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1 Introduction

In the last twenty years there has been a wider access to high-frequency data allowing
researchers to document several stylized facts and to test economic and financial theories
from new perspectives. While the high-frequency literature has widely been applied to
stocks and bonds, see Dacorogna et al. (2001), Parlour and Seppi (2008), and Abergel et
al. (2012), among others, none of the previous studies examines the spot precious metals.
We provide the first high-frequency analysis on spot precious metals by describing the
main stylized facts and dynamic properties of gold, silver, palladium, and platinum.
Only a few authors have discussed the properties of high-frequency data on precious met-
als. Cai et al. (2001) focus on 5-minute gold future returns. They study the periodicity
in absolute returns and link its movements to macroeconomic announcements. Fleming
et al. (2003) make use of realized volatility on several assets and determine the economic
value of volatility timing. Their study includes 5-minute returns of gold futures con-
tracts. Baillie et al. (2007) analyze the dynamic behavior of several daily and 5-minute
commodity futures prices, including the gold future. Bannouh et al. (2009) work on co-
range computation (an estimator of the integrated covariance) with a trade dataset that
includes the gold future. Finally, Khalifa et al. (2011) focus on volatility measurement
and forecasting of several commodity future prices, including gold and silver. All of the
aforementioned studies have a common element: They work on New York futures data.
Moreover, to the best of our knowledge, gold has piqued the greatest amount of interest,
whereas silver has only attracted limited attention. We support this by the larger amount
of interest in gold, compared with other precious metals, and the perception of gold as a
safe-haven investment.
Our work belongs to the strand of literature focusing on high-frequency data on precious
metals. We differ from previous studies in at least five respects. First, we have access
to high-frequency data about four different precious metals: gold, silver, palladium, and
platinum. None of the previous papers has studied a comprehensive set of precious met-
als. Second, our data are related to spot prices and not futures contracts. Therefore, the
time-series behaviors might be different as a consequence of the different uses associated
with spot and future contracts. To our knowledge, there is no literature on palladium
and platinum based on high-frequency data. Third, we have access to a brokerage house
database that operates on a 24-hours basis. As a result, the movement we observe in
high-frequency time series can be linked to the activity in different precious metals mar-
kets, including New York but also the European markets (London and Zurich) and the
Asian markets. This is of relevant interest because previous works only focused on a
specific market. Fourth, we differ from previous works because of our access to a trade-
and-quotes dataset. From the trade side, we have trading prices and volumes as well as
the trade direction (i.e. the exact identification if a trade was buyer- or seller-initiated).
On the quote side, we have access to the limit order book up to ten levels (i.e. the best
then ask and bid quotes). We observe the limit order price and volume, which makes
feasible the measurement of more dimensions of market liquidity. To our knowledge, this
is the first study on market liquidity and commonality in liquidities of precious metals.
Finally, the time frequency of the database is extremely high, with book updates reaching
a 100-millisecond frequency. Because of the novelty of our database, the pure statistical
analysis of high-frequency spot data on precious metals is per se interesting and relevant.
In this work, we focus on the stylized facts and dynamic properties of the precious met-
als data. We start from the most traditional time series, prices, and returns, and then
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focus on the volatility, preliminary measured from squared returns and then filtered with
periodic components and GARCH-type models. Notably, we introduce an EGARCH
specification augmented with exogenous variables and HAR terms, e.g. Corsi (2009), to
capture both periodicity and long-range dependence in conditional variances. We move
later to volume time series and to two specific liquidity measures, the order flow, and the
percentage quoted spread. These two quantities provide a first look at the information
content one might extract from a trade-and-quotes database on precious metals. The
analyses reported here are, by construction, preliminary to further economic applications
at both the univariate and multivariate level. Later studies will take advantage of the
findings in the current paper.
There are several areas in which our results might be useful: first, our study should help
understand better the price formation process of precious metals which is fundamentally
different from that of stocks and bonds. For instance, precious metals pay no dividends
or coupon rates. In a fiat currency regime, the value of precious metals should essentially
be driven by some genuine demand and supply mechanisms that are different from other
assets. For instance, managing a large amount of gold reserves and pursuing other goals
than profit-maximization, central banks are certainly particular players and should sub-
stantially affect the gold prices (and indirectly those of all precious metals).1 A priori,
it is not entirely clear what drives price fluctuations of spot precious metals and this
study contributes to understand better the price discovery process of these commodities.
Second, this paper should provide valuable insights to traders of precious metals. We
propose models that might be used to explain and forecast prices, volumes, and liquidity.
The model specifications we propose, given their dynamic nature, can be easily used to
compute forecasts of the different quantities relevant for trading decisions. Third, this
paper can be of interest for risk managers. Gold and other precious metals can be used
as hedging instruments or stress indicators because of their safe-haven properties. This
study sheds light on the volatility and liquidity behaviors of these refuge assets. Fourth,
this study can be useful to perform dedicated event studies. For instance, gold is typically
seen as a hedge for inflation risk. The dynamic behavior of prices, returns, volume and
liquidity reported in this paper might be used to investigate the impact of central bank
announcements on Quantitative Easing programs on investors inflation fear. Finally, we
document common patterns in the time-series and cross-sectional variations of market
liquidity of precious metals. Although very preliminary, our results indicate that precious
metals exhibit strong commonality in liquidity. Since commonality in liquidity implies
liquidity risk premiums, the question whether spot precious metals bear liquidity risk
premiums can addressed in future research.
The time-series analyzed here are characterized by the presence of a periodic behavior in
their levels and/or in the second-order moment. Such a finding is well expected as we
consider intradaily data. However, the periodic movement is associated with the trading
activity of the main markets active in precious metals trading, which can be identified,
for instance, with peaks in the volatility of the returns time series. This result has rel-
evant affinities to the periodic behavior observed by e.g. Dacorogna et al. (1993) on
the foreign exchange market. For each of the analyzed series, we suggest the use of a
dynamic model for capturing the serial dependence in the mean and/or in the variance.
Our methodological contribution is to extend the filtering techniques previously applied to

1A recent example is represented by the substantial price impact due to the rumours on the intention
of the Central Bank of Cyprus to sell an important part of its gold reserves to deal with its banking crisis,
see Financial Times (2013).
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intraday volatility to market liquidity measures of precious metals. We provide evidence
supporting the idea that the proposed specifications seem appropriate in the whitening
of the analyzed time series and allow the development of research based on time-series
forecasting. However, the evaluation of forecasting performances of alternative models for
precious metals returns, volatility, volume and liquidity is left to future researches.2

This paper proceeds as follows: Section 2 describes the dataset and the variables of inter-
est; Section 3 focuses on the stylized facts of prices, returns, volumes, and liquidity time
series; Section 4 deals with dynamic models; and Section 5 concludes.

2 Database description, data handling, and the ana-

lyzed quantities

The database used in this study has been provided by ICAP through its platform called
Electronic Brokerage Services (EBS). EBS is the leading interdealer trading platform for
currencies, and data provided by EBS have been already used in academic research (see,
for instance, Berger et al., 2008 and Mancini et al., 2013). However, this is the first study
on previous metals using EBS data. The database we access is equivalent to that adopted
in Mancini et al. (2013) and it includes more than fifty currencies and four precious
metals. For all assets made available, the trades and quotes refer to spot prices. In this
work we focus on the precious metals: gold (identified by the ticker XAU), silver (XAG),
palladium (XPD), and platinum (XPT). We consider spot prices against the U.S. dollar
and refer to one ounce (for instance, gold quotes are U.S. dollar per one gold ounce).
The data we analyze span the period beginning with December 27, 2008 to November 30,
2010. The dataset includes trading and order information. Trading data include trans-
action price, volume and the exact time stamp of the trade. The presence of the maker
and taker sides allows us construct the order flow. Notably, as observed by Mancini et
al. (2013), trade direction data are known and do not need to be inferred by means of
rules such as done by Lee and Ready (1991). Order data include the binding bid and ask
quotes, together with the related order volume. Every time there is a change in the order
book, the database provides us a snap of the order book up to the tenth level (i.e. the
ten bid quotes with the highest limit prices and the ten ask quotes with the lowest limit
prices). However, here we present analyses based on the trade data and on the best bid
and ask quotes. Moreover, we discuss the dynamic features of the data, comparing our
findings to those of previous studies.
In the EBS database, data are recorded at a very high frequency (let us call them nanofre-
quency data.3) From December 27, 2008 to the end of August 2009, the observation
frequency is 250 milliseconds; from the first of September 2009 to the end of the sample,
the observation frequency increases to 100 milliseconds.4 As a result, new information is
recorded by the system every 100/250 milliseconds if at least one of the following events
takes place: an order is executed and/or a new quote is entered, deleted or revised. The
last case produces a new flash of the book because each flash includes the number of
quotes pending in the book for each side/price together with the available volume. Table

2The computation of forecasts based on the models presented in the following sections requires limited
efforts. For the sake of focus, however, we refrain from extending our study to a forecasting exercise.

