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Abstract

Property-casualty (P&C) insurers are exposed to rare but severe natural disasters. This paper
analyzes the relation between catastrophe risk and the implied volatility smile of insurance stock
options. We find that the slope is significantly steeper compared to non-financials and other financial
institutions. We show that this effect has increased over time, suggesting a higher risk compensation
for catastrophic events. We are able to link the insurance-specific tail risk component derived from
options with the risk spread from catastrophe bonds. Our results provide an accurate, high-frequency
calculation for catastrophe risk linking the traditional derivatives market with insurance-linked secu-
rities (ILS).
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“The hurricane does not know the rate that was charged for the hurricane policy, so it’s not going to
respond to how much you charge. And if you charge an inadequate premium, you will get creamed over
time.”

-Warren Buffett-
June 9th 2014, Las Vegas

1 Introduction

Options allow us to evaluate the expectation of market participants regarding extreme events (Backus,

Chernov, and Martin (2011)). Since property-casualty (P&C) insurance companies are exposed to natural

and man-made catastrophes, options written on P&C insurance stocks should exhibit a catastrophe risk

premium in the tail of their density function. This risk premium should be in excess of the tail risk

in stock prices induced by market events, given that P&C insurance companies are also exposed to the

overall economic development and thus the same market events. This paper analyzes the slope of the

implied volatility, i.e., the absolute difference between out-of-the-money (OTM) and in-the-money (ITM)

put options, as a measure of tail risk to identify a catastrophe risk premium. The idea behind this

approach is that OTM options provide more effective protection against rare events than ITM options

(Kelly, Pástor, and Veronesi (2015)).

There are at least three motivating aspects in analyzing tail risk specifically using options on P&C

insurance stocks to identify inherent catastrophe risk.1 First of all, catastrophes can cause great damage

to specific regions. Risk-averse households are interested in offloading such risks but face high insurance

premiums for this type of risk (see Froot (2001) and Zanjani (2002)). Any insight into catastrophe risk

can thus further enhance our understanding of risk-adequate compensation for this type of risk. Second,

some market participants specifically securitize part of their tail risk (i.e., catastrophe risk) in financial

markets by means of insurance-linked securities (ILS).2 This allows us to verify our results for catastrophe

risk in another market and establish a link between the two. Third, P&C insurers use risk mitigation

1We define catastrophe risk as a specific and independent component of the overall tail risk to which companies are exposed.
Thus, catastrophe risk is one of many potential sources of distress to a firm (here the P&C insurer). We follow Froot’s
(2001) definition of catastrophe risk itself, which relates to all events linked to natural hazard (e.g., hurricanes, earthquakes,
wind and ice storms, floods, etc.) causing financial losses.

2The banking sector has also begun to apply a similar technique using contingent convertible (coco) bonds in the wake
of the financial crisis. However, catastrophe bonds have already attracted investors at the end of the 1990s and, more
importantly, catastrophe risk is (in general) uncorrelated with the market (Froot et al. (1995) and Zanjani (2002)), whereas
coco bonds are most likely to be triggered when the rest of the economy suffers a simultaneous downturn. Thus, from an
investor’s perspective, the identification of catastrophe risk can be interesting for diversification purposes. In our research
design, this means we have an independent component of tail risk.
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techniques to reduce tail risk exposure, especially excess-of-loss reinsurance. This provides an opportunity

to test whether the implied volatility slope reflects differences in the amount of risk mitigation.

No previous studies on options written on insurance stocks exist. However, the finance literature

focuses on two aspects closely related to ours. First, the determinants of the implied volatility smile are

important to explain the anomaly of the implied volatility smile itself (Dennis and Mayhew (2002); Bollen

and Whaley (2004)). Second, the relation between the implied volatility smile and tail risk has recently

gained much attention with regard to financial guarantees (Kelly, Lustig, and Nieuwerburgh (2015)) and

political uncertainty (Kelly, Pástor, and Veronesi (2015)). Our paper adds an important perspective

to the discussion between tail risk and the implied volatility smile by linking catastrophe risk with the

steepness of the implied volatility smile.

The contribution of this paper is fourfold. First, we derive an option pricing model unique to P&C

insurers which accounts for catastrophe risk and uses the derivatives market for accurate pricing of

catastrophe risk. Due to the limited understanding of catastrophe risk in combination with pricing, new

methods to comprehend this risk in greater detail can reduce market imperfections. Second, fair pricing

for catastrophe reinsurance can affect the capital requirements for catastrophe risk and thus reduce the

cost of capital (Zanjani (2002)). Third, we further enhance the reasoning with regard to the implied

volatility smile. That is, we address why there is an implied volatility smile and why it is shaped the

way it is (Dennis and Mayhew (2002)). Fourth, we create a link between the traditional derivatives

market and ILS. From an investor’s perspective, this link might be an indicator for potential arbitrage

opportunities if expectations on catastrophe risk in the two markets significantly diverge.

The first finding of this paper is the identification of a catastrophe risk premium in the implied

volatility smile. The implied volatility of OTM put options written on P&C insurers is 120 basis points

higher than OTM put options on matched non-financials with identical historical volatility. The second

finding is a strong correlation between the extracted catastrophe risk premium from option markets and

the risk spreads from catastrophe bonds with expected loss and default risk being significant drivers of

this result. The third finding is that catastrophe risk in derivatives has increased over time, that is, the

implied volatility smile became steeper over time in comparison to options written on the rest of the

market. The fourth finding is a steepening implied volatility smile around hurricane events on the day

of the landfall and the days following. This suggests that market participants are more likely to protect

themselves against natural catastrophes the more information about such an event arrives.

3



The remainder of this paper is organized as follows. Section 2 gives a brief literature review. Section 3

derives the option pricing model for P&C insurers and the corresponding hypotheses. Section 4 provides

a description of the methodology and Section 5 a description of the data. Section 6 shows the empirical

results. Section 7 checks for robustness and Section 8 concludes.

2 Literature

No previous studies on insurance options exist, yet there are two strands of literature relevant to this

paper. The first one deals with the general findings from the finance literature regarding the determinants

of the implied volatility smile and its relation to tail risk. The second strand of literature refers to the

findings on insurance-specific catastrophe risk.3

Regarding the determinants of the implied volatility slope, Dennis and Mayhew (2002) identify several

factors including beta, size, trading volume, the slope of the market index, and the volatility environment.

Effects regarding the leverage effect are ambiguous, however. While Toft and Prucyk (1997) find that

highly leveraged firms have steeper slopes than less leveraged firms, Dennis and Mayhew (2002) find no

robust effect regarding leverage. As highlighted by Dennis and Mayhew (2002), leverage is unlikely to be

a driving factor of the implied volatility smile, because currency options that cannot be subject to the

leverage hypothesis also display an implied volatility smile. Also, Bakshi, Kapadia, and Madan (2003)

find that index volatility smiles have a steeper slope than individual stock option smiles. Again, they

empirically show that the volatility smile is not the result of the leverage effect, as assumed by Toft and

Prucyk (1997). Bollen and Whaley (2004) find that the volatility smile is the result of demand pressure

from public order flow. That is, the more investors ask for OTM put options on indices and OTM call

options on individual stocks, the more expensive they get. Furthermore, Kelly, Lustig, and Nieuwerburgh

(2015) identify cheaper prices for OTM put options on a financial sector index during the financial crisis

than the sum of its individual constituents. This means that the financial sector received a government

guarantee against the tail risk of plummeting stock prices and default. Another study by Kelly, Pástor,

and Veronesi (2015) indicates that options in weak economies or politically uncertain countries are more

valuable and contain a risk premium to protect against the tail risk of political events. Table 1 summarizes

3From a broader perspective, this paper is also related to the real effects of risk management on financial instruments,
most notably Pérez-González and Yun (2013) who analyze weather derivatives as a risk mitigation instrument for energy
companies.
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the determinants and other special risk characteristics affecting the slope of the implied volatility and

classifies this paper in the literature.

Table 1: Factors affecting the implied volatility smile

Factors Effect on implied volatility smile Source

All options

Beta Steeper for stocks with larger betas. Dennis and Mayhew
(2002)

Size (market cap) Steeper for large firms. Dennis and Mayhew
(2002)

Volume More positive for stocks with higher trading
volume.

Dennis and Mayhew
(2002)

Net Buying Pressure Steeper for options which have a higher demand
in contrast to those with lower demand.

Bollen and Whaley
(2004)

Leverage Ambiguous results: Toft and Prucyk (1997) find
that highly leveraged firms have steeper slopes
than less leveraged firms. Dennis and Mayhew
(2002) find no robust effect regarding leverage.

Toft and Prucyk
(1997); Dennis and

Mayhew (2002)

Market Index Steeper for individual options when market index
options have steeper slope.

Dennis and Mayhew
(2002)

Volatility Environment Steeper during times of high volatility. Dennis and Mayhew
(2002)

Structure (Index vs.
individual stock options)

Index volatility smiles have steeper slope than
individual stock option smiles.

Bakshi, Kapadia, and
Madan (2003)

Specific options

Financial Guarantees OTM put options on a financial sector index were
cheaper during the financial crisis than the sum of
its individual constituents, demonstrating an
implicit insurance in the financial sector against
default.

Kelly, Lustig,
Nieuwerburgh (2015)

Political Risk Options in weak economies and politically
uncertain countries are more valuable, including
protection against tail risk.

Kelly, Pástor, and
Veronesi (2015)

Catastrophe Risk OTM Options of property-casualty insurers
contain a risk premium for catastrophic
events in excess of the market-wide tail
risk.

This paper

Regarding the second strand of literature (insurance-specific catastrophe findings), Thomann (2013)
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analyzes the relation between natural catastrophes, the 9/11 terrorist attacks, and the volatility of insur-

ance stocks. He finds that natural catastrophes increase the volatility of insurance stocks but reduce the

correlation of insurance stocks with the market. Blau, Ness, and Wade (2008); Ewing, Hein, and Kruse

(2006); and Lamb (1995, 1998) find that insurer stock prices start declining in the week before landfall

of a potential catastrophe in the cases of Hurricanes Katrina, Floyd, and Andrew. Interestingly, Blau,

Ness, and Wade (2008) do not find significant short-selling activity prior to Katrina’s landfall but during

three trading days after the landfall. From a general perspective, researchers observe that investors are

crash-averse and thus receive a premium in returns or insure themselves through OTM index options (see

Jackwerth and Rubinstein (1996), Ait-Sahalia and Lo (2000), and Garleanu, Pedersen, and Poteshman

(2009)).

Froot (2001) investigates the importance of fair pricing of catastrophe risk and the reduction of market

imperfections and shows that high catastrophe risk premiums can be attributed to supply restrictions,

capital market imperfections, and the market power exerted by traditional reinsurers. Furthermore,

Zanjani (2002) shows that capital costs have a significant effect on catastrophe insurance markets because

of high marginal capital requirements. Depending on the pricing of catastrophe insurance, these capital

costs can be reduced if catastrophe risk is priced accurately.

3 Model framework and hypotheses

The main idea explored throughout this paper is that catastrophe risk is priced in OTM stock options.

Catastrophe risk has to be compensated in addition to the tail risk of the overall economy and can occur

either as man-made catastrophes or natural catastrophes. A candidate to investigate the relationship

between catastrophe risk and the implied volatility function are options written on P&C insurance stocks,

which insure the economy against large losses as a result of natural or man-made catastrophes. To answer

the question about catastrophe risk being priced in stock options, we approach the issue from three

different angles.

First, if catastrophe risk is an additional pricing component in deep OTM options of P&C insurers,

then their slope should be steeper than for options on all other stocks. We thus compare the implied

volatility function of options written on P&C insurers with the implied volatility function of options
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written on non-financial stocks.4 Second, if investors and market makers anticipate catastrophes during

the development of hurricanes and tropical storms and want to be insured against large losses after

landfall, the difference between the slope of P&C insurance options and non-financials options should

increase. Hence, we expect tail risk to increase at the arrival of new information on catastrophes. Third,

if options on insurance stocks indeed capture the risk of natural disasters, their slope should be highly

correlated with the catastrophe risk premium, which can be observed in catastrophe bonds. Thus, options

of P&C stocks can be a high frequency, risk-neutral proxy for catastrophe risk.5

To formalize our assumptions and to provide us with more insight about the effects of catastrophe

risk, we derive an option pricing model which accounts for an independent catastrophe risk component.

