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Abstract

We merge the literature on downside return risk with that on systematic liquidity risk
and introduce the concept of extreme downside liquidity (EDL) risk. We show that the
cross-section of expected stock returns reflects a premium for EDL risk. Strong EDL
risk stocks deliver a positive risk premium of more than 4% p.a. as compared to weak
EDL risk stocks. The effect is more pronounced after the market crash of 1987. It is
not driven by linear liquidity risk or by extreme downside return risk, and it cannot
be explained by other firm characteristics or other systematic risk factors.
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1 Introduction

The recent empirical asset pricing literature documents that investors care about the sys-
tematic downside- and crash-exposure of stock returns and shows that stocks with such
exposures earn a significant risk-premium (e.g., Ang, Chen, and Xing (2006); Kelly and
Jiang (2014); and Chabi-Yo, Ruenzi and Weigert (2015)). At the same time, the theoretical
literature shows that investors should care about the systematic component of liquidity risk
and there are successful attempts to show empirically that systematic liquidity risk also bears
a premium in the cross-section of returns (e.g., Pastor and Stambaugh (2003) and Acharya
and Pedersen (2005)). The aim of our paper is to merge these two important strands of the
literature for the first time.

The starting point of our paper is the conjecture that investors are less concerned about
systematic liquidity risk during normal market conditions than during periods of market
stress like return crashes or periods of extreme illiquidity. For example, investors probably
care less about how a specific stock’s liquidity co-moves with the liquidity of other stocks
when markets are relatively calm and when they face no urgent trading needs. However,
stocks that suddenly become very illiquid exactly during market crises (e.g., during the
liquidity crisis of September 2008) are very unattractive, while assets that still remain rel-
atively liquid in times of market stress are very attractive assets to hold, particularly for
institutional investors that might be subject to asset fire sale problems or might strongly
depend on funding liquidity conditions. As shown in the theoretical model by Brunner-
meier and Pedersen (2009), liquidity tends to be fragile and is characterized by sudden
systemic droughts of extreme magnitude. The anticipation of such events should lead in-
vestors to demand a premium for holding stocks whose liquidity is particularly sensitive to

them.



In this paper, we introduce the concept of extreme downside liquidity (EDL) risk and
show that stocks with high levels of EDL risk bear an economically large and statisti-
cally significant risk premium of roughly 4% per year which is neither subsumed by ex-
treme downside return (EDR) risk (as in Kelly and Jiang (2014) or Chabi-Yo, Ruenzi and
Weigert (2015)) nor by linear systematic liquidity (as in Pastor and Stambaugh (2003)
or Acharya and Pedersen (2005)). Our empirical approach is closely related to Acharya
and Pedersen (2005)’s liquidity-adjusted CAPM. In their model, an asset’s joint liquidity
risk consists of three different risk components: (i) the (scaled) correlation of an asset’s
liquidity to market liquidity, (ii) the (scaled) correlation of an asset’s return to market
liquidity, and (iii) the (scaled) correlation of an asset’s liquidity to the market return. How-
ever, we want to focus on times of market stress and when focusing on extreme events
(e.g. in liquidity and returns), linear correlations fail to measure increased dependence in
the tails of the distribution (see Embrechts, McNeil, and Straumann (2002)). Hence, the
liquidity-adjusted CAPM cannot account for a stock’s EDL risk and, as a result, might
be misspecified if investors care especially about extreme joint realizations in liquidity and
returns, as hypothesized in this paper. Thus, we use the method to capture EDR risk
based on lower tail dependencies between stock and market returns introduced in Chabi-
Yo, Ruenzi and Weigert (2015) and Weigert (2015) and apply it to liquidity to capture
EDL risk. Like Acharya and Pedersen (2005) for linear liquidity risk, in doing so we dis-
tinguish three components of extreme downside liquidity risk (EDL risk;, EDL risky, and
EDL risks):

(i) Clustering in the lower left tail of the bivariate distribution between individual stock lig-
uidity and market liquidity (EDL risk;): During extreme market liquidity downturns,
funding liquidity is often reduced as well (e.g., margin requirements may increase; see

Brunnermeier and Pedersen (2009)). During those times, investors are often forced
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(i)

to liquidate assets and realize additional liquidity costs. Hence, strong exposure to
EDL risk; increases liquidity costs at a time when it is likely that an investor’s wealth

has decreased.

Clustering in the lower left tail of the bivariate distribution between the individual
stock return and market liquidity (EDL risks): Investors who face margin or solvency
constraints usually have to liquidate some assets to raise cash when their wealth drops
critically. If they hold assets with strong EDL risks, such liquidations will occur in
times of extreme market liquidity downturns. Liquidation in those times also leads to
additional costs, which are especially unwelcome to investors whose wealth has already

dropped (see also Pastor and Stambaugh (2003)).

Clustering in the lower left tail of the bivariate distribution between individual stock
liquidity and the market return (EDL risks): In times of market return crashes, in-
stitutional investors (such as mutual fund managers) are often forced to sell because
their investors withdraw funds (Coval and Stafford (2007)) or financial intermediaries
withdraw from providing liquidity (Brunnermeier and Pedersen (2009)). If a selling
investor holds securities with strong EDL risks, she will suffer from high transaction
costs at the precise moment when her wealth has already dropped and additional losses

are particularly painful.

We capture the three distinct EDL risk components based on bivariate extreme value

theory and copulas, using lower tail dependence coefficients (see Sibuya (1960)). The lower

tail dependence coefficient reflects the probability that a realization of one random variable

is in the extreme lower tail of its distribution, conditional on the realization of the other

random variable also being in the extreme lower tail of its distribution. Furthermore, closely

following Acharya and Pedersen (2005), we define the joint EDL risk of a stock as the sum of
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the three different EDL risk components. All else being equal, assets that exhibit strong EDL
risk are unattractive assets to hold: they tend to realize the lowest liquidity (return) exactly
when the market also realizes its lowest liquidity (return) level. Hence, liquidity-crash-averse
investors, who are particularly interested in insuring against such extreme events, will require
a premium for holding those stocks.

As our main liquidity proxy we use the Amihud (2002) Illiquidity Ratio.! Using weekly
data from 1963 to 2012 we estimate lower tail dependence coefficients for (i) individual stock
liquidity and market liquidity (EDL risk;), (ii) individual stock return and market liquidity
(EDL risks), and (iii) individual stock liquidity and the market return (EDL risks) for each
stock ¢ and week ¢ in our sample. Aggregate EDL risk (defined as the value-weighted average
of EDL risk over all stocks in the sample) peaks during times of financial crises, such as
around 1978-1979 (Second U.S. Oil Crisis), after 1987 (Black Monday Stock Market Crash),
between 1997 and 1998 (Asian Financial Crisis), as well as in the years of the U.S. subprime
crisis starting in 2007.

We then relate stocks” EDL risk (and the EDL risk components) to future returns. Our
asset pricing tests—based on portfolio sorts, factor regressions, and Fama and MacBeth
(1973) regressions on the individual firm level—are completely out-of-sample and focus on
the relationship between past EDL risk exposure and future excess returns. We document
that there exists a positive impact of EDL risk on the cross-section of average future returns.
From 1969 to 2012, a portfolio that is long in stocks with strong EDL risk and short in stocks
with weak EDL risk yields a significant average excess return of 4.00% p.a. We confirm
that the premium for EDL risk is not explained by other risk- and firm characteristics.

Hence, our results suggest that EDL risk is an important determinant of the cross-section

"'We also employ several other low-frequency and high-frequency liquidity measures in robustness checks.
Our results remain stable across the different proxies; see Section 4.1.

4



of expected stock returns. The impact of EDL risk is more pronounced for stocks with a
higher probability of extreme (bad) return and liquidity realizations as measured based on
the past distributions of their individual return and liquidity realizations.

When investigating the variation of the EDL risk premium over time, we find that the
premium has increased in the second half of our sample period. During 1988-2012, a portfolio
consisting of the 20% stocks with the strongest EDL risk exposure delivers a raw return which
is 5.91% p.a. higher than that of a portfolio consisting of the 20% stocks with the weakest
EDL risk exposure, whereas the return difference in the earlier sample period (1969-1987) is
1.49% p.a. These results suggest that investors have become more concerned about a stock’s
EDL risk during the second half of our sample. This finding is consistent with results from
the empirical option pricing literature. Rubinstein (1994) and Bates (2008) find that deep
out-of-the-money index puts (i.e., financial derivatives that offer protection against strong
market downturns) became more expensive after the stock market crash in 1987. These
results are also consistent with the argument recently put forward by Gennaioli, Shleifer
and Vishny (2015) that investors fear a future crash more when there is a recent crash they
still vividly remember. Also consistent with increased crash-aversion after market crises,
Chabi-Yo, Ruenzi and Weigert (2015) show that the premium for a stock’s crash sensitivity
increases substantially after severe market downturns.

The stability of our results is confirmed in a battery of additional robustness tests. These
tests include using low-frequency and high-frequency liquidity proxies other than the Amihud
(2002) Illiquidity Ratio and changing the estimation procedure for the lower tail dependence
coefficients.

Our study contributes to three strands of the literature. First, we contribute to the lit-
erature on the impact of liquidity and liquidity risk on the cross-section of stock returns.

Amihud and Mendelson (1986) convincingly show theoretically and empirically that stocks



with low levels of liquidity deliver higher returns, a finding that has been confirmed in a
large number of studies since then. Closely related to our analysis is a paper by Menkveld
and Wang (2011) showing that stocks with higher probabilities of realizing extremely low
liquidity levels (called "liquileak probability”) command a premium. Thus, while they fo-
cus on the impact of individual extreme illiquidity levels, we focus on the joint likelihood
that an individual stock is extremely illiquid (has an extremely low return) when market
liquidity (the market return) is extremely low, i.e., we focus on a systematic risk compo-
nent.>

There are also numerous studies investigating whether systematic liquidity risk is a priced
factor. However, in this case the aggregate evidence is less clear. Pastor and Stambaugh
(2003) find that stocks with high loadings on the market liquidity factor outperform stocks
with low loadings. Acharya and Pedersen (2005) derive an equilibrium model for returns
that includes the liquidity level and a stock’s return and liquidity covariation with market
liquidity and the market return. They provide some evidence that liquidity risk is a priced
factor in the cross-section of stock returns. This finding is confirmed in an international
setting in Lee (2011).However, Hasbrouck (2009) raises doubts on the existence of a premium
for liquidity risk. He documents that in a long historical sample (U.S. data from 1926 to
2006), there is only weak evidence that liquidity risk is a priced factor. We contribute to
the existing literature by investigating a new dimension of liquidity risk: a security’s EDL
risk. Thus, we provide new evidence that systematic liquidity components are actually

priced.?

2In a recent working paper, Wu (2015) documents that stocks with strong sensitivities to a liquidity-tail
factor earn high expected returns. We show that the premium for a stock’s EDL risk is not subsumed by
this liquidity-tail factor in Panel B of Table 5.

3A concurrent related working paper by Anthonisz and Putnins (2014) also focuses on asymmetric
liquidity risk. They define downside liquidity betas (like Ang, Chen, and Xing (2006)) and downside return
beta (and find them to carry a premium), while we focus on extreme downside liquidity events. Furthermore,
our later analysis shows that downside liquidity beta has no significant influence on the cross-section of stock



Second, our paper relates to the empirical asset pricing literature on rare disaster
and downside crash risk. Ang, Chen, and Xing (2006) find that stocks with high
downside return betas earn high average returns. Kelly and Jiang (2014), Chabi-
Yo, Ruenzi and Weigert (2015), and Cholette and Lu (2011) investigate the impact
of a stock’s return crash risk and return tail risk on the cross-section of expected
stock returns. They find that investors demand additional compensation for hold-
ing stocks that are crash-prone, i.e., stocks that have particularly bad returns ex-
actly when the market crashes. In an international setting, Berkman, Jacobsen and
Lee (2011) show that rare disaster risk premia increase after crises. ~We comple-
ment their findings by showing that EDL risk premia also increase after the 1987
crash.

Third, we extend the literature on the application of extreme value theory and copulas
in the cross-sectional pricing of stocks. Copulas are mainly used to model bivariate
return distributions between different international equity markets (see Longin and Solnik
(2001) and Ané and Kharoubi (2003)) and to measure contagion (see Rodriguez (2007)).*
Chabi-Yo, Ruenzi and Weigert (2015) investigate extreme dependence structures between
individual stocks and the market and find that extreme dependencies are priced factors
in the cross-section of stock returns. Until now, extreme value theory has been applied
to describe dependence patterns across different markets and different assets as well as
individual stock returns and the market return. However, to the best of our knowledge,
ours is the first paper to investigate extreme dependence structures between individual level

and market level liquidity and returns, respectively.

returns when controlling for our EDL risk measure, while our measure continues to have a strong impact.

4Further applications include the use of copulas in dynamic asset allocation (Patton (2004)). Poon,
Rockinger, and Tawn (2004) suggest a general framework to identify tail distributions based on multivariate
extreme value theory.



The rest of this paper is organized as follows. Section 2 provides an overview of the liquidity
measure, the estimation of EDL risk and the development of EDL risk over time. Section 3
demonstrates that stocks with high EDL risk earn high future returns. Section 4 performs

robustness checks and Section 5 concludes.

2 Methodology and Data

Section 2.1 defines our main measure of liquidity and outlines the calculation of liquidity
shocks. In Section 2.2 we introduce our estimation method for EDL risk. Section 2.3
describes our stock market data and the development of aggregate EDL risk over time and

provides summary statistics.

2.1 Measuring Liquidity

Liquidity is a broad, multi-dimensional concept, which makes it hard to find a single
theoretically satisfying measure for it. Like Acharya and Pedersen (2005), we assume that
the liquidity proxies used in this study should measure the 'ease of trading securities’, without
focusing on one particular dimension of liquidity. The limited availability of intradaily data
(particularly before the 1990s) forces us to rely on a low-frequency liquidity proxy as the
main measure of liquidity for our main tests.® Fortunately, many low-frequency proxies are
highly correlated with benchmark measures based on high-frequency data (Goyenko, Holden,
and Trzcinka (2009); Hasbrouck (2009)).

We follow Amihud (2002), Acharya and Pedersen (2005) and Menkveld and Wang (2011)

and use the Amihud Illiquidity Ratio (illig) as our main measure of illiquidity. Hasbrouck

SWe verify the stability of our results with various other low-frequency (for 1963-2012) and high-frequency
(for 1996-2010) liquidity proxies in Section 4.1. A detailed description of all liquidity measures used in this
study is given in Internet Appendix A.



