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1 Introduction

The empirical option pricing literature shows that deep out-of-the-money puts, i.e., instruments

that offer protection against extreme market downturns, have a very high implied volatility, meaning

that they are very expensive.1 This pattern is typically explained by investors being crash-averse or

showing signs of ‘crash-o-phobia’ (Rubinstein (1994), Bates (2008)). However, the potential impact

of crash aversion on the pricing of the cross-section of individual stocks has caught surprisingly

little attention in the literature.2 If investors are crash-averse, they derive disproportionately large

disutility from large drops in their wealth. Then, crash-sensitive stocks should bear a premium,

because stocks that do particularly badly when the market performs very badly, i.e., when aggregate

wealth is low, are unattractive assets to hold for such investors. In this paper, we document that

crash-sensitive stocks indeed deliver higher returns than crash-insensitive stocks.

To measure crash sensitivity at the individual asset level, we need a dependence concept that

allows us to focus on joint extreme events. Standard asset pricing models since Sharpe (1964)

and Lintner (1965) argue that the joint distribution of individual stock returns and the market

portfolio return determines the cross-section of expected stock returns. According to the empirical

interpretation of the traditional CAPM, a stock’s expected return only depends on its beta—its

scaled linear correlation with the market—without any focus on tail events. However, the correla-

tion alone cannot characterize the full dependence structure of non-normally distributed random

variables such as realized stock returns (Embrechts, McNeil, and Straumann (2002)). Particularly,

it cannot capture clustering in the lower tail of the bivariate return distribution between individual

securities and the market, which is important if investors are crash-averse. Thus, we develop a novel

proxy for stock-individual crash sensitivity using copula methods based on extreme value theory.

Specifically, we capture stock individual crash sensitivity based on the extreme dependence between

individual stock returns and market returns in the lower-left tail of their joint distribution (also

called lower tail dependence, LTD) and investigate its influence on the cross-section of individual

stock returns.3

Based on a rolling window estimation using daily return data for US stocks from 1963 to 2012,

we calculate copula-based LTD coefficients for each stock and month. We find that stocks with

1See, e.g., Aı̈t-Sahalia and Lo (2000), Bates (2000), Broadie, Chernov, and Johannes (2009),
Jackwerth and Rubinstein (1996), Jackwerth (2000), Rosenberg and Engle (2002), Rubinstein (1994). Garleanu,
Pedersen, and Poteshman (2009) show that this effect is driven by high demand for out-of-the-money puts.

2Notable exceptions are the papers by Kelly and Jiang (2014) and Cholette and Lu (2011), which we will discuss
in more detail below.

3A positive influence of LTD on returns is expected (but not empirically shown) in Poon, Rockinger, and Tawn
(2004): “If tail events are systematic as well, one might expect the extremal dependence between the asset returns
and the market factor returns to also command a risk premium.” (p. 586).
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previously weak LTD, i.e., stocks that displayed only weak LTD or no LTD with the market at all

in the previous 12 months, have significantly higher returns than strong LTD stocks during extreme

market downturns. Hence, weak LTD stocks indeed offer some protection against market crashes.

In our main asset pricing tests, we relate individual LTD to average returns in a predictive setting.

Our empirical results using portfolio sorts and multivariate regression analysis on the individual

firm level show a strong positive impact of LTD in month t on future excess returns in month t+1. A

value-weighted portfolio consisting of stocks with the strongest LTD delivers higher average future

returns of 0.360% per month than a portfolio of stocks with the weakest LTD. This amounts to

an annualized spread of 4.32%. Similar results are obtained after controlling for the exposure to

systematic risk factors and the impact of various firm characteristics.

The impact of LTD has to be distinguished from the impact of downside beta documented in

Ang, Chen, and Xing (2006) as well as from the impact of other higher co-moments. Downside beta

focuses on individual securities’ exposure to market returns conditional on below-average market

returns and is motivated by disappointment aversion (Gul (1992)). LTD is conceptually different

from downside beta, as the latter places no particular emphasis on tail events.4 Consequently,

downside beta captures general downside risk (or disappointment) aversion rather than crash aver-

sion. In contrast, LTD captures the dependence in the extreme left tail of return distributions; it

focuses on how individual securities behave during the worst market return realizations within a

given period. We find a strong impact of LTD after controlling for the impact of the Ang, Chen, and

Xing (2006) downside beta as well as alternative definitions of downside beta as discussed in Post,

van Vliet, and Lansdorp (2012). We can also show that the risk premium associated with LTD

is not explained by coskewness (Harvey and Siddique (2000)), cokurtosis (Fang and Lai (1997)),

idiosyncratic volatility (Ang, Hodrick, Xing, and Zhang (2006)), or a stock’s lottery characteristics

(Bali, Cakici, and Whitelaw (2011)) and holds after controlling for other systematic risk factors

suggested in the literature.

Furthermore, we document that the risk premium for LTD is higher following large stock market

declines. This result is consistent with the theoretical predictions of Chen, Joslin, and Tran (2012).

They show that disaster risk premia can increase substantially when the risk-sharing capacity of

the “optimists” in their model is reduced, and they argue that this is likely to be the case in the

aftermath of a crisis. Our findings also are in line with an argument recently made by Gennaioli,

Shleifer, and Vishny (2015) that investors fear a future crash more when there was a recent crash

that they still remember.

4Downside betas conditional on very low market returns (instead of just below mean market returns, as in Ang,
Chen, and Xing (2006)) are intuitively more closely related to LTD. However, they cannot be estimated reliably, as
we show in Section 3.4.1.
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To motivate our use of copula-based LTD coefficients as a relevant risk measure for investors in a

stringent way, in the appendix, we introduce a theoretical asset pricing model. We show that some

simple regularity assumptions on the representative investor’s utility function are sufficient for LTD

to be priced in a stochastic discount factor framework. The main assumptions necessary for this

result are that the first four derivatives of the utility function have altering signs, i.e., investors show

non-satiation, they are risk-averse, their absolute risk-aversion is decreasing (which is equivalent

to investors liking skewness), and they are “temperate” (which is equivalent to investors disliking

kurtosis; see Eeckhoudt and Schlesinger (2006)). While our theoretical framework illustrates that

these assumptions are sufficient to generate a risk premium for strong LTD stocks, we expect this

finding to be reinforced if one would enrich our basic theoretical model with additional behavioral

aspects.5

Our theoretical model also predicts a negative return premium for the upper tail dependence

(UTD) between an individual stock’s return and the market return. Our empirical analysis shows

that high UTD stocks indeed earn a negative return premium, but—as also predicted by the

model—the effect is smaller in absolute terms than the impact of LTD and not statistically signif-

icant at the 10% level in most asset pricing tests.

Our study contributes to several strands of the asset pricing literature. First, it is related to

the literature on rare-disaster risk that has caught a lot of attention in the economics and finance

literature in recent years (e.g., Barro (2006), (2009), and Pindyck and Wang (2013)). Bollerslev

and Todorov (2011) find that much of the aggregate equity risk premium is a compensation for the

risk of extreme events, and Gabaix (2012) shows that time-varying rare-disaster risk can explain

the equity premium puzzle (as well as several other puzzles in macro finance). Similarly, there is

now a small number of recent papers that examine the time-series relationship between tail risk

and aggregate stock market returns (e.g., Bali, Demirtas, and Levy (2009), Bollerslev and Todorov

(2011), and Kelly and Jiang (2014)). They find that proxies for tail risk can predict aggregate

market returns.

Second, our study is related to the theoretical and empirical literature on downside risk and loss

aversion. Downside risk aversion is already discussed in Roy (1952), who argues that investors

display “safety first” preferences, and in Markowitz (1959), who suggests using the semi-variance

as a measure of risk. Many subsequent contributions analyze the impact of higher co-moments

5For example, the accumulated evidence from experiments designed to verify the cumulative prospect theory by
Kahneman and Tversky (1979) shows that individuals are loss-averse and distort the probabilities of low-probability
outcomes (like market crashes) heavily upwards (e.g., Abdellaoui (2002)). More recently, Polkovnichenko and Zhao
(2013) confirm this pattern using market data from traded financial options to derive empirical probability weighting
functions. He and Zhou (2013) show that this can have important implications for investors’ optimal portfolio choice
and leads to demand for portfolio insurance.
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on expected returns.6 Kahneman and Tversky (1979) argue that individuals evaluate outcomes

relative to reference points and show that individuals are loss-averse. Although aversion to losses

and downside risk aversion are discussed extensively in the literature, only a few papers investigate

the effect of loss or disappointment aversion on expected asset returns (Barberis and Huang (2001),

Benartzi and Thaler (1995), Barberis, Huang, and Santos (2001), Ang, Bekaert, and Liu (2005),

and Lettau, Maggiori, and Weber (2014)). However, these papers (as well as the study by Ang,

Chen, and Xing (2006) discussed above) are concerned with general downside risk aversion rather

than crash aversion.

Crash aversion has still caught relatively little attention in the cross-sectional asset pricing liter-

ature. One exception is Berkman, Jacobsen, and Lee (2011), who examine whether industries that

are sensitive to a real crisis index deliver higher returns and find some evidence for this to be the

case. The only other papers we are aware of that document an impact of crash sensitivity (or tail

risk exposure) on the cross-section of individual stock returns are the papers by Kelly and Jiang

(2014) and Cholette and Lu (2011).7 These two papers predict aggregate tail risk by applying the

tail risk estimator of Hill (1975) to the cross-section of all daily stock returns in a given month.

Consistent with our results, Kelly and Jiang (2014) also document that a long-short portfolio that is

based on individual stocks’ exposure to an aggregate tail risk factor that hedges against tail events

delivers significantly negative returns. Similar results are obtained by Cholette and Lu (2011).

Our paper differs from these two papers conceptually: we capture crash sensitivity using lower tail

dependence between a stock and the market. Thus, our proxy for crash sensitivity of an individual

stock has the advantage of being directly based on the joint distribution of its return and the mar-

ket return. An additional practical advantage of our approach is that we only need a time series of

an individual asset’s return and the market return (while Kelly and Jiang’s implementation of the

Hill (1975) estimator requires data on the whole cross-section of all individual daily stock returns

at each point in time). Finally, unlike these papers, our paper develops an explicit cross-sectional

asset pricing theory and thereby theoretically motivates our focus on crash aversion and the use of

LTD to capture crash sensitivity in our empirical analysis. Our paper is also unique in document-

ing a higher return premium after crises periods, thus providing the first empirical support for the

theoretical models of Chen, Joslin, and Tran (2012) and Gennaioli, Shleifer, and Vishny (2015).

Finally, we contribute to the literature on the application of extreme value theory and copulas in

6Extensions of the basic CAPM that allow for preferences for skewness and lower partial moments of security
and market returns are developed by Kraus and Litzenberger (1976) and Bawa and Lindenberg (1977). Kraus and
Litzenberger (1976), Friend and Westerfield (1980), and Harvey and Siddique (2000) document that investors dislike
a stock’s negative coskewness with the market return. Fang and Lai (1997) and Dittmar (2002) show that stocks
with high cokurtosis earn high average returns.

7Van Oordt and Zhou (2013) measure tail risk of stocks based on tail betas but do not find evidence of higher
returns associated with high tail risk.
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finance. Despite its long history in statistics, multivariate extreme value theory has been applied to

the analysis of financial markets only recently.8 It is mainly used to describe dependence patterns

across different markets and assets (Longin and Solnik (2001), Patton (2004), and Elkamhi and

Stefanova (2015)). However, to the best of our knowledge, ours is the first paper to investigate

extreme dependence structures in the bivariate distribution of individual and market returns based

on copulas. Our application details how to fit flexible combinations of basic parametric copulas

to this bivariate distribution and how to derive the corresponding tail dependence coefficients.

The copula approach has the advantage that extreme dependence is not estimated based on a small

number of observations in the tail exclusively, but that information from the whole joint distribution

can be used. Furthermore, our approach updates dependence estimates frequently, thus allowing

to capture the potentially dynamic nature of tail dependence in an extremely flexible framework.

2 Tail Dependence and Copula Methodology

Most of the standard empirical asset pricing literature focuses on risk factors based on linear

correlation coefficients. However, this measure of stochastic dependence is not typically able to

completely characterize the dependence structure of non-normally distributed random variables

(Embrechts, McNeil, and Straumann (2002)). It is widely recognized since a long time that many

financial time series, including stock returns, are non-normally distributed (see, e.g., Mandelbrot

(1963) and Fama (1965)). For example, they are often characterized by leptokurtosis. This is

problematic because when we are dealing with a fat-tailed bivariate distribution F (x1, x2) of two

random variablesX1 and X2, the linear correlation—and consequently the standard beta estimate—

fails to capture the dependence structure in the extreme lower-left and upper-right tail. As an

example, consider the following illustrations of 2,000 simulated bivariate realizations based on

different dependence structures between (X1, X2) shown in Figure 1.

