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Abstract

We compare cliquet-style interest rate guarantees used in German participating

life insurance contracts across different economic environments. These guaran-

tees are proportional to the average market interest rate at contract inception

and typically determined as 60 percent of the 10-year rolling average of govern-

ment bond yields. Currently, however, in the face of prolonged low interest rates

and stricter solvency regulation, the continued existence of this product type is

being seriously questioned. A discussion of alternative guarantee designs is thus

highly relevant. To this end, we perform a comparative analysis of contracts

sold in different interest rate environments with regard to the guarantee value

and show that the current practice of proportional guarantees leads to higher

guarantee values the lower the market interest rate is. We also observe an in-

creased interest rate sensitivity. Additionally, alternative product designs that

mitigate the interest rate dependency of the guarantee value are illustrated and

assessed from the policyholder perspective.
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1. Introduction

Interest rate guarantees are a common feature of traditional life insurance

products. We focus on the situation in the German market with so-called cliquet-

style guarantees, under which the insurance company promises to credit the

policyholders’ account with at least a guaranteed rate of return every year. As

the policyholders’ account also contains previous years’ surplus, the guarantee is

implicitly applied to the distributed surplus as well. The guaranteed interest rate

is proportional to the current average market interest rate at contract inception,

typically 60 percent of the 10-year rolling average of government bond yields.

Hence, we refer to it as the 60 percent rule.2

Over the last decade, the life insurance industry’s situation has deteriorated

due to substantial changes in both the economic and regulatory environment.

Under the upcoming Solvency II regime, the industry’s solvency requirements

will be fundamentally reformed and lead to higher capital requirements for these

traditional interest rate guarantees. At the same time, insurers’ earnings have

been adversely affected by the sustained decline of returns on low-risk fixed-

income assets. In Germany, life insurers are under additional pressure due to

peculiarities of national regulation, such as the participation of policyholders in

asset valuation reserves upon contract termination (see § 153 German Insurance

Contract Act, VVG) as this accelerates the replacement of old high yield bonds

with new lower yielding bonds (Fromme, 2011). Stocks and other asset classes

cannot be used to compensate for low earnings from fixed income due to the

significantly increased volatility of capital markets. The former strategy of buy-

ing low-risk bonds is thus no longer possible to the extent traditional interest

rate guarantees would require. Unfavorable development of the capital market

and shortcomings in risk management have lead to the default of life insurers

2The 60 percent rule is a result of the establishment of a common European insurance
market in 1994 and the accompanying unification of national regulatory systems. See, e.g.,
Eling and Holder (2012).
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in several countries.3 Therefore, participating life insurance contracts and their

embedded options, such as interest rate guarantees, have received a great deal

of attention and analysis from academia over the last decade.4

There are two prevailing approaches to analyze financial guarantees in life

insurance: the actuarial and the financial. Consequently, most of the literature

on the topic can be divided into two groups. Moreover, work such as Barbarin

and Devolder (2005), Gatzert and Kling (2007), and Graf et al. (2011) combine

both approaches.

The actuarial approach focuses on analyzing the risk of different contract

specifications and surplus distribution schemes under an objective probability

measure. Participating contracts are analyzed by Bartels and Veselčić (2009),

Cummins et al. (2007), Kling et al. (2007a,b), and Rymaszewski (2011). Cum-

mins et al. (2007) provide an empirical comparison of life insurance contracts

typical of several European markets and those common in the United States

by computing risk-return profiles. Different surplus distribution schemes and

their interaction with the guaranteed rate with respect to the insurer’s short-

fall risk are analyzed by Kling et al. (2007a,b). Bartels and Veselčić (2009)

extend this model by a jump process asset framework and dynamic asset allo-

cation strategies in order to quantify the model risk. Rymaszewski (2011) also

considers the risk arising from interest rate guarantees and quantifies the diver-

sification effect caused by pooling undistributed surplus among inhomogeneous

policyholder groups.

The financial approach is primarily concerned with fair pricing of contracts

and the options embedded therein. Many scholars analyze participating con-

tracts including Bacinello (2001, 2003), Bauer et al. (2006), Büsing (2005),

Grosen and Jørgensen (2000, 2002), Hansen and Miltersen (2002), Zaglauer and

3Information about defaults in the United States (First Executive Corporation and oth-
ers), Japan (Nissan Mutual and others), Germany (Mannheimer Lebensversicherung), and the
United Kingdom (Equitable Life) can be found, e.g., in Briys and de Varenne (1997), Suzuki
(2004), Himstedt (2004), and O’Brien (2006), respectively.

4Equity-linked life insurance has been subject to extensive academic research as well. How-
ever, this contract type is outside the scope of this article. The reader is referred to Bacinello
and Persson (2002) for a categorization of the literature on equity-linked life insurance.
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Bauer (2008), and Zemp (2011). Bacinello (2001, 2003) show how to decompose

a fair participating Italian contract into three parts (basic contract, participa-

tion, and surrender option), which can be priced separately. For the case of

Denmark, Grosen and Jørgensen (2000) find the fair contract value to depend

significantly on the bonus policy applied and the spread between market rate

and guaranteed rate. Hansen and Miltersen (2002) demonstrate that collecting

an annual fee as compensation for providing interest rate guarantees allows for a

greater contract variety compared to receiving a share of the distributed surplus.