(2009) finds that illig correlates most highly with market microstructure price impact mea-

sures. Illiq of stock ¢ in week t is defined as

days! .
7. g i 744l
ZHZQt = 7 Z Vz 9 (1)
dayst d=1 td

where r?; and V}, denote, respectively, the return and dollar volume (in millions) on day d in
week t and days! is the number of valid observations in week t for stock 4. We use illig! as the
illiquidity of stock ¢ in week t if it has at least three valid return and non-zero dollar-volume
observations in week ¢.

There are two caveats when using illig as a proxy for illiquidity. First, illig can reach
extremely high values for stocks with very low trading volume. Second, inflation of dollar-
volume (the denominator) makes illig non-stationary. To solve these problems, we follow

Acharya and Pedersen (2005) and define a normalized measure of illiquidity, ¢}, by

¢, = min(0.25 + 0.30 - illig, - P, 30) (2)

where P/, is the ratio of the capitalizations of the market portfolio (NYSE and AMEX)
at the end of week ¢t — 1 relative to that at the end of July 1962. The adjustment by P/,
alleviates problems due to inflation. Additionally, a linear transformation is performed to
make ¢! interpretable as effective half-spread. Finally, by capping the illiquidity proxy at a
maximum value of 30%, we ensure that our results are not driven by unrealistically extreme
outliers of illig.

Finally, to simplify the estimation of EDL risk (as discussed in Section 2.2), we convert

normalized #lliquidity into normalized liquidity via



The normalized liquidity measure d! is very persistent: Ljung-Box tests reject the null-
hypothesis of 'no autocorrelation at the first lag’ at a 10% significance level for 92% of stocks.

Thus, we will focus on the innovations of the normalized liquidity measure

i = dy — B (dy) (4)

of a stock when computing our EDL risk measures. To calculate the expected normalized
liquidity E;_1(d}) for each stock ¢ and week ¢, we fit an AR(4) time series model over the

liquidity time series of stock 7.5 Hence,

B y(d)=ag+a-d_+ag-d_y+az-d_g+a4-d_,. (5)

We then use [} for the computation of the EDL risk components for stock i at week ¢ as
described in the following section. For a more detailed description of the computation of the

liquidity innovations, see Internet Appendix A.

2.2 Measuring EDL Risk

We estimate lower tail dependence coefficients to capture (i) EDL risk; between individ-
ual stock liquidity and market liquidity, (ii) EDL risky between individual stock return and
market liquidity, and (iii) EDL risks between individual stock liquidity and market return.
Intuitively, the lower tail dependence coefficient between two random variables reflects the

likelihood that a realization of one random variable is in the extreme lower tail of its distri-

6The number of lags is set at 4 since the partial autocorrelation function of di becomes insignificant before
the fifth lag for most stocks in the sample. In order to consider possible time-variation of the illiquidity process
(such as increased mean liquidity or faster mean-reversion) and to keep the innovation estimates fully out-
of-sample, the AR(4)-parameters are estimated using a three year moving window of data up to week t — 1
of the liquidity series of stock i. We verify the robustness of our results to using simple liquidity-differences
instead of estimated liquidity-shocks in Section 4.2.
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bution conditional on the realization of the other random variable also being in the extreme
lower tail of its distribution. Given two random variables X; and X5, lower tail dependence

Ap is formally defined as

A=A (X1, X)) = lir61+ P(X, < F7(u)| X, < By (), (6)

where u € (0,1) denotes the value of the distribution function, i.e., lim, o, indicates the
limit if we approach the left tail of the distribution from above.” If A is equal to zero (as
is the case for joint normal distributions), the two variables are asymptotically independent
in the lower tail.

The lower tail dependence coefficient between two variables can be expressed in terms of a
copula function C': [0.1]*> — [0, 1].% McNeil, Frey, and Embrechts (2005) show that a simple
expression for Ay, in terms of the copula C of the bivariate distribution can be derived based
on

AL = lim M, (7)

u—0+ U

if F1 and F, are continuous. Equation (7) has analytical solutions for many paramet-
ric copulas. In this study we use 12 different basic copula functions. A detailed overview
of these basic copulas and the corresponding lower tail dependencies (and upper tail de-

pendencies) is provided in Table B.1 in Internet Appendix B. As in Chabi-Yo, Ruenzi

"Similarly, the coefficient of upper tail dependence \;; can be defined as

M= (X1, Xo) = lim P(Xy > FyH(u)| Xz > Fy ' (u).
u—1—

8Copula functions isolate the description of the dependence structure of the bivariate distribution from
the univariate marginal distributions. Sklar (1959) shows that all bivariate distribution functions F'(z1,x2)
can be completely described based on the univariate marginal distributions F; and F5 and a copula function
C'. For a detailed introduction to the theory of copulas, see Nelsen (2006).
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and Weigert (2015) and Weigert (2015), we form 64 convex combinations of the basic
copulas consisting of one copula (out of four) that allows for asymptotic dependence in
the lower tail, C),, one copula (out of four) that is asymptotically independent, C),,
and one copula (out of four) that allows for asymptotic dependence in the upper tail,

O,\'

U

Cluy,ug,®) = wy - Oy, (ur,u9;01) + wsy - Cy, (ur,ug; 02)

+(1 —wy — wy) - Chy, (ug, ug; 03), (8)

where © denotes the set of the basic copula parameters 6;, i = 1,2, 3 and the convex weights
wy and w,.

To determine which convex copula combinations deliver the best fit for the data, we use
3-year rolling windows of weekly data. We fit all 64 convex copula combinations to the
bivariate distribution of each stock’s (i) liquidity and market liquidity, (ii) return and market
liquidity, and (iii) liquidity and market return in the rolling window. We select a specific
copula combination for each stock and EDL risk component based on the estimated log-
likelihood value among the 64 different copulas.” We then use the copula with the best
fit for the respective stock and EDL risk component over the previous three years in the
estimation of tail dependence coefficients using equation (7). As this procedure is repeated

1

for each stock ¢ and week ¢, we end up with a panel of tail dependence coefficients EDL risk;,,

EDL risk}, and EDL risk?, at the stock-week level.

9Table B.2 in the Internet Appendix reports the results of this selection method. Over all stock-week ob-
servations, copula (1-D-IV) of Table B.1 is the most frequently selected copula for the EDL risk; distribution,
copula (1-A-IV) is the most frequently selected copula for the EDL risky distribution, and copula (1-A-IV) is
the most frequently selected copula for the EDL risks distribution. Copula (1-D-IV) relates to the Clayton-
FGM-Rotated Clayton-copula and copula (1-A-IV) relates to the Clayton-Gauss-Rotated Clayton-copula.
We verify the robustness of our results to using worse-fitting and likelihood-weighted copulas in Section 4.2.
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Joint EDL risk for stock ¢ in week t is subsequently defined as the sum of the EDL risk

components:

EDL risk;; = EDL risk;, + EDL risk;, + EDL risk?,. (9)

For a more detailed description of the estimation method, we refer the reader to Internet

Appendix B.

2.3 Data and the Evolution of Aggregate EDL Risk

We obtain data for all common stocks (CRSP share codes 10 and 11) traded on the
NYSE/AMEX between January 1, 1963 and December 31, 2012. The period from 1963
through 1965 is used for the calculation of first illiquidity innovations and the period from
1966-1968 is used to fit the first copulas and estimate EDL risk (as explained in Section
2.2 and Internet Appendix B). Asset pricing tests are performed in the time period from
1969-2012.

To keep our liquidity measure consistent across stocks, we exclude common stocks
traded on NASDAQ since NASDAQ volume data includes interdealer trades and thus is
not directly comparable to NYSE/AMEX volume data. For each firm i and each week
t we estimate the EDL risk components (EDL risk;,, EDL risk? and EDL risk’,) based
on weekly return- and liquidity data over a rolling 3-year window. We use the weekly
value-weighted CRSP market return and the AR(4)-innovations of the value-weighted av-
erage of liquidity over all stocks in the sample as market return and market liquidity,
respectively. Using a 3-year rolling horizon of weekly data offsets two potential con-
cerns: First, to obtain reliable estimates for the EDL risk coefficients, we need a suffi-

ciently large number of observations. Second, we try to avoid very long estimation in-
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tervals as EDL risk is likely to be time-varying.!'® EDL risk for stock i in week t is
then defined as in equation (9) calculated as the sum of the separate EDL risk compo-
nents.

To avoid microstructure issues, we exclude data for all weeks ¢ in which the stock’s price at
the end of week t — 1 is less than $2. We retain the EDL risk estimates of all stocks in week
t that have more than 156/2 = 78 valid weekly return and liquidity observations during the
last 3 years. Overall, we obtain 3,670,214 firm-week observations after applying these filters.
The number of firms in each year over our sample period ranges from 1,290 to 2,036 with

an average of 1,693. Table 1 provides summary statistics.
[Insert Table 1 about here]

In the first five columns we report the mean, the 25%, the 50%, the 75% quantile and the
standard deviation for EDL risk, the weekly excess return over the risk-free rate, and other
key variables in this study. The mean (median) for EDL risk is 0.188 (0.157) with a standard
deviation of 0.147. Joint EDL risk can be decomposed into its risk components with average
values of 0.066 (EDL risk;), 0.066 (EDL risks), and 0.056 (EDL risks).!! The mean weekly
excess return across all stocks is 0.15%. We present the weekly excess return in week ¢+ 2 as
we will relate returns in this week to EDL risk measures determined in week ¢ in our later asset
pricing tests (Section 3). Summary statistics of additional firm characteristics and return
patterns (that we later use in our empirical analysis mainly as control variables) are displayed

in the rest of the table. For detailed descriptions of all variables, see Internet Appendix C.

00ur results are stable if we use rolling horizons of 1-year, 2-years, or 5-years, respectively (see Section
4.2).

'We also compute the corresponding extreme upside liquidity (EUL) risk coefficients with upper tail
dependence coefficients. The mean (median) for EUL risk is much smaller than for EDL risk with a value of
0.139 (0.105). In unreported tests, we do not find an impact of EUL Risk on average future stock returns.
Our results on the impact of EDL risk on average future stock returns are unaffected when controlling for
EUL Risk.
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The last three columns of Table 1 show average characteristics of stocks that are classified
as above or below, respectively, the median EDL risk stock according to their EDL risk
value in the respective week, as well as the difference between the two. Average future
weekly returns for above median EDL risk stocks are 0.17% (8.84% p.a.), whereas they are
only 0.12% (6.24% p.a.) for below median EDL risk stocks. The difference amounts to 0.05%
per week (2.60% p.a.) and is statistically significant at the 1%-level.

Table 1 also shows that (somewhat surprisingly) above median EDL risk stocks tend to
have lower linear liquidity risk as measured by the Acharya and Pedersen (2005) liquidity
beta. However (as expected) they tend to have higher downside return and downside liquidity
betas (defined following the logic of downside return betas from Ang, Chen, and Xing (2006))
as the sum of the three Acharya and Pedersen (2005) linear liquidity betas conditional on the
market return and market liquidity, respectively, being below their respective means). Above
median EDL risk stocks also tend to have higher return betas and higher extreme downside
return risk (EDR). The two groups also differ with respect to other firm characteristics like
size, book-to-market, and liquidity. These patterns mandate that we control for the influence
of these variables in our later asset pricing exercise.

We report cross-correlations between the independent variables used in this study in Table

[Insert Table 2 about here]

Our results reveal that the magnitude of correlations between EDL risk and other indepen-
dent variables is moderate.'> EDL risk is positively correlated with EDR risk (correlation
of 0.26), downside linear return risk 5 (correlation of 0.12), and negatively correlated with

return coskewness (correlation of -0.18). Interestingly, EDL risk is hardly correlated with

12By construction, EDL risk is highly correlated with the separate EDL components. The separate EDL
risk components display positive relationships (with correlations of 0.12, 0.24 and 0.08) among each other.
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(downside) linear liquidity risks f;, and 8, (correlations of -0.02 and 0.05); this provides the
first evidence that EDL risk measures a dimension of liquidity risk which is different from
linear liquidity risk as analyzed in Acharya and Pedersen (2005).

To better understand the temporal variation of EDL risk, we investigate the development
of aggregate EDL risk over time. Aggregate EDL risk, EDL risk,, ;, is defined as the weekly
cross-sectional, value-weighted, average of EDL risk;, over all stocks ¢ in our sample. Panel

A of Figure 1 plots the time series of EDL risk,, ;.
[Insert Figure 1 about here]

Aggregate EDL risk appears relatively stationary over time. The graph exhibits occasional
spikes in EDL risk,,; that seem to coincide with worldwide market crises. A large peak in
EDL risk,,; occurs during 1987-1990, the time period after Black Monday in October 1987,
the largest one-day percentage decline in U.S. stock market history. Other spikes in aggregate
EDL risk correspond to the crises of 1978-1979 (Second U.S. Oil Crisis), 1997-1998 (Asian
Financial Crisis), and 2008-2011 (Global Financial Crisis). We also plot the development of
aggregate EDR (extreme downside return) risk over time in Panel A.'® Aggregate EDL risk
and aggregate EDR risk are highly correlated with a value of 0.74, suggesting that both time
series are affected by similar sources of economic risk. The general tendency for stronger
asymptotic return dependence in the left tail in down markets is well-documented in Ang
and Chen (2002) and Chabi-Yo, Ruenzi and Weigert (2015).

In Panel B of Figure 1 we plot the time series of the separate aggregate EDL risk com-
ponents. All time series are highly correlated with an average value of around 0.59. Inter-

estingly, the graph displays different patterns in the behaviour of the EDL risk components

13In the same way as the EDL risk components, EDR risk is computed as the lower tail dependence
coeflicient in the bivariate distribution between individual stock return and the market return. Subse-
quently, aggregate EDR risk, EDR risk,, ; is defined as the weekly cross-sectional, value-weighted, average
of EDR risk; + over all stocks ¢ in our sample.
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during financial crises. In the 1987 (Black Monday) stock market crash, the spike in aggregate
EDL risk is mainly caused by increasing aggregate EDL risk; and EDL risks. In contrast,
all three components of EDL risk drive the aggregate EDL risk peak during 2008-2011.