[Insert Figure 1 about here]

In all models, X1 and X2 have standard normal marginal distributions and a linear correlation

of 0.8, but other aspects of the dependence structure are clearly different. In Panel A we first

show an example in which we did not allow for clustering in either tail of the distribution. Panels

8Longin and Solnik (2001) use extreme value theory to model the bivariate return distributions between different
international equity markets. Ané and Kharoubi (2003) propose to model the dependence structure of international
stock index returns via parametric copulas while Poon, Rockinger, and Tawn (2004) present a general framework
for identifying joint-tail distributions based on multivariate extreme value theory. Patton (2004) uses copula theory
to model time-varying dependence structures of stock returns and Patton (2009) applies copula functions to assess
different definitions of market neutrality for hedge funds. Finally, Elkamhi and Stefanova (2015) use copulas to show
that accounting for extreme asset comovements is important for portfolio hedging.
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B to D show examples of increased dependence in the upper-right tail, in the lower-left tail, and

symmetric increased dependence in both tails, respectively. Still, all of these bivariate distributions

are characterized by a linear correlation coefficient of 0.8. These examples show that it is often not

possible to describe the dependence structure by the linear correlation alone.

Now, we characterize two measures of dependence as limiting cases of conditional probabilities:

Consider two bivariate returns (X1, X2), where X1 is the return of an individual stock and X2 is

the market return with corresponding marginal cumulative distributions FX1 and FX2 . We define

Pl (q) = Pr
[
X1 < F−1

X1
(q) |X2 < F−1

X2
(q)
]

(1)

as a tail dependence measure in the left tail. X1 and X2 are said to be asymptotically independent

(dependent) in the left tail if Pl (q) has a limit that is equal (not equal) to zero as q approaches 0

from the right. We define lower tail dependence (LTD) as:

LTD ≡ lim
q→0+

Pl (q) . (2)

Similarly, we define

Pr (q) = Pr
[
X1 > F−1

X1
(q) |X2 > F−1

X2
(q)
]

(3)

and

UTD ≡ lim
q→1−

Pr (q) (4)

as our measure of upper tail dependence (UTD).

In the following (Section 2.1), we detail how we estimate measures of tail dependence based on

copulas.9 Then, we describe the development of aggregate tail dependence over time (Section 2.2)

and finally assess whether our suggested tail dependence coefficients really measure how stocks do

during market crashes and whether they are useful for hedging against extreme outcomes (Section

2.3).

2.1 Copula-Based Estimation of Tail Dependence Coefficients

The main idea of our estimation framework is to model the whole dependence structure between

individual stock returns and the market return using copulas. We first estimate the marginal

9As copula concepts are not yet regularly used in standard asset pricing applications, we provide a short intuitive
introduction into the concept in Section A of the Internet Appendix. For a more detailed overview on the use of
copulas in econometrics and finance, see Fan and Patton (2014).
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distributions of an individual stock return and the market return non-parametrically by their scaled

empirical distribution functions. Then, we estimate parameters of different copulas to compute

coefficients of tail dependence (i.e., LTD and UTD) based on closed-form solutions.10

Unfortunately, most basic copulas do not allow to model LTD and UTD simultaneously. Hence,

we work with flexible convex combinations of copulas.11 Specifically, we use combinations of sim-

ple parametric copulas that either exhibit no tail dependence (the Gauss-, the Frank-, the FGM-,

and the Plackett-copula), lower tail dependence (the Clayton-, the Rotated Gumbel-, the Rotated

Joe-, and the Rotated Galambos-copula), or upper tail dependence (the Gumbel-, the Joe-, the

Galambos-, and the Rotated Clayton-copula). To allow for maximum flexibility in modeling de-

pendence structures, we consider all 4 × 4 × 4 = 64 possible convex combinations that consist

of one copula that allows for asymptotic dependence in the lower tail, CLTD, one copula that is

asymptotically independent, CNTD, and one copula that allows for asymptotic dependence in the

upper tail, CUTD:

C(u1, u2,Θ) = w1 · CLTD(u1, u2; θ1)

+w2 · CNTD(u1, u2; θ2) + (1− w1 − w2) · CUTD(u1, u2; θ3), (5)

where Θ denotes the set of the basic copula parameters θi, i = 1, 2, 3 and the weights w1 and w2.12

Our estimation approach for LTD and UTD then follows a three-step procedure. First, based

on daily return data for the market and each stock, we estimate a set of copula parameters Θj

for j = 1, . . . , 64 different copulas Cj(·, ·; Θj) between the respective marginal distribution of an

individual stock return ri and the market return rm for each month based on a rolling window of 12

months (Section 2.1.1). We explicitly use a short time horizon of 12 months in the estimation of the

copula parameters to account for time-varying dependence in the bivariate distribution of ri and rm.

10Table IA.I. of the Internet Appendix shows the parametric forms and related tail dependencies of the basic
copulas used in this study. Alternatives to this appraoch include a purely non-parametric approach (as suggested in
Poon, Rockinger, and Tawn (2004) which relies only on observations from the tail) and a fully parametric approach.
Non-parametric test procedures enable us to test for the existence of tail dependence – in the Internet Appendix (Table
IA.II) we show that the existence of LTD cannot be rejected for more than 60% of the firm-month observations in our
sample using the bottom 1% daily return observations as a cutoff. However, purely non-parametric point estimates
for tail dependence coefficients are not very precise (Frahm, Junker, and Schmidt (2005)). Hence, in the following,
we rely on an estimation framework using non-parametric margins and parametric copula functions to obtain more
precise estimates for LTD and UTD. To avoid the risk of model mis-specification, we consider 64 different copula
models in our selection and estimation process.

11Tawn (1988) shows that every convex combination of existing copula functions is again a copula. Thus, if
C1(u1, u2), C2(u1, u2), . . ., Cn(u1, u2) are bivariate copula functions, then C(u1, u2) = w1 ·C1(u1, u2)+w2 ·C2(u1, u2)+
. . .+ wn · Cn(u1, u2) is again a copula for wi ≥ 0 and

∑n
i=1 wi = 1.

12These convex combinations are similar to other copulas such as the BB1 to BB7 copulas suggested in Joe (1997),
but they offer more flexibility. Particularly, as our convex combinations also contain one copula that is asymptotically
independent, ours is an extremely flexible and efficient way to model dependence structures and is less prone to model
misspecification.
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An alternative approach to account for time-variation in dependence would be to specify a dynamic

(conditional) copula model similar to Patton (2006) and Jondeau and Rockinger (2006). In this

setting the functional form of the copula remains fixed over time whereas the copula parameters

vary according to some pre-specified stochastic process. However, while this is a valid approach

to capture the dynamic nature of the copula parameters, the approach uses a fixed functional

form of the copula function itself. We decided in favor of our more flexible (unconditional) copula

framework because it enables us to choose the best parametric copula, i.e., the parametric copula

that minimizes the distance to the empirical copula, at each point in time.

Second, we follow Ané and Kharoubi (2003) and select the appropriate parametric cop-

ula C∗(·, ·; Θ∗) by minimizing the distance between the different estimated parametric copulas

Cj(·, ·; Θ̂j) and the empirical copula Ĉ based on the Integrated Anderson-Darling distance (see

Section 2.1.2). Third, we compute the tail dependence coefficients LTD and UTD implied by the

estimated parameters Θ∗ of the selected copula C∗(·, ·; Θ∗) (Section 2.1.3).

2.1.1 Estimation of the Marginal Distribution and the Copula Parameters

The estimation of the set of copula parameters Θj for the different copula combinations Cj(·, ·; Θj)

is performed as follows: Let {ri,k, rm,k}nk=1 be a random sample from the bivariate distribution

F (ri, rm) = C(Fi(ri), Fm(rm)) between an individual stock return ri and the market return rm,

where n denotes the number of daily return observations in a given period.13 We estimate the

marginal distributions Fi and Fm of an individual stock return ri and the market return rm non-

parametrically by their scaled empirical distribution functions

F̂i(x) =
1

n+ 1

n∑
k=1

1ri,k≤x and F̂m(x) =
1

n+ 1

n∑
k=1

1rm,k≤x. (6)

The estimation of Fi and Fm by their empirical counterparts avoids an incorrect specification

of the marginal distributions (see Fermanian and Scaillet (2005) and Charpentier, Fermanian, and

Scaillet (2007)). We then estimate the set of copula parameters Θj . Each convex combination

requires the estimation of five parameters: one parameter θi (i = 1, 2, 3) for each of the three

basic copulas and the two weights w1 and w2. Since we assume a parametric form of the copula

functions, the parameters Θj can be estimated via the canonical maximum likelihood procedure

(Genest, Ghoudi, and Rivest (1995)):

13In computing the market return rm, we exclude stock i, so the market return rm is slightly different for each
stock’s time-series regression. This removes potential endogeneity problems when calculating LTD and UTD coeffi-
cients for each stock.
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Θ̂j = argmax Θj Lj(Θj) with Lj(Θj) =

n∑
k=1

log (cj(F̂i,ri,k , F̂m,rm,k ; Θj)), (7)

where Lj(Θj) denotes the log-likelihood function and cj(·, ·; Θj) the copula density. Assuming that

{ri,k, rm,k}nk=1 is an i.i.d. random sample, Θ̂ is a consistent and asymptotic normal estimate of the

set of copula parameters Θ under standard regularity conditions (e.g., Genest, Ghoudi, and Rivest

(1995)).14

2.1.2 How to Select the Right Copula

So far we have pointed out an estimation procedure under the assumption that the copula

Cj(·, ·; Θj) is known up to a set of parameters Θj . The choice of the copula C∗(·, ·; Θ∗) obvi-

ously affects the resulting bivariate distribution and the resulting tail dependence coefficients LTD

and UTD. However, most applications presented in the literature do not discuss this issue and rely

on an arbitrary choice of the copula. To avoid this problem, we follow Ané and Kharoubi (2003)

and use the empirical copula function introduced by Deheuvels (1981) to evaluate the fit of different

parametric copulas. We proceed as follows:

Let {Ri,k, Rm,k}nk=1 denote the rank statistic of {ri,k, rm,k}nk=1, i.e., the smallest individual stock

(market) return observation of ri,k (rm,k) has rank Ri,k = 1 (Rm,k = 1) and the largest individual

stock (market) return observation of ri,k (rm,k) has rank Ri,k = n (Rm,k = n).

Deheuvels (1981) introduces the empirical copula Ĉ(n) on the lattice

L =

[(
ti
n
,
tm
n

)
, ti = 0, 1, . . . , n, tm = 0, 1, . . . , n

]
by the following equation:

Ĉ(n)

(
ti
n
,
tm
n

)
=

1

n

n∑
k=1

1Ri,k≤ti · 1Rm,k≤tm . (8)

We compute Integrated Anderson-Darling distances Dj,IAD between the parametric copulas

Cj(·, ·; Θ̂j) and the empirical copula Ĉ(n) via

14Obviously, daily return data often violates the assumption of an i.i.d. random sample. Thus, an alternative
approach to the problem of non-i.i.d. data due to serial correlation in the first and the second moment of the time
series would be to specify, e.g., GARCH models for the univariate processes, and analyze the dependence structure
of the residuals. In Section 3.4.4 we check this alternative approach: results for the LTD and UTD coefficients based
on filtered residuals and subsequent asset pricing implications are very similar to our main results using unfiltered
data.
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Dj,IAD =

n∑
ti=1

n∑
tm=1

(
Ĉ(n)

(
ti
n ,

tm
n

)
− Cj

(
ti
n ,

tm
n ; Θ̂j

))2

Cj

(
ti
n ,

tm
n ; Θ̂j

)
·
(

1− Cj
(
ti
n ,

tm
n ; Θ̂j

)) . (9)

Hence, we calculate the distance between the predicted value of the parametric copulas Cj(·, ·; Θ̂j)

and the empirical copula Ĉ(n) for every grid point on the lattice L. The estimation of the tail

dependence coefficients LTD and UTD is based on the estimated parameters Θ∗ of the copula

combination C∗(·, ·; Θ∗), which minimizes Dj,IAD.

The result of our empirical implementation of this procedure shows that all combinations are

chosen regularly and no specific copula clearly dominates, which highlights the advantage of picking

the copula function that describes the data best, rather than just using one specific ad-hoc copula.

The respective frequencies are summarized in Table IA.III in the Internet Appendix. The three

copula combinations that are most often selected are the Clayton-Gauss-Galambos-copula (5.96%),

the Clayton-Gauss-Rotated Clayton-copula (5.75%), and the Rotated Galambos-Gauss-Rotated

Clayton-copula (5.73%).15

2.1.3 Computation of Tail Dependence Coefficients Based on Convex Combinations

of Copulas

Finally, we compute the tail dependence coefficients LTD and UTD implied by the estimated

parameters Θ∗ of the selected copula C∗(·, ·; Θ∗). The computation of LTD and UTD is straight-

forward for the basic copulas used in our study (the respective closed form solutions for tail de-

pendence coefficients are shown in Table IA.I in the Internet Appendix). The lower and upper

tail dependence coefficient of the convex combination are calculated as the weighted sum of the

LTD and UTD coefficients from the individual copulas, respectively, where the weights from (5)

are used, i.e., LTD∗ = w∗1 · LTD(θ∗1) and UTD∗ = (1 − w∗1 − w∗2) · UTD(θ∗3). As this procedure is

repeated for each stock and month based on an annual estimation horizon, we end up with a panel

of tail dependence coefficients LTD∗i,t and UTD∗i,t at the month-firm level.

