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1 Introduction

In the last twenty years there has been a growing interest in high-frequency data. Ac-
cess to these data sources leads to the development of studies and empirical research in
several directions. From an economic point of view, research has focused on agent’s be-
havior and market microstructure (price formation, asymmetric information, news and
announcement impact). Within a statistical or quantitative framework, different authors
have studied the features or stylized facts of high-frequency time series (prices, returns,
volumes, liquidity, duration) and proposed appropriate modeling strategies. In the quan-
titative investment field, the empirical research leads to the development of quantitative
trading rules. Finally, within a risk management perspective, we place the studies dealing
with the development of daily variance estimators by means of high-frequency returns.1

Interest in high-frequency data began with the pioneering work on data collected by
Olsen Associates (see Dacorogna et al., 2001), which focused on currencies and were then
extended to other asset classes. With the development of IT tools, the high-frequency
finance literature also gained access to book data, with further developments from both
the theoretical and empirical points of view (see Parlour and Seppi, 2008).

However, only a few authors have discussed the properties of high-frequency data on
precious metals. Cai et al. (2001) focus on 5-minute gold future returns. They study the
periodicity in absolute returns and link its movements to macroeconomic announcements.
Fleming et al. (2003) make use of realized volatility on several assets and determine the
economic value of volatility timing. Their study includes 5-minute returns of gold futures
contracts. Baillie et al. (2007) analyze the dynamic behavior of several daily and 5-minute
commodity futures prices, including the gold future. Bannouh et al. (2009) work on co-
range computation (an estimator of the integrated covariance) with a trade dataset that
includes the gold future. Finally, Khalifa et al. (2011) focus on volatility measurement
and forecasting of several commodity future prices, including gold and silver. All of the
aforementioned studies have a common element: They work on New York futures data.
Moreover, to the best of our knowledge, gold has piqued the greatest amount of interest,
whereas silver has only attracted limited attention. We support this by the larger amount
of interest in gold, compared with other precious metals, and the perception of gold as a
safe-haven investment.

Our work belongs to the strand of literature focusing on high-frequency data on pre-
cious metals. We differ from previous studies in many respects because of our unique
database. First, we have access to high-frequency data about four different precious met-
als: gold, silver, palladium, and platinum. Second, our data are related to spot prices
and not futures contracts. Therefore, the time-series behaviors might be different as a
consequence of the different uses associated with spot and future contracts. To our knowl-
edge, there is no literature on palladium, and platinum high-frequency data. Third, we
have access to a brokerage house database that operates on a 24-hours basis. As a result,
the movement we observe in high-frequency time series can be linked to the activity in
different precious metals markets, including New York but also the European markets
(London and Zurich) and the Asian markets. This is of relevant interest because previous

1Several references to the previous topics can be found in O’Hara (1997), Bauwens and Giot (2001),
Dacorogna et al. (2001), Hasbrouck (2007), Engle and Russell (2009), Hautsch (2011), Schmidt (2011),
Ye (2011), and Abergel et al. (2012), among others.
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works only focused on a specific market. Fourth, we differ from previous works because
of our access to a trade-and-quotes dataset. From the trade side, we have trade prices,
associated volumes, and order side (allowing us to precisely distinguish seller-initiated
from buyer-initiated orders). On the quote side of the database, we have access to the
limited order book up to ten levels, with prices and volumes, which makes feasible the
evaluation of liquidity and market depth. Finally, the time frequency of the database
is extremely high, with book updates reaching a 100-millisecond frequency. Because of
the novelty of our database, the pure statistical analysis of high-frequency spot data on
precious metals is per se interesting and relevant.

In this work, we focus on the stylized facts and dynamic properties of the precious
metals data. We start from the most traditional time series, prices, and returns, and
then focus on the volatility, preliminary measured from squared returns and then filtered
with periodic components and GARCH-type models. We move later to volume time se-
ries and to two specific liquidity measures, the order flow, and the percentage quoted
spread. These two quantities provide a first look at the information one might extract
from a trade-and-quotes database on precious metals. The analyses reported here are,
by construction, preliminary to further economic applications at both the univariate and
multivariate level. Later studies will take advantage of the findings in the current paper.
There are several areas in which our results might be useful: (1) in trading, because the
dynamic properties we identify and the models we propose might be used to produce
forecasts of prices and volumes, with potential extensions that include trade duration
and liquidity as further covariates;, (2) in risk management, as we provide some evidence
on the volatility behavior and on its modeling, (3) in event studies, where the dynamic
behavior of prices, returns, volume and liquidity might be correlated to scheduled and/or
unanticipated announcements, and (4) in studies dealing with safe-haven effects, in which
precious metals may represent refuge assets.

The time-series analyzed here are characterized by the presence of a periodic behav-
ior in their levels and/or in the second-order moment. Such a finding is expected as we
consider intradaily data. However, the periodic movement is associated with the trading
activity of the main markets active in precious metals trading, which can be identified, for
instance, with peaks in the volatility of the returns time series. This result has relevant
affinities to the periodic behavior observed by Dacorogna et al. (1993) on the foreign
exchange market. For each of the analyzed series, we suggest the use of a dynamic model
for capturing the serial dependence in the mean and/or in the variance. The proposed
specifications seem appropriate in the whitening of the analyzed time series and allow the
development of research based on time-series forecasting.

This paper proceeds as follows: Section 2 describes the dataset and the variables of
interest; Section 3 focuses on the stylized facts of prices, returns, volumes, and liquidity
time series; Section 4 deals with dynamic models; and Section 5 concludes.
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2 Database description, data handling, and the ana-

lyzed quantities

The database used in this study has been provided by ICAP through its EBS platform.
EBS is the leading interdealer trading platform for currencies, and data provided by EBS
have been already used in academic research (see, for instance, Berger et al., 2008 and
Mancini et al., 2012). The database we access is equivalent to that adopted in Mancini et
al. (2012) and includes more than fifty currencies and four precious metals. For all assets
made available, the trades and quotes refer to spot prices. In this work we focus on the
precious metals: gold (identified by the ticker XAU), silver (XAG), palladium (XPD), and
platinum (XPT). We consider spot prices against the U.S. dollar and refer to one ounce
(for instance, gold quotes are U.S. dollar per one gold ounce). The data we analyze span
the period beginning with December 27, 2008 to November 30, 2010. The dataset includes
the recorded trades coupled with the information on the active part of the contract, the
traded volume, and the trade price. The presence of the maker and taker sides opens
the door to the construction of the order flow. Notably, as observed by Mancini et al.
(2012), trade direction data are known and do not need to be inferred by means of rules
such as done by Lee and Ready (1991). Besides the trade data, the database includes
the binding tradable bid and ask quotes, together with the related volume. In this case,
the information is provided for the book up to the tenth level. However, here we present
analyses based on the trade data and on the best bid and ask quotes. Moreover, we dis-
cuss the dynamic features of the data, comparing our findings to those of previous studies.

In the EBS database, data are recorded at a very high frequency (let us call them
nanofrequency data, or NF data2). From December 27, 2008 to the end of August 2009,
the observation frequency is 250 milliseconds; from the first of September 2009 to the end
of the sample, the observation frequency increases to 100 milliseconds.3 As a result, new
information is recorded by the system every 100/250 milliseconds if at least one of the
following events takes place: an order is executed and/or a new quote is entered/deleted
and/or a new volume is entered into the system at a quote already present in the system.
The last case produces a new flash of the book because each flash includes the number
of quotes in the market for each side/price together with the available volume. Table (1)
reports the total number of trades (buyer/seller initiated) and quotes (by market side) by
precious metals that are included in the database. We note that gold is the metal with
the highest activity, both in terms of trades and quotes. Silver has less than one-third of
the quotes of gold and is followed by platinum and then palladium. The last has less than
a twentieth of gold quotes. Excluding gold, with about 185 thousand trades, the other
precious metals have a similar number of trades.

Data are recorded on a GMT time scale, on a 24-hour basis, 7 days a week. As a result,
there are quotes and trades executed from buyers/sellers located in different geographical
areas. To the best of our knowledge, this study provides for the first time an analysis on
precious metal trades jointly covering the most active world markets. Compared with the

2We thank Michael McAleer for suggesting the use of this name for our dataset.
3The 100-millisecond frequency begins August 28, 2009, but a few days in July 2009, likely the

testing period, use the 100-millisecond frequency. Moreover, both frequencies (100 and 250 milliseconds)
are present on July 21, 2009, and August 28, 2009. This finding does not affect our results because we
aggregate data at lower frequencies.
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XAU XAG XPD XPT

Quotes bid 184.254.422 51.970.220 8.649.896 22.487.653
Quotes offer 169.512.628 48.992.734 7.908.232 23.365.209
Quotes total 353.767.050 100.962.954 16.558.128 45.852.862
Trades total 184.929 27.638 21.428 27.357

Outside trade Sunday 385 8 54 38
Outside trade Friday 32 7 17 40

Outside trade Saturday 2 0 1 0
Total outside trade 419 15 72 78

Traded volume (in 1000 oz) 233.610 1.173.425 165.580 170.140

Table 1: Number of quotes and trades

previous studies of Barkoulas et al. (1997), Baillie et al. (2007), and Khalifa et al. (2011),
our analysis includes trading activity originating from Asian markets as well as the com-
plete activity of European-based traders. Previous studies have focused on U.S.-based
data, including local market activities, where the trades originated from both European
and North American markets when trading hours overlapped. Therefore, the daily time
coverage of our database is a distinctive feature of our contribution.

