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Abstract

We merge the literature on downside return risk with that on systematic liquidity risk
and introduce the concept of extreme downside liquidity (EDL) risk. We show that the
cross-section of expected stock returns reflects a premium for EDL risk. Strong EDL
risk stocks deliver a positive risk premium of more than 4% p.a. as compared to weak
EDL risk stocks. The effect is more pronounced after the market crash of 1987. It is
not driven by linear liquidity risk or by extreme downside return risk, and it cannot
be explained by other firm characteristics or other systematic risk factors.
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1 Introduction

The recent empirical asset pricing literature documents that investors care about the sys-

tematic downside- and crash-exposure of stock returns and shows that stocks with such

exposures earn a significant risk-premium (e.g., Ang, Chen, and Xing (2006); Kelly and

Jiang (2014); and Chabi-Yo, Ruenzi and Weigert (2015)). At the same time, the theoretical

literature shows that investors should care about the systematic component of liquidity risk

and there are successful attempts to show empirically that systematic liquidity risk also bears

a premium in the cross-section of returns (e.g., Pastor and Stambaugh (2003) and Acharya

and Pedersen (2005)). The aim of our paper is to merge these two important strands of the

literature for the first time.

The starting point of our paper is the conjecture that investors are less concerned about

systematic liquidity risk during normal market conditions than during periods of market

stress like return crashes or periods of extreme illiquidity. For example, investors probably

care less about how a specific stock’s liquidity co-moves with the liquidity of other stocks

when markets are relatively calm and when they face no urgent trading needs. However,

stocks that suddenly become very illiquid exactly during market crises (e.g., during the

liquidity crisis of September 2008) are very unattractive, while assets that still remain rel-

atively liquid in times of market stress are very attractive assets to hold, particularly for

institutional investors that might be subject to asset fire sale problems or might strongly

depend on funding liquidity conditions. As shown in the theoretical model by Brunner-

meier and Pedersen (2009), liquidity tends to be fragile and is characterized by sudden

systemic droughts of extreme magnitude. The anticipation of such events should lead in-

vestors to demand a premium for holding stocks whose liquidity is particularly sensitive to

them.
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In this paper, we introduce the concept of extreme downside liquidity (EDL) risk and

show that stocks with high levels of EDL risk bear an economically large and statisti-

cally significant risk premium of roughly 4% per year which is neither subsumed by ex-

treme downside return (EDR) risk (as in Kelly and Jiang (2014) or Chabi-Yo, Ruenzi and

Weigert (2015)) nor by linear systematic liquidity (as in Pastor and Stambaugh (2003)

or Acharya and Pedersen (2005)). Our empirical approach is closely related to Acharya

and Pedersen (2005)’s liquidity-adjusted CAPM. In their model, an asset’s joint liquidity

risk consists of three different risk components: (i) the (scaled) correlation of an asset’s

liquidity to market liquidity, (ii) the (scaled) correlation of an asset’s return to market

liquidity, and (iii) the (scaled) correlation of an asset’s liquidity to the market return. How-

ever, we want to focus on times of market stress and when focusing on extreme events

(e.g. in liquidity and returns), linear correlations fail to measure increased dependence in

the tails of the distribution (see Embrechts, McNeil, and Straumann (2002)). Hence, the

liquidity-adjusted CAPM cannot account for a stock’s EDL risk and, as a result, might

be misspecified if investors care especially about extreme joint realizations in liquidity and

returns, as hypothesized in this paper. Thus, we use the method to capture EDR risk

based on lower tail dependencies between stock and market returns introduced in Chabi-

Yo, Ruenzi and Weigert (2015) and Weigert (2015) and apply it to liquidity to capture

EDL risk. Like Acharya and Pedersen (2005) for linear liquidity risk, in doing so we dis-

tinguish three components of extreme downside liquidity risk (EDL risk1, EDL risk2, and

EDL risk3):

(i) Clustering in the lower left tail of the bivariate distribution between individual stock liq-

uidity and market liquidity (EDL risk1): During extreme market liquidity downturns,

funding liquidity is often reduced as well (e.g., margin requirements may increase; see

Brunnermeier and Pedersen (2009)). During those times, investors are often forced
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to liquidate assets and realize additional liquidity costs. Hence, strong exposure to

EDL risk1 increases liquidity costs at a time when it is likely that an investor’s wealth

has decreased.

(ii) Clustering in the lower left tail of the bivariate distribution between the individual

stock return and market liquidity (EDL risk2): Investors who face margin or solvency

constraints usually have to liquidate some assets to raise cash when their wealth drops

critically. If they hold assets with strong EDL risk2, such liquidations will occur in

times of extreme market liquidity downturns. Liquidation in those times also leads to

additional costs, which are especially unwelcome to investors whose wealth has already

dropped (see also Pastor and Stambaugh (2003)).

(iii) Clustering in the lower left tail of the bivariate distribution between individual stock

liquidity and the market return (EDL risk3): In times of market return crashes, in-

stitutional investors (such as mutual fund managers) are often forced to sell because

their investors withdraw funds (Coval and Stafford (2007)) or financial intermediaries

withdraw from providing liquidity (Brunnermeier and Pedersen (2009)). If a selling

investor holds securities with strong EDL risk3, she will suffer from high transaction

costs at the precise moment when her wealth has already dropped and additional losses

are particularly painful.

We capture the three distinct EDL risk components based on bivariate extreme value

theory and copulas, using lower tail dependence coefficients (see Sibuya (1960)). The lower

tail dependence coefficient reflects the probability that a realization of one random variable

is in the extreme lower tail of its distribution, conditional on the realization of the other

random variable also being in the extreme lower tail of its distribution. Furthermore, closely

following Acharya and Pedersen (2005), we define the joint EDL risk of a stock as the sum of
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the three different EDL risk components. All else being equal, assets that exhibit strong EDL

risk are unattractive assets to hold: they tend to realize the lowest liquidity (return) exactly

when the market also realizes its lowest liquidity (return) level. Hence, liquidity-crash-averse

investors, who are particularly interested in insuring against such extreme events, will require

a premium for holding those stocks.

As our main liquidity proxy we use the Amihud (2002) Illiquidity Ratio.1 Using weekly

data from 1963 to 2012 we estimate lower tail dependence coefficients for (i) individual stock

liquidity and market liquidity (EDL risk1), (ii) individual stock return and market liquidity

(EDL risk2), and (iii) individual stock liquidity and the market return (EDL risk3) for each

stock i and week t in our sample. Aggregate EDL risk (defined as the value-weighted average

of EDL risk over all stocks in the sample) peaks during times of financial crises, such as

around 1978-1979 (Second U.S. Oil Crisis), after 1987 (Black Monday Stock Market Crash),

between 1997 and 1998 (Asian Financial Crisis), as well as in the years of the U.S. subprime

crisis starting in 2007.

We then relate stocks’ EDL risk (and the EDL risk components) to future returns. Our

asset pricing tests—based on portfolio sorts, factor regressions, and Fama and MacBeth

(1973) regressions on the individual firm level—are completely out-of-sample and focus on

the relationship between past EDL risk exposure and future excess returns. We document

that there exists a positive impact of EDL risk on the cross-section of average future returns.

From 1969 to 2012, a portfolio that is long in stocks with strong EDL risk and short in stocks

with weak EDL risk yields a significant average excess return of 4.00% p.a. We confirm

that the premium for EDL risk is not explained by other risk- and firm characteristics.

Hence, our results suggest that EDL risk is an important determinant of the cross-section

1We also employ several other low-frequency and high-frequency liquidity measures in robustness checks.
Our results remain stable across the different proxies; see Section 4.1.
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of expected stock returns. The impact of EDL risk is more pronounced for stocks with a

higher probability of extreme (bad) return and liquidity realizations as measured based on

the past distributions of their individual return and liquidity realizations.

When investigating the variation of the EDL risk premium over time, we find that the

premium has increased in the second half of our sample period. During 1988-2012, a portfolio

consisting of the 20% stocks with the strongest EDL risk exposure delivers a raw return which

is 5.91% p.a. higher than that of a portfolio consisting of the 20% stocks with the weakest

EDL risk exposure, whereas the return difference in the earlier sample period (1969-1987) is

1.49% p.a. These results suggest that investors have become more concerned about a stock’s

EDL risk during the second half of our sample. This finding is consistent with results from

the empirical option pricing literature. Rubinstein (1994) and Bates (2008) find that deep

out-of-the-money index puts (i.e., financial derivatives that offer protection against strong

market downturns) became more expensive after the stock market crash in 1987. These

results are also consistent with the argument recently put forward by Gennaioli, Shleifer

and Vishny (2015) that investors fear a future crash more when there is a recent crash they

still vividly remember. Also consistent with increased crash-aversion after market crises,

Chabi-Yo, Ruenzi and Weigert (2015) show that the premium for a stock’s crash sensitivity

increases substantially after severe market downturns.

The stability of our results is confirmed in a battery of additional robustness tests. These

tests include using low-frequency and high-frequency liquidity proxies other than the Amihud

(2002) Illiquidity Ratio and changing the estimation procedure for the lower tail dependence

coefficients.

Our study contributes to three strands of the literature. First, we contribute to the lit-

erature on the impact of liquidity and liquidity risk on the cross-section of stock returns.

Amihud and Mendelson (1986) convincingly show theoretically and empirically that stocks
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with low levels of liquidity deliver higher returns, a finding that has been confirmed in a

large number of studies since then. Closely related to our analysis is a paper by Menkveld

and Wang (2011) showing that stocks with higher probabilities of realizing extremely low

liquidity levels (called ”liquileak probability”) command a premium. Thus, while they fo-

cus on the impact of individual extreme illiquidity levels, we focus on the joint likelihood

that an individual stock is extremely illiquid (has an extremely low return) when market

liquidity (the market return) is extremely low, i.e., we focus on a systematic risk compo-

nent.2

There are also numerous studies investigating whether systematic liquidity risk is a priced

factor. However, in this case the aggregate evidence is less clear. Pastor and Stambaugh

(2003) find that stocks with high loadings on the market liquidity factor outperform stocks

with low loadings. Acharya and Pedersen (2005) derive an equilibrium model for returns

that includes the liquidity level and a stock’s return and liquidity covariation with market

liquidity and the market return. They provide some evidence that liquidity risk is a priced

factor in the cross-section of stock returns. This finding is confirmed in an international

setting in Lee (2011).However, Hasbrouck (2009) raises doubts on the existence of a premium

for liquidity risk. He documents that in a long historical sample (U.S. data from 1926 to

2006), there is only weak evidence that liquidity risk is a priced factor. We contribute to

the existing literature by investigating a new dimension of liquidity risk: a security’s EDL

risk. Thus, we provide new evidence that systematic liquidity components are actually

priced.3

2In a recent working paper, Wu (2015) documents that stocks with strong sensitivities to a liquidity-tail
factor earn high expected returns. We show that the premium for a stock’s EDL risk is not subsumed by
this liquidity-tail factor in Panel B of Table 5.

3A concurrent related working paper by Anthonisz and Putnins (2014) also focuses on asymmetric
liquidity risk. They define downside liquidity betas (like Ang, Chen, and Xing (2006)) and downside return
beta (and find them to carry a premium), while we focus on extreme downside liquidity events. Furthermore,
our later analysis shows that downside liquidity beta has no significant influence on the cross-section of stock
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Second, our paper relates to the empirical asset pricing literature on rare disaster

and downside crash risk. Ang, Chen, and Xing (2006) find that stocks with high

downside return betas earn high average returns. Kelly and Jiang (2014), Chabi-

Yo, Ruenzi and Weigert (2015), and Cholette and Lu (2011) investigate the impact

of a stock’s return crash risk and return tail risk on the cross-section of expected

stock returns. They find that investors demand additional compensation for hold-

ing stocks that are crash-prone, i.e., stocks that have particularly bad returns ex-

actly when the market crashes. In an international setting, Berkman, Jacobsen and

Lee (2011) show that rare disaster risk premia increase after crises. We comple-

ment their findings by showing that EDL risk premia also increase after the 1987

crash.

Third, we extend the literature on the application of extreme value theory and copulas

in the cross-sectional pricing of stocks. Copulas are mainly used to model bivariate

return distributions between different international equity markets (see Longin and Solnik

(2001) and Ané and Kharoubi (2003)) and to measure contagion (see Rodriguez (2007)).4

Chabi-Yo, Ruenzi and Weigert (2015) investigate extreme dependence structures between

individual stocks and the market and find that extreme dependencies are priced factors

in the cross-section of stock returns. Until now, extreme value theory has been applied

to describe dependence patterns across different markets and different assets as well as

individual stock returns and the market return. However, to the best of our knowledge,

ours is the first paper to investigate extreme dependence structures between individual level

and market level liquidity and returns, respectively.

returns when controlling for our EDL risk measure, while our measure continues to have a strong impact.
4Further applications include the use of copulas in dynamic asset allocation (Patton (2004)). Poon,

Rockinger, and Tawn (2004) suggest a general framework to identify tail distributions based on multivariate
extreme value theory.
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The rest of this paper is organized as follows. Section 2 provides an overview of the liquidity

measure, the estimation of EDL risk and the development of EDL risk over time. Section 3

demonstrates that stocks with high EDL risk earn high future returns. Section 4 performs

robustness checks and Section 5 concludes.

2 Methodology and Data

Section 2.1 defines our main measure of liquidity and outlines the calculation of liquidity

shocks. In Section 2.2 we introduce our estimation method for EDL risk. Section 2.3

describes our stock market data and the development of aggregate EDL risk over time and

provides summary statistics.

2.1 Measuring Liquidity

Liquidity is a broad, multi-dimensional concept, which makes it hard to find a single

theoretically satisfying measure for it. Like Acharya and Pedersen (2005), we assume that

the liquidity proxies used in this study should measure the ’ease of trading securities’, without

focusing on one particular dimension of liquidity. The limited availability of intradaily data

(particularly before the 1990s) forces us to rely on a low -frequency liquidity proxy as the

main measure of liquidity for our main tests.5 Fortunately, many low-frequency proxies are

highly correlated with benchmark measures based on high-frequency data (Goyenko, Holden,

and Trzcinka (2009); Hasbrouck (2009)).

We follow Amihud (2002), Acharya and Pedersen (2005) and Menkveld and Wang (2011)

and use the Amihud Illiquidity Ratio (illiq) as our main measure of illiquidity. Hasbrouck

5We verify the stability of our results with various other low-frequency (for 1963-2012) and high-frequency
(for 1996-2010) liquidity proxies in Section 4.1. A detailed description of all liquidity measures used in this
study is given in Internet Appendix A.
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(2009) finds that illiq correlates most highly with market microstructure price impact mea-

sures. Illiq of stock i in week t is defined as

illiqit =
1

daysit

daysit∑

d=1

|ritd|
V i
td

, (1)

where ritd and V i
td denote, respectively, the return and dollar volume (in millions) on day d in

week t and daysit is the number of valid observations in week t for stock i. We use illiqit as the

illiquidity of stock i in week t if it has at least three valid return and non-zero dollar-volume

observations in week t.