Our empirical approach to estimate LTD has three advantages: (i) it uses the whole body of data

of the bivariate distribution of individual and market returns (thus avoiding the imprecision of

tail dependence estimates relying on non-parametric methods that only focus on tail observations).

(ii) it is very flexible by picking the convex copula combination that best describes the data (in

15In a robustness check, we select the best parametric copula based on estimated log-likelihood values instead
of Integrated Anderson-Darling distances. We confirm that the copula combinations most frequently picked are
the Clayton-Gauss-Galambos-copula (5.91%), the Clayton-Gauss-Rotated Clayton-copula (5.78%), and the Rotated
Galambos-Gauss-Rotated Clayton-copula (5.75%) using this alternative selection criterion. Asset pricing results are
also very similar (see Table 10).
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contrast to approaches using a pre-defined specific functional form for the dependence structure)

and by allowing for asymmetric tail dependencies in the upper and lower tail. (iii) it does capture

the dynamic nature of the dependence relationship by frequently updating the copula fitting and

parameter selection procedure.

2.2 Data, Summary Statistics and the Evolution of Aggregate Tail Dependence

Our sample consists of all common stocks (CRSP share codes 10 and 11) from CRSP trading

on the NYSE, AMEX, and NASDAQ between January 1, 1963, through December 31, 2012. So

that our results are not driven by very small stocks, we exclude return data from firms that are in

the bottom 1% of market capitalization of all stocks in the previous year. Furthermore, we require

at least 100 valid daily return observations per year. Overall, there are 2, 613, 440 firm-month

observations after we apply these filters. The number of firms in each month over our sample

period ranges from 1, 904 to 6, 778. Summary statistics are provided in Table 1.

[Insert Table 1 about here]

The first four columns show the mean as well as the 25%, the 50%, and the 75% quantiles for key

variables (pooled over all stocks and months). The mean (median) yearly excess return over the

risk-free rate of all stocks in our sample is 0.67% (-0.13%), and the mean (median) LTD coefficient

is 0.10 (0.07). We also observe considerable variation in LTD, with an interquartile range of nearly

0.15. The mean (median) of UTD is 0.07 (0.04) and is significantly lower than the mean (median)

of LTD. The general tendency for stronger asymptotic dependence in the left tail than in the right

tail of the distributions is consistent with the well-documented finding that return correlations

generally increase in down markets.16 The rest of the table provides information on the summary

statistics regarding other firm characteristics and return patterns that we later use in our empirical

analysis. All variable definitions are contained in the Appendix.

The last three columns of Table 1 show the average characteristics of stocks with, respectively,

above and below values of LTD in a given month, as well as the difference between the two. Excess

returns over the risk-free rate for high LTD stocks are 0.80% p.a., while they are significantly

lower at 0.57% p.a. for low LTD stocks. The difference amounts to 0.23% p.a. and is statistically

significant at the 1% level. At the same time, high LTD stocks also have significantly higher regular

betas (β) and downside betas (β−), tend to be somewhat larger and more liquid, and have lower

book-to-market ratios.

16In the Internet Appendix, we also look at five year subperiods. We find that UTD is significantly weaker than
LTD in each period (Table IA.IV). Increased extreme dependence among international markets during bear markets
is also documented in Longin and Solnik (2001) and Poon, Rockinger, and Tawn (2004).
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Cross-correlations between the independent variables used in our later analysis are shown in Table

2 and confirm these patterns.

[Insert Table 2 about here]

The correlation between LTD and UTD is relatively moderate, at 0.15, which shows that firms

with strong tail dependence in one tail of the distribution do not necessarily exhibit strong tail

dependence in the other tail. This finding also justifies our flexible modeling approach for tail

dependence, which allows for asymmetric tail dependence in the upper and lower tail. LTD is

correlated with downside beta with a correlation coefficient of 0.38 and with regular beta with

a correlation coefficient of 0.34. LTD is also related to other co-moments as can be seen from

the strongly positive (negative) correlation with cokurtosis (coskewness). We carefully take into

account the impact of these correlations in our later analysis.

To get some idea about the temporal variation of tail dependence, we investigate the time series

of aggregate LTD. We define aggregate LTD, LTDm,t, as the yearly cross-sectional, value-weighted,

average of LTDi,t over all stocks i in our sample. In Figure 2, we plot the time series of LTDm,t.

[Insert Figure 2 about here]

There is no particular time trend in LTDm,t.
17 However, the graph does exhibit occasional spikes

in LTDm,t that roughly correspond to worldwide financial market crises. The highest values in

LTDm,t correspond to 1987, the year of “Black Monday,” with the largest one-day percentage

decline in U.S. stock market history, and to the years 2007 through 2011, the years of the recent

worldwide financial crisis. This pattern suggests that LTDm,t—similar to return correlations—

increases in times of financial crises. Consistent with this argument, the time-series correlation

between LTD and the market return is −0.08, and the time-series correlation between LTD and

market volatility is 0.32. Figure 2 also plots aggregate UTD, UTDm,t, defined as the yearly cross-

sectional, value-weighted, average of UTDi,t. The time series of LTDm,t and UTDm,t are not

significantly correlated. We find that in 33 of 49 years of our sample LTDm,t exceeds UTDm,t.

2.3 Returns of LTD-sorted Portfolios During Crises

To check whether investors can use weak LTD stocks to hedge against market crashes from an

ex-ante point of view, we analyze the relation between past LTD and future returns on some of the

most relevant financial crisis days in our sample period. We examine “Black Monday” (October

17Performing an augmented Dickey-Fuller test rejects the null hypothesis that LTDm,t contains a unit root with
a p-value smaller than 2%.
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19, 1987), the Asian Crisis (October 27, 1997), the burst of the dot-com bubble (April 14, 2000),

and the recent Lehman crises (October 15, 2008). If LTD really captures crash sensitivity, we

should see an underperformance of strong LTD stocks as compared to weak LTD stocks on these

days. Specifically, we sort stocks into five quintile portfolios at the beginning of each month that

contains the respective crisis day based on LTD estimated over the previous twelve months. Then

we examine future value-weighted returns of these portfolios during each of the financial crisis days.

Results are presented in Table 3.

[Insert Table 3 about here]

As expected (and opposite of what we expect in the overall sample and will later show in Table

4), strong LTD stocks strongly underperform weak LTD stocks on each of these individual crisis

days. The differences are economically large: the daily return of the weak LTD portfolio is from

1.98% to 5.12% higher than that of the strong LTD portfolio. To assess statistical significance,

we also jointly analyze the ten worst return days in our sample. Results are presented in the last

column of Table 3 and show that the weak LTD portfolio outperforms the strong LTD portfolio by

2.90% per day on those days. The effect is statistically significant at the 5% level. Note, that we do

not claim to predict crises, but that investors could predict which stocks will be particularly badly

hit conditional on a crises occurring. Our findings show that crash-sensitive investors can reduce

their crises exposure by investing in weak LTD stocks.18

3 Crash Sensitivity and Future Returns

In the main part of the empirical analysis we look at the relationship between tail dependence

coefficients and future monthly security returns. Our asset pricing tests are completely out-of-

sample and hence avoid in-sample problems such as overfitting or data mining. We estimate a

stock’s monthly individual LTD and UTD coefficients based on a rolling window over a period of

12 months. Using this horizon trades off two concerns: First, we need a sufficiently large number

of observations to get reliable estimates for our tail dependence coefficients. Second, motivated by

the fact that several studies document that risk exposures (like regular beta) are non-stable (see,

e.g., Fama and French (1992), and Ang and Chen (2007)), we need to account for time-varying

extreme dependence risk by using an estimation window that is not too long. To avoid the impact

of autocorrelation and heteroscedasticity in our models, we determine statistical significance in

portfolio sorts and multivariate regressions using Newey and West (1987) standard errors.

18Our results are in line with Agarwal, Ruenzi, and Weigert (2015) who document that highly sophisticated
investors (such as hedge funds) actively and successfully time crash risk exposure of their equity holdings.
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3.1 Portfolio Sorts

3.1.1 Univariate Sorts

To examine whether tail dependence in the form of LTD and UTD has an impact on the cross-

section of future stock returns, we first look at simple univariate portfolio sorts. For each month t

we sort stocks into five quintile portfolios based on their LTD and UTD estimated over the previous

12 months. Panel A of Table 4 reports the results of value-weighted sorts based on LTD.19

[Insert Table 4 about here]

The first column shows considerable cross-sectional variation in LTD: average LTD ranges from

0.00 in the weakest LTD quintile up to 0.27 in the strongest LTD quintile. In the second column,

we report the monthly future value-weighted average excess return over the risk-free rate of these

portfolios as well as differences in average excess returns between quintile portfolio 5 (strong LTD)

and quintile portfolio 1 (weak LTD) in month t + 1. We find that stocks with strong LTD have

significantly higher average future returns than stocks with weak LTD. Stocks in the quintile with

the weakest (strongest) LTD earn an monthly average excess return of 0.296% (0.656%). The return

spread between quintile portfolio 1 and 5 is 0.360% (4.32% p.a.), which is statistically significant

at the 1% level. These results are consistent with investors’ being crash-averse and requiring a

premium for holding stocks with strong LTD. However, our findings hitherto are only univariate,

and LTD is correlated with several other variables that are related to returns such as regular beta

or size (see Table 2). Thus, we also compute the monthly alphas generated by the quintile as well as

the difference portfolios based on the one-factor CAPM, the three-factor Fama and French (1993),

and the four-factor Carhart (1997) model. Results presented in the last three columns show that

alphas always increase monotonically from the weakest to the strongest LTD quintile portfolios.

The CAPM-alpha (three-factor alpha, four-factor alpha) of the difference portfolio is economically

large, amounting to 0.302% (0.437%, 0.237%) per month, and is always statistically significant at

least at the 5% level. The return series of the 5-1 difference portfolio loads significantly positively

on the market factor and the UMD momentum factor, while it has a significantly negative exposure

to the SMB size factor and the HML book-to-market factor.

In Panel B we report the results of value-weighted sorts based on UTD. We find that stocks with

strong UTD have lower average future returns than stocks with weak UTD. The return spread

between quintile portfolio 1 and 5 is −0.134% per month, which is not statistical different from zero

at the 10% level. When computing alphas, we find that the monthly return spread of the difference

19Equal-weighted portfolio results are discussed in Section 3.4.4.
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portfolio further shrinks (in absolute terms) to −0.091% (for the CAPM-alpha), −0.072% (for the

three-factor alpha), and 0.006% (for the four-factor alpha), respectively, and is not significantly

different from zero in either case.20 Hence, in the remainder of the paper, we focus on the impact

of LTD on the cross-section of average future stock returns.

Alternative Factor Models. We now evaluate whether the return spread due to LTD is ex-

plained by alternative factor models. For this purpose, we regress the returns of the (5-1) difference

portfolio (consisting of going long stocks with strong LTD and going short stocks with weak LTD)

on various sets of asset pricing factors recently proposed in the literature. Results are presented in

Table 5.

[Insert Table 5 about here]

First, we include the Pastor and Stambaugh (2003) traded liquidity risk factor in regression (1).

In regression (2), we replace the Pastor and Stambaugh (2003) liquidity factor with the Sadka

(2006) liquidity factor that is based on the permanent (variable) component of the price impact

function. In regression (3) we include the Bali, Cakici, and Whitelaw (2011) factor to control

for exposure of our strategy to lottery-type stocks, in regression (4) we include the Baker and

Wurgler (2006) sentiment index, orthogonalized with respect to a set of macroeconomic conditions,

and in regression (5) the Frazzini and Pedersen (2013) betting-against-beta factor is included.21 In

regression (6) we replace the momentum factor with the Fama-French short- and long-term reversal

factors. Finally, in regressions (7) and (8) we control for exposures to the Fama and French (2014)

5-factor model (extended by a profitability factor and an investment factor) and the Hou, Xue, and

Zhang (2015) 4-factor model consisting of the market factor, a size factor, an investment factor,

and a profitability factor. In each case, we document a statistically significant and economically

meaningful positive regression alpha ranging from 0.22% up to 0.53% per month, showing that

alternative factor model specifications cannot explain the return spread associated with LTD.

Overall, the findings from this section suggest that it is possible to create an abnormal future

return spread based on information about LTD which is not explained by common asset pricing

models.22

20A negative but (in absolute terms) weaker return premium for UTD as compared to LTD is also predicted by
our theoretical model (see Appendix B).

