little is known about their impact on biodiversity (see Schaub et al. 2025 on 

an early Swiss policy) or about the effects of different designs. To our knowledge, additional 

impact from using multiple thresholds in result-based payments to date has not been studied. 

We offer the first empirical study on the impact of multiple thresholds in result-based payments. 

Specifically, we compare a multiple-thresholds design with a single-threshold design that uses 

the same low payment hurdle but no additional hurdles or additional rewards. These designs 

co-existed in the German federal state of Lower Saxony, the focus of our study. We highlight 

two key challenges present when analyzing result-based agri-environmental payments. The 

first one is the availability of biodiversity data. Biodiversity is costly to monitor and datasets 

with many spatial units for many years are rare. The second challenge is the endogenous 

enrollment of fields: fields that feature higher biodiversity before such a scheme starts are more 

likely to be enrolled by farmers (e.g., Kleijn and Sutherland, 2003; Hart and Latacz-Lohmann, 

2005; Gómez‐Limón et al., 2019; Bertoni et al., 2020). We address both challenges in our 

paper as described below.  

We leverage a biodiversity dataset with over 6.7 million citizen-science entries for birds, across 

16 years of observation, for Lower Saxony. Even though birds are typically not targeted by 

result-based schemes, as plants are, the effect of agri-environmental schemes on bird diversity 

is still relevant. First, increased plant diversity, in response to a result-based payment policy, 

can increase bird diversity directly and indirectly (Kleijn and Sutherland, 2003; Vickery et al., 

2004; Birrer et al., 2007; Baker et al., 2012). On the direct side, the induced changes in field 

management can positively affect bird diversity. On the indirect side, the policy could lead to 
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an increase in plant diversity, which can positively impact (insect diversity and) bird diversity. 

The second reason for the relevance of birds is that they and their diversity can help to 

understand systems’ ecological states, as birds are sensitive to land-use changes and being 

on higher-ranks of food chains makes them sensitive to changes in other tropic levels, such as 

insects (Gregory et al., 2005; Fraixedas et al., 2020; Li et al., 2020; Lees et al., 2022). Thus, 

bird diversity is interesting in its own right.  

To deal with the endogenous enrollment of plots, we leverage a policy reform in Lower Saxony 

that introduced payments with multiple thresholds for measured plant species. This reform had 

a ‘staggered adoption’. While the baseline scheme was a one-threshold scheme, in 2007/08, 

a multi-threshold scheme was implemented in a pilot region. In 2012, that pilot was extended 

to further regions, then in 2014 the scheme was implemented across all of Lower Saxony 

(except in nature-protection areas). This staggered implementation generates a natural control 

group, specifically the regions that at a given point in time are not yet treated. We leverage this 

setup within our analysis, using a nonparametric staggered difference-in-differences approach. 

One major advantage of our setup is that payments were introduced in specific large regions. 

This allows us to assess impact on mobile species, such as birds. In contrast, when treatment 

happens at the field level, the mobility of birds across fields can make such an assessment 

challenging. Thus, we can use information on bird populations which, compared to other taxa, 

are uniquely available across extensive temporal and spatial scales (Kamp et al., 2021; Lees 

et al., 2022).  

We find that multiple thresholds within result-based payments can help to raise bird diversity. 

For the initial pilot area, adding an additional threshold raises bird diversity by ~0.28 standard 

deviations (90% confidence interval = [0.00 to 0.55]; 95% confidence interval = [-0.03 to 0.59]). 

As this effect adds to any impacts from single-threshold result-based payments, this is a lower 

bound on the overall impact of multi-threshold payments relative to a baseline with no 

payments. Our findings highlight the importance of the design of result-based payments, going 

beyond the binary choice between action-based and result-based approaches. 
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Our study contributes to assessing the impacts of agri-environmental payments on biodiversity 

in agricultural landscapes. Based on the measure of biodiversity, this literature can be broadly 

divided into studies using in-situ, i.e., “in-the-field” measured biodiversity (plant, insect, or bird 

populations) versus indirect proxies such as management practices (e.g., fertilizer use) and 

policy take-up (e.g., area enrolled). Studies using measured biodiversity are most often 

correlational, not accounting for decisions to enroll only some fields in schemes (e.g., Kleijn 

and Sutherland, 2003; Roth et al., 2008; Baker et al., 2012; Meichtry-Stier et al., 2014; Marja 

et al., 2018). Studies that take into account the endogenous selection of fields do so by 

matching similar fields (e.g., Kleijn et al., 2001; Kleijn et al., 2006; Knop et al., 2006) or by 

comparing trends across similar fields (Kleijn and van Zuijlen, 2004). These have focused on 

action-based payments and often find small to moderate effects.  

An exception, in the sense of combining diversity outcomes with attention to identification, is 

Schaub et al. (2025). They examine a single-threshold payment scheme in Switzerland, based 

upon measured results for plant diversity. Comparing with fields already eligible for payments, 

i.e., facing no change in incentives, they find that the payment rise triggered by policy reform 

raised plant diversity for fields whose measured species before the reform were just below the 

threshold (of 6 indicator plant species). Those fields likely faced lower costs of adjustment.  

Several studies using proxies for biodiversity seek to account for selection of fields to schemes 

(e.g., Chabé-Ferret and Subervie, 2013; Bertoni et al., 2020; Stetter et al., 2022; Wuepper and 

Huber, 2022; Coderoni et al., 2023; Zimmert et al., 2024). They often find small to no effects 

of agri-environmental payments. One major advantage of using proxies is temporal and spatial 

availability of data easily linked at plot or farm level. Yet while these studies are important for 

understanding uptake, and input decisions1, proxies cannot indicate the magnitudes of effects 

on biodiversity as their links to biodiversity are strongly context specific (e.g., Dormann et al., 

2008; Socher et al., 2012; Báldi et al., 2013; Graham et al., 2018; Montgomery et al., 2020). 

 
1 While Zimmert et al. (2024) use a biodiversity score, which is a useful extension of most other related 
studies when it comes to approximating biodiversity, the score is not an in-situ measure of biodiversity 
but is based on a set of management practices (Jeanneret et al., 2014). 
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Finally, we contribute to literature on citizen-science data and drivers of changes in biodiversity. 

Citizen science is an emerging and valuable tool, complementing “traditional” data sources, 

that can extend temporal and spatial dimensions of ecological datasets (Kosmala et al., 2016; 

Fraisl et al., 2022). Such data have been, for example, successfully used to identify species’ 

temporal trends (e.g., Schultz et al., 2017; Neff et al., 2022), and spatial distributions (e.g., 

Tiago et al., 2017: Johnston et al., 2020), in addition to the influences of farms’ sizes and 

protected areas on biodiversity (Noack et al., 2022; Wauchope et al., 2022). To our knowledge, 

however, these data have not been used to assess causal effects of agri-environmental 

payments on biodiversity. 

Below, Section 2 offers policy background, while Section 3 describes the data that we employ. 

Section 4 lays out our empirical approach, Section 5 provides results, and Section 6 discusses. 

2. Policy background  

We study multi-threshold versus single-threshold result-based agri-environmental payments in 

the German state of Lower Saxony, which is Germany’s second-largest state (at ~48k km²), 

larger than say Switzerland or the Netherlands (State Office for Statistics of Lower Saxony, 

2023). Over half of its land is used for agricultural production, often intensive (Lomba et al., 

2017), with mixed environmental and production conditions hosting livestock, arable crop, and 

grassland production in varied climatic and soil settings (Lomba et al., 2017). Studying agri-

environmental payments in Lower Saxony is interesting precisely because of this 

heterogeneity of conditions and production systems, which can be relevant for a range of 

settings common across Europe.  

As Germany is in the European Union (EU), its agricultural policy is strongly regulated by the 

EU’s Common Agricultural Policy (CAP). The CAP has two pillars, one focuses on direct 

payments to support farmers’ income and the other focuses on rural development (Détang-

Dessendre et al., 2023). Programs under the second pillar are co-financed by member states, 
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who have flexibility in terms of program design. In Germany, the states design and implement 

their respective state programs. 