For that purpose we adapt the jump-diffusion model by Martzoukos and Trigeorgis (2002). In contrast

to Martzoukos and Trigeorgis (2002), we extend the model for financial and catastrophic shocks, provide

economic intuition on the model, and further investigate the model’s reaction along moneyness.6

For the non-financials stock and its single exposure to economic jump events, the model collapses to

the jump-diffusion model by Merton (1976). We start with a stock, V , from the non-financial sector,

which follows the continuous-time stochastic process:

dV

V
= µdt+ σdW (V ) + kecondqecon, (1)

where µ is the drift of the underlying and σ is the volatility. dW (V ) is an increment to a standard

4We exclude all financial stocks from the control group for several reasons. One reason is the potential ties between the
banking and insurance sector, such as bancassurance, which diffuse catastrophe risk throughout the financial system.
Another reason, and closely related to the previous one, is the spillover effects identified between financial institutions,
especially during volatile times (Adams, Füss, and Gropp (2014)). The last point involves effects on options written on
financial institutions. Kelly, Lustig, and Nieuwerburgh (2015) document a government guarantee in OTM index options
written on large financial institutions which could bias our results. Note, however, that if this government guarantee exists
in individual options in a similar fashion, it would in fact decrease the implied volatility in OTM options and result in
even larger discrepancies in the implied volatility slope between P&C insurers and all other stocks. In robustness tests we
also include all other financial institutions to account for such potential effects (see Section 7.1).

5Since, in general, catastrophe bonds exclude man-made disasters (i.e., terrorism attacks or oil spills) but insurance com-
panies write insurance for such occasions, the correlation between the slope from options on insurance stocks and the
premium inherent in catastrophe bonds should not fully coincide. Furthermore, the recent entrance of large institutional
investors (i.e. pension funds) in the catastrophe bond market resulted in decreasing yields for such instruments. Thus,
a question that remains to be asked is whether catastrophe bonds still adequately compensate for the risk investors are
bearing. Our approach might therefore be a method to indicate prices of catastrophe bonds in the absence of man-made
disasters.

6From a theoretical perspective, the model we propose, applies to all catastrophic events – both man-made and natural.
Within the category of natural catastrophes, the model is both suitable for events that “announce” themselves, such as
hurricanes, and for sudden events, such as earthquakes. The reason for the suitability is the instantaneous adaptability
of all parameters at the arrival of new information. From an empirical perspective, however, the model (more precisely,
the difference between models) might be challenged by the fact that both P&C insurance stocks and all other stocks react
evenhandedly to man-made disasters (i.e., terrorist attacks). Also empirically difficult to prove is the model’s prediction
for earthquakes, as there has not been a substantial earthquake in the U.S. during the sample period.
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Brownian motion, and kecon is the jump size caused by an economic shock, i.e., an exogenous shock,

affecting the entire economy. dqecon counts the number of economically related jumps with intensity

λecon of a Poisson process.

Another stock, S, from the P&C insurance industry follows the continuous-time stochastic process:

dS

S
= µdt+ σdW (S) + kecondqecon + kcatdqcat (2)

We assume that the P&C insurance stock follows the same process as the non-financials stock with

identical drift and volatility except for an independent Brownian motion, dW (S), and an additional jump

component, kcatdqcat. Specifically, the P&C stock is both affected by economic shocks such as the non-

financials stock and additionally exposed to jumps caused by catastrophic events with jump size kcat and

the jump counter dqcat with intensity λcat of a Poisson process. Note that the two Poisson processes

related to economic events and catastrophic events are independent from each other. Furthermore, the

risk neutral drift is defined as r − δ∗, where r is the riskless rate and δ∗ is defined, in the case of a P&C

stock, as:

δ∗ ≡ δ + λeconk̄econ + λcatk̄cat. (3)

As such, δ∗ accounts for the dividend yield, δ, and the jump effects, λeconk̄econ and λcatk̄cat, caused by

economic and catastrophic events. For the non-financials stock, the risk-neutral drift obviously excludes

the jump component related to catastrophic events. In integral form, the P&C insurance stock is thus

defined as:

ln[S(T )]− ln[S(0)] =

∫ T

0

[r − δ∗ − 0.5σ2] dt+

∫ T

0

σdW (S)(t) +

necon∑
q=1

ln(1 + kecon,q)+

ncat∑
q=1

ln(1 + kcat,q),

(4)

with necon indicating the number of economic jump events and ncat indicating the number of catas-

trophic jump events. Again, the model assumes that the term
ncat∑
q=1

ln(1 + kcat,q) is only present in P&C

insurance stocks but not in non-financials stocks. We also assume that the jump size of an economic

shock, 1 + kecon, and a catastrophic event, 1 + kcat, are log-normally distributed with:

ln(1 + kecon) ∼ N(γecon − 0.5σ2
econ, σ

2
econ) (5)
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and

ln(1 + kcat) ∼ N(γcat − 0.5σ2
cat, σ

2
cat) (6)

where N(., .) denotes the normal density function with mean γecon−0.5σ2
econ for economically related

events and γcat − 0.5σ2
cat for catastrophically related events. The variance of the jump size is defined as

σ2
econ and σ2

cat, respectively. The expected value of the economic jump size is

E[kecon] ≡ k̄econ = exp(γecon)− 1, (7)

and the expected value of the catastrophic jump size is

E[kcat] ≡ k̄cat = exp(γcat)− 1. (8)

For the model development, it is important to highlight the difference between the jump size means

of economic and catastrophic events. While economic shocks can be positive or negative with potentially

equal probability (e.g., higher or lower than expected economic growth, central bank interventions, new

technologies, economic crises, bailouts, etc.), catastrophic events are on average negative, with either a

negative impact (i.e., catastrophe occurs) or no impact (i.e., catastrophe does not occur) but theoretically

not a positive impact. In other words, a P&C insurer has already collected all premiums at the beginning

of the year. These funds can only decrease in value through the occurrence of catastrophic events. Hence,

there is no upside but only a downside to the earnings.7 Under this assumption, the expected jump size

of catastrophic shocks should be more negative than the expected jump size of economic shocks (i.e.,

γcat < γecon). We can then define the value of a European put option on a P&C insurance stock as:

FPut(S,X, T, σ, δ, r, λi, γi, σi) = e−rT
∞∑

necon=0

∞∑
ncat=0

{P (necon, ncat)× E[(X − ST )+|(necon, ncat)jumps]}

(9)

where X is the strike price of the put option and P (necon, ncat) describes the joint probabilities of

economic and catastrophic shocks on a P&C insurer. Because the probabilities for catastrophic and

7We acknowledge that this is a simplified perspective, given that other factors play an important role, too, such as reinsurance
cover or the safety loadings in insurance prices. However, on average, this assumption should hold if insurance prices are
fair.

9



economic jumps are assumed to be independent, this term is defined as:

P = (necon, ncat) =
e(−λecon−λcat)T (λeconT )necon(λcatT )ncat

necon!ncat!
(10)

Based on Martzoukos and Trigeorgis (2002) and the Black-Scholes model, we can derive the risk-

neutral expectation E[(X − ST )+|(necon, ncat)jumps] of a put option written on a P&C insurance stock

which is subject to jumps caused by the overall economy and by catastrophic events, as follows:

E[(X − ST )+|(necon, ncat)jumps] = XN(−d2n)− Se[(r−δ∗)T+(neconγecon)+(ncatγcat)]N(−d1n) (11)

where d1n is defined as:

d1n ≡
ln(S/X) + (r − δ∗)T + (neconγecon) + (ncatγcat) + 0.5σ2T + 0.5neconσ

2
econ + 0.5ncatσ

2
cat√

σ2T + neconσ2
econ + ncatσ2

cat

, (12)

and d2n is defined as:

d2n ≡ d1n −
√
σ2T + neconσ2

econ + ncatσ2
cat (13)

Having defined the model, we can calibrate it and use it to guide the empirical analyses. Because no

previous empirical analysis on options written on insurance stocks exists, we do not have a strong prior

on the effect of catastrophes on these instruments. However, as mentioned before, we reckon that the

mean jump size for catastrophes is more negative than for economic shocks. Aside from reasonable values

for the non-financials stock which follows the calibration by Martzoukos and Trigeorgis (2002), our only

condition is that γcat < γecon. For simplicity, we assume identical standard deviations of the jumps, i.e.

(σcat = σecon). The following Table 2 summarizes our calibration values.
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Table 2: Option model calibration

P&C insurance stock Non-financials stock

S = 100 V = 100

σ = 0.20 σ = 0.20

r = 0.02 r = 0.02

δ = 0.03 δ = 0.03

T = 0.083 T = 0.083

γecon = -0.02 γecon = -0.02

σecon = 0.50 σecon = 0.50

λecon = 1.00 λecon = 1.00

γcat = -0.10

σcat = 0.50

λcat = 1.00

This table presents the parameters used to calibrate the model for a representative option written on
a P&C insurance stock and a representative option written on a stock from the non-financial sector.
Both instruments share the same parameters and values, except for the additional catastrophe-related
parameters used in the P&C insurance stock.

As OptionMetrics reports implied volatilities on a grid of delta (∆) values between -0.2 and -0.8, we

report the model results on exactly the same grid to facilitate comparisons.8 We compute put option

prices based on the model and accordingly extract Black-Scholes implied volatilities and delta values.9

Figure 1 shows the results from our model calibration.10

8As noted by Kelly, Pástor, and Veronesi (2015), delta is also a better measure for moneyness, as it reflects the probability
of an option contract to expire in the money by considering maturity, volatility, and the risk-free rate.

9We use a cubic function to fit the implied volatilities on the delta grid between -0.2 and -0.8.
10Appendix A also illustrates model sensitivities for other calibrations of the catastrophe-related parameters.
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Figure 1: Modeled implied volatility smiles (P&C insurers vs. non-financial firms)

This figure illustrates the modeled implied volatilities (IV) of one-month-to-expiration put options
written on P&C insurance stocks (black line marked by squares) and non-financials stocks (red dotted
line marked by crosses) along moneyness. Moneyness is expressed in delta values on the x-axis. The
P&C insurance stock is calibrated with S = 100, σ = 0.20, r = 0.02, δ = 0.03, T = 0.083, γecon =
-0.02, σecon = 0.50, λecon = 1.00, γcat = -0.10, σcat = 0.50, and λcat = 1.00. The non-financials stock
is calibrated with V = 100, σ = 0.20, r = 0.02, δ = 0.03, T = 0.083, γecon = -0.02, σecon = 0.50, and
λecon = 1.00.

Our first observation is that insurance put options are more expensive at all moneyness categories

(delta values). Our second observation, which addresses the main idea of this paper, is the steeper slope

of insurance put options compared to non-financials put options as a result of the additional negative

catastrophe jump probability. The third observation we make in our model is that a negative increase in

the mean jump size increases the steepness of the slope. This effect is more pronounced the less uncer-

tainty about the jump prevails, σcat, and the more negative the jump size is. Motivated by the model’s

response to catastrophic events, we formulate our hypotheses.

Hypothesis 1: The implied volatility slope of put options written on P&C insurers is on average steeper
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than the slope of put options written on non-financials.

Because it is unknown when and where a catastrophe will occur, an additional tail risk component

related to catastrophe risk should result in a steeper implied volatility smile, which is the result of higher

implied volatilities of OTM put options and lower ITM implied volatilities with the jump size, γcat, and

the jump uncertainty, σcat, driving this effect.

Hypothesis 2: The implied volatility slope of put options written on P&C insurers is related to the risk

premium from the catastrophe bond market.

If the tail risk component is indeed related to losses caused by catastrophes, the steepness of the

implied volatility smile should follow the price development of the catastrophe bond market because this

market provides a price orientation for actively traded catastrophe risk. If the no-arbitrage condition

holds, both markets should share a common time-series variation.