There are two caveats when using illiq as a proxy for illiquidity. First, illiq can reach

extremely high values for stocks with very low trading volume. Second, inflation of dollar-

volume (the denominator) makes illiq non-stationary. To solve these problems, we follow

Acharya and Pedersen (2005) and define a normalized measure of illiquidity, cit, by

cit = min(0.25 + 0.30 · illiqit · Pm
t−1, 30) (2)

where Pm
t−1 is the ratio of the capitalizations of the market portfolio (NYSE and AMEX)

at the end of week t − 1 relative to that at the end of July 1962. The adjustment by Pm
t−1

alleviates problems due to inflation. Additionally, a linear transformation is performed to

make cit interpretable as effective half-spread. Finally, by capping the illiquidity proxy at a

maximum value of 30%, we ensure that our results are not driven by unrealistically extreme

outliers of illiq.

Finally, to simplify the estimation of EDL risk (as discussed in Section 2.2), we convert

normalized illiquidity into normalized liquidity via

dit = −cit. (3)
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The normalized liquidity measure dit is very persistent: Ljung-Box tests reject the null-

hypothesis of ’no autocorrelation at the first lag’ at a 10% significance level for 92% of stocks.

Thus, we will focus on the innovations of the normalized liquidity measure

lit = dit − Et−1(dit) (4)

of a stock when computing our EDL risk measures. To calculate the expected normalized

liquidity Et−1(dit) for each stock i and week t, we fit an AR(4) time series model over the

liquidity time series of stock i.6 Hence,

Et−1(dit) = â0 + â1 · dit−1 + â2 · dit−2 + â3 · dit−3 + â4 · dit−4. (5)

We then use lit for the computation of the EDL risk components for stock i at week t as

described in the following section. For a more detailed description of the computation of the

liquidity innovations, see Internet Appendix A.

2.2 Measuring EDL Risk

We estimate lower tail dependence coefficients to capture (i) EDL risk1 between individ-

ual stock liquidity and market liquidity, (ii) EDL risk2 between individual stock return and

market liquidity, and (iii) EDL risk3 between individual stock liquidity and market return.

Intuitively, the lower tail dependence coefficient between two random variables reflects the

likelihood that a realization of one random variable is in the extreme lower tail of its distri-

6The number of lags is set at 4 since the partial autocorrelation function of dit becomes insignificant before
the fifth lag for most stocks in the sample. In order to consider possible time-variation of the illiquidity process
(such as increased mean liquidity or faster mean-reversion) and to keep the innovation estimates fully out-
of-sample, the AR(4)-parameters are estimated using a three year moving window of data up to week t− 1
of the liquidity series of stock i. We verify the robustness of our results to using simple liquidity-differences
instead of estimated liquidity-shocks in Section 4.2.
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bution conditional on the realization of the other random variable also being in the extreme

lower tail of its distribution. Given two random variables X1 and X2, lower tail dependence

λL is formally defined as

λL := λL(X1, X2) = lim
u→0+

P (X1 ≤ F−1
1 (u)|X2 ≤ F−1

2 (u)), (6)

where u ∈ (0, 1) denotes the value of the distribution function, i.e., limu→0+ indicates the

limit if we approach the left tail of the distribution from above.7 If λL is equal to zero (as

is the case for joint normal distributions), the two variables are asymptotically independent

in the lower tail.

The lower tail dependence coefficient between two variables can be expressed in terms of a

copula function C : [0.1]2 7→ [0, 1].8 McNeil, Frey, and Embrechts (2005) show that a simple

expression for λL in terms of the copula C of the bivariate distribution can be derived based

on

λL = lim
u→0+

C(u, u)

u
, (7)

if F1 and F2 are continuous. Equation (7) has analytical solutions for many paramet-

ric copulas. In this study we use 12 different basic copula functions. A detailed overview

of these basic copulas and the corresponding lower tail dependencies (and upper tail de-

pendencies) is provided in Table B.1 in Internet Appendix B. As in Chabi-Yo, Ruenzi

7Similarly, the coefficient of upper tail dependence λU can be defined as

λU := λU (X1, X2) = lim
u→1−

P (X1 ≥ F−11 (u)|X2 ≥ F−12 (u)).

8Copula functions isolate the description of the dependence structure of the bivariate distribution from
the univariate marginal distributions. Sklar (1959) shows that all bivariate distribution functions F (x1, x2)
can be completely described based on the univariate marginal distributions F1 and F2 and a copula function
C. For a detailed introduction to the theory of copulas, see Nelsen (2006).
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and Weigert (2015) and Weigert (2015), we form 64 convex combinations of the basic

copulas consisting of one copula (out of four) that allows for asymptotic dependence in

the lower tail, CλL , one copula (out of four) that is asymptotically independent, CλI ,

and one copula (out of four) that allows for asymptotic dependence in the upper tail,

CλU :

C(u1, u2,Θ) = w1 · CλL(u1, u2; θ1) + w2 · CλI (u1, u2; θ2)

+(1− w1 − w2) · CλU (u1, u2; θ3), (8)

where Θ denotes the set of the basic copula parameters θi, i = 1, 2, 3 and the convex weights

w1 and w2.

To determine which convex copula combinations deliver the best fit for the data, we use

3-year rolling windows of weekly data. We fit all 64 convex copula combinations to the

bivariate distribution of each stock’s (i) liquidity and market liquidity, (ii) return and market

liquidity, and (iii) liquidity and market return in the rolling window. We select a specific

copula combination for each stock and EDL risk component based on the estimated log-

likelihood value among the 64 different copulas.9 We then use the copula with the best

fit for the respective stock and EDL risk component over the previous three years in the

estimation of tail dependence coefficients using equation (7). As this procedure is repeated

for each stock i and week t, we end up with a panel of tail dependence coefficients EDL risk1
it,

EDL risk2
it and EDL risk3

it at the stock-week level.

9Table B.2 in the Internet Appendix reports the results of this selection method. Over all stock-week ob-
servations, copula (1-D-IV) of Table B.1 is the most frequently selected copula for the EDL risk1 distribution,
copula (1-A-IV) is the most frequently selected copula for the EDL risk2 distribution, and copula (1-A-IV) is
the most frequently selected copula for the EDL risk3 distribution. Copula (1-D-IV) relates to the Clayton-
FGM-Rotated Clayton-copula and copula (1-A-IV) relates to the Clayton-Gauss-Rotated Clayton-copula.
We verify the robustness of our results to using worse-fitting and likelihood-weighted copulas in Section 4.2.
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Joint EDL risk for stock i in week t is subsequently defined as the sum of the EDL risk

components:

EDL riskit = EDL risk1
it + EDL risk2

it + EDL risk3
it. (9)

For a more detailed description of the estimation method, we refer the reader to Internet

Appendix B.

2.3 Data and the Evolution of Aggregate EDL Risk

We obtain data for all common stocks (CRSP share codes 10 and 11) traded on the

NYSE/AMEX between January 1, 1963 and December 31, 2012. The period from 1963

through 1965 is used for the calculation of first illiquidity innovations and the period from

1966-1968 is used to fit the first copulas and estimate EDL risk (as explained in Section

2.2 and Internet Appendix B). Asset pricing tests are performed in the time period from

1969-2012.

To keep our liquidity measure consistent across stocks, we exclude common stocks

traded on NASDAQ since NASDAQ volume data includes interdealer trades and thus is

not directly comparable to NYSE/AMEX volume data. For each firm i and each week

t we estimate the EDL risk components (EDL risk1
it, EDL risk2

it and EDL risk3
it) based

on weekly return- and liquidity data over a rolling 3-year window. We use the weekly

value-weighted CRSP market return and the AR(4)-innovations of the value-weighted av-

erage of liquidity over all stocks in the sample as market return and market liquidity,

respectively. Using a 3-year rolling horizon of weekly data offsets two potential con-

cerns: First, to obtain reliable estimates for the EDL risk coefficients, we need a suffi-

ciently large number of observations. Second, we try to avoid very long estimation in-
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tervals as EDL risk is likely to be time-varying.10 EDL risk for stock i in week t is

then defined as in equation (9) calculated as the sum of the separate EDL risk compo-

nents.

To avoid microstructure issues, we exclude data for all weeks t in which the stock’s price at

the end of week t− 1 is less than $2. We retain the EDL risk estimates of all stocks in week

t that have more than 156/2 = 78 valid weekly return and liquidity observations during the

last 3 years. Overall, we obtain 3,670,214 firm-week observations after applying these filters.

The number of firms in each year over our sample period ranges from 1, 290 to 2, 036 with

an average of 1, 693. Table 1 provides summary statistics.

[Insert Table 1 about here]

In the first five columns we report the mean, the 25%, the 50%, the 75% quantile and the

standard deviation for EDL risk, the weekly excess return over the risk-free rate, and other

key variables in this study. The mean (median) for EDL risk is 0.188 (0.157) with a standard

deviation of 0.147. Joint EDL risk can be decomposed into its risk components with average

values of 0.066 (EDL risk1), 0.066 (EDL risk2), and 0.056 (EDL risk3).11 The mean weekly

excess return across all stocks is 0.15%. We present the weekly excess return in week t+2 as

we will relate returns in this week to EDL risk measures determined in week t in our later asset

pricing tests (Section 3). Summary statistics of additional firm characteristics and return

patterns (that we later use in our empirical analysis mainly as control variables) are displayed

in the rest of the table. For detailed descriptions of all variables, see Internet Appendix C.

10Our results are stable if we use rolling horizons of 1-year, 2-years, or 5-years, respectively (see Section
4.2).

11We also compute the corresponding extreme upside liquidity (EUL) risk coefficients with upper tail
dependence coefficients. The mean (median) for EUL risk is much smaller than for EDL risk with a value of
0.139 (0.105). In unreported tests, we do not find an impact of EUL Risk on average future stock returns.
Our results on the impact of EDL risk on average future stock returns are unaffected when controlling for
EUL Risk.
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The last three columns of Table 1 show average characteristics of stocks that are classified

as above or below, respectively, the median EDL risk stock according to their EDL risk

value in the respective week, as well as the difference between the two. Average future

weekly returns for above median EDL risk stocks are 0.17% (8.84% p.a.), whereas they are

only 0.12% (6.24% p.a.) for below median EDL risk stocks. The difference amounts to 0.05%

per week (2.60% p.a.) and is statistically significant at the 1%-level.

Table 1 also shows that (somewhat surprisingly) above median EDL risk stocks tend to

have lower linear liquidity risk as measured by the Acharya and Pedersen (2005) liquidity

beta. However (as expected) they tend to have higher downside return and downside liquidity

betas (defined following the logic of downside return betas from Ang, Chen, and Xing (2006))

as the sum of the three Acharya and Pedersen (2005) linear liquidity betas conditional on the

market return and market liquidity, respectively, being below their respective means). Above

median EDL risk stocks also tend to have higher return betas and higher extreme downside

return risk (EDR). The two groups also differ with respect to other firm characteristics like

size, book-to-market, and liquidity. These patterns mandate that we control for the influence

of these variables in our later asset pricing exercise.

We report cross-correlations between the independent variables used in this study in Table

2.

[Insert Table 2 about here]

Our results reveal that the magnitude of correlations between EDL risk and other indepen-

dent variables is moderate.12 EDL risk is positively correlated with EDR risk (correlation

of 0.26), downside linear return risk β−R (correlation of 0.12), and negatively correlated with

return coskewness (correlation of -0.18). Interestingly, EDL risk is hardly correlated with

12By construction, EDL risk is highly correlated with the separate EDL components. The separate EDL
risk components display positive relationships (with correlations of 0.12, 0.24 and 0.08) among each other.
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(downside) linear liquidity risks βL and β−L (correlations of -0.02 and 0.05); this provides the

first evidence that EDL risk measures a dimension of liquidity risk which is different from

linear liquidity risk as analyzed in Acharya and Pedersen (2005).

To better understand the temporal variation of EDL risk, we investigate the development

of aggregate EDL risk over time. Aggregate EDL risk, EDL riskm,t, is defined as the weekly

cross-sectional, value-weighted, average of EDL riski,t over all stocks i in our sample. Panel

A of Figure 1 plots the time series of EDL riskm,t.

[Insert Figure 1 about here]

Aggregate EDL risk appears relatively stationary over time. The graph exhibits occasional

spikes in EDL riskm,t that seem to coincide with worldwide market crises. A large peak in

EDL riskm,t occurs during 1987-1990, the time period after Black Monday in October 1987,

the largest one-day percentage decline in U.S. stock market history. Other spikes in aggregate

EDL risk correspond to the crises of 1978-1979 (Second U.S. Oil Crisis), 1997-1998 (Asian

Financial Crisis), and 2008-2011 (Global Financial Crisis). We also plot the development of

aggregate EDR (extreme downside return) risk over time in Panel A.13 Aggregate EDL risk

and aggregate EDR risk are highly correlated with a value of 0.74, suggesting that both time

series are affected by similar sources of economic risk. The general tendency for stronger

asymptotic return dependence in the left tail in down markets is well-documented in Ang

and Chen (2002) and Chabi-Yo, Ruenzi and Weigert (2015).

In Panel B of Figure 1 we plot the time series of the separate aggregate EDL risk com-

ponents. All time series are highly correlated with an average value of around 0.59. Inter-

estingly, the graph displays different patterns in the behaviour of the EDL risk components

13In the same way as the EDL risk components, EDR risk is computed as the lower tail dependence
coefficient in the bivariate distribution between individual stock return and the market return. Subse-
quently, aggregate EDR risk, EDR riskm,t is defined as the weekly cross-sectional, value-weighted, average
of EDR riski,t over all stocks i in our sample.
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during financial crises. In the 1987 (Black Monday) stock market crash, the spike in aggregate

EDL risk is mainly caused by increasing aggregate EDL risk1 and EDL risk2. In contrast,

all three components of EDL risk drive the aggregate EDL risk peak during 2008-2011.

3 EDL Risk and Future Returns

In the main part of the empirical analysis we relate EDL risk estimates at week t to

portfolio and individual stock excess returns over week t+ 2. We skip week t+ 1 when inves-

tigating the relationship between EDL risk and future returns to avoid spurious correlations

due to short-term reversals or bid-ask bounce. Note that we only use data observable to

the investor at the end of week t in order to predict stock returns in week t + 2. Strictly

separating the estimation window for EDL risk and the subsequent return prediction window

alleviates concerns related to overfitting. The use of weekly return horizons is natural since

we estimate EDL risk and other risk measures based on weekly data. However, our results

are robust if we relate EDL risk estimates at week t to excess returns over week t + 1 or

if we evaluate monthly return frequencies (see Section 4.3). To properly account for the

impact of autocorrelation and heteroscedasticity on statistical significance in portfolio sorts,

factor models, and multivariate regressions, we use Newey and West (1987) standard errors.