In the following analyses, we limit the trading period to five full days, ranging from
10 p.m. Sunday to 10 p.m. Friday, and we delete all trades and quotes outside this range.
As shown in Table (1), the information excluded from the database is really of minor rele-
vance. As expected, in absolute terms, the deleted information is higher for gold compared
with the remaining metals. The procedure we adopt is similar to that employed for the
analysis of currency data (see Andersen et al., 2003 and Berger et al., 2008, among others).

The database reports the precious metals prices expressed in U.S. Dollars per ounce,
while the volume is expressed in multiples of the minimum tradable amount (MTA),
which is fixed as follows: 1,000 ounces for Gold; 25,000 ounces for silver; and 500 ounces
for palladium and platinum. As a consequence, physical volume time series of executed
trades might be sensibly different across precious metals, both for the different trading
activity, and for the different sizes of the MTA. In fact, as shown in Table (1), the traded
volume is the highest for silver (more than 1.1 billion of traded ounces) and lower for
gold, platinum, and palladium. Moreover, we observe that the trade size is the highest for
silver (about 42.5 MTA per executed trade) and the lowest for gold (less than 1.3 MTA
per trade). Platinum and palladium generally have a trade size larger than gold, 6.2 and
7.7 MTA per trade, respectively.

2.1 The variables of interest

From the whole database, we extract the relevant NF data, which are analyzed and ag-
gregated in different ways, depending on the quantities of interest. We first recover prices
and volume from the recorded trades. Within a given time interval, the price is defined
as the price of the last trade recorded in the interval. If no trades are present, we repli-
cate the previous interval price. Returns are then defined using the transaction prices.
Volume is equal to the sum of the amount exchanged in the trades recorded within a
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given time interval, regardless of the trade side (buyer/seller initiated). If a given time
interval does not include trades, the volume is equal to zero. In the following, we denote
the daily time index by t, the intradaily period by i = 1, 2, . . .N with N denoting the
number of intradaily periods in day t. Intradaily periods have length equal to 1/N days,
or 1440/N minutes. Furthermore, we indicate the end of period i of day t as (i, t), and
we use the following notation. The intradaily price sequence is denoted by pi,t, while
the intradaily volume time series is given as vi,t; the intradaily log-returns are defined as
ri,t = log (pi,t)− log (pi−1,t) , i = 2, 3, . . .N , and r1,t = log (p1,t)− log (pN,t−1).

4

Finally, we filter quote data from outliers, most likely associated to errors in matching
the asset identifier and the price.5 We choose a simple approach, excluding all quotes with
a value 20% higher (for buyer initiated) or lower (for seller initiated) than the average
trade price of the day.

The financial economics and econometrics literature includes several liquidity measures
(see the survey by Gabrielsen et al., 2011). In this study, we focus on specific quantities
that are exploiting part of the informative content of the database. We restrict our
attention to the order flow, OFi,t, and to the percentage quoted spread, QSi,t, defined as
follows.

• Order flow: Let h denote the execution time of an order, and denote by xh the trade
direction of the order recorded at time h; the trade direction is equal to −1 for
seller-initiated trades and +1 for buyer-initiated trades; the order flow for interval i
of day t is equal to OFi,t =

∑

(i−1,t)<j≤(i,t) xh; by definition, the order flow assumes

only integer values and can be either positive or negative.6

• Percentage quoted spread: Let Ai,t and Bi,t denote the best ask and bid Prices
available in the book at the end of period i at day t; we define the midquote as
Mi,t = 0.5 (Ai,t +Bi,t) and the percentage quoted spread as QSi,t =

Ai,t−Bi,t

Mi,t
.

The percentage quoted spread we consider is a standardized quantity allowing a direct
comparison across precious metals because it is not dependent on the price of the MTA.

We study time series of the previously defined quantities at different frequencies. We
analyze returns and volumes at the 5- and 60-minutes frequencies, where the first case
is only considered for gold and silver, due to the higher number of trades recorded for
these two metals. We inspect liquidity measures at the 15- and 60-minutes frequencies.
When the frequency is set at 60 minutes, the dataset contains 11,880 observations. The
number increases to 47,520 when considering the 15-minutes frequency and to 142,560
at the 5-minute frequency. We do not consider higher frequencies because of the large
number of zeros that would be observed in the time series of interest (see the following

4When computing the first return of the week on Sunday evening, we compute the returns with
respect to the last price observed on Friday evening. In addition, we have only removed a few bank
holidays (New Year’s Day [2009 and 2010], Good Friday [2009 and 2010], and Christmas Day [2009]).
Two days are not included in the database because of missing data: They are May 17, 2010, and May
18, 2010 (a Monday and a Tuesday).

5See, for example, Brownlees and Gallo (2006) for high-frequency data-cleaning techniques.
6Note that different orders (at different prices) might be recorded at the same time; these must all

be considered in the construction of the order flow.
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section for further details).

3 Stylized facts of precious metals price, return, vol-

ume, and liquidity

In this section, we focus on those features that characterize the time series of returns,
volume, and liquidity of our four precious metals. In particular, we evaluate the serial
correlation properties of the first- and second-order moments, the distribution, and the
existence of periodic patterns.

3.1 Prices and returns

The prices of precious metals follow an upward-sloping behavior in the analyzed sample
(see Figure (1)). This might depend on the so-called safe-haven effect, that is, the out-
flow from risky financial assets toward the precious metals, which are perceived as safer
investments during periods of high uncertainty. We first analyze the series to determine
their integration properties. ADF tests confirm that the log-prices follow a Random Walk
model and suggest focusing on returns time series.7

Returns time series have patterns similar to those of equity returns and are charac-
terized by volatility clustering, as well as the presence of extreme movements (see Figure
(1)). The descriptive analysis, reported in Table (2), suggests that gold returns are less
volatile than other precious metals, at both the 5- and 60-minutes frequencies. This find-
ing is also matched with an inverse relation in average returns, the lowest being that of
gold. We support that by the larger interest for gold compared with silver, platinum,
and palladium, which might lead to higher efficiency for this precious metal. In turn,
this leads to smaller risk and lower returns. The kurtosis is similar across metals at the
hourly frequency, whereas at the 5-minute level, gold has a much smaller kurtosis than
silver. Nevertheless, as we discuss in the following paragraph, this might be influenced by
the large amount of zeros in the silver time series. Finally, we observe that the skewness
is negative for silver, palladium, and platinum at the 60-minute frequency, a behavior
similar to that observed in equities. However, gold returns have positive skewness. Con-
sidering the range analyzed in this paper, 2009 and 2010, the trend of price time series,
and the considerable interest in gold, this result is unsurprising. It suggests that, in the
considered period, trades on gold led to a consistent increase in the price of gold over time.
When focusing on the returns ACF, we have statistically significant positive correlations
for the first lag at the 5-minute level, whereas at the 60-minutes frequency, the first ACF
becomes negative but is still statistically significant. The presence of negative correlation
is expected on high-frequency data and might have different explanations: bid-ask bounce
(Bollerslev and Bomowitz, 1993), order imbalance (Flood, 1994), and/or trade behavior
(Engle and Russell, 2009, among others). Such serial correlation has to be taken into
account when developing models for the returns time series.

Regarding the trade activity, the proportion of zeros in a given interval of time can
be seen as a measure of market liquidity (or illiquidity). For example, Bekaert et al.

7ADF tests are available upon request.

6



Mar−09 Sep−09 Mar−10 Sep−10
800

900

1000

1100

1200

1300

1400

Plot of the prices, metal: Gold, interval=5 min

(a) XAU

Mar−09 Sep−09 Mar−10 Sep−10
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

Plot of the returns, metal: Gold, interval=5 min

(b) XAU

Mar−09 Sep−09 Mar−10 Sep−10

12

14

16

18

20

22

24

26

28

Plot of the prices, metal: Silver, interval=5 min

(c) XAG

Mar−09 Sep−09 Mar−10 Sep−10

−0.02

−0.01

0

0.01

0.02

0.03

Plot of the returns, metal: Silver, interval=5 min

(d) XAG

Mar−09 Sep−09 Mar−10 Sep−10
900

1000

1100

1200

1300

1400

1500

1600

1700

1800

Plot of the prices, metal: Platino, interval=5 min

(e) XPT

Mar−09 Sep−09 Mar−10 Sep−10

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Plot of the returns, metal: Platino, interval=5 min

(f) XPT

Mar−09 Sep−09 Mar−10 Sep−10

200

300

400

500

600

700

Plot of the prices, metal: Palladium, interval=5 min

(g) XPD

Mar−09 Sep−09 Mar−10 Sep−10

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Plot of the returns, metal: Palladium, interval=5 min

(h) XPD

Figure 1: Prices and return plot
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Return Volume

XAU XAU XAG XAG XPD XPT XAU XAU XAG XAG XPD XPT
Frequency 5 60 5 60 60 60 5 60 5 60 60 60
Mean 0.0003 0.0038 0.0006 0.0079 0.0115 0.0049 1.6387 19.664 8.2311 98.773 13.937 14.321
Median 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 12 0.0000 25 0.0000 5
Std 0.0763 0.2582 0.1240 0.4499 0.5205 0.3369 3.5198 25.574 30.515 173.15 30.221 24.502