Hypothesis 3: In comparison to the slope of put options written on non-financials, the implied volatility

slope of put options written on P&C insurers is steeper after a catastrophic event compared to before the

event.

Because uncertainty about the jump, σcat, reduces in terms of whether and where an event occurs,

and estimations about the jump size, γcat, increase in the case of realized catastrophes, the slope of the

implied volatility should become even steeper after an event.

4 Methodology

We analyze the difference between OTM and ITM put options. That is, our main focus is the difference

in levels of the implied volatility smile. As mentioned above, the main idea is that OTM options provide

a more effective protection against rare events than ITM options (Kelly, Pástor, and Veronesi, 2015).

Our slope measure follows Kelly, Pástor, and Veronesi (2015) where the slope of the implied volatility

function of firm i at time t is the difference in implied volatilities between OTM puts, IV olaOTMP
i,t , and

ITM puts, IV olaITMP
i,t . Formally, the slope is defined as:
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SLOPEi,t = IV olaOTMP
i,t − IV olaITMP

i,t (14)

where IV olaOTMP
i,t corresponds to the implied volatility of an OTM put option with a fixed delta of

-0.20 and a constant time to maturity of 30 days. IV olaITMP
i,t corresponds to the implied volatility of

an ITM put option with a fixed delta of -0.80 and a constant time to maturity of 30 days.11 As noted

by Bollerslev and Todorov (2011), short-maturity OTM options are worthless unless a big jump occurs

before expiration, making them particularly interesting in the context of catastrophe risk. In univariate

tests, we first analyze whether the slope of the implied volatility of options on insurance stocks is in fact

steeper than the rest of the market, as we hypothesize. We do so by comparing the implied volatility

slope of P&C insurers and non-financial firms at the end of each month.

Identical to Yan (2011), we start out using end-of-month observations in the implied volatilities to

guarantee homogeneity between all options while finding a matching historical volatility in the control

group (i.e., options on non-financials).12 We then turn to weekly cross-sectional Fama-MacBeth (1973)

regression as in Dennis and Mayhew (2002) to control for other variables that might influence a steeper

slope in insurance stocks. Formally, the cross-sectional Fama-MacBeth (1973) regression is defined as:

SLOPEi,t = αi,t + INSURANCEi,t + IV ATM i,t + LEV ERAGEi,t + SIZEi,t

+BETAi,t + V OLUMEi,t + CALLPUTOIi,t + SLOPEi,t−1 + εi,t

(15)

where INSURANCEi,t is the variable of interest and defined as a dummy variable taking the value

of one if the slope refers to a P&C insurer and zero if it refers to a non-financials stock. If P&C insurers

indeed bear a risk premium for natural catastrophes (and man-made disasters) compared to the rest of

the market, this variable should be significantly positive, meaning that the difference between OTM and

ITM put options is larger for P&C insurers.

Following Dennis and Mayhew (2002), the first control variable is IV ATMi,t which is the contem-

poraneous weekly average of at-the-money (ATM) implied volatilities of company i at week t. We use

a delta of -0.50 for an option to be ATM. If the overall level influences the slope in the cross-section,

11We use these parameters because the implied volatility grid provided by OptionMetrics is bounded by delta values between
-0.20 and -0.80. Thus, we use the most extreme delta values available to approximate the most efficient and the least
efficient way to protect against rare events.

12For further details, see Section 6.1.
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it is necessary to control for an effect which could limit the upper bound of OTM options. We also

include LEV ERAGEi,t as a control variable. We divide the book value of total assets by the market

value of equity and take the natural logarithm of the ratio to define LEV ERAGEi,t (Kelly, Lustig, and

Nieuwerburgh (2015)). We use total assets from the last fiscal year lagged by four months and contem-

poraneous market equity at time t. This variable might be particularly important, because P&C insurers

are characterized by high leverage values. Black (1976) and Toft and Prucyk (1997) argue that leverage

mechanically results in higher volatilities because, as the equity value of a levered company decreases, the

leverage ratio has to increase, and thus the volatility of that company has to increase. However, results

about leverage in the implied volatility context are ambiguous. For example, there are significantly steep

slopes for unlevered firms and also currency options that are not exposed to leverage ratios (Dennis and

Mayhew (2002)).

The third control variable is SIZEi,t, measured as the contemporaneous natural logarithm of market

equity of stock i at time t. It could be the case that smaller companies tend to be more risky (Banz

(1981)) and might be more susceptible to default risk (Vassalou and Xing (2004)). Furthermore, we

check for the systematic risk, BETAi,t, of each stock, assuming that higher risk exposure should result in

steeper slopes. The rolling market beta is calculated by regressing daily excess returns of stock i against

CRSP’s value-weighted market return in excess of the risk-free rate over the past 200 days. Another

control variable is V OLUMEi,t which is defined as the logarithm of average daily trading volume over

week t. We include this variable as a proxy for liquidity (Dennis and Mayhew (2002)). More trading

activity in the underlying stock implies a higher demand for options including hedges against downside

movements in stock prices. The control variable CALLPUTOIi,t captures the trading pressure between

calls and puts which could explain higher prices due to higher demand for either one of them (Dennis

and Mayhew (2002); Bollen and Whaley (2004)). We determine the total open interest over the entire

week for calls and puts and then divide this number by the difference between total open interest in

calls and total open interest in puts over the entire week. This measure is bound between -1 and +1. A

negative value indicates larger interest for put options, and a positive value indicates larger interest for

call options. To capture any persistence and residual explanatory power in the implied volatility slope,

we include the implied volatility slope lagged by one week, SLOPEi,t−1.

In addition to the cross-sectional Fama-MacBeth (1973) regressions, we run pooled time-series cross-

sectional regressions with clustered standard errors by firm and week to account for market-wide factors,
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the unbalanced panel, and the firm and time dependency (Petersen (2009)). It is well-known that volatility

appears in clusters, with certain time periods being more volatile than others (Maheu and McCurdy

(2004)). Thus, if some stocks are more prone to changes in volatility clustering or changes in overall

market volatility than others, the slope of implied volatility could also be affected. The pooled time-

series cross-sectional regression can therefore capture the time series variation in the slope of the implied

volatilities and is formally defined as:

SLOPEi,t = αi,t + INSURANCEi,t + IV ATM i,t + LEV ERAGEi,t + SIZEi,t +BETAi,t

+V OLUMEi,t + CALLPUTOIi,t + SLOPE500i,t

+IV ATM500i,t + SLOPEi,t−1 + εi,t.

(16)

To capture the market-wide effects, we include both the slope of the S&P500 Index (SLOPE500i,t)

and the overall level of the market volatility proxied by the implied volatility of ATM options of the

S&P500 Index (IV ATM500i,t).

5 Data

We retrieve daily data on all put options from the standardized volatility surface provided by Option-

Metrics between January 1996 and December 2013. The complete sample consists of 67 U.S. P&C insurers

and 5596 companies from the non-financial sector.13 OptionMetrics’ volatility surface calculates an in-

terpolated implied volatility surface using a kernel smoothing algorithm for puts and calls with different

strikes and maturities. The resulting standardized grid includes delta values in steps of 0.05 from -0.20

(i.e. OTM put option) to -0.80 (i.e. ITM put options). Binomial trees are used to first compute the

underlying implied volatilities, allowing for early exercise and considering expected dividends to be paid

until the maturity of the options. Note that a standardized option is only documented in OptionMetrics’

volatility surface if there are sufficient underlying option data on each day to accurately determine an

interpolated implied volatility. The advantage of using the standardized volatility surface is that we do

not have to proceed with ranges of diverging maturity or strike prices, which could ultimately introduce

a measurement bias.

13A complete list of all 67 P&C insurers can be found in Appendix B.
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To analyze catastrophe risk, we differentiate between P&C insurers with SIC code 6331 and all other

options that are not financial stocks (i.e. excluding options with SIC codes between 6000 and 6999).14

Using short-dated options with 30 days to maturity has two advantages. First, they are the most liquidly

traded ones in contrast to options with longer maturities (Driessen, Maenhout, and Vilkov (2009)).

Second, a natural disaster is temporarily restricted. That is, an earthquake takes only a few minutes, and

a hurricane in general takes no more than two to three weeks from initial development until landfall. Thus,

the actual cost after a disaster can be roughly estimated after such an event. Consequently, investors

would want to be insured for the time period in which actual costs are estimated to avoid the greatest

uncertainty about claim payments.15

Table 3: Descriptive statistics

Panel A: P&C insurers Panel B: Non-Financials

Variable Mean Std. Dev. Obs. Mean Std. Dev. Obs.

SLOPEi,t 0.058 0.116 28,290 0.034 0.111 1,947,873

IV ATMi,t 0.338 0.179 28,290 0.518 0.268 1,947,873

LEV ERAGEi,t 1.355 0.742 27,887 -0.141 1.197 1,760,953

SIZEi,t 9.538 1.527 27,868 7.673 1.653 1,760,307

BETAi,t 0.872 0.331 27,829 1.160 0.592 1,837,527

V OLUMEi,t 1,273,109 6,435,054 28,290 1,472,984 4,421,952 1,894,309

CALLPUTOIi,t 0.242 0.419 28,290 0.279 0.361 1,947,873

Panel C: Market (S&P 500)

Variable Mean Std. Dev. Obs.

SLOPE500t 0.065 0.032 936

IV ATM500t 0.195 0.076 936

This table presents the mean, standard deviation (Std. Dev.), and the number of firm-week observations of the
dependent variable (SLOPEi,t) and the explanatory variables. Panel A reports these variables for property-
casualty insurers. Panel B reports these variables for the control group of stocks in the non-financials sector.
Panel C reports market-wide explanatory variables based on the S&P500. The sample period starts in the
first week of January 1996 and ends in the last week of December 2013.

We only use individual equity options and exclude index options (i.e., the OptionMetrics index flag

equals 0). Accounting data to calculate leverage figures are retrieved from COMPUSTAT. Daily trading

information regarding volume, size, and returns are from CRSP. Data on open interest and the implied

14We focus on P&C insurers identified by the SIC code to avoid any selection bias and also because investors might not be
able to differentiate how much exposure the underlying insurer has towards catastrophe risk. This argument is based on
the opacity of insurance markets and the well-protected underwriting exposure (Cummins and Weiss (2009)).

15Overall, this intuition is contrary to a financial crisis, which includes contagion effects and risks that can take several
months or even years to be discovered.
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volatility of the S&P500 are gathered from OptionMetrics. Another analysis in this paper refers to the link

between the implied volatility slope and catastrophe risk. Since there is in fact a market for catastrophe

risk in the form of catastrophe bonds, we can actually relate the slope of the implied volatility to actual

catastrophe risk. For that purpose, we use the quarterly data of cat bond spreads from Braun (2016).16

If both measures are related to each other, they should be highly correlated. This would not only provide

evidence of what the slope is in fact measuring but also establish accurate pricing for catastrophe risk.

Table 3 summarizes the dependent and independent variables in terms of mean, standard deviation,

and the number of firm-week observations. Panel A reports these variables for the treatment group of

P&C insurers and Panel B for the control group of stocks in the non-financials sector. Panel C reports

market-wide explanatory variables based on the S&P500.

6 Empirical analysis

The empirical analysis starts with univariate tests (Section 6.1), followed by Fama-MacBeth (1973)

regressions (Section 6.2) and panel (pooled cross-sectional time-series) regressions (Section 6.3) and then

establishes the link between the implied volatility slope and the catastrophe risk market (Section 6.4).

The last analysis addresses the reaction of the implied volatility around catastrophic events (Section 6.5).

6.1 Implied volatility of property-casualty insurers and non-financials

To adequately compare the implied volatility of P&C insurers with the rest of the market in univariate

tests we use a matching procedure based on the realized volatility of a stock. This procedure guarantees

both a fair comparison of the slope and of the levels of the implied volatility at each value of delta.17

Specifically, the implied volatility measures the future volatility market participants expect for a stock.