Bauer et al. (2006) analyze cliquet-style guarantees typical of German contracts

and find fair contract values to be sensitive to several model parameters, in-

cluding the risk-free rate. Zaglauer and Bauer (2008) provide an extension with

respect to stochastic interest rates and show that the value of the embedded op-

tions changes significantly, whereas the total contract value is only moderately

affected. Zemp (2011) compares the British, Danish, German and Italian bonus

distribution system with regard to risk valuation and shows that the Italian one

is most sensitive to changes in asset volatility.

The extant literature tends to focus on pricing existing contracts in differ-

ent economic environments. Thus the guaranteed rate is typically considered as

fixed and independent of the economic environment. We take a step forward and

analyze the 60 percent rule under different economic environments (high/low in-

terest rates). A second contribution of this paper is to analyze alternative designs

for the guaranteed rate in traditional products. To our knowledge, this has not

yet been done in the academic literature, although it is a topic of high interest

and attention among practitioners. To date, the solutions most frequently sug-

gested are temporary and reduced guarantees (see, e.g., Goecke, 2011; Heinen,

2011; Pohl, 2011).

This article presents a comparative analysis of the 60 percent rule and al-

ternative product designs in different interest rate environments with respect to

the fair guarantee value. The analysis is designed as a ceteris paribus analysis

and we consider a typical German participating life insurance contract where the

guaranteed rate depends on the long-term average of interest rates. We adopt
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the valuation framework presented in Bauer et al. (2006) and its extension for

stochastic interest rates by Zaglauer and Bauer (2008). Their methodology

allows us to decompose the contract into its components and hence price the in-

terest rate guarantee separately. To compare contracts sold in different economic

environments, we calibrate the surplus-related parameters so that the compared

contracts have a net present value of zero under the risk-neutral pricing measure.

We also assess the policyholder utility of the proposed alternative designs.

We find that the current practice of setting the guaranteed rate leads to signif-

icantly higher guarantee values in times of low interest rates and to an increased

sensitivity to interest rates. However, alternative products can be designed to

mitigate the interest rate dependency of the guarantee value. Our findings also

show that from the policyholder perspective there seems to be no substantial

difference between the different guarantee types. These results contribute to the

ongoing discussion of how to reform insurance regulation and product design to

cope with the pressures arising from low interest rates. Risk managers and regu-

lators will particularly benefit from this analysis as we identify the shortcomings

of proportional cliquet-style interest rate guarantee schemes. In our analysis we

consider a typical German contract, but the model is sufficiently flexible so that

our analysis can easily be extended to accommodate other regulatory regimes

with cliquet-style guarantees.

The remainder of this paper is structured as follows. In Sections 2 and 3 we

briefly introduce the general modeling framework and valuation methodology

used by Bauer et al. (2006) and Zaglauer and Bauer (2008). A description of the

different product designs is presented in Section 4. We also discuss adjustments

to the existing model that are necessary to incorporate the new guarantee types

and the utility analysis. Numerical results for both, the 60 percent rule and its

alternatives are given in Section 5. In Section 6 we conclude and identify areas

for further research.
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2. The Model

In the following, most of our notation is adapted from Zaglauer and Bauer

(2008). We assume that the insurance company’s financial situation at time t is

represented by the simplified balance sheet shown in Table 1. Here, At denotes

the market value of the insurer’s assets, Lt the book value of the policyholders’

account, and the residual Rt = Lt − At denotes the reserve account at time t.

In this context, we refer to Rt as asset valuation reserves, even though it might

also consist of other components, e.g., equity.

Table 1: Simplified balance sheet

Assets Liabilities
At Lt

Rt
At At

For the sake of simplicity, we consider a very basic contract type, a single-

premium term-fix insurance maturing after T years, and ignore any charges.

Given this contract, the benefit LT is always paid at time T , regardless of

whether the insured person is alive or dead. Thus the payoff does not depend on

biometric circumstances but is completely determined by the bonus policy and

performance of the insurer’s assets. This allows us to analyze the pure financial

risk arising from the interest rate guarantee.

A typical feature of traditional German life insurance contracts is the cliquet-

style interest rate guarantee. Insurance companies are obliged to credit the pol-

icyholders’ account with a minimum interest rate g each year. On top of the

guaranteed rate, the company also credits some portion of the annual surplus

in order to allow the policyholders to participate in the investment results. So

that its shareholders also can participate in the investment results, the insur-

ance company pays them dividends dt which are calculated as a portion α of

the surplus credited to the policyholders. Since the amount paid as dividends

leaves the company, the notation has to be adjusted accordingly. Therefore, we

define A−t and A+
t = A−t − dt to denote the value of the asset portfolio shortly

before and after the dividend payment. The surplus participation is subject to
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certain legal constraints. According to German legislation, at least δ = 90% of

the earnings on book values must be distributed to the policyholders (see §4

Minimum Funding Ordinance, MindZV). The insurer’s earnings on book values

are subject to various accounting rules and therefore usually differ from the earn-

ings on market values A−t −A+
t−1. To approximate the book value earnings, we

follow the approach proposed by Kling et al. (2007b) and assume that a constant

portion y of the earnings on market values has to be displayed as earnings on

book values in the balance sheet.