Kurtosis 30.09 15.643 62.863 15.361 17.266 10.577 51.952 18.375 100.90 22.274 41.431 30.443
Skewness 0.1031 0.3347 0.5407 −0.059 −0.569 −0.305 5.2819 3.0949 7.3061 3.5571 4.9074 3.9287
5% quant. −0.104 −0.385 −0.039 −0.701 −0.795 −0.540 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
50% quant. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 12 0.0000 25 0.0000 5
95% quant. 0.1070 0.3841 0.0545 0.7305 0.8564 0.5458 8 68 50 450 65 60
n. of 0 83592 1772 126534 5513 7063 5572 79842 1580 125250 5268 6354 5087

Table 2: Descriptive analysis: Returns and Volume across metals

(2007) examine the impact of liquidity, proxied by the proportion of zero daily firm re-
turns averaged over the month in emerging equity markets, on expected returns. Table
(2) highlights that the number of zero returns is sensibly high. The percentage of ze-
ros on hourly data is close to 45% for silver and platinum, peaks at 60% for palladium,
and is minimum, about 15%, for gold. We report 5-minute descriptive statistics for gold
and silver, the two most traded metals, showing that the number of zeros increases to
60% for gold and 90% for silver. The existence of such a large number of zeros makes
the analyzes on those time series challenging. In fact, on the one side, the zeros could
make the identification of dynamic properties more difficult, but on the other side, the
occurrence of zeros during the day, and their potential concentration during specific time
ranges, is informative. As reported in Figure (2), zeros are generally present with a very
high-frequency during specific hours of the day, in particular at the 60-minute frequency.8

Following previous works, this means that those intervals are the most illiquid times dur-
ing the 24-hour trading day. As we expected, they coincide with the closure of the main
markets. This finding might suggest the possible presence of a periodic pattern in the
return means, which is, however, not present.9

Precious metals returns provide relevant information on the evolution of the condi-
tional variances. The analysis of squared returns shows evidence of heteroskedasticty,
with a clear periodic behavior (see the upper panel of Figure (3) for the gold time series).
The pattern is more regular in the gold and silver cases compared to palladium and plat-
inum. This is, however, an expected result and is due to the large number of zeros present
in the last two time series. Similar patterns can be identified at the 5-minute frequency
for gold and silver. Notably, the oscillations of the ACF have a period of one day (24
hours). Confirmation of the periodic evolution of the intradaily variance is given in Figure
(4), where we report, for the gold series, the hourly average squared return, computed
as r̄2i =

1
T

∑T
t=1 r

2
i,t. The graph shows evidence, within the day, of three relevant periods,

which we can associate with the trading activities in different geographical areas. The
first increase in volatility corresponds to the Asian markets’ trading activity. The average
squared returns then decrease until the opening of European markets. The increase peaks
around 10 GMT and then again begins to decrease until 13 GMT. The average returns

8Figure (2) refers to the gold. Similar patterns are present for the other metals, with the largest
frequency of zeros for palladium and platinum. Graphs are available upon request.

9Graphical analyses supporting this claim are available upon request.

8



0

10

20

30

40

50

60

70

80

90

Intervals returns equal to 0 (in percentage) metal: Gold, interval=5 min

Hours

P
er

ce
nt

ag
e

(a) 5 min

0

10

20

30

40

50

60

70

80

Intervals returns equal to 0 (in percentage) metal: Gold, interval=60 min

Hours

P
er

ce
nt

ag
e

(b) 60 min

Figure 2: Occurrence of zeros during the trading day (5 min and hourly series) - XAU

sharply increase when American markets open and peak when American markets are ac-
tive and European markets are closing, around 16 GMT. The same behavior is observed
in the other three metals.

The periodic behavior of the intradaily volatility might be estimated and filtered out
from the returns time series following different approaches.10 Among the possible methods,
we mention those of Andersen and Bollerslev (1997a) and Boudt et al. (2011). The first
approach assumes that returns follow a multiplicative model

ri,t = si,tσi,tηi,t, (1)

where si,t is a periodic deterministic component, σi,t is a GARCH-type variance, and
ηi,t is a standardized innovation with unit variance. The periodic term si,t is estimated
by means of a parametric regression model. The work of Boudt et al. (2011), despite
using the same multiplicative model for the return, differs from the parametric approach
of Andersen and Bollerslev (1997a) in two elements: First, σi,t is an average volatility fac-
tor kept constant in a local window around ri,t, and second, the deterministic component
si,t is estimated by means of a nonparametric approach. The estimation of the periodic
component si,t in Andersen and Bollerlev (1997a) considers a regression on harmonics of
the log-transformed return series (in deviations from their unconditional mean). However,
the large number of zeros present in the precious metal returns makes the method inap-
propriate for the analyzes of returns. Nevertheless, we consider a variant of the Andersen
and Bollerslev (1997a) approach when dealing with volumes.

Boudt et al. (2011) base the estimation of the periodic component in the intraday
volatility on the standardized high-frequency return (r̄i,t), where the standardization fac-
tor is given by the square root of the normalized realized bipower variation of Barndorff-
Nielsen and Sheppard (2004). By construction, r̄i,t is distributed with mean zero and
variance equal to the squared periodicity factor. Boudt et al. (2011) propose to estimate
the periodic component using a nonparametric estimator of the scale of the standardized
returns r̄i,t. They suggest three possible estimators: (1) the nonparametric periodicity

10The same procedures to estimate periodic deterministic components have been implemented in
different areas. For example, Caporin and Preś (2012) model and forecast wind speed intensity and
Caporin and Preś (2011) forecast temperature indices density.
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Figure 3: ACF of the squared standardized returns - XAU

estimator SD presented by Taylor and Xu (1997), which is based on the standard devia-
tion of returns belonging to a local window, (2) the ShortH estimator for the periodicity
factor, based on the Shortest Half scale estimator (see Boudt et al., 2011, for details), and
(3) the Weighted Standard Deviation estimator, WSD, of Boudt et al. (2011). Note that
the second and third estimators are also robust to the presence of price jumps. Given
the nonparametric estimators of the periodic component, and similar to the approach of
Andersen and Bollerslev (1997a), it is possible to recover the standardized return series.

Figure (4) displays the estimated periodic component for the hourly return series
of gold with the three nonparametric methods presented by Boudt et al. (2011). The
plot presents a behavior similar to the average squared returns. However, the ACF of
the squared returns standardized series (ri,t/si,t) (see Figure (3)), show evidence of some
residual periodic behavior. This finding is not influenced by the estimator adopted to
capture the periodic behavior of squared returns. As a consequence, the nonparametric
methods of Boudt et al. (2011) are not able to completely capture the periodic evolution
characterizing the volatility of precious metals returns. This result suggests the possible
presence of a stochastic behavior in the periodic component, which might be captured
within an appropriate time-series framework. In the following section, we propose a
parametric model that captures both the periodic evolution and the serial correlation of
squared returns.

3.2 Volume

The volume time series are characterized by a percentage of zeros comparable to the
returns time series. Note that volume and returns do not necessarily have the same oc-
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Figure 4: Estimated periodic component, parametric and non parametric approaches -
XAU

currence of zeros as trades could be executed at the same price over consecutive intradaily
periods. Table (2) presents descriptive analysis of the volume data, measured in numbers
of MTA. We observe that the average volume is the highest for silver, at both the 5-
and 60-minute frequencies. Moreover, when we recast the MTAs in ounces, we highlight
that gold has the lowest average volume at the 60-minute frequency. This is further con-
firmed by the volume quantiles (see Table (2)). The volume time series show evidence of
a strong periodic pattern: The correlograms are characterized by a cyclical behavior, and
the intradaily volume averages, v̄i =

1
T

∑T
t=1 vi,t, are higher during the opening hours of

the most active precious metals markets. The increases in the volume level has a timing
comparable to the increase in squared returns observed in Figure (4).