3 EDL Risk and Future Returns

In the main part of the empirical analysis we relate EDL risk estimates at week ¢ to
portfolio and individual stock excess returns over week ¢t +2. We skip week t 4+ 1 when inves-
tigating the relationship between EDL risk and future returns to avoid spurious correlations
due to short-term reversals or bid-ask bounce. Note that we only use data observable to
the investor at the end of week t in order to predict stock returns in week ¢ + 2. Strictly
separating the estimation window for EDL risk and the subsequent return prediction window
alleviates concerns related to overfitting. The use of weekly return horizons is natural since
we estimate EDL risk and other risk measures based on weekly data. However, our results
are robust if we relate EDL risk estimates at week ¢ to excess returns over week ¢ 4+ 1 or
if we evaluate monthly return frequencies (see Section 4.3). To properly account for the
impact of autocorrelation and heteroscedasticity on statistical significance in portfolio sorts,

factor models, and multivariate regressions, we use Newey and West (1987) standard errors.

3.1 Univariate Portfolio Sorts

We start our empirical analysis with univariate portfolio sorts. For each week ¢t we sort
stocks into five quintiles based on their EDL risk estimated over the past three years as
described in Section 2.2. We then investigate the equally-weighted average excess return over
the risk-free rate for these quintile portfolios as well as differences in average returns between

quintile portfolio 5 (strong EDL risk) and quintile portfolio 1 (weak EDL risk) over week t+2.
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[Insert Table 3 about here]

Column (1) reports average EDL risk coefficients of the stocks in the quintile portfolios.
There is considerable cross-sectional variation in EDL risk; average EDL risk ranges from
0.04 in the bottom quintile portfolio to 0.39 in the top quintile portfolio. More importantly,
in column (2) we find that stocks with strong EDL risk earn significantly higher average
future returns than stocks with weak EDL risk. Stocks in the quintile with the weakest
(strongest) EDL risk earn an annual average excess return of 5.77% (9.77%). The return
spread between quintile portfolio 1 and 5 is 4.00% p.a., which is statistically significant at
the 1% level (t-statistic of 3.66).!* The results also show that the returns are monotonically
increasing from the weakest to the strongest EDL risk quintile. This pattern is also confirmed
based on the Patton and Timmermann (2010) monotonicity test, which clearly rejects the
null hypothesis of a flat or decreasing pattern over the five EDLR portfolio returns at a
p-value of 0.2%.

In columns (3) through (8) of Table 3, we disentangle the premium for EDL risk into
its three risk components. Columns (3) and (4) show the relationship between EDL risk,
and annualized average future excess returns. The yearly return spread between quintile
portfolios 1 and 5 is only 0.33% p.a. and is not statistically significant. Columns (5) and
(6) document an increasing relationship between EDL risky and annualized average future
returns. Stocks in the quintile with the weakest (strongest) EDL risks earn an annualized
average excess return of 5.73% (9.80%). Thus, on average, stocks in quintile portfolio 5
outperform stocks in quintile portfolio 1 by 4.08% p.a., which is statistically significant at

the 1% level (t-statistic of 4.74). Finally, we report the results of portfolio sorts for EDL risks

14 As we are sorting stocks by their sensitivity to extreme market states, one might argue that high non-
normality of strong-weak returns could be a problem for the standard measurement of statistical significance
in a finite sample. This is not the case: Bootstrapped 99% confidence intervals (unreported) for the EDLR
difference portfolio remain comfortably above zero.

18



and average future excess returns in columns (7) and (8). We find that stocks in the quintile
with the weakest (strongest) EDL risks earn an average excess return of 6.38% (9.97%) p.a.
The return spread between quintile portfolio 5 and quintile portfolio 1 is 3.59% p.a., which
is again statistically significant at the 1% level (t-statistic of 3.87).

In summary, the results from Table 3 provide evidence that EDL risk has an impact on
the cross-section of expected stock returns. Stocks with strong EDL risk exposure earn
higher average future returns than stocks with weak EDL risk exposure. The main drivers
of the EDL risk premium are the EDL risk, and EDL risks components. The finding that
EDL risk; (commonality in liquidity) is not priced is analogous to results by Acharya and
Pedersen (2005) for linear liquidity risk. In the following sections, we mostly present the
results of the impact of joint EDL risk on future returns. However, our results remain
stable if we concentrate on the sole impact of EDL risky and EDL risks and are typically

insignificant for EDL risk;.!®

3.2 Bivariate Portfolio Sorts

The correlations in Table 2 document that EDL risk is correlated with other related (lig-
uidity and return) risk measures and firm characteristics. For example, an increase in EDL
risk tends to go along with an increase in linear downside liquidity (8, ) risk and extreme
downside return (EDR) risk. Hence, the higher average future returns for strong EDL risk
portfolios could be driven by differences in these other variables. To isolate the return pre-
mium of EDL risk from the impact of other related characteristics, we now conduct dependent

equal-weighted portfolio double sorts.!¢

15We report robustness tests for the component-wise return premiums—controlling for important deter-
minants of stock returns—in Table 10.

16As in Section 3.1, EDL risk as well as S, B;, and EDR risk in week ¢ are estimated over a three-
year horizon. Firm size and Amihud’s illiquidity ratio are from the end of week t. We then investigate
equally-weighted average excess returns over week ¢ + 2.
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[Insert Table 4 about here]

In Panel A of Table 4, we analyze whether the EDL risk premium is explained by linear
liquidity risk, £, (see Internet Appendix C), which measures systematic variation in liquidity
unconditional on market conditions. We first form five portfolios sorted by ;. Then, within
each (1 quintile, we sort stocks into five portfolios based on EDL risk.!” We report the
annualized average weekly ¢ 4+ 2 portfolio returns in excess of the risk-free rate for the 25 3,
x EDL risk portfolios.

As in Acharya and Pedersen (2005), we find that average future returns of strong 3, stocks
are higher than those of weak (3, stocks within the two top EDL risk quintiles, while there
is no notable impact of S, in the lower EDL risk quintiles. More importantly, we find that
strong EDL risk stocks clearly outperform weak EDL risk stocks in all gy quintiles. The
return difference between the weakest EDL risk quintile and the strongest EDL risk quintile
ranges from 2.60% p.a. in the second-lowest 3 quintile up to 6.10% p.a. in the highest 8y,
quintile. The return difference is on average 3.68% p.a., which is statistically significant at
the 1%-level. Hence, regular linear liquidity risk as analyzed in Acharya and Pedersen (2005)
cannot account for the reward earned by holding stocks with strong EDL risk.

In Panel B of Table 4, we analyze whether the EDL risk premium is explained by linear
downside liquidity risk, 5, (see Internet Appendix C), which—like EDL risk—focuses on
systematic downside liquidity risk. However, the conceptional difference between EDL risk
and (3, risk is that the latter focuses on systematic risk to market returns (liquidity) below
the mean, while the former explicitly focuses on extreme events. As above, in a first step
we form five portfolios sorting by 3, . Then, within each 3; quintile, we sort stocks into
five portfolios based on EDL risk and report annualized average excess portfolio returns. We

find some evidence that strong /3, stocks tend to outperform weak (3, stocks within each

17Our results (not reported) are stable if we reverse the sorting order or conduct independent sorts.
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EDL risk quintile. However, more interestingly in our context, we again find that in all 3,
quintiles strong EDL risk stocks outperform weak EDL risk stocks significantly. Across all
B; quintiles stocks in the weak EDL risk portfolios earn average excess returns of 5.75%
p.a., whereas stocks in the strong EDL risk portfolios earn average excess returns of 9.68%
p.a. and the difference is highly significant overall as well within each individual 3; quintile.
Thus, linear downside liquidity risk cannot account for the EDL risk premium either.

In Panel C of Table 4, we investigate whether EDL risk is different from extreme downside
return risk, EDR risk (see Internet Appendix C), which captures systematic crash risk in
returns. Again, to explicitly control for variation in EDR risk, we first form quintile portfolios
sorted on EDR risk. Then, within each EDR risk quintile, we sort stocks into five portfolios
based on EDL risk and report annualized average excess portfolio returns.

As in Chabi-Yo, Ruenzi and Weigert (2015), we find that strong EDR risk stocks outper-
form weak EDR risk stocks within all EDL risk quintiles. Furthermore, the return difference
between the weak EDL risk quintile and the strong EDL risk quintile is again positive in
all EDR risk quintiles and statistically significant in four of the five quintiles. On average,
the return spread amounts to 3.25% p.a., which is statistically significant at the 1% level.
Therefore, the impact of EDL risk on future stock returns is also clearly different from the
impact of EDR risk.

Finally, in Panel D and Panel E, we analyze whether the EDL risk premium can be ex-
plained by firm size or the level of stocks’ liquidity costs, as measured by Amihud’s illiquidity
ratio (see Internet Appendix C). As Amihud (2002), we find that average future returns of
illiquid stocks are higher than those of liquid stocks. More importantly, we find that the
average EDL risk premium controlling for firm size (the illiquidity level) is 3.87% (3.89%)
annually and statistically significant at the one percent level in each case. Hence, the EDL

risk premium is not explained by firm size nor the level of stocks’ liquidity costs.

21



To summarize, dependent portfolio double sorts provide strong evidence that EDL risk is
not explained by 8z, 5, EDR risk or by firm size and liquidity levels. So far, our analysis
relies on return differences and we only control for the impact of systematic risk factors
indirectly by double-sorting portfolios based on EDL risk and other risk characteristics of
the stock. To control for the exposure to other systematic risk factors, we now investigate
whether the EDL risk premium can be explained by alternative multivariate factor models

suggested in the literature.

3.3 Factor Models

We regress the weekly ¢ + 2 return of the EDL risk quintile difference portfolio on various
factors that have been shown to determine the cross-section of average stock returns.'® Since
most factors are only available on a monthly basis, we build portfolios, which are rebalanced
monthly based on past EDL risk, again leaving a minimum of a one-week gap between
calculation of EDL risk and portfolio formation. We then investigate risk-adjusted monthly

returns according to these factors. Table 5 reports the results.
[Insert Table 5 about here]

Results for our main specifications are reported in Panel A of Table 5. In regressions
(1) and (2) we adjust the EDL risk quintile difference portfolio for its exposure to the
market factor (as in Sharpe (1964)), the Fama and French (1993) three-factor model that
additionally corrects for the exposure to size (SMB) as well as to book-to-market (HML),
and the Carhart (1997) four-factor model that additionally controls for momentum (MOM).

We find that the EDL risk portfolio loads significantly positively on the market factor and

18The formal definitions of all factors used as well as the respective data sources are provided in Internet
Appendix C.
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significantly negatively on the momentum factor. The risk-adjusted annualized alpha is
significantly positive at the 1%-level and amounts to 2.70% for the market-model and 3.52%
for the Carhart (1997) 4-factor alpha.

In regression (3), we include the Pastor and Stambaugh (2003) traded liquidity factor.
Surprisingly, we find that the EDL risk portfolio does not load significantly on the Pastor
and Stambaugh (2003) factor and the return premium for EDL risk is not reduced. The
risk-adjusted alpha of the EDL risk portfolio is 3.52% p.a.!?

Regressions (4) through (7) additionally control for the EDR risk factor of Chabi-Yo,
Ruenzi and Weigert (2015), the Bali, Cakici, and Whitelaw (2011) factor for lottery-type
stocks, the Kelly and Jiang (2014) tail risk factor, and the U.S. equity betting-against-beta
factor from Frazzini and Pedersen (2014). Again, the annual alpha of the EDL risk portfolio
remains statistically significant at least at the 5% level in each case and ranges from 2.51%
to 4.10%.

Panel B of Table 5 reports annualized alphas for additional alternative factor mod-
els. We regress the EDL risk quintile difference portfolio on the factors from the Fama
and French (2015) five-factor model, the Hou, Xue, and Zhang (2015) and Novy-Marx
(2013) four-factor models, as well as the Carhart (1997) four-factor model extended by the
Fama and French short- and long-term reversal factors, the leverage factor from Adrian,
Etula, and Muir (2014), the quality-minus-junk factor from Asness, Frazzini, and Ped-
ersen (2014), the undervalued-minus-overvalued factor from Hirshleifer and Jiang (2010),

and the Wu (2015) liquidity-tail factor. The alpha of our strong minus weak EDL risk

19Tn unreported tests, we find that the EDL risk portfolio loads significantly positively on the Pastor
and Stambaugh (2003) factor in the period from 1969 through 2000, the time span that is analyzed in
their paper. However, the yearly alpha of the EDL risk portfolio is also not reduced by the Pastor and
Stambaugh (2003) liquidity factor during this sub-period. We obtain similar results when we adjust the
EDL risk quintile difference portfolio for its exposure to the Sadka (2006) liquidity factor (which is based on
the permanent-variable component of the price impact function) in our model.
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return ranges from 2.80% p.a. to 4.04% p.a. and is always statistically significant at the
1%-level.

The results reveal that the premium for EDL risk is robust to controlling for a wide array
of alternative factor specifications. However, Daniel and Titman (1997) advocate considering
not just factor sensitivities in the analysis of determinants of cross-sectional stock returns.
Thus, to also account for firm specific characteristics in our asset pricing tests, we now

proceed to run Fama and MacBeth (1973) regressions on the firm level.

3.4 Fama-MacBeth Regressions

We perform individual Fama and MacBeth (1973) regressions of excess stock returns over
the risk-free rate in week ¢ 4+ 2 on risk and firm characteristics measured at week ¢ in the
period from 1969 to 2012.2° Table 6 presents the regression results of future weekly excess

returns on EDL risk and various combinations of control variables.
[Insert Table 6 about here]

In regression (1), we include EDL risk as the only explanatory variable. Consistent with
our results from portfolio sorts and multivariate factor models, it shows a highly statistically
as well as economically positive impact. For example, stocks with top quintile EDL risk
earn higher future returns of around 3.35% p.a. as compared to bottom quintile EDL risk

stocks.?!

20Running Fama and MacBeth (1973) regressions on the individual firm level has the disadvantage that
risk factors are estimated less precisely in comparison to using portfolios as test assets. However, Ang, Liu
and Schwarz (2010) show that forming portfolios does not necessarily lead to smaller standard errors of
cross-sectional coefficient estimates. Creating portfolios degrades information by shrinking the dispersion of
risk factors and leads to larger standard errors.

2Top (bottom) quintile EDL risk stocks have an average EDL risk exposure of 0.39 (0.04). Hence, our
regressions results indicate an annual return spread of 0.00184 - 0.35 - 52 = 3.35%.
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In regression (2), we add a stock’s market return beta (Sg), size, book-to-market ratio,
and its past yearly return to our model. EDL risk remains statistically significant at the 1%
level when including these additional variables.