In addition to legal constraints, strategic management decisions play an im-

portant role in the actual surplus distribution. In recent years, the prevailing

practice of German life insurers was to grant a rather constant rate of interest

based on the level of their reserves. To achieve this goal, asset reserves were ac-

cumulated in years with high investment returns and released in years with poor

returns in order to keep the granted rate stable. Only if the reserves reached a

critically low (high) level, would the companies adjust their surplus policy and

decrease (increase) the amount credited accordingly.5 The insurance company

thus credits a constant target rate of interest z > g to the policyholders’ account

as long as the reserve quota xt = Rt

Lt
= A−

t −dt−Lt

Lt
remains within a prespecified

range [a, b]. Kling et al. (2007b) show that this is equivalent to the conditions

A−t ≥ ((1 + a)(1 + z) + α(z − g))Lt−1,

A−t ≤ ((1 + b)(1 + z) + α(z − g))Lt−1.
(1)

If crediting z leads to a reserve quota above b, the company credits exactly the

rate that leads to xt = b. In the event crediting the target rate z leads to xt < a,

the rate credited is adjusted to achieve xt = a. However, the interest rate cred-

ited to the policyholders’ account is never below the legal requirements, that

is, the larger of guaranteed interest and minimum participation rate. Summa-

rizing the above description and taking the legally required minimum surplus

5A detailed description of the corresponding formulas can be found in Kling et al. (2007b),
who differentiate two cases: the MUST- and the IS-case. The MUST-case is based on the
legal requirements, whereas the IS-case describes the insurers’ actual behavior. In the analysis
presented here, we are interested in the actual behavior and thus ignore the MUST-case.
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participation into account, we obtain

Lt = (1 + g)Lt−1

+ max
{[
δy
(
A−t −A+

t−1
)
− gLt−1

]+
, (z − g)Lt−1

× 1{((1+a)(1+z)+α(z−g))Lt−1≤A−
t ≤((1+b)(1+z)+α(z−g))Lt−1}

+ 1
1 + a+ α

[
A−t − (1 + g)(1 + a)Lt−1

]
× 1{(1+a)(1+g)Lt−1≤A−

t ≤((1+a)(1+z)+α(z−g))Lt−1}

+ 1
1 + b+ α

[
A−t − (1 + g)(1 + b)Lt−1

]
× 1{((1+b)(1+z)+α(z−g))Lt−1<A

−
t }

}

(2)

for the liabilities, and analogously

dt = max
{
α
[
δy
(
A−t −A+

t−1
)
− gLt−1

]+
,

α(z − g)Lt−1

× 1{((1+a)(1+z)+α(z−g))Lt−1≤A−
t ≤((1+b)(1+z)+α(z−g))Lt−1}

+ α

1 + α+ a

[
A−t − (1 + g)(1 + a)Lt−1

]
× 1{(1+a)(1+g)Lt−1≤A−

t ≤((1+a)(1+z)+α(z−g))Lt−1}

+ α

1 + b+ α

[
A−t − (1 + g)(1 + b)Lt−1

]
× 1{((1+b)(1+z)+α(z−g))Lt−1<A

−
t }

}

(3)

for the dividend payments.

The boundaries a and b for the reserve quota can be set to reflect the actual

situation. Here, the lower bound corresponds to solvency requirements (e.g.,

minimum capital requirement) mandating the company to keep a minimum level

of reserves. The upper bound can be considered the result of management

decisions to remain competitive in the market.

3. Risk-Neutral Valuation

For the purpose of risk-neutral valuation, we fix a finite time horizon T and

assume, as is usual, the existence of a probability space (Ω,F ,Q) equipped with
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a filtration F = (Ft)t∈[0,T ]. As the benefit LT is always paid at maturity and no

surrender option is included, the risk-neutral contract value P ∗ with respect to

the numéraire process (Bt)t∈[0,T ] =
(

exp
( ∫ t

0 rsds
))
t∈[0,T ]

is given as

P ∗ = EQ
[
LTB

−1
T

]
. (4)

We assume the insurer invests all money in a reference portfolio, which serves as

an approximation of the insurer’s real asset portfolio. This reference portfolio

consists of assets actually traded on the market and its composition is never

modified. In addition to the initial premium payment, the company has the

following cash flows.

1. If the return on the reference portfolio is insufficient to meet the interest

rate guarantee, even after completely releasing the reserve, the company

receives a capital shot ct. The risk-neutral value at contract inception of

these payments is given by

C0 = EQ

[
T∑
t=1

ctB
−1
t

]
(5)

and can be considered as the value of the interest rate guarantee.

2. At each time t = 1, . . . , T the shareholdes are paid a dividend. The t = 0

risk-neutral value of these payments is given by

D0 = EQ

[
T∑
t=1

dtB
−1
t

]
. (6)

The risk-neutral value of the change of reserves is given by

∆R0 = EQ
[
RTB

−1
T

]
−R0 (7)

and describes how the reserve situation is affected by selling this type of contract.

Based on the above cash flows, Bauer et al. (2006) obtain a decomposition

of the contract value, which can be represented either directly, as expectation of
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the discounted benefit LT , or as the sum of the embedded options:

P ∗ = EQ
[
LTB

−1
T

]
= P + C0 −D0 −∆R0. (8)

For a fair contract, the initial premium P must equal the contract value P ∗,

thus the value of the interest rate guarantee should equal the values of dividend

payments and change of reserve account, i.e.,

C0
!= D0 + ∆R0. (9)

To model the above framework, we assume a frictionless and arbitrage-free

financial market in which investors can trade continuously. We further assume

the reference portfolio is well-diversified and evolves according to the stochastic

differential equation

dAt
At

= rtdt+ σAρdWt + σA
√

1− ρ2dZt, A0 > 0 (10)

where Wt and Zt are independent Q-Brownian motions, σA > 0 denotes the

portfolio’s volatility, and ρ ∈ [0, 1] is the correlation between A and the risk-free

rate rt. Further, we assume rt to follow the Cox et al. (1985, hereafter, CIR)

model, i.e.,

drt = κ(θ − rt)dt+ σr
√
rtdWt, r0 > 0 (11)

for positive parameters κ, θ and σr.6 To ensure rt > 0 ∀t, we impose the

condition 2κθ > σ2
r (cp. Brigo and Mercurio, 2006). Applying the Itô-Doeblin

formula to Equation (10), we obtain

A−t = A+
t−1 exp

(∫ t

t−1
rsds−

σ2
A

2

+
∫ t

t−1
ρσAdWs +

∫ t

t−1

√
1− ρ2σAdZs

)
.