Since the early 2000s, Lower Saxony has financed agri-environmental programs via their Rural 

Development Policy (Federal Agricultural Research Center, 2005; Andersson et al., 2017). For 

the policy period from 2007 to 2013, the rural development policy was reformed, which included 

the introduction of a set of new agri-environmental payment schemes (the rural development 

program for this period was called PROFIL; Tietz et al., 2006). These new schemes included 

the result-based payments scheme for species-rich grasslands. We call these “result-based 

payments”. They were – at least in part – initially only introduced in pilot areas (Figure 1.), 

providing a unique opportunity to study their effects on biodiversity. 

The result-based payment scheme had two “layers” (or target thresholds driving payments). 

The first was introduced in the entire state in 2007 (that is NAU/BAU B2). Farmers were eligible 

for payments of 110 Euro ha-1 year-1 when four or more indicator plant species were present 

on grasslands (Dickel et al., 2010; Most et al., 2015). The list had 31 plant species, or species 

groups, which are referred to as indicator plant species because they are considered to be 

linked to certain habitat compositions and biodiversity (Most and Keienburg, 2006).2  

The second layer was introduced 2007/08, in pilot regions (KoopNat FM 411; Figure 1.).3 A 

field was eligible for an extra payment of 110 Euro ha-1 year-1, added to the payment from the 

first layer, if its number of indicator plant species was at least 6 (Dickel et al., 2010). This pilot 

was then spatially extended in 2012 (Figure 1.). Thus, some regions had only one payment 

layer (i.e., a single target threshold), while pilot regions had two layers (i.e., two target 

thresholds, here referred to as multi-threshold result-based payments). We focus upon the 

impacts of this pilot. 

 
2 For the detailed list, see Table S1 in the Supplementary Information. 
3 We know the pilot boundaries in 2008 but not 2007, so we aggregated those regions and their treatment timing. 
Because most of the area started in 2008 (Most et al., 2015), we use 2008 as reference time for the treatment. 
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Figure 1. Temporal (panel a) and spatial (panel b) development of the result-based payment in Lower Saxony. 

RBP = results-based payments. Nature protection areas are here defined as those not eligible for multi-threshold 

result-based payments in phase 3 and include nature reserves, biosphere reserves of type C, and national parks. 
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These initial pilot regions in Lower Saxony featured different grassland types. Stakeholders 

including academics, environmental planning officers, and farmers were invited to engage in 

selecting pilot regions. Yet the announcement of which regions were eligible was only shortly 

before farmers could apply. Thus, farmers could not manage for diversity, in anticipation. In 

contrast to the initial pilot region, the later extensions of the scheme’s pilot region in 2012 

included areas with higher-expected-species grasslands (outside nature-protection areas) and 

where stakeholders had signaled their high interest in such species schemes. Farmers in the 

2012 extension might have shifted behaviors before payments schemes were implemented. 

Since the agricultural policy underwent another reform, which started in 2014 and led to a large 

expansion of the area eligible for result-based payments (Text S1), we focus on the period of 

time before 2014. Further, we note that other spatially restricted agri-environmental payments 

in Lower Saxony existed (Text S1 for details), for which we account in the analyses. 

3. Conceptual framework 

We present in this section our conception of the cost-benefit tradeoffs involved in farmers’ 

responses to a single-threshold, initially, and then to a shift to a multi-threshold result-based 

payment scheme. Abstracting from the staggered implementation of multi-threshold payments 

in Lower Saxony, to keep this model simple we assume a second scheme is introduced at a 

single point in time and, further, that every farmer has only one field.4 We extend the model in 

Schaub et al. (2025), who focused on a single-threshold payment and plant species as a 

biodiversity outcome. 

Let us start with a single-threshold payment, 𝑃1, for a specific number of indicator plant species, 

i.e., a threshold or a target 𝑇1. The cost of reaching any target number 𝑛 of indicator species 

depends upon the pre-payment number, 𝑛0, as a positive linear function 𝑐 ∗ (𝑛 −  𝑛0).5 Thus, 

 
4 This model can be analogously applied to a setting with staggered implementation and farmers with several fields. 
5 When it is about reaching at least 𝑛, then these linear costs are 𝑐 ∗ (𝑛 −  𝑛0) ∗ 𝟙[𝑛0 < 𝑛], where 𝟙[∙] is an indicator 
function equal to one when its condition is satisfied. Further, one could also imagine reasons for non-linearities 
(either concavity or convexity) in such a cost function or, more generally, differences between farmers in the costs. 
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a farmer’s profit from trying to achieve at least the single target threshold is 𝑅1 −  𝑐 ∗ (𝑇1 − 𝑛0).6 

This gain function implies that when maximizing profits farmers each will choose their 𝑛1,
∗ , the 

endogenous number of indicator species optimal for them under a single-threshold payment.7 

With low enough 𝑅1, no farmer will change management practices (e.g., reduce number of 

cuts, reduce fertilizer application, or overseed) to achieve that single threshold. Yet, with a high 

enough 𝑅1, any farmer who had not yet reached the target 𝑇1 would make changes. In between, 

only farmers with higher pre-payments numbers of species (but not above 𝑇1) and, thus, lower 

adjustment costs will respond to the introduction of the payment by changing management. In 

sum, farmers below the target and with adjustment costs smaller than payment gains respond. 

(Farmers with pre-payment indicator species diversity above 𝑇1 can get the payment without 

adjusting management.) 

Next, we consider a shift from a single-threshold payment scheme to a multi-threshold scheme 

that adds a second payment 𝑅2 at threshold or target 𝑇2. As the multi-threshold scheme follows 

a single-threshold scheme, further decisions are analogous to those for the initial management 

choice, simply replacing the initial species (𝑛0) with the optimal species defined under 𝑅1 and 

𝑇1 (i.e., 𝑛1
∗). 

The cost to reach 𝑇2 depends on the single-threshold optimum, 𝑛1,
∗ , again with a linear cost, 

i.e., 𝑐 ∗ (𝑇2 −  𝑛1,
∗ ). Farmers with 𝑇2 > 𝑛1

∗ ≥ 𝑇1 face gains of reaching 𝑇2 of 𝑅2 −  𝑐 ∗ (𝑇2 − 𝑛1
∗), 

while farmers who optimally did not achieve 𝑇1 under 𝑅1 consider 𝑅1 + 𝑅2 −  𝑐 ∗ (𝑇2 − 𝑛1
∗). With 

a low enough 𝑅2 for achieving 𝑇2 – again 𝑅2 is added to payment 𝑅1 for achieving 𝑇1 – no 

farmer will adjust their management of their (single) field to achieve the second threshold. With 

high enough 𝑅2, however, every farmer that did not yet reach 𝑇2 would optimally respond. For 

this latter case, these farmers who optimally choose to manage to try to reach 𝑇2 to get 𝑅2 

 
6 Farmers are finally eligible for payment when 𝑛 ≥ 𝑇1. 
7 This could be above 𝑇1, of course, if 𝑛0 ≥ 𝑇1, which would imply a farmer face’s zero cost to get 𝑅1.  
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potentially include some farmers who, say for a low 𝑅1, did not even try to manage to reach 𝑇1.  

For intermediate 𝑅2, only farmers with higher post-single-threshold-payment species (𝑛1
∗) will 

respond to the second-threshold reward 𝑅2. Perhaps it will be only the farmers who got 𝑅1, via 

either high initial pre-payments indicator species (𝑛0 ≥ 𝑇1) or their management to reach 𝑇1 

(𝑛1
∗ ≥ 𝑇1 > 𝑛0). When a farmer has an initial level of indicator species (𝑛0) above the threshold, 

now 𝑇2, they will receive 𝑅2, as well as 𝑅1, without having to do field-management adjustments. 

We highlight here that, as discussed in Section 1, we assume that any increase in plant 

diversity, in response to payments, can increase bird diversity (Kleijn and Sutherland, 2003; 

Vickery et al., 2004; Birrer et al., 2007; Baker et al., 2012).  

In sum, this conceptual model highlights that multi- compared to single-threshold payments 

can lead to: (i) more farmers adjusting their field management to raise plant diversity; and (ii) 

farmers adjusting management more significantly to reach higher levels of plant diversity. In 

doing so, we flag policy-design issues critical for scheme impact, such as the reward levels 

and targets. We note too that impacts also depend upon the species numbers pre-policy. 

Below, we empirically assess how the introduction of multi- versus single-threshold payments 

affected biodiversity beyond the plant diversity, focusing on bird diversity.  