3.1 Univariate Portfolio Sorts

We start our empirical analysis with univariate portfolio sorts. For each week t we sort

stocks into five quintiles based on their EDL risk estimated over the past three years as

described in Section 2.2. We then investigate the equally-weighted average excess return over

the risk-free rate for these quintile portfolios as well as differences in average returns between

quintile portfolio 5 (strong EDL risk) and quintile portfolio 1 (weak EDL risk) over week t+2.
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[Insert Table 3 about here]

Column (1) reports average EDL risk coefficients of the stocks in the quintile portfolios.

There is considerable cross-sectional variation in EDL risk; average EDL risk ranges from

0.04 in the bottom quintile portfolio to 0.39 in the top quintile portfolio. More importantly,

in column (2) we find that stocks with strong EDL risk earn significantly higher average

future returns than stocks with weak EDL risk. Stocks in the quintile with the weakest

(strongest) EDL risk earn an annual average excess return of 5.77% (9.77%). The return

spread between quintile portfolio 1 and 5 is 4.00% p.a., which is statistically significant at

the 1% level (t-statistic of 3.66).14 The results also show that the returns are monotonically

increasing from the weakest to the strongest EDL risk quintile. This pattern is also confirmed

based on the Patton and Timmermann (2010) monotonicity test, which clearly rejects the

null hypothesis of a flat or decreasing pattern over the five EDLR portfolio returns at a

p-value of 0.2%.

In columns (3) through (8) of Table 3, we disentangle the premium for EDL risk into

its three risk components. Columns (3) and (4) show the relationship between EDL risk1

and annualized average future excess returns. The yearly return spread between quintile

portfolios 1 and 5 is only 0.33% p.a. and is not statistically significant. Columns (5) and

(6) document an increasing relationship between EDL risk2 and annualized average future

returns. Stocks in the quintile with the weakest (strongest) EDL risk2 earn an annualized

average excess return of 5.73% (9.80%). Thus, on average, stocks in quintile portfolio 5

outperform stocks in quintile portfolio 1 by 4.08% p.a., which is statistically significant at

the 1% level (t-statistic of 4.74). Finally, we report the results of portfolio sorts for EDL risk3

14As we are sorting stocks by their sensitivity to extreme market states, one might argue that high non-
normality of strong-weak returns could be a problem for the standard measurement of statistical significance
in a finite sample. This is not the case: Bootstrapped 99% confidence intervals (unreported) for the EDLR
difference portfolio remain comfortably above zero.
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and average future excess returns in columns (7) and (8). We find that stocks in the quintile

with the weakest (strongest) EDL risk3 earn an average excess return of 6.38% (9.97%) p.a.

The return spread between quintile portfolio 5 and quintile portfolio 1 is 3.59% p.a., which

is again statistically significant at the 1% level (t-statistic of 3.87).

In summary, the results from Table 3 provide evidence that EDL risk has an impact on

the cross-section of expected stock returns. Stocks with strong EDL risk exposure earn

higher average future returns than stocks with weak EDL risk exposure. The main drivers

of the EDL risk premium are the EDL risk2 and EDL risk3 components. The finding that

EDL risk1 (commonality in liquidity) is not priced is analogous to results by Acharya and

Pedersen (2005) for linear liquidity risk. In the following sections, we mostly present the

results of the impact of joint EDL risk on future returns. However, our results remain

stable if we concentrate on the sole impact of EDL risk2 and EDL risk3 and are typically

insignificant for EDL risk1.15

3.2 Bivariate Portfolio Sorts

The correlations in Table 2 document that EDL risk is correlated with other related (liq-

uidity and return) risk measures and firm characteristics. For example, an increase in EDL

risk tends to go along with an increase in linear downside liquidity (β−L ) risk and extreme

downside return (EDR) risk. Hence, the higher average future returns for strong EDL risk

portfolios could be driven by differences in these other variables. To isolate the return pre-

mium of EDL risk from the impact of other related characteristics, we now conduct dependent

equal-weighted portfolio double sorts.16

15We report robustness tests for the component-wise return premiums—controlling for important deter-
minants of stock returns—in Table 10.

16As in Section 3.1, EDL risk as well as βL, β−L and EDR risk in week t are estimated over a three-
year horizon. Firm size and Amihud’s illiquidity ratio are from the end of week t. We then investigate
equally-weighted average excess returns over week t+ 2.
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[Insert Table 4 about here]

In Panel A of Table 4, we analyze whether the EDL risk premium is explained by linear

liquidity risk, βL (see Internet Appendix C), which measures systematic variation in liquidity

unconditional on market conditions. We first form five portfolios sorted by βL. Then, within

each βL quintile, we sort stocks into five portfolios based on EDL risk.17 We report the

annualized average weekly t+ 2 portfolio returns in excess of the risk-free rate for the 25 βL

× EDL risk portfolios.

As in Acharya and Pedersen (2005), we find that average future returns of strong βL stocks

are higher than those of weak βL stocks within the two top EDL risk quintiles, while there

is no notable impact of βL in the lower EDL risk quintiles. More importantly, we find that

strong EDL risk stocks clearly outperform weak EDL risk stocks in all βL quintiles. The

return difference between the weakest EDL risk quintile and the strongest EDL risk quintile

ranges from 2.60% p.a. in the second-lowest βL quintile up to 6.10% p.a. in the highest βL

quintile. The return difference is on average 3.68% p.a., which is statistically significant at

the 1%-level. Hence, regular linear liquidity risk as analyzed in Acharya and Pedersen (2005)

cannot account for the reward earned by holding stocks with strong EDL risk.

In Panel B of Table 4, we analyze whether the EDL risk premium is explained by linear

downside liquidity risk, β−L (see Internet Appendix C), which—like EDL risk—focuses on

systematic downside liquidity risk. However, the conceptional difference between EDL risk

and β−L risk is that the latter focuses on systematic risk to market returns (liquidity) below

the mean, while the former explicitly focuses on extreme events. As above, in a first step

we form five portfolios sorting by β−L . Then, within each β−L quintile, we sort stocks into

five portfolios based on EDL risk and report annualized average excess portfolio returns. We

find some evidence that strong β−L stocks tend to outperform weak β−L stocks within each

17Our results (not reported) are stable if we reverse the sorting order or conduct independent sorts.
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EDL risk quintile. However, more interestingly in our context, we again find that in all β−L

quintiles strong EDL risk stocks outperform weak EDL risk stocks significantly. Across all

β−L quintiles stocks in the weak EDL risk portfolios earn average excess returns of 5.75%

p.a., whereas stocks in the strong EDL risk portfolios earn average excess returns of 9.68%

p.a. and the difference is highly significant overall as well within each individual β−L quintile.

Thus, linear downside liquidity risk cannot account for the EDL risk premium either.

In Panel C of Table 4, we investigate whether EDL risk is different from extreme downside

return risk, EDR risk (see Internet Appendix C), which captures systematic crash risk in

returns. Again, to explicitly control for variation in EDR risk, we first form quintile portfolios

sorted on EDR risk. Then, within each EDR risk quintile, we sort stocks into five portfolios

based on EDL risk and report annualized average excess portfolio returns.

As in Chabi-Yo, Ruenzi and Weigert (2015), we find that strong EDR risk stocks outper-

form weak EDR risk stocks within all EDL risk quintiles. Furthermore, the return difference

between the weak EDL risk quintile and the strong EDL risk quintile is again positive in

all EDR risk quintiles and statistically significant in four of the five quintiles. On average,

the return spread amounts to 3.25% p.a., which is statistically significant at the 1% level.

Therefore, the impact of EDL risk on future stock returns is also clearly different from the

impact of EDR risk.

Finally, in Panel D and Panel E, we analyze whether the EDL risk premium can be ex-

plained by firm size or the level of stocks’ liquidity costs, as measured by Amihud’s illiquidity

ratio (see Internet Appendix C). As Amihud (2002), we find that average future returns of

illiquid stocks are higher than those of liquid stocks. More importantly, we find that the

average EDL risk premium controlling for firm size (the illiquidity level) is 3.87% (3.89%)

annually and statistically significant at the one percent level in each case. Hence, the EDL

risk premium is not explained by firm size nor the level of stocks’ liquidity costs.
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To summarize, dependent portfolio double sorts provide strong evidence that EDL risk is

not explained by βL, β−L , EDR risk or by firm size and liquidity levels. So far, our analysis

relies on return differences and we only control for the impact of systematic risk factors

indirectly by double-sorting portfolios based on EDL risk and other risk characteristics of

the stock. To control for the exposure to other systematic risk factors, we now investigate

whether the EDL risk premium can be explained by alternative multivariate factor models

suggested in the literature.

3.3 Factor Models

We regress the weekly t+ 2 return of the EDL risk quintile difference portfolio on various

factors that have been shown to determine the cross-section of average stock returns.18 Since

most factors are only available on a monthly basis, we build portfolios, which are rebalanced

monthly based on past EDL risk, again leaving a minimum of a one-week gap between

calculation of EDL risk and portfolio formation. We then investigate risk-adjusted monthly

returns according to these factors. Table 5 reports the results.

[Insert Table 5 about here]

Results for our main specifications are reported in Panel A of Table 5. In regressions

(1) and (2) we adjust the EDL risk quintile difference portfolio for its exposure to the

market factor (as in Sharpe (1964)), the Fama and French (1993) three-factor model that

additionally corrects for the exposure to size (SMB) as well as to book-to-market (HML),

and the Carhart (1997) four-factor model that additionally controls for momentum (MOM).

We find that the EDL risk portfolio loads significantly positively on the market factor and

18The formal definitions of all factors used as well as the respective data sources are provided in Internet
Appendix C.
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significantly negatively on the momentum factor. The risk-adjusted annualized alpha is

significantly positive at the 1%-level and amounts to 2.70% for the market-model and 3.52%

for the Carhart (1997) 4-factor alpha.

In regression (3), we include the Pastor and Stambaugh (2003) traded liquidity factor.

Surprisingly, we find that the EDL risk portfolio does not load significantly on the Pastor

and Stambaugh (2003) factor and the return premium for EDL risk is not reduced. The

risk-adjusted alpha of the EDL risk portfolio is 3.52% p.a.19

Regressions (4) through (7) additionally control for the EDR risk factor of Chabi-Yo,

Ruenzi and Weigert (2015), the Bali, Cakici, and Whitelaw (2011) factor for lottery-type

stocks, the Kelly and Jiang (2014) tail risk factor, and the U.S. equity betting-against-beta

factor from Frazzini and Pedersen (2014). Again, the annual alpha of the EDL risk portfolio

remains statistically significant at least at the 5% level in each case and ranges from 2.51%

to 4.10%.

Panel B of Table 5 reports annualized alphas for additional alternative factor mod-

els. We regress the EDL risk quintile difference portfolio on the factors from the Fama

and French (2015) five-factor model, the Hou, Xue, and Zhang (2015) and Novy-Marx

(2013) four-factor models, as well as the Carhart (1997) four-factor model extended by the

Fama and French short- and long-term reversal factors, the leverage factor from Adrian,

Etula, and Muir (2014), the quality-minus-junk factor from Asness, Frazzini, and Ped-

ersen (2014), the undervalued-minus-overvalued factor from Hirshleifer and Jiang (2010),

and the Wu (2015) liquidity-tail factor. The alpha of our strong minus weak EDL risk

19In unreported tests, we find that the EDL risk portfolio loads significantly positively on the Pastor
and Stambaugh (2003) factor in the period from 1969 through 2000, the time span that is analyzed in
their paper. However, the yearly alpha of the EDL risk portfolio is also not reduced by the Pastor and
Stambaugh (2003) liquidity factor during this sub-period. We obtain similar results when we adjust the
EDL risk quintile difference portfolio for its exposure to the Sadka (2006) liquidity factor (which is based on
the permanent-variable component of the price impact function) in our model.
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return ranges from 2.80% p.a. to 4.04% p.a. and is always statistically significant at the

1%-level.

The results reveal that the premium for EDL risk is robust to controlling for a wide array

of alternative factor specifications. However, Daniel and Titman (1997) advocate considering

not just factor sensitivities in the analysis of determinants of cross-sectional stock returns.

Thus, to also account for firm specific characteristics in our asset pricing tests, we now

proceed to run Fama and MacBeth (1973) regressions on the firm level.

3.4 Fama-MacBeth Regressions

We perform individual Fama and MacBeth (1973) regressions of excess stock returns over

the risk-free rate in week t + 2 on risk and firm characteristics measured at week t in the

period from 1969 to 2012.20 Table 6 presents the regression results of future weekly excess

returns on EDL risk and various combinations of control variables.

[Insert Table 6 about here]

In regression (1), we include EDL risk as the only explanatory variable. Consistent with

our results from portfolio sorts and multivariate factor models, it shows a highly statistically

as well as economically positive impact. For example, stocks with top quintile EDL risk

earn higher future returns of around 3.35% p.a. as compared to bottom quintile EDL risk

stocks.21

20Running Fama and MacBeth (1973) regressions on the individual firm level has the disadvantage that
risk factors are estimated less precisely in comparison to using portfolios as test assets. However, Ang, Liu
and Schwarz (2010) show that forming portfolios does not necessarily lead to smaller standard errors of
cross-sectional coefficient estimates. Creating portfolios degrades information by shrinking the dispersion of
risk factors and leads to larger standard errors.

21Top (bottom) quintile EDL risk stocks have an average EDL risk exposure of 0.39 (0.04). Hence, our
regressions results indicate an annual return spread of 0.00184 · 0.35 · 52 = 3.35%.
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In regression (2), we add a stock’s market return beta (βR), size, book-to-market ratio,

and its past yearly return to our model. EDL risk remains statistically significant at the 1%

level when including these additional variables.

In regressions (3) through (5), we expand our model and include a stock’s linear liquidity

risk (βL) from Acharya and Pedersen (2005), extreme downside return (EDR) risk (Chabi-

Yo, Ruenzi and Weigert (2015)), the illiquidity level (Amihud (2002), 12-month average),

exposure to tail risk (βTail) from Kelly and Jiang (2014), idiosyncratic volatility (Ang, Ho-

drick, Xing, and Zhang (2006)), and a stock’s coskewness with the market (Harvey and

Siddique (2000)).We find that the inclusion of these additional variables only slightly re-

duces the impact of EDL risk on future returns, which is still statistically significant at the

1% level.

Finally, in regression (6), we replace βR by β−R and β+
R as well as βL by β−L and β+

L .

None of these variables shows any significant impact on returns. In contrast, our main re-

sult regarding the impact of EDL risk on future returns remains unchanged - EDL risk

is statistically significant at the 1% level and carries an economically significant posi-

tive impact. Top quintile EDL risk stocks earn higher future returns by about 2.64%

p.a. than bottom quintile EDL risk stocks, controlling for the full set of additional vari-

ables.

