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Price dynamics in electricity markets

Florentina Paraschiv

Abstract With the liberalization of global power markets, modeling of exchange
traded electricity contracts has attracted significantly the attention of both academic
and industry. In this paper we offer an overview of the most common deseasonaliza-
tion techniques and modeling approaches in the literature. We extract the determin-
istic component of EEX Phelix hourly electricity prices and we discuss different
financial and time series models for their stochastic component. Additionally we
apply Extreme Value Theory (EVT) to investigate the tails of the price changes dis-
tribution. Generally our results suggest EVT to be of interest to both risk managers
and portfolio managers in the highly volatile electricity markets.

1 Introduction

Finding realistic models to describe electricity prices is essential for the valuation
of power grids, for the risk managers in the estimation of risk measures as well as
for portfolio managers to determine worst-case scenarios in very turbulent markets.

Electricity prices pose a particular challenge for researchers, given their main
characteristics: seasonalities, mean reversion, extremely large price movements as
well as negative prices. Seasonality represents the deterministic component of the
prices. A successful modeling approach is based on a rigorous deseasonalization
technique. Therefore the seasonal components of electricity prices are discussed
here in detail and we further offer a review of the main procedures used in the
literature to deseasonalize them.

Beside the deterministic component, electricity prices have also a stochastic com-
ponent, given by the inefficient storing capacities for electricity or by the intense
use of renewable energy over the last years for power generation. Thus, the pro-
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duction has to follow the more or less inelastic demand and traders of electricity
with physical delivery are forced to balance their accounts in every single hour,
independently of the actual offers. This leads to extreme fluctuations in electricity
prices, which make them difficult to forecast. The most frequently applied mod-
els for the stochastic component of electricity prices are financial and time-series
models. In this paper we offer a comparative view of three popular financial mod-
els: Brownian motion, Ornstein-Uhlenbeck process and the well-known Pilipovic
model. From the time-series models we selected for discussion the most popular
ones: ARMA (Autoregressive Moving Average) models as well as GARCH (Gener-
alized Autoregressive Conditional Heteroscedasticity) models. Given the extremely
large price movements in electricity prices, we model extreme tail quantiles with
Extreme Value Theory (EVT) applied to EEX Phelix hourly electricity prices. We
show that this procedure describes more realistically extreme tail quantiles than the
classical time-series models.

In the sections 2 and 3 we offer a description of the main characteristics of
electricity prices and we discuss the main deseasonalization techniques. Section 4
classifies and discusses comparatively different modeling approaches for electric-
ity prices. Section 5 shows an application of extreme value theory for modeling
extremely large electricity price changes. Section 6 offers a summary of the paper.

2 Characteristics of electricity prices

Electricity markets have particularities which clearly distinguish them from other
commodity markets. Given the lack of efficient storing opportunities for electric-
ity, which prevents intertemporal smoothing of the demand by holding storages,
extremely large price movements (spikes) as well as various cyclical patterns of be-
havior occur. Supply and demand determine market prices which have to correspond
exactly at any location and at any time. Because of limited efficient storing capaci-
ties, the grid operators have difficulties to balance out hard-to-predict variations in
power production and consumption in order to cover peak loads. The main charac-
teristics of electricity prices are: seasonalities, mean reversion and negative prices.

2.1 Seasonalities

The seasonal behavior of electricity prices is one of the most complicated ones
among all commodities. It is predominantly caused by the almost inelastic, at least
in the short-term, demand for electricity, which by itself shows pronounced patterns
caused by economic and business activities.

Electricity prices reveal three types of cyclical patterns: daily, weekly and yearly
seasonality (see [3]). As emphasized in [27], the amount of electricity demanded de-
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pends mostly on the level of human activity, as well as on the weather and climate
conditions. Essentially, two Off-Peaks can be observed: Off-Peak 1 and Off-Peak 2.
Off-Peak 1 is represented by the first 7 hours of the day, when most people sleep and
fewer businesses are operating. Off-Peak 2 are the last four hours of the day, when
most human and business activities have ceased. In-between, during the Peak hours
(between 8 a.m. and 8 p.m.), electricity demand increases drastically, an intensifi-
cation that is linked to people getting ready for the day ahead and to the start of the
business activities (see [5]). Figure 5 summarizes the autocorrelation function for
the baseload hours (prices for the 24 hours of the day) versus the Off-Peak and Peak
hours. On average, electricity prices are relatively constant during the working week
(holidays have to considered separately), whereas at week-ends and during holidays
electricity prices fall. In addition to this, the hourly pattern differs depending on the
season. While in winter we can observe two peaks (at noon and one evening peak,
at 7 p.m.), in summer we typically observe only one peak at noon (see figure 1).