Similarly to the volatility, the periodic behavior of volume time series might be deter-
ministic, stochastic, or a mixture of both deterministic and stochastic elements. Among
the different approaches that are available to filter the periodic component from volume
time series, we mention the use of seasonal adjustment methods, which can be based on
moving averages or regression approaches and might be either multiplicative or additive.
Multiplicative approaches are inappropriate given the large number of zeros, but additive
methods might be more suitable. As a first analysis of volume, we propose the use of
regression methods based on harmonics. We assume that the volume mean is given as
follows (the time index evolves at an intradaily frequency):

vt = α +

p
∑

i=1

δit
i +

q
∑

j=1

(

γjcos

(

2πjt

24

)

+ φjsin

(

2πjt

24

))

+ ζt. (2)

The periodic mean component is composed by a constant, a polynomial trend, and a
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Order Flow Quoted Spread

XAU XAU XAG XAG XPD XPT XAU XAU XAG XAG XPD XPT
Frequency 15 60 15 60 60 60 15 60 15 60 60 60

Mean −0.174 −0.699 0.0007 0.0030 0.1084 0.1733 0.0013 0.0012 0.0035 0.0034 0.0098 0.0052
Median 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 0.0006 0.0024 0.0025 0.0073 0.0038
Std 3.7337 9.0484 1.0721 2.3514 2.2681 2.5741 0.0049 0.0042 0.0045 0.0039 0.0080 0.0055

Kurtosis 22.350 15.720 57.206 18.481 20.964 21.106 1084.5 1553.0 245.13 85.934 29.615 115.47
Skewness −0.342 −0.547 −1.048 −0.093 −0.369 0.7425 26.257 30.551 10.422 7.0002 3.8557 7.75
5% quant. −6 −14 −1 −4 −3 −3 0.0003 0.0003 0.0010 0.0010 0.0036 0.0016
50% quant. 0 0 0 0 0 0 0.0005 0.0006 0.0024 0.0025 0.0073 0.0038
95% quant. 5 12 1 4 3 4 0.0040 0.0035 0.0089 0.0083 0.0242 0.0126
n. of 0 18424 2305 35787 5937 6852 5737 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 3: Descriptive analysis: OF and QS across metals

combination of harmonics that capture the intradaily periodic behavior. The use of har-
monics makes the estimation of periodic components similar to that adopted by Andersen
and Bollerslev (1997a) for the volatility. We estimate the parameters with ordinary least
squares (OLS) using robust standard errors due to the possible presence of serial corre-
lation and heteroskedasticity in the innovations. We note that the regression provides
an expected hourly volume replicating the periodic behavior, but residuals are still char-
acterized by a strong periodic evolution. Moreover, the slow decay of both the volume
ACF and the volume residuals ACF might suggest the presence of long memory.11 In
the next section, we consider time-series models that capture both the periodic intradaily
dynamics and the behavior of the volume.

3.3 Liquidity: Order flow and percentage quoted spread

Moving to the liquidity measures, we first point out a relevant difference between order
flow (OF) and percentage quoted spread (PQS): OF has a number of zeros comparable
to those observed for returns and volume (see Table (3)), while the PQS time series does
not have zeros. This is a consequence of the different NF data used to evaluate the two
time series. In fact, OF comes from trade data, whereas PQS depends on book-level data.
OF time series of gold shows evidence of much larger variability, compared with the other
precious metals. This is a consequence of gold attracting the largest number of trades.
Notably, the OF is, on average, negative for gold and positive for silver, platinum, and
palladium.

The OF time series are negatively skewed (with the exception of platinum) and highly
leptokurtic (due to the overconcentration around the mean; see the quantiles reported
in Table (3). The PQS time series have similar unconditional behavior at the 15- and
60-minute frequencies (see Table (3)). This result is a by-product of the methodology
adopted to compute these quantities, which are determined as intradaily periods aver-
ages. As expected, the spreads are on average smaller for gold and higher for platinum
and palladium. The dispersion is minimum for silver and maximum for palladium. The

11The ACF of the residuals and the estimated periodic component for the gold series are available in
the appendix.
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PQS series show evidence of positive asymmetry and of extremely long upper tails (see
the quantiles reported in Table (3)): For Gold at the 15-minute frequency, the average
spread between best bid and ask quotes is around 13 basis points, whereas the upper 99%
quantile of PQS reaches the 150 basis points; large values are observed for palladium,
where the average spread is close to 100 basis points but peaks at more than 425 basis
points at the 99% quantile. Such large values of the PQS depend on the activity in the
EBS platform, which further depends on the timing of the day. In fact, PQS time series
have a clear intradaily pattern, with the largest values observed between the closing of
American markets and the opening of Asian markets. This pattern is observed in the
average hourly PQS of gold, Q̄Si =

1
T

∑T
t=1 QSi,t, and the ACF of the PQS time series.12

The OF time series do not show peculiar periodic behaviors in their mean, even if
there is a clear evidence of serial correlation. As a further descriptive analysis, we also
evaluate the serial correlation and periodic behavior of the squared order flow, which can
be considered a proxy of volatility. In fact, an increase in the order flow, regardless of
the sign, shows evidence of an increase in trading activity in the market in one specific
direction (either an increase in seller- or buyer-initiated trades). The squared OF has in-
tradaily patterns similar to the squared returns, with a clear increase during the opening
hours of the most active precious metals markets.

The estimation of the periodic behavior of OF and PQS might follow the same ap-
proaches outlined for the returns volatility and the volume. When those approaches are
applied to liquidity measures, the outcome suggests a presence of a periodic behavior
largely, but not completely, captured by a deterministic approach. We thus apply in the
following models whose aim is to estimate both the deterministic and the stochastic be-
havior of the series.

4 Dynamic modeling of precious metals time series

The previous section shows that precious metals time series are characterized by peri-
odic behaviors. Those patterns are generally captured a priori, before the implementa-
tion of dynamic models of the ARMA and GARCH families, which are used to describe
the dynamic evolution of high-frequency time series.13 However, the use of alternative
methodologies for filtering periodic patterns leads to standardized series still demonstrat-
ing periodic components. Therefore, the use of two-stage estimation methods might not
be appropriate for precious metals time series and calls for time-series models capturing
both the nonperiodic dynamic and the periodic behavior. The literature has proposed
several models starting with the use of Seasonal ARMA models, with an appropriate se-
lection of the period, up to the models with periodic long memory in the mean (Gray
et al., 1988, and Woodward et al., 1998). Moreover, Bollerslev and Ghysels (1996),
Guegan (2000), and Bordignon et al. (2007, 2009) propose GARCH-type models with
periodic coefficients and periodic long memory. Nevertheless, the periodic behavior and
the nonperiodic dynamic can be captured resorting to models in which the ARMA- and

12Similar patterns are present for silver, palladium, and platinum. Figures are included in the ap-
pendix.

13Two-step approaches are computationally simple but imply a loss of efficiency compared with models
where periodic patterns are estimated together with the parameters driving the series dynamic.
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µ φ1 ω θ1 θ2 θ3 θ6 θ12 θ24 β1 β2 β3

−1.4e− 09 −0.038b −0.241 0.123a 0.138b 0.078 −0.009 −0.016c 0.154a 0.007 −0.012c 0.233a

(2.2e− 05) (0.019) (0.383) (0.025) (0.055) (0.053) (0.022) (0.008) (0.042) (0.034) (0.007) (0.058)

β6 β12 β24 γ1 φ1 γ2 φ2 γ3 φ3 γ4 φ4 γ5
0.190 0.166a 0.390a −0.516a −0.372a −0.123 0.253a −0.177b 0.350a −0.199a −0.014 −0.251a

(0.126) (0.051) (0.091) (0.130) (0.087) (0.105) (0.049) (0.090) (0.048) (0.054) (0.024) (0.046)

φ5 LLF
0.140a 56787.14
(0.039)

µ φ1 ω θ1 θ2 θ3 θ6 θ12 θ24 β1 β2 β3

−1.4e− 09 −0.038b −0.107 0.139a - 0.097c −0.107b 0.054 0.051 0.625a - −0.243b

(2.2e− 05) (0.019) (0.067) (0.034) (0.056) (0.045) (0.121) (0.193) (0.061) (0.099)

β6 β12 β24 γ1 φ1 γ2 φ2 γ3 φ3 γ4 φ4 γ5
0.658a −0.779c 0.728 −0.071b −0.138c −0.048a 0.350a −0.040 0.292a −0.257a 0.150a −0.073
(0.232) (0.416) (0.526) (0.034) (0.079) (0.014) (0.049) (0.029) (0.033) (0.051) (0.036) (0.048)

φ5 LLF
0.257a 56745.73
(0.036)

Note: Estimation results for the return series for the precious metals: Gold (XAU). Egarch (top panel) and Egarch-HAR
(bottom panel) models. Period 27th of December 2008 to the 30th of November 2010. Hourly series, 11880 observations.
LLF is the Log-likelihood function. Standard errors in bracket. ”a”, ”b” and ”c” indicate significance at the 1%, 5% and
10%.

Table 4: Estimation Return Egarch and Egarch-Har models with harmonics - XAU

GARCH-type equations are given as a combination of both deterministic and stochastic
components. In fact, those approaches allow for the presence of both a deterministic and
a stochastic periodic behavior of a given time series. We thus specify models that fulfill
this purpose.

4.1 Return

For the returns, we specify an EGARCHX(P,O,Q) with periodic explanatory variables.
The EGARCH model couples flexibility with computational simplifications; in fact, by
resorting to exponential specifications, we avoid the introduction of parameter restrictions
that lead to conditional variance positivity. To simplify the notation, we assume that the
time index evolves at an intradaily step. The proposed model has the following structure:

rt = µ+

p
∑

j=i

φjrt−j + σtεt

ln
(

σ2
t

)

= ω+

Q
∑

j=1

βjln
(

σ2
t−j

)

+

O
∑

j=1

αjεt−j +

P
∑

j=1

θj|εt−j |+

+

q
∑

j=1

(

γjcos

(

2πjt

24

)

+ φjsin

(

2πjt

24

))

.