The coefficient estimates for the impact of the control variables broadly confirm findings

from the existing literature: Firm size (book-to-market) is shown to have a negative (positive)

impact on expected returns (e.g., Banz (1981); Basu (1983); and Fama and French (1993)),

while stocks that realize the best (worst) returns over the past 3 to 12 months are found

to continue to perform well (poorly) over the subsequent 3 to 12 months (e.g., Jegadeesh

and Titman (1993)). EDR risk and βKelly are positively related to future average returns

(Kelly and Jiang (2014) and Chabi-Yo, Ruenzi and Weigert (2015)), whereas idio vola shows
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a negative impact (e.g., Ang, Hodrick, Xing, and Zhang (2006)). However, when adding the

full set of explanatory variables, we do not find a statistically significant impact for βL, illiq

or coskew, possibly due to the sometimes high correlations across variables (see Table 2).

In summary, we provide strong evidence that EDL risk is priced in the cross-section of

expected stock returns. The premium for EDL risk is robust to portfolio double sorts with

regards to βL, β−L , EDR Risk, firm size and stock illiquidity. It is robust to various as-

set pricing factor models, and remains signficant when controlling for a wide list of firm

characteristics.

3.5 Does the Magnitude of the Extreme Downside Matter?

Our asset pricing tests examine the impact of EDL risk, defined as the sum of three lower

tail dependence coefficients (see equation (6)). A lower tail depenence coefficient is defined

as the probability that a realization of one random variable is in the extreme lower tail of

its distribution, conditional on the realization of the other random variable also being in

the extreme lower tail of its distribution. Thus, EDL risk tells us how likely it is that a

stock realizes (i) its worst liquidity at the time when the market realizes its worst liquidity,

(ii) its worst return when the market realizes its worst liquidity, and (iii) its worst liquidity

when the market realizes its worst return. However, EDL risk does not take into account the

severity of the worst return or liquidity shock, i.e., its magnitude. We now check whether

the impact of EDL risk is stronger if we can expect the worst outcome for a stock to be

particularly bad, i.e., if we interact the probability of the joint outcome with a proxy for the

magnitude of the outcome.

As proxies for the magnitude of a bad outcome, we use four ex-ante proxies based on the

dispersion of returns (liquidity shocks): a stock’s return (liquidity shock) standard deviation

during the past three years, its idiosyncratic return (liquidity shock) volatility (controlling
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for value-weighted market returns and liquidity shocks) during the past three years, its

Value-at-Risk (VaR, defined as the 5% quantile of the weekly returns (liquidity shocks) of

the stock during the past three years), and its conditional Value-at-Risk (CoVaR, defined as

the conditional mean of all weekly returns (liquidity shocks) below the 5% quantile). The

worst outcomes with respect to returns and liquidity shocks tend to be particularly bad for

stocks with a high standard deviation (a high idiosyncratic volatility, a low VaR and a low

CoVaR) regarding the respective variable.

To examine whether dispersion of returns and liquidity shocks indeed increases the impact

of EDL risk, we sort stocks into two categories: Low dispersion stocks which display a

standard deviation or idiosyncratic volatility (VaR or CoVar) of returns and liquidity shocks

below (above) the respective median measure and high dispersion stocks which display a

standard deviation or idiosyncratic volatility (VaR or CoVar) of returns and liquidity shocks

above (below) the respective median measure.

Panel A of Table 7 reports the annualized excess portfolio returns of the top (bottom)

EDL risk quintile portfolio and differences in returns for the low and the high dispersion

samples.

[Insert Table 7 about here]

As expected, our results reveal that the impact of EDL risk on future returns is stronger

for the high dispersion stocks, irrespective of which ex-ante proxy for dispersion we use. In

the high dispersion sample, top quintile EDL risk stocks outperform bottom quintile EDL

risk stocks by an average of 4.95% p.a. across dispersion measures (significant at the 1%

level). Top quintile EDL risk stocks also clearly outperform bottom quintile EDL risk stocks

in the low dispersion sample (significant at the 1% level). However, in contrast to the high

dispersion sample, the outperformance is significantly reduced to 3.33% p.a.
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To investigate whether these results are driven by correlations of the dispersion measures

with other independent variables, we repeat regression (5) of Table 6 for the high and the

low dispersion sample separately.22 Results for the impact of EDL risk are shown in Panel B

of Table 7. The impact of EDL risk is 50% to 100% stronger for firms where bad outcomes

are particularly severe, i.e., for firms with a high dispersion (high standard deviation, high

idiosyncratic volatility, low VaR, and low CoVar) of returns and liquidity shocks. Hence,

greater dispersion of returns and liquidity shocks indeed increases the impact of EDL risk

on future average stock returns.

3.6 Temporal Differences in the EDL Risk Premium

We now investigate whether the premium for EDL risk is stable over time. We first

reproduce the results of the univariate portfolio sorts for the time period from January 1969

through December 1987 and from January 1988 through December 2012. As a cutoff for our

sample, we select 1987, the year of Black Monday, when the U.S. stock market had its largest

one-day percentage decline in history. Focusing on this event is motivated by studies from

the empirical option pricing literature (e.g., Rubinstein (1994) and Bates (2008)) which

document that premiums for deep-out-of-the-money put options strongly increased after

1987, possibly due to investors becoming more crash-averse. Thus, our conjecture is that this

increased crash aversion might also have led to a higher premium for EDL risk in the cross-

section of stock returns after 1987. Panel A of Table 8 reports the annualized future excess

portfolio returns and alphas of portfolios sorted by EDL risk. We also report differences in

average excess returns between quintile portfolio 5 (strong EDL risk) and quintile portfolio

1 (weak EDL risk).

22We include all other explanatory variables from regression (5) of Table 6, but suppress them in the
Panel.
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[Insert Table 8 about here]

The EDL risk premium between the two subperiods varies considerably. In the first sub-

sample from 1969 through 1987, we only find weak evidence of a positive EDL risk premium.

The return spread between the strong EDL risk and the weak EDL risk portfolio is 1.49%

p.a. and not statistically significant at conventional levels. The results for the CAPM-alpha

and the Carhart (1997) four-factor model are similar. The only statistically significant EDL

risk premium is found for the Carhart (1997) specification, where the annualized return

spread between the strong and the weak EDL risk portfolio amounts to 2.32% p.a. and is

statistically significant at the 10%-level.

In the post-crash period from 1988 through 2012, the premium for EDL risk strongly

increases. Stocks in the quintile with the weakest (strongest) EDL risk earn an annual

average excess return of 6.69% (12.60%). The return spread between quintile portfolios 1

and 5 is 5.91% p.a., which is statistically significant at the 1% level. We also find that this

premium remains when we adjust raw returns for exposures to systematic risk factors using

the standard factor models. The return spread with regard to the Carhart (1997) factor

alpha is 3.99% p.a. and strongly significant at the 1% level.

Panel B of Table 8 reports the results from regressions (1) and (5) of Table 6 separately

for the two subperiods. The results are similar to the above results from portfolio sorts. In

the earlier time period prior to the 1987 crash, we do not find evidence of a significant EDL

risk premium. In contrast, the EDL risk premium in the time period from 1988 through

2012 is statistically significant at the 1% level and economically large.

Figure 2 shows the temporal variation of the (cumulative) yearly Carhart (1997) factor

alpha of the top EDL risk minus bottom EDL risk portfolio during the whole sample from

January 1969 through December 2012.23

23When computing the yearly and cumulative alphas for the top EDL risk - bottom EDL risk portfolio,
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[Insert Figure 2 about here]

The graph reveals that the highest profits of the trading strategy can be attributed

to the years 1990 and 2009. These years are subsequent to two severe market and

liquidity crises: namely, the Black Friday stock market crash in 1987 and the finan-

cial crisis in 2008. We conjecture that these market crashes have strongly increased

the crash aversion of investors, which subsequently has increased the premium (dis-

count) for strong (weak) EDL risk stocks, which is in line with the findings of the em-

pirical option literature mentioned above, which indicate increasing prices (and low ex-

pected returns) for securities that offer protection against strong market downturns after

1987.

4 Robustness Checks

4.1 Liquidity Proxies

The empirical analysis in Section 3 is performed using EDL risk estimates of liquidity in-

novations based on the Amihud (2002) Illiquidity Ratio, analogous to Acharya and Pedersen

(2005). One potential concern is that our main findings are driven by the measurement

error component of our proxy for liquidity. Attenuation bias caused by this measurement

error would lead to an underestimation of the return premium for EDL risk. Neverthe-

less, to assure the stability of our findings, we now test whether our results regarding the

impact of EDL risk on future returns are robust to using different (low-frequency and high-

frequency) proxies of liquidity. As additional low-frequency liquidity proxies we use the

Corwin and Schultz (2012) measure (Corwin), the Lesmond, Ogden and Trzcinka (1999)

no trading costs are taken into account.
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measure (Zeros), and the Fong, Holden and Trzcinka (2014) measure (FHT).24 As high-

frequency liquidity proxies we select the effective spread (EffSpr), the relative spread (Rel-

Spr), the intraday Amihud measure (IntAmi), and the 5-minute price impact measure (Pri-

Imp). The high-frequency liquidity proxies are calculated for common stocks traded on the

NYSE/AMEX using the TAQ dataset in the period between January 1, 1996 and December

31, 2010. The big advantage of these proxies is their much lower measurement error. We

perform asset pricing tests for the high-frequency proxies in the time period from 2002 to

2010.25

In the same way as for the Amihud (2002) Illiquidity Ratio, we estimate liquidity shocks,

and subsequently the EDL risk, for each firm i in each week t based on weekly returns

and liquidity shocks over 3-year rolling windows. Correlations between EDL risk based on

different liquidity proxies are shown in Panel B of Table A.1 in the Internet Appendix.

We find that all correlations between EDL risk measures based on low-frequency prox-

ies and those based on high-frequency proxies are positive. EDL risk based on Corwin

has the highest positive correlations to the high-frequency measures ranging from 0.48 to

0.57.26

To investigate whether EDL risk is a priced factor in the cross-section of expected stock

returns if measured based on other liquidity proxies, we perform portfolio sorts, factor re-

gressions and multivariate Fama and MacBeth (1973) regressions similar to the ones from

the previous section. Table 9 reports the results.

[Insert Table 9 about here]

24Detailed definitions of these variables, as well as data requirements, are given in Internet Appendix A.
25We compute illiquidity shocks for each stock based on a 3-year time horizon starting in January 1996.

We then use the time period from 1999 to 2001 to estimate the first EDL risk values for each stock. Thus,
our asset pricing tests using high frequency proxies only start in January 2002.

26For additional information about summary statistics and temporal variation of the different liquidity
measures, see Internet Appendix A.
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Consistent with our previous results, Panel A shows that EDL risk is priced across all low-

frequency measures in our study. The annualized return spread between quintile portfolios 1

and 5 ranges from 1.47% p.a. for the Zeros measure to 4.00% p.a. for the illiq measure. We

also find that return spreads, risk-adjusted by standard factor models (i.e., the Sharpe (1964)

CAPM model and the Carhart (1997) four-factor model) remain positive for all liquidity

measures and statistically significant for most of them. Moreover, we find supportive evidence

for the pricing of EDL risk when investigating portfolio sorts for the high-frequency liquidity

measures. All EDL raw and risk-adjusted return spreads are positive and economically

significant. In addition, we find statistically significant impact of EDL risk on future returns

for EffSpr, IntAmi, and PriImp. This is a remarkable result given that our sample period

for our asset pricing tests is only 9 years in this case, which generally makes it very hard to

detect any significant asset pricing patterns.

To confirm that our results are not driven by correlations of EDL risk with other explana-

tory variables, we repeat regression (5) of Table 6 for the EDL risk based on the alternative

liquidity proxies. Our findings indicate that the impact of EDL risk is stable across the

different liquidity proxies and not driven by measurement error. All EDL risk coefficients

are positive. Except for the Zeros and RelSpr measures, coefficients are also statistically and

economically significant, indicating a robust impact of EDL risk on future returns.

4.2 Estimation Procedures and Weighting Scheme

The estimation procedure of EDL risk in Section 3 is performed using an estimation horizon

of 3 years of weekly returns and AR(4) liquidity-shocks, and a copula function that shows

the best fit for each combination of firm, week and EDL risk component in the estimation

window. Furthermore, portfolio sorts are conducted on an equally weighted basis. Thus, one

concern might be that our results are specific to the details of our procedure.
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To address concerns of overfitting, we now demonstrate the robustness of our results to

several changes in the estimation procedure: First, we apply different estimation horizons of 1

year (EDL risk1y), 2 years (EDL risk2y), and 5 years (EDL risk5y) for the estimation of EDL

risk. Second, we use simple differences in stock liquidity instead of shocks from an AR(4)

model. This robustness test alleviates concerns, that noise added through the estimation of

AR(4)-parameters drives results. Third, we use different copula functions in the estimation

procedure of the EDL risk components. In particular, we test the robustness of our results

with copulas that performed best (EDL riskC1), second-best (EDL riskC2), second-worst

(EDL riskC63) and worst (EDL riskC64) for this stock-week, as well as a copula that is a

likelihood-weighted average of all 64 copulas we consider (EDL riskCw). The robustness of

our results to these variations should show that they are not caused by estimation error

and overfitting through selecting particular estimation horizons, liquidity-shock estimates,

and copula functions. Finally, we check the stability of our results when considering the

three different risk components EDL risk1, EDL risk2, and EDL risk3 in asset pricing tests

separately.

To examine whether EDL risk is priced when the estimation procedure is varied, we again

perform portfolio sorts, factor model regressions and multivariate Fama and MacBeth (1973)

regressions. Results are reported in Table 10.

[Insert Table 10 about here]

Panel A shows that, in univariate equal-weighted portfolio sorts and based on standard

factor models, EDL risk is significantly priced across specifications with alternative esti-

mation horizons, different copulas, and when we use simple differences in stock liquidity

instead of shocks from an AR(4) model. The annual EDL risk spread in average excess

returns between quintile portfolios 1 and 5 ranges from 2.91% p.a. for EDL risk1y to 5.66%
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p.a. for the specification with liquidity differences instead of AR(4) shocks. We also find

that risk-adjusted return spreads remain positive and are statistically significant at least at

the 5%-level across different estimation procedures. In line with our results from Section

3.1, we confirm that the premium for EDL risk is driven by the EDL risk2 and EDL risk3

components if we control standard factor models.

Finally, in Panel B, we repeat regression (5) of Table 6 of future returns on EDL risk

(estimated using different horizons, liquidity differences and different copula functions) and

other explanatory variables. Our results reveal that the positive, statistically significant

impact of EDL risk on future returns is stable across different estimation procedures even

when controlling for a wide array of firm and risk characteristics. Remarkably, we find

a significant impact of both EDL risk2 and EDL risk3 when performing a joint regression

of future stock returns on all EDL risk components at the same time. Overall, our ro-

bustness tests show that our main findings are not driven by overfitting or estimation er-

rors.