3We thank Michael McAleer for suggesting us the use of this name for our dataset.
4The 100-millisecond frequency begins August 28, 2009; however, to test the 100-millisecond frequency

EBS organized already a few days of July 2009 at this frequency. Moreover, both frequencies (100 and
250 milliseconds) are present on July 21, 2009, and August 28, 2009.
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Table 1: Number of quotes and trades

XAU XAG XPD XPT

Quotes bid 184.254.422 51.970.220 8.649.896 22.487.653
Quotes offer 169.512.628 48.992.734 7.908.232 23.365.209
Quotes total 353.767.050 100.962.954 16.558.128 45.852.862
Trades total 184.929 27.638 21.428 27.357
Outside trade Sunday 385 8 54 38
Outside trade Friday 32 7 17 40
Outside trade Saturday 2 0 1 0
Total outside trade 419 15 72 78
Traded volume (in 1000 oz) 233.610 1.173.425 165.580 170.140

(1) reports the total number of trades (buyer/seller initiated) and quotes (by market side)
for the precious metals included in the database. We note that gold is the metal with the
highest activity, both in terms of trades and quotes. Silver has less than one-third of the
quotes of gold and is followed by platinum and then palladium. The last has less than
a twentieth of gold quotes.5 Excluding gold, with about 185 thousand trades, the other
precious metals have a similar number of trades. It is worth noting that an order ratio of
more than 50 is pretty in line with other financial markets and it is not an indication of
high-frequency trading. For instance, on July 2, 2012, the NASDAQ adopted an excess
order fee for members with an individual order ratio (formally called Order Entry Ratio)
of more than 100.

Data are recorded on a GMT time scale, on a 24-hour basis, 7 days a week. As a result,
there are quotes and trades executed from buyers/sellers located in different geographical
areas. To the best of our knowledge, this study provides for the first time an analysis
on precious metal trades jointly covering the most active world markets. Compared with
the previous studies of Barkoulas et al. (1997), Baillie et al. (2007), and Khalifa et al.
(2011), our analysis includes trading activity originating from Asian markets as well as
the complete activity of European-based traders. Previous studies have focused on U.S.-
based data. Therefore, the daily time coverage of our database is a distinctive feature of
our contribution.
In the following analyses, we limit the trading period to five full days, ranging from 10
p.m. Sunday to 10 p.m. Friday. We delete all trades and quotes outside this range.
As shown in Table (1), the weekend time excluded from the database is really of minor
relevance. As expected, in absolute terms, the deleted information is higher for gold com-
pared with the remaining metals. The procedure we adopt is similar to that employed for
the analysis of currency data (see Andersen et al., 2003 and Berger et al., 2008, among
others).
The database reports the prices of precious metals expressed in U.S. Dollars per ounce,
while the volume is expressed in multiples of the minimum tradable amount (MTA), which

5The number of quotes reported in Table (1) refers to the entire book which is available in our dataset.
Therefore, the rough total number of best bids (best asks) is obtained by dividing the total number of
bid (ask) by 10. If we take only the best quotes, the order entry ratio (number of best quotes) divided
by number of trades varies between about 50 for Palladium to around 200 for Silver.
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is fixed as follows: 1,000 ounces for Gold; 25,000 ounces for silver; and 500 ounces for
palladium and platinum. As a consequence, the time series of physical volume of executed
trades might be sensibly different across precious metals, both for the different trading
activity, and for the different sizes of the MTA. In fact, as shown in Table (1), the traded
volume is the highest for silver (more than 1.1 billion of traded ounces) and lower for
gold, platinum, and palladium. Moreover, we observe that the trade size is the highest for
silver (about 42.5 MTA per executed trade) and the lowest for gold (less than 1.3 MTA
per trade). Platinum and palladium generally have a trade size larger than gold, 6.2 and
7.7 MTA per trade, respectively.

2.1 The variables of interest

From the whole database, we extract the relevant nanofrequency data, which are analyzed
and aggregated in different ways, depending on the quantities of interest. We first recover
prices and volume from the recorded trades. Within a given time interval, the price is
defined as the price of the last trade recorded in the interval. If no trades occur, we
replicate the last price from the previous interval. Returns are then computed as changes
of log transaction prices. Volume is equal to the sum of the amount exchanged in the
trades recorded within a given time interval, regardless of the trade side (buyer/seller
initiated). If no trades occurred during a given time interval, then the volume is equal
to zero. In the following, we denote the daily time index by t, the intradaily period by
i = 1, 2, . . .N with N denoting the number of intradaily periods in day t. Intradaily
periods have length equal to 1/N days, or 1440/N minutes. Furthermore, we indicate
the end of period i of day t as (i, t), and we use the following notation. The intradaily
price sequence is denoted by pi,t, while the intradaily volume time series is given as vi,t;
the intradaily log-returns are defined as ri,t = log (pi,t)− log (pi−1,t) , i = 2, 3, . . .N , and
r1,t = log (p1,t)− log (pN,t−1).

6

Finally, we filter quote data from outliers, most likely associated to errors in matching the
asset identifier and the price.7 We choose a simple approach, excluding all quotes with
a value 20% higher (for buyer initiated) or lower (for seller initiated) than the average
trade price of the day.
The literature in financial economics and econometrics includes several liquidity measures
(see the survey by Gabrielsen et al., 2011). In this study, we focus on two specific quantities
that are exploiting part of the informative content of the database, namely the order flow,
OFi,t, and the percentage quoted spread, QSi,t, defined as follows.

• Order flow: Let h denote the execution time of an order, and denote by xh the trade
direction of the order recorded at time h; the trade direction is equal to −1 for
seller-initiated trades and +1 for buyer-initiated trades; the order flow for interval i
of day t is equal to OFi,t =

∑

(i−1,t)<j≤(i,t) xh; by definition, the order flow assumes

only integer values and can be either positive, zero or negative.8

6When computing the first return of the week on Sunday evening, we compute the returns with
respect to the last price observed on Friday evening. In addition, we have only removed a few bank
holidays (New Year’s Day [2009 and 2010], Good Friday [2009 and 2010], and Christmas Day [2009]).
Two days are not included in the database because of missing data: They are May 17, 2010, and May
18, 2010 (a Monday and a Tuesday).

7See, for example, Brownlees and Gallo (2006) for high-frequency data-cleaning techniques.
8Note that different orders (at different prices) might be recorded at the same time; these must all
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• Percentage quoted spread: Let Ai,t and Bi,t denote the best ask and bid Prices
available in the book at the end of period i at day t; we define the midquote as
Mi,t = 0.5 (Ai,t +Bi,t) and the percentage quoted spread as QSi,t =

Ai,t−Bi,t

Mi,t
.

The percentage quoted spread is a standardized quantity allowing a direct comparison
across precious metals because it is not dependent on the price of the MTA.
We study time series of the previously defined quantities at different frequencies. We
analyze returns and volumes at the 5- and 60-minutes frequencies, where the first case
is only considered for gold and silver, due to the higher number of trades recorded for
these two metals. We inspect liquidity measures at the 15- and 60-minutes frequencies.
When the frequency is set at 60 minutes, the dataset contains 11,880 observations. The
number increases to 47,520 when considering the 15-minutes frequency and to 142,560
at the 5-minute frequency. We do not consider higher frequencies because of the large
number of zeros that would be observed in the time series of interest (see the following
section for further details).

3 Stylized facts of precious metals price, return, vol-

ume, and liquidity

In this section, we focus on those features that characterize the time series of returns,
volume, and liquidity of our four precious metals. In particular, we evaluate the serial
correlation properties of the first- and second-order moments, the distribution, and the
existence of periodic patterns.