(12)

6Zaglauer and Bauer (2008) additionally consider an Ornstein-Uhlenbeck process for the
short rate. However, in this case, rt > 0 is not guaranteed and we obtain a substantial number
of negative sample paths. Thus we restrict ourselves to the CIR model, even though this
requires a discretization approach in the implementation.
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Taking dividend payments to shareholders and capital shots (which ensure

Rt ≥ 0 at all times) into account, we have A+
t = max

{
A−t − dt, Lt

}
which

completes the description of the reference portfolio evolution.

As the capital shots depend on specific development of the liabilities over

time, the value of the interest rate guarantee is path dependent and we are

not aware of any analytical formula for C0 in this setting. Thus we rely on

Monte Carlo methods to price the contract components. Lt can be simulated

straightforwardly based on Equation (2). To simulate the evolution of At, we

follow Zaglauer and Bauer (2008) and define rAt as the rate of return of the

reference portfolio for the interval [t− 1, t) to obtain

rAt =
A−t −A+

t−1

A+
t−1

= exp
{∫ t

t−1
rsds−

σ2
A

2 + ρσA

∫ t

t−1
dWs

+
√

1− ρ2σA

∫ t

t−1
dZs

}
− 1

(13)

as a direct result of Equation (12). Since rt is assumed to follow the CIR model,

it features a square-root diffusion term and the distribution of
∫ t
t−1 rsds cannot

be determined explicitly. Therefore, we apply discretization methods that lead

to

rt+∆ = e−κ∆(rt − θ) + θ + σr

∫ t+∆

t

e−κ(t+∆−s)√rsdWs

≈ e−κ∆(rt − θ) + θ + σre
−κ∆√rt (Wt+∆ −Wt)

(14)

where the integral is approximated by its left-hand Riemann sum and ∆ is

sufficiently small. Even though we choose the parameters for the CIR model such

that rt > 0 Q-almost surely, the discretization error can still lead to negative

values for the short rate. To overcome this problem, we replace negative short

rates with zero.
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4. Analysis Design

4.1. Alternative Guarantee Designs

In our framework, the guaranteed rate is assumed to be non-negative and

to depend solely on time and economic environment. Further, we assume the

guaranteed rate to be valid for at least one year. Thus it can be expressed as a

non-negative, discrete-time process gt that is adapted to F. For t = 0, . . . , T −1,

gt denotes the guaranteed rate for the time [t, t + 1). We define T = {τj : j =

0, . . . , k} to be the set of renewal times 0 = τ0 < · · · < τk < T at which the

guaranteed interest rate is changed. We assume this to happen at most once a

year, thus k < T .

The assumption gt ≥ 0 implies that even in years with negative portfolio

returns, the insurance company has to at least guarantee the preservation of

the policyholders’ account. This asymmetric participation in asset returns is

typical of traditional life insurance and in many countries even encouraged by the

government since cash-accumulating life insurance is considered an important

supplement to the statutory pension. In the comparative analysis, we examine

the following designs for the guaranteed rate (assuming a contract maturity of

T = 10 years and a long-term average of the 10-year spot rate ϑ):

1. 60 percent rule: This guarantee type is the status quo in the German

market, meaning that 60 percent of the average market rate is passed on

as the guaranteed rate. This is equivalent to T = {τ0} and gt ≡ 0.6ϑ in

the above framework.

2. Reduced guarantee: This guarantee type is a generalization of the 60 per-

cent rule. Instead of 60 percent, a portion π < 0.6 of the average market

rate is given as the guarantee which is equivalent to T = {τ0} and gt ≡ π ϑ.

In the analysis we consider the cases π = 0.4 (40 percent rule) and π = 0.2

(20 percent rule).

3. Money-back guarantee: This guarantee type is the special case π = 0 of the
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reduced guarantee. It ensures preservation of the policyholders’ account.7

In the above framework, this corresponds to T = {τ0} and gt ≡ 0.

4. Temporary guarantee: The guaranteed rate for the first τ1 contract years

is set at inception. For the remaining time until maturity, the insurance

company only guarantees the year-by-year preservation of the policyhold-

ers’ account.8 For our analysis, we use τ1 = 5 and assume the initial

guaranteed rate to be set in accordance with the 60 percent rule which

corresponds to T = {τ0, τ1} and gt = 0.6ϑ · 1{τ0≤t<τ1}.

5. Guarantee with fixed safety margin: The guaranteed rate is determined

such that the spread between average market rate at inception and guar-

anteed rate is constant across different interest rate environments. In the

above framework, this is equivalent to T = {τ0} and gt ≡ max{ϑ − c; 0}

where c denotes the safety margin.