(3)
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Figure 5: ACF standardized squared residuals Return and mean estimated series - XAU

The model includes an autoregressive component that captures the limited serial cor-
relation in the mean. The variance dynamic depends on a standard EGARCH structure,
with orders governing the autoregressive behavior of the log-conditional variances (or-
der Q), as well as the impact of shocks size and sign (orders P and O, respectively).
Moreover, the introduction of q harmonics captures the deterministic evolution of log-
conditional variances. We also stress that the model orders Q, P , and O can be increased
beyond the common practice of restricting them to one. In fact, the orders set equal to
the number of intradaily intervals per day, can detect Seasonal GARCH-type behaviors.

Several authors have also pointed out the presence of long memory in high-frequency
returns volatility (see Andersen and Bollersleve, 1997b, 1998, and Bordignon et al., 2007,
2009, among others). Long-range dependence might be captured by resorting to long
memory EGARCH specifications, as in Bollerslev and Mikkelsen (1996). However, the
introduction of long memory in the conditional variance equation increases the model’s
complexity. We thus prefer to specify the variance dynamic following a HAR-type struc-
ture (Corsi (2009)).

We suggest the estimation of the following EGARCHX-HAR(P,O,Q) model. This
specification approximates the long-memory behavior reproducing the volatility persis-
tence terms of the HAR model of Corsi (2009). Whereas in the HAR model the auto-
regressive dynamic is associated with the target period of different market operators (daily,
weekly, and monthly), in our specification the volatility evolves according to terms related
to daily and intradaily periods: the day, the half-day, etc. Depending on the frequency of
the time series, we include sums of past volatilities or shocks over different horizons; for
hourly data we consider periods equal to the day, 24 hours, the half-day, 12 hours, and to
6 and 3 hours. The EGARCHX-HAR(P,O,Q) is characterised by the following equation:
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ln
(

σ2
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= ω+
∑

j=1,3,6,12,24
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j

(
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(
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j
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+
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(

γjcos

(
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)

+ φjsin

(

2πjt

24

))

.

(4)

In the analysis of the precious metals returns, we consider different combinations of
the EGARCHX and EGARCHX-HAR model orders, as well as different number of har-
monics. We augment the model by the introduction of an AR(1) term, which is needed to
capture the limited serial correlation observed on mean returns. Table (4) reports the best
specifications for the gold series. They include five harmonics and lags up to order 24 (the
day when focusing on hourly time series). Notably, the shock’s sign was irrelevant (the
EGARCHX order O was then set to zero). In both the EGARCHX and EGARCHX-HAR
specifications, the lag 24 and the five harmonics parameters are statistically significant.

The left panel of Figure (5) presents ACF of the standardized squared returns ((rt/σ̂t)
2)

for the EGARCHX(P,O,Q) and for the EGARCHX HAR(P,O,Q) models. The seasonally
adjusted residual series show evidence of serial correlation for both specifications. In
particular, the first lag in the EGARCHX specification is significant, and a daily periodic
residual remains in the correlation in the EGARCHX-HAR case. The serial correlation
in the ACF of the EGARCHX standardized residuals might signal the existence of mild
long-memory behavior which is not appropriately taken into account by the model. The
EGARCHX-HAR model captures the potential long-range dependence of the volatility,
but it is not able to completely remove the periodic component. Similar results are
obtained for the other precious metals.

4.2 Volume

As pointed out in the previous section, the volume time series shows evidence supporting
the presence of a stochastic periodic behavior, coupled with the possible presence of long-
range dependence.14 To capture such a feature, we consider a multifactor GARMA model
that allows for long-memory behavior which might be associated with specific periodic
frequencies.

Following Woodward et. al (1998), the multifactor GARMA model is defined by

Φ(L)

h
∏

j=0

(1− 2cos(wj)L+ L2)dj (yt − µ) = Θ(L)ǫt, (5)

where h is an integer, ǫt is a white noise with variance σ2
ǫ , µ is the mean of the process,

ωj (with j = 0, ..., h) are the frequencies at which the long-memory behavior occurs, dj
(with j = 0, ..., h) are the long-memory parameters associated to each frequency, and Φ(L)

14Bollerlsev and Jubinski (1999) and Lobato and Velasco (2000), among others, document long memory
in stock-market trading volume.
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d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12
0.292a 0.468a 0.382a 0.362a 0.368a 0.317a 0.323a 0.320a 0.314a 0.316a 0.313a 0.293a

(0.008) (0.031) (0.035) (0.081) (0.053) (0.046) (0.055) (0.059) (0.061) (0.108) (0.057) (0.107)

d13 φ1 φ24 φ48 φ72 φ96 φ120 θ1 µ σ2
ǫ LLF

0.143a −0.018 −0.257a −0.150a −0.097c −0.070a −0.002 −0.517a −26.62a 356.8a -51768.53
(0.010) (0.159) (0.069) (0.025) (0.055) (0.013) (0.061) (0.104) (6.688) (35.77)

Note: Estimation results for the volume series for the precious metals: Gold (XAU). GARMA models. Period 27th of
December 2008 to the 30th of November 2010. Hourly series, 11880 observations. LLF is the Log-likelihood function.
Standard errors in bracket. ”a”, ”b” and ”c” indicate significance at the 1%, 5% and 10%.

Table 5: Estimation Volume GARMA model - XAU
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Figure 6: ACF standardized squared residuals Volume and mean estimated series - XAU

and Θ(L) are the short-memory autoregressive and moving average polynomials with roots
satisfying the usual stationarity and invertibility conditions. Stationarity of the GARMA
model is achieved if the memory coefficients assume values below 0.5 for 1 ≤ j ≤ h − 1
and below 0.25 for j = 0 and j = h (see Woodward et al., 1998). The most relevant
element of the multifactor GARMA model is the so-called Gegenbauer polynomial, given
by

P (L) =

h
∏

j=0

(1− 2cos(wj)L+ L2)dj , (6)

which may be considered as a generalized long-memory filter for the long-memory
periodic behavior at h + 1 frequencies. The ωj’s are the driving frequencies of a cyclical
pattern of length S, where ωj = (2πj/S), h + 1 = [S/2] + 1, and [·] refers to the integer
part. Previous studies have shown that the GARMA model is able to replicate the peri-
odic patterns similar to those observed in the volume time series (see Bordignon et al.,
2007 and 2009). To estimate the (h + 1)-factor GARMA model in (5), we implement an
autoregressive approximation technique. Following Chung (1996), it is in fact possible to
recover an MA(∞) or AR(∞) expansion of the model, and thus to estimate the model
parameters through a quasi-maximum likelihood (QML) approach.

As previously observed, the autocorrelation function oscillates and decays slowly to-
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d φ1 φ24 φ48 φ72 φ96 φ120 θ1 µ γ1 φ1 γ2
0.076a −0.072a 0.090a 0.036a 0.049a 0.070a 0.292a 0.227a −0.134a −0.120a 0.014 −0.101a

(0.010) (0.022) (0.008) (0.008) (0.008) (0.008) (0.008) (0.022) (0.014) (0.011) (0.011) (0.011)

φ2 γ3 φ3 γ4 φ4 γ5 φ5 σ2
ǫ LLF

−0.002 −0.085a −0.005 −0.071a −0.009 −0.057a −0.011 0.128a -4674.295
(0.011) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.001)

Note: Estimation results for the QS ∗ 100 series for the precious metals: Gold (XAU). ARFIMA models. Period 27th
of December 2008 to the 30th of November 2010. Hourly series, 11880 observations. LLF is the Log-likelihood function.
Standard errors in bracket. ”a”, ”b” and ”c” indicate significance at the 1%, 5% and 10%.

Table 6: Estimation QS ∗ 100 ARFIMA with harmonics - XAU

ward zero, suggesting a stochastic cyclical or periodic behavior coupled with long memory.
From the previous section, we know that the periodic behavior has a length of 24 hours
(on an hourly time series), leading to S = 24. In turn, such a value implies the presence
of thirteen factors that capture the long-memory and cyclical behavior (h = 12 in the
GARMA model of equation (5)). Table (5) reports the estimation results for the volume
time series of gold. The memory parameters are statistically significant at all frequencies.
However, we note that the memory coefficients associated with the zero frequency leads
to a nonstationary component (the memory parameter is marginally larger than 0.25).
We observe the same result in two other metals. The introduction of autoregressive and
moving average components result in an improvement of the fit of the model compared
with a pure long-memory specification; the short-memory coefficients are all statistically
significant. We observe that the lags we introduce in the AR polynomial mimic the lags
associated with the length of the periodic oscillation and its multiples. Such a result
might suggest the presence of a weekly (five days) periodic pattern. Nevertheless, the
estimation with S = 120 (one-week cyclical behavior) provides inferior fit to the data.

The left panel of Figure (6) reports the ACF of the GARMA model residuals for
the two different specifications for the short-memory component of the GARMA model.
Notably, when considering the larger specification, few values of the correlograms are sta-
tistically significant. Moreover, the right panel of Figure (6) includes a comparison of the
average hourly volume and of the average hourly fitted volume. The two quantities are
close, further supporting the ability of the GARMA model in replicating the behavior of
the volume time series.

Finally, unreported ACF of the squared residuals show the presence of a periodic pat-
tern. Introducing a GARCH or EGARCH equation with periodic explanatory variables
in the models for the mean allows for considering the presence of a periodic component
in the volatility of the volume.