21The lottery factor is provided by Nusret Cakici (http://www.bnet.fordham.edu/cakici/), the time series of
the sentiment factor is taken from http://people.stern.nyu.edu/jwurgler/, and the betting-against-beta factor is
obtained from Andrea Frazzini’s homepage (http://www.econ.yale.edu/∼af227/).

22However, these results are only indicative, as we do not take into account any trading costs and other limits
of arbitrage. Both are likely to be relevant here, because our trading strategy requires frequent rebalancing and we
short stocks with weak LTD (which tend to be small and low β stocks, see Table 1).
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3.1.2 Bivariate Sorts

Our univariate result of higher future risk-adjusted returns of strong LTD stocks could be driven

by differences in beta,23 downside beta or differences with respect to other related return char-

acteristics. Thus, as a next step, we conduct double-sorts based on LTD as well as regular beta,

downside beta, coskewness, and cokurtosis. We focus on these variables because they are the ones

that are most strongly correlated with LTD (see Table 2).

[Insert Table 6 about here]

We first form quintile portfolios sorted on β. Then, within each β quintile, we sort stocks into

five portfolios based on LTD. Panel A of Table 6 reports value-weighted future monthly portfolio

excess returns over the risk-free rate of the β × LTD portfolios. Within each β quintile we find that

the return of the strong LTD portfolio is larger than the return of the weak LTD portfolio. The

return differences are all economically large and statistically significant at least at the 5% level.

The average spread in excess returns amounts to 0.404% per month and is statistically significant

at the 1% level.

LTD is also related to downside beta (β−) which is defined in Ang, Chen, and Xing (2006) as

the stock’s β conditional on the market return being below its mean. Thus, in Panel B we report

value-weighted future monthly excess returns of β− × LTD portfolios. We find that stocks in the

weak LTD portfolios have an average (across all β− quintiles) future excess return of 0.204% per

month, while stocks in the strong LTD portfolios have an average future excess return of 0.619%.

The spread is significant at the 1% level. Amounting to 0.415% per month (4.98% p.a.), it is also

economically large. Hence, the impact of LTD on returns is not driven by β−, either.24

Harvey and Siddique (2000) show that lower coskewness (coskew) is associated with higher ex-

pected returns and Fang and Lai (1997) and Dittmar (2002) document that higher cokurtosis

(cokurt) is associated with higher expected returns. Thus, in Panel C (D), we show value-weighted

average future excess returns of coskew × LTD (cokurt × LTD) portfolios. We find that controlling

for coskewness in Panel C slightly reduces the impact of LTD. However, LTD still remains a positive

and statistically significant predictor of average future returns in both cases.

To summarize, based on bivariate portfolio sorts we provide strong evidence that the risk asso-

ciated with LTD is related but clearly different from risks associated with regular market beta,

23Although we already control for linear beta exposure of our portfolios by looking at the CAPM alphas above,
we now also analyze dependent portfolio double-sorts on LTD and regular β, which allows us to also control for a
possible nonlinear impact of β.

24We show later that our results can also not be explained by alternative definitions of downside beta (see Section
3.4.1).
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downside beta, coskewness, and cokurtosis. Double-sorts offer the advantage that they allow us to

control for any potential nonlinear impact. However, in double-sorts we can only control for one

return characteristic at a time. Thus, we now turn to a multivariate approach that allows us to

examine the joint impact of different return and other characteristics of the firm that might have

an impact on the cross-section of average future stock returns.

3.2 Multivariate Evidence

We run Fama-MacBeth (1973) regressions on the individual firm level in the period from 1963 to

2012.25 Table 7 presents the regression results of monthly future excess returns on realized LTD

and various combinations of control variables in the first five columns.

[Insert Table 7 about here]

In regression (1), we include LTD as the only explanatory variable. It has a positive and highly

statistically significantly impact with a coefficient estimate of 0.0123 (statistically significant at

the 1%-level). In regression (2), we add the stock’s UTD coefficient. It shows a significantly

negative impact on returns, but the economic magnitude is again much smaller than that of the

impact of LTD. In the following regressions, we expand regression model (2) and add β, as well

as other firm characteristics such as size, book-to-market, and several other return characteristics

that might have an impact on returns.26 Specifically, in regression (3) we add coskewness (coskew),

and the Amihud (2002) illiquidity ratio (illiq) as a liquidity proxy, while regression (4) additionally

includes previous year returns, idiosyncratic return volatility, cokurtosis of individual returns with

the market return, and a stock’s lottery features captured by the maximum daily return over the

past year, max, similar to that of Bali, Cakici, and Whitelaw (2011). Results show that the impact

of LTD on future returns is stable and is even slightly increasing in statistical and economic terms

after the inclusion of the control variables. LTD exhibits one of the strongest influence of all

variables in terms of statistical power (t-statistics of 5.15 and 4.40, respectively).

Several of the control variables have a significant impact on returns, also, that confirm findings

from the existing literature: Firm size (book-to-market ratio) has a negative (positive) impact

(e.g., Fama and French (1993)), illiquidity (Amihud (2002)) and cokurtosis (Fang and Lai (1997)

25This econometric procedure has the disadvantage that risk factors are estimated less precisely in comparison to
using portfolios as test assets. However, Ang, Liu and Schwarz (2010) show that creating portfolios leads to smaller
standard errors of risk factor estimates but does not lead to smaller standard errors of cross-sectional coefficient
estimates. Creating portfolios destroys information by shrinking the dispersion of risk factors and leads to larger
standard errors.

26We winsorize all realizations of our independent variables at the 1% and 99% level in order to avoid outliers
driving our results. Our results do not hinge on this winsorization (see Section 3.4).

17



and Dittmar (2002)) have a positive impact, while max (Bali, Cakici, and Whitelaw (2011)) has

a negative impact. We do not find a consistent statistically significant influence of coskewness

(Harvey and Siddique (2000)) and idiosyncratic volatility (Ang, Hodrick, Xing, and Zhang (2006)

and (2009)).27

In regression (5) we replace β by β− and β+ and in regressions (6) and (7), we use 2-month and

3-month ahead returns as the independent variable, respectively. In all cases, our earlier findings

are confirmed: there is a very strong positive impact of LTD on average future returns, and the

t-statistic for the impact of LTD is always above 3. For longer period returns, we find only weaker

effects, showing that LTD is time-varying and highlighting the advantage of our approach using

frequently updated LTD estimates. As in Ang, Chen, and Xing (2006), we do not find a significant

impact of downside beta on future stock returns.28 Interestingly, including downside beta in our

regressions does also not reduce the impact of LTD, showing that the measures capture distinctively

different aspect of the dependence structure.

The last column presents the annualized economic significance based on a one standard deviation

change of each explanatory variable based on the results from regression (5): a one standard

deviation increase of LTD leads to an economically meaningful increase in future returns of 2.64%

p.a. This is the fourth-largest effect in terms of economic magnitude of all dependent variables

after well-known predictors such as past yearly return (+6.42%), book-to-market (+6.24%), and

illiquidity (+4.62%), but still larger than the return effects of higher order co-moments (coskewness:

-2.10%; cokurtosis: +2.52%).

3.3 Time-Varying Crash Fears of Investors

In the option pricing literature it is sometimes argued that investors became crash-o-phobic after

the experience of the 1987 crash (Rubinstein (1994), Bates (2000)).29 Furthermore, Chen, Joslin,

and Tran (2012) argue that the risk premium for disaster risk is typically small, but it increases

substantially after a disaster (because then the wealth share of pessimists rises). In a similar vein,

Gennaioli, Shleifer, and Vishny (2015) propose a theoretical model where investors overstate the

fear of a future market crash when they can remember the occurrence of a black swan event.

Thus, to check whether the occurrence of a financial crisis increases the LTD premium, we split

27Our results are thus in line with Bali, Cakici, and Whitelaw (2011) who document that the inclusion of the max
variable drives out the impact of idiosyncratic volatility when predicting future stock returns.

28Ang, Chen, and Xing (2006) document a strong relationship between downside beta and contemporaneous stock
returns. However, they do not find a significant relationship between downside beta and future returns (as long as
they do not exclude stocks that display the highest standard deviation in the sample.)

29However, this finding is not without any doubt, as studies that find no strong “crash-fear” effect prior to 1987
typically rely on very short pre-1987 samples, due to the lack of option data availability for earlier years.
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our data set into two subsamples: The “post market crash” subsample containing the five years

after an extreme market downturn has occurred and the “remaining years” subsample.30 Table 8

repeats regression (5) from Table 7 for both subsamples.

[Insert Table 8 about here]

Our findings indicate that the impact of LTD on returns is indeed much stronger in years subse-

quent to a market crash. The impact of LTD on returns is almosts twice as high in the “post market

crash” subsample (with a coefficient for the impact of LTD of 0.0246 in contrast to a coefficient

of 0.0136 for the remaining years). Overall, this result implies that investors care about the crash

sensitivity of stocks and require a high premium for taking that risk, in particular when a market

crash has occurred in the recent past.

3.4 Robustness

In this section we summarize the results from a battery of additional robustness tests. We

investigate whether our results hold when we control for downside beta defined in alternative ways

(Section 3.4.1), examine alternative estimation procedures of tail dependence coefficients (Section

3.4.2), analyze the contemporaneous relationship between returns and LTD (Section 3.4.3), and

summarize results from additional analyses and a battery of stability checks (Section 3.4.4).

3.4.1 Alternative Downside Beta Definitions vs. LTD

Results in Panel B of Table 6 show that our results are not driven by the downside beta (β−) as

defined in Ang, Chen, and Xing (2006). Although the concepts of LTD and β− seem related, this

result is actually not surprising, because the latter focuses on all market returns below the mean,

while the former explicitly focuses on extreme events. However, one could argue that alternative

definitions of β− that focus more on the left tail of the market return distribution capture effects

more similar to LTD. Hence, to analyze this idea more closely, we repeat our β− × LTD double-

sorts from Table 6 for alternative β− definitions. Specifically, we calculate downside betas as betas

conditional on the market return being below its 10%, 5%, 2%, and 1% quantiles, respectively

(rather than being below the mean, as before and as in Ang, Chen, and Xing (2006)).

Moreover, Post, van Vliet, and Lansdorp (2012) and Artavanis (2014) argue that the downside

beta estimation framework of Ang, Chen, and Xing (2006) is not in line with economic principles and

leads to violations of conditions for coherent risk measures. Thus, we also compute the alternative

30As in Section 2.3 we define “extreme market downturns” as the ten worst return days in our sample. These
“exteme market downturns” occurred in 1987, 1997, 1998, 2000, 2008, and 2011.
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downside betas investigated in their papers, i.e., the Hogan and Warren (1974) downside beta

(β−HW ), the Estrada (2004) downside beta (β−EST ), and the asymmetric response beta (β−AR) of

Harlow and Rao (1989). We calculate these alternative downside betas based on their original

definitions (see the variable definitions in the Appendix), as well as for a more restrictive cutoff

conditional on the daily market return being below its 10% quantile in the respective year. Table

9 shows the results.

[Insert Table 9 about here]

We report results on the returns of the strong minus weak LTD portfolios within each downside

beta quintile in the first five columns, as well as the average of this difference portfolio return

across all downside beta quintiles in the last column (as in the last row of Panel B in Table 6) for

all alternative β− definitions. The average monthly difference return ranges from 0.40% (for the

β− definition based on the 10% quantile) up to 0.55% (for the β−EST definition based on the 10%

quantile) and is significant at the 1% level in each case.

Thus, our results on the impact of LTD not only hold after adjusting for various β− alternatives,

they frequently get stronger if we look at more restrictive β− definitions. At first glance, this

pattern might seem unexpected, as more restrictive betas (that focus more on extremely bad

market returns) should be more closely related to our LTD measure. However, the reason we find

even stronger results for LTD if we use alternative β−’s with low cutoffs is that they are actually

not able to reliably capture dependence in the tails because they are estimated based on a very

small number of observations (e.g., only about 12 daily return observations per year for the 5%

quintile β−) and are thus very noisy.31

These results also illustrate the advantage of the copula approach in estimating extreme depen-

dence: in estimating the whole dependence structure between individual and market returns using

our semi-parametric approach, we make use of all available daily return observations within a year,

which allows for a relatively more precise estimation of the dependence structure. Thus, the com-

putation of LTD as described in Section 2.1 is much less noisy and more informative about the true

crash sensitivity of a stock.