4. Data 

4.1 Bird data 

We utilize data from the ornitho (http://www.ornitho.de) citizen-science project, within which 

volunteers report observations for birds across Germany. During 2005-20, ~ 6000 volunteers 

recorded roughly 6.7 million entries in Lower Saxony.8 We assign each record to a 16 km2 unit 

of observation, which aggregates upward from the original 1x1km2 sampling in ornitho data.9 

Birds are mobile, so effective management of any field will affect bird observations not only on 

 
8 We note that in autumn of 2011 ornitho.de (the online platform) was launched. The data before 2011 was 
retrospectively entered. 
9 The sampling grid by ornitho (following the German “Halbminutenfelder”) is approximately 1 × 1 km, i.e., 1 km2. 
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that field but also more widely, implying spillovers from impactful adjustments (and policies). 

Larger observational units reduce the number of times a given new bird is counted as present. 

They also considerably reduce the share of observations in which zero birds were counted 

(Table S1). On the other hand, too large a unit — beyond spatial spillovers — reduces the 

power of our tests for no good reason and can blend unmanaged with managed fields. For 

robustness, we varied the size of our observational units from 1 km2 up to 68 km2 (Figure S1). 

We excluded the observations on the East Frisian Islands, inherently different to the mainland. 

We also deleted 276 entries for which we do not know the coordinates (1x1km2 grid) of the 

observation but only municipality. Further, we excluded all the regions (and their observations) 

in which between 2008 and 2013 action-based payments schemes for birds and other animals 

in restricted areas were introduced (Section 2 and Text S1). More generally, this space-time 

dataset is unbalanced since not every observation was surveyed every year. 

The data include whether a bird species was seen and the number of individual birds observed 

for that species. We compute the average number of individual birds seen per species, per 

observation, across different volunteer observers, and then we rescale each of the variables 

to have a mean of zero and standard deviation of one. The data also include an anonymous 

ID for any volunteer with a sighting. Using that, we can calculate the number of volunteers per 

spatial observational unit, which we later use as in our estimation as time-varying covariate. 

4.2 Treatment data  

To identify when an area was exposed to the ‘treatment’, i.e., when an area become eligible 

for multi-threshold result-based payments, we use data provided by the Lower Saxony State 

Department for Waterway, Coastal and Nature Conservation. We label an observation as 

‘treated’ when at least 50% of it is in the pilot area. We then also vary this treatment definition 

(i.e., % in pilot area) in sensitivity analyses to also examine “at least 70%” and “at least 90%”. 
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4.3 Bird species outcome definition 

We focus on common bird species in studying effects of shifting to multi-threshold payments. 

We expect this is where agri-environmental result-based payments might have an influence. 

Moreover, volunteers might be better in detecting common birds compared to rare bird species 

(Cox et al., 2012; Kosmala et al., 2016). We define as common all those recorded during 2005 

to 2020 in the German Common Bird Monitoring Survey (Mitschke et al., 2005; Table S3). 

In addition to common birds, we test the effects on all and farmland birds to better understand 

which birds are most affected. Using farmland species may help to reduce potential selection 

biases resulting from volunteers’ decisions about what species to record (Noack et al., 2022). 

Our classification of farmland species is based on lists by Busch et al. (2020) and Noack et al. 

(2022) (Table S4). Species in those lists are seen as indicator bird species for farmland species 

overall as they occupy various ecological niches in agricultural landscapes (Busch et al., 2020). 

4.4 Diversity measure 

Our main measure of diversity is species richness, a common and simple measure of how 

many different species were observed (Roswell et al., 2021). We focus on this because citizen-

science data are thought to offer more precision for presence, for any species, than for 

abundance, i.e., number of individual birds observed per species (Bird et al., 2014; Kosmala 

et al., 2016). In our sensitivity analyses we also examine effects on the Hill–Shannon index, 

which in addition takes into account the species’ abundances (Roswell et al., 2021; Text S2).  

Figure 2. shows richness over time in our data, for common bird species, using 16km2 units. 

An upward trend in total birds observed by citizen science is expected, given the increasing 

popularity of participation in such citizen observation (Knape et al., 2022), distinct from actual 

population trends for the birds (Busch et al., 2020; Kamp et al., 2021; Lees et al., 2022; Rigal 

et al., 2023). Yet these data nonetheless allow for comparison of regions, as below we show 

that the trends before the implementation are not different between the regions (Section 6). 
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Figure 2. Development of species richness over time of common bird species. The development for Hill-Shannon 

index of common bird species, number of voluteers per unit, species richness over time of all bird species, and 

species richness over time of farmland bird species over time are shown in Figure S2, Figure S3, Figure S4, and 

Figure S5, respectivly. The scales of the y-axis of this plot is selected to easily compare the trends with Figure S4 

and Figure S5. 

 

4.5 Additional data 

We use four additional data sources in our analysis representing time invariant information 

(see Estimation procedure in Section 5.2). First, the share of nature protection areas (Figure 

S6), from Lower Saxony State Department for Waterway, Coastal and Nature Conservation 

(2023) and NUMIS (2002). They suggest high perceived natural value but were excluded from 

result-based payments until 2021. Second, the share of agricultural land, to account for 

agricultural areas where farmers could enroll land to the payment scheme, from the EU's 

Copernicus Land Monitoring Service (2020) with a resolution of 100x100m. Third, the mean of 

grassland yield, to account for opportunity costs, which can influence non-participation in any 

agri-environmental payment scheme (Schaub et al., 2023), from State Office for Statistics of 

Lower Saxony (2024). They cover 2002-07 at the county level (Figure S7 for the county 

distribution in Lower Saxony). Fourth, human population density, to account for likelihood of 
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recording in citizen-science data (Hertzog et al., 2021), from the German 2011 census from 

the Statistical Offices of the Federal Government and the States (2015) in a 1x1km grid. While 

2011 is after the 2008 treatment, we assume this treatment does not affect human population. 

For all variables we compute the average value per unit then rescale so variables have a mean 

of zero and standard deviation of one.  

5. Empirical strategy 

We are interested in impact of a multi-threshold compared to a single-threshold result-based 

payments scheme on bird diversity. In this section, we present notation and treatment definition 

(in Section 5.1), then we outline our identification and estimation strategy (Section 5.2).  

5.1 Notation and treatment effects of interest 

Let 𝑡 denote time, and let 𝐷 ∈ {0, 1, 2} be a treatment variable with three values: 0 (no result-

based payments), 1 (result-based payments with one threshold or “single-threshold” payment), 

and 2 (for a result-based payments scheme with two thresholds or “multi-threshold” payment). 

Let 𝑌𝑡,𝑖(𝑑) denote the potential biodiversity (proxied by bird-species richness within our main 

analysis) that would be observed for unit 𝑖 in period 𝑡 had the region received a treatment 𝑑 =

0, 1, 2. The corresponding measured outcome is defined as 𝑌𝑡𝑖 (the index 𝑖 is frequently omitted 

for convenience). With this notation, we can define the following average treatment effect: 

∆𝑡,𝑑′′(𝑑, 𝑑′) = 𝔼[𝑌𝑡(𝑑) − 𝑌𝑡(𝑑′)|𝐷 = 𝑑′′].  (1) 

Intuitively, ∆𝑡,𝑑′′(𝑑, 𝑑′) describes the average effect on biodiversity from switching from mode 

𝑑′ to 𝑑 for those who are under treatment arm 𝑑′′. When 𝑑 = 𝑑′′, this is a standard average 

treatment effect on the treated.  

It is helpful to introduce the following additional notation. Let 𝐵, 𝑆, and 𝑀 be three different 

groups of regions reflecting phase 3, 2, and 1 when multi-threshold payments were introduced 

(compare with Figure 1). We illustrate the temporal development of the number of thresholds 

in each of these groups in Figure 3. Group 𝑀 gets the multi-threshold payment 𝑑 = 2 in period 



 
 -17- 

2008, group 𝑆 in 2012, while 𝐵 in 2014, the point in time in which the multi-threshold payment 

scheme is introduced for every region. 

 

Figure 3. Time change by region in the number of thresholds (2 = “multi-“, 1 = “single-”). Each scheme has a 

threshold at 4 indicator plant species. The multi-threshold scheme adds one threshold at 6 indicator plant species, 

with another payment “layer”. Note that here we indicated the introduction in 2007/08 as if it were in 2008.  