Our previous portfolio sorts in Section 3 were performed based on equal-weighted port-

folios. Thus, even though we exclude < $2- and NASDAQ-stocks, our results could be

influenced by overweighting the importance of very small stocks. We now examine the re-

sults of value-weighted portfolio sorts. First, we form five portfolios sorted on firm size.

Then, within each size quintile, we sort stocks into value-weighted portfolios based on EDL

risk. Results are presented in Table 11.

[Insert Table 11 about here]

Consistent with our previous results, Panel A documents that the value-weighted EDL

risk premium is positive and economically meaningful within each individual size quintile,

ranging from 2.17% p.a. to 5.22% p.a. and typically significant at least at the 5%-level. It
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is smallest and not statistically significant at conventional levels in the highest size quintile,

which is consistent with the weakest return premium for EDL risk in the top size quintile

from Panel D in Table 4. The average value-weighted EDL risk premium across all size

quintiles is 3.71% and is statistically significant at the one percent level.

Panel B repeats the factor model regressions of Table 5 for the average across size quintiles

of value-weighted strong-minus-weak EDL risk portfolios. In short, the results are very

similar to the results based on equal-weighted porfolios from Table 5. Exposures (suppressed

in Table 11) are qualitatively the same and all 7 specifications result in statistically significant

annualized alphas ranging from 2.35% to 3.56%. Overall the results for value-weighted

portfolios confirm that the EDL risk premium is not just driven by a large number of tiny

firms.

4.3 Regression Methods and Adjusted Returns

Our multivariate regression results in Section 3.4 rely on Fama and MacBeth (1973) re-

gressions with winsorized variables. We now vary the regression approach, using the full

set of independent variables for the complete sample period from 1969 to 2012. Results are

presented in Panel A of Table 12.

[Insert Table 12 about here]

Regression (1) varies the baseline regression (5) from Table 6 by not using Newey-West

standard errors in the second stage of the Fama and MacBeth (1973) regressions to determine

statistical significance. Regression (2) uses the standard Fama and MacBeth (1973) approach

without winsorizing the independent variables. In regression (3) we conduct a pooled OLS

regression with time-fixed effects and standard errors clustered by stock. Regression (4)

is a variation of (3), where we cluster standard errors by industry using the SIC-2-digits
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classification.27 Regressions (5) and (6) use panel data regressions with firm-fixed effects. In

regression (6) standard errors are additionally clustered by firm. Finally, in regression (7) we

regress excess returns on the independent variables in a random-effect panel regression. In

all regression modifications, we document that EDL risk is a highly significant explanatory

factor for the cross-section of expected stocks returns. The point estimate for the impact of

EDL risk is always above 0.00117 and statistically significant at the 1% level.

So far, we have used weekly excess returns over week t+2 as our dependent variable in the

asset pricing exercises. We now test the robustness of our results if we use different return

lags, namely weekly returns in t+1, t+3, and t+4 as our dependent variable. Furthermore,

we also investigate the impact of EDL risk on future monthly returns in month t+1. Results

in Panel B of Table 12 document a stable and statistically significant impact of EDL risk on

future returns across the different lags and return horizons.

Next, we adjust the return of each stock by subtracting the return of its corresponding

Daniel, Grinblatt, Titman, and Wermers (1997) characteristic-based benchmark (DGTW).28

Again, our main result of a significant EDL risk premium remains unaffected.

Finally, some extreme market downturns might be driven by specific industries thus causing

our findings to be potentially biased by industry effects. To investigate whether this is the

case, we repeat our multivariate regressions with the full set of controls (i.e., regression

(5) from Table 6), using industry-adjusted returns instead of raw returns as the dependent

variable. To identify and cluster by industries, we use the SIC-2, SIC-3, the SIC-4 digit

industry classification (with weekly returns), as well as the Fama-French 12 (FF12) and 48

(FF48) industry classifications (with monthly returns). For all classifications, the EDL risk

coefficient remains positive and statistically significant.

27Results are virtually unchanged whether we cluster by Fama-French 48 or SIC industries.
28This test is performed using monthly data. Monthly DGTW benchmarks returns are available via

http://www.smith.umd.edu/faculty/rwermers/ftpsite/ Dgtw/coverpage.htm.

36



5 Conclusion

This study investigates whether investors receive compensation for holding stocks with

strong extreme downside liquidity (EDL) risk: Strong EDL risk stocks realize their lowest

return and liquidity realizations in periods of market return and market liquidity crises.

We hypothesize that such stocks are unattractive assets to hold for crash-averse investors

requiring them to demand a premium for holding strong EDL risk stocks.

Our empirical analysis provides clear evidence to support this hypothesis: The cross-

section of expected stock returns reflects a premium for EDL risk. Stocks that are

characterized by strong EDL risk earn significantly higher future returns than stocks with

weak EDL risk. A trading strategy that is long in a portfolio consisting of 20% stocks

with the strongest EDL risk delivers a raw return that is 4.00% p.a. higher than that of

a portfolio consisting of 20% stocks with the weakest EDL risk. The high future returns

earned by stocks with strong EDL risk can be explained neither by linear liquidity risk (as

in Acharya and Pedersen (2005)) nor by different factor model specifications and are not

due to differences in firm characteristics. Our results are stable across different liquidity

measures and alternative estimation procedures of EDL risk.

There is evidence that certain investor groups seek (and can identify) stocks with strong

tail risk exposure. For example, Agarwal, Ruenzi and Weigert (2015) show that hedge fund

managers actively invest in such stocks and are able to earn the associated premium. Overall

our results have important implications for portfolio performance management and financial

stability. If financial institutions do not suffer the (unmitigated) consequences of a market

crash or liquidity crisis (e.g., because they expect to be bailed out), they are incentivized to

buy strong EDL risk assets in order to earn the premium documented in our study. Such

behavior would make those institutions, and consequently financial markets, more fragile.
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Figure 1: Aggregate EDL Risk over Time (1969 - 2012)
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(a) Panel A: Aggregate EDL Risk and EDR Risk over Time
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(b) Panel B: Components of Aggregate EDL Risk

This figure displays the evolution of aggregate EDL risk and EDR risk as well as the different components of EDL risk over time.

Aggregate EDL risk (EDR risk) in week t is defined as the value-weighted average of EDL risk (EDR risk) over all stocks i in

our sample. Analogously, we define the aggregate EDL risk components (aggregate EDL risk1, aggregate EDL risk2, aggregate

EDL risk3) in week t as the value-weighted average of the EDL risk components (EDL risk1, EDL risk2, EDL risk3) over all

stocks i in our sample. Panel A draws the evolution of aggregate EDL risk (EDR risk) over time. Panel B shows the evolution

of the different aggregate EDL risk components. The sample covers all U.S. common stocks traded on the NYSE / AMEX and

the sample period is from January 1969 to December 2012.
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Figure 2: Yearly Alpha and Cumulative Alpha of EDL Risk Strategy
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(a) Panel A: Yearly Alpha of EDL Risk Strategy
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(b) Panel B: Cumulative Alpha of EDL Risk Strategy

This figure displays the evolution of the annualized 1-year Carhart-alpha and the cumulative Carhart-alpha

of a trading strategy consisting of buying strong EDL risk stocks and selling weak EDL risk stocks with

weekly rebalancing (no trading costs are taken into account). The sample covers all U.S. common stocks

traded on the NYSE / AMEX and the sample period is from January 1969 to December 2012.
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Table 4: Bivariate Equal-Weighted Portfolio Sorts

Panel A: EDL Risk and βL Risk

Portfolio 1 Weak βL 2 3 4 5 Strong βL Average

1 Weak EDL risk 6.34% 4.78% 5.34% 6.36% 6.04% 5.77%
2 8.58% 5.55% 7.02% 7.49% 8.42% 7.41%
3 9.18% 7.27% 8.85% 9.85% 8.91% 8.81%
4 10.02% 8.26% 7.68% 10.21% 11.04% 9.44%

5 Strong EDL risk 9.80% 7.38% 8.62% 9.32% 12.14% 9.45%

Strong-Weak 3.46%∗∗ 2.60%∗∗ 3.28%∗∗∗ 2.96%∗∗ 6.10%∗∗∗ 3.68%∗∗∗

(2.38) (2.46) (2.62) (2.22) (3.94) (4.15)

Panel B: EDL Risk and β−
L Risk

Portfolio 1 Weak β−
L 2 3 4 5 Strong β−

L Average

1 Weak EDL risk 6.16% 4.64% 4.78% 6.21% 6.96% 5.75%
2 7.17% 6.55% 6.94% 8.32% 8.25% 7.44%
3 9.46% 7.96% 8.59% 9.24% 8.61% 8.77%
4 8.11% 9.05% 8.02% 9.75% 11.27% 9.24%

5 Strong EDL risk 10.34% 7.69% 8.69% 10.03% 11.63% 9.68%

Strong-Weak 4.18%∗∗∗ 3.05%∗∗∗ 3.91%∗∗∗ 3.81%∗∗∗ 4.67%∗∗∗ 3.93%∗∗∗

(2.86) (2.82) (3.02) (2.81) (2.87) (4.27)

Panel C: EDL Risk and EDR Risk

Portfolio 1 Weak EDRR 2 3 4 5 Strong EDRR Average

1 Weak EDL risk 3.46% 5.04% 6.92% 6.42% 8.73% 6.11%
2 4.27% 6.64% 7.84% 7.97% 11.26% 7.60%
3 5.84% 7.23% 10.16% 10.00% 10.86% 8.82%
4 5.80% 7.85% 9.50% 10.17% 11.65% 9.00%

5 Strong EDL risk 6.89% 8.47% 10.94% 9.70% 10.80% 9.36%

Strong-Weak 3.43%∗∗ 3.43%∗∗ 4.02%∗∗∗ 3.29%∗∗ 2.07% 3.25%∗∗∗

(2.43) (2.47) (2.78) (2.45) (1.46) (3.28)
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Panel D: EDL Risk and Size

Portfolio 1 Small 2 3 4 5 Large Average

1 Weak EDL risk 5.86% 6.70% 6.01% 5.96% 4.77% 5.86%
2 8.08% 8.74% 7.59% 7.48% 6.15% 7.61%
3 7.21% 9.69% 10.24% 8.46% 7.30% 8.58%
4 9.19% 10.65% 9.27% 8.77% 7.67% 9.11%

5 Strong EDL risk 11.19% 10.59% 10.57% 9.56% 6.75% 9.73%

Strong-Weak 5.33%∗∗∗ 3.89%∗∗∗ 4.56%∗∗∗ 3.60%∗∗∗ 1.98% 3.87%∗∗∗

(2.98) (2.68) (3.11) (2.92) (1.64) (3.71)

Panel E: EDL Risk and Illiquidity

Portfolio 1 Liquid 2 3 4 5 Illiquid Average

1 Weak EDL risk 4.73% 4.92% 5.69% 6.82% 6.77% 5.78%
2 5.72% 7.01% 7.46% 8.70% 8.75% 7.53%
3 6.71% 9.06% 8.76% 9.69% 8.96% 8.64%
4 7.28% 8.81% 8.84% 11.03% 10.33% 9.26%

5 Strong EDL risk 6.67% 10.51% 8.76% 11.08% 11.32% 9.67%

Strong-Weak 1.94% 5.59%∗∗∗ 3.08%∗∗ 4.26%∗∗∗ 4.55%∗∗∗ 3.89%∗∗∗

(1.57) (3.95) (2.12) (3.18)) (2.64) (3.76)

This table reports the results of dependent equal-weighted portfolio sorts. First, we form quintile portfolios sorted on βL risk
(β−
L risk, EDR risk, firm size, illiquidity). Then, within each risk quintile, we sort stocks into equal-weighted portfolios based

on EDL Risk. Panel A displays annualized average future returns of 25 βL risk - EDL risk portfolio sorts, Panel B shows
annualized average future returns of the 25 β−

L - EDL risk sorts, Panel C shows the annualized average future returns of the
25 EDR risk - EDL risk portfolio sorts, Panel D shows the annualized average future returns of the 25 market capitalization -
EDL risk portfolio sorts and Panel E shows the annualized average future returns of the 25 Amihud illiquidity ratio - EDL risk
portfolio sorts. The row labelled ’Strong - Weak’ reports the difference between the returns of portfolio 5 and portfolio 1 with
corresponding t-statistic. The sample covers all U.S. common stocks traded on the NYSE / AMEX and the sample period is
from January 1969 to December 2012. t-statistics are in parentheses. ∗∗∗, ∗∗, and ∗ indicate significance at the one, five, and
ten percent level, respectively. We use Newey-West (1987) standard errors with four lags.
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Table 5: EDL Risk and Returns: Factor Models

Panel A: Factor Models

(1) (2) (3) (4) (5) (6) (7)
EDL risk EDL risk EDL risk EDL risk EDL risk EDL risk EDL risk
(PF5-1) (PF5-1) (PF5-1) (PF5-1) (PF5-1) (PF5-1) (PF5-1)

Marketrf 0.134∗∗∗ 0.133∗∗∗ 0.133∗∗∗ 0.078∗∗∗ 0.108∗∗∗ 0.137∗∗∗ 0.141∗∗∗

(4.52) (5.37) (5.41) (2.96) (4.39) (5.16) (5.87)

SMB -0.033 -0.033 -0.026 -0.064∗ -0.043 -0.031
(-0.99) (-0.99) (-0.79) (-1.70) (-1.21) (-0.97)

HML 0.045∗ 0.045∗ 0.101∗∗ 0.060∗ 0.063∗∗ 0.101∗∗∗

(1.21) (1.63) (2.43) (1.94) (2.32) (3.39)

MOM -0.118∗∗ -0.118∗∗ -0.127∗∗ -0.112∗∗ -0.103∗ -0.096∗

(-2.10) (-2.08) (-2.23) (-2.16) (-1.72) (-1.84)

PS Liqui -0.001
(-0.04)

EDRR 0.163∗∗∗

(3.25)

Max 0.037
(0.97)

Tail -0.048
(-1.29)

BAB -0.103∗∗∗

(-3.19)

const 0.225%∗∗∗ 0.293%∗∗∗ 0.294%∗∗∗ 0.210%∗∗ 0.316%∗∗∗ 0.316%∗∗∗ 0.342%∗∗∗

(2.88) (3.05) (2.89) (2.30) (2.86) (3.09) (3.35)

yearly
alpha 2.70% 3.52% 3.52% 2.51% 3.80% 3.78% 4.10%

R2 0.107 0.198 0.198 0.235 0.188 0.199 0.224
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Panel B: Other Factor Models

Factor Model Annualized α

Fama-French 5-Factor Model (Fama/French, 2015) 2.80%∗∗∗ (2.86)