To accommodate the above alternative guarantee designs, we modify the

Bauer et al. (2006) model by replacing the constant guaranteed rate g with the

vector (gt)T−1
t=0 whose entries are determined according to the chosen guarantee

type. Equations (2) and (3) for liabilities and dividend payments can be eas-

ily adapted by substituting g with gt−1, t = 1, . . . , T , where gt−1 denotes the

guaranteed rate for the t-th contract year.

Each economic environment is represented by a different long-term average

of the 10-year spot rate. We choose this value due to its central importance

in determining the maximum statutory valuation rate and thus the guaranteed

rate in Germany (cp. Eling and Holder, 2012). Given a long-term average ϑ of

the 10-year spot rate, we obtain a consistent short rate mean reversion level θ

for Equation (11) by using the affine linear properties of the CIR model. These

ensure the linear relationship Rt,τ = ατ + βτ rt between the time t spot rate

with maturity τ and the short rate. For any fixed maturity τ , the coefficients

7As we consider a contract without costs, the savings premium and the gross premium
coincide, meaning that account preservation (applies to the savings premium) and money-
back guarantee (applies to the gross premiums) are equivalent. However, in the real world
where costs are incurred, one must differentiate between these two guarantee types.

8A less conservative approach would be to renew the guaranteed rate after τ1 years based
on the prevailing market rate at that time.
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ατ and βτ do not depend on t, but only on the model parameters κ, σr and θ

(see Brigo and Mercurio (2006) for details). Thus, we obtain

ϑ = lim
t→∞

EQ [Rt,τ | F0]

= ατ + βτ lim
t→∞

EQ [rt | F0]

= ατ + βτ θ

(15)

Solving this equation for θ yields

θ = ϑ

βτ − 2κα̃τ/(τσ2
r) =: f (ϑ) (16)

where

α̃τ = ln
(

2heτ(κ+h)/2

2h+ (κ+ h)(eτh − 1)

)
,

βτ = 1
τ
· 2(eτh − 1)

2h+ (κ+ h)(eτh − 1) ,

and h =
√
κ2 + 2σ2

r .

The initial short rate value r0 and the target rate z have to be adjusted to

the economic environment too. As the considered environments are fictitious, we

let r0 coincide with θ. Furthermore, we assume the target rate z credited to the

policyholders’ account to be proportional to the average level of interest rates,

i.e., z = zf ϑ. This approach also simplifies the calibration procedure described

below.

4.2. Model Calibration

To compare guarantee values across different economic environments, we use

an approach similar to the one in Zemp (2011). We numerically calibrate the

surplus-related contract parameters (reserve corridor [a, b] and target rate z)

such that for each environment ϑ the compared contracts have a net present
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value of zero, that is, satisfy Equation (9).9 This is achieved by minimizing the

expression (C0 − D0 − ∆R0)2. As mentioned above, we model z = zf ϑ and

thus calibrate zf , which allows us to use the same constraints for each ϑ. If

we applied the calibration procedure directly to z, we would need a rather wide

range of admissible values to accommodate all environments simultaneously,

leading to less stable results. The calibration is based on 10,000 sample paths

for the guarantee value using Matlab’s fmincon procedure with the interior-point

algorithm.10 Given the nature of the calibration problem, the solution is usually

not unique. Thus, to obtain reasonable parameter combinations, we impose the

constraints

0 ≤ a ≤ 0.1, a ≤ b− 0.1,

0 ≤ b ≤ 0.35, 0.5 ≤ zf ≤ 1.75,

during the optimization where the condition a ≤ b− 0.1 ensures the existence of

an actual reserve corridor and prevents solutions of the form a = b. The remain-

ing constraints for a and b were chosen based on Kling et al. (2007b). However,

we allow a somewhat wider range as the average market rates considered in the

analysis are notably higher or lower than the ones in Kling et al. (2007b). The

range of admissible values for zf was approximated from the literature. To check

our results for robustness, we repeat the calibration procedure for multiple initial

values. In the subsequent analysis, results are presented for the initial vector

9We choose this approach to ensure comparability between contracts sold in different eco-
nomic environments. Alternatively, the condition of fair contracts could be dropped and the
guarantee value determined at relevant points in the past (i.e. whenever the regulator low-
ered the guarantee rate). This would allow for an analysis of the actual value of interest rate
guarantees sold in the past.

10An alternative approach would be to use non-gradient-based optimization techniques such
as simulated annealing or differential evolution, which are designed for situations in which the
objective function is stochastic or noisy. For an introduction to simulated annealing, see, e.g.,
van Laarhoven and Aarts (1987). The differential evolution technique was introduced by Storn
and Price (1997). For more details on differential evolution and a comprehensive overview of
different algorithms, see Price et al. (2005) and Mullen et al. (2011), respectively.
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(a0, b0, zf0) = (0.05, 0.3, 0.75). The full set of results is available upon request.11

To isolate the effects caused by changes in the interest rate environment,

we design the analysis as a ceteris paribus analysis, that is, we fix all param-

eters that are independent of ϑ. We choose the parametrization suggested in

Zaglauer and Bauer (2008, Table 5, column “1996-2006”) and adjust it to our

modeling framework. Table 2 summarizes the basic parameter configuration for

the analysis.