Assuming there are two stocks with the same realized volatility in time t, one could expect that their

future volatility is identical, too, unless market participants expect the future volatility of one stock to

be higher than the rest of the market due to additional risk components. Here, we expect that investors

16The term “spread” relates to the yield from primary markets at initial issuance of the catastrophe bond in excess of the
risk free rate. We would like to thank Alexander Braun for making the data available to us.

17Note that the matching procedure is not necessary for our key analysis regarding the slope that we propose, which is
overall steeper for P&C insurers compared to non-financial firms. However, the overall level of OTM, ATM, and ITM
implied volatilities of non-financials is higher. In the following regression analysis, we are only interested in the slope and
do not compare implied volatilities at different delta values. Thus, we include all P&C insurers and non-financial firms
without any matching procedure in the regression analysis. Similar matching procedures in the context of stock splits are
used by Shaik (1989).
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add an additional risk component in (deep) OTM put options of P&C insurers due to catastrophe risk, a

risk component which should not appear in non-financials with identical realized volatility. Using data on

realized volatility over the past 365 days from OptionMetrics, we match the implied volatility of insurance

stocks with the implied volatility of non-financials stocks.18 At the end of each month, we match each

P&C insurance stock with a portfolio of all available non-financial stocks of identical realized volatility.19

Table 4: Implied volatilities for options from P&C insurers and non-financials

Panel A Puts on property-casualty insurance stocks

∆ -0.20 -0.25 -0.30 -0.35 -0.40 -0.45 -0.50 -0.55 -0.60 -0.65 -0.70 -0.75 -0.80

Mean 0.407 0.384 0.368 0.357 0.348 0.342 0.337 0.333 0.331 0.33 0.333 0.339 0.348

Std. dev. 0.228 0.220 0.213 0.207 0.204 0.201 0.200 0.197 0.194 0.195 0.197 0.200 0.203

Obs. 6552 6552 6552 6552 6552 6552 6552 6552 6552 6552 6552 6552 6552

Panel B Puts on non-financials stocks

∆ -0.20 -0.25 -0.30 -0.35 -0.40 -0.45 -0.50 -0.55 -0.60 -0.65 -0.70 -0.75 -0.80

Mean 0.396 0.376 0.363 0.353 0.346 0.341 0.337 0.334 0.333 0.335 0.339 0.346 0.358

Std. dev. 0.165 0.164 0.163 0.162 0.162 0.161 0.160 0.160 0.160 0.160 0.161 0.163 0.166

Obs. 6546 6546 6546 6546 6546 6546 6546 6546 6546 6546 6546 6546 6546

This table presents the mean and standard deviation of implied volatilities of individual equity options with
one month (30 days) to expiration and fixed deltas at the end of each month during the sample period. Panel
A shows the implied volatilities of all P&C insurers with SIC code 6331. Panel B shows the matched implied
volatilities of non-financial firms with identical historical volatility over the past 365 days. Realized and implied
volatilities are retrieved from OptionMetrics. The sample period is January 1996 to December 2013.

Panel A of Table 4 shows the mean of the implied volatilities (and the standard deviation) of puts

on P&C insurers stocks at different values of delta. Panel B shows the mean of the implied volatilities

(and the standard deviation) of puts on non-financials stocks at different values of delta.20 Table 5 tests

the equality of the implied volatilities between P&C insurers and non-financials. As expected, the deep

OTM insurance stock options are significantly higher (i.e., an implied volatility of 0.407) than those of

deep OTM non-financials options. The matching procedure appears to be well specified as ATM options

at a delta value of -0.50 for both categories are virtually identical (0.337 vs. 0.337 with a t-statistic for

the difference of -0.10).

18We use 365-days historic volatility to avoid seasonal effects that might affect shorter volatility measures.
19Since there are more non-financial stocks than P&C insurer stocks, we average the implied volatility from non-financials

options to avoid any selection bias.
20Note that six realized volatility observations from P&C insurers could not be matched with identical realized volatility

from non-financials. For the sake of completeness, we report all implied volatilities of P&C insurers. If we exclude the
six observations, results are virtually unchanged. Furthermore, the following regression analysis uses the entire universe
of P&C insurers and non-financials.
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In contrast, deep ITM put options for non-financials have significantly higher implied volatilities than

P&C insurers. This suggests that investors and market makers are indeed more worried about severe

declines in P&C stock prices for which they want to be insured against but not about smaller movement

where deep ITM options can be useful.21 This relation between delta and implied volatilities is also

illustrated in Figure 2.

Figure 2: Implied volatility smiles of traded put options (property-casualty insurers vs. non-
financial firms)

This figure illustrates the implied volatilities of one-month-to-expiration put options of property-
casualty insurance stocks (black line marked by squares) and non-financials stocks (red dotted line
marked by crosses) derived from traded put options along moneyness. Moneyness is expressed in
delta values on the x-axis. The matched sample consists of non-financial stocks and property-casualty
insurance stocks based on 365-day realized volatility. Realized and implied volatilities are retrieved
from OptionMetrics. The sample period is January 1996 to December 2013.

21We also run non-parametric tests presented in Table 5 using the Wilcoxon–Mann–Whitney rank-sum test. In this setting,
median implied volatilities of P&C insurers are not higher than the implied volatilities of non-financials. However, the
median difference becomes smaller the more out-of-the-money the option gets. There might be several reasons for that
including stronger effects in the post-Katrina period and peak events (i.e., hurricanes) which further increase the slope
during specific time periods. These reasons explain to some extent the discrepancy between the mean and the median
difference in implied volatilities.
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We can see that the shape of the implied volatility smile of P&C insurers from actual data follows

closely the shape described by the option pricing model and also exhibits a steeper slope than non-

financials.22 However, the shape and level of the implied volatility smile of non-financials is much closer

and steeper to the P&C insurers. An explanation for such a pattern is that non-financials are exposed

to other tail risk components which are, however, not as extreme as catastrophes for P&C insurers.23

This would explain the similar level in implied volatilities of put options written on P&C insurers and

non-financials and at the same time account for the steeper slope of non-financials.

With the discovery of a significantly positive difference between P&C insurers and non-financials in

OTM put options but none between ATM put options and a significantly negative one between ITM

put options, the question remains whether this difference also results in a statistically significant slope

difference between the two groups. We compute the slope as defined in Section 4 for both P&C insurers

and non-financials.

Table 6: Univariate comparison of the slope of the implied volatilities (property-casualty insurers
vs. non-financial firms)

P&C insurers Non-financials Unpaired two-sided t-test Wilcoxon test

Mean Median

IV OLAOTMP
i,t 0.407 0.396

IV OLAITMP
i,t 0.347 0.358

SLOPEi,t 0.060 0.038 0.022*** 0.004***

[9.50] [7.11]

Obs. 6546 6546

This table reports the mean of implied volatilities of out-of-the-money (OTM) and in-the-money (ITM)
put options written on property-casualty insurers and non-financial firms. The slope of property-
casualty insurers and non-financials is defined as the difference between OTM (delta = -0.20) and
ITM (delta = -0.80) put options. The table also compares the means between the slopes of property-
casualty insurers and non-financials using an unpaired two-sided t-test as well as their medians based
on the Wilcoxon–Mann–Whitney rank-sum test. Time to expiration of the individual equity options
is one month. Implied volatilities of the non-financial comparison group are matched with implied
volatilities of property-casualty insurers based on 365 days of realized volatility. The average realized
volatility for all stocks over the entire sample is 0.323. Realized and implied volatilities are retrieved
from OptionMetrics. The sample period is January 1996 to December 2013. T -statistics and z-
statistics are reported in brackets, respectively. *, **, and *** denote statistical significance at the
10%, 5%, and 1% levels, respectively.

22Although we are interested in the shape of the implied volatility, it should be mentioned that the levels are overestimated
by the model which is mainly attributable to an extensive λcat and σcat, and thus represent a calibration issue.

23Each company could be exposed to an industry-specific tail risk component. For example, a pharmaceutical could be
sued for a flawed drug, or an automotive company could be forced to recall their vehicles because of defective brakes.
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Table 6 shows that the parametric and the non-parametric difference between both slopes is highly

significant, meaning that investors expect a higher probability of tail risk for P&C insurers, although

historical volatility would not imply such a difference.

Beyond the time-series averages of the implied-volatilities for P&C insurers and non-financials, it

might be of interest how the two groups develop over time. We thus graph the slope of the implied

volatility for both categories separately in Figure 3. An interesting observation we make here is that the

slope of P&C insurers was identical and even slightly below the slope of non-financials during the time

until Hurricane Katrina in 2005.

Figure 3: Slope of the implied volatility smile of P&C insurers and non-financials over time

This figure illustrates the slope of the implied volatility smile from options written on property-
casualty insurers (black solid line) and non-financials (red dotted line) over time, with identical 365-
days historical volatility. The sample period is January 1996 to December 2013.

Since Hurricane Katrina, however, it appears that P&C insurers were mostly above the slope of non-

financials, suggesting that a change in perception among market participants occurred regarding large

losses insurers are exposed to.
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6.2 Fama-Macbeth (1973) regressions

We now turn to the multivariate analysis of the slope, including all equity options on P&C insurers and

non-financials. Table 7 reports the results of the cross-sectional regression analysis with the slope (as de-

fined in Section 4) as the dependent variable. When we only include the dummy variable INSURANCEi,t

in our regression (Column I), we find similar results for the difference in slopes as in Table 6, both in

terms of economic and statistical significance. Note that the dependent variable includes all slopes of

P&C insurers and non-financials. Column II includes the control variables presented in Section 4. The

economic and statistical difference of INSURANCEi,t remains highly significant at the 1%-level.

Table 7: Fama-MacBeth (1973) regressions

(I) (II) (III)

INSURANCEi,t 0.016*** 0.015*** 0.005***

[7.47] [6.59] [6.37]

IV ATMi,t -0.043*** -0.031**

[-10.03] [-2.44]

LEV ERAGEi,t -0.003*** -0.004

[-2.95] [-1.25]

SIZEi,t -0.001 -0.002

[-0.99] [-1.35]

BETAi,t 0.007*** 0.002**

[6.68] [2.04]

V OLUMEi,t -0.000 0.000

[-1.10] [0.97]

CALLPUTOIi,t -0.001 0.000

[-0.64] [0.45]

SLOPEi,t−1 0.649***

[50.03]

Intercept 0.032*** 0.053*** 0.037**

[15.11] [6.48] [2.29]

Avg. R2 0.00 0.04 0.46

Weeks 936 928 928

Obs. 1,976,163 1,736,945 1,733,939

This table reports Fama-MacBeth (1973) regressions with the slope of the implied volatility smile as
dependent variable. The sample period is January 1996 to December 2013. T -statistics are reported
in brackets and corrected for Newey-West (1987) autocorrelation with lags of 7. Avg. R2 is the time-
series average R-square from each weekly cross-sectional regression. *, **, and *** denote statistical
significance at the 10%, 5%, and 1% levels, respectively.
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We also include the previous week implied volatility slope (Column III) to capture any omitted factors.

The implied volatility slope of the previous week is highly significant, which suggests that the slope is

very persistent and thus predicable over time (see An et al. (2014)). The variable INSURANCEi,t,

though, remains statistically and economically significant at the 1%-level.

Overall, the results show that fundamental and option-related data cannot explain the steeper slope

of options written on P&C insurers. Rather, they are specifically exposed to extreme catastrophe events

which investors and market markers acknowledge with higher OTM put option prices (and lower ITM

put option prices) compared to options on non-financials.