4.3 Order flow and percentage quoted spread

The PQS and OF time series have behaviors similar to the volume and returns, respec-
tively. In fact, the PQS has a relevant periodic pattern in the mean, whereas the OF mean
values show little evidence of serial correlation. On the contrary, the absolute or squared
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values of OF are characterized by a strong periodic behavior. Moreover, deterministic pe-
riodic filters are not effective in removing the periodic behavior of the liquidity time series.
Given these findings, the liquidity measures’ dynamic features might be captured using
the approaches we consider for the volume and returns cases, that is the GARMA and
EGARCH specifications. As an alternative methodology, we consider the ARFIMA and
Seasonal ARFIMA (SARFIMA) models extended with the inclusion of periodic explana-
tory mean variables. We estimate these two models on the PQS mean and on the squared
OF values. The SARFIMA is a special case of the multifactor GARMA model. Similar
to the most general model, it provides periodic behavior coupled with long memory. The
SARFIMA model is given as follows:

Φ(L)(1 − LS)d(yt − µ−

q
∑

j=1

(

γjcos

(

2πjt

24

)

+ φjsin

(

2πjt

24

))

) = Θ(L)ǫt, (7)

where ǫt is a white noise with variance σ2
ǫ . The autoregressive and moving average

polynomials Φ(L) and Θ(L) satisfy the usual restrictions for stationarity and invertibil-
ity, whereas the memory parameter d gives a stationary model if its value is below 0.5.
The seasonal long-memory behavior influences the observed variable yt in deviation from
its unconditional mean µ and from a deterministic periodic behavior captured by the
q harmonics. The relation between SARFIMA and GARMA is given by the following
decomposition of the seasonal long-memory filter

(1−LS) =
(

1− 2cos (ω0)L+ L2
)

1

2

[

S−1
∏

j=1

(

1− 2cos (ωj)L+ L2
)

]

(

1− 2cos (ωs)L+ L2
)

1

2 ,

(8)
where ω0 = 1 and ωs = −1 . The previous decomposition takes into account the roots

of the polynomial
(

1− LS
)

, which are associated with frequencies in 0−π. In particular,
the frequencies are 0, π (if S is even), and a set of frequencies depending on the value of
S, each associated with a pair of roots of the polynomial. Notably, such a decomposition
corresponds to a product of Gegenbauer polynomials. If we introduce long memory and

consider
(

1− LS
)d
, the exponent of each Gegenbauer polynomial in (8) is either equal to

d or to d/2 (this happen for frequencies ω0 and ω1). As a consequence, the SARFIMA
model is a special case of the multifactor GARMA under a restriction on the memory co-
efficient, and if the frequencies over which the GARMA model is specified are exactly the
same set of frequencies associated with the decomposition of the seasonal filter

(

1− LS
)

.

In the analysis of the liquidity series,15 we consider different specifications for the
models. We set three different values for the seasonal length (S) 1, 24, and 120. With
S = 1, we specify a pure long-memory model for the hourly series, whereas in the case
of S = 24 or 120, we specify a daily and weekly seasonal integration pattern. To cap-
ture the periodic behavior of the series, we consider up to six daily harmonics, and we
include a weekly harmonic. Finally, to model the short-memory component, we introduce
different autoregressive and moving average specifications, considering lags up to the week.

15The estimated series are equal to QS × 100 and OF 2/100, respectively.
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Figure 7: ACF standardized squared residuals QS and mean estimated series - XAU

d φ1 φ24 φ48 φ72 φ96 φ120 θ1 µ γ1 φ1 γ2
0.046a 0.294a 0.029a 0.027a 0.021b 0.020b 0.048a −0.191a −0.826a 0.587a 0.452a 0.309a

(0.014) (0.062) (0.008) (0.008) (0.008) (0.008) (0.008) (0.058) (0.061) (0.059) (0.059) (0.055)

φ2 γ3 φ3 γ4 φ4 γ5 φ5 σ2
ǫ LLF

−0.268a −0.150a −0.245a 0.093c 0.237a 0.017 −0.013 9.220a -30052.31
(0.055) (0.051) (0.051) (0.048) (0.048) (0.045) (0.045) (0.119)

Note: Estimation results for the OF 2/100 series for the precious metals: Gold (XAU).ARFIMA models. Period 27th
of December 2008 to the 30th of November 2010. Hourly series, 11880 observations. LLF is the Log-likelihood function.
Standard errors in bracket. ”a”, ”b” and ”c” indicate significance at the 1%, 5% and 10%.

Table 7: Estimation OF 2/100 ARFIMA with harmonics - XAU

For the QS, Table (6) presents the results of the model that best fits the gold series.
Although we try with the ARFIMA and SARFIMA models, we concentrate on the first
kind of models (S = 1). Estimation results and the ACF of the residuals of SARFIMA
models are similar. The long-memory parameter is significant for all the metals, but it is
lower for gold than the other three metals. In the first case, it is equal to 0.076 whereas
it is near 0.28 for silver and palladium and 0.493 for platinum. The introduction of the
autoregressive lags improves the fitting of the model. Note that the lags are all statisti-
cally significant.16 The analysis of the ACF of the residuals, in the left panel of Figure
(7), favors the introduction of short-memory component at the daily and its multiple
lags. Moreover, it displays significant correlations associated with particular lags. This
fact is more evident in the gold series. We believe they are neither associated with the
long-memory component nor with the periodic pattern, which have both been correctly
removed. The right panel of Figure (7) presents the mean fitted series, which replicates
the periodic component observed in the QS time series.

For the OF 2, Table (7) displays the estimation result for the gold series. As in the
previous case, we consider ARFIMA and Seasonal ARFIMA specifications and we find
very similar outcomes. Then we focus on the pure long-memory model (S = 1). Esti-

16A likelihood ratio test between an ARFIMA(1 24 48 72 96 120,d,1) and ARFIMA(1 24 120,d,1)
specification rejects the restricted model in the four metals at 5% level.
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Figure 8: ACF standardized squared residuals OF 2 and mean estimated series - XAU

mations of the d range from 0.046 to 0.168 for the different models, and they are always
highly significant. Regarding the short-memory specification, the autoregressive lags pro-
duce an improvement in the fitting of the model. We consider an ARFIMA(1 24 120,d,1)
and an ARFIMA(1 24 48 72 96 120,d,1) model. In the case of the gold time series, the
full specification presents significant coefficients, and it is preferred to the restricted one
when formally testing.17 Finally, ACF of the residuals displays a good performance of
the models with the mean estimated series reproducing the periodic component present
in the OF 2 series, in Figure (8).

5 Conclusions

We provide a first and pioneering description of the stylized facts and dynamic properties
of precious metals time series extracted from a novel nanofrequency database that includes
trade and quotes data. The most innovative elements are given by the time frequency of
the database, up to 100 millisecond. We focus on four precious metals, including palla-
dium and platinum, the use of spot prices rather than commodity future prices of previous
studies, and on trading activity recorded around the clock. The analysis shows that the
prices, returns, and volume time series have features comparable to those of traditional
assets. Moreover, two specific liquidity measures present evidence of peculiar dynamic
features. The results reported here shed some light on high-frequency data related to
spot precious metal prices, which have never been considered in the literature. Moreover,
our study shows a clear evidence of periodic behaviors linked to the activity of the most
relevant precious metals markets.

This work represents a preliminary and fundamental research focused on the statistical
aspects and data analysis of the precious metals financial variables. Building on our
results, future research might be extended in several dimensions, for instance, to better
understand the price discovery process and liquidity provision on spot precious metals.
Alternatively, multivariate approaches might be considered, focusing on the joint analyses

17A likelihood ratio test between an ARFIMA(1 24 48 72 96 120,d,1) and ARFIMA(1 24 120,d,1)
specification rejects the restricted model in the gold and palladium series at 5% level.
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on different precious metals or on models capturing the interdependence between returns,
volume, volatility, and liquidity.
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Figure A.1: Occurrence of zeros during the trading day (hourly series)

18Additional tables and figures not included in the paper.
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Figure A.2: ACF squared returns
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Figure A.4: ACF volume
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Figure A.6: ACF PQS
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Figure A.8: ACF OF squared
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Figure A.9: Average hourly OF squared
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Figure A.10: ACF of the volume and ACF of volume residuals after a regression on
harmonics (left panel) and estimated periodic component (right panel)
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Figure A.11: ACF and average hourly QS and OF squared - XAU
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Table A.1: Estimation Return Egarch and Egarch-Har models with harmonics

XAU XAU XAG XAG XPD XPD XPT XPT

Egarch Egarch HAR Egarch Egarch HAR Egarch Egarch HAR Egarch Egarch HAR
µ −1.4e− 09 −1.4e− 09 3.00e− 09 3.00e− 09 4.28e− 10 4.28e− 10 1.06e− 10 1.06e− 10

(2.2e− 05) (2.2e− 05) (3.9e− 05) (3.9e− 05) (4.6e− 05) (4.6e− 05) (2.9e− 05) (2.9e− 05)
φ1 −0.038b −0.038b −0.023 −0.023 −0.044a −0.044a −0.025b −0.025b

(0.019) (0.019) (0.015) (0.015) (0.013) (0.013) (0.012) (0.012)
ω −0.241 −0.107 −0.241 −0.656 −0.053c −0.115 −0.018 −0.193

(0.383) (0.067) (0.262) (8.834) (0.030) (0.197) (0.014) (0.274)
θ1 0.123a 0.139a 0.096a −0.143 −0.009 −0.169 −0.006 −0.085

