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1 Introduction

Hedonic pricing models are by far the most extensively applied approach to predicting

rental and residential sales prices. In their most basic form, they model real estate prices

as a linear function of the properties’ attributes. Recent approaches have focused on the

temporal and have paid particular attention to the spatial structure. In this paper, we

compare the predictive power of hedonic models with a varying complexity of the spatial

and temporal model structure. We focus mainly on the comparison between in-sample

model fit as well as cross-validation prediction and one-day-ahead forecasting accuracy.

We stress the fact that one-day-ahead forecasting, without ex-ante information, is the very

nature of many practical applications but still has gained little attention in the literature.

The accurate prediction of rental prices is essential for participants in the real estate

market such as investors, regulators, and policy makers. For instance, rent forecasts play

a crucial role in property valuation adopted in discounted cash flow models. In addition,

when imputed market rents for owner-occupied dwellings are subject to income tax, as

they are in Switzerland, local rent predictions serve as a tax base. A profound knowledge

of the structure and development of rents in local and national housing markets is also of

importance for public housing policy.

We restrict the analysis to fully parametric and linear models in order to keep the

results interpretable for practical purposes. Starting with a simple baseline model includ-

ing only physical attributes of the dwellings, we incrementally add elements, accounting

for spatial and temporal effects. We show that the consideration of a few spatial and

temporal components can increase forecast accuracy substantially. Likewise, significant

spatial and temporal effects underpin the inconsistency of hedonic coefficients in the ab-

sence of these components, since the assumption of i.i.d. errors of the baseline model is

violated. We demonstrate the empirical bias resulting from spatial heterogeneity, which

in general is an issue for causal inference. Thus, we aim at improving the prediction

accuracy for rental prices by accounting for both the space and time dimension in our
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model specifications.

Our paper contributes to the literature in many ways: First, we analyze the im-

portance of the temporal and spatial structure of a model for residential markets us-

ing an exclusive rental apartment data set for the canton Zurich, Switzerland. In

countries where the majority of households are tenants, the higher turnover in the

rental market reduces the estimation error due to the rich data availability. Thus,

the Swiss housing market with its low homeownership rate serves as an ideal test

ground to evaluate the predictive power of different hedonic rental price models.1

Most notably, the models include a spatiotemporal autoregressive (STAR) specifica-

tion as suggested in Pace, Barry, Clapp, and Rodriquez (1998).2 Other contributions

of the literature of rental price modeling include Sirmans and Benjamin (1991) and

Valente, Wu, Gelfand, and Sirmans (2005). As in our study, the latter predict apart-

ment rents using spatial econometric techniques. Unlike our approach, they model an

explicit spatial process, whereas our STAR model makes strong structural assumptions

about the spatiotemporal dependencies.

Second, through the choice of our model specifications, we are able to determine

the marginal effects of increasing complexity concerning the spatial and temporal struc-

ture. Importantly and often underrated in similar studies, we pay particular attention

to the different prediction approaches. In the forecasting application with a rolling es-

timation window, we account for the temporal heterogeneity in all models to the same

degree. We then incrementally improve the baseline model by gradually accounting for

spatial heterogeneity as well as temporal and spatial dependence. Finally, we account for

spatial heterogeneity by constructing rental sub-markets using a classification and regres-

sion tree (CART ) method. To our knowledge, only Clapp and Wang (2006) use CART

methodology for sub-market construction in the context of housing price sales data.

1On an international scale, Switzerland has one of the lowest homeownership rates with approx. 44%
according to Eurostat (2015).

2See also Pace, Barry, Gilley, and Sirmans (2000) for an application of the STAR model to housing prices
in Baton Rouge, Louisiana.

2



Our empirical results show that including sub-market dummy variables constituted

by ZIP codes significantly improves prediction accuracy. However, while this approach

systematically ignores the spatial structure, sub-market construction based on regression

tree technique displays a superior estimation strategy. The forecast evaluation shows

that augmenting the hedonic model by spatially lagged variables is particularly success-

ful in one-day-ahead forecasting. These results highlight the STAR model’s superiority

compared to other specifications and emphasize the importance of local dynamics in one-

day-ahead forecasting.

The rest of the paper is organized as follows: In Section 2, we provide an overview

of theoretical and empirical approaches for modeling the temporal and spatial structure

in hedonic pricing models. Section 3 introduces the research design and the models that

are compared for prediction purposes. The empirical predictive power of these models is

evaluated in Section 4. Section 5 summarizes our results and gives concluding remarks.

2 Space-Time Modeling

Hedonic pricing models have been the workhorse in the housing literature for decades.

Since the seminal work by Rosen (1974), the capitalization of dwelling amenities in

mainly linear hedonic functions has been studied in a large strand of literature.3

One of the most important distinguishing features of hedonic housing price mod-

els is an underlying assumption about the spatial and temporal structure. More-

over, hedonic pricing models take a wide range of functional forms. In this section,

we demonstrate the range of spatial and temporal effects in empirical housing appli-

cations, which serve as individual components in our model comparison and evalu-

ation. Concerning the functional form, the potential model complexity has largely

been influenced by advances in computer technology. In particular, semi- and non-

3Instead of using house prices, the present study is one of the few to apply hedonic pricing techniques to
rental price data. For reviews of the earlier literature see Bourassa, Hoesli, and Peng (2003), Malpezzi
(2003) and Sirmans, Macpherson, and Zietz (2005).
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parametric approaches have gained much attention. For an overview of these models,

see Anglin and Gencay (1996) and McCluskey, McCord, Davis, Haran, and McIlhatton

(2013), as well as Martins-Filho and Bin (2005) for the application of artificial intelli-

gence methods in the field of real estate.

Despite the successful application of non-linear and non-parametric methods, we

restrict our analysis to linear and parametric methods for two reasons: First, the focus of

this study is on the marginal effects of the spatial and temporal components. Comparisons

between models with different functional forms would unnecessarily dilute this intention.

Second, semi- and non-parametric approaches often yield results that are difficult to

interpret. For the purpose of price prediction, especially in practical applications, it is

therefore questionable whether the parsimony of time- and space-discrete models should

be dismissed in favor of more complex approaches. Restricting our focus to linear models

throughout this study, we use the following general pricing model:

pt,s =α(t, s) + βXt,s

+ φSXt,s−σ + φTXt−τ,s + φSTXt−τ,s−σ

+ ψSpt,s−σ + ψTpt−τ,s + ψSTpt−τ,s−σ + εt,s

with: α(t, s) = temporal and spatial heterogeneous intercept,

β = hedonic prices of physical attributes,

φT , ψT = temporal dependence,

φS, ψS = spatial dependence, and

φST , ψST= spatiotemporal cross-effects,

(1)

where subscripts t and s refer to time and space, respectively. The rental price is denoted

by pt,s, i.e., it depends on time and location. The vectorXt,s comprises the housing-specific

characteristics. Note that the intercept α is potentially time- and location-specific, i.e.,

it accounts for heterogeneity along these dimensions. The coefficients φ and ψ measure
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the effects of temporal and spatial dependencies. In particular, these are the coefficients

of spatially and temporally lagged variables, indicated by subscripts t − τ and s − σ,

respectively. The way to model the temporal and spatial effects is to a large extent

determined by the underlying data structure. In the next section, we therefore present

the most widely applied approaches as well as combinations of them.4

2.1 Aggregation of Space and Time

Housing naturally has a specific location, while observations of price offers or transactions

naturally happen at specific points in time. The resulting observations are therefore

principally continuous in time and space. For this reason, real estate prices should not be

treated as cross-sectional, time-series or panel data, as Dube, Legros, and Thanos (2014)

point out. The aggregation along either of these dimensions is problematic and a subject

of current research.5 In addition, the way space and time are aggregated (or not) largely

determines the set of feasible models and estimation methods. The models in this paper

exhibit both continuous and discrete elements. In the continuous case, the location s is

a pair of values containing longitude and latitude coordinates:

s = {lat, lon}. (2)

In the discrete case, the Euclidian space is partitioned into K aggregate sub-markets

implicitly defined by

k : I (s ∈ Rk), (3)

where k = 1...K and I (.) is the indicator function. Similarly, the time dimension can either

be divided into discrete partitions (e.g., in years) or treated as continuous value. The left

panel of Figure 1 illustrates the aggregation of time and space into discrete partitions by

4For instance, Liu (2013) uses time and regional dummies combined with a spatiotemporal autoregressive
(STAR) model.