6.3 Panel regression

While the Fama-MacBeth (1973) regressions indicate significant relationships between the slope insurance-

specific catastrophe risk, they do not allow us to check time-dependent effects. Specifically, volatility in

general is found to cluster. That is, some periods in time show stronger volatility patterns, while other

periods are less volatile. If some options are more prone to changes in volatility clustering or changes in

overall market volatility compared to others, the slope of implied volatility could also be affected. The

pooled time-series cross-sectional regression can therefore capture the time series variation in the slope

of the implied volatilities. Table 8 shows the results of the panel regression. Again, INSURANCEi,t

is highly significant in all settings. Indeed, the level of the market volatility proxied by the implied

volatility of ATM S&P500 Index put option captures some of the time-series variation of the slope of the

implied volatility. The slope of S&P500 Index put options, however, is insignificant and appears to have

no impact on the slope of individual equity options as soon as the past slope of the individual stock is

included in the regression setting.
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Table 8: Panel regression with cross-sectional and time-series clustered standard errors

(I) (II) (III) (IV)

INSURANCEi,t 0.024*** 0.023*** 0.023*** 0.008***

[5.56] [5.05] [5.13] [4.98]

IV ATMi,t -0.026*** -0.046*** -0.016***

[-6.25] [-11.18] [-9.16]

LEV ERAGEi,t -0.000 -0.001 -0.000*

[-0.32] [-1.60] [-1.88]

SIZEi,t -0.001 -0.002*** -0.001***

[-1.46] [-4.04] [-3.05]

BETAi,t 0.009*** 0.012*** 0.004***

[10.01] [13.94] [10.62]

V OLUMEi,t -0.000 -0.000 -0.000

[-0.40] [-0.12] [-1.52]

CALLPUTOIi,t -0.008*** -0.007*** -0.002***

[-6.00] [-5.86] [-4.52]

SLOPE500i,t -0.197*** -0.032

[-4.73] [-1.21]

IV ATM500i,t 0.179*** 0.051***

[9.77] [4.31]

SLOPEi,t−1 0.664***

[122.02]

Intercept 0.034*** 0.045*** 0.038*** 0.012***

[38.23] [8.91] [7.39] [4.91]

R2 0.00 0.01 0.01 0.45

Weeks 936 928 928 928

Firms 5,609 4,912 4,912 4,908

Obs. 1,976,163 1,736,945 1,736,945 1,733,939

This table reports panel regressions with clustered standard errors by firm and week (Petersen (2009))
with the slope of implied volatility as the dependent variable. The sample period is January 1996 to
December 2013. T -statistics are reported in brackets. *, **, and *** denote statistical significance at
the 10%, 5%, and 1% levels, respectively.

6.4 Linking catastrophe risk with the slope of implied volatility

As a result of an active primary market for catastrophe risk and ex-post figures for insured (and uninsured)

losses caused by catastrophic events, we can further investigate how the implied volatility slope of P&C

insurers is related to the catastrophe market after controlling for all firm-specific parameters. For that

purpose, we extract the slope coefficient on INSURANCEi,t from cross-sectional Fama-MacBeth (1973)
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regressions. Because insurance losses are only available on a yearly basis, we calculate in a first run the

12-month rolling mean of the extracted slope coefficient on INSURANCEi,t.

When we illustrate the data on total losses, available from Swiss Re, against the rolling coefficient

we observe a matching effect between the two time series (Figure 4). Several observations must be

highlighted. First, the graph not only shows insured but also uninsured losses, which might suggest that

market participants anticipate the full losses correctly but cannot predict how much of the losses are

indeed insured.24 Second, the data shows worldwide losses. Given the strong interconnectedness between

insurers - especially reinsurers - around the globe, it is not far-fetched to assume that market participants

react to catastrophic news from the entire world, such as the Tohoku earthquake in Japan in 2011 (which

caused the Fukushima incident). The third point we want to highlight is that the slope coefficient does

not react to man-made disasters, specifically the 9/11 Terrorist Attacks. Because such an event has an

impact on the entire economy, P&C insurers do not react in isolation despite an increase in the implied

volatility slope during that time. The last point to address is the discrepancy between the coefficient

and the insurance losses in the year 2000. One explanation is that winterstorm Lothar occurred between

December 25 and December 27, 1999, and thus total losses were assigned to that year. If these losses

were more appropriately assigned to year 2000, both figures would align much better.

24Anecdotal evidence supports this idea. During Hurricane Sandy, cat bonds issued by Chubb Corporation were oversold
under the impression that these cat bonds would be triggered given the strong underwriting of Chubb in flood insur-
ance. However, these predictions were not met, and prices heavily recovered (http://www.artemis.bm/blog/2012/11/12/
catastrophe-bond-prices-recover-some-sandy-losses-last-week/).
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Figure 4: Total losses and the slope coefficient

This figure illustrates the 12-month rolling mean of the slope coefficient on INSURANCEi,t (black
solid line) extracted from weekly cross-sectional regressions (i.e., Fama-MacBeth (1973) regression)
with all control variables described under Formula (24). At the end of each year, global total losses
from man-made (red bar), natural (green bar), and uninsured (blue bar) catastrophes are indicated.
The graph also highlights the most severe catastrophes during that year. Data on insured and unin-
sured losses are retrieved from the sigma world insurance database provided by Swiss Re Economic
Research & Consulting.

Despite this first indication of the implied volatility smile being connected to catastrophe risk, hard

evidence is still missing. We thus turn to the catastrophe bond market. Data for catastrophe bond

spreads is available on a quarterly basis. This time we start by showing the quarterly means of the slope

coefficient on INSURANCEi,t against the quarterly mean spread of catastrophe bonds at issuance.

Figure 5 illustrates the time series.
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Figure 5: Catastrophe bond spreads and the slope coefficient

This figure illustrates the quarterly means of the slope coefficient on INSURANCEi,t (black solid
line) against the quarterly mean spread of catastrophe bonds at issuance over the risk free rate (red
dotted line). The spread is expressed in basis points. To compare both time-series, the slope coefficient
is multiplied by 100,000.

We find a 49.4% correlation between catastrophe bond spreads and our mean coefficient. Despite this

high correlation, it is not a perfect correlation. Two main possible reasons for this come to mind. First,

our implied volatility measure does not contain pricing components which, in contrast, can be observed

in the cat bond market. This is particularly pronounced in the graph for the period after Hurricane

Katrina in which the implied volatility smile reacts to Katrina itself, but only marginally to increasing

prices during the 2006 period with record-high prices. A second reason could be that the securitization

of catastrophe risk is not representative for the entire U.S. P&C insurance industry. To address the first

point, we run time-series regressions in a multivariate setting. We start with an univariate regression

in which the quarterly mean spread of catastrophe bonds at issuance, CATt, is the dependent variable.
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Braun (2016) identified the pricing components of cat bonds in the primary market (i.e., the yields

at issuance) and thus we can decompose CATt in its individual risk drivers. Three parameters are

important for our aggregate catastrophe risk measure. First, the expected loss, ELt, which refers to the

losses predicted by models for a specific tranche of cat bonds and, second, the default spread from bond

markets. Specifically, we use the Bank of America Merrill Lynch U.S. High Yield BB Option-Adjusted

Spread, BBSPRt, which is defined as the yield index for the BB-rated bonds over the Treasury rate.

Table 9: Implied volatility slope and ILS

(I) (II) (III)

CATt 1.636*** 1.476***

[3.18] [3.01]

ELt 3.131***

[3.17]

BBSPRt 1.514***

[2.92]

ROLXt 3.287

[0.54]

orthCATt 0.521

[0.77]

SLOPE500t 7.943

[1.61]

Intercept -619.091** -1,033.053*** -820.772

[-2.05] [-3.29] [-1.47]

Adj. R2 0.23 0.29 0.29

Obs. 67 67 67

This table reports time series regressions of quarterly means of the slope coefficient on
INSURANCEi,t as dependent variable and ILS related variables as explanatory variables. As an ad-
ditional control, the slope of the S&P500 is also included (SLOPE500t). CATt is the quarterly mean
yield spread of catastrophe bonds at issuance over the risk free rate. ELt is the average expected loss
of all catastrophe bond tranches. BBSPRt is the yield of the BofA Merrill Lynch US High Yield BB
Option-Adjusted Spread. ROLXt is the Lane Financial LLC Synthetic Rate on Line Index. orthCATt
is the orthogonalized catastrophe bond yield spread on ELt, BBSPRt, and ROLXt. T -statistics are
reported in brackets and corrected for Newey-West (1987) autocorrelation with lags of 3. *, **, and
*** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

The third parameter is the rate-on-line index, ROLXt, which addresses the price dynamics of rein-

surance contracts. This price dynamic is known as the reinsurance cycle and a well-known phenomenon

for increasing reinsurance prices after catastrophes to make up for the incurred losses. This pricing com-
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ponent is in fact not directly related to immediate tail risk and thus should be the least relevant pricing

component with respect to the implied volatility smile. Table 9 presents the results.

Column (I) corroborates the high correlation result and what we have already seen in Figure 5 - that

the spread of catastrophe bonds at issuance, CATt, is significantly related to the slope coefficient on

INSURANCEi,t and thus the implied volatility smile. Column (II) runs a control regression with the

implied volatility slope of the S&P500 as independent variable, SLOPE500t, to ensure that the results

are not driven by other market factors. Column (III) then decomposes CATt in its individual risk factors,

ELt, BBSPRt, and ROLXt. All remaining pricing components are included in the orthogonalized cat

bond spread, orthCATt, on the three risk factors. As expected, ELt is the most important driver of

the implied volatility smile of P&C insurers, showing clear evidence that the implied volatility slope is

indeed related to natural catastrophe risk. Furthermore, we see that price dynamics, i.e., the reinsurance

cycle, ROLXt, have no impact on the implied volatility smile. This is what we expected, given a missing

urgency of potential default due to price dynamics. The most challenging result, though, is the highly

significant BB Option-Adjusted Spread, BBSPRt. Up to this point, we assumed that our difference-in-

difference approach (i.e., P&C insurers vs. non-financials) would extract the financial distress component

if both groups react identically to economic stress. The fact that the spread is significant, though, shows

that the implied volatility of P&C insurers has a remaining reaction towards economic shocks and that

our approach did not fully disentangle catastrophe risk from economic distress. Overall, our results show

that the implied volatility slope is indeed related to catastrophe risk.

6.5 Event study

Having analyzed catastrophe risk in a multivariate framework, we now conduct an event study to control

for the reaction of the implied volatility slope around 12 natural catastrophes in the United States between

January 1996 and December 2013.25 For that purpose, we identify the costliest natural catastrophes

related to hurricanes and storms in the United States during that period.26 Specifically, we investigate 11

hurricanes and one tropical storm listed in Appendix C, sorted by first appearance and differentiated by

peril, first appearance, landfall, end date, geographic region, type of event, insured loss as documented,

25We choose these 12 events based on Swiss Re’s 2014 Sigma Report which identifies 40 of the costliest catastrophic
events between 1970 and 2013 (http://media.swissre.com/documents/sigma1_2014_en.pdf). Over our sample period
12 natural catastrophes occurred in the U.S. (excluding Hurricane Ike).

26Note that the analysis based on the largest catastrophes in the U.S. ex-post needs to be interpreted cautiously, because
a look-ahead bias is introduced by considering catastrophes of which the final costs to insurance companies is known
sometime after the event.
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and the ranking of the loss.27

The question is whether the steeper slope of insurers is simply higher (due to other unknown factors)

or whether the slope shows some reaction around the peak event of a catastrophe. If investors anticipate

catastrophes or expect losses to insurance companies after the peak of the event to be extremely high,

the implied volatility slope might be significantly larger for P&C insurers than options on non-financials.

Although it can take several months or even years until claims by policyholders are settled, first rough

estimates of the damages are reported within the first two weeks after the event. We calculate the daily

difference in slopes between P&C insurers and non-financials (difference-in-differences) around a natural

catastrophic event. The time frame is 14 business days before and 14 days after landfall, where landfall

is defined as day zero. In case of multiple landfalls, the first landfall is assigned as day zero. If landfall

occurs on a weekend or a holiday, we use the following trading day as the day of landfall. Results on

the difference-in-differences between the implied volatility smile of P&C insurers and non-financials are

visualized for each day in Figure 6. We see that the slope difference is constantly above zero during

the event period, but we also see that the slope difference peaks the first time nine business days before

landfall. This is somewhat surprising, as it is well in advance before the average first appearance in our

sample (ca. 5 days; see Appendix C). An explanation could be the hurricane seasons of 2004 and 2005,

during which 7 out of 12 hurricanes occurred in close sequence. Thus, effects from the previous hurricane

are possibly confounding the period before the next hurricane.