2.2 Mean-reversion

In the short-term electricity prices are characterized by jumps or spikes. However,
in the long-run they revert to the mean-reverting level (MRL) (see [6]). The long-
term price level is characterized by the marginal costs of production. These can be
constant, periodic or periodic with trend. This argument refers to the theory of per-
fect competition, i.e. if demand for electricity is high, production capacities with
high marginal costs are implemented, whereas if demand is low, production ca-
pacities with low marginal costs are used and consequently prices fall. The align-
ment from capacities with lowest to ones with highest marginal costs is depicted by
the so-called merit order. This notion implies that there is more than one constant
mean-reversion level, depending on the time of the day, of the week, and of the year
(see previous section). Hence, the concept of mean reversion implies that electricity
prices return to their respective usual level (see [11]).

2.3 Negative prices

The limited storing capacities and the limited load change flexibility caused the
negative electricity prices at EEX. From an economic perspective, negative prices
can be rational, e.g., if the costs to shut down and ramp up a power plant unit exceed
the loss for accepting negative prices (see [16]). Since September 1st 2008, negative
price bids have been allowed at the German power exchange EEX as the first energy
exchange in Europe. In our analysis we will refer to the German power exchange
EEX Phelix hourly electricity prices between September 2008 and December 2011.
Historical spot market data over the investigated period shows a total amount of
about 100 hours with negative prices. Mostly, they occur in the night and morning
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hours (23:00 to 08:00) as displayed in figure 6. Furthermore, they occur with higher
frequency on Mondays and Sundays (figure 7). As shown in the histogram in figure
8, the absolute frequency of the prices presents clusters of 2 EUR/MWh.

3 Deseasonalization techniques

The electricity prices are explained by two fundamental components: a deterministic
component represented by the typical seasonality pattern and the price uncertainty
as stochastic component of the prices. The load, as one main driver of electricity
prices shows some noticeable patterns, such as the peak at midday in summer days.
The electricity prices follow more or less typical seasonality patterns, which are
described in the literature by deterministic functions. However, as discussed in [16],
beside the deterministic impact factors, electricity spot prices are also influenced by
uncertain parameters like power plant outages and fluctuant renewable electricity
generation. These uncertainties are drivers of the stochastic component of the spot
prices. The current section offers an overview of the deseasonalisation techniques
applied in the literature for electricity prices, while the next section will classify
modeling approaches for the stochastic component.

3.1 Preliminaries

In order to incorporate the seasonal feature while taking the property of mean-
reversion into account, the spot price can be expressed as a combination of these
two components:

Pt = ft +
n

∑
i=1

Xi,t (1)

where ft is the deterministic component seasonality and Xt is the stochastic part.
There is a discussion in the literature whether level or logarithmic prices should be
modeled. Accordingly to [31] or [15] the drawback of deseasonalizing day-ahead
spot prices is that the residuals of Pt − ft can become negative, which prevents the
use of logarithms on the deseasonalized spot prices. In addition, the authors mention
as well that the advantage of using the spot prices instead of their logarithms is that
on average they yield better parameter estimates. In the current paper we will look
at the level of the prices.

Demand and supply of electricity show seasonal fluctuations, which traduce into
the seasonal behavior of spot electricity prices. Figure 1 depicts the average price
per month (January and July) and type of day (week-day and weekend day/holiday,
respectively). This chart confirms the seasonality pattern of the electricity prices.
Over the 24h time period, prices move in a distinct hourly pattern, which follows the
demand for electricity. As we have already mentioned, prices start increasing when
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people get ready for the day (around 6-7 a.m.) and decrease after 8 p.m., when
business activities are over. We observe differences in the prices between winter
and summer time as well as between workdays and weekend days (see [11]). Often
researchers look distinctively at different hours within a day, given their distinctive
patterns: they distinguish between baseload and Peak hours and even more: between
Off-Peak I and Off-Peak II hours.
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Fig. 1 Hourly and daily day-ahead price patterns for EEX Phelix