In regressions (3) through (5), we expand our model and include a stock’s linear liquidity
risk (8r) from Acharya and Pedersen (2005), extreme downside return (EDR) risk (Chabi-
Yo, Ruenzi and Weigert (2015)), the illiquidity level (Amihud (2002), 12-month average),
exposure to tail risk (fra) from Kelly and Jiang (2014), idiosyncratic volatility (Ang, Ho-
drick, Xing, and Zhang (2006)), and a stock’s coskewness with the market (Harvey and
Siddique (2000)).We find that the inclusion of these additional variables only slightly re-
duces the impact of EDL risk on future returns, which is still statistically significant at the
1% level.

Finally, in regression (6), we replace Sr by Sz and B} as well as 8, by B; and S .
None of these variables shows any significant impact on returns. In contrast, our main re-
sult regarding the impact of EDL risk on future returns remains unchanged - EDL risk
is statistically significant at the 1% level and carries an economically significant posi-
tive impact. Top quintile EDL risk stocks earn higher future returns by about 2.64%
p.-a. than bottom quintile EDL risk stocks, controlling for the full set of additional vari-
ables.

The coefficient estimates for the impact of the control variables broadly confirm findings
from the existing literature: Firm size (book-to-market) is shown to have a negative (positive)
impact on expected returns (e.g., Banz (1981); Basu (1983); and Fama and French (1993)),
while stocks that realize the best (worst) returns over the past 3 to 12 months are found
to continue to perform well (poorly) over the subsequent 3 to 12 months (e.g., Jegadeesh
and Titman (1993)). EDR risk and Bk, are positively related to future average returns

(Kelly and Jiang (2014) and Chabi-Yo, Ruenzi and Weigert (2015)), whereas idio vola shows
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a negative impact (e.g., Ang, Hodrick, Xing, and Zhang (2006)). However, when adding the
full set of explanatory variables, we do not find a statistically significant impact for S, illiq
or coskew, possibly due to the sometimes high correlations across variables (see Table 2).
In summary, we provide strong evidence that EDL risk is priced in the cross-section of
expected stock returns. The premium for EDL risk is robust to portfolio double sorts with
regards to (B, B, , EDR Risk, firm size and stock illiquidity. It is robust to various as-
set pricing factor models, and remains signficant when controlling for a wide list of firm

characteristics.

3.5 Does the Magnitude of the Extreme Downside Matter?

Our asset pricing tests examine the impact of EDL risk, defined as the sum of three lower
tail dependence coefficients (see equation (6)). A lower tail depenence coefficient is defined
as the probability that a realization of one random variable is in the extreme lower tail of
its distribution, conditional on the realization of the other random variable also being in
the extreme lower tail of its distribution. Thus, EDL risk tells us how [likely it is that a
stock realizes (i) its worst liquidity at the time when the market realizes its worst liquidity,
(ii) its worst return when the market realizes its worst liquidity, and (iii) its worst liquidity
when the market realizes its worst return. However, EDL risk does not take into account the
severity of the worst return or liquidity shock, i.e., its magnitude. We now check whether
the impact of EDL risk is stronger if we can expect the worst outcome for a stock to be
particularly bad, i.e., if we interact the probability of the joint outcome with a proxy for the
magnitude of the outcome.

As proxies for the magnitude of a bad outcome, we use four ex-ante proxies based on the
dispersion of returns (liquidity shocks): a stock’s return (liquidity shock) standard deviation

during the past three years, its idiosyncratic return (liquidity shock) volatility (controlling
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for value-weighted market returns and liquidity shocks) during the past three years, its
Value-at-Risk (VaR, defined as the 5% quantile of the weekly returns (liquidity shocks) of
the stock during the past three years), and its conditional Value-at-Risk (CoVaR, defined as
the conditional mean of all weekly returns (liquidity shocks) below the 5% quantile). The
worst outcomes with respect to returns and liquidity shocks tend to be particularly bad for
stocks with a high standard deviation (a high idiosyncratic volatility, a low VaR and a low
CoVaR) regarding the respective variable.

To examine whether dispersion of returns and liquidity shocks indeed increases the impact
of EDL risk, we sort stocks into two categories: Low dispersion stocks which display a
standard deviation or idiosyncratic volatility (VaR or CoVar) of returns and liquidity shocks
below (above) the respective median measure and high dispersion stocks which display a
standard deviation or idiosyncratic volatility (VaR or CoVar) of returns and liquidity shocks
above (below) the respective median measure.

Panel A of Table 7 reports the annualized excess portfolio returns of the top (bottom)
EDL risk quintile portfolio and differences in returns for the low and the high dispersion

samples.
[Insert Table 7 about here]

As expected, our results reveal that the impact of EDL risk on future returns is stronger
for the high dispersion stocks, irrespective of which ex-ante proxy for dispersion we use. In
the high dispersion sample, top quintile EDL risk stocks outperform bottom quintile EDL
risk stocks by an average of 4.95% p.a. across dispersion measures (significant at the 1%
level). Top quintile EDL risk stocks also clearly outperform bottom quintile EDL risk stocks
in the low dispersion sample (significant at the 1% level). However, in contrast to the high

dispersion sample, the outperformance is significantly reduced to 3.33% p.a.
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To investigate whether these results are driven by correlations of the dispersion measures
with other independent variables, we repeat regression (5) of Table 6 for the high and the
low dispersion sample separately.?? Results for the impact of EDL risk are shown in Panel B
of Table 7. The impact of EDL risk is 50% to 100% stronger for firms where bad outcomes
are particularly severe, i.e., for firms with a high dispersion (high standard deviation, high
idiosyncratic volatility, low VaR, and low CoVar) of returns and liquidity shocks. Hence,
greater dispersion of returns and liquidity shocks indeed increases the impact of EDL risk

on future average stock returns.

3.6 Temporal Differences in the EDL Risk Premium

We now investigate whether the premium for EDL risk is stable over time. We first
reproduce the results of the univariate portfolio sorts for the time period from January 1969
through December 1987 and from January 1988 through December 2012. As a cutoff for our
sample, we select 1987, the year of Black Monday, when the U.S. stock market had its largest
one-day percentage decline in history. Focusing on this event is motivated by studies from
the empirical option pricing literature (e.g., Rubinstein (1994) and Bates (2008)) which
document that premiums for deep-out-of-the-money put options strongly increased after
1987, possibly due to investors becoming more crash-averse. Thus, our conjecture is that this
increased crash aversion might also have led to a higher premium for EDL risk in the cross-
section of stock returns after 1987. Panel A of Table 8 reports the annualized future excess
portfolio returns and alphas of portfolios sorted by EDL risk. We also report differences in
average excess returns between quintile portfolio 5 (strong EDL risk) and quintile portfolio

1 (weak EDL risk).

22We include all other explanatory variables from regression (5) of Table 6, but suppress them in the
Panel.
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[Insert Table 8 about here]

The EDL risk premium between the two subperiods varies considerably. In the first sub-
sample from 1969 through 1987, we only find weak evidence of a positive EDL risk premium.
The return spread between the strong EDL risk and the weak EDL risk portfolio is 1.49%
p-a. and not statistically significant at conventional levels. The results for the CAPM-alpha
and the Carhart (1997) four-factor model are similar. The only statistically significant EDL
risk premium is found for the Carhart (1997) specification, where the annualized return
spread between the strong and the weak EDL risk portfolio amounts to 2.32% p.a. and is
statistically significant at the 10%-level.

In the post-crash period from 1988 through 2012, the premium for EDL risk strongly
increases. Stocks in the quintile with the weakest (strongest) EDL risk earn an annual
average excess return of 6.69% (12.60%). The return spread between quintile portfolios 1
and 5 is 5.91% p.a., which is statistically significant at the 1% level. We also find that this
premium remains when we adjust raw returns for exposures to systematic risk factors using
the standard factor models. The return spread with regard to the Carhart (1997) factor
alpha is 3.99% p.a. and strongly significant at the 1% level.

Panel B of Table 8 reports the results from regressions (1) and (5) of Table 6 separately
for the two subperiods. The results are similar to the above results from portfolio sorts. In
the earlier time period prior to the 1987 crash, we do not find evidence of a significant EDL
risk premium. In contrast, the EDL risk premium in the time period from 1988 through
2012 is statistically significant at the 1% level and economically large.

Figure 2 shows the temporal variation of the (cumulative) yearly Carhart (1997) factor
alpha of the top EDL risk minus bottom EDL risk portfolio during the whole sample from
January 1969 through December 2012.%3

23When computing the yearly and cumulative alphas for the top EDL risk - bottom EDL risk portfolio,
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[Insert Figure 2 about here]

The graph reveals that the highest profits of the trading strategy can be attributed
to the years 1990 and 2009. These years are subsequent to two severe market and
liquidity crises: namely, the Black Friday stock market crash in 1987 and the finan-
cial crisis in 2008. We conjecture that these market crashes have strongly increased
the crash aversion of investors, which subsequently has increased the premium (dis-
count) for strong (weak) EDL risk stocks, which is in line with the findings of the em-
pirical option literature mentioned above, which indicate increasing prices (and low ex-
pected returns) for securities that offer protection against strong market downturns after

1987.

4 Robustness Checks

4.1 Liquidity Proxies

The empirical analysis in Section 3 is performed using EDL risk estimates of liquidity in-
novations based on the Amihud (2002) Illiquidity Ratio, analogous to Acharya and Pedersen
(2005). One potential concern is that our main findings are driven by the measurement
error component of our proxy for liquidity. Attenuation bias caused by this measurement
error would lead to an underestimation of the return premium for EDL risk. Neverthe-
less, to assure the stability of our findings, we now test whether our results regarding the
impact of EDL risk on future returns are robust to using different (low-frequency and high-
frequency) proxies of liquidity. As additional low-frequency liquidity proxies we use the

Corwin and Schultz (2012) measure (Corwin), the Lesmond, Ogden and Trzcinka (1999)

no trading costs are taken into account.
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measure (Zeros), and the Fong, Holden and Trzcinka (2014) measure (FHT).?* As high-
frequency liquidity proxies we select the effective spread (EffSpr), the relative spread (Rel-
Spr), the intraday Amihud measure (IntAmsi), and the 5-minute price impact measure (Pri-
Imp). The high-frequency liquidity proxies are calculated for common stocks traded on the
NYSE/AMEX using the TAQ dataset in the period between January 1, 1996 and December
31, 2010. The big advantage of these proxies is their much lower measurement error. We
perform asset pricing tests for the high-frequency proxies in the time period from 2002 to
2010.%

In the same way as for the Amihud (2002) Illiquidity Ratio, we estimate liquidity shocks,
and subsequently the EDL risk, for each firm 7 in each week ¢ based on weekly returns
and liquidity shocks over 3-year rolling windows. Correlations between EDL risk based on
different liquidity proxies are shown in Panel B of Table A.1 in the Internet Appendix.
We find that all correlations between EDL risk measures based on low-frequency prox-
ies and those based on high-frequency proxies are positive. EDL risk based on Corwin
has the highest positive correlations to the high-frequency measures ranging from 0.48 to
0.57.%6

To investigate whether EDL risk is a priced factor in the cross-section of expected stock
returns if measured based on other liquidity proxies, we perform portfolio sorts, factor re-
gressions and multivariate Fama and MacBeth (1973) regressions similar to the ones from

the previous section. Table 9 reports the results.

[Insert Table 9 about here]

24Detailed definitions of these variables, as well as data requirements, are given in Internet Appendix A.

25We compute illiquidity shocks for each stock based on a 3-year time horizon starting in January 1996.
We then use the time period from 1999 to 2001 to estimate the first EDL risk values for each stock. Thus,
our asset pricing tests using high frequency proxies only start in January 2002.

26For additional information about summary statistics and temporal variation of the different liquidity
measures, see Internet Appendix A.
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Consistent with our previous results, Panel A shows that EDL risk is priced across all low-
frequency measures in our study. The annualized return spread between quintile portfolios 1
and 5 ranges from 1.47% p.a. for the Zeros measure to 4.00% p.a. for the illig measure. We
also find that return spreads, risk-adjusted by standard factor models (i.e., the Sharpe (1964)
CAPM model and the Carhart (1997) four-factor model) remain positive for all liquidity
measures and statistically significant for most of them. Moreover, we find supportive evidence
for the pricing of EDL risk when investigating portfolio sorts for the high-frequency liquidity
measures. All EDL raw and risk-adjusted return spreads are positive and economically
significant. In addition, we find statistically significant impact of EDL risk on future returns
for EffSpr, IntAmi, and Prilmp. This is a remarkable result given that our sample period
for our asset pricing tests is only 9 years in this case, which generally makes it very hard to
detect any significant asset pricing patterns.

To confirm that our results are not driven by correlations of EDL risk with other explana-
tory variables, we repeat regression (5) of Table 6 for the EDL risk based on the alternative
liquidity proxies. Our findings indicate that the impact of EDL risk is stable across the
different liquidity proxies and not driven by measurement error. All EDL risk coefficients
are positive. Except for the Zeros and RelSpr measures, coefficients are also statistically and

economically significant, indicating a robust impact of EDL risk on future returns.

4.2 Estimation Procedures and Weighting Scheme

The estimation procedure of EDL risk in Section 3 is performed using an estimation horizon
of 3 years of weekly returns and AR(4) liquidity-shocks, and a copula function that shows
the best fit for each combination of firm, week and EDL risk component in the estimation
window. Furthermore, portfolio sorts are conducted on an equally weighted basis. Thus, one

concern might be that our results are specific to the details of our procedure.
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To address concerns of overfitting, we now demonstrate the robustness of our results to
several changes in the estimation procedure: First, we apply different estimation horizons of 1
year (EDL risky, ), 2 years (EDL risksy, ), and 5 years (EDL risks,) for the estimation of EDL
risk. Second, we use simple differences in stock liquidity instead of shocks from an AR(4)
model. This robustness test alleviates concerns, that noise added through the estimation of
AR(4)-parameters drives results. Third, we use different copula functions in the estimation
procedure of the EDL risk components. In particular, we test the robustness of our results
with copulas that performed best (EDL riske;), second-best (EDL riskes), second-worst
(EDL riskcgs) and worst (EDL riskegs) for this stock-week, as well as a copula that is a
likelihood-weighted average of all 64 copulas we consider (EDL riske,,). The robustness of
our results to these variations should show that they are not caused by estimation error
and overfitting through selecting particular estimation horizons, liquidity-shock estimates,
and copula functions. Finally, we check the stability of our results when considering the
three different risk components EDL risk;, EDL risk,, and EDL risks in asset pricing tests
separately.