Table 2: Basic parameter configuration for the numerical analysis

Capital market Contract Company

κ 0.19 P 10,000 [a, b] a

σr 0.0304 T 10 x0 {0, 0.05, 0.1}
θ f(ϑ) g 0.6ϑ α 0.05
r0 θ δ 0.9
σA 0.036 y 0.5
ρ 0.03 z a

λA 0.03b

λr 0.01b

a Determined by the numerical calibration procedure.
b The parameters λA and λr are formally introduced in Section 4.3. λA is chosen as

suggested in Cappiello et al. (2008).

4.3. Policyholder Utility Analysis

To assess the alternative guarantee designs from the policyholder perspective,

we apply a utility analysis similar to that of Broeders et al. (2011) to the terminal

contract payoff LT . The representative policyholder is assumed to be risk-averse

and to have a power utility function U given by

U(x) = x1−γ

1− γ , γ 6= 1, γ > 0, (17)

where γ is the coefficient of relative risk aversion. To simplify matters, we do

not compare the expected policyholder utility directly but determine for each

11Different initial values lead to slightly different fair guarantees values. However, the overall
characteristics remain the same and thus the results are comparable. Additionally, we verify
the stability of the guarantee value estimation by computing the relative standard deviation
of the estimator based on 100 runs for a fixed level of initial reserves and a fixed set of optimal
parameters. We find that, except for the money-back guarantee, the guarantee value estimation
is more precise when average market rates are low. However, we cannot identify a clear trend
as to for which guarantee type the estimation works best.
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guarantee design and economic environment the certainty equivalent CE, which

is defined by

U(CE) = EP [U(LT )] . (18)

The certainty equivalent is the amount of contract payoff that has a utility equal

to the expected utility of the payoff distribution LT . Given the above utility

function, a higher certainty equivalent implies a higher utility and thus a more

preferable guarantee design from the policyholder perspective.

When conducting the analysis, we first determine the surplus parameters

leading to a fair contract (see Section 4.2) and then compute the certainty equiv-

alent within the particular setting. The latter step requires reference portfolio

evolution under the objective probability measure P. To this end, we introduce

the equity risk premium, λA, and the market price of interest rate risk, λr. Using

Girsanov’s theorem (see, e.g., Shreve, 2004) we find that the reference portfolio

evolves under P according to

dAt
At

= (rt + λA)dt+ σAρdW̃t + σA
√

1− ρ2dZ̃t, (19)

where W̃t and Z̃t are independent P-Brownian motions. The short rate dynamics

change to

drt = κ̃(θ̃ − rt)dt+ σr
√
rtdW̃t, (20)

where κ̃ = κ− λrσr and θ̃ = κ
κ−λrσr

θ.

5. Numerical Results

In this section, we analyze the fair guarantee value in different interest rate

environments, examine how assumptions about the regulatory parameters y and

δ impact the different guarantee types, and quantify the model risk with respect

to asset volatility. In a last step, we compare the policyholder utility of the

alternative designs. It might happen that the calibration procedure stops pre-

maturely at a local minimum which then does not imply a fair contract. In some

of these cases, we can manually find optimal parameter combinations. However,

16



since this approach is rather arbitrary, we do not include those results in the

subsequent analysis.

5.1. Guarantee Value

Figure 1 shows the fair guarantee value for contracts sold in different eco-

nomic environments under the current 60 percent rule and the alternative designs

introduced in Section 4.1. The optimal surplus parameters and the correspond-

ing decomposition of the fair contract value are shown in Tables A1 to A6 in the

Appendix.

Figure 1a illustrates how different economic environments ϑ and initial re-

serve levels x0 affect the fair guarantee value C0 under the 60 percent rule. In

low interest rate environments, we find that the guarantee increases significantly

in value and is highly sensitive to further changes in the average market rate.

According to the fair contract condition (9), any increase in the guarantee value

has to be compensated by an equal change of D0 + ∆R0. In contrast to the

value of dividend payments, D0, which decreases in low interest environments,

the expected change in reserves, ∆R0, strongly increases. This implies that the

shareholders receive less compensation for their investment in the company and

more money is kept as reserve for future generations of policyholders.

For higher market rates, we observe a notably lower and less sensitive guar-

antee value. Under both variations of the reduced guarantee, as well as under

the money-back and temporary guarantee, the guarantee value is generally lower

but shows characteristics similar to the 60 percent rule. The increase for low

interest rate levels, however, is more pronounced (see Figures 1b to 1e). For the

reduced guarantee we observe the guarantee value to decrease with the portion

π of the average market rate passed on as guarantee. Thus, for π → 0, this guar-

antee type converges to the money-back guarantee. Similar results are found for

the temporary guarantee: for τ1 → 0 it converges to the money-back guarantee,

for τ1 → T to the 60 percent rule.

For the fixed safety margin guarantee (illustrated in Figure 1f), we observe

some fluctuations of the otherwise rather stable guarantee value for x0 = 0

and x0 = 0.1. However, when comparing with results obtained by using differ-
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(a) Status quo (60 percent rule).
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(b) Reduced guarantee (40 percent rule).
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(c) Reduced guarantee (20 percent rule).
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(d) Money-back guarantee.
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(e) Temporary guarantee (5 years).
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(f) Fixed safety margin guarantee (150 bps).

  x0 = 0% x0 = 5% x0 = 10%

Figure 1: Guarantee value for the 60 percent rule and several alternative designs
for different levels of initial reserves.
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ent initial values for the calibration, we find these fluctuations to be random.