 

5.2 Identification and estimation 

Identifying strategy. We first focus on the identification of ∆2012,𝑆(2, 1) =

𝔼[𝑌2012(2) − 𝑌2012(1)|𝑆]. This is the one-period effect of introducing a multi-threshold payment 

relative to a single-threshold payment for the group 𝑆. The effect is identified under the 

assumption 

(𝑃𝑇1) 𝔼[𝑌2012(1) − 𝑌2012(1)|𝑆] = 𝔼[𝑌2012(1) − 𝑌2012(1)|𝐵] (2) 

which is the standard parallel trends assumption.10 Below, we provide evidence for the validity 

of 𝑃𝑇1. Estimation of ∆2012,𝑆(2, 1) can be performed as in the canonic two-period difference-

in-difference setup using only observations from 2011 and 2012 for groups 𝐵 and 𝑆. To 

increase the efficiency of this estimator, we additionally include the pre-treatment periods 

2008-10 as well as the post-treatment period 2013. Note that our analysis uses only post-

treatment periods up to 2013, as in 2014 the agricultural policy in Lower Saxony underwent 

another reform, leading to the widescale adoption of multi-threshold payments (Figure 1). This 

restriction poses a limitation for our analysis, since it only allows to assess the change in 

 
10 In our multi-period setup, ∆2012,𝑆(2, 1) is more generally identified under the assumption: (𝑃𝑇 1) 

𝔼[𝑌2012(1) − 𝑌𝑡|𝑆] = 𝔼[𝑌2012(1) − 𝑌𝑡|𝐵], where 𝑡 < 2012. 
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biodiversity in 2 periods after the reform. This is problematic if biodiversity needs more time to 

adjust, as has been documented (e.g., Chamberlain et al., 2000; Ernoult et al., 2006; Uezu 

and Metzger, 2016). 

To deal with this problem, we additionally use the following approach. An estimator that uses 

all periods until 2013 and all groups can be constructed when the multi-threshold payment (𝑑 =

2) is considered to be the treatment and all other regimes (𝑑 = 0, 1) as the control. Since 𝑑 = 2 

is introduced in 2008 (for group 𝑀), 2012 (for group 𝑆) and 2014 (for group 𝐵), we obtain a 

setting with a staggered implementation of the treatment. We use the nonparametric estimator 

of Callaway and Sant’Anna (2021). The major advantage of this approach is that it utilizes all 

available information and it provides effect estimates for different periods after the treatment 

(and thus, the unfolding of the effect over time can be studied). 

The potential problem with this estimator is that by pooling 0 and 1, the interpretability of the 

estimates becomes more complicated. In the following, we show that this is not an issue and 

that the estimates can be interpreted as lower bounds for the true effects. Specifically, the 

effects suggested by Callaway and Sant’Anna (2021) depend on the quantity 

𝐴𝑇𝑇(𝑔, 𝑡) = 𝔼[𝑌𝑖𝑡(𝑑) − 𝑌𝑖𝑡(0)|𝐺𝑔 = 1],  (3) 

where 𝑔 is the point in time of first treatment and 𝐺𝑔 is a binary variable indicating whether 

treatment takes place in period 𝑔. This is the so-called time-group effect. Based on 𝐴𝑇𝑇(𝑔, 𝑡) 

we can compute the group effect as:  

𝐴𝑇𝑇𝑔𝑟𝑜𝑢𝑝 =
1

𝜏−𝑔+1
∑ 𝐴𝑇𝑇(𝑔, 𝑡)𝜏

𝑡=𝑔 ,  (4) 

where 𝜏 are the number of periods we observe (Callaway and Sant’Anna, 2021). 𝐴𝑇𝑇(𝑔, 𝑡) is 

identified via (Marcus and Sant’Anna, 2021): 

𝐴𝑇𝑇(𝑔, 𝑡) = 𝔼[𝑌𝑖𝑡 − 𝑌𝑖𝑔−1|𝐺𝑔 = 1] − 𝔼[𝑌𝑖𝑡 − 𝑌𝑖𝑔−1|𝐷𝑡 = 0, 𝐺𝑔 = 0] (5) 

 

These quantities are then estimated with sample averages. In our case, since before 2008 all 

individuals have a treatment status 𝐷 = 0, and since after 2008 no individual is under 𝐷 = 0, 

this approach amounts to estimating quantities of the type 
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𝑄 ≔ 𝔼[𝑌𝑃𝑂𝑆𝑇(2) − 𝑌𝑃𝑅𝐸(0)|𝑀] − 𝔼[𝑌𝑃𝑂𝑆𝑇(2) − 𝑌𝑃𝑅𝐸(0)|𝐵2], (6) 

where 𝑃𝑂𝑆𝑇 refers to the period between 2008 and 2014 and 𝑃𝑅𝐸 represents a period before 

2008, and 𝐵2 = 𝐵 ⋃ 𝑆 means the union of the groups 𝐵 and 𝑆. The quantity 𝑄 can be 

consistently estimated from the observed data by substituting the expectations with their finite 

sample averages. Assume also the parallel trends assumption for the case of no treatment,  

(𝑃𝑇0) 𝔼[𝑌𝑃𝑂𝑆𝑇(0) − 𝑌𝑃𝑅𝐸(0)|𝑀] = 𝔼[𝑌𝑃𝑂𝑆𝑇(0) − 𝑌𝑃𝑅𝐸(0)|𝐵2]. (7) 

Below, we provide compelling evidence that this assumption is satisfied. Moreover, it is 

straightforward to show, that under 𝑃𝑇0, the quantity 𝑄 can be represented as a difference 

between two different one-period treatment effects on the treated. Specifically, it holds 

𝑄 = 𝔼[𝑌𝑃𝑂𝑆𝑇(2) − 𝑌𝑃𝑂𝑆𝑇(0)|𝑀] − 𝔼[𝑌𝑃𝑂𝑆𝑇(1) − 𝑌𝑃𝑂𝑆𝑇(0)|𝐵2].  (8) 

The proof of the equality is provided in Text S3 of the Supplementary Information. The first 

component of the right-hand side of the above equality is the treatment effect of introducing 

multi-threshold payments relatively to no result-based payments for the group 𝑀, while the 

second component represents the treatment effect of introducing single-threshold payments 

(relative to no result-based payments) for the group 𝐵2. Thus, this difference of treatment 

effects is difficult to interpret. However, under the mild assumption that 

𝔼[𝑌𝑃𝑂𝑆𝑇(1) − 𝑌𝑃𝑅𝐸(0)|𝐵2] is non-negative, we can derive the following inequality: 

𝑄 ≤ 𝔼[𝑌𝑃𝑂𝑆𝑇(2) − 𝑌𝑃𝑂𝑆𝑇(0)|𝑀].  (9) 

Thus, the estimable terms 𝑄 can be interpreted as lower bounds for the quantities 𝐴𝑇𝑇(𝑔, 𝑡).  

Estimation procedure. We use the nonparametric estimator of Callaway and Sant’Anna 

(2021). It allows the use of unbalanced data and flexible consideration of observed 

pretreatment characteristics. We include two types of covariates in the estimation. First, we 

consider as the time-invariant covariates, denoted by 𝑋𝑖, such as share of nature protection 

areas, share of agricultural land, mean grassland yield, and human population density, see 

Section 4.5. Second, as the only time-varying covariate, we consider the number of volunteers 
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that record birds, 𝑍𝑖𝑡. This can be an important variable as it directly links to the likelihood of 

number of birds observed and the “effort” spend to observe. Following, for example, Wauchope 

et al. (2022) we model the log of it in our analysis. The main identification assumption here is 

that these covariates are not affected by the treatment. We provide empirical evidence that 

this is not the case in Section 6.3. 

6. Results 

6.1 Main results – common bird species 

Our main results examine common bird species. Consider first our estimates for 

∆2012,𝑆(2, 1),which is the impact of changing from a single- to multi-threshold payment for the 

2012 pilot area. The time-group effects and group effects are displayed in Figure 4. As 

discussed above, we are only able to estimate the time-group effects for the first two periods 

after the treatment. Both estimates are very close to zero in magnitude. It may take time for 

any effect to unfold. All pre-treatment estimates are also very close to zero and corresponding 

confidence bands contain zero almost at their centers, indicating that the parallel trends 

assumption is plausible. 