3.1 Prices and returns

The prices of precious metals follow an upward-sloping behavior across our sample period
(see Figure (1)). This might depend on the so-called safe-haven effect, that is, the out-
flow from risky financial assets toward the precious metals, which are perceived as safer
investments during periods of high uncertainty. We first analyze the series to determine
their integration properties. ADF tests confirm that the log-prices follow a Random Walk
model and suggest focusing on returns time series.9

Returns time series have patterns similar to those of equity returns and are characterized
by volatility clustering, as well as the presence of extreme movements (see Figure (1)).
The descriptive analysis, reported in Table (2), suggests that gold returns are less volatile
than other precious metals, at both the 5- and 60-minutes frequencies. This finding is
also matched with an inverse relation in average returns, the lowest being that of gold.
We support that by the larger interest for gold compared with silver, platinum, and pal-
ladium, which might lead to higher efficiency for this precious metal. In turn, this leads
to smaller risk and lower returns. The kurtosis is similar across metals at the hourly
frequency, whereas at the 5-minute level, gold has a much smaller kurtosis than silver.
Nevertheless, as we discuss in the following paragraph, this might be influenced by the
large amount of zeros in the silver time series. Finally, we observe that the skewness
is negative for silver, palladium, and platinum at the 60-minute frequency, a behavior

be considered in the construction of the order flow.
9ADF tests are available upon request.
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Figure 1: Prices and returns plots.
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Plots of 5-minutes price and returns data across the four precious metals. Prices on the left panels, returns on the right
panels
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Table 2: Descriptive analysis: Returns and Volume across metals

Return Volume

XAU XAU XAG XAG XPD XPT XAU XAU XAG XAG XPD XPT
Frequency 5 60 5 60 60 60 5 60 5 60 60 60
Mean 0.0003 0.0038 0.0006 0.0079 0.0115 0.0049 1.6387 19.664 8.2311 98.773 13.937 14.321
Median 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 12 0.0000 25 0.0000 5
Std 0.0763 0.2582 0.1240 0.4499 0.5205 0.3369 3.5198 25.574 30.515 173.15 30.221 24.502
Kurtosis 30.09 15.643 62.863 15.361 17.266 10.577 51.952 18.375 100.90 22.274 41.431 30.443
Skewness 0.1031 0.3347 0.5407 −0.059 −0.569 −0.305 5.2819 3.0949 7.3061 3.5571 4.9074 3.9287
5% quant. −0.104 −0.385 −0.039 −0.701 −0.795 −0.540 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
50% quant. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 12 0.0000 25 0.0000 5
95% quant. 0.1070 0.3841 0.0545 0.7305 0.8564 0.5458 8 68 50 450 65 60
n. of 0 83592 1772 126534 5513 7063 5572 79842 1580 125250 5268 6354 5087

similar to that observed in equities. However, gold returns have positive skewness. Con-
sidering the range analyzed in this paper, 2009 and 2010, the trend of price time series,
and the considerable interest in gold, this result is unsurprising. It suggests that trades
on gold led to a consistent increase in the price of gold over time. When focusing on
the returns ACF, we have statistically significant positive correlations for the first lag at
the 5-minute level, whereas at the 60-minutes frequency, the first ACF becomes negative
but is still statistically significant. The presence of negative correlation is expected on
high-frequency data and might have different explanations: bid-ask bounce (Bollerslev
and Domowitz, 1993), order imbalance (Flood, 1994), and/or trade behavior (Engle and
Russell, 2009, among others). Such serial correlation has to be taken into account when
developing models for the returns time series.

Regarding the trade activity, the proportion of zeros in a given interval of time can be seen
as a measure of market liquidity (or illiquidity). For example, Bekaert et al. (2007) exam-
ine the impact of liquidity, proxied by the proportion of zero daily firm returns averaged
over the month in emerging equity markets, on expected returns. Table (2) highlights
that the number of zero returns is sensibly high. The percentage of zeros on hourly data
is close to 45% for silver and platinum, peaks at 60% for palladium, and is minimum,
about 15%, for gold. We report 5-minute descriptive statistics for gold and silver, the
two most traded metals, showing that the number of zeros increases to 60% for gold and
90% for silver. The existence of such a large number of zeros makes the analysis on those
time series challenging. In fact, on the one side, the zeros could make the identification of
dynamic properties more difficult, but on the other side, the occurrence of zeros during
the day, and their potential concentration during specific time ranges, is informative. As
reported in Figure (2), zeros are more present during specific hours of the day, in par-
ticular at the 60-minute frequency. 10 Following previous works, this means that those
intervals are the most illiquid times during the 24-hour trading day. As we expected,
they occur after the closing time of the main markets (the graphs time index starts at
10 PM GMT and the vertical lines refer to 8 AM GMT). Zeros are maximum between
the closing time of North American markets (right side of the plots, around 8 PM GMT)

10Figure (2) refers to the gold. Similar patterns are present for the other metals, with the largest
frequency of zeros for palladium and platinum. Graphs are available upon request.
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and the opening of Asian markets (around midnight GMT, left side of the plots). On
the contrary, during the opening hours of Asian Markets, about 3 AM to 9 AM GMT,
European Markets, 9 AM to 5 PM GMT, and North American markets, about 3 PM to
8 PM GMT, the frequency of zeros is much lower, and starts increasing when the trading
activity originated in Europe decreases. These findings suggest the possible presence of a
periodic pattern in the return means. However, additional analysis does not support this
idea.11

Precious metals returns provide relevant information on the evolution of the conditional
variances. The analysis of squared returns shows evidence of heteroskedasticty, with a
clear periodic behavior (see the upper panel of Figure (3) for the gold time series). The
pattern is more regular in the gold and silver cases compared to palladium and platinum.
This is an expected result consistent with the large number of zeros present in the last
two time series. Similar patterns can be identified at the 5-minute frequency for gold
and silver. Notably, the oscillations of the ACF have a period of one day (24 hours).
Confirmation of the periodic evolution of the intradaily variance is given in Figure (4),
where we report, for the gold series, the hourly average squared return, computed as
r̄2i = 1

T

∑T

t=1 r
2
i,t. The graph shows evidence, within the day, of three relevant periods,

which we can associate with the trading activities in different geographical areas (those
are associated with three shaded areas corresponding to the trading activity in Tokyo,
London-Zurich, and New York). The first increase in volatility corresponds to the Asian
markets’ trading activity, peaking around the opening of the Tokyo market around 3 AM
GMT. The average squared returns then decrease until the opening of European markets.
The increase peaks around 10 AM GMT and then it decreases until 1 PM GMT. The
average returns sharply increase when American markets open and peak when American
markets are active and European markets are closing, around 4 PM GMT. The same
behavior is observed in the other three metals. This finding is, to our best knowledge,
completely novel in the literature on precious metals, and resemble the results observed
for round-the-clock data on exchange rates, see e.g. Dacorogna et al. (1993).

The periodic behavior of the intradaily volatility might be estimated and filtered out from
the returns time series following different approaches.12 Among the possible methods, we
mention those of Andersen and Bollerslev (1997a) and Boudt et al. (2011). The first
approach assumes that returns follow a multiplicative model

ri,t = si,tσi,tηi,t, (1)

where si,t is a periodic deterministic component, σi,t is a GARCH-type variance, and
ηi,t is a standardized innovation with unit variance. The periodic term si,t is estimated by
means of a parametric regression model. The work of Boudt et al. (2011), despite using
the same multiplicative model for the return, differs from the parametric approach of
Andersen and Bollerslev (1997a) in two elements. First, σi,t is an average volatility factor
kept constant in a local window around ri,t, and second, the deterministic component si,t
is estimated by means of a nonparametric approach. Notably, the approach of Boudt et al.

11Graphical analyses supporting this claim are available upon request. We also estimated models
allowing for periodic evolution of mean returns, but results were against this evidence with parameters
statistically not significant.

12The same procedures to estimate periodic deterministic components have been implemented in
different areas. For example, Caporin and Preś (2012) model and forecast wind speed intensity and
Caporin and Preś (2011) forecast temperature indices density.

9



Figure 2: Frequency of zero returns.
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Occurrence of zero returns during the trading day for 5-minutes (left) and hourly (right) gold time series. Bars report
percentages across the 5-minute/hourly intervals included in the dataset. The time index starts at 10 PM GMT. The
vertical line refers to 8 AM GMT.