3.4.2 Alternative Tail Dependence Estimation Procedures

We now investigate whether our results are sensitive to alternative tail dependence estimation

procedures. First, instead of selecting the appropriate parametric copula by minimizing the dis-

31Correlations between the β− alternatives and LTD actually decrease from 0.42 for the standard Ang, Chen, and
Xing (2006) downside beta, to 0.24, 0.13, 0.04, and 0.00, respectively, for the correlation between LTD and β− based
on the 10%, 5%, 2%, and 1% quintile.
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tance between 64 different convex copula combinations and the empirical copula, we ex-ante choose

various fixed convex copula combinations. As our ad-hoc fixed copula combinations, we con-

sider the Clayton-Gauss-Galambos-copula, the Clayton-Gauss-Rotated Clayton-copula, the Ro-

tated Galambos-Gauss-Rotated Clayton-copula, the Rotated Gumbel-Frank-Gumbel-copula, the

Rotated Gumbel-FGM-Gumbel-copula, and the Rotated Gumbel-Frank-Joe-copula. The first (lat-

ter) three are the copula combinations most (least) often selected in the estimation procedure (see

Table IA.III in the Internet Appendix). We perform Fama-Macbeth (1973) regressions of excess

returns on LTD (estimated based on the fixed copula combinations) as well as the full set of control

variables (as in regression (5) of Table 7). Results on the coefficient estimates for the influence of

LTD are displayed in the first six lines in Table 10.

[Insert Table 10 about here]

Second, we present results for LTD estimated using a convex combination of only two copulas

(2-Cop), one that allows for asymptotic dependence in the lower tail, CLTD, and one copula that

allows for asymptotic dependence in the upper tail, CUTD:

C2Cop(u1, u2,Θ) = w1 · CLTD(u1, u2; θ1) + (1− w1) · CUTD(u1, u2; θ2),

with 0 ≤ w1 ≤ 1.32

Third, we show results for LTD when we use estimated log-likelihood values instead of Integrated

Anderson-Darling distances when selecting the best copula combination. Finally, we report results

where we estimate LTD based on a 24 months and 36 months estimation horizon (instead of our

standard 12 month horizon), respectively. Results are shown in the last three rows of Table 10.

We find that LTD remains a significantly positive explanatory factor for the cross-section of aver-

age future stocks returns in all cases and remains stable across different specifications. Nevertheless,

the slightly weaker results for estimation procedures based on a fixed copula and a combination of

only two copulas show that there is additional value in carefully fitting the dependence structure

and that our highly flexible 3-copula approach seems to be the most appropriate in our setting.

Furthermore, the fact that we find somewhat weaker results based on a 2- and 3-year estimation

horizons again shows that LTD is time.varying and supports our approach of using relatively short

estimation windows for LTD.

32As in Section 2.1.2, the estimation of LTD is based on the estimated parameter Θ∗ of the copula C∗2Cop(u1, u2,Θ),
which minimizes the Integrated Anderson-Darling distance.
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3.4.3 Contemporaneous Results

Our main analysis in this paper focuses on the predictive relationship between LTD and future

returns. Alternatively, we now also analyze the contemporaneous relationship between realized LTD

and stocks returns over the same time period using non-overlapping intervals of one year. Looking

at the contemporaneous relationship closely follows papers like Ang, Chen, and Xing (2006) and

Lewellen and Nagel (2006), and implicitly assumes that realized returns are on average a good proxy

for expected returns. This procedure is mainly motivated by the fact that several studies document

that risk exposures (like regular beta) are time-varying (see, e.g., Fama and French (1992) or Ang

and Chen (2007)).

Table 11 reports the results of univariate portfolio sorts (similar to Table 4), bivariate portfolio

sorts (similar to Table 6), as well as Fama-MacBeth (1973) regressions (similar to Table 7) for the

contemporaneous setup.

[Insert Table 11 about here]

We find that all our previous results hold – and are even substantially stronger – in a contempora-

neous setting. For example, the contemporaneous value-weighted quintile portfolio spread between

stocks with strong LTD and stocks with weak LTD is 10.80% p.a., whereas it is 4.32% p.a. in

the predictive setting (see Table 4). Looking at the results for the economic significance from the

Fama-MacBeth (1973) regressions in the last column of Panel C, we find that LTD now bears the

second largest return premium, only second to the size effect. These findings show that our results

from the predictive analysis are probably a lower bound for the actual return premium associated

with LTD and suggest that the smaller return spread in the predictive analysis is explained by

limited predictive power of realized LTD on future LTD.33

3.4.4 Temporal Stability & Additional Robustness Tests

In this section we shortly summarize the results from a large number of additional analyses

and stability checks that we conduct to analyze whether our main results from Sections 3.1 and

3.2 above are stable.34 First, we show that the results from value-weighted univariate sorts and

multivariate regressions are stable over time (Table IA.V). Strong LTD stocks have higher average

future returns than weak LTD stocks in every 10-year subperiod between 1963 and 2012 as well as

33Regressing future LTD (in year t+ 1) on realized LTD (in year t) in a univariate model delivers a positive and
highly statistically significant coefficient estimate with a t-statistic of 11.46. However, the coefficient estimate is only
0.208, i.e., it is far below one, and the model has a relatively low R2 of about 5.3%.

34All results tables mentioned in this section are presented in the Internet Appendix.

22



in the earlier period, from 1927 to 1963. The differences are statistically significant in three out of

six periods for the portfolio sorts, and in five out of six periods for the multivariate regressions.

Second, we show that our main results from the Fama and MacBeth (1973) regressions are

robust if we adjust raw returns based on Fama-French 12 and 48 or SIC 2-digit, 3-digit, and 4-digit

industry classifications (left side of Table IA.VI) as well as for return adjustments based on the

125 Daniel, Grinblatt, Titman, and Wermers (1997) characteristic-based benchmarks (right side of

Table IA.VI). Our multivariate results also obtain if (a) we do not use Newey-West standard errors

in the second stage of the Fama-MacBeth (1973) regressions to determine statistical significance,

(b) we do not winsorize the independent variables, (c) we perform a pooled OLS regression with

time-fixed effects and standard errors clustered by stock, and (d) we run a pooled OLS regression

with time-fixed effects and standard errors clustered by industry.

Third, a possible concern for our analysis is that time-varying volatility impacts the estimation of

LTD coefficients. To account for time-varying volatility of stock returns, we fit different volatility

time series models to the daily individual stock returns and the market return. We can show that

our results are stable if we account for time-varying volatility by first filtering daily return time

series using an ARCH(1) model, an GARCH(1,1) model, or an EGARCH(1,1) model before using

them in our LTD computation. The impact of LTD estimated from time series residuals is very

similar to the impact from LTD estimated using the actual return series (Table IA.VII).

Finally, we repeat our univariate and bivariate portfolio sorts based on equal-weighted returns

instead of value-weighted returns (Table IA.VIII). We find that an equal-weighted portfolio forma-

tion typically leads to a stronger impact compared to a value-weighted portfolio formation. We

again confirm our earlier findings of a statistically and economically important impact of LTD on

average future stock returns.

4 Conclusion

The cross-section of expected stock returns reflects a premium for crash sensitivity as measured by

a stock return’s lower tail dependence, LTD, with the market return. Stocks that are characterized

by strong LTD earn significantly higher average future returns than stocks with weak LTD. A value-

weighted (equal-weighted) portfolio consisting of stocks with the strongest LTD delivers higher

average future returns of 4.3% (4.8%) p.a. than a portfolio of stocks with the weakest LTD. The

high average returns earned by strong LTD stocks are not explained by alternative cross-sectional

effects, including market beta, size, book-to-market, momentum, liquidity, coskewness, cokurtosis,

idiosyncratic volatility, and downside beta.
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In contrast, if we focus exclusively on periods of heavy market downturns, we find that stocks

with weak LTD outperform stocks with strong LTD. As stocks with weak LTD thus essentially

offer an insurance against extreme negative portfolio returns, our results are consistent with the

view that investors are willing to pay higher prices and eventually accept lower returns for such

stocks. The conjecture that the higher returns of stocks with strong LTD is a reflection of higher

equilibrium returns in the presence of crash-averse investors is consistent with findings from the

empirical literature on option prices (e.g., Rubinstein (1994) and Polkovnichenko and Zhao (2013)).

On a broader level, we think that the fact that investors can earn a premium for bearing LTD

risk has serious implications for financial stability: If financial institutions do not have to bear

the expected costs of a severe market downturn (e.g., because regulatory capital requirements

do not take into account LTD or because they expect to be bailed out in a severe crisis), they

have incentives to invest in exactly those securities that are characterized by strong lower tail

dependence with the market in order to earn the associated premium. Such incentives would make

those institutions heavily exposed to market crises and could lead to systemic instability. Whether

financial institutions are heavily invested in strong LTD assets is an interesting open question for

future research. Some suggestive evidence along these lines is again provided in the empirical option

market literature.35

35Garleanu, Pedersen, and Poteshman (2009) document that dealers on aggregate hold short positions in out-of-
the-money puts—that also offer protection against downturns—while end-users (defined as customers of brokers),
seem to hold long positions, i.e., they insure against extreme downside risk.
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A Appendix: Definitions and Data Sources of Main Variables

This table briefly defines the main variables used in the empirical analysis. The data sources are: (i)
CRSP: CRSP Stocks Database, (ii) KF: Kenneth French Data Library, (iii) CS: Compustat. EST
indicates that the variable is estimated or computed based on original variables from the respective
data sources.

Panel A: Return-Based Variables

Variable Name Description Source

Return (return) Monthly raw excess return of a portfolio (stock) over the risk-free rate. As risk-
free rate the 1-month T-Bill rate is used.

CRSP, KF,
EST

CAPM-Alpha,
FF-Alpha,
CAR-Alpha

CAPM one-factor, Fama and French (1993) three-factor, and Carhart (1997) four-
factor performance alpha of a portfolio over the sample period. We use monthly
portfolio returns to estimate the alphas.

CRSP, KF,
EST

LTD Lower tail dependence coefficient of a stock. Estimated based on daily data from
one year as detailed in Section 2.2.

CRSP, EST

UTD Upper tail dependence coefficient of a stock. Estimated based on daily data from
one year as detailed in Section 2.2.

CRSP, EST

β Factor loading on the market factor from a CAPM one-factor regression estimated

based on daily data from one year: β = COV(ri,rm)

VAR(rm)
.

CRSP, EST

β− Downside beta estimated based on daily return data from one year as defined in
Ang, Chen, and Xing (2006):

CRSP, EST

β− = COV(ri,rm|rm<µm)

VAR(rm|rm<µm)
, where µm is the mean of the daily market return.

β+ Upside beta estimated based on daily return data from one year as defined in

Ang, Chen, and Xing (2006): β+ = COV(ri,rm|rm>µm)

VAR(rm|rm>µm)
.

CRSP, EST
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Variable Name Description Source

β−HW Downside Beta beta estimated based on daily return data from one year as defined
in Hogan and Warren (1974): β−HW = E(ri·rm|rm<µm)

E(r2m|rm<µm)
.

CRSP, EST

β−EST Downside Beta beta estimated based on daily return data from one year as defined
in Estrada (2004):

CRSP, EST

β−EST =
∑T

t=1(min[0,(rit−µm)]·min[0,(rmt−µm)])∑T
t=1(min[0,(rmt−µm)])2

.

β−AR Downside Beta beta estimated based on daily return data from one year as defined
in Harlow and Rao (1989):

CRSP, EST

β−AR = E(Xri)−E(X)E(ri)

E(X2)−E(X)2

with X = (rm · 1rm≤µm + E(rm|rm > µm) · 1rm>µm).

illiq The Amihud (2002) illiquidity ratio defined as: illiqi,t = 1
Daysit

·
∑Days
d=1

|ri,d|
V oli,d

,

where V oli,d is security i’s trading volume in dollars on day d and Daysit is the
number of trading days in year t.

CRSP, EST

idio vola A stock’s idiosyncratic volatility, defined as the standard deviation of the CAPM-
residuals of its daily returns.

CRSP, EST

coskew The co-skewness of a stock’s daily returns with the market:

coskew = E[(ri−µi)(rm−µm)2]√
VAR(ri)VAR(rm)

.

CRSP, EST

cokurt The co-kurtosis of a stock’s daily returns with the market:

cokurt = E[(ri−µi)(rm−µm)3]√
VAR(ri)VAR(rm)3/2

.

CRSP, EST

max The maximum daily return over the last year or month, respectively. CRSP

Panel B: Other Firm Characteristics

Variable Name Description Source

size The natural logarithm of a firm’s equity market capitalization in million USD. CS

bookmarket A firm’s book-to-market ratio computed as the ratio of CS book value of equity
per share (that is, book value of common equity less liquidation value (CEQL)
divided by common share outstanding (CSHO)) to share price (that is, market
value of equity per share).

CS
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B Theoretical Motivation

This section motivates our empirical approach theoretically. Specifically, we show that copula-

based tail dependence coefficients determine discount rates in asset pricing models. We consider

a simple theoretical model for illustration in which the representative agent with utility function

u [.] maximizes her expected utility under standard regularity conditions. Besides these regularity

conditions, we do not make any assumptions about the specific form of the utility function. Thus,

our model’s results hold for a wide class of possible preferences (e.g. CRRA preferences). We

use the stochastic discount factor (SDF) implied from this simple model to show that tail-based

co-moment risks determine the risk premium on risky assets. We then show that lower tail (LTD)

and upper tail (UTD) are related to tail-based co-moment risks, implying that lower and upper

dependence measures determine the risk premium on risky assets.