3.2 Overview of deseasonalization techniques

The aim of deseasonalization techniques is to reduce the predictable pattern of elec-
tricity prices, in order to delimitate the stochastic component of the prices. We firstly
remove the long-term trend from the hourly electricity prices:

f trend
t = atrend +btrendt (2)

The constant term a of the equation may be interpreted as the fix costs of power
production. The term t represents the “long-run linear trend in the total production
cost”, which is related to macroeconomic variables like inflation and, hence, depicts
a positive trend.
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Secondly, the seasonality of de-trended prices should be removed. Based on the
discussion in [11], we give an overview of the several suggestions in the literature to
describe the daily, weekly and annual cycles of electricity prices. There are many de-
seasonalizing techniques in the literature. Thus, [17] implement piecewise constant
functions; [8], [25] and [32] adopt sinusoidal functions; [19] use a combination of
both.

3.2.1 Yearly seasonality

The yearly seasonality can be modeled with the classical trigonometric functions:

f season
t = a+b1,t cos

(
2π

8760
· (t− τ)

)
+b2,t sin

(
2π

8760
· (t− τ)

)
(3)

The parameter τ defines the phase shift, i.e., the starting point of a seasonal os-
cillation, and 8760 is the number of hours in one year. The use of trigonometric
functions to define the yearly season is a common method in the literature. How-
ever, this method alone does not deliver satisfactory results (see [16]). The use of
only trigonometric functions for the EEX prices is indeed not suitable, as they do
not show a strong seasonality over the year – after all, some winters have almost
spring-like temperatures, and vice versa. In order to make the explanatory power of
the trigonometric functions stronger, other variables need to be added, e.g. time (see
[31]).

Another method suggested by [16] is the use of the monthly average prices P̄m′ as
a seasonality factor over the year. The seasonality over the year in this case defines
the mean values of the hours of the respective months as a seasonality component:

f season
t =

12

∑
m′=1

P̄m′ ∗1(m′ | m′ = m(t)). (4)

3.2.2 Weekly seasonality

The weekly cycle can be established using several methods. The first one is called
adjusted absolute sinus-function (aasf) (see [16]).

f weekly
t = α +d

∣∣∣sin
(

π ∗ t
168
−ϕ

)∣∣∣ (5)

The phase shift parameter ϕ is determined as the deviation from the point in
which the weekly cycle reaches its minimum in the observation set. For this purpose,
we calculate the mean values of the electricity prices for each day of the week. This
calculation delivers the seventh hour of Sunday as the minimum price. Then we take
the distance of all hours of the week from the respective Sunday’s seventh hour (see
[16]). An alternative to verify to what extent a (daily) seasonality exists within the
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week is to include dummy variables. For more information about this method, see
[3] or [11].

3.2.3 Daily cycle

The daily cycle is defined as the mean over the 24 hours of the day and is then re-
moved. Different daily cycles are determined for each season: winter, spring, sum-
mer and autumn. Thus, we take daily average prices for each weekday d dependent
on the season.

f daily
i,season =

24
Tseason

( Tseason
24 )−1

∑
d=0

Pi+24d,season (6)

where d is one of the weekdays, i is the hour of the day and T is the maximum
number of hours overall d weekdays in one season (winter, spring, summer or au-
tumn). There are two ways used in the literature to deseasonalize: either to split the
seasonal decomposition into daily, weekly and yearly seasonality and to estimate
them separately, or to consider them simultaneously (see [16]):

ft = atrend +btrendt + c
24

Tseason

( Tseason
24 )−1

∑
d=0

Pi+24d,season +d
∣∣∣sin

(
π ∗ t
168
−ϕ

)∣∣∣+
+ e

12

∑
m′=1

P̄m′ ∗1(m′|m′ = m(t)) (7)

3.3 Application

In this section we derive the seasonality shape for EEX Phelix hourly electricity
prices quoted at the European Energy Exchange (EEX), between September 2008
and December 2011. The derivation of the deseasonalization shape follows the pro-
cedure described in [3]. In a first step, we identify the seasonal structure during a
year with daily prices. In the second step, the patterns during a day are analyzed us-
ing hourly prices. Let us define two factors, the factor-to-year ( f 2y) and the factor-
to-day ( f 2d) (following the usual notation in [3]). By f 2y we denote the relative
weight of an average daily price compared to the annual base of the corresponding
year:

f 2yd =
Sday(d)

∑kεyear(d) Sday(k) 1
K(d)

(8)
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Sday(d) is the daily spot price in the day d, which is the average price of the hourly
electricity prices in that day. K(d) denotes the number of days in the year when
Sday(d) is observed. The denominator is thus the annual base of the year in which
S(d) is observed.