(2011) is robust to the presence of jumps in the high frequency returns. The estimation
of the periodic component si,t in Andersen and Bollerlev (1997a) considers a regression
on harmonics of the log-transformed return series (in deviations from their unconditional
mean). The two proposed approaches might provide similar results, and there is not a
general criterion to be followed for the choice of the most appropriate method. Never-
theless, some metrics can be used. We might prefer flexibility, and thus choose Boudt
et al. (2011). On the contrary, if we appreciate simplicity of implementation, Andersen
and Bollerslev (1997a) is a good choice. Some insight for the comparison of the methods
is given by the graphical contrast of the average squared returns r̄2i with the patterns
estimated by two competing methods. The preferred approach is that with estimated
patterns close to the empirical and naive estimate based on r̄2i . Finally, the search for
periodic patterns in standardized returns can shed some light on the performances of both
Boudt et al. (2011) and Andersen and Bollerslev (1997a) methods. Finally, we note that
the presence of a large number of zeros might affect the performances of the Andersen and
Bollerslev (1997a) approach. As this is the case for our returns data, we give our prefer-
ence to the non-parametric approach of Boudt et al. (2011). Nevertheless, we consider
a variance of the Andersen and Bollerslev (1997a) approach when dealing with volumes,
characterized by a periodic pattern in their mean (as opposed to the returns case where
the periodic evolution is observed on the variances).

Boudt et al. (2011) base the estimation of the periodic component in the intraday volatil-
ity on the standardized high-frequency return (r̄i,t), where the standardization factor is
given by the square root of the normalized realized bipower variation of Barndorff-Nielsen
and Sheppard (2004). By construction, r̄i,t is distributed with mean zero and variance
equal to the squared periodicity factor. Boudt et al. (2011) propose to estimate the peri-
odic component using a nonparametric estimator of the scale of the standardized returns
r̄i,t. They suggest three possible estimators: (1) the nonparametric periodicity estimator
SD presented by Taylor and Xu (1997), which is based on the standard deviation of re-
turns belonging to a local window, (2) the ShortH estimator for the periodicity factor,
based on the Shortest Half scale estimator (see Boudt et al., 2011, for details), and (3)
the Weighted Standard Deviation estimator, WSD, of Boudt et al. (2011). Note that
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Figure 3: ACF of the squared standardized returns for gold.
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ACF of squared returns (upper panel), squared returns normalized with the realized bipower variation, RBV, (second panel)
and of RBV-normalized squared returns once the periodic component has been filtered out with alternative methods: SD,
ShortH and WSD (third, fourth and bottom panels, respectively).

the second and third estimators are also robust to the presence of price jumps. Given
the nonparametric estimators of the periodic component, and similar to the approach of
Andersen and Bollerslev (1997a), it is possible to recover the standardized return series.

Figure (4) displays the estimated periodic component for the hourly return series of gold
with the three nonparametric methods presented by Boudt et al. (2011). The plot
presents a behavior similar to the average squared returns. However, the ACF of the
squared returns standardized series (ri,t/si,t) (see Figure (3)), shows evidence of some
residual periodic behavior. This finding is not influenced by the estimator adopted to
capture the periodic behavior of squared returns. As a consequence, the nonparametric
methods of Boudt et al. (2011) are not able to completely capture the periodic evo-
lution characterizing the volatility of precious metals returns.13 This result suggests the
possible presence of a stochastic behavior in the periodic component, which might be cap-
tured within an appropriate time-series framework. In the following section, we propose
a parametric model that captures both the periodic evolution and the serial correlation
of squared returns.
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Figure 4: Estimated periodic component for gold squared returns.
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Periodic component estimated by sample averages (black thick line) and by the alternative filtering methods of Boudt
et al. (2011): SD, circles; ShortH, squares, and WSD, triangles. Shaded areas refer to the opening hours of Tokyo,
London-Zurich, and New York exchanges, respectively (the last two partially overlap).

3.2 Volume

The volume time series are characterized by a percentage of zeros comparable to the
returns time series. Note that volume and returns do not necessarily have the same oc-
currence of zeros as trades could be executed at the same price over consecutive intradaily
periods. Table (2) presents descriptive analysis of the volume data, measured in numbers
of MTA. We observe that the average volume is the highest for silver, at both the 5-
and 60-minute frequencies. Moreover, when we recast the MTAs in ounces, we highlight
that gold has the lowest average volume at the 60-minute frequency. This is further con-
firmed by the volume quantiles (see Table (2)). The volume time series show evidence
of a strong periodic pattern: The correlograms are characterized by a cyclical behavior,
and the intradaily volume averages, v̄i =

1
T

∑T

t=1 vi,t, are higher during the opening hours
of the most active precious metals markets. The volume peaks first during the opening
hours of Asian markets, then during the morning activity of European markets, and, fi-
nally, when both Europe and North America are active. The local troughs are associated
with the break between Asia and Europe trading activity, and with the lunch break in
Europe coupled with a pause waiting for first signals coming from North America before
the afternoon trading.14 The increases in the volume level has a timing comparable to
the increase in squared returns observed in Figure (4). We thus find patterns very close
to those of the volatility, which supports the relevant impact of the main international

13Despite being sub-optimal, we also estimated the periodic component with the method proposed by
Andersen and Bollerslev (1997a). Results are qualitatively similar to those obtained with the Boudt et
al. (2011) approach, and thus suggest the possible presence of a stochastic periodic behavior.

14An example of the periodic pattern of trading volume is observable in Figure 6, where shaded areas
refer to the trading activity in the main precious metals markets.
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markets on the trading activity of precious metals. The similarities between volume and
volatility are also associated with the literature exploring the relationships across those
two quantities, see Tauchen and Pitts (1983), Admati and Pfleiderer (1988), and Ander-
sen (1996), among many others.

Similarly to volatility, the periodic behavior of volume time series might be deter-
ministic, stochastic, or a mixture of both deterministic and stochastic elements. Among
the different approaches that are available to filter the periodic component from volume
time series, we mention the use of seasonal adjustment methods, which can be based on
moving averages or regression approaches and might be either multiplicative or additive.
We prefer the latter as it could be less sensitive to the relevant fraction of zeros present
in the volume time series. As a first analysis of volume, we propose the use of regression
methods based on harmonics. We assume that the volume mean is given as follows (the
time index evolves at an intradaily frequency):

vt = α +

p
∑

i=1

δit
i +

q
∑

j=1

(

γjcos

(

2πjt

24

)

+ φjsin

(

2πjt

24

))

+ ζt. (2)

The periodic mean component is composed by a constant, a polynomial trend, and a
combination of harmonics that capture the intradaily periodic behavior. The use of har-
monics makes the estimation of periodic components similar to that adopted by Andersen
and Bollerslev (1997a) for the volatility. We estimate the parameters with ordinary least
squares (OLS) using robust standard errors due to the possible presence of serial corre-
lation and heteroskedasticity in the innovations. We note that the regression provides
an expected hourly volume replicating the periodic behavior, but residuals are still char-
acterized by a strong periodic evolution. Moreover, the slow decay of both the volume
ACF and the volume residuals ACF might suggest the presence of long memory.15 In
the next section, we consider time-series models that capture both the periodic intradaily
dynamics and the behavior of the volume.

3.3 Liquidity: Order flow and percentage quoted spread

Moving to the liquidity measures, we first point out a relevant difference between order
flow (OF) and percentage quoted spread (PQS): OF has a number of zeros comparable
to those observed for returns and volume (see Table (3)), while the PQS time series does
not have zeros. This is a consequence of the different NF data used to evaluate the two
time series. In fact, OF comes from trade data, whereas PQS depends on book-level data.
OF time series of gold shows evidence of much larger variability, compared with the other
precious metals. This is a consequence of gold attracting the largest number of trades.
Notably, the OF is, on average, negative for gold and positive for silver, platinum, and
palladium.