27There were no earthquakes in the U.S. during our sample period, and we exclude Hurricane Ike from our event study,
because it occurred at around the same time as the peak of the financial crisis and the collapse of Lehman brothers. We
include the only tropical storm Allison because of the large insured losses it incurred. We also exclude the 9/11 terrorist
attacks as they not only financially affected insurers but also the entire economy.
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Figure 6: Event study

This figure shows the difference in slopes between P&C insurers and non-financials (difference-in-
difference) around a natural catastrophic event. The time frame is 14 business days before and 14
days after landfall. Landfall occurs on day zero. In case of multiple landfalls, the first landfall is used
as day zero. If multiple events occur during a short period of time and the slope difference would be
categorized both as pre- and post event, we only account for it once in the pre-event period but not
again in the post-event period.

We then ask the question whether the post-event slope is higher than the pre-event slope. As we

already accounted for the slope of the control group, we conduct a parametric t-test and non-parametric

Wilcoxon rank-sum test between the two slopes. Table 11 reports the test results and the slope difference

before and after the event. Both the parametric and non-parametric test show a significantly steeper

slope after the event, again, emphasizing the fact that the slope reacts to natural catastrophes.28

28Note that the average pre- and post-slopes in the graph do not fully align with the numbers in Table 11, because there are
events with more observations (i.e., options) than others and consequently have more weight, whereas the graph averages
all observations on a specific day.
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Table 10: Pre- and post-event comparison of the difference-in-difference slope

Pre-Slope Post-Slope Unpaired two-sided t-test Wilcoxon test

SLOPEi,t 0.017 0.032 0.015*** 0.003***

[3.76] [3.00]

Obs. 4097 3422

This table compares the time period in the difference in slopes between P&C insurers and non-
financials (difference-in-differences) 14 days before and 14 days after a hurricane landfall. All hur-
ricanes in the United States between 1996 and 2013 are considered (Hurricane Ike is excluded, as
it occurs around the same time as the Lehman collapse). An unpaired two-sided t-test is used to
test the means before and after the event period. The median difference is reported and the non-
parametric Wilcoxon–Mann–Whitney rank-sum test is applied. T -statistics and z-statistics are re-
ported in brackets, respectively. *, **, and *** denote statistical significance at the 10%, 5%, and 1%
levels, respectively.

7 Robustness tests

This section runs several robustness tests with respect to the sample and time period. The first robustness

test refers to other financial institutions as a control group. The second test addresses the seasonality

of catastrophes (i.e. hurricane season vs. non-hurricane season) whether the effect is constant over time

and whether the financial crisis had an impact on the slope effect.

7.1 Other financial institutions and systemic relevance

In the previous sections we focused on options written on stocks from the non-financial sector as a control

group. We argued that options written on stocks from the financial sector might create some confounding

effects, such as systemic risk exposure, which become prevalent in extreme scenarios, or government

guarantees or a diffusion of catastrophe risk through stakes in P&C insurers (e.g., bancassurance).

In this section, we want to address this issue by including other financial companies and comparing

them with P&C insurers. For that purpose we select all put options in OptionMetrics with SIC codes

between 6000 and 6999, except, of course P&C insurers (SIC code 6331), which comprise our experimen-

tal group. We run the same regressions as before. Note that our sample size is strongly reduced when

running regressions with LEV ERAGEi,t and SIZEi,t due to the lower availability of accounting infor-

mation for financial institutions in COMPUSTAT. We thus run our regressions both with and without

these two variables. Results for the variable of interest INSURANCEi,t, however, remain robust in
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all specifications. Furthermore, we include a dummy variable being one for all systemically important

financial institutions (SIFI) except for AIG.29 AIG is the only company which is both a SIFI and a P&C

insurer. It might be that our results are driven by AIG and that the slope of AIG is steeper than for the

rest of the P&C insurers. We thus look at AIG separately and include a dummy variable, AIGi,t, being

one if the company is AIG and zero otherwise. The SIFIi,t dummy variable ought to capture any effect

in their implied volatility smile. On the one hand, government guarantees could reduce the steepness of

the slope, which is what Kelly, Lustig, and Nieuwerburgh (2015) observe in index options. Since we are

looking at individual options of financial institutions, this effect might also exist in a reduced form, but

it could also be that the connectivity of the financial sector and associated spillover effects translate in

steeper slopes of the implied volatility. Results are reported in Table 11.

29A complete list of SIFIs can be found in Appendix D. Information on systemically important banks and insurers is retrieved
from the Financial Stability Board (www.fsb.org/wp-content/uploads/r_141106b.pdf and www.fsb.org/wp-content/

uploads/FSB-communication-G-SIIs-Final-version.pdf). Our selection of SIFIs refers to those identified by November
2014.
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Table 11: Financial institutions

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX)

INSURANCEt 0.010*** 0.006*** 0.002*** 0.004*** 0.014*** 0.013*** 0.012*** 0.004*** 0.006***

[4.70] [3.74] [3.50] [4.54] [3.11] [3.03] [2.71] [2.62] [4.03]

SIFIt 0.006* -0.003* -0.001* -0.002** 0.005 -0.007 -0.006 -0.002 -0.003***

[1.85] [-1.81] [-1.76] [-2.44] [1.17] [-1.28] [-1.13] [-1.21] [-2.70]

AIGt -0.030*** -0.030*** -0.011*** -0.015*** -0.040*** -0.042*** -0.039*** -0.013*** -0.016***

[-3.60] [-4.73] [-4.33] [-5.25] [-9.00] [-7.75] [-7.34] [-7.08] [-11.33]

IV ATMt -0.038*** -0.016*** -0.013*** 0.038*** 0.016 0.006 -0.005

[-3.62] [-3.73] [-4.53] [3.36] [1.18] [1.01] [-1.32]

LEV ERAGEt 0.004*** 0.001*** 0.003** 0.003** 0.001**

[4.05] [3.71] [2.21] [2.46] [2.14]

SIZEt -0.003*** -0.001*** -0.001 -0.002* -0.000

[-2.88] [-2.95] [-1.01] [-1.72] [-1.15]

BETAt 0.009*** 0.003*** 0.008*** 0.007** 0.010*** 0.003** 0.012***

[4.59] [4.27] [12.13] [2.47] [3.02] [2.37] [13.48]

V OLUMEt 0.000** 0.000 0.000 0.000 0.000 0.000 -0.000*

[2.29] [1.14] [1.36] [0.16] [0.18] [0.07] [-1.90]

CALLPUTOIt -0.000 -0.000 0.000 -0.010*** -0.009*** -0.003*** -0.001

[-0.04] [-0.56] [0.50] [-3.11] [-3.06] [-2.88] [-1.53]

SLOPE500t 0.048 0.055 0.030

[0.72] [1.48] [1.01]

IV ATM500t 0.094** 0.016 0.033**

[2.55] [0.91] [2.55]

SLOPEt−1 0.684*** 0.708*** 0.677*** 0.695***

[91.38] [115.76] [78.86] [90.81]

Intercept 0.039*** 0.072*** 0.024*** 0.008*** 0.045*** 0.036*** 0.027** 0.008* -0.005***

[16.54] [6.83] [6.56] [8.15] [26.92] [3.17] [2.35] [1.71] [-2.94]

Avg. R2 0.01 0.10 0.52 0.54

R2 0.00 0.01 0.01 0.47 0.52

Weeks (cluster) 936 928 928 935 936 928 928 928 935

Firms (cluster) 1699 874 874 873 1566

Obs. 477,025 290,056 289,089 435,522 477,025 290,056 290,056 289,089 435,522

Regression type FMB FMB FMB FMB Pooled Pooled Pooled Pooled Pooled

This table reports Fama-MacBeth (1973) regressions and pooled regressions with clustered standard errors by firm and week
(Petersen (2009)) with the slope of implied volatility as dependent variable. The control group (INSURANCEt = 0) consists
of all financial institutions with SIC codes between 6000 and 6999 (excluding P&C insurers with SIC code 6331). SIFIt is
a dummy variable taking the value of one if the financial institutions is considered systemically relevant (excluding AIG) and
zero otherwise. AIG is a dummy variable taking the value one for American International Group and zero otherwise. All
other controls are as previously defined. The sample period is January 1996 to December 2013. T -statistics for Fama-MacBeth
regressions are reported in brackets and corrected for Newey-West (1987) autocorrelation with lags of 7. *, **, and *** denote
statistical significance at the 10%, 5%, and 1% levels, respectively.

We see that the economic size of the coefficient on INSURANCEi,t has decreased by approximately

half compared to the previous regressions with non-financials as the control group, suggesting that some

of our concerns regarding other financial institutions might be true. To our surprise though, AIG is not a

driving force of our results at all. Quite the contrary, AIGi,t shows a highly significant negative coefficient,

meaning that AIG’s implied volalitity smile is much flatter than the implied volatility smile of other P&C

insurers. SIFIs, in general, also do not confound our results. Although not being statistically significant

under all specifications the overall direction of the SIFIi,t dummy variable is negative, meaning a flatter

slope as well. Overall, results are robust against this additional control group.
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7.2 Reinsurers, insurance losses, and tail risk mitigation

One of the typical features of insurers is assuming risk, not only from policyholders but also from other

insurers which is termed reinsurance.30 The question is then, whether insurers ceding more of their (tail)

risk to reinsurers have a less steep implied volatility slope than those which purchase less reinsurance.

In addition, those considered as reinsurers might have a steeper implied volatility slope because they sell

reinsurance. Technically, excess-of-loss reinsurance, a non-proportional reinsurance type, is the reinsur-

ance type we are interested in, as it caps the losses in the tail of the loss distribution. However, the

datasource (ORBIS) we use to determine the reinsurance coverage does not differentiate between the two

reinsurance types which is a limitation of this investigation.

The following sample only consists of reinsurers and primary insurers but does not employ a control

group as in the previous sections (i.e., non-financials).31 The dummy variable REINSURERi,t takes

on the value of one if the insurer at hand is a reinsurer and zero if it is a primary insurer. Following

Cummins and Phillips (2005), our definition of a reinsurer is based on the North American Industry

Classification System (NAICS) code 524130 for property/casualty reinsurance. Because of tax reasons,

and higher investment flexibility, most of the reinsurers in our sample are headquartered on the Bermudas.

Our sample consists of 10 Bermuda-based, 2 U.S.-based, 1 Swiss-based, 1 Luxembourg-based, and 1

Cayman Islands-based reinsurers (P&C insurers marked by (R) in Appendix B). These 15 reinsurers are

a subsample of the 67 P&C insurers.

To further investigate tail risk mitigation techniques, we retrieve data on reinsurance coverage for each

insurer at each year from the ORBIS database. Reinsurance coverage (REINSCOV ERi,t) is defined as

(1− net premiums
premiums written ). The difference between gross premiums and net premiums is the absolute amount

of reinsurance which an insurer purchases. We then run the same regressions described in Section 4

with the implied volatility slope on the left-hand side, but in a reduced sample of primary insurers

and reinsurers. In addition, we include an interaction term between being a reinsurer and the value of

reinsurance coverage. As before, we control for all other firm- and market-specific variables. We run both

Fama-MacBeth (1973) regressions and panel regressions with clustered standard errors by firm and week

30There are two main categories of reinsurance: proportional and non-proportional. Proportional means that both the
primary insurer and the reinsurer share a predefined ratio of the incurred losses. In contrast, non-proportional requires
the primary insurer to cover all losses up to a predefined threshold. When that threshold is exceeded, the reinsurer jumps
in and covers the following losses up to a maximum.

31Because non-financials do not purchase reinsurance coverage and we do not know whether, how much, and what type of
primary insurance policies they buy.
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(Petersen (2009)). Table 12 presents the results.