(0.025) (0.034) (0.030) (1.193) (0.007) (0.111) (0.013) (0.089)
θ2 0.138b - 0.106a - 0.173a - 0.123a -

(0.055) (0.039) (0.042) (0.026)
θ3 0.078 0.097c 0.053c 0.370 −0.083b 0.267 −0.031 0.375a

(0.053) (0.056) (0.028) (2.262) (0.038) (0.526) (0.030) (0.140)
θ6 −0.009 −0.107b −0.031 0.031 0.032 0.560 −0.085b 0.140c

(0.022) (0.045) (0.046) (3.319) (0.022) (0.631) (0.033) (0.084)
θ12 −0.016c 0.054 0.001 0.914 −0.041c 0.466 0.043a −0.251

(0.008) (0.121) (0.008) (3.858) (0.022) (0.306) (0.008) (0.289)
θ24 0.154a 0.051 0.108a −0.153 −0.030b −1.024c −0.022 0.126

(0.042) (0.193) (0.025) (2.019) (0.015) (0.566) (0.021) (0.495)
β1 0.007 0.625a 0.285a −0.644 0.911a −0.145 1.177a −1.630a

(0.034) (0.061) (0.021) (6.078) (0.056) (0.569) (0.013) (0.413)
β2 −0.012c - −0.453a - −2.5e− 05 - 3.9e− 05 -

(0.007) (0.039) (0.006) (0.012)
β3 0.233a −0.243b 0.304a −1.050 −0.235b −1.752b 0.001 3.143a

(0.058) (0.099) (0.024) (8.508) (0.092) (0.845) (0.011) (0.665)
β6 0.190 0.658a 0.153a 0.577 0.336a −0.886 −0.296a −0.436

(0.126) (0.232) (0.031) (8.509) (0.046) (1.512) (0.055) (1.030)
β12 0.166a −0.779c 0.200b −3.748 0.001 5.708a 0.120b −1.138b

(0.051) (0.416) (0.080) (2.542) (0.006) (2.171) (0.053) (0.568)
β24 0.390a 0.728 0.480a 5.784 −0.021 −1.937 −0.005 1.038

(0.091) (0.526) (0.086) (24.91) (0.014) (4.814) (0.008) (1.560)
γ1 −0.516a −0.071b −0.534a 0.623 −0.483a −4.222a 0.011 −0.012

(0.130) (0.034) (0.112) (12.10) (0.051) (0.758) (0.008) (0.017)
φ1 −0.372a −0.138c −0.254b −2.957b 0.158a −0.187 0.001 0.087

(0.087) (0.079) (0.102) (1.208) (0.058) (0.462) (0.006) (0.071)
γ2 −0.123 −0.048a −0.240a −1.505 −0.181a −1.364a 0.448a −0.238

(0.105) (0.014) (0.090) (6.471) (0.046) (0.327) (0.053) (0.437)
φ2 0.253a 0.350a 0.197a 0.239 0.255a −0.309 0.266a 1.185a

(0.049) (0.049) (0.036) (5.689) (0.059) (0.207) (0.080) (0.274)
γ3 −0.177b −0.040 −0.342a −1.155 −0.026c −0.698 0.254a −0.626

(0.090) (0.029) (0.091) (10.10) (0.013) (0.429) (0.085) (0.525)
φ3 0.350a 0.292a 0.197b −0.221 0.131b 0.302 0.645a 1.199a

(0.048) (0.033) (0.080) (7.866) (0.065) (0.340) (0.070) (0.323)
γ4 −0.199a −0.257a −0.040b −0.280 −0.113a −0.044 −0.401a −1.305a

(0.054) (0.051) (0.019) (4.217) (0.038) (0.119) (0.089) (0.203)
φ4 −0.014 0.150a −0.057a −0.490 0.300a −0.493 0.329a −0.295

(0.024) (0.036) (0.013) (3.658) (0.064) (0.318) (0.069) (0.331)
γ5 −0.251a −0.073 −0.108c −0.168 −0.174b −0.163 −0.323a −0.627a

(0.046) (0.048) (0.063) (1.890) (0.084) (0.111) (0.083) (0.169)
φ5 0.140a 0.257a 0.043 −0.202 0.308a −0.044 0.107a −0.657a

(0.039) (0.036) (0.050) (3.097) (0.111) (0.055) (0.031) (0.254)
LLF 56787.14 56745.73 50203.66 50150.49 48111.29 48167.20 53140.53 53155.10

Note: Estimation results for the return series for the precious metals: Gold (XAU), Silver (XAG), Palladium (XPD) and
Platinum (XPT). Egarch and Egarch-HAR models. Period 27th of December 2008 to the 30th of November 2010. Hourly
series, 11880 observations. LLF is the Log-likelihood function. Standard errors in bracket. ”a”, ”b” and ”c” indicate
significance at the 1%, 5% and 10%.
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Figure A.12: ACF standardized squared residuals Return and mean estimated series
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Table A.2: Estimation Volume GARMA model

XAU XAU XAG XAG XPD XPD XPT XPT

d1 0.151a 0.292a 0.118a 0.254a 0.103a 0.237a 0.134a 0.258a

(0.022) (0.008) (0.013) (0.014) (0.006) (0.010) (0.017) (0.008)
d2 0.257a 0.468a 0.220a 0.390a 0.199a 0.374a 0.200a 0.359a

(0.015) (0.031) (0.006) (0.014) (0.010) (0.013) (0.016) (0.008)
d3 0.176a 0.382a 0.131a 0.263a 0.112a 0.270a 0.123a 0.269a

(0.016) (0.035) (0.010) (0.014) (0.009) (0.008) (0.012) (0.009)
d4 0.180a 0.362a 0.142a 0.248a 0.132a 0.259a 0.182a 0.319a

(0.046) (0.081) (0.011) (0.015) (0.007) (0.011) (0.023) (0.009)
d5 0.211a 0.368a 0.153a 0.231a 0.125a 0.237a 0.159a 0.271a

(0.009) (0.053) (0.011) (0.014) (0.013) (0.011) (0.013) (0.011)
d6 0.153a 0.317a 0.131a 0.196a 0.142a 0.243a 0.130a 0.234a

(0.038) (0.046) (0.011) (0.016) (0.010) (0.017) (0.021) (0.008)
d7 0.179a 0.323a 0.137a 0.191a 0.119a 0.209a 0.133a 0.232a

(0.013) (0.055) (0.016) (0.015) (0.010) (0.013) (0.019) (0.012)
d8 0.175a 0.320a 0.137a 0.189a 0.120a 0.208a 0.133a 0.221a

(0.047) (0.059) (0.010) (0.015) (0.012) (0.011) (0.017) (0.011)
d9 0.182a 0.314a 0.153a 0.191a 0.116a 0.197a 0.141a 0.23a

(0.045) (0.061) (0.014) (0.018) (0.010) (0.010) (0.023) (0.013)
d10 0.176a 0.316a 0.140a 0.172a 0.126a 0.204a 0.143a 0.224a

(0.040) (0.108) (0.010) (0.017) (0.012) (0.015) (0.012) (0.010)
d11 0.181a 0.313a 0.138a 0.164a 0.138a 0.211a 0.143a 0.228a

(0.023) (0.057) (0.017) (0.017) (0.012) (0.010) (0.015) (0.010)
d12 0.156a 0.293a 0.135a 0.152a 0.109a 0.189a 0.132a 0.213a

(0.018) (0.107) (0.018) (0.019) (0.014) (0.009) (0.025) (0.014)
d13 0.077c 0.143a 0.075a 0.083a 0.063a 0.101a 0.077a 0.116a

(0.042) (0.010) (0.008) (0.011) (0.008) (0.008) (0.009) (0.010)
φ1 - −0.018 - −0.234a - −0.055b - −0.028

(0.159) (0.044) (0.021) (0.026)
φ24 - −0.257a - −0.157a - −0.170a - −0.182a

(0.069) (0.015) (0.009) (0.008)
φ48 - −0.150a - −0.068a - −0.132a - −0.103a

(0.025) (0.011) (0.009) (0.010)
φ72 - −0.097c - −0.083a - −0.084a - −0.056a

(0.055) (0.010) (0.008) (0.009)
φ96 - −0.070a - −0.033a - −0.052a - −0.058a

(0.013) (0.009) (0.007) (0.012)
φ120 - −0.002 - −0.002 - −0.026a - −0.006

(0.061) (0.009) (0.009) (0.009)
θ1 - −0.517a - −0.667a - −0.587a - −0.519a

(0.104) (0.033) (0.037) (0.031)
µ −22.01a −26.62a −99.93a −99.21a −13.31a −11.38a −13.39a −10.88a

(1.742) (6.688) (6.929) (12.12) (1.090) (0.892) (1.161) (0.540)
σ 367.0a 356.8a 20908a 20274a 706.6a 690.7a 441.3a 433.3a

(20.12) (35.77) (361.8) (292.9) (8.443) (8.043) (5.404) (3.859)
LLF -51936.01 -51768.53 -75947.61 -75764.66 -55826.96 -55691.76 -53030.35 -52921.69