The OF time series are negatively skewed (with the exception of platinum) and highly
leptokurtic (due to the overconcentration around the mean; see the quantiles reported
in Table (3). The PQS time series have similar unconditional behavior at the 15- and

15The ACF of the residuals and the estimated periodic component for the gold series are available in
the appendix.
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Table 3: Descriptive analysis: OF and QS across metals

Order Flow Quoted Spread

XAU XAU XAG XAG XPD XPT XAU XAU XAG XAG XPD XPT
Frequency 15 60 15 60 60 60 15 60 15 60 60 60
Mean −0.174 −0.699 0.0007 0.0030 0.1084 0.1733 0.0013 0.0012 0.0035 0.0034 0.0098 0.0052
Median 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 0.0006 0.0024 0.0025 0.0073 0.0038
Std 3.7337 9.0484 1.0721 2.3514 2.2681 2.5741 0.0049 0.0042 0.0045 0.0039 0.0080 0.0055
Kurtosis 22.350 15.720 57.206 18.481 20.964 21.106 1084.5 1553.0 245.13 85.934 29.615 115.47
Skewness −0.342 −0.547 −1.048 −0.093 −0.369 0.7425 26.257 30.551 10.422 7.0002 3.8557 7.75
5% quant. −6 −14 −1 −4 −3 −3 0.0003 0.0003 0.0010 0.0010 0.0036 0.0016
50% quant. 0 0 0 0 0 0 0.0005 0.0006 0.0024 0.0025 0.0073 0.0038
95% quant. 5 12 1 4 3 4 0.0040 0.0035 0.0089 0.0083 0.0242 0.0126
n. of 0 18424 2305 35787 5937 6852 5737 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

60-minute frequencies (see Table (3)). This result is a by-product of the methodology
adopted to compute these quantities, which are determined as intradaily periods aver-
ages. As expected, the spreads are on average smaller for gold and higher for platinum
and palladium. The dispersion is minimum for silver and maximum for palladium. The
PQS series show evidence of positive asymmetry and of extremely long upper tails (see
the quantiles reported in Table (3)): For Gold at the 15-minute frequency, the average
spread between best bid and ask quotes is around 13 basis points, whereas the upper 99%
quantile of PQS reaches the 150 basis points; large values are observed for palladium,
where the average spread is close to 100 basis points but peaks at more than 425 basis
points at the 99% quantile. Such large values of the PQS depend on the activity in the
EBS platform, which further depends on the timing of the day. In fact, PQS time series
have a clear intradaily pattern, with the largest values observed between the closing of
American markets and the opening of Asian markets. This pattern is observed in the
average hourly PQS of gold, Q̄Si =

1
T

∑T

t=1QSi,t, and the ACF of the PQS time series.
Oscillations from the opening of Asian markets to the close of American ones are much
less pronounced.16

The OF time series do not show peculiar periodic behaviors in their mean, even if there is
a clear evidence of serial correlation. As a further descriptive analysis, we also evaluate the
serial correlation and periodic behavior of the squared order flow, which can be considered
a proxy of volatility. In fact, an increase in the order flow, regardless of the sign, shows
evidence of an increase in trading activity in the market in one specific direction (either
an increase in seller- or buyer-initiated trades). The squared OF has intradaily patterns
similar to the squared returns, with a clear increase during the opening hours of the most
active precious metals markets, peaking at opening of Asian and European markets, and
while Europe and North America are jointly active. The evidence of intra-daily periodic
evolution in liquidity measures, in particular within a round-the-clock framework, and
its association with the trading activity originated from different geographical areas, is a
novel contribution to the literature of precious metals as well as of market liquidity. In
fact, previous studies were just observing periodic patterns associated with a single mar-
ket: among others, Brock and Kleidon (1992) focus on intra-daily patterns of spreads and

16Similar patterns are present for silver, palladium, and platinum. Figures are included in the ap-
pendix.
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volume for the New York market; Chan et al. (1995) consider the bid-ask spread of stocks
and options on the New York and Chicago exchanges; Chung et al. (1999) use again New
York bid-ask spreads. We stress that the evidence of periodic behavior is observed on
two different liquidity measures, and is associated with similar patterns on volatility and
volume.
The estimation of the periodic behavior of OF and PQS might follow the same approaches
outlined for the return volatility and the volume. Given the specific features of the two
time series, we adapted the method of Boudt et al. (2011) on the OF, while the Andersen
and Bollerslev (1997a) approach has been considered for the PQS time series. The anal-
ysis of OF and PQS time series standardized with the estimated deterministic periodic
patterns, highlights that the two methods largely but not completely capture the periodic
evolution, a result qualitatively similar to that observed for the volume. We thus apply in
the following models whose aim is to estimate both the deterministic and the stochastic
behavior of the series.

4 Dynamic modeling of precious metals time series

The previous section shows that precious metals time series are characterized by periodic
behaviors. Those patterns are generally captured a priori, before the implementation of
dynamic models of, say, the ARMA and GARCH families, which are used to describe
the dynamic evolution of high-frequency time series.17 However, the use of alternative
methodologies for filtering periodic patterns leads to standardized series that are still
affected by periodic components. Therefore, the use of two-stage estimation methods
might not be appropriate for precious metals time series and calls for time-series mod-
els capturing both the nonperiodic dynamic and the periodic behavior. The literature
has proposed several models starting with the use of Seasonal ARMA models, with an
appropriate selection of the period, up to the models with periodic long memory in the
mean (Gray et al., 1988, and Woodward et al., 1998). Moreover, Bollerslev and Ghy-
sels (1996), Guegan (2000), and Bordignon et al. (2007, 2009) propose GARCH-type
models with periodic coefficients and periodic long memory. Nevertheless, the periodic
behavior and the nonperiodic dynamic can be captured resorting to models in which the
ARMA- and GARCH-type equations are given as a combination of both deterministic
and stochastic components. In fact, those approaches allow for the presence of both a
deterministic and a stochastic periodic behavior of a given time series. We thus specify
models that fulfill this purpose. As we might have alternative specifications for a given
time series, general approaches for model comparison can be used. Those might point
at the diagnostic checking of residuals, the best model being that with residuals closer
to a white noise. Alternatively, tests can be used across nested specifications. Finally,
models can be compared ones a specific application of the model outcomes is chosen. In
the last case, we have both statistical forecasting of given quantities, or the construction
of trading strategies, among others. We finally stress that other elements might play a
role, such as the model flexibility or its computational complexity. In the present paper,
we focus on simple diagnostic checking tools based on the serial correlation properties of
estimated residuals. Further evaluations are left to future researches.

17Two-step approaches are computationally simple but imply a loss of efficiency compared with models
where periodic patterns are estimated together with the parameters driving the series dynamic.
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Table 4: Estimation results for gold returns

µ δ1 ω θ1 θ2 θ3 θ6 θ12 θ24 β1 β2 β3

−1.4e− 09 −0.038b −0.241 0.123a 0.138b 0.078 −0.009 −0.016c 0.154a 0.007 −0.012c 0.233a

(2.2e− 05) (0.019) (0.383) (0.025) (0.055) (0.053) (0.022) (0.008) (0.042) (0.034) (0.007) (0.058)

β6 β12 β24 γ1 φ1 γ2 φ2 γ3 φ3 γ4 φ4 γ5
0.190 0.166a 0.390a −0.516a −0.372a −0.123 0.253a −0.177b 0.350a −0.199a −0.014 −0.251a

(0.126) (0.051) (0.091) (0.130) (0.087) (0.105) (0.049) (0.090) (0.048) (0.054) (0.024) (0.046)

φ5 LLF
0.140a 56787.14
(0.039)

µ δ1 ω θ1 θ2 θ3 θ6 θ12 θ24 β1 β2 β3

−1.4e− 09 −0.038b −0.107 0.139a - 0.097c −0.107b 0.054 0.051 0.625a - −0.243b

(2.2e− 05) (0.019) (0.067) (0.034) (0.056) (0.045) (0.121) (0.193) (0.061) (0.099)

β6 β12 β24 γ1 φ1 γ2 φ2 γ3 φ3 γ4 φ4 γ5
0.658a −0.779c 0.728 −0.071b −0.138c −0.048a 0.350a −0.040 0.292a −0.257a 0.150a −0.073
(0.232) (0.416) (0.526) (0.034) (0.079) (0.014) (0.049) (0.029) (0.033) (0.051) (0.036) (0.048)

φ5 LLF
0.257a 56745.73
(0.036)

Note: Estimation results for the return series of gold (XAU): EGARCHX (top panel) and EGARCHX-HAR (bottom
panel). Sample period: 27th of December 2008 to the 30th of November 2010, hourly series, 11880 observations. LLF is
the Log-likelihood function. Standard errors in parentheses; ”a”, ”b” and ”c” indicate significance at the 1%, 5% and 10%
confidence level, respectively.

4.1 Return

For the returns, we specify an EGARCHX(P,O,Q) with periodic explanatory variables.
The EGARCH model couples flexibility with computational simplifications; in fact, by
resorting to exponential specifications, we avoid the introduction of parameter restrictions
that lead to conditional variance positivity. This is particularly useful when the model
includes exogenous variables as in our case, and makes this model class preferable to
other GARCH-type specifications. To simplify the notation, we assume that the time
index evolves at an intradaily step. The proposed model has the following structure:

rt = µ+

p
∑

j=i

δjrt−j + σtεt

ln
(

σ2
t

)

= ω+

Q
∑

j=1

βjln
(

σ2
t−j

)

+
O
∑

j=1

αjεt−j +
P
∑

j=1

θj|εt−j |+

+

q
∑

j=1

(

γjcos

(

2πjt

24

)

+ φjsin

(

2πjt

24

))

.