To explain the f 2y, we use a multiple regression model (similar to [3]):

f 2yd = α0 +
6

∑
i=1

biDdi +
12

∑
i=1

ciMdi +
3

∑
i=1

diCDDdi +
3

∑
i=1

eiHDDdi + ε (9)

• f 2yd : Factor to year, daily-base-price/yearly-base-price
• Ddi: 6 daily dummy variables (for Mo-Sat)
• Mdi: 12 monthly dummy variables (for Feb-Dec); August will be subdivided in

two parts, due to summer vacation
• CDDdi: Cooling degree days for 3 different German cities
• HDDdi: Heating degree days for 3 different German cities

where CDDi/HDDi are estimated based on the temperature in Berlin, Hannover and
Munich.

• Cooling Degree Days (CDD) = max(T −18.3◦C,0)
• Heating Degree Days (HDD)= max(18.3◦C−T,0)

We transform the series f 2yd from daily to hourly, by considering the same factor-
to-year f 2yd for each hour t observed in the day d. In this way we construct hourly
f 2yt series, which later enter the shape st . The f 2d, in contrast, indicates the weight
of the price of a particular hour compared to the daily base price.

f 2dt =
Shour(t)

∑kεday(t) Shour(k) 1
24

(10)

with Shour(t) being the hourly spot price at the hour t. We know that there are con-
siderable differences both in the daily profiles of workdays, Saturdays and Sundays,
but also between daily profiles during winter and summer season. Thus, following
[3] we suggest to classify the days by weekdays and seasons and to choose the clas-
sification scheme presented in table 1. The workdays of each month are collected
in one class. Saturdays and Sundays are treated separately. In order to obtain still
enough observations per class, the profiles for Saturday and Sunday are held con-
stant during three months.

Table 1 The table indicates the assignment of each day to one out of the twenty profile classes. The
daily pattern is held constant for the workdays Monday to Friday within a month, and for Saturday
and Sunday, respectively, within three months.

J F M A M J J A S O N D
Week day 1 2 3 4 5 6 7 8 9 10 11 12
Sat 13 13 14 14 14 15 15 15 16 16 16 13
Sun 17 17 18 18 18 19 19 19 20 20 20 17
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The regression model for each class is built quite similarly to the one for the
yearly seasonality. For each profile class c = {1, . . . ,20} defined in table 1, a model
of the following type is formulated:

f 2dt = ac
o +

23

∑
i=1

bc
i Ht,i + εt for all tεc. (11)

where Hi = {0, . . . ,23} represents dummy variables for the hours of one day.
The seasonality shape swt can be calculated by swt = f 2yt · f 2dt . swt is the fore-

cast of the relative hourly weights and it is additionally multiplied by the yearly
average prices, in order to align the shape at the prices level. This yields the season-
ality shape st which is finally used to deseasonalize the electricity prices. Figure 2
shows the autocorrelation function of the hourly prices before and after deseasonal-
izing.
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Fig. 2 Autocorrelation function before and after deseasonalization

The deseasonalized series is assumed to contain only the stochastic component
of electricity prices, such as the volatility and randomly occurring jumps and peaks,
which can be simulated via different stochastic processes, as described in the fol-
lowing section.
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4 Modeling approaches for electricity prices

There are many different theoretical methods that can be applied for electricity price
simulations depending on the research question or planning tasks. Thus, the differ-
ent methods cannot be directly compared with each other as each method has its
strengths and its weaknesses. Accordingly to [30], these methods can be classified
as:

• fundamental models
• game theoretic models
• financial mathematics models
• statistical and econometric time-series models
• technical analysis or expert system

4.1 Fundamental models and game theoretic approaches

Fundamental models consider modeling of the whole electricity system with all
suppliers, whereas each single power plant or technology classes are described sep-
arately in the modeling approach. This type of models include a detailed analysis
about the electricity demand as well as capacity use and maintenance hours of power
plants. They are used to produce scenarios for electricity prices, which are further
integrated for middle- to long-term planning tasks and price forecasts (see [16], [22],
[29]).