Thus, the fixed safety margin guarantee produces guarantee values independent

of economic environment. Higher safety margins lead in general to lower guar-

antee values. However, due to the restriction g ≥ 0 this guarantee type equals

the money-back guarantee in low interest rate environments (in fact, these two

guarantee types coincide for all average market rates below the chosen safety

margin). This observation identifies the spread between average market rate

and guaranteed rate to be one of the main determinants of the guarantee value.

In the case of no initial reserves, the guarantee accounts for up to 6 percent

of the contract value. For a higher initial reserve level x0, the guarantee value is

lower for all designs and all average market rates as adverse portfolio returns can

be compensated by releasing reserves. The values shown in Tables A1 to A6 sug-

gest that the surplus parameters leading to fair contracts are relatively smooth in

ϑ. For all designs except the fixed safety margin guarantee we observe the lower

bound a of the reserve corridor to be decreasing in ϑ – meaning the company is

crediting the target rate more often and thus is retaining less surplus to build re-

serves. The upper bound b is in most cases only slightly decreasing in ϑ whereas

the factor zf for the target rate increases notably. All these effects are less pro-

nounced for increasing initial reserves. For the fixed safety margin guarantee,

there is no clear trend in how the surplus parameters depend on the average

market rate; they are rather stable, with only minor fluctuations. This smooth

behavior can be used in cases where the numerical calibration method fails. For

example, in the case of the fixed safety margin guarantee (Table A6), we show

that even though the calibration procedure fails for (ϑ, x0) = (0.09, 0.05), the

parameters (a, b, zf ) = (0.0390, 0.2693, 1.2035) lead to a fair contract with the

decomposition C0 = 207.12, D0 = 87.86 and ∆R0 = 119.26.

5.2. Impact of the Regulatory Parameters y and δ

Analyzing the impact of the parameters y and δ on the fair guarantee value is

particularly interesting as these parameters are subject to regulatory decisions.

The regulator might modify accounting rules or minimum surplus requirements,

leading to changes of y and δ. A different value for y means that insurers will
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have to display a lower or higher portion of their market value earnings as book

value earnings. As the minimum surplus is based on book value earnings, y

directly influences the amount of surplus distributed and thus the guarantee

value. Changing δ also directly affects the minimum surplus.

For the case of y we consider two scenarios: in one the approximation factor

is changed to y = 0.3, in the other to y = 0.7. The higher the value for y, the

more restrictions in asset valuation apply and book value earnings are closer to

market value earnings. As the movement toward IFRS leads to more market-

value-based accounting, the results for y > 0.5 are of special importance. For δ

we consider the assumption that the regulator suspends the minimum surplus

requirements, that is, sets δ = 0.
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(a) y = 0.3.
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(b) y = 0.7.

  60 percent rule money−back temporary (5 years) fixed safety margin (150 bps)

Figure 2: Absolute value of the deviation of the fair guarantee value relative to
the base case of y = 0.5 under different guarantee designs for y ∈ {0.3, 0.7}.

Our results are inconclusive as to the impact of y on the guarantee value.

That is, we cannot identify a clear trend as to whether changing y increases or

decreases the fair guarantee value in general. Since the calibration procedure

usually does not yield a unique solution, the impact of y might vary depending

on the chosen solution. Thus we show in Figure 2 the absolute value of the

guarantee value’s deviation relative to the base case y = 0.5. When y increases

(more restrictions on determining book values), the guarantee value deviates

more strongly from the base case compared to when y decreases. In general, we
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observe that the higher the average market rate, the lower the deviation of the

guarantee value. It is difficult to definitely state which guarantee design is most

sensitive to changes in asset valuation restrictions. For y = 0.3 it seems to be the

money-back and fixed safety margin guarantee whereas for y = 0.7 the numbers

are ambiguous. An analysis of the influence of δ yields results comparable to the

case of y = 0.3 which can be explained by the functional form of the minimum

surplus requirement.

5.3. Model Risk

For a fixed initial reserve quota of x0 = 0.05, we assume the asset volatility σA
is lower/higher than initially anticipated. Figure 3 shows the relative deviation of

the guarantee value when the asset volatility is overestimated by 50 bps (dash-

dot line), or underestimated by 50 bps (solid line), meaning that σA is not

0.036, but in fact 0.031 (overestimation) or 0.041 (underestimation). Again,

cases where no fair contract was found are omitted (i.e., no marker for these is

shown in Figure 3).

Figure 3 clarifies that underestimating the asset volatility generally results

in a larger relative deviation compared to overestimation. Except for the fixed

safety margin guarantee, the deviation increases with the average level of interest

rates. This effect is most pronounced for the money-back guarantee, where

the relative deviation more than triples. The fixed safety margin guarantee,

in contrast, shows a rather stable, slightly decreasing deviation. Of all the

compared guarantee designs, the money-back guarantee is the most sensitive to

a misspecification of asset volatility, thus exhibiting the highest model risk. For

the chosen safety margin of 150 bps, the fixed safety margin guarantee has the

lowest model risk.

5.4. Policyholder Utility

To conclude the analysis, we compare the different guarantee designs for fair

contracts by assessing their utility from the policyholder perspective. To this

end, we fix the initial reserve quota again at x0 = 0.05 and assume policyhold-

ers with different degrees of risk aversion, represented by γ = 2, 5, and 10 in
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(a) Status quo (60 percent rule).
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(b) Money-back guarantee.
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(c) Temporary guarantee (5 years).
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(d) Fixed safety margin guarantee (150 bps).