(3)

The model includes an autoregressive component that captures the limited serial correla-
tion in the mean. The variance dynamic depends on a standard EGARCH structure, with
orders governing the autoregressive behavior of the log-conditional variances (order Q),
as well as the impact of shocks size and sign (orders P and O, respectively). Moreover,
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Figure 5: Estimation results for gold returns.
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Estimates based on hourly data. On the left, ACF of standardized squared residuals of two returns models (the upper is an
EGARCHX, the lower is an EGARCHX-HAR). On the right, mean hourly squared return and estimated periodic patterns
from the two fitted models: EGARCHX with circles and EGARCHX-HAR with squares; the black thick line refers to the
mean of squared returns. Shaded areas refer to the opening hours of Tokyo, London-Zurich, and New York exchanges,
respectively (the last two partially overlap).

the introduction of q harmonics captures the deterministic evolution of log-conditional
variances. We also stress that the model orders Q, P , and O can be increased beyond the
common practice of restricting them to one. In fact, the orders set equal to the number
of intradaily intervals per day, can detect Seasonal GARCH-type behaviors.

Several authors have also pointed out the presence of long memory in high-frequency
returns volatility (see Andersen and Bollerslev, 1997b, 1998, and Bordignon et al., 2007,
2009, among others). Long-range dependence might be captured by resorting to long
memory EGARCH specifications, as in Bollerslev and Mikkelsen (1996). However, the
introduction of long memory in the conditional variance equation further increases the
model’s complexity. We thus prefer to specify the variance dynamic following a HAR-type
structure (e.g. Corsi (2009)).
We suggest the estimation of the following EGARCHX-HAR(P,O,Q) model. This spec-
ification approximates the long-memory behavior reproducing the volatility persistence
terms of the HAR model of Corsi (2009). Whereas in the HAR model the auto-regressive
dynamic is associated with the target period of different market operators (daily, weekly,
and monthly), in our specification the volatility evolves according to terms related to
daily and intradaily periods: the day, the half-day, etc. Depending on the frequency of
the time series, we include sums of past volatilities or shocks over different horizons; for
hourly data we consider periods equal to the day, 24 hours, the half-day, 12 hours, and to
6 and 3 hours. The EGARCHX-HAR(P,O,Q) is characterised by the following equation:

ln
(

σ2
t

)

= ω+
∑

j=1,3,6,12,24

βj

j
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ln
(

σ2
t−j

)

+ ...+ ln
(

σ2
t−1

))

+

+
∑

j=1,3,6,12,24

αj

j
(εt−1 + ...+ εt−j) +

∑

j=1,3,6,12,24

θj
j
(|εt−1|+ ... + |εt−j|)+

+

q
∑

j=1

(

γjcos

(

2πjt

24

)

+ φjsin

(

2πjt

24

))

.

(4)
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In the analysis of the precious metals returns, we consider different combinations of the
EGARCHX and EGARCHX-HAR model orders, as well as different number of harmon-
ics. We augment the model by the introduction of an AR(1) term, which is needed to
capture the limited serial correlation observed on mean returns. Table (4) reports the best
specifications for the gold series. They include five harmonics and lags up to order 24 (the
day when focusing on hourly time series). Notably, the shock’s sign was irrelevant (the
EGARCHX order O was then set to zero). In both the EGARCHX and EGARCHX-HAR
specifications, the lag 24 and the five harmonics parameters are statistically significant.
The left panel of Figure (5) presents ACF of the standardized squared returns ((rt/σ̂t)

2)
for the EGARCHX(P,O,Q) and for the EGARCHX HAR(P,O,Q) models. The squared
standardized residual series show evidence of serial correlation for both specifications. In
particular, the first lag in the EGARCHX residuals is significant, and a daily periodic com-
ponent remains in the EGARCHX-HAR residuals case. The serial correlation in the ACF
of the EGARCHX standardized residuals might signal the existence of mild long-memory
behavior which is not appropriately taken into account by the model.18 The EGARCHX-
HAR model captures the potential long-range dependence of the volatility, but it is not
able to completely remove the periodic component. Nevertheless, both specifications seem
adequate for modeling returns, with the latter being preferred as it provides a higher value
of the likelihood function and of the associated information criteria.19 Similar results are
obtained for the other precious metals. The dynamic evolution of precious metals returns
is similar to that observed on high frequency data for equities, with a limited and negative
serial correlation. Moreover, the conditional variance evolution requires two relevant ele-
ments: first, the periodic component, capturing the increase in variance associated with
the different active markets; second, the HAR term mimicking the long-range dependence,
and capturing the persistent effect of shocks.

4.2 Volume

As pointed out in the previous section, the volume time series shows evidence supporting
the presence of a stochastic periodic behavior, coupled with the possible presence of long-
range dependence.20 To capture such a feature, we consider a multifactor GARMA model
that allows for long-memory behavior which might be associated with specific periodic
frequencies.

Following Woodward et. al (1998), the multifactor GARMA model is defined by

Φ(L)

h
∏

j=0

(1− 2cos(wj)L+ L2)dj (yt − µ) = Θ(L)ǫt, (5)

where h is an integer, ǫt is a white noise with variance σ2
ǫ , µ is the mean of the process, ωj

(with j = 0, ..., h) are the frequencies at which the long-memory behavior occurs, dj (with

18In this work we prefer to keep a balance between model complexity and model feasibility. The
estimation of a GARCH model with long-memory behavior, such as the FIEGARCH of Bollerslev and
Mikkelsen (1996), could have provided a better fit. However, the estimation of the model is computa-
tionally complex, in particular when it is coupled with exogenous variables in the variance equation. We
thus decided to stick to the simpler EGARCHX-HAR specification.

19The two specifications are not nested and a direct likelihood-ratio test is thus not available.
20Bollerslev and Jubinski (1999) and Lobato and Velasco (2000), among others, document long memory

in stock-market trading volume.
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Table 5: Estimation results for gold Volume.

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12
0.292a 0.468a 0.382a 0.362a 0.368a 0.317a 0.323a 0.320a 0.314a 0.316a 0.313a 0.293a

(0.008) (0.031) (0.035) (0.081) (0.053) (0.046) (0.055) (0.059) (0.061) (0.108) (0.057) (0.107)

d13 φ1 φ24 φ48 φ72 φ96 φ120 θ1 µ σ2
ǫ LLF

0.143a −0.018 −0.257a −0.150a −0.097c −0.070a −0.002 −0.517a −26.62a 356.8a -51768.53
(0.010) (0.159) (0.069) (0.025) (0.055) (0.013) (0.061) (0.104) (6.688) (35.77)

Note: Estimation results for a GARMA model fitted on the volume series of gold (XAU). Sample period: 27th of December
2008 to the 30th of November 2010, hourly series, 11880 observations. LLF is the Log-likelihood function. Standard errors
in parentheses; ”a”, ”b” and ”c” indicate significance at the 1%, 5% and 10% confidence level, respectively.

j = 0, ..., h) are the long-memory parameters associated to each frequency, and Φ(L) and
Θ(L) are the short-memory autoregressive and moving average polynomials with roots
satisfying the usual stationarity and invertibility conditions. Stationarity of the GARMA
model is achieved if the memory coefficients assume values below 0.5 for 1 ≤ j ≤ h−1 and
below 0.25 for j = 0 and j = h (see Woodward et al., 1998). The most relevant element
of the multifactor GARMA model is the so-called generalized Gegenbauer polynomial,
given by

P (L) =
h
∏

j=0

(1− 2cos(wj)L+ L2)dj , (6)

which may be considered as a generalized long-memory filter for the long-memory periodic
behavior at h + 1 frequencies. The ωj’s are the driving frequencies of a cyclical pattern
of length S, where ωj = (2πj/S), h + 1 = [S/2] + 1, and [·] refers to the integer part.
Previous studies have shown that the GARMA model is able to replicate the periodic
patterns similar to those observed in the volume time series (see Bordignon et al., 2007
and 2009). To estimate the (h + 1)-factor GARMA model in (5), we implement an au-
toregressive approximation technique. Following Chung (1996), it is in fact possible to
recover an MA(∞) or AR(∞) expansion of the model, and thus to estimate the model
parameters through a quasi-maximum likelihood (QML) approach.