5See Dube, Legros, and Thanos (2014) for a detailed discussion of these issues.
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including simple time and location dummies to account for potential heterogeneity. In

the spatiotemporal specification, as illustrated in the right panel, spatial and temporal

dependency is modeled. In particular, the current observation (dark shaded dot) may

depend on temporally lagged (t1, t2, and t3 ) or spatially lagged (s1, s2, s3, and s4 )

observations.

[INSERT FIGURE 1 HERE]

2.2 Spatial Dimension

It is widely accepted that real estate transaction prices not only depend on physical at-

tributes, but also on the local “market conditions.” There are two ways to interpret local

market conditions: The first is to regard them as an unobserved effect that constitutes

a locally homogeneous environment by differentiating the local from the global hedonic

pricing coefficients. This is referred to as spatial heterogeneity. The second interpreta-

tion of local market conditions is traced back to a contagion effect between transactions.

In particular, the occurrence of market transactions affects the price of (spatially lagged)

observations. This is referred to as spatial dependence. Can (1990) refers to spatial hetero-

geneity as neighborhood effects and to spatial dependence as spillover effects.6 Although

the theoretical distinction between these two effects has been widely accepted, the way

these effects are incorporated into econometric models is a subject of ongoing discussion.

Since spatial dependence leads to empirical spatial heterogeneity, it is hard to identify

the true data generating process (DGP). Therefore, the choice of the model structure is,

to a certain degree, arbitrary. In most applications, the choice is simply driven by data

availability.7

Spatial Heterogeneity. As it is for panel data, allowing for fixed-effects is the

simplest and most obvious way to account for potential cross-sectional dependence. In

6See also Can (1992) for a discussion of this distinction in the spatial dimension.
7Anselin (2010), who provides an extensive review of the evolution of spatial econometrics over the last
three decades, illustrates the trade-offs emerging from these issues.
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spatial data, cross-sectional dependence often exhibits a spatial structure. If this is in-

deed the result of the spatial heterogeneous hedonic pricing function, including location-

specific dummy variables in the case of a discrete space is a promising way to control

for this type of heterogeneity. Several studies have found evidence for local differences in

marginal effects of property characteristics (see, e.g., Goodman and Thibodeau (1998)).

Pace, Barry, Clapp, and Rodriquez (1998) argue that the use of indicator variables is the

simplest way to control for spatial and temporal dependencies. However, they also ar-

gue that this strategy is only feasible with a limited number of dependencies, since each

indicator is related to a coefficient, which for large N induces an incidental parameter

problem.

In this context, the definition of sub-markets is given particular atten-

tion and has been addressed by several studies (see, e.g., MacLennan (1977),

Bourassa, Hamelink, Hoesli, and MacGregor (1999), and Michaels and Smith (1990)).

The problem with administrative boundaries, e.g., based on MSA or ZIP code defini-

tions, is that such sub-markets do not follow the spatial heterogeneity structure. Typ-

ically, housing data comes with information on the spatial position of the observations

(e.g., ZIP codes or school districts). These predefined sub-markets have widely been used

as dummy variables in hedonic regression equations. In the last two decades, several

approaches have been examined for housing market segmentation based on statistical

methods. Bourassa, Hoesli, and Peng (2003) use principal component analysis to identify

orthogonal factors of the dwelling properties. On the basis of these factors, they utilize

cluster analysis to identify homogeneous sub-markets. Goodman and Thibodeau (2003)

apply a hierarchical method for sub-market construction. In this paper, we follow the

approach suggested by Clapp and Wang (2006) and use the regression tree approach.

Goodman (1981) identifies three requirements that a concise sub-market definition

must fulfill: homogeneity, parsimony, and contiguity.8 Indeed, finding contiguous homo-

8See also Clapp and Wang (2006) for theoretical requirements of sub-market construction.
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geneous sub-markets is supposed to solve the spatial heterogeneity problem. Comparisons

in terms of prediction accuracy show that constructed sub-markets are not superior to

a priori sub-market definitions. In an analysis of residential property transactions in

Auckland, Bourassa, Hoesli, and Peng (2003) find a better performance of sub-markets

as defined by professional appraisers. They compare the predictive power of models with

sub-markets based on a principal component analysis with a predefined set of sub-markets.

A main result of their analysis is that sub-market definitions that disregard spatial con-

tiguity are worse for practical purposes. Goodman and Thibodeau (2003) derive housing

sub-markets using a data set for metropolitan Dallas containing 28,561 transactions of

single-family houses. Using a segmentation approach based on a hierarchical model, they

find that predictions based on smaller sub-markets outperform pooled estimates. How-

ever, the predictive performance of ZIP code pre-defined sub-markets is comparatively

good. The literature on the construction and analysis of segments in the rental market is

sparse. Of the few contributors, Des Rosiers and Theriault (1996) analyze rental property

data in the Quebec area and identify five significantly different market segments.9

Spatial Dependence. Most recent studies have focused on the modeling of spatial

dependence of house prices by applying new techniques from the field of spatial statis-

tics to housing data (see, e.g., Dubin (1998), Can (1992), Pace and Gilley (1997), and

Basu and Thibodeau (1998)). Similarly, standard lattice models such as spatial autore-

gressive (SAR) and conditional autoregressive (CAR) models have been widely applied

in the real estate literature.10 A comparison and summary of the two different specifica-

tions of spatial dependence are given in Dubin (1998). A taxonomy of recent applications

including spatial dependencies is provided in Bourassa, Cantoni, and Hoesli (2010), who

differentiate between models with location dummies, lattice models of spatial dependence,

and geostatistical models. Geostatistical models are characterized by a continuous spatial

9Concerning heterogeneity in a continuous sense, soft boundary methods, originally developed in the
field of geostatistics, are available. In this study, we restrict our focus to hard boundaries. See
Bourassa, Cantoni, and Hoesli (2007) for a more detailed discussion of geostatistical models with con-
tinuous spatial domains and lattice models.

10See, e.g., Anselin (2010) for an overview.
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dimension. Using a data set of U.S. house price transactions, the authors find a good per-

formance of geostatistical models. While their methodological approach is closely related

to this study, we additionally test models with temporal dependence.