To examine whether EDL risk is priced when the estimation procedure is varied, we again
perform portfolio sorts, factor model regressions and multivariate Fama and MacBeth (1973)

regressions. Results are reported in Table 10.
[Insert Table 10 about here]

Panel A shows that, in univariate equal-weighted portfolio sorts and based on standard
factor models, EDL risk is significantly priced across specifications with alternative esti-
mation horizons, different copulas, and when we use simple differences in stock liquidity
instead of shocks from an AR(4) model. The annual EDL risk spread in average excess

returns between quintile portfolios 1 and 5 ranges from 2.91% p.a. for EDL risky, to 5.66%
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p.a. for the specification with liquidity differences instead of AR(4) shocks. We also find
that risk-adjusted return spreads remain positive and are statistically significant at least at
the 5%-level across different estimation procedures. In line with our results from Section
3.1, we confirm that the premium for EDL risk is driven by the EDL risky and EDL risks
components if we control standard factor models.

Finally, in Panel B, we repeat regression (5) of Table 6 of future returns on EDL risk
(estimated using different horizons, liquidity differences and different copula functions) and
other explanatory variables. Our results reveal that the positive, statistically significant
impact of EDL risk on future returns is stable across different estimation procedures even
when controlling for a wide array of firm and risk characteristics. Remarkably, we find
a significant impact of both EDL risks and EDL risks when performing a joint regression
of future stock returns on all EDL risk components at the same time. Overall, our ro-
bustness tests show that our main findings are not driven by overfitting or estimation er-
Tors.

Our previous portfolio sorts in Section 3 were performed based on equal-weighted port-
folios. Thus, even though we exclude < $2- and NASDAQ-stocks, our results could be
influenced by overweighting the importance of very small stocks. We now examine the re-
sults of value-weighted portfolio sorts. First, we form five portfolios sorted on firm size.
Then, within each size quintile, we sort stocks into value-weighted portfolios based on EDL

risk. Results are presented in Table 11.
[Insert Table 11 about here]

Consistent with our previous results, Panel A documents that the value-weighted EDL
risk premium is positive and economically meaningful within each individual size quintile,

ranging from 2.17% p.a. to 5.22% p.a. and typically significant at least at the 5%-level. It
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is smallest and not statistically significant at conventional levels in the highest size quintile,
which is consistent with the weakest return premium for EDL risk in the top size quintile
from Panel D in Table 4. The average value-weighted EDL risk premium across all size
quintiles is 3.71% and is statistically significant at the one percent level.

Panel B repeats the factor model regressions of Table 5 for the average across size quintiles
of value-weighted strong-minus-weak EDL risk portfolios. In short, the results are very
similar to the results based on equal-weighted porfolios from Table 5. Exposures (suppressed
in Table 11) are qualitatively the same and all 7 specifications result in statistically significant
annualized alphas ranging from 2.35% to 3.56%. Overall the results for value-weighted
portfolios confirm that the EDL risk premium is not just driven by a large number of tiny

firms.

4.3 Regression Methods and Adjusted Returns

Our multivariate regression results in Section 3.4 rely on Fama and MacBeth (1973) re-
gressions with winsorized variables. We now vary the regression approach, using the full
set of independent variables for the complete sample period from 1969 to 2012. Results are

presented in Panel A of Table 12.
[Insert Table 12 about here]

Regression (1) varies the baseline regression (5) from Table 6 by not using Newey-West
standard errors in the second stage of the Fama and MacBeth (1973) regressions to determine
statistical significance. Regression (2) uses the standard Fama and MacBeth (1973) approach
without winsorizing the independent variables. In regression (3) we conduct a pooled OLS
regression with time-fixed effects and standard errors clustered by stock. Regression (4)

is a variation of (3), where we cluster standard errors by industry using the SIC-2-digits
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classification.?” Regressions (5) and (6) use panel data regressions with firm-fixed effects. In
regression (6) standard errors are additionally clustered by firm. Finally, in regression (7) we
regress excess returns on the independent variables in a random-effect panel regression. In
all regression modifications, we document that EDL risk is a highly significant explanatory
factor for the cross-section of expected stocks returns. The point estimate for the impact of
EDL risk is always above 0.00117 and statistically significant at the 1% level.

So far, we have used weekly excess returns over week ¢+ 2 as our dependent variable in the
asset pricing exercises. We now test the robustness of our results if we use different return
lags, namely weekly returns in ¢+ 1, t+3, and ¢t 44 as our dependent variable. Furthermore,
we also investigate the impact of EDL risk on future monthly returns in month ¢+ 1. Results
in Panel B of Table 12 document a stable and statistically significant impact of EDL risk on
future returns across the different lags and return horizons.

Next, we adjust the return of each stock by subtracting the return of its corresponding
Daniel, Grinblatt, Titman, and Wermers (1997) characteristic-based benchmark (DGTW).?
Again, our main result of a significant EDL risk premium remains unaffected.

Finally, some extreme market downturns might be driven by specific industries thus causing
our findings to be potentially biased by industry effects. To investigate whether this is the
case, we repeat our multivariate regressions with the full set of controls (i.e., regression
(5) from Table 6), using industry-adjusted returns instead of raw returns as the dependent
variable. To identify and cluster by industries, we use the SIC-2, SIC-3, the SIC-4 digit
industry classification (with weekly returns), as well as the Fama-French 12 (FF12) and 48
(FF48) industry classifications (with monthly returns). For all classifications, the EDL risk

coefficient remains positive and statistically significant.

2"Results are virtually unchanged whether we cluster by Fama-French 48 or SIC industries.
28This test is performed using monthly data. Monthly DGTW benchmarks returns are available via
http://www.smith.umd.edu/faculty/rwermers/ftpsite/ Dgtw/coverpage.htm.
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5 Conclusion

This study investigates whether investors receive compensation for holding stocks with
strong extreme downside liquidity (EDL) risk: Strong EDL risk stocks realize their lowest
return and liquidity realizations in periods of market return and market liquidity crises.
We hypothesize that such stocks are unattractive assets to hold for crash-averse investors
requiring them to demand a premium for holding strong EDL risk stocks.

Our empirical analysis provides clear evidence to support this hypothesis: The cross-
section of expected stock returns reflects a premium for EDL risk. Stocks that are
characterized by strong EDL risk earn significantly higher future returns than stocks with
weak EDL risk. A trading strategy that is long in a portfolio consisting of 20% stocks
with the strongest EDL risk delivers a raw return that is 4.00% p.a. higher than that of
a portfolio consisting of 20% stocks with the weakest EDL risk. The high future returns
earned by stocks with strong EDL risk can be explained neither by linear liquidity risk (as
in Acharya and Pedersen (2005)) nor by different factor model specifications and are not
due to differences in firm characteristics. Our results are stable across different liquidity
measures and alternative estimation procedures of EDL risk.

There is evidence that certain investor groups seek (and can identify) stocks with strong
tail risk exposure. For example, Agarwal, Ruenzi and Weigert (2015) show that hedge fund
managers actively invest in such stocks and are able to earn the associated premium. Overall
our results have important implications for portfolio performance management and financial
stability. If financial institutions do not suffer the (unmitigated) consequences of a market
crash or liquidity crisis (e.g., because they expect to be bailed out), they are incentivized to
buy strong EDL risk assets in order to earn the premium documented in our study. Such

behavior would make those institutions, and consequently financial markets, more fragile.
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Figure 1: Aggregate EDL Risk over Time (1969 - 2012)
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(a) Panel A: Aggregate EDL Risk and EDR Risk over Time
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(b) Panel B: Components of Aggregate EDL Risk

This figure displays the evolution of aggregate EDL risk and EDR risk as well as the different components of EDL risk over time.
Aggregate EDL risk (EDR risk) in week ¢ is defined as the value-weighted average of EDL risk (EDR risk) over all stocks ¢ in
our sample. Analogously, we define the aggregate EDL risk components (aggregate EDL risk;, aggregate EDL risks, aggregate
EDL risks) in week ¢ as the value-weighted average of the EDL risk components (EDL risk;, EDL riske, EDL risks) over all
stocks ¢ in our sample. Panel A draws the evolution of aggregate EDL risk (EDR risk) over time. Panel B shows the evolution
of the different aggregate EDL risk components. The sample covers all U.S. common stocks traded on the NYSE / AMEX and
the sample period is from January 1969 to December 2012.
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Figure 2: Yearly Alpha and Cumulative Alpha of EDL Risk Strategy
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(b) Panel B: Cumulative Alpha of EDL Risk Strategy

This figure displays the evolution of the annualized 1-year Carhart-alpha and the cumulative Carhart-alpha
of a trading strategy consisting of buying strong EDL risk stocks and selling weak EDL risk stocks with
weekly rebalancing (no trading costs are taken into account). The sample covers all U.S. common stocks

traded on the NYSE / AMEX and the sample period is from January 1969 to December 2012.
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Table 4: Bivariate Equal-Weighted Portfolio Sorts

Panel A: EDL Risk and g7, Risk

Portfolio 1 Weak Sy, 2 3 4 5 Strong Br, Average
1 Weak EDL risk 6.34% 4.78% 5.34% 6.36% 6.04% 5.77%
2 8.58% 5.55% 7.02% 7.49% 8.42% 7.41%
3 9.18% 7.27% 8.85% 9.85% 8.91% 8.81%
4 10.02% 8.26% 7.68% 10.21% 11.04% 9.44%
5 Strong EDL risk 9.80% 7.38% 8.62% 9.32% 12.14% 9.45%
Strong-Weak 3.46%** 2.60%**  3.28%***  2.96%** 6.10%*** 3.68%***
(2.38) (2.46) (2.62) (2.22) (3.94) (4.15)
Panel B: EDL Risk and §; Risk
Portfolio 1 Weak 5, 2 3 4 5 Strong B, Average
1 Weak EDL risk 6.16% 4.64% 4.78% 6.21% 6.96% 5.75%
2 7.17% 6.55% 6.94% 8.32% 8.25% 7.44%
3 9.46% 7.96% 8.59% 9.24% 8.61% 8.77%
4 8.11% 9.05% 8.02% 9.75% 11.27% 9.24%
5 Strong EDL risk 10.34% 7.69% 8.69% 10.03% 11.63% 9.68%
Strong-Weak 4.18%*** 3.05%***  3.91%***  3.81%*** 4.67%*** 3.93%***
(2.86) (2.82) (3.02) (2.81) (2.87) (4.27)
Panel C: EDL Risk and EDR Risk
Portfolio 1 Weak EDRR 2 3 4 5 Strong EDRR Average
1 Weak EDL risk 3.46% 5.04% 6.92% 6.42% 8.73% 6.11%
2 4.27% 6.64% 7.84% 7.97% 11.26% 7.60%
3 5.84% 7.23% 10.16% 10.00% 10.86% 8.82%
4 5.80% 7.85% 9.50% 10.17% 11.65% 9.00%
5 Strong EDL risk 6.89% 8.47% 10.94% 9.70% 10.80% 9.36%
Strong-Weak 3.43%** 3.43%**  4.02%***  3.29%** 2.07% 3.25%***
(2.43) (2.47) (2.78) (2.45) (1.46) (3.28)
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Panel D: EDL Risk and Size

Portfolio 1 Small 2 3 4 5 Large  Average
1 Weak EDL risk 5.86% 6.70% 6.01% 5.96% 4.77% 5.86%
2 8.08% 8.74% 7.59% 7.48% 6.15% 7.61%
3 7.21% 9.69% 10.24% 8.46% 7.30% 8.58%
4 9.19% 10.65% 9.27% 8.77% 7.67% 9.11%
5 Strong EDL risk 11.19% 10.59% 10.57% 9.56% 6.75% 9.73%
Strong-Weak 5.33%***  3.89%***  4.56%***  3.60%*** 1.98% 3.87%***
(2.98) (2.68) (3.11) (2.92) (1.64) (3.71)

Panel E: EDL Risk and Illiquidity

Portfolio 1 Liquid 2 3 4 5 Tlliquid  Average
1 Weak EDL risk 4.73% 4.92% 5.69% 6.82% 6.77% 5.78%
2 5.72% 7.01% 7.46% 8.70% 8.75% 7.53%
3 6.71% 9.06% 8.76% 9.69% 8.96% 8.64%
4 7.28% 8.81% 8.84% 11.03% 10.33% 9.26%
5 Strong EDL risk  6.67% 10.51%  8.76% 11.08% 11.32% 9.67%
Strong-Weak 1.94%  5.59%***  3.08%**  4.26%***  4.55%** | 3.89%***
(1.57) (3.95) (2.12) (3.18)) (2.64) (3.76)

This table reports the results of dependent equal-weighted portfolio sorts. First, we form quintile portfolios sorted on Sy, risk
(B risk, EDR risk, firm size, illiquidity). Then, within each risk quintile, we sort stocks into equal-weighted portfolios based
on EDL Risk. Panel A displays annualized average future returns of 25 By risk - EDL risk portfolio sorts, Panel B shows
annualized average future returns of the 25 8, - EDL risk sorts, Panel C shows the annualized average future returns of the
25 EDR risk - EDL risk portfolio sorts, Panel D shows the annualized average future returns of the 25 market capitalization -
EDL risk portfolio sorts and Panel E shows the annualized average future returns of the 25 Amihud illiquidity ratio - EDL risk
portfolio sorts. The row labelled 'Strong - Weak’ reports the difference between the returns of portfolio 5 and portfolio 1 with
corresponding t-statistic. The sample covers all U.S. common stocks traded on the NYSE / AMEX and the sample period is
from January 1969 to December 2012. t-statistics are in parentheses. *** ** and * indicate significance at the one, five, and
ten percent level, respectively. We use Newey-West (1987) standard errors with four lags.
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Table 5: EDL Risk and Returns: Factor Models