As previously observed, the autocorrelation function oscillates and decays slowly toward
zero, suggesting a stochastic cyclical or periodic behavior coupled with long memory.
From the previous section, we know that the periodic behavior has a length of 24 hours
(on an hourly time series), leading to S = 24. In turn, such a value implies the presence
of thirteen factors that capture the long-memory and cyclical behavior (h = 12 in the
GARMA model of equation (5)). Table (5) reports the estimation results for the volume
time series of gold. The memory parameters are statistically significant at all frequencies.
However, we note that the memory coefficients associated with the zero frequency leads
to a nonstationary component (the memory parameter is marginally larger than 0.25).
We observe the same result in two other metals. The introduction of autoregressive and
moving average components result in an improvement of the fit of the model compared
with a pure long-memory specification; the short-memory coefficients are all statistically
significant. We observe that the lags we introduce in the AR polynomial mimic the lags
associated with the length of the periodic oscillation and its multiples. Such a result
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Figure 6: Estimation results for gold volume.
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Estimates based on hourly data. On the left, ACF of the residuals of two volume models (the upper is a GARMA without
short-memory dynamic, the lower is a GARMA with short-memory dynamic). On the right, mean hourly volume and
estimated periodic patterns from the two fitted models: GARMA without short memory in circles and GARMA with
short-memory in squares; the black thick line refers to the hourly mean of volume. Shaded areas refer to the opening hours
of Tokyo, London-Zurich, and New York exchanges, respectively (the last two partially overlap).

might suggest the presence of a weekly (five days) periodic pattern. Nevertheless, the
estimation with S = 120 (one-week cyclical behavior) provides inferior fit to the data.21

The left panel of Figure (6) reports the ACF of the GARMA model residuals for the two
different specifications for the short-memory component of the GARMA model. Notably,
when considering the larger specification, few values of the correlograms are statistically
significant. Moreover, the right panel of Figure (6) includes a comparison of the average
hourly volume and of the average hourly fitted volume. The two quantities are close,
further supporting the ability of the GARMA model in replicating the behavior of the
volume time series. Our findings suggest the relevance of long-memory in the dynamic
evolution the volume, coupled with the presence of a stochastic periodic behavior. The
latter element is associated with the trading hours of the most relevant financial markets.
These results could be used for an appropriate point forecasting of volume levels with
potential applications in precious metal trading.
Finally, unreported ACF of the squared residuals show the presence of a periodic pattern.
This feature might be captured by introducing a GARCH or EGARCH equation with pe-
riodic exogenous variables, similarly to what have been considered for the returns. Such
an additional model component could be of interest for those aiming at forecasting the
volume density.

4.3 Order flow and percentage quoted spread

The PQS and OF time series follow behaviors similar to trading volume and returns,
respectively. In fact, the PQS has a relevant periodic pattern in the mean, whereas the
OF mean values show little evidence of serial correlation. On the contrary, the absolute
or squared values of OF are characterized by a strong periodic behavior. Moreover, deter-

21The GARMA model might collapse on a Seasonal ARFIMA specification, see the next section for
a brief description of the latter model. The two models are equivalent if the memory coefficients of the
GARMA satisfies 2d1 = 22 = . . . = d12 = 2d13. In the present case this null hypothesis is rejected within
a likelihood ratio framework.
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Table 6: Estimation results for gold QS.

d φ1 φ24 φ48 φ72 φ96 φ120 θ1 µ γ1 φ1 γ2
0.076a −0.072a 0.090a 0.036a 0.049a 0.070a 0.292a 0.227a −0.134a −0.120a 0.014 −0.101a

(0.010) (0.022) (0.008) (0.008) (0.008) (0.008) (0.008) (0.022) (0.014) (0.011) (0.011) (0.011)

φ2 γ3 φ3 γ4 φ4 γ5 φ5 σ2
ǫ LLF

−0.002 −0.085a −0.005 −0.071a −0.009 −0.057a −0.011 0.128a -4674.295
(0.011) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.001)

Note: Estimation results for an ARFIMA model augmented with harmonics fitted on the QS series of gold (XAU). Sample
period: 27th of December 2008 to the 30th of November 2010, hourly series, 11880 observations. LLF is the Log-likelihood
function. Standard errors in parentheses; ”a”, ”b” and ”c” indicate significance at the 1%, 5% and 10% confidence level,
respectively.

ministic periodic filters are not effective in removing the periodic behavior of the liquidity
time series. Given these findings, the liquidity measures’ dynamic features might be cap-
tured using the approaches we applied to the time series of trading volume and returns,
namely the GARMA and EGARCH specifications. As an alternative methodology, we
consider the ARFIMA and Seasonal ARFIMA (SARFIMA) models extended with the
inclusion of periodic explanatory mean variables. We estimate these two models on the
PQS mean and on the squared OF values. While for the PQS the models represent the
most appropriate specifications, for the OF we find that the direct modeling of the levels
was not satisfactory, and thus decided to analyze the squared OF, a proxy of the volatility,
thus sharing similar features. The SARFIMA is a special case of the multifactor GARMA
model. Similar to the most general model, it provides periodic behavior coupled with
long memory. The SARFIMA model is given as follows:

Φ(L)(1 − LS)d(yt − µ−

q
∑

j=1

(

γjcos

(

2πjt

24

)

+ φjsin

(

2πjt

24

))

) = Θ(L)ǫt, (7)

where ǫt is a white noise with variance σ2
ǫ . The autoregressive and moving average poly-

nomials Φ(L) and Θ(L) satisfy the usual restrictions for stationarity and invertibility,
whereas the memory parameter d gives a stationary model if its value is below 0.5. The
seasonal long-memory behavior influences the observed variable yt in deviation from its
unconditional mean µ and from a deterministic periodic behavior captured by the q har-
monics. The relation between SARFIMA and GARMA is given by the following decom-
position of the seasonal long-memory filter

(1−LS) =
(

1− 2cos (ω0)L+ L2
)

1

2

[

S−1
∏

j=1

(

1− 2cos (ωj)L+ L2
)

]

(

1− 2cos (ωs)L+ L2
)

1

2 ,

(8)
where ω0 = 1 and ωs = −1 . The previous decomposition takes into account the roots of
the polynomial

(

1− LS
)

, which are associated with frequencies in 0 − π. In particular,
the frequencies are 0, π (if S is even), and a set of frequencies depending on the value of
S, each associated with a pair of roots of the polynomial. Notably, such a decomposition
corresponds to a product of Gegenbauer polynomials. If we introduce long memory and
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Figure 7: Estimation results for gold QS.
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Estimates based on hourly data. On the left, ACF of the residuals of two QS ARFIMA models differing in their short-
memory dynamic, the upper model includes a limited set of periodic lags compared to the lower panel model. On the right,
mean hourly QS and estimated periodic patterns from the two fitted models: restricted ARFIMA in circles and the more
flexible ARFIMA with squares; the black thick line refers to the hourly mean of volume. Shaded areas refer to the opening
hours of Tokyo, London-Zurich, and New York exchanges, respectively (the last two partially overlap).

consider
(

1− LS
)d
, the exponent of each Gegenbauer polynomial in (8) is either equal to

d or to d/2 (this happen for frequencies ω0 and ω1). As a consequence, the SARFIMA
model is a special case of the multifactor GARMA under a restriction on the memory co-
efficient, and if the frequencies over which the GARMA model is specified are exactly the
same set of frequencies associated with the decomposition of the seasonal filter

(

1− LS
)

.
In preliminary estimates, not reported for reasons of space, the estimate of GARMA spec-
ifications and the subsequent tests for the equality of memory coefficients, suggested the
use of the less parameterized SARFIMA.