2.3 Temporal Dimension

While there has been a significant amount of research on spatial effects in the last three

decades, the temporal dimension has gained very little attention. A few studies have

used aggregate panel data to determine the fundamental drivers of housing prices (see,

e.g., Hort (1998), Harter-Dreiman (2004), and Adams and Füss (2010)). In many hedonic

pricing applications, the time dimension is entirely neglected since transactions take place

within a relatively short time window (i.e., within one year). This special case of temporal

aggregation shrinks the time dimension to a single point (see Sub-section 2.1).11 In the

following subsection, we discuss these remaining issues, i.e., temporal heterogeneity and

dependence, which are conceptually similar to the spatial dimension.12

Temporal Heterogeneity. Temporal heterogeneity is the variation of hedonic

parameters over time. In applications with a relatively long time period, temporal het-

erogeneity seems almost natural. For the purpose of hedonic price index construction, the

time dimension is even the major focal point.13 Two estimation methods for index con-

struction are widely applied: incorporating time dummies in the regression or estimating

the hedonic equation separately for each period. In the first case, parameters in β are as-

sumed constant over time and only the intercept parameter α(t, s) is allowed to vary over

time. In the second case, the assumption of time-invariant hedonic slope parameters β is

11For instance, Bourassa, Cantoni, and Hoesli (2010) treat the data as cross-sectional. By neglecting
time effects, the implicit assumption is made that observations are simultaneous, which is generally not
a realistic assumption. Still, if the time window of the presumable cross-sectional data is short, planned
but not yet realized transactions or price offers may still have an effect on previous transactions.

12One important exception is that spatial econometrics allows for feedback loops due to the connectivity
induced by the weighting matrix. The size of spillover and feedback effects depends on the estimated
spatial lag as well as the strength of the spatial weights.

13See Diewert, de Haan, and Hendriks (2015) for a general discussion of residential real estate index
construction and Diewert, Saeed, and Silver (2009) for a specific discussion of the time dimension in
indexes. For residential real estate index construction in Switzerland, see Fahrländer (2008).
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relaxed. Note that the rolling window approach in our out-of-sample predictions allows

us to estimate β on a day-to-day basis. In the one-day-ahead forecasting approach, we

therefore account, to a certain degree, for temporal heterogeneity in all models, similarly

to Munneke and Slade (2001) and Liu (2013). A crucial distinction between the cross-

validation and the one-day-ahead forecasting results is the incremental improvement by

accounting for temporal heterogeneity.

Temporal Dependence. For discrete-time data, dynamic panel models have been

the first choice in the literature on housing markets. However, these models are used if

data comes in an aggregated form. This is not the case for individual housing transaction

or offer price data. In the case of non-aggregated data, the continuous-time information

naturally often comes with continuous-space data and is captured by spatiotemporal mod-

els, which typically include autoregressive components. The temporal dimension has only

recently been addressed by a few studies. Particularly, Pace, Barry, Clapp, and Rodriquez

(1998) formulate a model incorporating both the spatial and temporal dependencies in

a concise methodological framework.14 As in our study, Liu (2013) applies the STAR

model based on Pace, Barry, Clapp, and Rodriquez (1998) to a Dutch data set of housing

transactions. The main reason for the increased application of spatiotemporal models has

been the more structured way of modeling spatial patterns.

In addition, the temporal dependence structure reveals potential for forecasting

applications. In particular, in many practical applications, only historical information

is available for pricing a dwelling. In this case, time dummy methods are limited. This

favorable aspect of the STAR model has not yet been stressed adequately in the literature,

and thus is a main focus in the one-day-ahead forecasting application of this study.15 In

real forecasting applications, the time dimension is indeed of particular importance since

the identification of temporal dependencies is the main purpose. These dependencies are

14A review of the literature on spatiotemporal modeling is provided by Liu (2013).
15The reason for the minor interest in real forecasting might be that traditional applications have been
ex-post analyses such as housing index construction.
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measured by including spatial and temporal lags, while other informational inefficiencies

are deliberately not exploited, thereby keeping methods rather simple. Hence, only two

out of the five models incorporate temporal dependencies in our model comparison on

in-sample estimation and forecast evaluation.

3 Methodology

3.1 Prediction Approaches

We compare the predictive power of the models using three different prediction ap-

proaches: in-sample, cross-validation, and one-day-ahead forecasting. As in other studies,

the in-sample prediction is an overall model fit, while the cross-validation technique serves

as an out-of-sample robustness test. In the in-sample prediction, the estimation is per-

formed over the whole sample period. Cross-validation technique, in contrast, is based

on splitting the data set into a training and test sample using a random re-sampling

procedure. Finally, unlike in most hedonic prediction analyses, we also test the forecast-

ing accuracy of the models.16 Many studies on housing prediction do not account for

the temporal dimension and therefore make out-of-sample analyses in the form of cross-

validation.17 In contrast, our data comes with a date of day, which allows us to model

the temporal dependence. Therefore, the forecasting application is a real one-day-ahead

forecast. For that purpose, we define a rolling estimation window of 500 days. In Sec-

tion 4.5 we demonstrate that varying the window size does not substantially change the

results. Based on the estimation window, we fit the models and forecast all rental prices

observed on the subsequent day. Note that the rolling estimation window does, to some

degree, account for temporal parameter heterogeneity.

[INSERT TABLE 1 HERE]

16Note that Liu (2013) makes one-step-ahead forecasts based on annual frequency.
17For instance, Bourassa, Cantoni, and Hoesli (2010) do not account for the temporal dimension.
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In all three prediction approaches, we use several accuracy measures based on the

residual û from a regression on the logarithm of the rental price. An important and

widely applied error variation measure is the mean squared error, defined as MSE =

n−1
∑n

i=1 û
2
i . In order to get an impression of the size of the prediction, we report the

square root of the MSE, i.e., the root mean squared error RMSE =
√
MSE. As a

similar measure, but with less weight on the tails, we also present the mean absolute error

MAE = n−1
∑n

i=1 abs(ûi).

3.2 Model Specifications

The subsequent sections introduce the models that we consider in our comparative study

on in-sample estimation and forecast evaluation. The specification of these models follows

the incremental enhancement of a simple baseline model up to a spatiotemporal autore-

gressive (STAR) model. All models can be embedded in the general framework formulated

in Equation (1). The baseline model is a simple benchmark model in terms of a hedonic

pricing function, where the rental price is a linear combination of physical apartment

characteristics stacked in the vector X . In addition, yearly time dummy variables absorb

the temporal fixed-effects in the price variations, i.e.,

Baseline: pi = α(s, t) + βXi + εi, where α(s, t) = αt, (4)

with αt = const for t = 1, ..., T .

A more advanced specification is the ZIP model, which accounts for spatial het-

eroscedasticity in a simple way. In particular, predefined sub-markets constituted by ZIP

codes are included in the form of dummy variables:

ZIP: pi = α(s, t) + βXi + εi, where α(s, t) = αt + αs, (5)

with αt = const for t = 1, ..., T and αs = I(s ∈ Rk) for k = 1, ..., K (ZIP codes).
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The TREE model has the same functional form as the ZIP model:

TREE: pi = α(s, t) + βXi + εi, where α(s, t) = αt + αs, (6)

with αt = const for t = 1, ..., T and αs = f(lat, lon) =
∑M

m=1 cmI({lati, loni} ∈ Rm) for

m = 1, ...,M (regions), where the prediction in each region is a constant cm.