Game theoretic approaches consider the strategic behavior of different mar-
ket stakeholders [16]. These models simulate competitive electricity markets and
analyze long-term equilibriums on the whole-sale market in general based on a
Cournot-Nash framework (see [14], [18]). This type of models is used to test dif-
ferent market design options and to analyze the behavior of market participants (see
discussion in [16]).

4.2 Financial models

Financial and time-series models are calibrated on historical hourly or daily prices
and used for short-term price forecast in risk management. Financial mathematical
models such as Geometric Brownian motions or mean-reversion processes are one
of the most applied stochastic processes for electricity prices. They deal with the
volatility of electricity prices and can be used for derivative pricing or real options
in energy markets [13]. As an example for mean-reversion processes is the Ornstein-
Uhlenbeck process which, formulated for electricity price changes, reads:

dX(t) = k1(µ1−X(t))dt +σ1dW1(t) (12)
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The first term of the mean reversion process is the drift component. The pa-
rameter k1 describes the speed of the reversion of the stochastic component of the
electricity prices to their long-term mean µ1. The economic interpretation of this
mean-reversion component is that stochastic price fluctuations around the mean and
price peaks are only temporary, caused by e.g., power plant outages or capacity
storages [16]. The second term, the stochastic component dW1(t) corresponds to the
standard Brownian motion.

Another class of financial models is represented by two-factor models, which
distinguish between the short- and long-term dynamics of the prices. Examples in
this sense are the Pilipovic model or the model proposed by [26] who applied it to
oil markets, and expanded by [19] and [20]. The Pilipovic model is well established
in commodity markets and known as long-term/short-term model. The short-term
deviations are explicitly modeled as the deviations from the long-term mean.

The two-factor [24] model under P is

dXUnd
t = k2(Lt −XUnd

t )dt +XUnd
t σ2dW2t ,

dLt = µ2Ltdt +Ltσ3dW3t ,

dW2tdW3t = 0,
(13)

where

X Spot price
XUnd Underlying spot price value
Lt Equilibrium price
t Time of observation
k2 Rate of price mean reversion
σ2 Volatility
µ2 Drift of the long-term equilibrium price
σ3 Volatility of the long-term equilibrium price
dW2 Random stochastic variable defining the randomness in the spot prices
dW3 Random stochastic variable defining the randomness in equilibrium prices

The drift of the second factor reflects the expectations about available production
capacities in the future, trend of demand or political or regulatory effects. The first
factor, in contrast, models the differences between current value and a stochastic
equilibrium level. This means that the level of mean-reversion is not constant, but it
depends on the time of the day, of the week and of the year. These deviations reflect
short-term effects that result, for example, from variations in weather conditions or
intermittent supply shortages (see [3]).

To see the differences among the three popular financial models, we simulate
electricity spot prices employing a Brownian motion, an Ornstein-Uhlenbeck pro-
cess and the Pilipovic model. Firstly, we simulate the stochastic residuals using
equations (12) and (13), and in a second step, to obtain spot prices, we add the sea-
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sonality shape, as derived in section 3.3. We simulate 1000 scenarios and we look
comparatively at the probability distribution function of the simulated prices after 1
month, 6 months and 12 months horizon. The parameters used for our simulation
are summarized in table 2. Results are displayed in figure 3.
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Fig. 3 Distributional information over scenarios generated with different financial models

Table 2 Simulation parameters per annum

Geometrical Brownian motion
σ0 0.9−1/2

Ornstein-Uhlenbeck process
k1 1.7−1

µ1 0
σ1 0.74−1/2

Pilipovic model
k2 3−1

σ2 0.74−1/2

σ3 0.25−1/2

µ2 0

We observe that the distribution of spot electricity prices simulated by the
Pilipovic model is more skewed to the right than in the case of the prices ob-
tained with the other two model versions. This is actually the more realistic dis-
tribution, given the extremely large price movements observed in electricity prices.
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The difference between the Pilipovic model and the other two (Brownian motion
and Ornstein-Uhlenbeck models) is given by the fact that the former distinguishes
between the short-term and the long-term dynamics of electricity prices. Further-
more, the log spot price is assumed to mean revert towards an equilibrium level,
which itself is stochastic, while in the Ornstein-Uhlenbeck process the equilibrium
level is assumed constant. All three models simulate the skewed shape of the distri-
bution of electricity prices, with an increase in the planning horizon. However, the
Pilipovic model offers more realistic short-term forecasts than the other two models.