Table 12: Reinsurers and reinsurance cover

(I) (II) (III) (IV) (V) (VI) (VII)

REINSURERi,t -0.005* -0.009*** -0.004*** 0.002 -0.006 -0.006 -0.002

[-1.70] [-2.58] [-2.72] [0.14] [-0.47] [-0.47] [-0.50]

REINSCOV ERi,t 0.038*** 0.022** 0.011** 0.031 -0.013 -0.009 -0.004

[3.66] [2.12] [2.04] [1.10] [-0.45] [-0.34] [-0.38]

REINSURERi,t × REINSCOV ERi,t 0.012 0.040** 0.014 0.067 0.133 0.125 0.042

[0.73] [2.13] [1.63] [0.73] [1.52] [1.40] [1.35]

IV ATMi,t 0.049** 0.022* 0.093*** 0.076* 0.036*

[2.13] [1.68] [2.88] [1.68] [1.82]

LEV ERAGEi,t 0.003 0.003* 0.002 0.003 0.000

[1.60] [1.93] [0.34] [0.41] [0.15]

SIZEi,t -0.004** -0.002* -0.009*** -0.009*** -0.002**

[-2.24] [-1.82] [-3.29] [-3.32] [-2.46]

BETAi,t 0.001 -0.001 0.017* 0.017* 0.005

[0.26] [-0.18] [1.84] [1.93] [1.44]

V OLUMEi,t 0.000 0.000 -0.000 -0.000 -0.000**

[0.69] [0.42] [-1.03] [-0.77] [-2.21]

CALLPUTOIi,t -0.000 -0.001 -0.011 -0.010 -0.004*

[-0.11] [-0.56] [-1.63] [-1.48] [-1.74]

SLOPE500i,t 0.169 0.099*

[1.27] [1.80]

IV ATM500i,t 0.013 -0.018

[0.15] [-0.49]

SLOPEi,t−1 0.632*** 0.654***

[40.79] [30.16]

Intercept 0.044*** 0.060*** 0.025*** 0.051*** 0.093*** 0.083*** 0.024**

[12.11] [3.62] [3.04] [9.34] [2.97] [2.94] [2.45]

Avg. R2 0.11 0.44 0.68

R2 0.01 0.05 0.05 0.45

Weeks (cluster) 935 923 923 935 923 923 923

Firms (cluster) 65 65 65 65

Obs. 27,511 27,085 27,063 27,511 27,085 27,085 27,063

Regression type FMB FMB FMB Pooled Pooled Pooled Pooled

This table reports Fama-MacBeth (1973) regressions and pooled regressions with clustered standard errors by firm and week.
The dependent variable is the slope of implied volatility. The sample period is January 1996 to December 2013. T -statistics for
Fama-MacBeth regressions are reported in brackets and corrected for Newey-West (1987) autocorrelation with lags of 7. *, **,
and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Results regarding the reinsurer and primary insurer sample are not as distinct as the ones we observe

for P&C insurers against non-financials and other financial institutions in previous sections. The Fama-

MacBeth (1973) regressions in Column (I), (II), and (III) show that the implied volatility slope is less

steep for reinsurers compared to primary insurers and that reinsurance coverage increases the steepness

of the slope. Both results appear counterintuitive at first unless investors believe that buying reinsurance

is a signal for being more at risk and thus in need for more protection. In contrast, a reinsurer only

bears losses up to a certain limit which could be an explanation why investors believe catastrophe risk is

limited, too.
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Although these results are statistically significant based on Fama-MacBeth (1973) regressions, they

cannot be confirmed using pooled regressions with clustered standard errors by firm and week. As

Petersen (2009) shows, standard errors under Fama-MacBeth (1973) regressions are biased downwards

if there is a firm effect present. Because we are now analyzing the same industry (i.e., P&C insurers)

the presence of a common firm effect is comprehensible. Overall, this suggests that investors do not or

are not able to distinguish between the risk profile of reinsurers and primary insurers and the respective

reinsurance coverage they purchase.

7.3 Seasonality, subperiods, and the financial crisis

In the event study, we have seen that the implied volatility slope is affected by hurricanes and significantly

larger after the event with an additional reaction approximately ten days before the event. This might

suggest that the implied volatility slope is steeper during the hurricane season and lower during the

non-hurricane season. However, assuming that insurers are constantly exposed to catastrophes which

are difficult to predict and not even seasonal, e.g., an earthquake, a man-made disaster, or an off-

season hurricane / natural event, then the slope should be larger throughout the year. According to the

National Hurricane Center, the U.S. hurricane season in the Atlantic starts June 1st and ends November

30th, whereas the Eastern Pacific hurricane season already starts May 15th but also ends November

30th. To control for potential seasonal effects in implied volatilities of P&C insurers due to hurricanes,

we create a dummy variable, HURSEASONi,t, being one during the overlapping Eastern Pacific and

Atlantic hurricance months of May to November and zero during the months of December to April. The

interaction term between INSURANCEi,t and HURSEASONi,t should then be significant and positive

if there is indeed a seasonal effect in P&C options. Table 13 reports the multivariate results.32

32We only report pooled regressions because HURSEASONi,t is a time dummy.
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Table 13: Seasonality

(I) (II) (III) (IV)

INSURANCEi,t 0.024*** 0.022*** 0.023*** 0.007***

[4.93] [4.48] [4.55] [4.17]

HURSEASONi,t -0.001 -0.001 -0.002 -0.001

[-0.34] [-0.51] [-1.12] [-0.99]

INSURANCEi,t ×HURSEASONi,t 0.001 0.001 0.001 0.001

[0.50] [0.44] [0.43] [0.95]

Controls NO YES YES YES

R2 0.00 0.01 0.01 0.45

Weeks 936 928 928 928

Firms 5,609 4,912 4,912 4,908

Obs. 1,976,163 1,736,945 1,736,945 1,733,939

This table reports panel regressions with clustered standard errors by firm and week (Petersen (2009)). HURSEASONi,t

is a dummy variable taking the value of one for the Atlantic hurricane season June to November and zero for the
months December to May. INSURANCEi,t ×HURSEASONi,t is an interaction term between the dummy variable
INSURANCEi,t and HURSEASONi,t. The sample period is January 1996 to December 2013. T -statistics are
reported in brackets. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Column (I) does not include any control variables. The interaction term INSURANCEi,t×HURSEASONi,t

shows no significance. When controlling for the same variables as in Section 6.3, this result remains ro-

bust. Overall we do not find a seasonal effect in implied volatilities. That is, the implied volatility is

not steeper during the hurricance season, which suggests that derivatives on P&C insurers are constantly

more expensive than their non-financials counterparts throughout the year.

Having addressed the seasonal aspect within the years, we now address changes in the implied volatility

over the sample period. With Hurricane Katrina being the costliest and most devastating hurricane in

U.S. history, we separate our sample in two equally long subperiods of nine years, where 1996 until 2004

is the pre-Katrina subperiod and 2005 until 2013 is the post-Katrina subperiod. Possibly the attitude

towards natural catastrophes changed after that among investors, speculators, and market makers. We

run Fama-MacBeth (1973) regressions and pooled regressions as in the previous sections on the two

subsamples. Results are shown in Table 14 and show that the slope of P&C insurers indeed changed

compared to non-financials in the post-Katrina period. Specifically in univariate pooled and Fama-

MacBeth (1973) regressions, the slope is both statistically and economically much smaller compared to

the post-Katrina period. When we control for the firm and market-specific variables we even observe an

insignificant effect on the variable of interest, INSURANCEi,t. One explanation could be that, similar
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to the market crash of 1987 introducing the implied volatility smile, Hurricane Katrina could have had

a similar effect in creating an additional risk awareness (or “additional” smile) on top of the implied

volatility smile. A second explanation might be the overall increase of natural disasters in the post 2005

years and thus a steeper slope.

Table 14: Subperiods

Pre-Katrina (2005) Post-Katrina (2005)

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)

INSURANCEt 0.003** 0.000 0.005* -0.000 0.030*** 0.010*** 0.034*** 0.012***

[2.58] [0.51] [1.94] [-0.40] [8.59] [8.15] [5.79] [5.86]

IV ATMt -0.046* -0.019*** -0.016*** -0.013***

[-1.81] [-11.38] [-6.32] [-4.44]

LEV ERAGEt -0.009 -0.001*** 0.000 0.000

[-1.30] [-6.30] [1.41] [0.93]

SIZEt -0.003 0.000 -0.001*** -0.001***

[-0.91] [1.24] [-3.68] [-4.30]

BETAt 0.001 0.005*** 0.003*** 0.002***

[0.57] [12.11] [4.11] [3.70]

V OLUMEt 0.000 0.000*** -0.000*** -0.000***

[1.06] [3.80] [-5.86] [-2.73]

CALLPUTOIt 0.001 -0.004*** -0.000 0.000

[0.73] [-8.18] [-0.62] [0.19]

SLOPE500t -0.109*** 0.028

[-5.15] [0.56]

IV ATM500t 0.081*** 0.029

[6.69] [1.53]

SLOPEt−1 0.644*** 0.690*** 0.654*** 0.652***

[25.19] [103.02] [116.23] [94.05]

Intercept 0.027*** 0.046 0.028*** 0.003 0.038*** 0.028*** 0.038*** 0.020***

[7.05] [1.41] [19.11] [1.24] [22.01] [8.62] [35.98] [5.42]

Avg. R2 0.00 0.47 0.00 0.44

R2 0.00 0.50 0.00 0.43

Weeks (cluster) 468 460 468 460 468 468 468 468

Firms (cluster) 3522 2991 4434 3994

Obs. 837,594 692,521 837,594 692,521 1,138,569 1,041,418 1,138,569 1,041,418

Regression type FMB FMB Pooled Pooled FMB FMB Pooled Pooled

This table reports Fama-MacBeth (1973) regressions and pooled regressions with clustered standard errors
by firm and week (Petersen (2009)), with the slope of implied volatility as dependent variable. The sample
is split into two equally long time periods of nine years. The first time period is considered the pre-Katrina
period (1996 - 2004), and the second period is considered the post-Katrina period (2005 - 2013). T -statistics
for Fama-MacBeth regressions are reported in brackets and corrected for Newey-West (1987) autocorrelation
with lags of 7. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.
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The last potential reason we can think of is related to the financial crisis of 2008, which simply might

be driving the result of a steeper slope. To control for this effect, we include a dummy variable for the

financial crisis, FinCrisisi,t, which takes on the value of one for the time between February 2008 and

July 2009, which is the time frame of the financial crisis according to the National Bureau of Economic

Research (NBER) based Recession Indicators for the United States and zero else. Moreover, we include

an interaction term between INSURANCEi,t and FinCrisisi,t to check for a higher steepness of P&C

insurers during the financial crisis. We run the regression only on the post-Katrina period (2005-2013)

to ensure that our results apply to the “steep” period.33 Results on the regressions are presented in

Table 15. We find that the interaction term is insignificant in both specifications. This suggests that the

steeper slope of P&C insurers is not driven by the financial crisis.

Table 15: Panel regression (Post Katrina) controlling for financial crisis

(I) (II) (III) (IV)

INSURANCEt 0.033*** 0.031*** 0.012*** 0.011***

[5.77] [4.39] [5.87] [4.50]

FinCrisist 0.010*** 0.010*** 0.003 0.003

[3.46] [3.40] [1.10] [1.07]

INSURANCEt × FinCrisist 0.013 0.004

[1.22] [0.99]

Intercept 0.036*** 0.036*** 0.020*** 0.020***

[32.4] [32.75] [5.44] [5.45]

Controls NO NO YES YES

R2 0.00 0.00 0.43 0.43

Weeks 468 468 468 468

Firms 4,434 4,434 3,994 3,994

Obs. 1,138,569 1,138,569 1,041,418 1,041,418

This table reports panel regressions with clustered standard errors by firms and week (Petersen (2009)) with the slope of
implied volatility as dependent variable. The sample period covers the post-Katrina period (2005 - 2013). FinCrisist is
a dummy variable taking the one for the months between February 2008 and July 2009. INSURANCEt ×FinCrisist
is an interaction term between the two dummy variables. T -statistics are reported in brackets. *, **, and *** denote
statistical significance at the 10%, 5%, and 1% levels, respectively.