Hence, the only difference from the ZIP model constitutes the definition of the

sub-markets. As outlined in Sub-section 2.2, the use of predefined boundaries may be

problematic. Since the information about the precise location of apartments is given, we

can optimize the sub-market homogeneity through statistical methods. For this purpose,

we use the classification and regression tree (CART) approach.18 The basic principle of a

tree is the partitioning of the predictor space such that predictions are kept constant at

each partition. For our sub-market selection, we first estimate the baseline model, from

which we derive the residuals ûb. In the second step, the idea is to predict this residual

surface by partitioning the coordinate space into M partitions. On each partition, the

prediction is a (local) constant. This second task is solved by a regression tree (see Sub-

section 3.3 for a detailed description of the TREE regression approach). As an additional

restriction, price predictions, based on a model with regional indicator variables, require

a sufficient number of data points in each region. Hence, sub-markets must be specified so

that enough data is available in each partition for prediction purposes. In order to avoid

over-fitting and to make results comparable to the baseline model, we restrict the number

of sub-markets to the number of ZIP code regions, i.e., the ZIP and TREE model have

the same number of parameters. This allows us to evaluate the marginal improvement

derived from the two different sub-market definitions.

18Since Breiman, Friedman, Olshen, and Stone (1984) regression trees have gained popularity and
have been extensively applied in computational statistics. The CART approach is also used by
Clapp and Wang (2006) for sub-market identification.
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3.3 Classification and Regression Tree (CART)

In the following sub-section we demonstrate the use of regression trees for sub-market con-

struction. As mentioned above, for this purpose the residuals are estimated from a regres-

sion of rental price on the physical apartment attributes. Then, a regression tree is used

to predict these residuals using the coordinates as the only predictor variables. Concepts

and notations of this second step are largely based on Hastie, Tibshirani, and Friedman

(2009).

We first make the assumption that the price of an apartment depends on physical

characteristics X and the price of the local amenities A. Thus, the rental price of dwelling

i can be written as

pi = α + βXi + Ai + εi, (7)

where εi is an error term. Assume that the local amenities are unobserved and depend

on the coordinates (lat and lon), Ai = A(lati, loni). We define

ui ≡ A(lati, loni). (8)

The goal of the sub-market construction is to identify M homogeneous partitions of

the whole market, such that

A(lati, loni) = Am, for all {lati, loni} ∈ Rm, m = 1..M, (9)

where Rm, m = 1..M define partitions of the Euclidian space. In order to identify these

sub-markets, we run a regression of the rental price p on the physical characteristics and

denote the residual from this regression by u. Next, we use the regression tree to make a

prediction for ui by using the two predictors (lati, loni), where i = 1, ..., N .

The idea of the regression tree is to partition the Euclidian space into M regions,
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where the prediction in each region is a constant cm:

f(lat, lon) =

M∑

m=1

cmI({lati, loni} ∈ Rm). (10)

The goal is to identify the splitting variable (lat or lon) and the splitting points such

that the prediction error is minimized. This problem is solved by a recursive algorithm.19

The illustration in Figure 2 shows 60 tree-based sub-markets resulting from this procedure

for the canton Zurich. The left panel shows the tree structure, which is is pruned to only

7 splits for illustrative purposes. The right panel shows the resulting sub-markets, where

each leaf of the tree corresponds to each partition on the map, which represents one

sub-market.

[INSERT FIGURE 2 HERE]

3.4 A Spatiotemporal Autoregressive (STAR) Model

To derive the spatiotemporal autoregressive (STAR) model presented in

Pace, Barry, Clapp, and Rodriquez (1998), we start with a simple hedonic model

without spatial effects:

pt = αt + xtβt + ut, (11)

where pt is the price, xt is a set of exogenous factors, and βt contains a set of parameters.

As the time subscripts indicate, we assume heterogeneity over time. Note that this simple

hedonic model does not account for potential dependence in the error term ut. To resolve

this shortcoming, we assume structural dependence in the error term of the following

form:

19For details we refer the reader to Hastie, Tibshirani, and Friedman (2009).
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ut = Wtut + εt, (12)

where u is a white noise process and W is the weighting matrix. Following Liu (2013),

the STAR model can be written in compact form as:

(I −Wt)rn,t = (I −Wt)xn,tβt + εt. (13)

In a standard spatial model, Wt would be the spatial weighting matrix. The

STAR model, however, generalizes the weighting matrix to a set of spatial and tem-

poral lags as well as combinations of these lags. In their most general specification,

Pace, Barry, Clapp, and Rodriquez (1998) suggest that Wt be of the form:

Wt = φS,tS + φT,tT + φST,tST + φTS,tTS, (14)

with S and T being the spatial and temporal lag operator, respectively. By sequentially

applying these operators additional lags can be constructed. For instance, ST is the

spatial lag of the temporal lag and TS the temporal lag of the spatial lag. Substituting

(14) in (13) leads to the general regression equation:20

p =αt + xβt + SxβS,t + TxβT,t + STxβST,t

+TSxβST,tφS,tSp+ φT,tTp+ φST,tSTp+ φTS,tTSp+ ε.

(15)

This is the unrestricted form of a STAR model, where all spatial and temporal

lags as well as the corresponding interactions are included. Note that x is a vector

of k explanatory variables. The term βST is, for instance, a vector of k coefficients

corresponding to the spatial lag of the temporal lag of the explanatory variables. In

summary, the spatiotemporal autoregressive (STAR) model includes all combinations of

20For illustrative purposes, we have simplified the notations by leaving out subscripts: xn,t ≡ x and
pn,t ≡ p.

16



linear spatial and temporal lags:

STAR: pt,s =α(t, s) + βXt,s

+φSXt,s−σ + φTXt−τ,s + φSTXt−τ,s−σ

+ψSpt,s−σ + ψTpt−τ,s + ψSTpt−τ,s−σ + εt,s

(16)

A spatial weighting matrix is in general an N ×N matrix with each element repre-

senting a bilateral weight, which is defined as a proximity measure. However, the observa-

tions with a non-zero (positive) weight are restricted for two reasons: First, observations

in the future are not expected to have an effect and are thus excluded. Second, the spa-

tial dependence is diminishing along the space. As a simplification and for computational

reasons, only a predefined number of observations enters the weighting matrix, namely

the closest previous mS neighbors. Using this restriction, the spatial weighting matrix

reduces to a sparse matrix with only N ×mS non-zero elements. Similarly, the temporal

weighting matrix defines the weights given to past observations in order to compute the

temporal lag. The number of prior observations considered is restricted to mT .

The final model we introduce is the temporal autoregressive (TAR) model, which

is a truncated version of the STAR model. Accordingly, the components correspond to

those of the STAR model. It is an enhancement compared to the TREE model, since

it includes a temporal moving average of rental prices.21 This model accounts for global

time trends in the rental market in terms of autocorrelation:

TAR: pt,s =α(t, s) + βXt,s

+φTXt−τ,s + ψTpt−τ,s + εt,s

(17)

21The moving average in this context refers to rolling average and is not to be confused with a moving-
average (MA) process.
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4 Empirical Results

4.1 Data

We test our models using an exclusive data set consisting of 28,728 offered rental apart-

ments between 2002 and 2014 in the canton of Zurich, Switzerland. The data pool stems

from a Swiss rental market online platform. The available information about the rental

objects and the descriptive statistics are shown in Table 2. Note that the rental price

and surface of living area (surface) are in log terms. Panel D in Table 2 shows that the

number of objects containing all relevant information increased from 2002 to 2009 and

has been relatively stable since then. Because the sample ends in the first half-year of

2014, far fewer observations are available for the last year.

[INSERT TABLE 2 HERE]

The offered rent in housing and apartment markets is in general not the same as the

contract price. In particular, if the offered price for a dwelling is too high, the contract

may have not been finalized. We do not directly observe whether a contract associated

with an advertisement is concluded or not. However, by filtering and eliminating the

objects that have been re-advertised within a short time period, we are left with a good

proxy for the market price.22 After dropping the re-advertisements, we have more than

28,000 observations at our disposal, which can be identified as market contract prices.23

Figure 3 shows a map of the canton of Zurich with observations indicated by grey dots.