Regularity conditions We assume u
′
[.] > 0, u

′′
[.] < 0, u

′′′
[.] > 0, and u

′′′′
[.] < 0. Arrow (1965)

and Pratt (1964) show that the representative investor’s utility function exhibits non-satiation

(u
′
[.] > 0), risk aversion (u

′′
[.] < 0) and a decreasing absolute risk aversion

(
u
′′′

[.] > 0
)

. The

restriction on the third derivative of the utility function is related to the concept of prudence in

Kimball (1990, 1993). Kimball (1990) shows that the concept of prudence is analogous to the

precautionary-saving motive. He shows that absolute prudence must be a decreasing function of

the representative investor’s wealth. A decreasing absolute prudence and a concave utility restrict

the sign of the kurtosis preference to u
′′′′

[.] < 0. The restriction on the fourth derivative of the

utility function is also defined as “temperance” in Eeckhoudt and Schlesinger (2006).

Several papers (Harvey and Siddique (2000), Dittmar (2002), Chabi-Yo (2012), Vanden (2006),

among others) have shown that Kimball’s concept of prudence plays a key role in determining the

price of risk of higher co-moments, such as co-skewness, and higher moments, such as skewness. We

will show that the same concept plays a key role in determining the price of risk of tail dependence

measures.

A Simple Investor’s Problem Consider a one-period [t, t + 1] economy with t = 0. In this

economy, we assume that there are n risky assets and one risk-free asset. Denote by Rf,t the return

on the risk-free asset and by Rt+1 a vector of returns of risky assets. Without loss of generality, the

representative investor has an endowed wealth of Wt = 1 at time t. She maximizes her expected

utility

max
ω

Et (u [Wt+1]) (10)
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subject to the budget constraint

Wt+1 = Wt

(
Rf,t + ω

′
(Rt+1 −Rf,t)

)
, (11)

where Wt+1 is the investor’s terminal wealth and ω is a vector of portfolio weights.

Stochastic Discount Factor The Euler equation derived from the first-order conditions of (10)

is used to show that the SDFs has the form

Mt+1 =
u
′ [
W ∗t+1

]
Rf,tEt

(
u′
[
W ∗t+1

]) , (12)

where W ∗t+1 = Wt

(
Rf,t + ω∗

′
(Rt+1 −Rf,t)

)
, and ω∗ is the optimal portfolio weight with ω∗

′
1 = 1.

Here, 1 is an unity vector. Since Wt = 1, W ∗t+1/Wt = ω∗
′
Rt+1 can be interpreted as the return on

aggregate wealth. Using the market return RM,t+1 as a proxy for the return on aggregate wealth,

RM,t+1 = W ∗t+1/Wt.

We denote by St+1 the price of the market index at time t+ 1 and express the market return as

RM,t+1 = St+1/St. We can, therefore, express the SDF in (12) as

Mt+1 =
1

Rf,t

u
′
[St+1/St]

Et (u′ [St+1/St])
. (13)

We now state the following lemma which is from Carr and Madan (2001):

Lemma 1. Carr and Madan (2001, Eq(1), page 23): Any twice differentiable payoff function with

bounded expectation can be spanned by a continuum of OTM European calls and puts. In order

words, a collection of twice differentiable functions H [S] can be spanned algebraically as36

H [S] = H
[
S
]

+
(
S − S

)
HS

[
S
]

+

∫ ∞
S

HSS [K] (S −K)+ dK +

∫ S

0
HSS [K] (K − S)+ dK,

where HS [.] (HSS [.]) represents the first (second) order derivative of the payoff function H [.]

evaluated at S.

We exploit Lemma 1 and show in Theorem 1 that the SDF is a linear combination of the market

return and a collection of payoff on call and put options. As will be seen shortly, Theorem 1 plays

a key role in showing that the tail dependence measures determine the discount rate.

36Bakshi and Madan (2000, Theorem 1, page 212) and Bakshi, Kapadia, and Madan (2003, Theorem 1, page
107) use Lemma 1 to provide economic foundations for valuing derivative securities and study new insights into the
economic sources of skewness.
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Theorem 1. Assume that the first, second, third, and fourth derivatives of the utility function

exist, then Lemma (1) can be used to express the SDF (13) as

Mt+1 =
u
′
[1]

u′ [a]

1

Rf,t
+ (RM,t+1 − 1)

u
′′

[1]

u′ [a]

1

Rf,t
(14)

+

∫ kmax

1

u
′′′

[k]

u′ [a]

1

Rf,t
(RM,t+1 − k)+ dk +

∫ 1

0

u
′′′

[k]

u′ [a]

1

Rf,t
(k −RM,t+1)+ dk,

where k = K
St

, kmax is the maximum value of the gross return (whose distribution we assume to

have a bounded support), and a = u′−1 [Et (u′[St+1/St])]. u
′−1 is the inverse function of u′.37

Proof. See the Internet Appendix.

Expected Excess Return Decomposition For the sake of simplicity we drop the time-

subscript t and use the the SDF in (14) to express the Euler equation as

E [MRi] = 1. (15)

For characterizations to follow, define the expected values

µuM [k] = E
[
(RM − k)+] and µdM [k] = E

[
(k −RM )+], (16)

and the price of the market risk and the beta of the risky asset as

λ = −u
′′

[1]
u′[a] V ar [RM ] and βi =

Cov(Ri,RM )
V ar[RM ]

. (17)

We also define the following tail-based co-moment risks

δuui [k] =
Cov((Ri−k)+,(RM−k)+)

V ar((RM−k)+)
, and δudi [k] =

Cov((Ri−k)+,(k−RM )+)
Cov((k−RM )+,(RM−k)+)

, (18)

δdui [k] =
Cov((k−Ri)+,(RM−k)+)
Cov((k−RM )+,(RM−k)+)

, and δddi [k] =
Cov((k−Ri)+,(k−RM )+)

V ar((k−RM )+)
, (19)

and their prices of risks, respectively:

λuu [k] = −u
′′′

[k]
u′[a] V ar

[
(RM − k)+] , and λud [k] = u

′′′
[k]

u′[a] µ
u
M [k]µdM [k] , (20)

λdu [k] = −u
′′′

[k]
u′[a] µ

u
M [k]µdM [k] , and λdd [k] = u

′′′
[k]

u′[a] V ar
[
(k −RM )+] . (21)

37We discuss how this theorem relates to recent equilibrium models in which the SDF is a function of nonlinear
payoffs such as option payoffs (Vanden (2004)) or in which investor preferences overweight lower-tail outcomes relative
to expected utility like the generalized disappointment aversion (GDA) model of Routledge and Zin (2010) in Section
C of the Internet Appendix.
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From (20) and (21), we observe that λuu [k] < 0 and λdu [k] < 0 while λdd [k] > 0 and λud [k] > 0.

δuui [k] and δddi [k] are upper and lower tail-based co-moment risks. δdui [k] and δudi [k] are mixed

tail-based co-moment risks. Similarly to the market beta, when asset i coincides with the market

portfolio, the tail-based co-moment risks defined in (18) and (19) are equal to one. We now expand

the Euler equation in terms of covariance and express the expected excess return of the risky asset

in terms of tail-based co-moment risks and their market prices in Theorem 2.

Theorem 2. The expected excess return on any risky asset can be expressed as

E [Ri]−Rf = λβi +

∫ kmax

1
λuu [k] δuui [k] dk +

∫ kmax

1
λdu [k] δdui [k] dk (22)

+

∫ 1

0
λud [k] δudi [k] dk +

∫ 1

0
λdd [k] δddi [k] dk,

where λ > 0, λuu [.] < 0, λdd [.] > 0, λdu [.] < 0 and λud [.] > 0.

Proof. See the Internet Appendix.

Expression (22) shows that beta as well as the tail-based co-moment risks determine the discount

rate. The main implication of Theorem 2 is that δuui [k] and δdui [k] are negatively related to expected

excess returns while δudi [k] and δddi [k] are positively related to expected excess returns.

The key here is the third derivative of the utility function u, which characterizes investor pref-

erences for skewness. The third derivatives u
′′′

[k] may amplify or reduce the contribution of tail

dependence measures on the expected excess return depending on k.38 When our regularity condi-

tions are satisfied, u
′′′

[k] is a decreasing function of k because u
′′′′

[.] < 0. The magnitude of u
′′′

[k]

is extremely large when k is small. In such a case, the tail-based co-moment risks have a significant

impact of expected excess returns when k is small. The most interesting tail-based co-moment risks

in our context are lim
ε→0+

δddi [ε] and lim
ε→k−max

δuui [ε]. We call these risk measures, limiting tail-based

co-moment risks.

Impact of the limiting tail-based co-moment risks on expected excess returns Under

our regularity conditions , the expected excess return increases disproportionally with δddi [ε] in the

limiting case ε → 0+. The increase in the expected excess return depends on the shape of u
′′′

[ε]

when ε goes to zero. In order words, the increase is due to the fact that u
′′′′

[.] < 0.39 Similarly,

38In the special case of quadratic utility, u
′′′

[k] = 0 for any k and λuu [.] = λdd [.] = λdu [.] = λud [.] = 0. In such a
case only the asset’s beta determines the expected excess return on risky assets and (22) reduces to the CAPM, i.e.
E [Ri] − Rf = λβi. Consequently, tail-based co-moment risks contribute to the risk premium on risky assets when
the utility is not quadratic.

39It is important to notice that if u
′′′′

[.] = 0, the expected excess return will not increase disproportionally in the
limiting case ε→ 0+.
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the expected excess return decreases disproportionally with δuui [ε] in the limiting case ε → k−max.

The proof is given in the Internet Appendix.

Does Lower Tail Dependence determine discount rates? We now show that the lower

(LTD) and upper (UTD) tail dependence measures are positively related to the limiting tail-based

co-moment risks. To connect the tail-based co-moment risks to lower and upper tail dependence

measures used in Sections 2 through 3, we first recall that

LTDi = limq→0+ P
[
ri < F−1

i (q) |rM < F−1
M (q)

]
, (23)

UTDi = limq→1− P
[
ri > F−1

i (q) |rM > F−1
M (q)

]
. (24)

For characterizations to follow, we define the limiting tail-based co-moment risks δuui [ε], δudi [ε],

δdui [ε], and δddi [ε] as the limit of δ··i [ε] for ε approaching 1, 0, or kmax, respectively (e.g., δuui [1] =

limε→1+ δ
uu
i [ε]). The associated prices of risk are defined as λuui [ε], λudi [ε], λdui [ε], and λddi [ε],

respectively.40 We then apply Lemma 2 (see the Internet Appendix) to the integrals in the RHS of

(22) and write the expected excess return of the risky asset in (25).

Theorem 3. A discretization of integrals in the RHS of (22) allows to express the expected excess

return as

E [Ri]−Rf = λβi +
1

2
λdd [0] δddi [0] +

1

2
λud [0] δudi [0] (25)

+
1

2
(kmax − 1)λuu [kmax] δuui [kmax] +

1

2
(kmax − 1)λdu [kmax] δdui [kmax]

+
1

2
(kmax − 1)λdu [1] δdui [1] +

1

2
(kmax − 1)λuu [1] δuui [1]

+
1

2
λud [1] δudi [1] +

1

2
λdd [1] δddi [1] ,

where λ > 0, λuu [.] < 0, λdd [.] > 0, λdu [.] < 0 and λud [.] > 0. Further,

(i) the relevant limiting tail-based co-moment risks δddi [0] and δuui [kmax] are linear functions of

the lower and upper tail dependence measures LTDi and UTDi, respectively,

(ii) the limiting tail-based co-moment risks δddi [0] and δuui [kmax] are increasing functions of the

lower and upper, respectively, tail dependence measures:

∂δddi [0]
∂LTDi

> 0, and
∂δuui [kmax]
∂UTDi

> 0, (26)

40The detailed definitions for the δ’s and λ’s are shown in the Internet Appendix.
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(iii) the tail dependence measures LTD and UTD determine the expected excess return on risky

assets, and

∂(E[Ri]−Rf)
∂LTDi

> 0 and
∂(E[Ri]−Rf)

∂UTDi
< 0. (27)

Proof. See the Internet Appendix.

Three key implications emerge from Theorem 3. First, the magnitude of the prices of risks λuu [.],

λud [.], λdu [.], and λdd [.] as shown in (20) and (21) are related to the shape of the utility function.