Panel A: Factor Models

(1) (2) (3) (4) (5) (6) (M
EDL risk EDL risk EDL risk EDL risk EDL risk EDL risk EDL risk
(PF5-1) (PF5-1) (PF5-1) (PF5-1) (PF5-1) (PF5-1) (PF5-1)
Marketrf 0.134%** 0.133*** 0.133*** 0.078*** 0.108*** 0.137*** 0.141***
(4.52) (5.37) (5.41) (2.96) (4.39) (5.16) (5.87)
SMB -0.033 -0.033 -0.026 -0.064* -0.043 -0.031
(-0.99) (-0.99) (-0.79) (-1.70) (-1.21) (-0.97)
HML 0.045* 0.045* 0.101** 0.060* 0.063** 0.101***
(1.21) (1.63) (2.43) (1.94) (2.32) (3.39)
MOM -0.118** -0.118** -0.127** -0.112** -0.103* -0.096*
(-2.10) (-2.08) (-2.23) (-2.16) (-1.72) (-1.84)
PS Liqui -0.001
(-0.04)
EDRR 0.163***
(3.25)
Max 0.037
(0.97)
Tail -0.048
(-1.29)
BAB -0.103***
(-3.19)
const 0.225%***  0.293%***  0.294%***  0.210%**  0.316%***  0.316%***  0.342%***
(2.88) (3.05) (2.89) (2.30) (2.86) (3.09) (3.35)
yearly
alpha 2.70% 3.52% 3.52% 2.51% 3.80% 3.78% 4.10%
R2 0.107 0.198 0.198 0.235 0.188 0.199 0.224
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Panel B: Other Factor Models

Factor Model Annualized o

Fama-French 5-Factor Model (Fama/French, 2015) 2.80%*** (2.86)
Novy-Marx 4-Factor Model (Novy-Marx, 2013) 4.04%*** (2.81)
Hou-Xue-Zhang 4-Factor Model (Hou/Xue/Zhang, 2014) 3.08%*** (2.70)
Carhart 4-Factor Model + short- and long-term reversal 3.95%*** (2.98)
Carhart 4-Factor Model + leverage factor (Adrian/Etula/Muir, 2014) 3.75%*** (3.10)
Carhart 4-Factor Model + quality-minus-junk (Asness/Frazzini/Israel/Moskowitz/Pedersen, 2015) | 3.85%*** (3.07)
Carhart 4-Factor Model + undervalued-minus-overvalued (Hirshleifer/Jiang, 2010) 3.35%*** (3.34)
Carhart 4-Factor Model + liquidity-tail (Wu, 2015) 3.77%*** (3.14)

This table reports monthly OLS-regression results of a trading strategy based on the return-difference be-
tween past strong EDL risk (quintile 5) and past weak EDL risk (quintile 1) portfolios on different factor
models. The factors we use in Panel A include Marketrf, which is based on Sharpe (1964)’s capital asset
pricing model, SMB and HML of the Fama and French (1993) three-factor model, MOM of the four-factor
model by Carhart (1997), Pastor and Stambaugh (2003)’s traded liquidity risk factor (PS Liqui), Chabi-Yo,
Ruenzi and Weigert (2015)’s equal-weighted EDRR (EDRR) factor, Bali, Cakici, and Whitelaw (2011)’s
equal-weighted lottery factor (Max), as well as the equally-weighted tail-risk factor (Tail) proposed by Kelly
and Jiang (2014) and the betting-against-beta factor (BAB) proposed by Frazzini and Pedersen (2014). The
factor models in Panel B include the the Fama and French (2015) five-factor model, the Hou, Xue, and Zhang
(2015) and Novy-Marx (2013) four-factor models as well as the Carhart (1997) four-factor model extended
by the Fama and French short- and long-term reversal factors, the leverage factor from Adrian, Etula, and
Muir (2014), the quality-minus-junk factor from Asness, Frazzini, and Pedersen (2014), the undervalued-
minus-overvalued factor from Hirshleifer and Jiang (2010), and the Wu (2015) liquidity-tail factor. Portfolios
of the EDL risk trading strategy are rebalanced monthly. The sample covers all U.S. common stocks traded
on the NYSE / AMEX and the sample period is from January 1969 to December 2012. t-statistics are in

kkck ok
’

parentheses. , and * indicate significance at the one, five, and ten percent level, respectively. We use

Newey-West (1987) standard errors with one lag.
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Table 6: Fama and MacBeth (1973) Regressions

(1 (2) 3) (4) () (6)

Return¢sy2  Return;y2  Returnsy2  Returngyo  Returngio  Returngyo

EDL risk 0.00184***  0.00137***  0.00133***  0.00113***  0.00137***  0.00145***

(3.73) (4.49) (4.32) (3.73) (4.28) (4.49)
Br -0.00008 -0.00009 -0.00029 0.00006
(-0.19) (-0.24) (-0.74) (0.16)
size -0.00007 -0.00005 -0.00007  -0.00018**  -0.00018**
(-0.79) (-0.57) (-0.79) (-2.54) (-2.65)
btm 0.00039***  0.00039***  0.00039***  0.00032***  0.00032***
(2.89) (2.90) (2.92) (2.27) (2.26)
past return 0.00159***  0.00157***  0.00155***  0.00131***  0.00133***
(3.80) (3.75) (3.73) (2.98) (2.98)
Br. 0.00219 0.00279 0.00050
(0.73) (0.93) (0.15)
EDR risk 0.00278***  0.00265***  0.00264***
(7.16) (6.54) (6.21)
illiq 0.00010 0.00009
(0.75) (0.62)
Brail 0.00794** 0.00748**
(2.19) (2.04)
idio vola -0.01391*  -0.01457*
(-1.73) (-1.65)
coskew 0.00009 -0.00007
(0.20) (-0.10)
Br -0.00132
(-0.88)
B -0.00006
(-0.03)
Br 0.00004
(0.14)
fep 0.00001
(0.08)
const 0.00113** 0.00239 0.00203 0.00213  0.00510***  0.00531***
(2.03) (1.33) (1.14) (1.20) (3.83) (4.14)
Avg. R? 0.0025 0.0449 0.0465 0.0477 0.0647 0.0653

This table displays the results of multivariate Fama and MacBeth (1973) regressions. We report the results
of regressions of weekly excess returns over the risk-free rate at week ¢t + 2 on EDL risk, 8g, the log of
market capitalization ()s,ize)7 the book-to-market ratio (btm), the past 12-month excess returns (past year

return), Sr, EDR risk, illiquidity (illig), Bra: from Kelly and Jiang (2014), idiosyncratic volatility (idio
vola), coskewness (coskew), Bg, ﬂ;, B, and Bzr All risk and firm characteristics are calculated using data
available at (the end of) week ¢t. A detailed description of the computation of these variables is given in the

main text and in Internet Appendix C. The sample covers all U.S. common stocks traded on the NYSE /
AMEX and the sample period is from January 1969 to December 2012. t-statistics are in parentheses. ***
**, and * indicate significance at the one, five, and ten percent level, respectively. We use Newey-West (1987)
standard errors with four lags.
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Table 7: Impact of EDL Risk in Dispersion-Sorted Samples

Panel A: Univariate Sorts

Low Dispersion High Dispersion

Dispersion Proxy Strong EDL risk  Weak EDL risk 5-1 Diff Strong EDL risk  Weak EDL risk 5-1 Diff

Standard Deviation 8.76% 5.58% 3.18%*** 10.56% 5.13% 5.42%***
(3.00) (3.78)

Idio Vola 8.74% 5.65% 3.08%*** 10.48% 4.69% 5.79%***
(2.93) (3.89)

VaR 9.02% 5.39% 3.63%*** 9.88% 5.53% 4.35%***
(3.32) (3.20)

CoVar 8.99% 5.58% 3.41%*** 9.94% 5.69% 4.25%***
(3.17) (3.12)

Average 8.88% 5.55% 3.33%*** 10.21% 5.26% 4.95%***
(3.13) (3.59)

Panel B: Fama-MacBeth (1973) Regressions

Standard Deviation Idios. Vola VaR CoVar
Low Disp. High Disp. Low Disp. High Disp. Low Disp. High Disp. Low Disp. High Disp.

EDL risk ~ 0.00112***  0.00195***  0.00109***  0.00201***  0.00116***  0.00187**  0.00114***  0.00171**
(3.54) (2.58) (3.44) (2.67) (3.56) (2.52) (3.56) (2.22)

This table displays the results of conditional univariate portfolio sorts and conditional multivariate Fama and MacBeth (1973)
regressions. We sort stocks into two categories: Low dispersion stocks which display a standard deviation or idiosyncratic
volatility (VaR or CoVar) of returns and liquidity shocks below (above) the respective median measure and high dispersion
stocks which display a standard deviation or idiosyncratic volatility (VaR or CoVar) of returns and liquidity shocks above (below)
the respective median measure. Panel A reports the results of univariate portfolio sorts based on the high/low dispersion sample.
Panel B repeats regression (5) from Table 6 of weekly excess returns over the risk-free rate at week ¢ + 2 on firm- and risk
characteristics conditional on a stock’s dispersion measures being below (above) the respective median. We only report the
coefficient estimate for the impact of EDL risk. All other explanatory variables of regression specification (5) are included in the
regressions, but their coefficient estimates are suppressed. A detailed description of the computation of these variables is given
in the main text and in Internet Appendix C. The sample covers all U.S. common stocks traded on the NYSE / AMEX and
the sample period is from January 1969 to December 2012. t-statistics are in parentheses. ***, ** and * indicate significance
at the one, five, and ten percent level, respectively. We use Newey-West (1987) standard errors with four lags.
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Table 9: Different Liquidity Proxies: Univariate Portfolio Sorts and FMB Regressions

Panel A: Univariate Portfolio Sorts

Liquidity Returnsyo CAPM CAR
EDL risk 5-1 Low-Frequency (1969-2012)
illiq 4.00%*** 2.85%***  3.03%***
(3.66) (2.80) (2.90)
Corwin 2.28%** 0.89% 1.98%**
(2.15) (0.89) (2.03)
Zeros 1.47%*** 1.35%**  1.60%***
(2.69) (2.49) (2.91)
FHT 3.40%*** 2.80%***  3.10%***
(4.24) (3.57) (3.95)
EDL risk 5-1 High-Frequency (2002-2010)
EffSpr 411%*  3.53%  3.39%**
(2.24) (2.14) (1.94)
RelSpr 1.72% 0.81% 1.24%
(0.83) (0.43) (0.67)
IntAmi 5.53%** 4.51%** 3.82%*
(2.03) (1.98) (1.80)
Prilmp 4.67%** 3.93%** 3.78%*
(2.18) (2.03) (1.85)

Panel B: Fama and MacBeth (1973) Regressions

Low-Frequency (1969-2012) High-Frequency (2002-2010)
(1) (2 (3) (4) (5) (6) (M (8)
Illiq Corwin Zeros FHT EffSpr  RelSpr IntAmi Prilmp

EDL risk  0.00137***  0.00085***  0.00047 0.00167***  0.00135*  0.00007  0.00192***  0.00171**
(4.28) (2.69) (0.98) (4.49) (1.83) (0.14) (2.59) (2.23)

This table reports results of univariate portfolio sorts and Fama and MacBeth (1973) regressions for different liquidity proxies.
As high-frequency liquidity proxies we use the effective spread (EffSpr), the relative spread (RelSpr), the intraday Amihud
measure (IntAms), and the price impact measure (PriImp). As low-frequency liquidity proxies we use the Amihud Illiquidity
Ratio (illig), the Corwin measure (Corwin), the Zeros measure (Zeros) and the FHT measure (FHT). A detailed description
of the computation of these variables is given in Internet Appendix A. In Panel A we rank stocks into quintiles (1-5) based
on estimated past EDL risk of the different liquidity proxies over the last three years and form equal-weighted portfolios at
the beginning of each weekly period. We report differences in annualized returns, differences in the CAPM-Alpha based on
Sharpe (1964)’s capital asset pricing model and differences in the CAR-alpha based on Carhart (1997)’s four factor model
between portfolio 5 and portfolio 1 with corresponding statistical significance levels. Panel B shows the results of regression
specification (5) from Table 6 for different liquidity proxies. We only report the coefficient estimate for the impact of EDL risk.
All other explanatory variables of specification (5) are included in the regressions, but their coefficient estimates are suppressed.
The sample covers all U.S. common stocks traded on the NYSE / AMEX. The sample period for the low-frequency liquidity
proxies is from January 1969 to December 2012. The sample period for the high-frequency liquidity proxies is from July 2002
to December 2010. t-statistics are in parentheses. ***, ** and * indicate significance at the one, five, and ten percent level,
respectively. We use Newey-West (1987) standard errors with four lags.
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Table 10: Different Estimation Procedures: Univariate Portfolio Sorts and FMB Regressions

Panel A: Univariate Portfolio Sorts

Procedure Returns2 CAPM CAR
EDL risk 5-1  Estimation Horizons & Liquidity Shocks
ly 2.91%*** 2.05%** 2.39%**
(3.40) (2.39) (2.50)
2y 3.91%*** 2.67%** 2.94%***
(3.43) (2.53) (2.68)
S5y 4.22%*** 2.81%** 2.56%**
(3.09) (2.32) (2.16)
diff 5.66%*** 4.34%*** 3.91%***
(4.39) (3.75) (3.31)
EDL risk 5-1 Copula Functions
C1 4.00%*** 2.85%*** 3.03%***
(3.66) (2.80) (2.90)
C2 4.19%*** 3.07%*** 3.22%***
(3.94) (3.14) (3.23)
C63 4.64%*** 3.47%*** 3.59%***
(4.27) (3.47) (3.50)
C64 4.10%*** 2.93%*** 3.10%***
(3.78) (2.93) (3.01)
Cw 5.24%*** 3.91%** 4.04%***
(4.41) (3.58) (3.61)
EDL risk 5-1 EDL risk Components
EDLR; 0.33% —0.32% —0.23%
(0.40) (-0.40) (-0.28)
EDLRs 4.08%*** 3.32%*** 3.09%***
(4.74) (4.10) (3.69)
EDLR3 3.59%*** 2.70%*** 2.97%***
(3.87) (3.08) (3.39)
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Panel B: Fama and MacBeth (1973) Regressions

Estimation Horizons & Liquidity Shocks

(1) (2) (3) (4)
2y

ly S5y diff
EDL risk ~ 0.00068***  0.00108***  0.00167***  0.00226***
(3.45) (4.14) (4.48) (6.41)

Copula Functions

(5) (6) (7) (8) 9)

C1 C2 C63 C64 Cw
EDL risk 0.00137***  0.00125***  0.00156***  0.00127***  0.00178***
(4.28) (3.96) (4.65) (3.92) (4.44)
EDL risk Components (joint estimate)
(10)
EDLR;4 EDLRs EDLR3