The illustrated administrative borders are defined by ZIP codes.

[INSERT FIGURE 3 HERE]

22In particular, if the same apartment occurs on the platform within 30 days, it is identified as a re-
advertisement. In that case, only the last price of the (series of) re-advertisements is considered as a
contract price. The previous advertisements are ignored in the forecasting application.

23For an extensive discussion of listing prices, contract prices, and market prices, we refer to Knight
(2002), Anglin, Rutherford, and Springer (2003), and Allen, Rutherford, and Thomson (2009).
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With regard to our comparative study of prediction models, there are several ad-

vantageous features of the rental market in the canton of Zurich. First, the density of

observations is relatively high, because the area is small (91 square kilometers) and the

number of observations is large. This is because in Switzerland the percentage of renters

is high. In the canton of Zurich, particularly, the home-ownership rate was as low as 7%

in 2005 (see Statistik Stadt Zürich (2005)). The resulting high density of observations

allows us to better identify the temporal and spatial structure.

4.2 Preliminary Analysis: Spatial Dependence

The use of methods including spatial components is only appropriate if rental prices

obtain spatial dependence. The magnitude of the spatial dependence of the rental price is

measured by the lags in the TAR and STAR model. The presence of spatial dependence

can also be captured by a variogram. Particularly, we would expect spatial dependence

in the residuals of the baseline model, which contains no spatial elements. Therefore, we

estimate the empirical variogram for the residuals resulting from the regression of this

benchmark model and compare it with the variograms for the residuals of the alternative

models. For this purpose, we briefly introduce the variogram function, which represents

the variance between observations conditional on a specific distance. Consider the set of

all location pairs (si, sj) with a distance h, denoted by N(h). The semivariogram is then

defined by the function γ(h), with

2γ(h) = |N(h)|1V ar (u(si)− ui(sj)) , (18)

where |N(h)| is the number of distinct pairs in N(h) and u(s) the residuals from the

hedonic regression. If the correlation between the residuals is non-constant for different

distances, that is evidence of spatial dependence. In terms of the variogram function

γ(h), this means that the functional value is low (high) for small (large) distances. The
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semivariogram for the residuals of the baseline model is shown in Figure 4. Because the

semivariogram increases with distance, the residual indeed exhibits spatial dependence.

Thus, the consideration of spatial elements might be appropriate. Nevertheless, the ques-

tion of whether location dummies or spatial lags are more suitable to account for spatial

heterogeneity is an empirical one. Yet, by including spatial components in the regres-

sion, the semivariogram should become flatter. The next sub-section delineates whether

and how the spatial dependence will decrease with increasing complexity in the spatial

specification.

[INSERT FIGURE 4 HERE]

4.3 In-Sample Estimation

In this sub-section, the coefficients derived from in-sample estimations are discussed with

regard to their economic and statistical significance; the results on prediction accuracy are

presented in the next sub-section. For the in-sample prediction, we run an OLS regression

of the rental prices on a set of apartment attributes as well as spatial and temporal lags.

Table 3 shows the regression results of the five models. The model complexity and the

number of parameters increase from left to right, i.e., from the baseline to the STAR

model.

Panel A of Table 3 shows that the most important physical attributes of the apart-

ments have highly significant effects and expected signs. The effect with the highest

significance is that for the apartment’s surface of living area. Since both rental price and

surface of living area are in logarithms, the coefficients can be interpreted as elasticities.

Thus, an increase of one percent in the apartment size is associated with a rental price

increase of 0.54% to 0.63%, depending on the model. The size of this effect is comparable

to findings from other studies on dwelling prices. The number of rooms also has an in-

creasing effect on the rental price, i.e., dividing the same apartment area into more rooms

increases the rent. However, the effect is small and ranges between 3.2% and 6.9% per
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room, depending on the model specification.

An interesting finding that reflects the problem of spatial heterogeneity involves the

coefficients for Parking and Garage. The former variable indicates that outside parking

is available, while the latter indicates that a parking garage belongs to the apartment.

The coefficients for these variables are significantly positive in all models, except in the

baseline model. The explanation for this result is the following: in central regions where

the availability of parking spaces is rare, prices for locations tend to be higher. This is

a good example of how spatial heterogeneity leads to biased estimates. Closely related

to this finding are the coefficients for apartments’ age. Indeed, the baseline model would

suggest that old apartments (70 years and more) are more expensive than new buildings.

Again, this can be attributed to the fact that buildings in central locations are older on

average, particularly those in historic city centers. Finally, the type of apartment does

have a large effect on the rental price, which is presumably the result of the specific taste

of households.

[INSERT TABLE 3 HERE]

Concerning the spatial and temporal dependence, the regression coefficients of the

corresponding lags are shown in Panel B of Table 3. First and most notably, the coefficient

for the spatial lag of the explained variables, denoted by [lag(S) ln(Rent)], is highly

significant. The magnitude of the effect is 0.816, indicating an almost one-to-one spillover

effect of spatially lagged objects. This finding is largely in line with Liu (2013), who

estimates a coefficient between 0.87 and 0.93 (depending on the year) for the spatial

dependence in house prices.

Second, the spillover effect of spatially lagged objects is also present for the apart-

ments’ attributes. The corresponding coefficients are those starting with lag(S). All effects

(except the Parking variable) are significantly negative. This finding is in line with the

local competition concept, which states that the availability of objects with favorable
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characteristics (i.e., large area, many rooms, and an elevator) has negative effects on

rental prices. Therefore, we can conclude that the spatial effects estimated in the STAR

model reflect reasonable market dynamics. Particularly, competition is taking place both

through lower prices and better attributes of objects close to the apartment at hand.

In contrast to the highly significant spatial lags, the temporal lags [lag(T)] are almost

negligible. Similarly, the cross-effects [lag(TS) and lag(ST)] are of minor importance with

the exception of the temporal lag of the spatial lag. The highly significant negative

sign indicates that price spillovers are only temporary, i.e., the effect on the price is

mean-reverting. In particular, the temporal lag is calculated on the basis of the last 180

observations (mT = 180), which corresponds to an average time of approximately 31.3

days.

To gain more insights about the remaining spatial dependence of the ZIP, TREE,

TAR, and STAR model, we estimate the semivariogram of the regression residuals. Figure

5 shows the corresponding semivariograms. A comparison to the baseline model (shown

in Figure 4) reveals that the spatial dependence decreases incrementally with increasing

spatial elements, with the exception of the TREE and TAR model, which include by

construction only temporal components. These findings are largely in line with our ex-

pectations. In addition, it demonstrates that the TREE model has already captured a

large portion of the spatial dependence. This result shows that a clear distinction between

spatial dependence and spatial heterogeneity can empirically be diluted.

[INSERT FIGURE 5 HERE]

4.4 Forecasting Performance

The in-sample analysis suggests the presence of spatial heterogeneity. On the one hand,

this is an important assumption for the consistency of the coefficients as the effect of the

variable Parking availability has illustrated. On the other hand, accounting for spatial
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heterogeneity can improve the prediction accuracy, which is the subject of this section. In

order to prevent model overfitting, we additionally test the predictive power out-of-sample.