 

Figure 4. Effects of treatment on common bird species richness considering the 2012 pilot area. Panel a shows 

the time-group effect and panel b the group effect. The light and dark bars indicate the 95% and 90% confidence 

intervals, respectively, and standard errors a clustered at the county level.  
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To assess the possibility that effects arise over time, we pool control groups 𝑑 = 0 and 𝑑 = 1 

then use a staggered difference-in-differences approach (see Section 5.2). This approach 

allows us to obtain effect estimates for 6 post-treatment periods (Figure 5). Consistent with the 

previous approach, these estimates also are practically zero for the first two post-treatment 

periods (Figure 5a). Yet, from period three, effects are positive and increasing and, as shown, 

can be interpreted as lower bounds. The point estimate of the 2008 group effect (𝐴𝑇𝑇2008) is 

0.28 standard deviations (Figure 5b).  

 

Figure 5. Effects of treatment on common bird species richness considering the 2008 pilot area. Panel a shows 

the time-group effect and panel b the group effect. The light and dark bars indicate the 95% and 90% confidence 

intervals, respectively, and standard errors a clustered at the county level.  

 

Since related literature predicted non-negative effects without providing a specific prior, we 

use confidence intervals, following Imbens (2021), rather than p-values. In other words, our 

objective is to estimate a policy effect, not test a given Null hypothesis (see also Cox 2020, 

Wasserstein and Lazar 2016). The 90% and 95% confidence intervals for this 𝐴𝑇𝑇2008 estimate 

are similar, respectively [0.00 to 0.55] and [-0.03 to 0.59]. The lower bound of the 95% 

confidence interval just includes zero, while that of the 90% interval does not.11 We note the 

upper bounds imply strong policy effects.12 

 
11 That said, of course plausibility is not uniform along the confidence intervals. Under mild regularity conditions, an 

outcome at the point estimate is 4 times as plausible as an outcome at the extremes of a 90% confidence interval 
and that ratio becomes about 7 times more plausible than at the extremes for a 95% confidence (Romer, 2020). 
12 In our multi-period setup, ∆2012,𝑆(2, 1) is more generally identified under the assumption: (𝑃𝑇 1) 

𝔼[𝑌2012(1) − 𝑌𝑡|𝑆] = 𝔼[𝑌2012(1) − 𝑌𝑡|𝐵], where 𝑡 < 2012. 
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Finally, all pre-treatment estimates displayed in Figure 5a are again practically equal to zero 

and the tight confidence bounds imply that these measurements are very precise. This 

provides further evidence for the validity of the parallel trends assumption. 

6.2 Alternative bird population focus 

We now present estimates using data on all and farmland bird species (instead of common). 

To simplify, we discuss here only the group effects (Figure S8 and Figure S9 for group-time 

treatment effects). These reveal two findings for the 2008 pilot area (we do not observe effects 

for the 2012 pilot area). First, the point estimate for all birds, 0.27, is very similar to that for 

common birds (i.e., 0.28), even if more uncertain. Thus, it seems that common, compared to 

rare birds (which are defined as all minus common birds), were more affected by the multi-

threshold result-based payments. However, volunteers may be worse at detecting rare birds 

(Cox et al., 2012; Kosmala et al., 2016). Second, the multi-threshold result-based payments 

had an even clearer positive group effect, again beyond a single-threshold effect, on farmland 

birds for the 2008 pilot area (Figure 6b). The point estimate is 0.41, with a 90% and 95% 

confidence interval of [0.21 to 0.61] and [0.19 to 0.63], respectively. Finally, Figure S8 and 

Figure S9 show that the parallel trends assumption is supported. 
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Figure 6. Group effects of treatment on all (panel a) and farmland (panel b) bird species richness. The 2008 pilot 

area is indicated in blue and 2012 pilot area is indicated in orange. The model specification follows our main 

estimation specification. The light and dark bars indicate the 95% and 90% confidence intervals, respectively, and 

standard errors a clustered at the county level. All results of the group-time effects on all bird species and 

farmland bird species can be found in Figure S8 and Figure S9, respectively.  

 

6.3 Further results and robustness checks 

Time varying covariates. To evaluate whether the number of observers is a valid covariate, 

the main assumption here is that time-varying covariates are not affected by treatments (if so, 

they are “bad controls”; Caetano et al., 2022; Caetano and Callaway, 2023). In order to assess, 

we follow Caetano et al., 2022 and re-estimate our main model but using 𝑍𝑖𝑡 instead of 𝑌𝑖𝑡 as 

dependent variable (Figure S10). Reassuringly, we find no evidence that treatment affected 

the number of observers. Thus, we can use 𝑍𝑖𝑡 as a control in our staggered difference-in-

differences. 

 
Measurement error. One potential pitfall of our dataset is that it is collected by ordinary 

citizens and not by professionals. Thus, even though in our main results we focus on common 

species, misreporting may exist. Though literatures commonly have found that data collected 

by experts and volunteers are comparable (Bird et al., 2014), we perform an additional 
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estimation with an alternative dataset. Specifically, we use the German Common Bird 

Monitoring Survey (CBS) as a check on the validity of the bird sightings in citizen-science data 

(Mitschke et al., 2005).13 In the CBS, systematically all common birds are recorded based on 

stratified sampling areas and independent of species interests of the observer (Text S4). The 

results show that ornitho data would indeed appear to be valid for depicting changes in bird 

populations (Table S5; Figure S11). 

Alternative specifications. We run several checks to understand the sensitivity of our main 

findings with respect to the measurement and definition choices. First, we run a model without 

accounting for the number of volunteers (i.e., drop the time-variant variable, 𝑍𝑖𝑡). These results 

are similar to those in our main analysis (Figure S12).  

Second, we redefine ‘treated’ from having at least 50% of area eligible for multi-threshold 

result-based payments to thresholds of 70% and 90%. Our results remain robust to these 

changes (Figure S13).  

Third, in our main analysis we focus the size of observations is 16km2. Results are robust to 

altering the observations’ size to 1km2, 4km2, and 64km2 (Figure S14).  

Fourth, we control for other spatially restricted programs introduced in earlier reforms than the 

reform that included the introduction of result-based payment. These programs include the 

“Wild herbs, spatial biotope types scheme”, and “Nordic visiting birds scheme” (Text S1). This 

adjustment does not change the interpretation of our results (Figure S15).  

Fifth, instead of our current species-richness measure we make use of the Hill–Shannon index 

(which considers both abundance and richness) as the measure of diversity. We find that the 

results are consistent with our main results (Figure S16).  

Assessment of the overlap assumption. The overlap assumption requires that the 

characteristics of an observation does not deterministically define the treatment status. We 

checked the overlap assumption by estimating the propensity score (considering only time-

 
13 We use the CBS data only for the purpose of validation since while it is systematically selected based on random 
sampling, it is not suitable for our main analysis due to very low numbers of sampling areas in the pilot areas. 
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invariant covariates of our main estimation) using a logit model and check if the scores are not 

bounded to one or zero. The results shows that this assumption is satisfied (Figure S17). 

7. Concluding remarks 

Governments across the globe use agri-environmental payments to lower loss of biodiversity 

in agricultural systems, with several objectives including those set under the Kunming-Montreal 

Global Biodiversity Framework (UN, 2022) and UN Decade on Ecosystem Restoration (2021–

2030) (IUCN, 2022). To increase impact, result-based payments might be a useful innovation 

(Burton and Schwarz, 2013; Elmiger et al., 2023; Kelemen et al., 2023; Sattler et al., 2023). 

However, we lack knowledge about the impact of such result-based approaches, in general, 

and in particular we highlight the lack of prior consideration of different payment designs. 

We help close that gap by estimating effects of multi-threshold payments compared to those 

of single-threshold payments on biodiversity. Thus, we assess the effect of moving the 

assessment of biodiversity in result-based payment towards a continuous matrix. Bird diversity 

is used as a measure of biodiversity, which can be seen as a spillover benefit from increasing 

plant diversity and the associated changes in management required to achieve that increase. 

We exploit a staggered rollout of a multi-threshold result-based payments in the German state 

of Lower Saxony and citizen-science bird data over 16 years with over 6.7 million data entries.  