EDL risk;  -0.00003  0.00234***  0.00276***
(-0.06) (3.61) (4.55)

This table reports results of univariate portfolio sorts and Fama-MacBeth (1973) regressions for different estimation horizons,
liquidity shocks, copula functions, and on the EDL risk component level. We estimate EDL risk with different estimation horizons
of 1-year, 2-years, and 5-years, as well as based on liquidity-differences instead of -shocks from an AR-model. Furthermore we
estimate EDL risk with different copulas (C1-C4 and Cw). We also analyze the component-wise effect of the three risk factors
EDL risk;, EDL risks, and EDL risks. A detailed description of the computation of these variables is given in the main text
and Internet Appendix C. In Panel A we rank stocks into quintiles (1-5) based on estimated past EDL risk of the different
estimation horizons, different copulas and EDL risk components, and form equal-weighted portfolios at the beginning of each
weekly period. We report differences in annualized returns, differences in the CAPM-Alpha based on Sharpe (1964)’s capital
asset pricing model and differences in the CAR-alpha based on Carhart (1997)’s four factor model between portfolio 5 and
portfolio 1 with corresponding statistical significance levels. Panel B shows the results of regression specification (5) from Table
6 for different estimation procedures. We only report the coefficient estimate for the impact of EDL risk. In Specification (10)
of Panel B, we adjust specification (5) from Table 6 by replacing EDL risk by its three components and estimating jointly. The
sample covers all U.S. common stocks traded on the NYSE / AMEX. The sample period is from January 1969 to December
2012. t-statistics are in parentheses. ***, ** and * indicate significance at the one, five, and ten percent level, respectively. We
use Newey-West (1987) standard errors with four lags.
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Table 12: Different Regression Methods

Panel A: Different Regression Methods

Regression (1) (2) (3) (4) (5) (6) (7)
EDL risk 0.00137***  0.00117***  0.00214***  0.00214***  0.00243***  0.00243***  0.00240***

(4.24) (3.60) (8.88) (7.99) (8.57) (8.89) (8.56)
Controls yes yes yes yes yes yes yes
Method fmb fmb ols ols panel panel panel
Winsorized yes no yes yes yes yes yes
Time-Fixed Effects yes yes yes yes yes
Firm Effects no no fixed fixed random
Clustered SE firm industry no firm no
Newey-West SE no yes no no no no no
R? 0.065 0.064 0.195 0.187 0.202 0.202

Panel B: Adjusted Returns

EDL risk return EDL risk
(t-stat) adjustment (t-stat)

Returngy1 0.00157*** SIC-2 0.00096***
(weekly) (4.90) (weekly) (3.52)

Return; 43 0.00150*** SIC-3 0.00085***
(weekly) (4.71) (weekly) (2.83)

Returnsy4 0.00148*** SIC-4 0.00074***
(weekly) (4.77) (weekly) (3.27)

Monthly Return  0.00447*** FF12 0.00468**
(monthly) (3.24) (monthly) (2.19)

DGTW 0.00263* FF48 0.00451**
(monthly) (1.72) (monthly) (2.18)

Panel A reports the results of different multivariate regressions on a weekly frequency. Regression (1) repeats the baseline
regression (5) from Table 6, but we now do not use Newey-West standard errors in the second stage of the Fama-MacBeth (1973)
regressions. Regression (2) repeats the standard Fama-MacBeth (1973) regression, but we do not winsorize the independent
variables. In regression (3) we perform a pooled OLS regression with time-fixed effects and standard errors clustered by stock.
Regression (4) is identical, but we cluster standard errors by the SIC-2-digits classification. Regressions (5) and (6) perform
panel regressions with firm-fixed effects. In regression (6) standard errors are additionally clustered by firm. Finally, in regression
(7) we regress excess returns on the independent variables via a random-effect panel regression. Panel B reports the result of
regression (5) of Table 6 with different return adjustments. We use weekly returns in ¢t + 1, t + 3, and ¢ + 4, as well as monthly
returns, DGTW alphas (results are displayed on the left side of Panel B), and industry-adjustments (results are displayed on
the right side of Panel B). The sample period is from January 1969 to December 2012. ***  ** and * indicate significance at
the one, five, and ten percent level, respectively. We use Newey-West (1987) standard errors with four lags for weekly data and
with one lag for monthly data.
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Internet Appendix for
" Extreme Downside Liquidity Risk”

Abstract

The Internet Appendix consists of three sections. Internet Appendix A contains infor-
mation on the eight liquidity proxies used in this study, as well as the computation of
liquidity shocks. In Internet Appendix B, we provide the technical details of the copula
estimation and selection procedure. Internet Appendix C defines the main variables

used in the study and gives detailed data sources.



A Internet Appendix: Liquidity Measures

Internet Appendix A provides the definitions of the eight liquidity proxies used in this
study, along with data requirements, details about the computation of liquidity shocks and
a short analysis of how well EDL risk estimates based on low-frequency proxies correlate

with high-frequency benchmark values.

A.1 Liquidity Proxy Definitions and Data Requirements

The low-frequency data for proxies (1)-(4) comes from CRSP. The high-frequency proxies
(5)-(8) use data from the NYSE TAQ database.

(1) The Amihud (2002) Illiquidity Ratio (Illiq) is defined as in Acharya and Pedersen

(2005):
¢ = min(0.25 + 0.30 - illiq} - P, 30)% (A1)
with .
days, |
. r
illig} = —— X
" days! ‘~ Vi

where ¢, and V}, are respectively the return and dollar volume (in millions) on day d in
week ¢ and days! is the number of valid (available return and non-zero dollar-volume)
observations in week ¢ for stock i. ¢! can be interpreted as the effective half-spread of

stock 1.

(2) The Corwin and Schultz (2012) illiquidity measure (Corwin) is defined as follows:
days,

ch = Z max ( (e%a — 1),0> (A.2)
-1 % 4 1

- dayst
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with

Bla = ( ;
’ . 2
. ] tdhi;‘fvd
ﬁYtd - og tleid

where hij,; and loj ; stand for high- and low-prices on day d in week ¢ for stock 4,

tdhi; 4 and tdloj ; stand for 2-day high- and low-prices on days d — 1 and d in week ¢
for stock i and days, is the number of days for which high-, low- and closing prices are
available. We use the same adjustments for strong overnight price changes and thinly
traded stocks as Corwin and Schultz (2012). ¢! can be interpreted as the spread of

stock 1.
(3) The Lesmond, Ogden and Trzcinka (1999) illiquidity measure (Zeros) is defined as:
ar

i
G

= : A3
days; (A3)
where 7!, is the number of zero-return days and days. is the number of available daily

returns in week ¢ for stock 7.

(4) The Fong, Holden and Trzcinka (2014) illiquidity measure (FHT) is defined as follows:

(A.4)

, , 1+7 2
cizQ-ai-N‘l( + 6ros>

2

with

7
Zeros2 = L

where z! is the number of zero-return days for week ¢, o} is the standard-deviation of
daily returns in week ¢, and N~! (-) is the inverse of the standard normal cdf. ¢! can

be interpreted as the spread of stock .
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(5)

The relative spread (RelSpr) is defined as:

days, N,
Z Z RS:, (A.5)
dayst d=1 td n=1
with . :
RSZdn _ ‘ltdn _ tdn

Qfﬁdn

where A%, . Bi, and Q, = % are prevailing ask quote, prevailing bid quote
and quote midpoint price in transaction n of day d in week ¢. days. is the number
of days with available transactions of stock i in week ¢ and N}, is the number of
transactions of stock ¢ on day d in week ¢t. The prevailing bid- and ask-quotes are the

latest available quotes up to at least one second before the trade.

The effective spread (EffSpr) is defined as follows:

days, N,

¢ = L Y ]\} ZEs;dn (A.6)

dayst d=1 td p=1

with 2. |P; o
ESZ _ i tdn' ~ tdn
v Q:‘dn

where all variables are defined as above and P}, is the transaction price of transaction

n of day d in week t.

The 5-minute price impact (Prilmp) is defined as follows:

days, N,

- 1
¢ = - PIL,. (A7)
t days; d=1 Nia ; N

with ; .
2. |Qtdn5 B Qtdn‘

PItidn = Qz
tdn




where all variables are defined as above and Q! - is the quote midpoint 300 seconds

after transaction n of day d in week t.

(8) The intraday Amihud measure (IntAmi) is defined as follows:

1 daysi 1 Nig
¢ = : : IA A8
DO WLH as)
with . ;
[A;dn _ 2. |Qtdn5 — Qtdn'

i i
Qtdn " Wy,
where all variables are defined as above and w,, is the transaction volume (in shares)

of transaction n of day d in week t.

For all liquidity proxies, a missing value is recorded if there are less than three daily

observations for week ¢ and stock 1, i.e., daysi <3.!

A.2 Computation of Illiquidity Shocks and Analysis of EDL Risk

Estimates For Different Proxies

As explained in the main text, we use di = —c!, i.e., liquidity(-shocks) instead of illiquidity (-
shocks) for the estimation of EDL risk (see Internet Appendix B) in order to facilitate the
interpretation of extreme downside liquidity risk. As di is highly persistent for most of the
stocks in our sample, we estimate liquidity shocks based on the difference between the nor-
malized realized liquidity value di and the expected normalized liquidity E;_;(d!) for each
stock ¢ and week t. Expected normalized liquidity E;_;(d!) is computed via an AR - time
series model.

In order to deal with possible time-variation of parameters and to keep estimates fully out-
of-sample, the estimation is run on a 3-year rolling window basis. The choice of a persistent
but mean-reverting process seems natural for liquidity. Statistical tests — based on non-

overlapping 3-year periods between 1963 and 20112 — generally support this choice. First,

'We make an exception for the week of September 11** 2001, when just one trading day occurred on
NYSE/AMEX. For this week the minimum number of observations is lowered to 1.

2The results are qualitatively the same, if the model-selection is done for just 1963-1968, so that the
EDL risk-estimates can still be interpreted as fully out-of-sample.
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the null-hypothesis of 'no autocorrelation at the first lag’ is rejected by Ljung-Box tests at a
10% significance level for most stocks (e.g., 92% of stocks for the Amihud Illiquidity Ratio).
Second, Augmented Dickey-Fuller tests — with four lagged difference terms, with drift and
without time-trend — reject the null-hypothesis of 'unit root present’ at a 10% significance
level for most stocks (e.g., 78% of stocks for the Amihud Illiquidity Ratio). Additionally,
the partial autocorrelation function becomes insignificant at the fourth lag or less for most
stocks (e.g., 86% of stocks for the Amihud Illiquidity Ratio). These results generalize to
most proxies. Thus, it seems reasonable to use an AR(4)-model to estimate F; (d!), as
given in equation (5).

In order to assess the quality of our EDL risk estimates for different liquidity proxies, we
perform a comparison between our weekly low-frequency proxies (illig, Corwin, Zeros and
FHT) and high-frequency benchmarks (EffSpr, RelSpr, IntAmi, and Prilmp) from 1996 to
2010, when both are available. Panel A of Table A.1 displays average time-series correlations
between proxy-levels for the sample period from 1996 to 2010. As expected, all low-frequency
proxies are positively correlated with high-frequency benchmarks. [llig and Corwin show the
highest correlations with the high-frequency proxies. In Panel B of Table A.1 we report
average time-series correlations between proxy-EDL risk estimates. We again find that EDL
risk estimates of the illig and the Corwin measure are more highly correlated with the high-
frequency proxies than risk estimates of the Zeros and the FHT measure. The positive
correlations between low-frequency proxy EDL risks and high-frequency proxy EDL risks
suggest, that — in spite of all the noise in weekly low-frequency liquidity shocks — our method
captures lower tail dependence in actual liquidity. Additionally, the magnitude of correlations
suggests that Corwin and illiq lead to more precise EDL risk estimates than FHT and Zeros.
The same ranking emerges in unreported tests, when average cross-sectional correlations on
the stock-level, time-series correlations for the value-weighted market shocks, and Spearman,
i.e., rank correlations between liquidity-shocks, are analyzed.

To investigate the temporal variation of the different EDL risk proxy measures, we plot
the development of aggregate EDL risks over time. As before, we define aggregate EDL
risk as the weekly cross-sectional, value-weighted average of EDL risk;, over all stocks ¢ in
our sample. Figure A.1 plots the time series of EDL risk,,; for the different low-frequency
and high-frequency measures. It reveals that EDL risk,,; based on low-frequency proxies

experiences the largest spikes during the time period after Black Monday in October 1987
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and the financial crisis starting in 2007. The same spike in 2007 emerges for the EDL risk
measures based on high-frequency proxies, which are only available after 2001. We attribute
the difference in EDL risk levels across proxies to the noisiness of liquidity measures. Noise
(without tail dependence) could cause lower EDL risk estimates. This would explain why
our noisier proxies (FHT and Zeros, see Table A.1) are at lower absolute EDL risk levels

than EDL risk estimates based on Corwin and lliq.
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Table A.1: Average Time-Series Correlations between Liquidity Proxy Levels and EDL
Risk Estimates

Panel A: Average Time-Series Correlations between Proxy Levels

High-Frequency Proxies Low-Frequency Proxies
EffSpr  RelSpr IntAmi Prilmp  illiq Corwin Zeros FHT

EffSpr | 1.00 |
RelSpr 0.41 1.00 :
|
|

IntAmi | 0.58 0.35 1.00

Corwin | 0.12 0.20 0.19 0.11 1 0.16 1.00
Zeros 0.04 0.06 0.02 0.01 '-0.03 -0.03 1.00
FHT 0.11 0.14 0.09 0.07 1 0.09 0.07 0.70  1.00

Panel B: Average Time-Series Correlations between EDL Risk Estimates

High-Frequency Proxies Low-Frequency Proxies
EffSpr  RelSpr IntAmi Prilmp  illig Corwin Zeros FHT

EffSpr 1.00
RelSpr 0.48 1.00
IntAmi | 0.62 0.47 1.00

Corwin | 0.49 0.48 0.57 0.53 1 0.36 1.00
Zeros 0.04 0.02 0.03 0.04 : 0.02 0.01 1.00
FHT 0.13 0.10 0.11 0.13 1 0.10 0.13 0.23 1.00

This table displays correlations between liquidity levels (Panel A) and EDL risk coefficients (Panel B) based
on the different liquidity proxies used in this study. A detailed description of the computation of the
proxy-levels and shocks is given above in Internet Appendix A. The calculation of EDL risk coefficients is
explained in Internet Appendix B. The sample covers all U.S. common stocks traded on the NYSE / AMEX.
The sample period for proxy levels (EDL risk estimates) is from January 1996 to December 2010 (January
2000 to December 2010).
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Figure A.1: Aggregate EDL Risk Over Time for Different Liquidity Measures

Aggregate EDLR

1970 1980 1990 2000 2010
Year
iiq ————- Corwin
FHT Zeros

(a) Panel A: Low-Frequency Measures (1969 - 2012)

©

.6
|

Aggregate EDLR
4
L

T T T T T T
2000 2002 2004 2006 2008 2010
Year
EffSpr —-—-——- RelSpr
IntAmi Prilmp

(b) Panel B: High-Frequency Measures (2002-2010)

This figure displays the evolution of aggregate EDL risk for different low-frequency and high-frequency
liquidity measures. A detailed description of the computation of these variables is given in Internet Appendix
A. Panel A draws the evolution of aggregate EDL risk of the low-frequency measures, Panel B shows the
evolution for the high-frequency measures. The sample covers all U.S. common stocks traded on the NYSE

/ AMEX and the sample period for low- (high-)frequency proxies is from 1969 (2000) to 2012 (2010).
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B Internet Appendix: Estimating Tail Dependence Co-

efficients

Internet Appendix B provides the technical details of the copula estimation and selection
procedure and the calculation of the respective tail dependence coefficients. The estimation

procedure follows the approach of Chabi-Yo, Ruenzi and Weigert (2015).