Novy-Marx 4-Factor Model (Novy-Marx, 2013) 4.04%∗∗∗ (2.81)

Hou-Xue-Zhang 4-Factor Model (Hou/Xue/Zhang, 2014) 3.08%∗∗∗ (2.70)

Carhart 4-Factor Model + short- and long-term reversal 3.95%∗∗∗ (2.98)

Carhart 4-Factor Model + leverage factor (Adrian/Etula/Muir, 2014) 3.75%∗∗∗ (3.10)

Carhart 4-Factor Model + quality-minus-junk (Asness/Frazzini/Israel/Moskowitz/Pedersen, 2015) 3.85%∗∗∗ (3.07)

Carhart 4-Factor Model + undervalued-minus-overvalued (Hirshleifer/Jiang, 2010) 3.35%∗∗∗ (3.34)

Carhart 4-Factor Model + liquidity-tail (Wu, 2015) 3.77%∗∗∗ (3.14)

This table reports monthly OLS-regression results of a trading strategy based on the return-difference be-

tween past strong EDL risk (quintile 5) and past weak EDL risk (quintile 1) portfolios on different factor

models. The factors we use in Panel A include Marketrf, which is based on Sharpe (1964)’s capital asset

pricing model, SMB and HML of the Fama and French (1993) three-factor model, MOM of the four-factor

model by Carhart (1997), Pastor and Stambaugh (2003)’s traded liquidity risk factor (PS Liqui), Chabi-Yo,

Ruenzi and Weigert (2015)’s equal-weighted EDRR (EDRR) factor, Bali, Cakici, and Whitelaw (2011)’s

equal-weighted lottery factor (Max), as well as the equally-weighted tail-risk factor (Tail) proposed by Kelly

and Jiang (2014) and the betting-against-beta factor (BAB) proposed by Frazzini and Pedersen (2014). The

factor models in Panel B include the the Fama and French (2015) five-factor model, the Hou, Xue, and Zhang

(2015) and Novy-Marx (2013) four-factor models as well as the Carhart (1997) four-factor model extended

by the Fama and French short- and long-term reversal factors, the leverage factor from Adrian, Etula, and

Muir (2014), the quality-minus-junk factor from Asness, Frazzini, and Pedersen (2014), the undervalued-

minus-overvalued factor from Hirshleifer and Jiang (2010), and the Wu (2015) liquidity-tail factor. Portfolios

of the EDL risk trading strategy are rebalanced monthly. The sample covers all U.S. common stocks traded

on the NYSE / AMEX and the sample period is from January 1969 to December 2012. t-statistics are in

parentheses. ∗∗∗, ∗∗, and ∗ indicate significance at the one, five, and ten percent level, respectively. We use

Newey-West (1987) standard errors with one lag.
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Table 6: Fama and MacBeth (1973) Regressions

(1) (2) (3) (4) (5) (6)
Returnt+2 Returnt+2 Returnt+2 Returnt+2 Returnt+2 Returnt+2

EDL risk 0.00184∗∗∗ 0.00137∗∗∗ 0.00133∗∗∗ 0.00113∗∗∗ 0.00137∗∗∗ 0.00145∗∗∗

(3.73) (4.49) (4.32) (3.73) (4.28) (4.49)

βR -0.00008 -0.00009 -0.00029 0.00006
(-0.19) (-0.24) (-0.74) (0.16)

size -0.00007 -0.00005 -0.00007 -0.00018∗∗ -0.00018∗∗

(-0.79) (-0.57) (-0.79) (-2.54) (-2.65)

btm 0.00039∗∗∗ 0.00039∗∗∗ 0.00039∗∗∗ 0.00032∗∗∗ 0.00032∗∗∗

(2.89) (2.90) (2.92) (2.27) (2.26)

past return 0.00159∗∗∗ 0.00157∗∗∗ 0.00155∗∗∗ 0.00131∗∗∗ 0.00133∗∗∗

(3.80) (3.75) (3.73) (2.98) (2.98)

βL 0.00219 0.00279 0.00050
(0.73) (0.93) (0.15)

EDR risk 0.00278∗∗∗ 0.00265∗∗∗ 0.00264∗∗∗

(7.16) (6.54) (6.21)

illiq 0.00010 0.00009
(0.75) (0.62)

βTail 0.00794∗∗ 0.00748∗∗

(2.19) (2.04)

idio vola -0.01391∗ -0.01457∗

(-1.73) (-1.65)

coskew 0.00009 -0.00007
(0.20) (-0.10)

β−
L -0.00132

(-0.88)

β+
L -0.00006

(-0.03)

β−
R 0.00004

(0.14)

β+
R 0.00001

(0.08)

const 0.00113∗∗ 0.00239 0.00203 0.00213 0.00510∗∗∗ 0.00531∗∗∗

(2.03) (1.33) (1.14) (1.20) (3.83) (4.14)

Avg. R2 0.0025 0.0449 0.0465 0.0477 0.0647 0.0653

This table displays the results of multivariate Fama and MacBeth (1973) regressions. We report the results
of regressions of weekly excess returns over the risk-free rate at week t + 2 on EDL risk, βR, the log of
market capitalization (size), the book-to-market ratio (btm), the past 12-month excess returns (past year
return), βL, EDR risk, illiquidity (illiq), βTail from Kelly and Jiang (2014), idiosyncratic volatility (idio
vola), coskewness (coskew), β−R , β+

R , β−L , and β+
L . All risk and firm characteristics are calculated using data

available at (the end of) week t. A detailed description of the computation of these variables is given in the
main text and in Internet Appendix C. The sample covers all U.S. common stocks traded on the NYSE /
AMEX and the sample period is from January 1969 to December 2012. t-statistics are in parentheses. ∗∗∗,
∗∗, and ∗ indicate significance at the one, five, and ten percent level, respectively. We use Newey-West (1987)
standard errors with four lags.

52



Table 7: Impact of EDL Risk in Dispersion-Sorted Samples

Panel A: Univariate Sorts

Low Dispersion High Dispersion
Dispersion Proxy Strong EDL risk Weak EDL risk 5-1 Diff Strong EDL risk Weak EDL risk 5-1 Diff

Standard Deviation 8.76% 5.58% 3.18%∗∗∗ 10.56% 5.13% 5.42%∗∗∗

(3.00) (3.78)

Idio Vola 8.74% 5.65% 3.08%∗∗∗ 10.48% 4.69% 5.79%∗∗∗

(2.93) (3.89)

VaR 9.02% 5.39% 3.63%∗∗∗ 9.88% 5.53% 4.35%∗∗∗

(3.32) (3.20)

CoVar 8.99% 5.58% 3.41%∗∗∗ 9.94% 5.69% 4.25%∗∗∗

(3.17) (3.12)

Average 8.88% 5.55% 3.33%∗∗∗ 10.21% 5.26% 4.95%∗∗∗

(3.13) (3.59)

Panel B: Fama-MacBeth (1973) Regressions

Standard Deviation Idios. Vola VaR CoVar
Low Disp. High Disp. Low Disp. High Disp. Low Disp. High Disp. Low Disp. High Disp.

EDL risk 0.00112∗∗∗ 0.00195∗∗∗ 0.00109∗∗∗ 0.00201∗∗∗ 0.00116∗∗∗ 0.00187∗∗ 0.00114∗∗∗ 0.00171∗∗

(3.54) (2.58) (3.44) (2.67) (3.56) (2.52) (3.56) (2.22)

This table displays the results of conditional univariate portfolio sorts and conditional multivariate Fama and MacBeth (1973)
regressions. We sort stocks into two categories: Low dispersion stocks which display a standard deviation or idiosyncratic
volatility (VaR or CoVar) of returns and liquidity shocks below (above) the respective median measure and high dispersion
stocks which display a standard deviation or idiosyncratic volatility (VaR or CoVar) of returns and liquidity shocks above (below)
the respective median measure. Panel A reports the results of univariate portfolio sorts based on the high/low dispersion sample.
Panel B repeats regression (5) from Table 6 of weekly excess returns over the risk-free rate at week t + 2 on firm- and risk
characteristics conditional on a stock’s dispersion measures being below (above) the respective median. We only report the
coefficient estimate for the impact of EDL risk. All other explanatory variables of regression specification (5) are included in the
regressions, but their coefficient estimates are suppressed. A detailed description of the computation of these variables is given
in the main text and in Internet Appendix C. The sample covers all U.S. common stocks traded on the NYSE / AMEX and
the sample period is from January 1969 to December 2012. t-statistics are in parentheses. ∗∗∗, ∗∗, and ∗ indicate significance
at the one, five, and ten percent level, respectively. We use Newey-West (1987) standard errors with four lags.
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Table 9: Different Liquidity Proxies: Univariate Portfolio Sorts and FMB Regressions

Panel A: Univariate Portfolio Sorts

Liquidity Returnt+2 CAPM CAR

EDL risk 5-1 Low-Frequency (1969-2012)

illiq 4.00%∗∗∗ 2.85%∗∗∗ 3.03%∗∗∗

(3.66) (2.80) (2.90)
Corwin 2.28%∗∗ 0.89% 1.98%∗∗

(2.15) (0.89) (2.03)
Zeros 1.47%∗∗∗ 1.35%∗∗ 1.60%∗∗∗

(2.69) (2.49) (2.91)
FHT 3.40%∗∗∗ 2.80%∗∗∗ 3.10%∗∗∗

(4.24) (3.57) (3.95)

EDL risk 5-1 High-Frequency (2002-2010)

EffSpr 4.11%∗∗ 3.53%∗∗ 3.39%∗∗

(2.24) (2.14) (1.94)
RelSpr 1.72% 0.81% 1.24%

(0.83) (0.43) (0.67)
IntAmi 5.53%∗∗ 4.51%∗∗ 3.82%∗

(2.03) (1.98) (1.80)
PriImp 4.67%∗∗ 3.93%∗∗ 3.78%∗

(2.18) (2.03) (1.85)

Panel B: Fama and MacBeth (1973) Regressions

Low-Frequency (1969-2012) High-Frequency (2002-2010)
(1) (2) (3) (4) (5) (6) (7) (8)
Illiq Corwin Zeros FHT EffSpr RelSpr IntAmi PriImp

EDL risk 0.00137∗∗∗ 0.00085∗∗∗ 0.00047 0.00167∗∗∗ 0.00135∗ 0.00007 0.00192∗∗∗ 0.00171∗∗

(4.28) (2.69) (0.98) (4.49) (1.83) (0.14) (2.59) (2.23)

This table reports results of univariate portfolio sorts and Fama and MacBeth (1973) regressions for different liquidity proxies.
As high-frequency liquidity proxies we use the effective spread (EffSpr), the relative spread (RelSpr), the intraday Amihud
measure (IntAmi), and the price impact measure (PriImp). As low-frequency liquidity proxies we use the Amihud Illiquidity
Ratio (illiq), the Corwin measure (Corwin), the Zeros measure (Zeros) and the FHT measure (FHT ). A detailed description
of the computation of these variables is given in Internet Appendix A. In Panel A we rank stocks into quintiles (1-5) based
on estimated past EDL risk of the different liquidity proxies over the last three years and form equal-weighted portfolios at
the beginning of each weekly period. We report differences in annualized returns, differences in the CAPM-Alpha based on
Sharpe (1964)’s capital asset pricing model and differences in the CAR-alpha based on Carhart (1997)’s four factor model
between portfolio 5 and portfolio 1 with corresponding statistical significance levels. Panel B shows the results of regression
specification (5) from Table 6 for different liquidity proxies. We only report the coefficient estimate for the impact of EDL risk.
All other explanatory variables of specification (5) are included in the regressions, but their coefficient estimates are suppressed.
The sample covers all U.S. common stocks traded on the NYSE / AMEX. The sample period for the low-frequency liquidity
proxies is from January 1969 to December 2012. The sample period for the high-frequency liquidity proxies is from July 2002
to December 2010. t-statistics are in parentheses. ∗∗∗, ∗∗, and ∗ indicate significance at the one, five, and ten percent level,
respectively. We use Newey-West (1987) standard errors with four lags.
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Table 10: Different Estimation Procedures: Univariate Portfolio Sorts and FMB Regressions

Panel A: Univariate Portfolio Sorts

Procedure Returnt+2 CAPM CAR

EDL risk 5-1 Estimation Horizons & Liquidity Shocks

1y 2.91%∗∗∗ 2.05%∗∗ 2.39%∗∗

(3.40) (2.39) (2.50)
2y 3.91%∗∗∗ 2.67%∗∗ 2.94%∗∗∗

(3.43) (2.53) (2.68)
5y 4.22%∗∗∗ 2.81%∗∗ 2.56%∗∗

(3.09) (2.32) (2.16)
diff 5.66%∗∗∗ 4.34%∗∗∗ 3.91%∗∗∗

(4.39) (3.75) (3.31)

EDL risk 5-1 Copula Functions

C1 4.00%∗∗∗ 2.85%∗∗∗ 3.03%∗∗∗

(3.66) (2.80) (2.90)
C2 4.19%∗∗∗ 3.07%∗∗∗ 3.22%∗∗∗

(3.94) (3.14) (3.23)
C63 4.64%∗∗∗ 3.47%∗∗∗ 3.59%∗∗∗

(4.27) (3.47) (3.50)
C64 4.10%∗∗∗ 2.93%∗∗∗ 3.10%∗∗∗

(3.78) (2.93) (3.01)
Cw 5.24%∗∗∗ 3.91%∗∗ 4.04%∗∗∗

(4.41) (3.58) (3.61)

EDL risk 5-1 EDL risk Components

EDLR1 0.33% −0.32% −0.23%
(0.40) (-0.40) (-0.28)

EDLR2 4.08%∗∗∗ 3.32%∗∗∗ 3.09%∗∗∗

(4.74) (4.10) (3.69)
EDLR3 3.59%∗∗∗ 2.70%∗∗∗ 2.97%∗∗∗

(3.87) (3.08) (3.39)
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Panel B: Fama and MacBeth (1973) Regressions

Estimation Horizons & Liquidity Shocks
(1) (2) (3) (4)
1y 2y 5y diff

EDL risk 0.00068∗∗∗ 0.00108∗∗∗ 0.00167∗∗∗ 0.00226∗∗∗

(3.45) (4.14) (4.48) (6.41)

Copula Functions
(5) (6) (7) (8) (9)
C1 C2 C63 C64 Cw

EDL risk 0.00137∗∗∗ 0.00125∗∗∗ 0.00156∗∗∗ 0.00127∗∗∗ 0.00178∗∗∗

(4.28) (3.96) (4.65) (3.92) (4.44)

EDL risk Components (joint estimate)
(10)

EDLR1 EDLR2 EDLR3

EDL riski -0.00003 0.00234∗∗∗ 0.00276∗∗∗

(-0.06) (3.61) (4.55)