 
 

σA − 50bps σA + 50bps

Figure 3: Relative deviation of the guarantee value if the underlying asset volatil-
ity σA is misspecified by ±50 bps.

Equation (17). The value γ = 2 implies a very low degree of risk aversion (cp.

Broeders et al., 2011), whereas γ = 5 and 10 correspond to higher degrees of

risk aversion.

To simplify matters, we compare the corresponding certainty equivalents,

which are illustrated in Table 3. For each pair of (γ, ϑ), the highest value is

printed in bold. We find that the certainty equivalent, and thus the expected

policyholder utility, increases with the average market rate since this, ceteris

paribus, increases the payoff. We also see that the expected utility decreases

with increasing risk aversion, which can be explained by the functional form of

the utility function. Compared to the certainty equivalent variation between

the market rates and the risk aversion levels, the variation observed between
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the different guarantee types seems rather small. That is, we observe only rel-

atively small deviations when comparing the certainty equivalent for a given

combination of market rate and risk aversion level (the maximum reduction is

1.38 percent with the money-back guarantee, 10 percent average market interest

rate, and the highest risk aversion). It thus seems that for the policyholder the

differences in the expected utility between different guarantee types are not very

substantial. A possible explanation for these rather small deviations is that the

payoff is mainly determined by the reference portfolio’s performance and not so

much by the actual guarantee type.

For very low average market rates, the money-back and fixed safety margin

guarantee yield the highest utility, independent of the degree of risk aversion.12

An explanation for this result might be that from the policyholder perspective a

lower guarantee can lead to a higher expected utility as it imposes less restrictions

on the insurer’s asset allocation (cp. Wagner and Schmeiser, 2012). Our results

allow no clear conclusion for the case of higher average market rates, but the

fixed safety margin guarantee does appear to prevail for higher degrees of risk

aversion.

An additional sensitivity analysis reveals that for all guarantee types the

certainty equivalent is positively correlated with the equity risk premium λA as

it drives the reference portfolio’s return. The correlation with λr is also positive,

albeit to a much lower extend. For different sets of optimal surplus parameters,

we obtain comparable results.

6. Summary

This paper presents a comprehensive analysis of the impact of different eco-

nomic environments on alternative interest rate guarantee designs, including

the 60 percent rule typical of traditional life insurance products in Germany.

The aim is to provide a better understanding of how value and sensitivity of

12Note that for an average market rate of 1.5 percent the money-back and the fixed safety
margin guarantee coincide. More generally, these two guarantee types coincide for all average
market rates below the chosen safety margin due to the restriction gt ≥ 0.
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the guarantee are influenced by changes in the average level of interest rates.

The analysis is motivated by the current environment of very low interest rates,

which is forcing the life insurance industry to reassess its product portfolio, par-

ticularly with respect to traditional contracts including long-term interest rate

guarantees.

Our main results can be summarized as follows. For new contracts with

guarantees based on the 60 percent rule, as proposed by the current regulatory

framework, the guarantee value increases significantly in low interest rate envi-

ronments. Moreover, the alternatives favored by practitioners, the money-back

and temporary guarantees, are also subject to this shortcoming as they exhibit

the same characteristics, although in a less pronounced fashion. Only under a

fixed safety margin guarantee, the guarantee value is almost independent of the

interest rate environment. Based on these observations, the spread between av-

erage market rate and guaranteed rate is identified to be one of the key drivers

of the guarantee value.

Increasing the initial reserves also has a strong impact on the guarantee value

as adverse portfolio returns can be compensated by releasing reserves. However,

it does not affect the general characteristics across different economic environ-

ments. The regulator’s influence on the guarantee value through the parameters

y (portion of market value earnings to be displayed as book value earnings) and

δ (minimum surplus participation rate) declines notably with increasing market

rates. In terms of model risk, the money-back guarantee is most sensitive to

a misspecification of asset volatility. However, it is the very same design that

leads to the lowest guarantee value in all environments considered. In contrast

to this, the fixed safety margin yields stable but high guarantee values, which

can become problematic when average market rates drop from a high level. The

utility analysis suggests that from the policyholder perspective there seems to

be no substantial difference between the different guarantee designs in terms of

expected utility. Thus, assuming a utility-maximizing policyholder, the com-

pany might choose the guarantee design exhibiting the most desirable guarantee

value properties.
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The analysis presented in this paper can be extended in various directions,

for example, by improving the model. This could be achieved by reconsidering

the short rate model used. It is established that the CIR model produces only

a limited range of yield curves. Thus, the term structure model described by

Cairns (2004) might be a suitable alternative as it not only produces a wider

range of yield curves, but also allows for sustained periods of both high and

low interest rates with a “sufficiently high” probability. However, the question

as to which model is most suitable in this insurance-related context remains

unanswered.

The set of alternative guarantee designs analyzed can also be extended.

Inflation-based guarantees might prove beneficial to customers as they guar-

antee a certain purchasing power in the future instead of some nominal rate.

However, pure purchasing power guarantees (where the amount guaranteed at

maturity solely depends on the realized inflation rate) do not qualify for fa-

vorable tax treatment in Germany as they do not satisfy the mandatory gross

premium guarantee. In times of deflation, the guaranteed amount might be

nominally lower than the sum of premiums paid even though the purchasing

power is higher. If such guarantees are to be introduced in the near future, they

most likely will be offered only with unit-linked contracts.

Appendix

Tables A1 to A6 illustrate the surplus parameters leading to a fair contract

and the corresponding decomposition of the fair contract value.
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