33Again, because the dummy variable for the financial crisis is a time dummy we only report pooled regressions with
clustered standard errors by firm and week.
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8 Conclusion

This paper analyzes the implied volatility slope of P&C insurers. With P&C insurers being exposed to

natural and man-made disasters and OTM put options protecting against tail risk, we argue that the

exposure towards catastrophe risk should be identifiable in the implied volatility smile.

P&C insurers are particularly convenient for analyzing the relation between tail risk and option prices,

because of their specific exposure to extreme events (i.e., natural disasters), their use of risk mitigation

techniques against tail risk (i.e., reinsurance), and the securitization of catastrophe risk.

Our findings support this idea, both with financials and non-financials as control groups. We also

confirm that the implied volatility slope of P&C insurers is related to risk premiums from the cat bond

market with a correlation of 49.4%. The main drivers in the tail risk of the implied volatility slope are

expected losses from natural catastrophes and the default spread (i.e., BB-rated option-adjusted yield

over the treasury yield). Pricing dynamics such as the reinsurance cycle, however, do not affect the

implied volatility smile. Furthermore, we find that the slope is in fact steeper on the day and after the

days following a hurricane event supporting the idea that the slope reacts to potentially large losses of

natural catastrophes. Lastly, we show that the effect of a steeper slope has increased over time, possibly

because of an increasing number of natural disasters in recent times.

Further insights into catastrophe risk can have real effects on the pricing of catastrophe-related in-

surance prices. Among other things, the slope can be used as a guidance tool for the primary market

how market participants evaluate the probability and compensation for catastrophe risk on average. A

specific advantage of our method is the daily (high-frequency) determination of catastrophe risk using

traditional option markets.

Future research might analyze how catastrophe risk deploys in other tail risk-oriented financial instru-

ments, such as Credit Default Spreads (CDS). We established a link between put options and catastrophe

bonds, but it might be of interest to emphasize how the different tail-risk-oriented instruments, i.e., put

options, CDS, and catastrophe bonds interact with each other and whether arbitrage opportunities ex-

ist between them. In general, it can be asked how catastrophe risk can be financially exploited. The

replication of (zero-beta) investments using put options on P&C insurers could be an efficient way for

investors to earn uncorrelated returns with the market by being exposed towards catastrophe risk. The

essence of this investment opportunity would be similar to a catastrophe bond but unlike catastrophe
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bonds which are only available to qualified investors, put options can be accessed by a wider public. The

question here would be, though, whether transaction costs can be overcome. Going beyond the natural

catastrophe risk aspect in option prices, it would be interesting to investigate the implied volatility smile

of life insurers and their potential tail risk due to pandemics, longevity risk, or mortality risk. Lastly,

future research might investigate the assumption of independence between natural catastrophes and eco-

nomic downturns. Both our model and our empirical research design throughout the paper assume a

clear separation between the two factors, allowing us to identify a difference-in-differences effect caused

by catastrophes. However, if catastrophes exceed a critical mass, the effect between natural catastrophes

and economic downturns might become indistinguishable because the natural catastrophe affects the real

economy. A model which accounts for this downside correlation might thus be more appropriate.
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Appendix A Model sensitivity

Figure A: Modeled implied volatility smiles (P&C insurers)

This figure illustrates the modeled implied volatilities of one-month-to-expiration put options written
on P&C insurance stocks for different catastrophe-related parameters. The “Base scenario” is identical
to the main calibration for a P&C insurance stock in Section 3 (black line marked by downward
pointing squares). The second scenario “Higher jump uncertainty” changes, ceteris paribus, the value
of σcat to 0.55. The third scenario “Higher jump size” changes, ceteris paribus, the value of γcat to
-0.12. The fourth scenario “Higher jump frequency” changes, ceteris paribus, the value of λcat to 1.20.
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Appendix B Property/casualty insurers with options

Table B: P&C insurers

Company name CUSIP Company name CUSIP

20TH CENTURY INDUSTRIES 90130N10 KEMPER CORP DE 48840110

ACE LTD (R) H0023R10 LOEWS CORP 54042410

ALLEGHANY CORP DE 01717510 MAIDEN HOLDNGS LTD (R) G5753U11

ALLIED WORLD ASSUR CO HLDGS AG H0153110 MARKEL CORP 57053510

ALLSTATE CORP 02000210 MEADOWBROOK INSURANCE GROUP INC 58319P10

ALTERRA CAPITAL HOLDINGS LTD G0229R10 MERCURY GENERAL CORP NEW 58940010

AMERICAN FINANCIAL GROUP INC NEW 02593210 MONTPELIER RES HOLDINGS LTD (R) G6218510

AMERICAN INTERNATIONAL GROUP INC 02687478 MUTUAL RISK MANAGEMENT LTD 62835110

AMERISAFE INC 03071H10 NAVIGATORS GROUP INC 63890410

AMTRUST FINANCIAL SERVICES INC 03235930 ODYSSEY RE HOLDINGS CORP 67612W10

ARCH CAPITAL GROUP LTD NEW (R) G0450A10 OHIO CASUALTY CORP 67724010

ASPEN INSURANCE HOLDINGS LTD (R) G0538410 ONEBEACON INSURANCE GROUP LTD G6774210

ASSURANT INC (R) 04621X10 PHILADELPHIA CONSOLIDATED HLG CO 71752810

AXIS CAPITAL HOLDINGS LTD (R) G0692U10 PLATINUM UNDERWRITERS HLDGS LTD (R) G7127P10

BERKLEY W R CORP 08442310 PROASSURANCE CORP 74267C10

BERKSHIRE HATHAWAY INC DEL 08467070 PROGRESSIVE CORP OH 74331510

C N A FINANCIAL CORP 12611710 R L I CORP 74960710

CHUBB CORP 17123210 RELIANCE GROUP HOLDINGS INC 75946410

CINCINNATI FINANCIAL CORP 17206210 RENAISSANCERE HOLDINGS LTD (R) G7496G10

COMMERCE GROUP INC MASS 20064110 SAFECO CORP 78642910

EMPLOYERS HOLDINGS INC 29221810 SAFETY INSURANCE GROUP INC 78648T10

ENDURANCE SPECIALTY HOLDINGS LTD (R) G3039710 SEABRIGHT HOLDINGS INC 81165610

EVEREST RE GROUP LTD (R) G3223R10 SELECTIVE INSURANCE GROUP INC 81630010

FIRST MERCURY FINANCIAL CORP 32084110 STATE AUTO FINANCIAL CORP 85570710

FLAGSTONE REINSURANCE HLDGS SA (R) L3466T10 TOWER GROUP INTERNATIONAL LTD G8988C10

FRONTIER INSURANCE GROUP INC 35908110 TRANSATLANTIC HOLDINGS INC (R) 89352110

GLOBAL INDEMNITY PLC G3931910 TRAVELERS COMPANIES INC 89417E10

GREENLIGHT CAPITAL RE LTD (R) G4095J10 TRAVELERS PPTY CASUALTY CORP NEW 89420G10

H C C INSURANCE HOLDINGS INC 40413210 TRAVELERS PPTY CASUALTY CORP NEW 89420G40

HANOVER INSURANCE GROUP INC 41086710 UNITED FIRE GROUP INC 91034010

HARTFORD FINANCIAL SVCS GRP INC 41651510 UNIVERSAL INSURANCE HOLDINGS INC 91359V10

HILLTOP HOLDINGS INC 43274810 VALIDUS HOLDINGS LTD (R) G9319H10

HORACE MANN EDUCATORS CORP NEW 44032710 ZENITH NATIONAL INSURANCE CORP 98939010

INFINITY PROPERTY & CASUALTY COR 45665Q10

Property/casualty insurers marked by (R) are also reinsurers according to the North American Industry Classification System.
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Appendix C Natural catastrophes in the U.S. (1996–2013)

Table C: Catastrophic events in the U.S. (1996–2013)

Peril First
appearance
(start date)

Landfall /
Peak

End date Geographic
region of

catastrophe

Event Insured loss
(indexed to
2013 in $M)

Rank
(loss)

Hurricane Georges 9/15/1998 9/21/1998 9/29/1998 LA, MS, AL,
FL

Floods 5,240 14

Hurricane Floyd 9/7/1999 9/14/1999 9/16/1999 NC, SC, VA,
MD, PA, NY,
NJ, DE, RI,

CT, MA, NH,
VT

Heavy rain,
floods

4,100 18

Tropical storm
Allison

6/5/2001 6/5/2001 6/17/2001 TX, LA, MS,
FL, VA, PA

Floods 4,925 15

Hurricane Charley 8/9/2004 8/13/2004 8/14/2004 FL, SC, NC Storm surge 10,313 9

Hurricane Frances 8/25/2004 9/2/2004 9/9/2004 FL, SC, NC Storm surge,
floods

6,593 12

Hurricane Ivan 9/2/2004 9/16/2004 9/21/2004 AL, FL, GA,
MS, LA, SC,
NC, VA, WV,
MD, TN, KY,
OH, DE, NJ,

PA, NY

Damage to oil
rigs, storm

surge, floods

17,218 5

Hurricane Jeanne 9/13/2004 9/14/2004 9/29/2004 FL, GA, SC,
NC, VA, MD,
DE, NJ, PA,

NY

Floods,
landslides

4,872 16

Hurricane Katrina 8/23/2005 8/25/2005 8/30/2005 FL, LA, MS,
AL, TN, KY,
IN, OH, GA.

Storm surge,
levee failure,
damage to oil

rigs

80,373 1

Hurricane Rita 9/18/2005 9/24/2005 9/26/2005 FL, AL, MS,
LA, AR, TX

Floods,
damage to oil

rigs

12,510 7

Hurricane Wilma 10/15/2005 10/21/2005 10/26/2005 FL Floods 15,570 6

Hurricane Ike 9/1/2008 9/7/2008 9/15/2008 TX, LA, AR,
TN, IL, IN,

KY, MO, OH,
MI, PA.

Floods,
offshore
damage

22,751 4

Hurricane Irene 8/21/2011 8/22/2011 8/30/2011 NC, VA, MD,
NJ, NY, CT,
RI, MA, VT

Extensive
flooding

6 274 13

Hurricane Sandy 10/21/2012 10/24/2012 10/31/2012 MD, DE, NJ,
NY, CT, MA,

RI

Storm surge 36,890 2

Notes: Data on the events is retrieved from Swiss Re’s 2014 Sigma Report. Events are presented in chronological order.
Hurricane Ike is written in Italics and is not included in the event study due to the close proximity to the financial crisis. Data
about appearance, landfall, and end date are from the National Hurricane Center (NHC) using the HURDAT2 dataset.
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Appendix D Systemically important financial institutions (SIFI)

Table D: Systemically important financial institutions (SIFI)

Company name CUSIP

Banks

BANCO SANTANDER S A 05964H10

BANK OF AMERICA CORP 06050510

BANK OF NEW YORK MELLON CORP 06405810

BARCLAYS PLC 06738E20

CITIGROUP INC 17296742

CREDIT SUISSE GROUP 22540110

GOLDMAN SACHS GROUP INC 38141G10

H S B C HOLDINGS PLC 40428040

I N G GROEP N V 45683710

JPMORGAN CHASE & CO 46625H10

LLOYDS BANKING GROUP PLC 53943910

MITSUBISHI UFJ FINANCIAL GP INC 60682210

MIZUHO FINANCIAL GROUP INC 60687Y10

MORGAN STANLEY DEAN WITTER & CO 61744644

ROYAL BANK SCOTLAND GROUP PLC 78009768

STATE STREET CORP 85747710

SUMITOMO MITSUI FINANCIAL GP INC 86562M20

WELLS FARGO & CO NEW 94974610

DEUTSCHE BANK A G D1819089

U B S AG H8923133

Life insurers

AEGON N V 00792410

METLIFE INC 59156R10

PRUDENTIAL FINANCIAL INC 74432010

PRUDENTIAL PLC 74435K20

P&C insurers

AMERICAN INTERNATIONAL GROUP INC 02687478
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