Second, (27) shows that LTD (UTD) is positively (negatively) related to the risk premium on risky

assets. All else being equal, assets with strong LTD (UTD) have high tail-based co-moment risk and

hence have higher (lower) returns on average than assets with weak or zero LTD (UTD). Third, the

magnitude of expected excess returns due to LTD is related to limε→0+ u
′′′

[ε], while the magnitude

of expected excess returns due to UTD is related to limε→k−max
u
′′′

[ε]. Consequently, the impact

of tail dependence on the magnitude of the risk premium depends on the concavity of the second

derivative of the utility function u
′′

[.]. Since u
′′′′

[.] < 0, u
′′′

[ε] is a decreasing function of ε. As ε

approaches zero from the right, u
′′′

[ε] will be large. As ε approaches kmax from the left, u
′′′

[ε] will

be small. Thus, all else being equal, LTD has a stronger impact on the expected excess return than

UTD.
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Figure 1: Different Copula Dependence Structures

(a) Panel A: Gauss-copula structure (b) Panel B: Gumbel-copula structure

(c) Panel C: Clayton-copula structure (d) Panel D: Student t-copula structure

This figure displays 2, 000 random variates from four bivariate distributions with standard normal marginal distribu-

tions. The Gauss-copula (Panel A), the Gumbel-copula (Panel B), the Clayton-copula (Panel C), and the Student

t-copula (Panel D) determine the dependence structure. These copulas are defined in Table IA.I in the Internet

Appendix. In each case, the linear correlation is set to 0.8.
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Figure 2: Aggregate Tail Dependence over Time
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This figure displays the evolution of aggregate lower tail dependence, LTD, and aggregate upper tail dependence, UTD,

over time. Aggregate LTD (UTD) is defined as the yearly cross-sectional, equal-weighted, average of the individual

lower tail dependence coefficients, LTDi,t (upper tail dependence coefficients, UTDi,t) between stock returns and

market returns over all stocks i in year t in our sample. The sample covers all U.S. common stocks traded on the

NYSE/AMEX/NASDAQ, and the sample period is from January 1963 to December 2012.
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Table 3: Excess Returns of LTD-Portfolios During Financial Crises

Daily Returns — Portfolios Sorted By Past LTD

Portfolio “Black Asia Dot-Com Bubble Lehman Worst 10 days
Monday” Crisis Burst Crisis

1 Weak LTD −14.03% −5.50% −3.82% −7.93% −6.35%
2 −17.03% −6.25% −4.77% −8.75% −6.55%
3 −17.34% −6.69% −6.83% −8.14% −6.89%
4 −16.79% −6.86% −6.23% −8.51% −7.82%

5 Strong LTD −19.15% −7.48% −7.73% −10.80% −9.25%

Strong – Weak −5.12% −1.98% −3.89% −2.86% −2.90%∗∗

(−2.45)

This table reports value-weighted daily excess returns of stocks sorted by past LTD during days of severe financial
crises. Each month we rank stocks based on LTD estimated over the previous twelve months. We investigate future
value-weighted returns of these portfolios during “Black Monday” (October 19, 1987), the Asian Crisis (October 27,
1997), the burst of the dot-com bubble (April 14, 2000), and the recent Lehman crisis (October 15, 2008). The last
column reports average daily returns in excess of the 1-month T-bill rate of the portfolios on the ten worst return
days in our sample. The row labeled “Strong – Weak” reports the difference between the returns of portfolio 5 and
portfolio 1 with corresponding statistical significance levels (only last column). The sample covers all U.S. common
stocks traded on the NYSE/AMEX/NASDAQ, and the sample period is from January 1963 to December 2012. T-
statistics are in parentheses and are computed using Newey and West (1987) standard errors with 4 monthly lags.
∗∗∗, ∗∗, and ∗ indicate significance at the one, five, and ten percent levels, respectively.
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Table 4: Univariate Value-Weighted Portfolio Sorts

Panel A: Lower Tail Dependence (LTD)

Portfolio LTD Return CAPM-Alpha FF-Alpha CAR-Alpha

1 Weak LTD 0.00 0.296% −0.129%∗ −0.250%∗∗∗ −0.108%
2 0.03 0.315% −0.141%∗ −0.157%∗∗ −0.074%
3 0.08 0.380% −0.075%∗ −0.123%∗ −0.067%
4 0.15 0.508% +0.045% +0.025% +0.038%

5 Strong LTD 0.27 0.656% +0.172%∗∗ +0.187%∗∗ +0.129%

Strong – Weak 0.27∗∗∗ 0.360%∗∗∗ +0.302%∗∗∗ +0.437%∗∗∗ +0.237%∗∗

(3.68) (3.15) (4.72) (2.35)

Panel B: Upper Tail Dependence (UTD)

Portfolio UTD Return CAPM-Alpha FF-Alpha CAR-Alpha

1 Weak UTD 0.00 0.561% +0.054% +0.032% +0.023%
2 0.01 0.526% +0.055% +0.019% +0.007%
3 0.04 0.540% +0.074% +0.041% +0.021%
4 0.09 0.488% +0.070% +0.032% −0.010%

5 Strong UTD 0.23 0.427% −0.037% −0.040% +0.029%

Strong – Weak 0.23∗∗∗ −0.134% −0.091% −0.072% 0.006%
(−1.26) (−0.99) (−0.76) (0.09)

This table reports results from univariate portfolio sorts based on LTD (Panel A) and UTD (Panel B). In each
month, we rank stocks into quintiles (1-5) and form value-weighted portfolios based on the respective tail dependence
measure. The column labeled “Return” reports the future average monthly return in excess of the one-month T-bill
rate of the portfolios. The column labeled “CAPM-Alpha” (“FF-Alpha”, “CAR-Alpha”) reports the future average
monthly alpha with regard to Sharpe (1964)’s capital asset pricing model (Fama and French (1993)’s three-factor
model, Carhart (1997)’s four-factor model). The row labeled “Strong – Weak” reports the difference between the
returns of portfolio 5 and portfolio 1, with corresponding statistical significance levels. The sample covers all U.S.
common stocks traded on the NYSE/AMEX/NASDAQ, and the sample period is from January 1963 to December
2012. T-statistics are in parentheses and are computed using Newey and West (1987) standard errors with 4 monthly
lags. ∗∗∗, ∗∗, and ∗ indicate significance at the one, five, and ten percent levels, respectively.
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Table 5: Trading Strategy – Alternative Factor Models

(1) (2) (3) (4) (5) (6) (7) (8)
trad strat trad strat trad strat trad strat trad strat trad strat trad strat trad strat

marketrf 0.127∗∗∗ 0.108∗∗∗ 0.110∗∗∗ 0.134∗∗∗ 0.137∗∗∗ 0.094∗∗∗ 0.058∗∗ 0.085∗∗∗

(6.09) (3.75) (4.89) (6.31) (6.81) (4.16) (2.51) (3.47)

smb -0.092∗∗∗ -0.196∗∗∗ -0.126∗∗∗ -0.066∗∗ -0.066∗∗ -0.026 -0.088∗∗∗ -0.060
(-3.13) (-4.86) (-3.66) (-2.27) (-2.39) (-0.77) (-2.67) (-1.65)

hml -0.203∗∗∗ -0.289∗∗∗ -0.128∗∗∗ -0.185∗∗∗ -0.131∗∗∗ -0.208∗∗∗ -0.141∗∗∗

(-6.33) (-6.62) (-3.69) (-5.75) (-3.85) (-5.39) (-3.14)

mom 0.214∗∗∗ 0.239∗∗∗ 0.240∗∗∗ 0.221∗∗∗ 0.242∗∗∗

(10.46) (9.12) (11.57) (10.75) (11.89)

ps liqui 0.043∗

(1.71)

sadka tf -0.722
(-1.25)

lot max vw 0.097∗∗∗

(3.71)

sent orth -0.003∗∗∗

(-3.19)

bab -0.128∗∗∗

(-4.45)

rev short -0.023
(-0.77)

rev long -0.119∗∗∗

(-2.76)

rmw -0.112∗∗

(-2.33)

cma -0.277∗∗∗

(-4.05)

invest -0.440∗∗∗

(-7.44)

roe 0.135∗∗∗

(3.20)

alpha 0.0022∗∗ 0.0026∗∗ 0.0027∗∗∗ 0.0024∗∗ 0.0030∗∗∗ 0.0045∗∗∗ 0.0053∗∗∗ 0.0046∗∗∗

(2.35) (2.06) (2.98) (2.56) (3.39) (4.88) (5.58) (4.11)

R2 0.303 0.361 0.316 0.312 0.317 0.158 0.172 0.178

This table shows regression results of the (5-1) difference portfolio returns (consisting going long stocks with strong LTD
and going short stocks with weak LTD) on various combinations of systematic risk factors from various asset pricing models.
Regression (1) includes factors of the Carhart (1997) model (smb, hml, mom) plus the Pastor and Stambaugh (2003) traded
liquidity risk factor (ps liqui). In regression (2), the Pastor and Stambaugh (2003) liquidity factor is replaced by the Sadka
(2006) liquidity factor (sadka tf). In regressions (3) to (5) we include the Bali, Cakici, and Whitelaw (2011) lottery factor (lot
max vw), the Baker and Wurgler (2006) sentiment index, orthogonalized with respect to a set of macroeconomic conditions (sent
orth), and the Frazzini and Pedersen (2013) betting-against-beta factor (bab), respectively. In regression (6), we replace the
Carhart (1997) momentum factor by the Fama-French short- and long-term reversal factors (rev short and rev long). Finally,
in regressions (7) and (8) we control for exposures to the Fama and French (2014) 5-factor model and the Hou, Xue, and Zhang
(2015) 4-factor model. The alpha of the strategies is shown in the second-to-last row. The sample covers all U.S. common
stocks traded on the NYSE/AMEX/NASDAQ, and the sample period is from January 1963 to December 2012. T-statistics are
in parentheses and are computed using Newey and West (1987) standard errors with 4 monthly lags. ∗∗∗, ∗∗, and ∗ indicate
significance at the one, five, and ten percent levels, respectively.
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Table 6: Dependent Bivariate Portfolio Sorts

Panel A: Beta (β) and Lower Tail Dependence (LTD)

Portfolio 1 Low β 2 3 4 5 High β Average

1 Weak LTD 0.333% 0.342% 0.419% 0.105% −0.024% 0.235%
2 0.356% 0.310% 0.431% 0.418% 0.041% 0.311%
3 0.512% 0.289% 0.467% 0.341% 0.219% 0.366%
4 0.410% 0.461% 0.489% 0.431% 0.451% 0.446%

5 Strong LTD 0.679% 0.557% 0.711% 0.634% 0.612% 0.639%

Strong – Weak 0.346%∗∗∗ 0.215%∗∗ 0.291%∗∗∗ 0.529%∗∗∗ 0.637%∗∗∗ 0.404%∗∗∗

(3.31) (2.25) (3.15) (4.54) (4.52) (3.62)

Panel B: Downside Beta (β−) and Lower Tail Dependence (LTD)

Portfolio 1 Low β− 2 3 4 5 High β− Average

1 Weak LTD 0.312% 0.253% 0.338% 0.132% −0.017% 0.204%
2 0.291% 0.400% 0.510% 0.345% 0.210% 0.351%
3 0.357% 0.398% 0.451% 0.410% 0.410% 0.405%
4 0.463% 0.524% 0.461% 0.567% 0.601% 0.523%

5 Strong LTD 0.520% 0.678% 0.630% 0.730% 0.537% 0.619%

Strong – Weak 0.208%∗ 0.426%∗∗ 0.291%∗∗ 0.598%∗∗∗ 0.554%∗∗∗ 0.415%∗∗∗

(1.82) (4.09) (2.52) (4.57) (3.58) (3.31)

Panel C: Coskewness (coskew) and Lower Tail Dependence (LTD)

Portfolio 1 Low coskew 2 3 4 5 High coskew Average

1 Weak LTD 0.421% 0.489% 0.535% 0.229% 0.184% 0.372%
2 0.561% 0.310% 0.562% 0.236% 0.104% 0.355%
3 0.510% 0.451% 0.530% 0.468% 0.247% 0.441%
4 0.612% 0.561% 0.618% 0.532% 0.341% 0.533%

5 Strong LTD 0.579% 0.730% 0.772% 0.615% 0.429% 0.625%

Strong – Weak 0.159% 0.241%∗ 0.236%∗ 0.386%∗∗∗ 0.245%∗ 0.253%∗

(1.17) (1.86) (1.79) (2.80) (1.85) (1.89)
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Table 6: Continued

Panel D: Cokurtosis (cokurt) and Lower Tail Dependence (LTD)

Portfolio 1 Low cokurt 2 3 4 5 High cokurt Average

1 Weak LTD 0.244% 0.249% 0.341% 0.282% 0.262% 0.276%
2 0.412% 0.453% 0.610% 0.230% 0.120% 0.365%
3 0.567% 0.561% 0.450% 0.451% 0.356% 0.477%
4 0.619% 0.600% 0.510% 0.613% 0.561% 0.581%

5 Strong LTD 0.838% 0.838% 0.801% 0.821% 0.538% 0.767%

Strong – Weak 0.594%∗∗∗ 0.589%∗∗ 0.460%∗∗∗ 0.539%∗∗ 0.276%∗∗∗ 0.492%∗∗∗

(4.36) (4.54) (3.67) (4.88) (2.61) (4.02)