4.3 Time series models

Due to their widespread use and their comprehensibility we discuss now an im-
portant class of time series models - the family of Autoregressive Moving Average
(ARMA) models. This forecasting method is based on the assumption that data have
an internal structure such as autocorrelation. ARMA processes enable the simula-
tion of time dependencies within a time-series and consists of two parts, the au-
toregressive and the moving average part. The autoregressive component considers
the lagged p-price values for computing the stochastic component of the electricity
price Xt in t. The moving average component takes the weighted mean of the last q
error terms into account. The calculation of the price in t depends at least on a new
error term εt , which can be, e.g., normally or Laplace distributed.

Xt =
p

∑
i=1

αiXt−i +
q

∑
j=1

β jεt− j + εt . (14)

The parameters αi describe the impact of the values Xt−i at the actual value Xt for all
i = 1, ..., p. The parameters β j define the weights of the error terms (innovations) ε j
within the moving average component. For an extensive discussion and applications
concerning ARMA models for electricity prices see [16].

Typically ARMA models are used in time series analysis to account for linear
serial dependence. They provide the possibility to condition the mean of the process
on past realizations which has often produced acceptably accurate predictions of
time series in the short term. However, the assumption of autoregressive model of
conditional homoscedasticity is too constricting, as electricity prices usually display
volatility clusters or spikes. That is, the variance is not constant within all parts of
the time series, but there are rather phases of higher and lower volatility. During
the phases of high volatility, markets are often nervous and electricity prices jump
and remain longer in the jump-regime, implying a higher conditional probability for
high price changes, when such price movements have already occurred in the recent
past (see [16]).

Within the GARCH approach the assumption of homoscedasticity dropped for a
heteroscedastic variance, meaning that the variance is not constant within all parts
of the time series. The GARCH(p,q) process accordingly to [4] and [10] reads:
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σ
2
t = φ0 +

m

∑
z=1

φ1zσ
2
t−z +

n

∑
y=1

φ2yε
2
t−y (15)

The time-variant variance σ2
t is driven by a constant component φ0, the autoregres-

sive part of order m and a moving average part of order n. The variance at any time
t must be positive and in consequence the parameters φ0, φ1z and φ2y can take only
positive values, or equal zero at any time.

Researchers applying GARCH processes to model electricity prices assume that
these can handle the heteroscedasticity caused by jumps in the case of electricity
prices. However, beside seasonality and volatility clustering an important character-
istic to be considered are the large number of extreme price changes. The spiking
behavior is often described in the literature by regime switching models ([16], [3])
which allow electricity prices to switch between the normal or “base” regime and
the “jump regime”. Another modeling approach apply extreme value theory (EVT)
to model the extreme tails of the electricity prices ([7]). We offer such an example
in the next section.

5 Extreme value theory for tail-quantile estimates

One method to deal with extremely large price movements is to delimitate the ex-
treme tail of the distribution and to model it independently with the POT (Peaks over
the threshold) method, applying EVT (Extreme Value Theory) and GPD (General-
ized Pareto Distribution). We show the comparison of the modeling performance of
an AR-GARCH model with normal or t-distributed innovations against the condi-
tional GDP and POT method applied to tail quantiles for EEX Phelix hourly elec-
tricity prices, for the sample period August 2008–August 2011. Compared to typ-
ical financial assets like stocks and bonds, the magnitude of the price changes in
the EEX Phelix is extreme. As seen in figure 9, the exchange electricity prices have
some hours go as high as 496.26 EUR/MWh and some hours go as low as -500
EUR/MWh.

Since the price changes are so extreme in some hours and we focus on the
extreme quantiles of the distribution, we have chosen to use simple net returns
rt = (Pt − Pt−1)/Pt−1 instead of logarithmic returns. A similar methodology was
suggested by [7]. The drawback of working with simple net returns if one is inter-
ested in large price drops is that there is a lower bound of −100%. We therefore
focus in this study on the positive tail.