Our results highlight that multi-threshold result-based payments can increase bird diversity as 

compared to single-threshold payments and that this effect only established with a time lag. 

For the initial pilot area, the average effect over time is about 0.28 standard deviations (90% 

confidence interval = [0.00 to 0.55]; 95% confidence interval = [-0.03 to 0.59]). We show that 

this can be interpreted as the lower bound effect of the multi-threshold result-based payments. 

Our findings underscore the importance not only of choosing between result- and action-based 

payments but also of carefully designing result-based payments to increase valued impacts. 

Our findings suggest important future research. First, future studies could identify costs of 

multi- compared to single-threshold payments. Second, it would be valuable to investigate how 
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farmers have adjusted their management practices in response to single- versus multi-

threshold payment schemes, and to examine the roles of landscape features and composition 

in shaping the impacts of result-based payments. Third, future research could extend our study 

by looking at other taxa (e.g., plants, insects, and soil microbiomes) because, while birds can 

provide important insights about the ecosystem state (Gregory et al., 2005; Fraixedas et al., 

2020; Li et al., 2020; Lees et al., 2022), they cannot alone convey the complexity of 

environmental change (e.g., Siddig et al., 2016).  
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Supplementary information  

 

Figures 

 

Figure S1. Overview of sizes of observation: 4x4 (main definition; panel a), 1x1 (panel b), 2x2 (panel c), and 8x8 

(panel d).  
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Figure S2. Development of Hill-Shannon index of common bird species over time. 
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Figure S3. Development of number of volunteers per site over time.  
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Figure S4. Development of species richness over time of all bird species. 
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Figure S5. Development of species richness over time of farmland bird species. 
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Figure S6. Overview of nature protection areas. We define those as nature protection areas that were excluded in 

the study period from receiving multi-threshold result-based payments. These include biosphere reserves (type 

C), national parks, and nature reserves.  
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Figure S7. Overview of counties of Lower Saxony. 
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Figure S8. Effects of treatment on bird species richness, considering observations of all bird species. Panel a 

shows the time-group effect of the 2008 pilot area, panel d the time-group effect of the 2012 pilot area, and panel 

c the group effects. The 2008 pilot area is indicated in blue and 2012 pilot area is indicated in orange. The model 

specification follows our main estimation specification. The light and dark bars indicate the 95% and 90% 

confidence intervals, respectively, and standard errors a clustered at the county level. The associated group and 

group-time effects on the number of volunteers are shown in Figure S18.  
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Figure S9. Effects of treatment on bird species richness, considering observations of farmland bird species. 

Panel a shows the time-group effect of the 2008 pilot area, panel d the time-group effect of the 2012 pilot area, 

and panel c the group effects. The 2008 pilot area is indicated in blue and 2012 pilot area is indicated in orange. 

The model specification follows our main estimation specification. The light and dark bars indicate the 95% and 

90% confidence intervals, respectively, and standard errors a clustered at the county level. The associated group 

and group-time effects on the number of volunteers are shown in Figure S19.  
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Figure S10. Effects of treatment on number of volunteers. Panel a shows the time-group effect of the 2008 pilot 

area, panel d the time-group effect of the 2012 pilot area, and panel c the group effects. The 2008 pilot area is 

indicated in blue and 2012 pilot area is indicated in orange. The model specification follows our main estimation 

specification. The light and dark bars indicate the 95% and 90% confidence intervals, respectively, and standard 

errors a clustered at the county level.  
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Figure S11. Relationship between diversity measures of the CBS data (y-axes) and ornito data (x-axes) on the 

CBS sampling areas. 
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Figure S12. Group effects of treatment on common bird species richness excluding number of volunteers as 

covariate. The light and dark bars indicate the 95% and 90% confidence intervals, respectively, and standard 

errors a clustered at the county level.  
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Figure S13. Group effects of treatment on common bird species richness over a range of treatment threshold 

definition. Panel a shows the results for the 2008 pilot area and panel b shows the results for the 2012 pilot area. 

The main estimation results are shown in red and alternative specification The light and dark bars indicate the 

95% and 90% confidence intervals, respectively, and standard errors a clustered at the county level. 
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Figure S14. Group effects of treatment on common bird species richness over a range of observation sizes. 

Panel a shows the results for the 2008 pilot area and panel b shows the results for the 2012 pilot area. The main 

estimation results are shown in red and alternative specification in gray. The light and dark bars indicate the 95% 

and 90% confidence intervals, respectively, and standard errors a clustered at the county level. 
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Figure S15. Group effects of treatment on common bird species richness, considering other spatially restricted 

programs established in earlier reforms. The 2008 pilot area is indicated in blue and 2012 pilot area is indicated in 

orange. The light and dark bars indicate the 95% and 90% confidence intervals, respectively, and standard errors 

a clustered at the county level. 
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Figure S16. Group effects of treatment on Hill-Shannon index, considering common bird species. The 2008 pilot 

area is indicated in blue and 2012 pilot area is indicated in orange. The light and dark bars indicate the 95% and 

90% confidence intervals, respectively, and standard errors a clustered at the county level.  
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Figure S17. Propensity score of being treated depending on the time-invariant covariates. 
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Figure S18. Effects of treatment on number of volunteers, considering observations of all bird species. Panel a 

shows the time-group effect of the 2008 pilot area, panel d the time-group effect of the 2012 pilot area, and panel 

c the group effects. The 2008 pilot area is indicated in blue and 2012 pilot area is indicated in orange. The model 

specification follows our main estimation specification. The light and dark bars indicate the 95% and 90% 

confidence intervals, respectively, and standard errors a clustered at the county level. 
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Figure S19. Effects of treatment on number of volunteers, considering observations of farmland bird species. 

Panel a shows the time-group effect of the 2008 pilot area, panel d the time-group effect of the 2012 pilot area, 

and panel c the group effects. The 2008 pilot area is indicated in blue and 2012 pilot area is indicated in orange. 

The model specification follows our main estimation specification. The light and dark bars indicate the 95% and 

90% confidence intervals, respectively, and standard errors a clustered at the county level. 
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Figure S20. Temporal and spatial development of the action-based payment scheme for reducing the 

management intensity of arable land using field edge strips and to support birds and other animals in restricted 

areas.   
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Figure S21. Overview of the area of schemes protecting wild herbs, spatial biotope types, and Nordic visiting 

birds. Note that the information of those areas are taken from Lower Saxony Ministry for Environment, Energy, 

and Climate Protection (2023) and represent the policy areas of 2023. Earlier information is not available as GIS 

information but the information aligns with Most et al. (2015). We only adopted the data of panel c, as we could 

visually better fit the area to the policy condition in 2013 using Most et al. (2015).  
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Tables 

 

Table S1. Name of indicator plant species of result-based payments. 

 Scientific name 

1. Achillea millefolium 
2. Achillea ptarmica 
3. Ajuga reptans 
4. Alchemilla spec. 
5. Anthoxanthum odoratum 
6. Apiaceae (excluding Anthriscus sylvestris) 
7. Bistorta officinalis 
8. Caltha palustris 
9. Cardamine pratensis 
10. Carex spec. (including Scirpus spec. and Bolboschoenus spec.) 
11. Centaurea spec.  
12. Cirsium oleraceum 
13. Galium spec. (white flowering, excluding Galium aparine) 
14. Galium verum 
15. Knautia spec., Scabiosa spec., and Succisa spec.  
16. Lathyrus pratensis 
17. Leucanthemum spec. 
18. Lotus spec. 
19. Luzula spec. 
20. Medicago lupulina, Trifolium dubium, and Trifolium campestre  
21. Plantago lanceolata 
22. Prunella vulgaris 
23. Ranunculus acris  
24. Ranunculus flammula  
25. Rhinanthus spec.  
26. Rumex acetosa and Rumex thyrsiflorus  
27. Silene flos-cuculi  
28. Stellaria graminea and Stellaria palustris  
29. Trifolium pratense 
30. Veronica chamaedrys  
31. Vicia cracca 

Source: Most and Keienburg (2006). 
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Table S2. Share of units with bird diversity information. 