Here, we use two different approaches: cross-validation and one-day-ahead forecasting. In

the cross-validation approach, we create a random test sample, which consists of 15% of

the observations. Since we still include region and year dummy variables, the random

sampling is based on homogeneous groups made up of all year-region combinations. The

rest (85%) of the data is used for the estimation. This specification allows a quasi-out-

of-sample prediction, while spatial and temporal heterogeneity can still be incorporated

in the form of time and region dummy variables. Panels A and B of Table 4 show the

in-sample and cross-validation prediction results.

For the one-day-ahead forecasts, we use a rolling estimation window of 500 days.

The reason for employing this approach is to ensure that strictly historical information

is used for the estimation of the models, which is particularly important in practical

prediction applications. The results of the out-of-sample predictions are shown in Panel

C of Table 4.

[INSERT TABLE 4 HERE]

The overall fit of the models (Panel A) in terms of R2 is similar in all three prediction

approaches. The baseline model with only physical attributes fits the data quite well, with

an R2 of 0.72. Adding location dummy variables in the ZIP model raises this number to

0.81, i.e., by approximately 9 percentage points. As expected, the ZIP code classification

already captures a substantial part of the spatial discrepancies in rental prices. This

finding is in line with Bourassa, Hamelink, Hoesli, and MacGregor (1999), where sub-

market choice using sophisticated statistical methods brought low improvement of the

prediction accuracy. The use of tree-based dummy variables, however, increases the R2

to about 0.85, while by comparison the TAR model is not better in terms of R2 than the

TREE model. This suggests that the past general rental price level, captured by a moving
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average of the rents, does not contain much information for current rental prices.24 The

inclusion of spatial lags in the STAR model, in contrast, raises the R2 to 0.88 (an increase

of 3 percentage points). These results of the overall fit of the models are comparable to

other similar studies.25

A similar pattern to that of the R2 can be identified for prediction measures RMSE

andMAE. We focus on these measures to compare different prediction approaches. Most

notably, the cross-validation results (Panel B) are almost the same as for the in-sample

fit, which confirms the high robustness of the in-sample results. While the prediction

errors in the baseline model are large (21.4% RMSE and 15.7% MAE), these figures

substantially decrease to 13.8% and 9.7% for the STAR model.

In the one-day-ahead forecasting application (Panel C), the results of all models

improve slightly. The reason for this improvement is the rolling estimation window,

which accounts to some extent for temporal heterogeneity of all coefficients in all models.

The magnitude of the improvement, however, is small. For instance, the baseline model

improves in terms of RMSE by only 1 percentage point. Similar improvements are

obtained for the other models. The highest relative improvement, even though small, is

achieved for the STAR model, which corresponds to our expectation. In particular, note

that the spatial lags are based on past but local observations. Therefore, capturing the

local market trend seems to be most important when forecasting out-of-sample, i.e., when

time-fixed effects are not feasible.

4.5 Robustness Tests

The forecast evaluations in the previous sub-section are derived on the basis of a specific

choice of model parameters. These parameters mainly refer to the size of the rolling

24The moving average in this context means rolling average and is not to be confused with a moving-
average (MA) process.

25For instance, the R2 in the findings of Liu (2013) is 0.78 for the baseline model and 0.88 for the STAR
model (e.g., for the year 2007).
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window, the number of neighbors in the determination of spatial and temporal lags, and

the regression tree parameter for sub-market definitions. In this section, we vary these

parameters in order to determine the sensitivity of the prediction accuracy in the one-day-

ahead forecast. The RMSE of the robustness tests, i.e., for different parameter values,

are summarized in Table 5.

[INSERT TABLE 5 HERE]

First, we vary the length of the estimation window for the one-day-ahead forecasts

in Panel A of Table 5. In the case of high temporal heterogeneity, we would expect

higher accuracy for a shorter estimation window. Surprisingly, the RMSE for all models

is slightly lower for a time window of 600 instead of 500 days; however, the differences

are small. In addition, increasing the estimation window further means that we need

more observations at the short end of the data. Hence, we refrain from increasing the

estimation window further. In contrast, when the rolling estimation window is decreased

to 400 days, the RMSE is marginally lower for all models.

Second, we address the arbitrary choice of parameters in the STAR model. As

mentioned in sub-section 3.2, the number of observations to calculate the temporal and

spatial lags in the STAR model is chosen according to Pace, Barry, Clapp, and Rodriquez

(1998). Panel B of Table 5 presents the RMSE resulting from a variety of different

parameter combinations of mT and mS.
26 Deviations in the parameters from their initial

values (mT=180 and mS=30) do not change the outcomes notably. While the change in

the spatial lag parameter mS is negligible for the prediction results, the parameter mT

slightly changes the RMSE. Nevertheless, the prediction results are highly robust with

respect to the choice of these parameters. In particular, the RMSE varies within less

than 0.06 percentage points.

26Note again that the parameter mT denotes the number of observations to calculate the time lag, and
mS the number of observations to calculate the spatial lag.
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A third source of arbitrary parameter choice is the number of defined sub-markets

in the TREE model.27 Panel C of Table 5 shows the RMSE for different choices of

the regression tree complexity, which results in different numbers of sub-markets. As the

resulting values indicate, the RMSE does not change substantially even with very few

sub-markets. This indicates that the macro location is most important for differences in

rental prices.

5 Conclusion

We test the forecast performance of five different hedonic model specifications with vary-

ing complexity of temporal and spatial structure for the residential rental market. The

baseline model with no spatial and temporal elements primarily served as a benchmark.

By fitting the models to rental apartment data from the canton of Zurich, Switzerland, and

evaluating the forecast accuracy on daily rental price data, we reveal several important

findings: With regard to the hedonic prices, we demonstrate the importance of account-

ing for spatial heterogeneity. Particularly, if only physical attributes are included in the

model, the high dependence of certain variables on the location (e.g., available parking)

can cause large biases in the estimated coefficients. Similarly, the prediction results are

substantially worse in the absence of location dummy variables. Indeed, we show that

including sub-market dummy variables constituted by ZIP codes highly improves the pre-

diction results. Since sub-markets defined by ZIP codes do not systematically account for

the specific spatial structure, we test a more sophisticated sub-market definition based on

empirical spatial heterogeneity. Using this we construct sub-markets based on the resid-

ual values of the baseline model using a regression tree. We find that the construction of

more sophisticated sub-markets substantially improves the prediction accuracy.

Including temporal lags (in the STAR model) reveals two further interesting find-

27Note that in our previous estimations we have set the number of sub-markets equal to the number of
regions in the ZIP model.
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ings: First, we find empirical evidence for a functioning local market competition. In

particular, the dependence on the rental price of neighboring objects is positive, while

the dependence on favorable attributes of neighboring objects is negative. This result

suggests that the presence of apartment offerings in the neighborhood with low rental

prices and favorable (high) attributes affects the rental price of an object negatively. Sec-

ond and more importantly for the purpose of this paper, including spatial dependence

increases the prediction accuracy considerably. Particularly, for the STAR compared to

the TREE model the RMSE decreased from 0.155 to 0.138 in the in-sample-prediction

and cross-validation. The highest improvement, however, is found in the one-day-ahead

forecast, where the RMSE decreases from 0.152 to 0.133. This finding is in line with

the hypothesized expectation that local dynamics are important in the one-day-ahead

forecasting. The STAR model is therefore the best candidate for empirical applications

where no ex-ante information is available.