We model the seasonality of electricity prices in the mean equation of the AR-
GARCH specification. We therefore include AR(1) and AR(24) terms in the model
to account for the daily electricity prices seasonality. We end up with the following
specification:
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rt = a0 +a1rt−1 +a2rt−24 + εt

σ
2
t = φ0 +φ1ε

2
t−1 +φ2σ

2
t−1

where σ2
t is the conditional variance of εt . εt is equal to σtηt with ηt N(0,1) or

Student’s t-distributed i.i.d. innovations (scaled to have variance one) with mean 0,
variance 1 and degree of freedom ν . The reason for including the t-distribution is
that empirical evidence strongly rejects the idea that electricity price changes are
normally distributed (see [7]).

We fit both versions of the AR-GARCH model to data by maximizing the like-
lihood function. Results are available in table 3. Likelihood ratio test results show
a better performance of the AR-GARCH model with t-innovations against the ver-
sion with normal innovations. For both AR-GARCH models (with Gaussian and t-
distributed errors) we get significant parameter estimates and “a”-parameters that
are positive; a fairly high R2 shows that the model explains successfully the data.
The sum of the “a”-parameters is not significantly lower than one, however, an in-
finite unconditional variance cannot be rejected for any of the two models. This is
not surprising considering the extremely fat-tailed data in our study and it is fur-
ther supported by the large positive tail-index estimate for the residual series and,
particularly, for the original return series.

To check how much of the autocorrelation has been removed by our AR-GARCH
volatility model, we look at the autocorrelation function of the standardized residu-
als zt . To see how much of the heteroscedasticity has been removed by the GARCH
model, we will analyze the filtered residuals εt . Figure 10 shows that an independent
and identical distribution (i.i.d.) series is now approximately given for the standard-
ized residuals of EEX Phelix price returns. The standardized residuals are meant
to constitute the i.i.d. series with zero mean and unit variance that is used to esti-
mate the tails of the sample cumulative distribution function with EVT. In figure
11 one can clearly see the heteroscedasticity in the filtered residuals. Most of the
heteroscedasticity of the original data is reflected by our GARCH variance model.

We further investigate the tails of the price change distribution and estimate tail
quantiles αt,p. We take standard quantiles of the normal distribution or of the t-
distribution, multiply them with estimates of σt and derive conditional tail quantiles
αt,p calling the mean equation of our AR-GARCH model:

αt,p = a0 +a1rt−1 +a2rt−24 +σtαp (16)

We further model extreme tail quantiles with EVT. That is, we focus on the ob-
servations in the residuals ηt from the AR-GARCH model with normal innovations
applying the POT method, following the procedure in [7]. We thus collect observa-
tions in the residual series that exceed a certain high threshold u (see [9], as cited by
[7]). The excess distribution Fu(y) is given by:

Fu(y) = P(R−u≤ y|R > u) =
(FR(u+ y)−FR(u))

1−FR(u)
, 0≤ y≤ RF −u (17)
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Table 3 AR-GARCH parameters. Own calculations

AR-GARCH parameters Normal Student’s t
Coeff. Std. errors Coeff. Std. errors

a0 ∗102 1.5 (0.00015) 0.037 (0.00008)
a1 0.0110 (0.0023) -0.0012 (0.0004)
a2 0.8640 (0.0016) 0.9817 (0.0004)
φ0 ∗104 5.1602 (0.000005) 0.0416 (0.000007)
φ1 0.5788 (0.0048) 0.4930 (0.0036)
φ2 0.4212 (0.0022) 0.5068 (0.0036)
ν 2.5407
Likelihood 35’100 54’670
R2 0.853
DW stat. 1.856

where y is the excesses over u, and RF is the right endpoint of FR, which is the
assumed distribution of the residuals ηt . For a high enough threshold u, [1] and [23]
show that for a large class of distributions FR the excess distribution Fu(y) can be
approximated by the so called Generalized Pareto Distribution (GPD):

Gξ ,α(y) =
[

1−
(

1+
ξ

α
y
)]−1/ξ

, if ξ 6= 0, (18)

Gξ ,α(y) = 1− e−y/α , if ξ = 0. (19)

for 0 ≤ y ≤ RF − u. ξ is the tail index and α > 0 is just a scaling parameter. The
parameters are determined by fitting the GDP to the actual data and by estimating
the parameters with the maximum likelihood method. In general, the threshold u
is chosen within reasonable limits of 5− 13% of the data. We look at the most
extreme 10% upper tail of the standardized residuals and fit the GPD to the upper tail
excesses over the threshold. Thus, our upper tail “starts” at 0.9339. The maximum
likelihood estimators for the generalized Pareto distribution are given in table 4. The
model fit for the upper tail of residuals is shown in figure 4.