This table reports results of univariate portfolio sorts and Fama-MacBeth (1973) regressions for different estimation horizons,
liquidity shocks, copula functions, and on the EDL risk component level. We estimate EDL risk with different estimation horizons
of 1-year, 2-years, and 5-years, as well as based on liquidity-differences instead of -shocks from an AR-model. Furthermore we
estimate EDL risk with different copulas (C1-C4 and Cw). We also analyze the component-wise effect of the three risk factors
EDL risk1, EDL risk2, and EDL risk3. A detailed description of the computation of these variables is given in the main text
and Internet Appendix C. In Panel A we rank stocks into quintiles (1-5) based on estimated past EDL risk of the different
estimation horizons, different copulas and EDL risk components, and form equal-weighted portfolios at the beginning of each
weekly period. We report differences in annualized returns, differences in the CAPM-Alpha based on Sharpe (1964)’s capital
asset pricing model and differences in the CAR-alpha based on Carhart (1997)’s four factor model between portfolio 5 and
portfolio 1 with corresponding statistical significance levels. Panel B shows the results of regression specification (5) from Table
6 for different estimation procedures. We only report the coefficient estimate for the impact of EDL risk. In Specification (10)
of Panel B, we adjust specification (5) from Table 6 by replacing EDL risk by its three components and estimating jointly. The
sample covers all U.S. common stocks traded on the NYSE / AMEX. The sample period is from January 1969 to December
2012. t-statistics are in parentheses. ∗∗∗, ∗∗, and ∗ indicate significance at the one, five, and ten percent level, respectively. We
use Newey-West (1987) standard errors with four lags.
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Table 12: Different Regression Methods

Panel A: Different Regression Methods

Regression (1) (2) (3) (4) (5) (6) (7)

EDL risk 0.00137∗∗∗ 0.00117∗∗∗ 0.00214∗∗∗ 0.00214∗∗∗ 0.00243∗∗∗ 0.00243∗∗∗ 0.00240∗∗∗

(4.24) (3.60) (8.88) (7.99) (8.57) (8.89) (8.56)

Controls yes yes yes yes yes yes yes
Method fmb fmb ols ols panel panel panel
Winsorized yes no yes yes yes yes yes
Time-Fixed Effects yes yes yes yes yes
Firm Effects no no fixed fixed random
Clustered SE firm industry no firm no
Newey-West SE no yes no no no no no

R2 0.065 0.064 0.195 0.187 0.202 0.202

Panel B: Adjusted Returns

EDL risk return EDL risk
(t-stat) adjustment (t-stat)

Returnt+1 0.00157∗∗∗ SIC-2 0.00096∗∗∗

(weekly) (4.90) (weekly) (3.52)
Returnt+3 0.00150∗∗∗ SIC-3 0.00085∗∗∗

(weekly) (4.71) (weekly) (2.83)
Returnt+4 0.00148∗∗∗ SIC-4 0.00074∗∗∗

(weekly) (4.77) (weekly) (3.27)
Monthly Return 0.00447∗∗∗ FF12 0.00468∗∗

(monthly) (3.24) (monthly) (2.19)
DGTW 0.00263∗ FF48 0.00451∗∗

(monthly) (1.72) (monthly) (2.18)

Panel A reports the results of different multivariate regressions on a weekly frequency. Regression (1) repeats the baseline
regression (5) from Table 6, but we now do not use Newey-West standard errors in the second stage of the Fama-MacBeth (1973)
regressions. Regression (2) repeats the standard Fama-MacBeth (1973) regression, but we do not winsorize the independent
variables. In regression (3) we perform a pooled OLS regression with time-fixed effects and standard errors clustered by stock.
Regression (4) is identical, but we cluster standard errors by the SIC-2-digits classification. Regressions (5) and (6) perform
panel regressions with firm-fixed effects. In regression (6) standard errors are additionally clustered by firm. Finally, in regression
(7) we regress excess returns on the independent variables via a random-effect panel regression. Panel B reports the result of
regression (5) of Table 6 with different return adjustments. We use weekly returns in t+ 1, t+ 3, and t+ 4, as well as monthly
returns, DGTW alphas (results are displayed on the left side of Panel B), and industry-adjustments (results are displayed on
the right side of Panel B). The sample period is from January 1969 to December 2012. ∗∗∗, ∗∗, and ∗ indicate significance at
the one, five, and ten percent level, respectively. We use Newey-West (1987) standard errors with four lags for weekly data and
with one lag for monthly data.
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Internet Appendix for
”Extreme Downside Liquidity Risk”

Abstract

The Internet Appendix consists of three sections. Internet Appendix A contains infor-

mation on the eight liquidity proxies used in this study, as well as the computation of

liquidity shocks. In Internet Appendix B, we provide the technical details of the copula

estimation and selection procedure. Internet Appendix C defines the main variables

used in the study and gives detailed data sources.



A Internet Appendix: Liquidity Measures

Internet Appendix A provides the definitions of the eight liquidity proxies used in this

study, along with data requirements, details about the computation of liquidity shocks and

a short analysis of how well EDL risk estimates based on low-frequency proxies correlate

with high-frequency benchmark values.

A.1 Liquidity Proxy Definitions and Data Requirements

The low-frequency data for proxies (1)-(4) comes from CRSP. The high-frequency proxies

(5)-(8) use data from the NYSE TAQ database.

(1) The Amihud (2002) Illiquidity Ratio (Illiq) is defined as in Acharya and Pedersen

(2005):

cit = min(0.25 + 0.30 · illiqit · Pm
t−1, 30)% (A.1)

with

illiqit =
1

daysit

daysi

t∑

d=1

|ritd|
V i
td

where ritd and V i
td are respectively the return and dollar volume (in millions) on day d in

week t and daysit is the number of valid (available return and non-zero dollar-volume)

observations in week t for stock i. cit can be interpreted as the effective half-spread of

stock i.

(2) The Corwin and Schultz (2012) illiquidity measure (Corwin) is defined as follows:

cit =
1

daysit − 1

daysi

t∑

d=2

max

(
2 · (eαi

td − 1)

eα
i
td + 1

, 0

)
(A.2)

A-1



with

αitd =

√
2 · βitd −

√
βitd

3− 2 ·
√

2
−
√

γitd
3− 2 ·

√
2

βitd =

(
log

(
hiit,d−1

loit,d−1

))2

+

(
log

(
hiit,d
loit,d

))2

γitd =

(
log

(
tdhiit,d
tdloit,d

))2

where hiit,d and loit,d stand for high- and low-prices on day d in week t for stock i,

tdhiit,d and tdloit,d stand for 2-day high- and low-prices on days d − 1 and d in week t

for stock i and daysit is the number of days for which high-, low- and closing prices are

available. We use the same adjustments for strong overnight price changes and thinly

traded stocks as Corwin and Schultz (2012). cit can be interpreted as the spread of

stock i.

(3) The Lesmond, Ogden and Trzcinka (1999) illiquidity measure (Zeros) is defined as:

cit =
xitd

daysit
(A.3)

where xitd is the number of zero-return days and daysit is the number of available daily

returns in week t for stock i.

(4) The Fong, Holden and Trzcinka (2014) illiquidity measure (FHT) is defined as follows:

cit = 2 · σit ·N−1

(
1 + Zeros2

2

)
(A.4)

with

Zeros2 =
xit
7

where xit is the number of zero-return days for week t, σit is the standard-deviation of

daily returns in week t, and N−1 (·) is the inverse of the standard normal cdf. cit can

be interpreted as the spread of stock i.
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(5) The relative spread (RelSpr) is defined as:

cit =
1

daysit

daysi

t∑

d=1

1

N i
td

N i
td∑

n=1

RSitdn (A.5)

with

RSitdn =
Aitdn −Bi

tdn

Qi
tdn

where Aitdn, Bi
tdn and Qi

tdn =
Ai

tdn+Bi
tdn

2
are prevailing ask quote, prevailing bid quote

and quote midpoint price in transaction n of day d in week t. daysit is the number

of days with available transactions of stock i in week t and N i
td is the number of

transactions of stock i on day d in week t. The prevailing bid- and ask-quotes are the

latest available quotes up to at least one second before the trade.

(6) The effective spread (EffSpr) is defined as follows:

cit =
1

daysit

daysi

t∑

d=1

1

N i
td

N i
td∑

n=1

ESitdn (A.6)

with

ESitdn =
2 · |P i

tdn −Qi
tdn|

Qi
tdn

where all variables are defined as above and P i
tdn is the transaction price of transaction

n of day d in week t.

(7) The 5-minute price impact (PriImp) is defined as follows:

cit =
1

daysit

daysi

t∑

d=1

1

N i
td

N i
td∑

n=1

PI itdn (A.7)

with

PI itdn =
2 · |Qi

tdn5 −Qi
tdn|

Qi
tdn
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where all variables are defined as above and Qi
tdn5 is the quote midpoint 300 seconds

after transaction n of day d in week t.

(8) The intraday Amihud measure (IntAmi) is defined as follows:

cit =
1

daysit

daysi

t∑

d=1

1

N i
td

N i
td∑

n=1

IAitdn (A.8)

with

IAitdn =
2 · |Qi

tdn5 −Qi
tdn|

Qi
tdn · witdn

where all variables are defined as above and witdn is the transaction volume (in shares)

of transaction n of day d in week t.

For all liquidity proxies, a missing value is recorded if there are less than three daily

observations for week t and stock i, i.e., daysit < 3.1

A.2 Computation of Illiquidity Shocks and Analysis of EDL Risk

Estimates For Different Proxies

As explained in the main text, we use dit = −cit, i.e., liquidity(-shocks) instead of illiquidity(-

shocks) for the estimation of EDL risk (see Internet Appendix B) in order to facilitate the

interpretation of extreme downside liquidity risk. As dit is highly persistent for most of the

stocks in our sample, we estimate liquidity shocks based on the difference between the nor-

malized realized liquidity value dit and the expected normalized liquidity Et−1(dit) for each

stock i and week t. Expected normalized liquidity Et−1(dit) is computed via an AR - time

series model.

In order to deal with possible time-variation of parameters and to keep estimates fully out-

of-sample, the estimation is run on a 3-year rolling window basis. The choice of a persistent

but mean-reverting process seems natural for liquidity. Statistical tests – based on non-

overlapping 3-year periods between 1963 and 20112 – generally support this choice. First,

1We make an exception for the week of September 11th 2001, when just one trading day occurred on
NYSE/AMEX. For this week the minimum number of observations is lowered to 1.

2The results are qualitatively the same, if the model-selection is done for just 1963-1968, so that the
EDL risk-estimates can still be interpreted as fully out-of-sample.

A-4



the null-hypothesis of ’no autocorrelation at the first lag’ is rejected by Ljung-Box tests at a

10% significance level for most stocks (e.g., 92% of stocks for the Amihud Illiquidity Ratio).

Second, Augmented Dickey-Fuller tests – with four lagged difference terms, with drift and

without time-trend – reject the null-hypothesis of ’unit root present’ at a 10% significance

level for most stocks (e.g., 78% of stocks for the Amihud Illiquidity Ratio). Additionally,

the partial autocorrelation function becomes insignificant at the fourth lag or less for most

stocks (e.g., 86% of stocks for the Amihud Illiquidity Ratio). These results generalize to

most proxies. Thus, it seems reasonable to use an AR(4)-model to estimate Et−1(dit), as

given in equation (5).

In order to assess the quality of our EDL risk estimates for different liquidity proxies, we

perform a comparison between our weekly low-frequency proxies (illiq, Corwin, Zeros and

FHT) and high-frequency benchmarks (EffSpr, RelSpr, IntAmi, and PriImp) from 1996 to

2010, when both are available. Panel A of Table A.1 displays average time-series correlations

between proxy-levels for the sample period from 1996 to 2010. As expected, all low-frequency

proxies are positively correlated with high-frequency benchmarks. Illiq and Corwin show the

highest correlations with the high-frequency proxies. In Panel B of Table A.1 we report

average time-series correlations between proxy-EDL risk estimates. We again find that EDL

risk estimates of the illiq and the Corwin measure are more highly correlated with the high-

frequency proxies than risk estimates of the Zeros and the FHT measure. The positive

correlations between low-frequency proxy EDL risks and high-frequency proxy EDL risks

suggest, that – in spite of all the noise in weekly low-frequency liquidity shocks – our method

captures lower tail dependence in actual liquidity. Additionally, the magnitude of correlations

suggests that Corwin and illiq lead to more precise EDL risk estimates than FHT and Zeros.

The same ranking emerges in unreported tests, when average cross-sectional correlations on

the stock-level, time-series correlations for the value-weighted market shocks, and Spearman,

i.e., rank correlations between liquidity-shocks, are analyzed.

To investigate the temporal variation of the different EDL risk proxy measures, we plot

the development of aggregate EDL risks over time. As before, we define aggregate EDL

risk as the weekly cross-sectional, value-weighted average of EDL riski,t over all stocks i in

our sample. Figure A.1 plots the time series of EDL riskm,t for the different low-frequency

and high-frequency measures. It reveals that EDL riskm,t based on low-frequency proxies

experiences the largest spikes during the time period after Black Monday in October 1987
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and the financial crisis starting in 2007. The same spike in 2007 emerges for the EDL risk

measures based on high-frequency proxies, which are only available after 2001. We attribute

the difference in EDL risk levels across proxies to the noisiness of liquidity measures. Noise

(without tail dependence) could cause lower EDL risk estimates. This would explain why

our noisier proxies (FHT and Zeros, see Table A.1) are at lower absolute EDL risk levels

than EDL risk estimates based on Corwin and illiq.
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Table A.1: Average Time-Series Correlations between Liquidity Proxy Levels and EDL
Risk Estimates

Panel A: Average Time-Series Correlations between Proxy Levels

High-Frequency Proxies Low-Frequency Proxies
EffSpr RelSpr IntAmi PriImp illiq Corwin Zeros FHT

EffSpr 1.00
RelSpr 0.41 1.00
IntAmi 0.58 0.35 1.00
PriImp 0.75 0.33 0.79 1.00

illiq 0.25 0.41 0.29 0.19 1.00
Corwin 0.12 0.20 0.19 0.11 0.16 1.00
Zeros 0.04 0.06 0.02 0.01 -0.03 -0.03 1.00
FHT 0.11 0.14 0.09 0.07 0.09 0.07 0.70 1.00

Panel B: Average Time-Series Correlations between EDL Risk Estimates

High-Frequency Proxies Low-Frequency Proxies
EffSpr RelSpr IntAmi PriImp illiq Corwin Zeros FHT

EffSpr 1.00
RelSpr 0.48 1.00
IntAmi 0.62 0.47 1.00
PriImp 0.73 0.48 0.75 1.00

illiq 0.39 0.36 0.35 0.38 1.00
Corwin 0.49 0.48 0.57 0.53 0.36 1.00
Zeros 0.04 0.02 0.03 0.04 0.02 0.01 1.00
FHT 0.13 0.10 0.11 0.13 0.10 0.13 0.23 1.00

This table displays correlations between liquidity levels (Panel A) and EDL risk coefficients (Panel B) based

on the different liquidity proxies used in this study. A detailed description of the computation of the

proxy-levels and shocks is given above in Internet Appendix A. The calculation of EDL risk coefficients is

explained in Internet Appendix B. The sample covers all U.S. common stocks traded on the NYSE / AMEX.