Another important outcome of the one-day-ahead forecasting application is the fact

that the prediction accuracy is better than in the in-sample and cross-validation predic-

tions. Hence, it follows that rental prices exhibit, to some degree, temporal heterogeneity,

which is accounted for by the rolling estimation window. For real world applications, e.g.,

for the purpose of price setting by real estate developers or valuation purposes by apprais-

ers, all models except the baseline model are suitable in terms of prediction accuracy. In

particular, the prediction errors in terms of the root mean squared error (RMSE) are

less than 18%, and the mean absolute error (MAE) is less than 13%. The best predic-

tion is achieved by the STAR model in the one-day-ahead forecasting with an RMSE of

13.3% and a MAE of 9.7%. These results are highly robust to variations in the model

parameters. For instance, changing the rolling estimation window length has almost no

implications for the prediction results. Most notably, however, the reduction in the num-

ber of sub-markets in the TREE model from 60 to 10 increases the prediction error by

only 0.1 percentage points.
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The temporal structure, particularly the temporal autocorrelation, has only minor

effects. Therefore, the TAR model does not bring (marginal) improvements. For out-

of-sample forecasting applications, the temporal dimension merits greater attention in

future research by, for instance, testing autoregressive dynamics in hedonic prices (under

temporal heterogeneity). In addition, it may be promising to use more sophisticated

forecasting models than simple temporal lags in terms of moving averages. However, the

empirical evidence in this study shows that dynamics in the residential market are local.

It is therefore questionable whether including global trends can indeed improve prediction

results.
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Table 1: Overview of Model Specifications

This table lists the different hedonic model specifications with varying complexity of temporal and spatial

structure. We compare the predictive power of the models using three different prediction approaches:

in-sample, cross-validation, and one-day-ahead forecasting. The table shows the in-sample predictions as

an overall model fit, including all observations over the whole sample period. For all model specifications,

we further conduct an in-sample cross-validation, which is based on splitting the data set into a training

and a test sample using a random re-sampling procedure. We also test the forecasting accuracy of the

models based on a real one-day-ahead forecast. For that purpose, we define a rolling estimation window

of 500 days.

Model
Temporal Structure Spatial Structure

Heterogeneity Dependence Heterogeneity Dependence

Baseline time dummies no no no
ZIP time dummies no ZIP dummies no
TREE time dummies no TREE dummies no
TAR time dummies temporal lags TREE dummies no
STAR time dummies temporal lags TREE dummies spatial lags
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Table 2: Descriptive Statistics

This table reports the descriptive statistics of rental prices for the canton Zurich. The data pool stems

from a Swiss rental market online platform. Note that the rental price and living area (surface) in Panel

A are in log values. Panels B and C show the proportion of binary housing attributes and apartment

types covered in the sample. Panel D reports the number of observations over the entire sample period

2002 to 2014. Because only the first months of 2014 are included, fewer observations are available for

that year.

PANEL A: Descriptive Statistics of Continuous Variables

Variable Mean Std.Dev. Q 5% Median Q 95%

log(rental price) 7.218 0.755 5.908 7.222 8.503
log(surface) 3.505 1.781 1.000 3.500 5.500
number of rooms 4.403 0.432 3.5 4.5 5.0

PANEL B: Descriptive Statistics of Binary Variables

Percentage of Observations

Variable yes no Total
Elevator 43.80 56.20 100.00
Parking 30.92 69.08 100.00
Garage 53.58 46.42 100.00

PANEL C: Descriptive Statistics of Apartment Type

Apartment Type Percentage of Obs. Age Percentage of Obs.

Standard 82.22 less than 4 years 18.29
Duplex 6.58 4 to 14 years 18.46
Attic flat 3.15 15 to 29 years 18.45
Roof flat 4.31 30 to 43 years 17.29
Studio 0.35 44 to 70 years 17.10
Single Room 0.33 more than 70 years 10.41
Furnished flat 1.67 Total 100.00
Terrace flat 0.41
Single flat 0.23
Loft 0.54
other 0.21
Total 100.00

PANEL D: Observations by Year

Year Observations Proportion of the Sample

2002 637 2.2%
2003 1102 3.8%
2004 1557 5.4%
2005 2085 7.3%
2006 2281 7.9%
2007 2445 8.5%
2008 2691 9.4%
2009 3074 10.7%
2010 2975 10.4%
2011 3092 10.8%
2012 3053 10.6%
2013 2878 10.0%
2014 858 3.0%
Total 28728 100.0%
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Table 3: In-Sample Estimation

This table reports the coefficients of the baseline, ZIP, TREE, TAR, and STAR regressions in Panel A.

The coefficients of the spatial and temporal lags are shown in Panel B. The spatial and temporal lags

are indicated by lag(S) and lag(T), respectively. Cross-effects are indicated by two lag indicators: the

spatial lag of the temporal lag is denoted by lag(ST) and the temporal lag of the spatial lag by lag(TS).

Variable log(Rent) refers to lags of the rental price as the endogenous variable.

Baseline ZIP TREE TAR STAR
Variables coeff. t-stat. coeff. t-stat. coeff. t-stat. coeff. t-stat. coeff. t-stat.
PANEL A: Coefficients of Physical Attributes

log(Surface) 0.628 95.90 0.566 103.50 0.537 111.30 0.537 111.30 0.536 112.60
Rooms 0.032 14.80 0.059 32.20 0.065 40.50 0.065 40.50 0.069 43.80
Elevator 0.068 22.80 0.033 13.30 0.020 9.20 0.020 9.20 0.034 13.70
Parking -0.031 -11.30 0.002 0.60 0.005 2.30 0.005 2.20 0.007 3.40
Garage -0.001 -0.20 0.013 5.40 0.019 8.90 0.019 8.90 0.027 12.00
Apartment 0.178 6.30 0.170 7.30 0.162 7.90 0.162 7.90 0.138 7.50
Duplex 0.204 7.10 0.205 8.60 0.199 9.50 0.199 9.50 0.164 8.80
Attic flat 0.372 12.80 0.352 14.60 0.334 15.70 0.334 15.70 0.286 15.10
Roof flat 0.205 7.10 0.223 9.30 0.213 10.10 0.214 10.10 0.178 9.50
Studio 0.192 5.50 0.146 5.00 0.103 4.00 0.103 4.00 0.073 3.20
Single Room 0.111 3.00 0.041 1.30 -0.022 -0.80 -0.022 -0.80 -0.049 -2.10
Furnished flat 0.484 15.90 0.416 16.50 0.355 16.00 0.356 16.00 0.282 14.20
Terrace flat 0.327 9.40 0.316 11.00 0.301 11.90 0.302 11.90 0.253 11.20
Single Flat 0.229 5.60 0.201 6.00 0.195 6.60 0.195 6.60 0.178 6.70
Loft 0.234 6.90 0.270 9.70 0.272 11.10 0.273 11.10 0.228 10.40
Age 5-14 -0.078 -18.30 -0.076 -21.30 -0.074 -23.70 -0.074 -23.60 -0.060 -21.30
Age 15-29 -0.120 -26.80 -0.126 -33.80 -0.139 -42.10 -0.138 -42.00 -0.104 -34.40
Age 30-43 -0.154 -32.50 -0.177 -44.60 -0.191 -55.10 -0.191 -55.00 -0.133 -40.50
Age 44-70 -0.099 -19.70 -0.168 -39.30 -0.189 -50.10 -0.189 -50.10 -0.142 -40.30
Age 70+ 0.096 17.30 -0.014 -3.00 -0.102 -23.30 -0.102 -23.30 -0.095 -23.80
Q2 0.000 -0.10 0.007 2.20 0.007 2.40 0.007 2.30 0.004 1.40
Q3 -0.002 -0.40 0.005 1.50 0.004 1.40 0.003 1.10 0.002 0.80
Q4 0.000 -0.10 0.010 3.20 0.010 3.60 0.010 3.10 0.007 2.40
PANEL B: Coefficients of Spatial and Temporal Lags