Note: Estimation results for the volume series for the precious metals: Gold (XAU), Silver (XAG), Palladium (XPD) and
Platinum (XPT). GARMA models. Period 27th of December 2008 to the 30th of November 2010. Hourly series, 11880
observations. LLF is the Log-likelihood function. Standard errors in bracket. ”a”, ”b” and ”c” indicate significance at the
1%, 5% and 10%.
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Figure A.13: ACF standardized squared residuals Volume and mean estimated series
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Table A.3: Estimation OF 2/100 ARFIMA with harmonics

XAU XAU XAG XAG XPD XPD XPT XPT

d 0.051a 0.046a 0.168a 0.163a 0.080a 0.077a 0.070a 0.071a

(0.014) (0.014) (0.025) (0.025) (0.009) (0.009) (0.009) (0.009)
φ1 0.294a 0.294a 0.734a 0.724a −0.261c −0.165 −0.547b −0.616a

(0.068) (0.062) (0.046) (0.045) (0.137) (0.109) (0.255) (0.219)
φ24 0.031a 0.029a 0.008 0.007 0.055a 0.054a 0.021b 0.020b

(0.008) (0.008) (0.006) (0.006) (0.009) (0.009) (0.008) (0.008)
φ48 - 0.027a - 0.005 - 0.038a - −0.001

(0.008) (0.006) (0.009) (0.007)
φ72 - 0.021b - 0.002 - −0.015c - −0.001

(0.008) (0.006) (0.009) (0.007)
φ96 - 0.020b - 0.014b - 0.016c - −0.007

(0.008) (0.006) (0.009) (0.007)
φ120 0.051a 0.048a 0.011c 0.010 −0.007 −0.007 0.004 0.005

(0.008) (0.008) (0.006) (0.006) (0.009) (0.009) (0.009) (0.008)
θ1 −0.195a −0.191a −0.806a −0.794a 0.291b 0.198c 0.558b 0.624a

(0.064) (0.058) (0.033) (0.035) (0.133) (0.107) (0.245) (0.210)
µ −0.827a −0.826a −0.056a −0.056a −0.051a −0.051a −0.065a −0.065a

(0.056) (0.061) (0.007) (0.007) (0.004) (0.004) (0.005) (0.005)
γ1 0.587a 0.587a 0.035a 0.035a 0.037a 0.037a 0.044a 0.044a

(0.053) (0.059) (0.003) (0.003) (0.003) (0.003) (0.004) (0.004)
φ1 0.453a 0.452a 0.038a 0.038a 0.044a 0.044a 0.030a 0.030a

(0.053) (0.059) (0.003) (0.003) (0.003) (0.003) (0.004) (0.004)
γ2 0.309a 0.309a 0.019a 0.019a 0.018a 0.018a 0.020a 0.020a

(0.050) (0.055) (0.003) (0.003) (0.003) (0.003) (0.004) (0.004)
φ2 −0.268a −0.268a −0.012a −0.012a −0.019a −0.019a −0.019a −0.019a

(0.050) (0.055) (0.003) (0.003) (0.003) (0.003) (0.004) (0.004)
γ3 −0.151a −0.150a −0.002 −0.002 −0.002 −0.002 0.007c 0.007c

(0.047) (0.051) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
φ3 −0.245a −0.245a −0.016a −0.016a −0.018a −0.018a −0.029a −0.029a

(0.047) (0.051) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
γ4 0.093b 0.093c 0.002 0.002 −0.005c −0.005c −0.004 −0.004

(0.044) (0.048) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
φ4 0.237a 0.237a 0.007b 0.007b 0.008a 0.008a 0.013a 0.013a

(0.044) (0.048) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
γ5 0.017 0.017 −0.001 −0.001 −0.000 −0.000 0.006c 0.006c

(0.042) (0.045) (0.002) (0.002) (0.002) (0.003) (0.003) (0.003)
φ5 −0.013 −0.013 −0.003 −0.003 0.005c 0.005c 0.011a 0.011a

(0.042) (0.045) (0.002) (0.002) (0.002) (0.003) (0.003) (0.003)
σ 9.238a 9.220a 0.050a 0.050a 0.049a 0.049a 0.085a 0.085a

(0.118) (0.119) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001)
LLF -30063.71 -30052.31 858.8025 861.9133 1032.726 1044.071 -2263.594 -2263.024

Note: Estimation results for the OF 2/100 series for the precious metals: Gold (XAU), Silver (XAG), Palladium (XPD)
and Platinum (XPT). ARFIMA models.Period 27th of December 2008 to the 30th of November 2010. Hourly series, 11880
observations. LLF is the Log-likelihood function. Standard errors in bracket. ”a”, ”b” and ”c” indicate significance at the
1%, 5% and 10%.
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Figure A.14: ACF standardized squared residuals OF2 and mean estimated series
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Table A.4: Estimation QS ∗ 100 ARFIMA with harmonics

XAU XAU XAG XAG XPD XPD XPT XPT

dS 0.083a 0.076a 0.281a 0.274a 0.283a 0.267a 0.513a 0.493a

(0.010) (0.010) (0.011) (0.011) (0.010) (0.011) (0.023) (0.017)
φ1 −0.084a −0.072a 0.033 0.056c −0.031 0.006 0.079 0.080c

(0.023) (0.022) (0.035) (0.032) (0.032) (0.027) (0.057) (0.045)
φ24 0.104a 0.090a 0.153a 0.130a 0.163a 0.120a 0.123a 0.106a

(0.008) (0.008) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009)
φ48 - 0.036a - 0.041a - 0.100a - 0.070a

(0.008) (0.009) (0.009) (0.009)
φ72 - 0.049a - 0.086a - 0.102a - 0.075a

(0.008) (0.009) (0.009) (0.009)
φ96 - 0.070a - 0.084a - 0.077a - 0.046a

(0.008) (0.009) (0.009) (0.009)
φ120 0.308a 0.292a 0.101a 0.076a 0.168a 0.125a 0.105a 0.088a

(0.008) (0.008) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009)
θ1 0.234a 0.227a 0.149a 0.125a 0.196a 0.177a −0.071 −0.053

(0.023) (0.022) (0.032) (0.029) (0.029) (0.025) (0.066) (0.046)
µ −0.132a −0.134a −0.431a −0.464a −1.172a −1.192a −4.736a −4.891a

(0.012) (0.014) (0.047) (0.057) (0.091) (0.109) (0.655) (0.433)
γ1 −0.118a −0.120a −0.152a −0.154a −0.325a −0.324a −0.227a −0.232a

(0.009) (0.011) (0.008) (0.010) (0.016) (0.022) (0.012) (0.016)
φ1 0.014 0.014 −0.060a −0.062a −0.165a −0.171a −0.064a −0.064a

(0.009) (0.011) (0.008) (0.010) (0.016) (0.022) (0.012) (0.016)
γ2 −0.100a −0.101a −0.113a −0.114a −0.253a −0.250a −0.169a −0.172a

(0.008) (0.011) (0.006) (0.008) (0.013) (0.018) (0.009) (0.011)
φ2 −0.002 −0.002 −0.030a −0.032a −0.085a −0.085a −0.063a −0.065a

(0.008) (0.011) (0.006) (0.008) (0.013) (0.018) (0.009) (0.011)
γ3 −0.084a −0.085a −0.076a −0.076a −0.159a −0.157a −0.097a −0.097a

(0.008) (0.010) (0.005) (0.007) (0.011) (0.016) (0.007) (0.009)
φ3 −0.005 −0.005 −0.022a −0.023a −0.087a −0.087a −0.075a −0.076a

(0.008) (0.010) (0.005) (0.007) (0.011) (0.016) (0.007) (0.009)
γ4 −0.070a −0.071a −0.058a −0.058a −0.096a −0.095a −0.051a −0.051a

(0.008) (0.010) (0.005) (0.006) (0.010) (0.014) (0.006) (0.008)
φ4 −0.009 −0.009 −0.020a −0.021a −0.080a −0.079a −0.070a −0.071a

(0.008) (0.010) (0.005) (0.006) (0.010) (0.014) (0.006) (0.008)
γ5 −0.056a −0.057a −0.039a −0.039a −0.061a −0.059a −0.030a −0.029a

(0.008) (0.010) (0.004) (0.006) (0.009) (0.013) (0.005) (0.007)
φ5 −0.010 −0.011 −0.013a −0.014b −0.083a −0.083a −0.060a −0.060a

(0.008) (0.010) (0.004) (0.006) (0.009) (0.013) (0.005) (0.007)
σ 0.130a 0.128a 0.075a 0.074a 0.253a 0.245a 0.140a 0.138a

(0.001) (0.001) (0.000) (0.000) (0.003) (0.003) (0.001) (0.001)
LLF -4742.710 -4674.295 -1520.893 -1400.621 -8712.461 -8508.625 -5210.185 -5122.007

Note: Estimation results for the QS ∗ 100 series for the precious metals: Gold (XAU), Silver (XAG), Palladium (XPD)
and Platinum (XPT). ARFIMA models. Period 27th of December 2008 to the 30th of November 2010. Hourly series, 11880
observations. LLF is the Log-likelihood function. Standard errors in bracket. ”a”, ”b” and ”c” indicate significance at the
1%, 5% and 10%.
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Figure A.15: ACF standardized squared residuals QS and mean estimated series
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