This table reports value-weighted future average returns and risk characteristics of 25 portfolios double-sorted on LTD and
beta (Panel A), downside beta (Panel B), coskewness (Panel C), and cokurtosis (Panel D), respectively. First, we form quintile
portfolios based on 1-year beta, 1-year downside beta, 1-year coskewness, and 1-year cokurtosis, respectively. Then, within each
quintile, we sort stocks into five quintile portfolios based on their 1-year LTD. The last column shows the average of the future
excess returns of the respective LTD quintile portfolios across all beta, downside beta, coskewness, and cokurtosis quintiles,
respectively. The row labeled “Strong – Weak” reports the difference between the future returns of portfolio 5 and portfolio 1
in each beta, downside beta, coskewness, and cokurtosis quintile, respectively, with corresponding statistical significance levels.
The sample covers all U.S. common stocks traded on the NYSE/AMEX/NASDAQ, and the sample period is from January
1963 to December 2012. T-statistics are in parentheses and are computed using Newey and West (1987) standard errors with
4 monthly lags. ∗∗∗, ∗∗, and ∗ indicate significance at the one, five, and ten percent levels, respectively.
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Table 8: Time-Varying Crash Fears of Investors

Post – Remaining
Market Crash Years

LTD 0.0246∗∗∗ 0.0136∗∗∗

(3.83) (4.72)

UTD 0.00555 0.00286
(1.66) (1.27)

β− -0.00275 -0.00218
(-1.44) (-1.35)

β+ 0.000630 0.0000963
(0.35) (0.12)

size -0.00104∗∗ -0.000321
(-2.03) (-0.93)

bookmarket 0.0113∗∗∗ 0.0103∗∗∗

(5.37) (5.91)

coskew -0.00722 -0.00489
(-1.22) (-1.46)

illiq 0.0000283 0.00074
(0.15) (6.01)

past return 0.00214 0.00784∗∗∗

(1.50) (6.74)

idio vola 0.203∗∗ -0.0959
(2.32) (-1.18)

cokurt 0.00164 0.00141∗

(1.40) (1.72)

max -0.0102∗ -0.0105∗∗

(-1.71) (-2.12)

constant 0.00388 -0.00145
(0.55) (-0.32)

R2 0.053 0.076

This table presents the results of multivariate Fama-MacBeth (1973) regressions of monthly future excess returns
over the risk-free rate on LTD and other control variables as in regression (5) of Table 7. We provide results for
two subsamples: the “Post - Market Crash” subsample containing the five subsequent years after an extreme market
downturn has occurred and the “Remaining Years” subsample. We define “exteme market downturns” as the ten
worst market return days in our sample. Such exteme market downturns occurred in 1987, 1997, 1998, 2000, 2008,
and 2011. The sample covers all U.S. common stocks traded on the NYSE/AMEX/NASDAQ, and the sample period
is from January 1963 to December 2012. T-statistics are in parentheses and are computed using Newey and West
(1987) standard errors with 4 monthly lags. ∗∗∗, ∗∗, and ∗ indicate significance at the one, five, and ten percent levels,
respectively.
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Table 10: Alternative Tail Dependence Estimation Procedures

Estimation LTD R2 Econ
Procedure (t-stat) Sign

(1-A-III) 0.0137∗∗∗ 0.070 +2.43%
(4.10)

(1-A-IV) 0.0123∗∗∗ 0.070 +2.21%
(3.02)

(4-A-IV) 0.0131∗∗∗ 0.070 +2.28%
(3.65)

(2-B-II) 0.0094∗ 0.069 +1.86%
(1.79)

(2-D-II) 0.0104∗∗ 0.070 +2.00%
(2.51)

(2-B-I) 0.0101∗∗ 0.070 +1.96%
(2.21)

(2-Cop) 0.0092∗ 0.069 +1.83%
(1.82)

(MLE) 0.0145∗∗∗ 0.070 +2.64%
(4.49)

(24 months) 0.0121∗∗∗ 0.069 +2.19%
(3.01)

(36 months) 0.0109∗∗ 0.069 +2.04%
(2.37)

This table shows results for the LTD-estimate from Fama-MacBeth (1973) regressions of monthly future excess
returns over the risk-free rate on LTD and the full set of controls as in regression (5) from Table 7 (included in the
regression but coefficient estimates suppressed in the table) in the first three columns. LTD coefficients are calculated
based on the Clayton/Gauss/Galambos (1-A-III) copula, the Clayton/Gauss/Rotated Clayton (1-A-IV) copula, the
Rotated Galambos/Gauss/Rotated Clayton (4-A-IV) copula, the Rotated Gumbel/Frank/Gumbel (2-B-II) copula,
the Rotated Gumbel/FGM/Gumbel (2-D-II) copula, and the Rotated Gumbel/Frank/Joe (2-B-I) copula (first six
rows). In the last four rows, we present results where we estimate LTD based on a convex combination of two copulas
(2-Cop), when we use estimated log-likelihood values instead of Integrated Anderson-Darling distances when selecting
the best copula combination (MLE), and when we estimate LTD based on a rolling window of 24 months and 36
months, respectively. The sample covers all U.S. common stocks traded on the NYSE/AMEX/NASDAQ, and the
sample period is from January 1963 to December 2012. T-statistics are in parentheses and are computed using Newey
and West (1987) standard errors with 4 monthly lags. ∗∗∗, ∗∗, and ∗ indicate significance at the one, five, and ten
percent levels, respectively.

52



Table 11: Contemporaneous Results

Panel A: Univariate Value-Weighted Portfolio Sorts

Portfolio LTD Return CAPM-Alpha FF-Alpha CAR-Alpha

1 Weak LTD 0.00 −0.85% −5.70%∗∗∗ −8.34%∗∗∗ −6.92%∗∗∗

2 0.03 +2.22% −3.21%∗∗ −4.05%∗∗∗ −4.86%∗∗∗

3 0.08 +3.30% −2.15%∗ −2.45%∗ −2.51%∗

4 0.15 +5.53% −0.09% −0.68% −0.65%
5 Strong LTD 0.27 +9.95% +3.59%∗∗ +4.35%∗∗∗ +3.32%∗∗

Strong – Weak 0.27∗∗∗ +10.80%∗∗∗ +9.29%∗∗∗ +12.69%∗∗∗ +10.25%∗∗∗

(5.95) (5.13) (7.30) (4.81)

Panel B: Dependent Bivariate Portfolio Sorts

Beta (β) and LTD

Portfolio 1 Low β 2 3 4 5 High β Average

1 Weak LTD −0.95% 2.15% 2.84% 0.04% −0.39% 0.74%
5 Strong LTD 5.58% 7.06% 7.86% 9.75% 14.77% 9.00%

Strong – Weak 6.54%∗∗∗ 4.90%∗∗∗ 5.03%∗∗∗ 9.72%∗∗∗ 15.16%∗∗∗ 8.27%∗∗∗

(4.33) (3.89) (3.83) (6.52) (7.00) (5.01)

Downside Beta (β−) and LTD

Portfolio 1 Low β− 2 3 4 5 High β− Average

1 Weak LTD 1.12% 1.41% 1.34% 0.82% 3.19% 1.58%
5 Strong LTD 6.42% 5.92% 7.93% 10.14% 16.23% 9.33%

Strong – Weak 5.30%∗∗ 4.51%∗∗∗ 6.59%∗∗∗ 9.32%∗∗∗ 13.04%∗∗∗ 7.75%∗∗∗

(2.38) (3.08) (4.97) (6.10) (5.12) (4.42)

Coskewness (coskew) and LTD

Portfolio 1 Low coskew 2 3 4 5 High coskew Average

1 Weak LTD 2.86% 0.77% 0.24% −2.22% −0.85% 0.16%
5 Strong LTD 13.12% 10.46% 8.05% 6.70% 3.96% 8.46%

Strong – Weak 10.26%∗∗∗ 9.70%∗∗∗ 7.81%∗∗∗ 8.92%∗∗∗ 4.81%∗∗ 8.30%∗∗∗

(4.42) (4.08) (4.21) (4.73) (2.44) (3.99)

Cokurtosis (cokurt) and LTD

Portfolio 1 Low cokurt 2 3 4 5 High cokurt Average

1 Weak LTD −2.90% −2.79% −3.15% −1.91% 4.19% −1.31%
5 Strong LTD 1.75% 3.18% 5.53% 8.84% 12.27% 6.31%

Strong – Weak 4.65%∗∗ 5.97%∗∗ 8.68%∗∗∗ 10.75%∗∗∗ 8.07%∗∗∗ 7.62%∗∗∗

(2.12) (2.53) (5.60) (5.51) (5.21) (4.16)
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Table 11: continued

Panel C: Multivariate Regression Results

(1) (2) (3) (4) (5) Economic Sign.
return return return return return based on (5)

LTD 0.692∗∗∗ 0.712∗∗∗ 0.650∗∗∗ 0.517∗∗∗ 0.540∗∗∗ +5.78%
(6.18) (6.40) (9.05) (8.25) (7.96)

UTD -0.266∗∗∗ -0.218∗∗∗ -0.325∗∗∗ -0.356∗∗∗ -2.81%
(-3.20) (-3.25) (-7.53) (-7.41)

β− 0.024 +1.89%
(1.18)

β+ 0.011 +1.12%
(0.91)

β 0.107∗∗∗ 0.118∗∗∗

(2.99) (3.74)

size -0.017∗ -0.046∗∗∗ -0.047∗∗∗ -6.82%
(-1.77) (-7.43) (-7.39)

bookmarket 0.052∗∗∗ 0.034∗∗∗ 0.032∗∗∗ +3.26%
(5.06) (3.49) (3.20)

coskew 0.071 0.062 0.149∗∗ +3.20%
(1.17) (1.25) (2.26)

illiq 0.309∗∗∗ 0.267∗∗∗ 0.243∗∗∗ +3.66%
(4.98) (3.67) (3.55)

past return -0.032 -0.028 -1.98%
(-1.65) (-1.44)

idio vola -0.192∗ -0.145 -4.22%
(-1.98) (-1.52)

cokurt 0.063∗∗∗ 0.117∗∗∗ +4.85%
(4.34) (6.08)

max 0.029 0.038 +0.72%
(0.33) (0.46)

constant 0.049 0.065 0.065 0.477∗∗∗ 0.481∗∗∗

(1.33) (1.67) (0.49) (5.55) (5.64)

R2 0.014 0.017 0.099 0.153 0.149

This table reports results of the contemporaneous empirical analysis where we relate realized tail dependence coef-
ficients to portfolio and individual security returns over the same period. Panel A reports results from univariate
portfolio sorts based on realized LTD. In each year, we rank stocks into quintiles (1-5) and form value-weighted
portfolios at the beginning of each annual period. The column labeled “Return” reports the average annual re-
turn in excess of the one-month T-bill rate of the portfolios. The column labeled “CAPM-Alpha” (“FF-Alpha”,
“CAR-Alpha”) reports the yearly alpha with regard to Sharpe (1964)’s capital asset pricing model (Fama and French
(1993)’s three-factor model, Carhart (1997)’s four-factor model). The row labeled “Strong – Weak” reports the dif-
ference between the returns of portfolio 5 and portfolio 1, with corresponding statistical significance levels. Panel B
reports value-weighted average annual excess returns over the one-month T-Bill rate of portfolios double-sorted on
realized LTD and realized beta, realized downside beta, realized coskewness, and realized cokurtosis, respectively.
The row labeled “Strong – Weak” reports the difference between the returns of portfolio 5 and portfolio 1 in each
beta, downside beta, coskewness, or cokurtosis quintile with corresponding statistical significance levels. Due to
space limitation we only show the results for posrtfolio 5 and portfolio 1. Finally, Panel C presents the results of
multivariate Fama-MacBeth (1973) regressions of yearly stock-level excess returns over the risk-free rate on LTD,
UTD, downside beta (β−), upside beta (β+), beta (β), the log of market capitalization (size), the book-to-market
ratio (bookmarket), coskewness (coskew), the Amihud Illiquidity Ratio (illiq), the past 12-month excess returns (past
return), idiosyncratic volatility (idio vola), cokurtosis (cokurt), and the maximum daily return over the past one year
(max). All risk characteristics (LTD, UTD, β−, β+, β, coskew, idio vola, cokurt) are calculated contemporaneously.
Size, bookmarket, and illiq for year t are calculated using data from (the end of) year t− 1. The last column displays
the change in annualized excess returns for a one standard deviation increase in the respective independent variable
based on regression (5). The sample covers all U.S. common stocks traded on the NYSE/AMEX/NASDAQ, and
the sample period is from January 1963 to December 2012. T-statistics are in parentheses and are computed using
Newey and West (1987) standard errors with 4 monthly lags. ∗∗∗, ∗∗, and ∗ indicate significance at the one, five, and
ten percent levels, respectively.
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