Table 4 Maximum likelihood estimators for the generalized Pareto distribution parameters

Lower Tails Upper Tails
ξ α ξ α

0.5913 1.7230 0.6909 1.8377

Accordingly to [7], the unconditional EVT tail quantiles αp of the residual dis-
tribution with certain probabilities p is given by:

αp = u+
α

ξ

((
n

Nu
p
)−ξ

−1

)
. (20)
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Fig. 4 Generalized Pareto upper tail of residuals

where n is the total number of observations and Nu is the number of observations
above the threshold u. Conditional GPD tail quantiles are further obtained by calcu-
lating equation (16) for αp.

By counting the number of returns that are larger than the estimated tail quantile
for each model version against the theoretical number of exceedences, we get a
number that represents the accuracy of these estimates. Our estimated sample is
extended over a period of 27414 hours. In this case, we compute the theoretical
number of exceedences of a 99% tail quantile over a time period of 27414 hours as:
0.01 ·27414 = 274.14.

In the similar way we compute the theoretical exceedences of 95%, 99.5%,
99.9%, 99.95% and 99.99% (extreme quantiles).

In table 5 we present the number of exceedences of the AR-GARCH-based tail
quantiles for different tail probabilities. If a particular method to calculate marginal
quantiles works well, then the empirically observed number of exceedences should
be close to the theoretically expected. By comparing the AR-GARCH with normal
or t-innovations we conclude that the shape of the conditional error term distribu-
tion has an important impact on the tail-quantile estimates. Neither the conditional
normal distribution nor the conditional t-distribution captures the behavior of the
positive tail in a more realistic way. We observe that the performance of the normal
model gets worse, the higher the probability for the extreme tail is chosen, while
for the t-distributed model we observe a slightly better fit. Similar results where
found by [7] in an analysis of Nord Pool electricity prices. The interpretation is that
AR-GARCH models describe the entire distribution of returns, not only the most
extreme ones. Therefore they are not very successful in capturing extremely large
price movements in electricity prices. Similar discussions can be found in [16].
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The number of exceedences obtained with the POT method (conditional GPD)
are close to the empirical ones for all quantiles. The unconditional EVT-based risk
estimator has the advantage of treating the tails separately and thus more efficiently.
Extending their analysis with out-of-sample tests and price forecasts, [7] conclude
a high performance of the POT method in fitting extreme tails of hourly electricity
prices. This is of significant importance for risk managers in determining accurate
portfolio “value-at-risk”. Additionally, a realistic approach for modeling the tails
helps power portfolio managers for the estimation of worst-case scenarios in the
context of stress testing.

Table 5 In-sample evaluation of estimated tail quantiles at different probabilities (number of ex-
ceedences)

Probability Expected AR-GARCH AR-GARCH-t Conditional GPD
0.95 1371 1086 1232 1577
0.99 274 603 509 300
0.995 137 464 370 156
0.999 27 291 167 24
0.9995 14 253 116 13
0.9999 3 193 38 1

6 Summary

In this paper we present different modeling approaches for electricity prices. An
overview of the main deseasonalization techniques is given. The price character-
istics reflected by one or another model are discussed. Additionally the perfor-
mance of some popular financial models is assessed in parallel: Brownian motions,
Ornstein-Uhlenbeck processes and the Pilipovic model. We reveal the importance
of modeling the mean-reversion and show that it makes sense to separate the short-
from the long-term dynamics of electricity prices.

We further assess the performance of Extreme Value Theory (EVT) to model
extremely large price movements. This procedure gives much more realistic tail
estimates than the classical time-series models. Realistic tail quantiles estimates
for the electricity prices are of high interest for both risk managers and portfolio
managers in the high volatile electricity markets.

In this respect, the choice of the modeling approach depends on the different
research questions or planning tasks.
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Fig. 5 Autocorrelations of day-ahead baseload, off-peak I, peak and off-peak II hourly prices
(source [11], pp. 35)
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