In the analysis of the liquidity series,22 we consider different specifications for the models.
We set three different values for the seasonal length (S) 1, 24, and 120. With S = 1, we
specify a pure long-memory model for the hourly series, whereas in the case of S = 24 or
120, we specify a daily and weekly seasonal integration pattern. To capture the periodic
behavior of the series, we consider up to six daily harmonics, and we include a weekly
harmonic. Finally, to model the short-memory component, we introduce different autore-
gressive and moving average specifications, considering lags up to the week.
For the QS, Table (6) presents the results of the model that best fits the gold series.
Although we try with the ARFIMA and SARFIMA models, we concentrate on the first
kind of models (S = 1). Estimation results and the ACF of the residuals of SARFIMA
models are similar. The long-memory parameter is significant for all the metals, but
it is lower for gold than the other three metals. In the first case, it is equal to 0.076
whereas it is near 0.28 for silver and palladium and 0.493 for platinum. The introduction
of the autoregressive lags improves the fitting of the model. Note that the lags are all
statistically significant.23 The analysis of the ACF of the residuals, in the left panel of
Figure (7), favors the introduction of short-memory component at the daily and its mul-
tiple lags. Moreover, it displays significant correlations associated with particular lags.
This fact is more evident in the gold series. We believe that they are neither associated

22The estimated series are equal to QS × 100 and OF 2/100, respectively.
23A likelihood ratio test between an ARFIMA(1 24 48 72 96 120,d,1) and ARFIMA(1 24 120,d,1)

specification rejects the restricted model in the four metals at 5% level.
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Table 7: Estimation results for gold OF 2

d φ1 φ24 φ48 φ72 φ96 φ120 θ1 µ γ1 φ1 γ2
0.046a 0.294a 0.029a 0.027a 0.021b 0.020b 0.048a −0.191a −0.826a 0.587a 0.452a 0.309a

(0.014) (0.062) (0.008) (0.008) (0.008) (0.008) (0.008) (0.058) (0.061) (0.059) (0.059) (0.055)

φ2 γ3 φ3 γ4 φ4 γ5 φ5 σ2
ǫ LLF

−0.268a −0.150a −0.245a 0.093c 0.237a 0.017 −0.013 9.220a -30052.31
(0.055) (0.051) (0.051) (0.048) (0.048) (0.045) (0.045) (0.119)

Note: Estimation results for an ARFIMA model augmented with harmonics fitted on the OF 2 series of gold (XAU).
Sample period: 27th of December 2008 to the 30th of November 2010, hourly series, 11880 observations. LLF is the
Log-likelihood function. Standard errors in parentheses; ”a”, ”b” and ”c” indicate significance at the 1%, 5% and 10%
confidence level, respectively.

with the long-memory component nor with the periodic pattern, which have both been
correctly removed. We considered different model specifications, without, however, better
results. The right panel of Figure (7) presents the mean fitted series, which substantially
replicates the periodic component observed in the QS time series, picking when the most
active markets are closed (between the close of US markets and the opening of Asian
markets).

For the OF 2, Table (7) displays the estimation result for the gold series. As in the pre-
vious case, we consider ARFIMA and Seasonal ARFIMA specifications and we find very
similar outcomes. Then we focus on the pure long-memory model (S = 1). Estimations
of the d range from 0.046 to 0.168 for the different models, and they are always highly
significant. Regarding the short-memory specification, the autoregressive lags produce
an improvement in the fitting of the model. We consider an ARFIMA(1 24 120,d,1) and
an ARFIMA(1 24 48 72 96 120,d,1) model. In the case of the gold time series, the full
specification presents significant coefficients, and it is preferred to the restricted one when
formally testing.24 Finally, ACF of the residuals displays a good performance of the mod-
els, and the mean estimated series reproducing the periodic component present in the
OF 2 series, in Figure (8).
For both liquidity measures the proposed models largely capture the periodic evolution
and long-range dependence. The former characteristic can be seen as a further confirma-
tion of the relevance of active markets in the evolution of market liquidity. The latter
characteristic points at the persistent impact of shocks. These two elements can be useful
to forecast liquidity measures with potential applications in trading strategies for precious
metals.

4.4 A first look at commonality across precious metals

The previous analyses show evidence of common patterns across precious metals suggest-
ing the presence of commonality in liquidities of these commodities. While commonality
in liquidities has been studied for stocks (e.g. Chordia et al. (2000), Hasbrouck and Seppi,
2001, Huberman and Halka, 2001), bonds (e.g. Chordia et al., 2005) and more recently

24A likelihood ratio test between an ARFIMA(1 24 48 72 96 120,d,1) and ARFIMA(1 24 120,d,1)
specification rejects the restricted model in the gold and palladium series at 5% level.
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Figure 8: Estimation results for gold OF 2.
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Estimates based on hourly data. On the left, ACF of the residuals of two OF 2 ARFIMA models differing in their short-
memory dynamic, the upper model includes a limited set of periodic lags compared to the lower panel model. On the right,
mean hourly OF 2 and estimated periodic patterns from the two fitted models: restricted ARFIMA in circles and the more
flexible ARFIMA with squares; the black thick line refers to the hourly mean of OF 2. Shaded areas refer to the opening
hours of Tokyo, London-Zurich, and New York exchanges, respectively (the last two partially overlap).

for foreign exchange markets (Mancini et al., 2013, and Karnaukh et al., 2013)), to our
best knowledge only one paper analyzes commonality in liquidities for commodities using
futures data, i.e. Marshall et al. (2012). However, there is no literature on commonality
in liquidities of spot precious metals. As a first step, we standardize all series of interest
in order to avoid any impact of the measurement scale. Then, following e.g. Hasbrouck
and Seppi (2001) and Mancini et al. (2013) we analyze the common behaviors by looking
at the first principal component of the time series of squared returns, trading volume,
quoted spread and squared order flow. To do this, we use the full sample covariance
across precious metals. Table (8) reports the main quantities. Two main results emerge.
First, the first principal component (PC1) has always a positive impact on all metals
for all variables of interest. Moreover, PC1 explains a large fraction of the total variance
(from 34.5% of quoted spread up to the 51.5% of volume). The relevance of PC1 is further
confirmed by the R2 of the regression of each metal on PC1, see again Table (8), which
is in most cases higher than 0.5. However, by extending the analysis to the first and
second component (PC1+PC2) there is an improvement of the fit: the R-squared for the
regression of each metal on the first and second components are sensibly higher, with a
minimum at 0.48 and a maximum at 0.99; the fraction of variance explained by PC1 and
PC2 ranges from 59% up to 74%. Second, commonality in liquidity of precious metals is
strong. Compared to other markets, it is much stronger than that documented in stock
markets.25 and comparable to that observed in FX markets. Notice that our measures of
commonality in liquidities are based on intraday data. We replicated our analysis using
daily data and we found very similar results (available upon request). A novel contri-
bution of our study is to document commonality in liquidities intradaily rather than at
daily or lower frequencies, as done in the previous literature. Our results suggest that
commonality in liquidities of precious metals depends on seasonalities of trading activities
in different geographical areas.26

25For example Korajczyk and Sadka (2008) report adjusted-R2 ranging between 2% and 30%, depend-
ing on the liquidity measure

26Plots of the hourly averages for the first principal component of squared return, volume, percentage
quoted spread and order flow squared are available upon request.
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Table 8: First results on commonality.

Loadings R-squared Loadings R-squared
PC1 PC2 PC1 PC1+PC2 PC1 PC2 PC1 PC1+PC2

Squared returns Volume
Gold 0.55 0.48 0.57 0.78 0.53 0.46 0.57 0.77
Silver 0.58 0.37 0.62 0.75 0.52 0.48 0.56 0.77
Palladium 0.42 -0.60 0.33 0.67 0.46 -0.59 0.44 0.75
Platinum 0.44 -0.52 0.35 0.61 0.49 -0.45 0.50 0.69
Var. Expl. 46.7 70.5 51.7 74.4

Quoted spread Squared OF
Gold 0.43 -0.56 0.26 0.57 0.36 -0.92 0.24 0.99
Silver 0.43 -0.55 0.26 0.56 0.51 0.11 0.47 0.48
Palladium 0.55 0.45 0.42 0.63 0.57 0.21 0.59 0.63
Platinum 0.56 0.41 0.44 0.61 0.54 0.31 0.53 0.61
Var. Expl. 34.5 59.2 45.9 67.8

Note: First and second columns (fifth and sixth): loadings for the row precious metal on the first and second principal
components, respectively. Third and fourth (seventh and eight) columns: R-squared for regressions of each precious metal
on first and first and second principal components. Fifth and tenth rows: fraction of variance explained by the first and by
the first plus the second principal components.

5 Conclusions

We provide a pioneering description of the stylized facts and dynamic properties of pre-
cious metals time series extracted from a unique nanofrequency database that includes
trade and quotes data. The most innovative elements of our paper are (1) the time fre-
quency of the database, up to 100 millisecond, (2) the analysis of spot precious metals
including palladium and platinum that were not studied so far at least at this time granu-
larity, (3) the analysis of trading activity recorded around the clock, and (4) the analysis
of liquidity and commonality in liquidities of precious metals. Overall, our results show
that the price, return, and volume time series have features comparable to those of tradi-
tional assets. Moreover, market liquidity of precious metals is characterized by intraday
seasonalities and very strong commonality.
This work represents a preliminary research on the statistical aspects and data analysis of
the precious metals. Building on our results, future research might be extended in several
respects, for instance, to understand better the price discovery process and liquidity is-
sues on spot precious metals. Alternatively, multivariate approaches might be considered,
focusing on the joint analyses on different precious metals or on models capturing the
interdependence between returns, volume, volatility, and liquidity.
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