B.1 The Estimation Procedure

Bivariate extreme value distributions (such as in this paper) cannot be characterized by
a fully parametric model in general, which leads to more complicated estimation techniques
(see Frahm, Junker, and Schmidt (2005)). Our estimation approach relies on the entire
set of weekly returns r; and liquidity innovations [; of a firm ¢ and the market in a 3-year
period.

Coefficients of tail dependence have closed-form solutions for several basic parametric cop-
ulas (see Table B.1), but these basic copulas do not allow us to model upper and lower tail
dependence simultaneously. However, Tawn (1988) shows that every convex combination of
existing copula functions is again a copula. Thus, if Cy(uy,us), Co(uy, us), ..., Cp(uy, us)

are bivariate copula functions, then

O(ul,UQ) = wq - C’l(ul,uQ) + wao - CQ(Ul,UQ) + ...+ Wy, * On(ul,UQ)

is again a copula for w; > 0 and Y, w; = 1.

To allow for the maximum possible flexibility, we consider 64 possible convex combina-
tions of the afore mentioned basic copulas from Table B.1. Each combination consists of one
copula that allows for asymptotic dependence in the lower tail, C] 1), one copula that is
asymptotically independent, CNTT), and one copula that allows for asymptotic dependence
in the upper tail, Cyp:

C(uy, uz,0) = wy - CLTD(Uh ug; 01)
+ws - CNTD(Ul, U9, 92) + (]. — w1 — U)g) : CUTD(UI’ U9, 93),



where © denotes the set of the basic copula parameters 6;, ¢« = 1,2, 3 and the weights w; and
Wa.

For the sake of convenience, we only outline the estimation approach of lower tail de-
pendence in the distribution of a stock’s liquidity and market liquidity (EDL risk;). The
estimation of the other EDL risk components, namely EDL risks (stock return and market
liquidity) as well as EDL risks (stock liquidity and market return) follows analogously.

Starting with 1966-1968, we determine the copula convex combination that shows the
best fit for the bivariate distribution of liquidity shocks for each stock and 3-year window.
First, based on weekly liquidity innovations, we estimate a set of copula parameters ©; for
j =1,...,64 different copulas C(-,;0;) between individual stock liquidity I} and market
liquidity /;* for each stock ¢ based on a 3-year rolling window. Each of these convex combina-
tions requires the estimation of five parameters: one parameter 6; (i = 1,2, 3) for each of the
three basic copulas and two parameters for the weights w; and w,. The copula parameters
©; are estimated via the canonical maximum likelihood procedure of Genest, Ghoudi, and
Rivest (1995). The details of this step are described in Section B.2.

Second, for each stock ¢ and week t we compare the estimated log-likelihood values of all
64 copulas C; and select the parametric copula C} (-, -; ©*) that has the highest log-likelihood
value. The result of this step is summarized in Table B.2 where we present the percentage
frequency by which each of the possible 64 combinations is chosen. Most frequently, copula
(1-D-1V) of Table B.1 is the best fit for the distribution for EDL risk; and copula (1-A-1V) is
the best fit for the distributions for EDL risks as well as EDL risks. Copula (1-D-IV) relates
to the Clayton-FGM-Rotated Clayton-copula and copula (1-A-IV) relates to the Clayton-
Gauss-Rotated Clayton-copula.

Third, for each stock 7 and week ¢, we compute the tail dependence coefficients Ay implied
by the estimated parameters ©* of the selected copula C*(-,-; ©*). The computation of A
is straightforward if the copula in question has a closed form, as all the basic copulas used in
this study do. Column (3) of Table B.1 displays the closed-form solutions to determine Aj,
for the respective copula. The lower tail dependence coefficient of the convex combination
is calculated using A5 = w? - Ap(07). As this procedure is repeated for each stock and week,

we end up with a panel of tail dependence coefficients at the stock-week level.
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B.2 Estimation of the Copula Parameters

The estimation of the set of copula parameters © for a copula C(-,-;0) is performed as
follows (see also Chabi-Yo, Ruenzi and Weigert (2015)):

Let {li gy lmk }7—; be a random sample from the bivariate distribution

F(lis ) = C(Fi(li), Fan(lm))

between individual stock liquidity /; and market liquidity [,,, where n denotes the number
of weekly return observations in a 3-year period. The marginal distributions F; and F,
of individual stock liquidity /; and market liquidity [,, are estimated non-parametrically by

their scaled empirical distribution functions

N 1 n N 1 n
Fi(x) = 1, < d F,(z)= 1 - B.1
@)= T L s ad Falo) = 5y D (B1)

This non-parametric estimation approach avoids an incorrect specification of the marginal
distributions. We then estimate the set of copula parameters © parametrically. The param-

eters © are estimated via the maximum likelihood estimator
6 = argmaxe L(©) with L(©) = log(c(Fiy,,, Fini,,: ©5)), (B.2)
k=1
where L(O) denotes the log-likelihood function and c(-,-;©) the copula densitiy. O is a
consistent and asymptotic normal estimate of the set of copula parameters © under standard

regularity conditions (e.g., Genest, Ghoudi, and Rivest (1995)), assuming that {l; x, lm.x} 7y

is an i.i.d. random sample.
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C Internet Appendix: Brief Definitions and Data Sources
of Main Variables

The following table briefly defines the main variables used in our empirical analysis. Ab-

breviations for the data sources are:
(i) CRSP: CRSP’s Stocks Database
(ii) KF: Kenneth French’s Data Library
(iii) CS: Compustat
(iv) OP: The homepages of authors of the respective original papers

EST indicates that the variable is estimated or computed based on original variables from the
respective data sources. Note that the eight liquidity proxies we use are defined separately

in Internet Appendix A.
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Panel A: Return- and Liquidity-Based Variables

Variable Name Description Source

Return, Raw excess return of a portfolio (stock) over the risk-free rate in week ¢t. CRSP, KF
As risk-free rate we use the 1-month T-Bill rate. EST

EDL riskq Extreme Downside Liquidity Risk 1 of a stock. Lower tail dependence be- CRSP,
tween stock liquidity-shocks and (value-weighted) market liquidity-shocks, EST
estimated based on weekly data from a 3-year rolling window, as detailed
in Internet Appendix B.

EDL risks Extreme Downside Liquidity Risk 2 of a stock. Lower tail dependence CRSP,
between stock returns and (value-weighted) market liquidity-shocks, esti- EST
mated based on weekly data from a 3-year rolling window, as detailed in
Internet Appendix B.

EDL risks Extreme Downside Liquidity Risk 3 of a stock. Lower tail dependence CRSP,
between stock liquidity-shocks and (value-weighted) market returns, esti- EST
mated based on weekly data from a 3-year rolling window, as detailed in
Internet Appendix B.

EDR (EUR) risk Extreme Downside (Upside) Return Risk of a stock. Lower (Upper) tail CRSP,
dependence between stock returns and (value-weighted) market returns, EST
estimated based on weekly data from a 3-year rolling window, as detailed
in Internet Appendix B.

EDL risk Joint Extreme Downside Liquidity Risk of a stock. EDL risk = EDL risk;+ CRSP,
EDL risks + EDL risks, as detailed in the main text. EST

Aggregate EDL risk  Aggregate Extreme Downside Liquidity Risk. Value-weighted average of CRSP,
EDL risk (EDL risk;) for each week over all stocks in the sample, as detailed EST
in the main text.

Aggregate EDR risk  Aggregate Extreme Downside Return Risk. Value-weighted average of EDR~ CRSP,
risk for each week over all stocks in the sample, as detailed in the main text. EST

EDL risky, As EDL risk, but based on an z-year rolling window, as detailed in the CRSP,
main text. EST

EDL riske, As EDL risk, but based on copula function C'z, as detailed in the main text CRSP,
and Internet Appendix B. EST
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Variable Name Description Source
Br Factor loading on the market factor from a CAPM one-factor regression es- CRSP,
. . . . o COV(Ti,’I‘m)
timated based on a 3-year rolling window of weekly data: Sr = VAR () - EST
Br Downside beta estimated based on a 3-year rolling window of weekly data, CRSP,
as defined in Ang, Chen, and Xing (2006): EST
- _ COV(ri,rm|rm<,u,m) .
B = VAR o i) where i, is the mean market return.
ﬂ; Upside beta. As (5, but with inverted signs within the conditional CRSP,
(co)variance. EST
Br1 Liquidity beta 1 as defined in Acharya and Pedersen (2005), estimated CRSP,
based on a 3-year rolling window of weekly data: Sr; = VC (1)%\(/1"(; —lTTZ) , where EST
l; and [,, are the stock- and market-liquidity innovations, as described in
the main text and Internet Appendix B.
Bra Liquidity beta 2 as defined in Acharya and Pedersen (2005), estimated CRSP,
based on a 3-year rolling window of weekly data: Sro = VC %\(/y_ll')) EST
Brs3 Liquidity beta 3 as defined in Acharya and Pedersen (2005), estimated CRSP,
. . . _ COV(i,rm)
based on a 3-year rolling window of weekly data: 8p3 = VAR (L) EST
BrL Joint linear liquidity risk. B = 81 + B2 + B3 CRSP,
EST
B Downside liquidity beta 1, estimated based on a 3-year rolling window of CRSP,
- COV (Ui, lm|lm .
weekly data: 8, = VAR(:m—ll|lm<£L7Zj)’ where p,,, is the mean weekly EST
market liquidity innovation.
BLa Downside liquidity beta 2, estimated based on a 3-year rolling window of CRSP,
o= COV@Eslmllm<pi,,)
weekly data: 8, = VAR (il cp) EST
Brs Downside liquidity beta 3, estimated based on a 3-year rolling window of CRSP,
weekly data: 3,5 = COVli,rmlrm <siry,) where ., is the mean weekly EST

VAR (o —lom [P <prp,)’

market return.
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Variable Name

Description

Source

AL

BTail
CAPM-Alpha,

FF-Alpha,
CAR-Alpha

idio vola

coskew

Marketrf
SMB
HML
Mom

Past Return

PS Liqui
Sadka Liqui
EDRR

illiq

Tail

BAB

Joint linear downside liquidity risk. 5, = 8., + 8.5 + B3

Joint linear upside liquidity risk. As 8, , but with inverted signs within the

(co)variances.

Exposure to tail risk, as measured in Kelly and Jiang (2014).

Sharpe (1964)-based alpha, Fama and French (1993) three-factor alpha, and
Carhart (1997) four-factor alpha of a portfolio. We use monthly portfolio

returns to estimate the alphas.

A stock’s idiosyncratic volatility, defined as the 3-year rolling window stan-

dard deviation of the CAPM-residuals of its weekly returns.

The coskewness of a stock’s 3-year rolling window weekly returns with the

market:
E[(T'i_ﬂi)(rm _Um)z] .

Value-weighted CRSP market-return in excess of the risk-free rate.

coskew =

Small-Minus-Big factor portfolio return, available for each month.
High-Minus-Low factor portfolio return, available for each month.

Winner-Minus-Loser (momentum) factor portfolio return, available for each

month.

Last year’s return for a given stock.

Pastor and Stambaugh (2003)’s traded liquidity risk factor.
Sadka (2006)’s liquidity factor.
Chabi-Yo, Ruenzi and Weigert (2015)’s equally-weighted EDR risk factor

portfolio return.
Amihud (2002) illiquidity ratio (average over last year).

Kelly and Jiang (2014)’s equal-weighted tail risk factor portfolio return.

Frazzini and Pedersen (2014)’s U.S. equity betting-against-beta return.

CRSP,
EST

CRSP,
EST

CRSP,
EST

CRSP, KF,
EST

CRSP,
EST

CRSP,
EST

KF
KF
KF
KF

CRSP,
EST

OP
0]
()

CRSP,
EST

CRSP,
EST

OoP
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Variable Name Description Source

Max Bali, Cakici, and Whitelaw (2011)’s equally-weighted lottery factor. opP

Standard- Standard-deviation of the past 3 years’ weekly returns or liquidity shocks. CRSP,

Deviation EST

VaR Value at Risk. 5% quantile of the past 3 years’ weekly returns or liquidity ~CRSP,
shocks. EST

CoVaR Conditional Value at Risk. Conditional mean of the past 3 years’ weekly CRSP,
returns or liquidity shocks below the 5% quantile. EST

Panel B: Other Firm Characteristics

Variable Name Description Source

size

btm

SIC 2, 3, 4
FF 12, 48
DGTW

The natural logarithm of a firm’s equity market capitalization in million CS

USD.

A firm’s book-to-market ratio computed as the ratio of CS book value of
equity per share (i.e., book value of common equity less liquidation value
(CEQL) divided by common share outstanding (CSHO)) to share price

(i.e., market value of equity per share).
2-, 3- and 4-digit Standard Industrial Classification.
Fama and French’s 12 and 48 industry classifications.

Daniel, Grinblatt, Titman, and Wermers (1997)’s characteristic-based

benchmark, available via Russ Wermer’s homepage.

CS

CRSP
KF
oP
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