Year 
Observation 

size 
Number of 

observations 

Share of units with bird 
diversity information of all 

grids within Lower Saxony1 

Share of units with bird 
diversity information of all 
grids that had at least one 
time a species recording 

within Lower Saxony1 

2005 4x4 372 11.93% 13.62% 

2006 4x4 373 11.96% 13.66% 

2007 4x4 369 11.83% 13.51% 

2008 4x4 444 14.24% 16.26% 

2009 4x4 460 14.75% 16.84% 

2010 4x4 594 19.04% 21.75% 

2011 4x4 1383 44.34% 50.64% 

2012 4x4 2476 79.38% 90.66% 

2013 4x4 2540 81.44% 93.01% 

2005 1x1 848 1.81% 4.17% 

2006 1x1 905 1.93% 4.45% 

2007 1x1 852 1.82% 4.19% 

2008 1x1 943 2.01% 4.64% 

2009 1x1 966 2.06% 4.75% 

2010 1x1 1286 2.75% 6.33% 

2011 1x1 3975 8.49% 19.55% 

2012 1x1 13064 27.91% 64.26% 

2013 1x1 14715 31.44% 72.38% 

2005 2x2 590 4.92% 7.01% 

2006 2x2 615 5.13% 7.30% 

2007 2x2 591 4.93% 7.02% 

2008 2x2 671 5.60% 7.97% 

2009 2x2 695 5.80% 8.26% 

2010 2x2 928 7.74% 11.02% 

2011 2x2 2508 20.93% 29.79% 

2012 2x2 6425 53.62% 76.32% 

2013 2x2 6908 57.65% 82.05% 

2005 8x8 203 24.40% 26.54% 

2006 8x8 219 26.32% 28.63% 

2007 8x8 233 28% 30.46% 

2008 8x8 267 32.09% 34.90% 

2009 8x8 279 33.53% 36.47% 

2010 8x8 340 40.87% 44.44% 

2011 8x8 612 73.56% 80% 

2012 8x8 751 90.26% 98.17% 

2013 8x8 753 90.50% 98.43% 
1The number of all units within Lower Saxony is 3119, 46810, 11982, and 832 for the 

observation size 16km2, 1km2, 4km2, and 64km2, respectively (Figure S1). The number of all 

units that had at least one time a species recording within Lower Saxony is 2731, 20329, 8419, 

and 765 for the observation size 16km2, 1km2, 4km2, and 64km2, respectively. 
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Table S3. Name of common bird species. 

Scientific name  
(column 1) 

Scientific name  
(column 2) 

Scientific name  
(column 3) 

Scientific name  
(column 4) 

Acanthis cabaret 
Coccothraustes 
coccothraustes Larus fuscus Poecile palustris 

Accipiter gentilis Coloeus monedula Limosa limosa Porzana porzana 

Accipiter nisus Columba livia f. domestica Linaria cannabina Prunella modularis 
Acrocephalus 
arundinaceus Columba oenas Locustella fluviatilis Pyrrhula pyrrhula 

Acrocephalus palustris Columba palumbus 
Locustella 
luscinioides Rallus aquaticus 

Acrocephalus 
schoenobaenus Corvus corax Locustella naevia 

Recurvirostra 
avosetta 

Acrocephalus scirpaceus Corvus cornix 
Lophophanes 
cristatus Regulus ignicapilla 

Aegithalos caudatus Corvus corone Loxia curvirostra Regulus regulus 

Aegolius funereus Corvus frugilegus Lullula arborea Remiz pendulinus 

Alauda arvensis Coturnix coturnix Luscinia luscinia Riparia riparia 

Alcedo atthis Crex crex 
Luscinia 
megarhynchos Saxicola rubetra 

Alopochen aegyptiaca Cuculus canorus Luscinia svecica Saxicola rubicola 

Anas crecca Cyanistes caeruleus Lyrurus tetrix Scolopax rusticola 

Anas platyrhynchos Cygnus olor Mareca strepera Serinus serinus 

Anser anser Delichon urbicum Milvus migrans Sitta europaea 

Anthus pratensis Dendrocopos major Milvus milvus 
Somateria 
mollissima 

Anthus trivialis Dendrocoptes medius Motacilla alba Spatula clypeata 

Apus apus Dryobates minor Motacilla cinerea Spatula querquedula 

Ardea cinerea Dryocopus martius Motacilla flava Spinus spinus 

Asio flammeus Emberiza calandra Muscicapa striata Sterna hirundo 

Asio otus Emberiza citrinella Netta rufina Sterna paradisaea 

Athene noctua Emberiza hortulana 
Nucifraga 
caryocatactes Sternula albifrons 

Aythya fuligula Emberiza schoeniclus Numenius arquata 
Streptopelia 
decaocto 

Botaurus stellaris Erithacus rubecula Oenanthe oenanthe Streptopelia turtur 

Branta canadensis Falco subbuteo Oriolus oriolus Strix aluco 

Bubo bubo Falco tinnunculus Panurus biarmicus Sturnus vulgaris 

Bucephala clangula Ficedula hypoleuca Parus major Sylvia atricapilla 

Buteo buteo Ficedula parva Passer domesticus Sylvia borin 

Calidris pugnax Fringilla coelebs Passer montanus Sylvia communis 

Caprimulgus europaeus Fringilla montifringilla Perdix perdix Sylvia curruca 

Carduelis carduelis Fulica atra Periparus ater Sylvia nisoria 

Carpodacus erythrinus Gallinago gallinago Pernis apivorus 
Tachybaptus 
ruficollis 

Certhia brachydactyla Gallinula chloropus Phasianus colchicus Tadorna tadorna 

Certhia familiaris Garrulus glandarius 
Phoenicurus 
ochruros Tringa ochropus 

Charadrius alexandrinus Glaucidium passerinum 
Phoenicurus 
phoenicurus Tringa totanus 

Charadrius dubius Grus grus 
Phylloscopus 
collybita 

Troglodytes 
troglodytes 



 
 -61- 

Charadrius hiaticula Haematopus ostralegus 
Phylloscopus 
sibilatrix Turdus iliacus 

Chloris chloris Haliaeetus albicilla 
Phylloscopus 
trochiloides Turdus merula 

Chroicocephalus 
ridibundus Hippolais icterina 

Phylloscopus 
trochilus Turdus philomelos 

Ciconia ciconia Hirundo rustica Pica pica Turdus pilaris 

Ciconia nigra Jynx torquilla Picoides tridactylus Turdus torquatus 

Cinclus cinclus Lanius collurio Picus canus Turdus viscivorus 

Circus aeruginosus Lanius excubitor Picus viridis Tyto alba 

Circus cyaneus Larus argentatus agg. Podiceps cristatus Upupa epops 

Circus pygargus Larus canus Poecile montanus Vanellus vanellus 
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Table S4. Name of farmland bird species. 

Scientific name 

Acrocephalus palustris 
Alauda arvensis 
Carduelis carduelis 
Emberiza calandra 
Emberiza citrinella 
Falco tinnunculus 
Hippolais icterina 
Hirundo rustica 
Lanius collurio 
Limosa limosa 
Linaria cannabina 
Locustella naevia 
Luscinia megarhynchos 
Motacilla alba 
Motacilla flava 
Passer montanus 
Saxicola rubetra 
Streptopelia turtur 
Sturnus vulgaris 
Sylvia borin 
Sylvia communis 
Sylvia curruca 
Turdus pilaris 
Turdus viscivorus 
Falco tinnunculus 

Source: Busch et al. (2020) and Noack et al. (2022). 
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Table S5. Correlation between CBS diversity indices (columns) and ornitho indices (rows). 

 
Richness – 
common 
species 

Richness – 
farmland 
species 

Shannon 
index – 

common 
species 

Shannon 
index – 

farmland 
species 

Richness – common species  0.307    

 (<0.001)    

Richness – farmland species  0.364   

  (<0.001)   

Shannon index – common 
species 

  0.192  

   (<0.001)  

Shannon index – farmland 
species 

   0.217 

    (<0.001) 

N 940 613 940 613 

Numbers in parentheses indicate p-values. 
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Texts 

Text S1. Additional policy background information. 

Follow up policy periods and other payments  

The 2014-2020 Common Agricultural Policy (CAP) of the EU, was decided in December 2013 

and was mainly implemented in Lower Saxony in 2014 and 2015. Amongst others the CAP 

2014-2020 led to an expansion area of the multi-threshold result-based payments to entire 

state except nature protection areas (i.e., nature reserves, biosphere reserves of type C, and 

national parks) and from 2015 onwards the two-threshold design (with target threshold of 4 

and 6 indicator plant species) changed to with three-threshold design (with target threshold of 

4, 6, and 8 indicator plant species). However, other aspects, as the list of indicator plant 

species on which payments depend did not change (Keienburg et al., 2006; Lower Saxony 

Ministry of Food, Agriculture and Consumer Protection, 2023).  