lag(T) ln(Surface) -0.066 -1.00 -0.067 -0.90
lag(T) Rooms 0.016 0.80 0.011 0.50
lag(T) Elevator -0.017 -0.70 -0.040 -1.20
lag(T) Parking 0.003 0.10 0.001 0.10
lag(T) Garage 0.007 0.30 -0.037 -1.20
lag(S) ln(Surface) -0.504 -45.10
lag(S) Rooms -0.048 -14.70
lag(S) Elevator -0.060 -15.90
lag(S) Parking 0.005 1.10
lag(S) Garage -0.033 -7.90
lag(ST) ln(Surface) 0.415 3.00
lag(ST) Rooms -0.022 -0.50
lag(ST) Elevator -0.074 -1.20
lag(ST) Parking -0.093 -1.50
lag(ST) Garage 0.097 1.80
lag(TS) ln(Surface) -0.037 -0.30
lag(TS) Rooms 0.015 0.40
lag(TS) Elevator 0.069 1.30
lag(TS) Parking -0.008 -0.20
lag(TS) Garage 0.095 1.80
lag(T) log(Rent) 0.080 1.70 0.099 1.40
lag(S) log(Rent) 0.816 85.40
lag(ST) log(Rent) -0.702 -11.60
lag(TS) log(Rent) 0.026 0.30
Time Dummies yes yes yes yes yes
Location Dummies no ZIP TREE TREE TREE
R-squared 0.722 0.810 0.853 0.853 0.883
# parameters 35 94 94 102 120
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Table 4: Forecast Accuracy

This table reports the results on prediction accuracy for baseline, ZIP, TREE, TAR, and STAR models.

Panel A shows the in-sample prediction results, Panel B the cross-validation prediction results, and Panel

C the one-day-ahead forecasting results. For the one-day-ahead forecasting, the reported R-squared is

the pseudo R-squared (calculated as the squared correlation between forecasted and actual value).

PANEL A: In-Sample Prediction (Global Estimation)
Baseline ZIP TREE TAR STAR

Root Mean Squared Error (RMSE) 0.214 0.176 0.155 0.155 0.138
Mean Absolute Error (MAE) 0.157 0.127 0.113 0.113 0.097
R-squared 0.722 0.810 0.853 0.853 0.883
Prediction error less than..
20% 0.726 0.807 0.850 0.850 0.888
15% 0.604 0.697 0.743 0.744 0.802
10% 0.438 0.523 0.568 0.568 0.644
5% 0.230 0.284 0.310 0.310 0.375

PANEL B: Out-of-Sample Prediction (Random Sampling)
Baseline ZIP TREE TAR STAR

Root Mean Squared Error (RMSE) 0.214 0.177 0.155 0.155 0.138
Mean Absolute Error (MAE) 0.157 0.128 0.113 0.113 0.097
R-squared 0.720 0.809 0.852 0.852 0.883
Prediction error less than..
20% 0.724 0.807 0.850 0.850 0.888
15% 0.602 0.696 0.743 0.744 0.802
10% 0.437 0.523 0.567 0.567 0.645
5% 0.230 0.284 0.309 0.309 0.375
PANEL C: One-Day-Ahead Forecast (Rolling Window)

Baseline ZIP TREE TAR STAR
Root Mean Squared Error (RMSE) 0.204 0.169 0.152 0.152 0.133
Mean Absolute Error (MAE) 0.149 0.123 0.111 0.112 0.095
R-squared 0.714 0.804 0.842 0.841 0.879
Prediction error less than..
20% 0.746 0.817 0.852 0.850 0.893
15% 0.630 0.706 0.745 0.744 0.809
10% 0.464 0.538 0.570 0.567 0.648
5% 0.242 0.296 0.314 0.311 0.374
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Table 5: Robustness Tests

This table shows the results of the robustness tests for varying model parameters. All tests are per-

formed in the one-day-ahead forecasting application. In Panel A, we report the root mean squared error

(RMSE), with varying length (in days) of the rolling estimation window. Panel B shows the RMSE

when the number of neighbors (mS and mT ) for the determination of spatial and temporal lags are chosen

differently. mS and mT denote the number of observations to calculate the spatial and time lag, respec-

tively. Panel C shows the prediction accuracy with varying regression tree parameters and corresponding

number of tree-defined sub-markets. The values in bold are those used in the forecasting application of

Section 4 (standard values).

PANEL A: RMSE with Varying Length of Rolling Estimation Window
Estimation Window (Days) Baseline ZIP TREE TAR STAR
400 0.204 0.170 0.152 0.153 0.135
500 0.204 0.169 0.152 0.152 0.133
600 0.203 0.169 0.151 0.151 0.132
PANEL B: RMSE of STAR Model with Varying mS and mT

mT

100 140 180 220 260

mS

10 0.1320 0.1326 0.1327 0.1325 0.1326
20 0.1322 0.1328 0.1329 0.1326 0.1327
30 0.1322 0.1328 0.1329 0.1326 0.1327
40 0.1322 0.1328 0.1329 0.1326 0.1327
50 0.1322 0.1328 0.1329 0.1326 0.1327

PANEL C: RMSE of TREE Model with Varying Tree Complexity Parameter
Complexity Parameter Number of Sub-Markets RMSE

20.00 5 0.1705
5.00 10 0.1522
1.20 30 0.1517
0.55 60 0.1512
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Figure 1: Illustration of Time and Space Data Structure

This figure shows the aggregation of discrete time and space in the data structure. The left panel

illustrates the aggregation of time and space into discrete partitions by including simple time and location

dummies to account for potential heterogeneity. The right panel illustrates the modeling of spatial

and temporal dependency. The dark shaded circle indicates the current observation which depends on

temporally lagged (t1, t2, and t3 ) or spatially lagged (s1, s2, s3, and s4 ) observations. T , S and s, t

stand for time and space and spatially and temporally lagged observations, respectively.
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Figure 2: Map of Regression-Tree-Based Sub-Markets of Canton Zurich

The figure illustrates the sub-market identification according to the regression tree approach based on

residual location values. In this approach, the splitting variable (lat or lon) and the splitting points are

determined in such a way that the prediction error is minimized. The illustration shows 60 tree-based

sub-markets resulting from this procedure for the canton Zurich. The left panel shows the reduced tree

structure for 7 splits. The right panel shows the resulting sub-markets with each partition on the map

corresponding to each leaf of the tree representing a sub-market.
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Figure 3: Map of Study Area

The figure shows the map of the canton Zurich with the distribution of observations indicated by the grey

dots (approx. 28,000 observations). It also lists the six towns with the highest population. The canton

Zurich accommodates 171 municipalities and covers an area of 91 square kilometers. The administrative

borders of these municipalities, shown in the graph, are defined by ZIP codes.
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Figure 4: Empirical Semivariogram of the Baseline Model

This figure shows the semivariogram estimated from the residuals of the baseline model. The increasing

pattern, which reflects spatial dependence as a function of distance (in km) in the semivariogram, indicates

that spatial autocorrelation is left in the residuals.
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Figure 5: Empirical Semivariogram of Alternative Models

The figure shows the semivariograms estimated from the regression residuals of the alternative models

ZIP, TREE, TAR, and STAR. For the ZIP and TREE specifications the spatial dependence decreases

with increasing number of spatial elements. Due to the consideration of only temporal components, the

TREE and TAR models fail to adequately capture spatial dependence.
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