The sample period for proxy levels (EDL risk estimates) is from January 1996 to December 2010 (January

2000 to December 2010).
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Figure A.1: Aggregate EDL Risk Over Time for Different Liquidity Measures
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(b) Panel B: High-Frequency Measures (2002-2010)

This figure displays the evolution of aggregate EDL risk for different low-frequency and high-frequency

liquidity measures. A detailed description of the computation of these variables is given in Internet Appendix

A. Panel A draws the evolution of aggregate EDL risk of the low-frequency measures, Panel B shows the

evolution for the high-frequency measures. The sample covers all U.S. common stocks traded on the NYSE

/ AMEX and the sample period for low- (high-)frequency proxies is from 1969 (2000) to 2012 (2010).
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B Internet Appendix: Estimating Tail Dependence Co-

efficients

Internet Appendix B provides the technical details of the copula estimation and selection

procedure and the calculation of the respective tail dependence coefficients. The estimation

procedure follows the approach of Chabi-Yo, Ruenzi and Weigert (2015).

B.1 The Estimation Procedure

Bivariate extreme value distributions (such as in this paper) cannot be characterized by

a fully parametric model in general, which leads to more complicated estimation techniques

(see Frahm, Junker, and Schmidt (2005)). Our estimation approach relies on the entire

set of weekly returns rt and liquidity innovations lt of a firm i and the market in a 3-year

period.

Coefficients of tail dependence have closed-form solutions for several basic parametric cop-

ulas (see Table B.1), but these basic copulas do not allow us to model upper and lower tail

dependence simultaneously. However, Tawn (1988) shows that every convex combination of

existing copula functions is again a copula. Thus, if C1(u1, u2), C2(u1, u2), . . ., Cn(u1, u2)

are bivariate copula functions, then

C(u1, u2) = w1 · C1(u1, u2) + w2 · C2(u1, u2) + . . .+ wn · Cn(u1, u2)

is again a copula for wi ≥ 0 and
∑n

i=1 wi = 1.

To allow for the maximum possible flexibility, we consider 64 possible convex combina-

tions of the afore mentioned basic copulas from Table B.1. Each combination consists of one

copula that allows for asymptotic dependence in the lower tail, CLTD, one copula that is

asymptotically independent, CNTD, and one copula that allows for asymptotic dependence

in the upper tail, CUTD:

C(u1, u2,Θ) = w1 · CLTD(u1, u2; θ1)

+w2 · CNTD(u1, u2; θ2) + (1− w1 − w2) · CUTD(u1, u2; θ3),
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where Θ denotes the set of the basic copula parameters θi, i = 1, 2, 3 and the weights w1 and

w2.

For the sake of convenience, we only outline the estimation approach of lower tail de-

pendence in the distribution of a stock’s liquidity and market liquidity (EDL risk1). The

estimation of the other EDL risk components, namely EDL risk2 (stock return and market

liquidity) as well as EDL risk3 (stock liquidity and market return) follows analogously.

Starting with 1966-1968, we determine the copula convex combination that shows the

best fit for the bivariate distribution of liquidity shocks for each stock and 3-year window.

First, based on weekly liquidity innovations, we estimate a set of copula parameters Θj for

j = 1, . . . , 64 different copulas Cj(·, ·; Θj) between individual stock liquidity lit and market

liquidity lmt for each stock i based on a 3-year rolling window. Each of these convex combina-

tions requires the estimation of five parameters: one parameter θi (i = 1, 2, 3) for each of the

three basic copulas and two parameters for the weights w1 and w2. The copula parameters

Θj are estimated via the canonical maximum likelihood procedure of Genest, Ghoudi, and

Rivest (1995). The details of this step are described in Section B.2.

Second, for each stock i and week t we compare the estimated log-likelihood values of all

64 copulas Cj and select the parametric copula C∗
i (·, ·; Θ∗) that has the highest log-likelihood

value. The result of this step is summarized in Table B.2 where we present the percentage

frequency by which each of the possible 64 combinations is chosen. Most frequently, copula

(1-D-IV) of Table B.1 is the best fit for the distribution for EDL risk1 and copula (1-A-IV) is

the best fit for the distributions for EDL risk2 as well as EDL risk3. Copula (1-D-IV) relates

to the Clayton-FGM-Rotated Clayton-copula and copula (1-A-IV) relates to the Clayton-

Gauss-Rotated Clayton-copula.

Third, for each stock i and week t, we compute the tail dependence coefficients λL implied

by the estimated parameters Θ∗ of the selected copula C∗(·, ·; Θ∗). The computation of λL

is straightforward if the copula in question has a closed form, as all the basic copulas used in

this study do. Column (3) of Table B.1 displays the closed-form solutions to determine λL

for the respective copula. The lower tail dependence coefficient of the convex combination

is calculated using λ∗L = w∗
1 · λL(θ∗1). As this procedure is repeated for each stock and week,

we end up with a panel of tail dependence coefficients at the stock-week level.
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B.2 Estimation of the Copula Parameters

The estimation of the set of copula parameters Θ for a copula C(·, ·; Θ) is performed as

follows (see also Chabi-Yo, Ruenzi and Weigert (2015)):

Let {li,k, lm,k}nk=1 be a random sample from the bivariate distribution

F (li, lm) = C(Fi(li), Fm(lm))

between individual stock liquidity li and market liquidity lm, where n denotes the number

of weekly return observations in a 3-year period. The marginal distributions Fi and Fm

of individual stock liquidity li and market liquidity lm are estimated non-parametrically by

their scaled empirical distribution functions

F̂i(x) =
1

n+ 1

n∑

k=1

1li,k≤x and F̂m(x) =
1

n+ 1

n∑

k=1

1lm,k≤x. (B.1)

This non-parametric estimation approach avoids an incorrect specification of the marginal

distributions. We then estimate the set of copula parameters Θ parametrically. The param-

eters Θ are estimated via the maximum likelihood estimator

Θ̂ = argmax ΘL(Θ) with L(Θ) =
n∑

k=1

log(c(F̂i,li,k , F̂m,lm,k
; Θj)), (B.2)

where L(Θ) denotes the log-likelihood function and c(·, ·; Θ) the copula densitiy. Θ̂ is a

consistent and asymptotic normal estimate of the set of copula parameters Θ under standard

regularity conditions (e.g., Genest, Ghoudi, and Rivest (1995)), assuming that {li,k, lm,k}nk=1

is an i.i.d. random sample.
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C Internet Appendix: Brief Definitions and Data Sources

of Main Variables

The following table briefly defines the main variables used in our empirical analysis. Ab-

breviations for the data sources are:

(i) CRSP: CRSP’s Stocks Database

(ii) KF: Kenneth French’s Data Library

(iii) CS: Compustat

(iv) OP: The homepages of authors of the respective original papers

EST indicates that the variable is estimated or computed based on original variables from the

respective data sources. Note that the eight liquidity proxies we use are defined separately

in Internet Appendix A.

A-14



Panel A: Return- and Liquidity-Based Variables

Variable Name Description Source

Returnt Raw excess return of a portfolio (stock) over the risk-free rate in week t.

As risk-free rate we use the 1-month T-Bill rate.

CRSP, KF,

EST

EDL risk1 Extreme Downside Liquidity Risk 1 of a stock. Lower tail dependence be-

tween stock liquidity-shocks and (value-weighted) market liquidity-shocks,

estimated based on weekly data from a 3-year rolling window, as detailed

in Internet Appendix B.

CRSP,

EST

EDL risk2 Extreme Downside Liquidity Risk 2 of a stock. Lower tail dependence

between stock returns and (value-weighted) market liquidity-shocks, esti-

mated based on weekly data from a 3-year rolling window, as detailed in

Internet Appendix B.

CRSP,

EST

EDL risk3 Extreme Downside Liquidity Risk 3 of a stock. Lower tail dependence

between stock liquidity-shocks and (value-weighted) market returns, esti-

mated based on weekly data from a 3-year rolling window, as detailed in

Internet Appendix B.

CRSP,

EST

EDR (EUR) risk Extreme Downside (Upside) Return Risk of a stock. Lower (Upper) tail

dependence between stock returns and (value-weighted) market returns,

estimated based on weekly data from a 3-year rolling window, as detailed

in Internet Appendix B.

CRSP,

EST

EDL risk Joint Extreme Downside Liquidity Risk of a stock. EDL risk = EDL risk1+

EDL risk2 + EDL risk3, as detailed in the main text.

CRSP,

EST

Aggregate EDL risk Aggregate Extreme Downside Liquidity Risk. Value-weighted average of

EDL risk (EDL riski) for each week over all stocks in the sample, as detailed

in the main text.

CRSP,

EST

Aggregate EDR risk Aggregate Extreme Downside Return Risk. Value-weighted average of EDR

risk for each week over all stocks in the sample, as detailed in the main text.

CRSP,

EST

EDL riskxy As EDL risk, but based on an x-year rolling window, as detailed in the

main text.

CRSP,

EST

EDL riskCx As EDL risk, but based on copula function Cx, as detailed in the main text

and Internet Appendix B.

CRSP,

EST
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Variable Name Description Source

βR Factor loading on the market factor from a CAPM one-factor regression es-

timated based on a 3-year rolling window of weekly data: βR = COV(ri,rm)

VAR(rm)
.

CRSP,

EST

β−R Downside beta estimated based on a 3-year rolling window of weekly data,

as defined in Ang, Chen, and Xing (2006):

CRSP,

EST

β−R = COV(ri,rm|rm<µm)

VAR(rm|rm<µm)
, where µm is the mean market return.

β+
R Upside beta. As β−R , but with inverted signs within the conditional

(co)variance.

CRSP,

EST

βL1 Liquidity beta 1 as defined in Acharya and Pedersen (2005), estimated

based on a 3-year rolling window of weekly data: βL1 = COV(li,lm)

VAR(rm−lm)
, where

li and lm are the stock- and market-liquidity innovations, as described in

the main text and Internet Appendix B.

CRSP,

EST

βL2 Liquidity beta 2 as defined in Acharya and Pedersen (2005), estimated

based on a 3-year rolling window of weekly data: βL2 = COV(ri,lm)

VAR(rm−lm)
.

CRSP,

EST

βL3 Liquidity beta 3 as defined in Acharya and Pedersen (2005), estimated

based on a 3-year rolling window of weekly data: βL3 = COV(li,rm)

VAR(rm−lm)
.

CRSP,

EST

βL Joint linear liquidity risk. βL = β1 + β2 + β3. CRSP,

EST

β−L1 Downside liquidity beta 1, estimated based on a 3-year rolling window of

weekly data: β−L1 =
COV(li,lm|lm<µlm )

VAR(rm−lm|lm<µlm )
, where µum is the mean weekly

market liquidity innovation.

CRSP,

EST

β−L2 Downside liquidity beta 2, estimated based on a 3-year rolling window of

weekly data: β−L2 =
COV(ri,lm|lm<µlm )

VAR(rm−lm|lm<µlm )
.

CRSP,

EST

β−L3 Downside liquidity beta 3, estimated based on a 3-year rolling window of

weekly data: β−L3 =
COV(li,rm|rm<µrm )

VAR(rm−lm|rm<µrm )
, where µrm is the mean weekly

market return.

CRSP,

EST
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Variable Name Description Source

β−L Joint linear downside liquidity risk. β−L = β−L1 + β−L2 + β−L3. CRSP,

EST

β+
L Joint linear upside liquidity risk. As β−L , but with inverted signs within the

(co)variances.

CRSP,

EST

βTail Exposure to tail risk, as measured in Kelly and Jiang (2014). CRSP,

EST

CAPM-Alpha,

FF-Alpha,

CAR-Alpha

Sharpe (1964)-based alpha, Fama and French (1993) three-factor alpha, and

Carhart (1997) four-factor alpha of a portfolio. We use monthly portfolio

returns to estimate the alphas.

CRSP, KF,

EST

idio vola A stock’s idiosyncratic volatility, defined as the 3-year rolling window stan-

dard deviation of the CAPM-residuals of its weekly returns.

CRSP,

EST

coskew The coskewness of a stock’s 3-year rolling window weekly returns with the

market:

coskew = E[(ri−µi)(rm−µm)2]√
VAR(ri)VAR(rm)

.

CRSP,

EST

Marketrf Value-weighted CRSP market-return in excess of the risk-free rate. KF

SMB Small-Minus-Big factor portfolio return, available for each month. KF

HML High-Minus-Low factor portfolio return, available for each month. KF

Mom Winner-Minus-Loser (momentum) factor portfolio return, available for each

month.

KF

Past Return Last year’s return for a given stock. CRSP,

EST

PS Liqui Pastor and Stambaugh (2003)’s traded liquidity risk factor. OP

Sadka Liqui Sadka (2006)’s liquidity factor. OP

EDRR Chabi-Yo, Ruenzi and Weigert (2015)’s equally-weighted EDR risk factor

portfolio return.

OP

illiq Amihud (2002) illiquidity ratio (average over last year). CRSP,

EST

Tail Kelly and Jiang (2014)’s equal-weighted tail risk factor portfolio return. CRSP,

EST

BAB Frazzini and Pedersen (2014)’s U.S. equity betting-against-beta return. OP
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Variable Name Description Source

Max Bali, Cakici, and Whitelaw (2011)’s equally-weighted lottery factor. OP

Standard-

Deviation

Standard-deviation of the past 3 years’ weekly returns or liquidity shocks. CRSP,

EST

VaR Value at Risk. 5% quantile of the past 3 years’ weekly returns or liquidity

shocks.

CRSP,

EST

CoVaR Conditional Value at Risk. Conditional mean of the past 3 years’ weekly

returns or liquidity shocks below the 5% quantile.

CRSP,

EST

Panel B: Other Firm Characteristics

Variable Name Description Source

size The natural logarithm of a firm’s equity market capitalization in million

USD.

CS

btm A firm’s book-to-market ratio computed as the ratio of CS book value of

equity per share (i.e., book value of common equity less liquidation value

(CEQL) divided by common share outstanding (CSHO)) to share price

(i.e., market value of equity per share).

CS

SIC 2, 3, 4 2-, 3- and 4-digit Standard Industrial Classification. CRSP

FF 12, 48 Fama and French’s 12 and 48 industry classifications. KF

DGTW Daniel, Grinblatt, Titman, and Wermers (1997)’s characteristic-based

benchmark, available via Russ Wermer’s homepage.

OP
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