Other spatially restricted payment schemes  

Lower Saxony also introduced in 2008 action-based payment scheme for reducing the 

management intensity of arable land using field edge strips and to support birds and other 

animals in restricted areas (Figure S20; Dickel et al., 2010). The area of the action-based 

payments was extended each year based on county-recommendations given the regulatory 

restrictions of the policy, except in 2012 due to limited financial resources. We consider the 

introduction of these payments in our analysis as the areas partly overlap with the pilot area of 

the multi-threshold result-based payments. In other words, we exclude the areas were both 

these and multi-threshold result-based payments were introduced. 

Moreover, other spatially restricted payments were introduced in earlier reforms in Lower 

Saxony, including the “Wild herbs, spatial biotope types scheme”, and “Nordic visiting birds 

scheme” (Figure S21). We consider those areas in a robustness check. 
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Text S2. Calculation of Hill–Shannon index. 

The Hill–Shannon index is calculated as follows:  

𝐻𝑖𝑙𝑙 𝑆ℎ𝑎𝑛𝑛𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 = 𝑒− ∑ 𝑝𝑗
𝑆
𝑗=1 ln(𝑝𝑗) (S.1) 

where 𝑆 is the number of different species, 𝑗 indicates a species, 𝑝𝑗 is the proportion of all 

individuals of a species, 𝑛𝑗, of the total number of individuals on an area, 𝑁, i.e., 𝑝𝑗 = 𝑛𝑗/𝑁. 
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Text S3. Proof of 𝑄 = 𝔼[𝑌𝑃𝑂𝑆𝑇(2) − 𝑌𝑃𝑂𝑆𝑇(0)|𝑀] − 𝔼[𝑌𝑃𝑂𝑆𝑇(1) − 𝑌𝑃𝑂𝑆𝑇(0)|𝐵2]. 

For proofing our stated results in Equation (5) first note that  

𝑄 = 𝔼[𝑌1(2) − 𝑌0(0)|𝑀] − 𝔼[𝑌1(1) − 𝑌0(0)|𝐵2] (S.2) 

= 𝔼[𝑌1(2) − 𝑌1(0) + 𝑌1(0) − 𝑌0(0)|𝑀] − 𝔼[𝑌1(1) − 𝑌1(0) + 𝑌1(0) − 𝑌0(0)|𝐵2] (S.3) 

=
𝑟𝑒𝑎𝑟𝑟𝑎𝑛𝑔𝑖𝑛𝑔

𝔼[𝑌1(2) − 𝑌1(0)|𝑀] + 𝔼[𝑌1(0) − 𝑌0(0)|𝑀] − 𝔼[𝑌1(1) − 𝑌1(0)|𝐵2] −

𝔼[𝑌1(0) − 𝑌0(0)|𝐵2] (S.4) 

=
𝑃𝑇0

𝔼[𝑌1(2) − 𝑌1(0)|𝑀] − 𝔼[𝑌1(1) − 𝑌1(0)|𝐵2]  (S.5) 

= ∆1,𝑀(2, 0) − ∆1,𝐵2
(1, 0).  (S.6) 

Thus, under 𝑃𝑇0, it holds 

𝑄 = ∆1,𝑀(2, 0) − ∆1,𝐵2
(1, 0).  (S.7) 
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Text S4. Common Bird Monitoring Survey dataset.  

We use the German Common Bird Monitoring Survey (CBS) from 2005 to 2020 (Mitschke et 

al., 2005; Kamp et al., 2021) to validate the ornitho data. Initially, we planned also using the 

CBS dataset for the main analysis, however, due to a very low overlap of the sampling areas 

with the treatment area14 we now only use it for validating the ornitho data. The results show 

that ornitho data would indeed appear to be valid for depicting changes in bird populations 

(Table S5; Figure S11). 

 

For the CBS, volunteers systematically collect information about birds in a 1x1 km large 

sampling area four times a year (between March 10 and June 20). Each area was sampled 

four times record to ensure that different breeding birds are covered by the data. The sampling 

areas were defined in two points in time. In 2003 based on a state(s)-wide initiative, a random 

sample of 100 areas were drawn in the region of Lower Saxony and Bremen (Mitschke et al., 

2005). This was followed by a national-wide initiative, in which another 198 areas were drawn 

based on a two-layered stratified random sampling approach (Mitschke et al., 2005; Mitschke, 

2008). The first stratum is based on Germany’s “environmental regions” (which comprise 

information on soil, climate and vegetation) and the second stratum on land cover types (e.g., 

grassland, arable land, and forest) (Mitschke et al., 2005). In our study, we only focus on Lower 

Saxony comprising in total 273 relevant sampling areas. Moreover, we only consider those 

areas that have both a recording in the CBS and ornitho data, resulting in 194 sampling areas.  

  

 
14 Especially, when we consider the overlapping area between result-based payments and action-based payment 
scheme to support birds and other animals (see Section 2). The average number of observations in either the 2008 
or 2012 pilot region per year would be 25.4.  



 
 -68- 

References of Supplementary Information 

Busch, M., Katzenberger, J., Trautmann, S., Gerlach, B., Droeschmeister, R., & Sudfeldt, C. 

(2020). Drivers of population change in common farmland birds in Germany. Bird 

Conservation International, 30(3), 335-354.  

Dickel, R., Reiter, K., Roggendorf, W., & Sander, A. (2010). Halbzeitbewertung von PROFIL - 

Zahlungen für Agrarumweltmaßnahmen. Braunschweig/Hannover, Germany. 

Kamp, J., Frank, C., Trautmann, S., Busch, M., Dröschmeister, R., Flade, M., ... & Sudfeldt, C. 

(2021). Population trends of common breeding birds in Germany 1990–2018. Journal of 

Ornithology, 162(1), 1-15. 

Keienburg, T., Most, A., Prüter, J. (2006): Entwicklung und Erprobung von Methoden für die 

ergebnisorientierte Honorierung ökologischer Leistungen im Grünland 

Nordwestdeutschlands. Norddeutsche Naturschutzakademie. Schneverdingen, Germany. 

Lower Saxony Ministry for Environment, Energy, and Climate Protection (Niedersächsisches 

Ministerium für Umwelt, Energie und Klimaschutz) (2023). Agrarumwelt- und 

Klimamaßnahmen zur Verbesserung der Biodiversität (AUKM) des Niedersächsischen 

Ministeriums für Umwelt, Energie und Klimaschutz (MU). Hannover, Germany. 

Lower Saxony Ministry of Food, Agriculture and Consumer Protection (2023). GL 5 - 

Artenreiches Grünland (GL51/GL52/GL53). Hannover, Germany. 

Mitschke, A., Sudfeldt, C., Heidrich-Riske, H., & Dröschmeister, R. (2005). Das neue 

Brutvogelmonitoring in der Normallandschaft Deutschlands–Untersuchungsgebiete, 

Erfassungsmethode und erste Ergebnisse. Vogelwelt, 126, 127-140. 

Mitschke, A. (2008). Amsel, Drossel, Fink und Star–Erste Ergebnisse aus fünf Jahren 

Monitoring häufiger Brutvögel in Niedersachsen und Bremen. Vogelkundliche Berichte 

Niedersachs, 40, 163-180. 

Most, A., & Keienburg, T. (2006). Entwicklung und Erprobung von Methoden für die 

ergebnisorientierte Honorierung ökologischer Leistungen im Grünland 

Nordwestdeutschlands. Ökonomie der Honorierung ökologischer Leistungen. Norddeutsche 

Naturschutzakademie. Schneverdingen, Germany. 



 
 -69- 

Noack, F., Larsen, A., Kamp, J., & Levers, C. (2022). A bird's eye view of farm size and 

biodiversity: The ecological legacy of the iron curtain. American Journal of Agricultural 

Economics, 104(4), 1460-1484. 


	Biodiversity and the Design of Result-based Payments:
	Evidence from Germany0F
	Abstract
	Keywords
	JEL Classification


