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Abstract

This paper reviews the literature on heterogeneous agent models of financial stability and

their application in stress tests. We open with the observation that the financial system is

a complex system, which heterogeneous agent models are well-suited to analyze. The paper

then proceeds in two parts. In the first part, we discuss the fundamental drivers of systemic

risk in financial systems, and set out how our understanding of them can be informed by

heterogeneous agent models. We focus on models of systemic risk resulting from leverage

constraints and models of financial contagion due to interconnectedness. In the second part

of this review, we discuss how the conceptual insights from leverage and contagion models

can be combined to model and understand systemic risk more broadly and to build robust

and data-driven stress tests.
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1 Introduction

The financial system is a classic example of a complex system. It consists of many diverse

actors, including banks, mutual funds, hedge funds, insurance companies, pension funds and

shadow banks. All of them interact with each other, as well as interacting directly with the real

economy (which is undeniably a complex system in and of itself). The financial crisis of 2008

provided a perfect example of an emergent phenomenon. While the causes of the crisis remain

controversial1, a standard view goes like this: A financial market innovation called mortgage-

backed securities made lenders feel more secure, allowing them both to extend more credit to

households, and to purchase large quantities of securities on credit. Liberalized lending fueled a

housing bubble; when it crashed, the fact that the portfolios of most major financial institutions

had significant holdings of mortgage backed securities caused large losses. This is turn caused

a credit freeze, cutting off funding for important activities in the real economy, and generating

a global recession that cost the world an amount that has been estimated to be as high as fifty

trillion dollars, the order of half a year of global GDP. The crisis has made everyone aware

of the complex nature of the interactions and feedback loops in the economy, and has driven

an explosive amount of research attempting to better understand the financial system from

a systemic point of view. It has also underlined the policy relevance of the complex systems

approach.

The financial system is sufficiently complicated that it is not yet possible to model it

realistically. Existing models only attempt a stylized view, trying to elucidate the underlying

mechanisms driving financial stability. There are currently two basic approaches. The main-

stream approach has been to focus on situations where it is possible to compute an equilibrium.

The computational difficulty of such models generally requires making very strong simplifica-

tions, e.g. studying only a few actors and interactions at a time. This has been useful to

elucidate some of the key mechanisms, driving financial instabilities and financial contagion,

but it comes at the expense of simplifications that limit the realism of the conclusions. There is

also a concern that, particularly during a crisis, the assumptions of rationality and equilibrium

are too strong.

The alternative approach abandons equilibrium and rationality and replaces them with

stylized behavioral assumptions. This approach often relies on simulation. This has the advan-

tage that it becomes easier to study more complicated situations, e.g. with more actors and

more realistic institutional constraints. It also potentially makes it possible to study multiple

channels of interaction; even though so far very little has been done, it is clear that this plays

an important role. The disadvantage is that the assumptions about behavior may be ad hoc,

and even when they are well supported on empirical grounds, they may be context dependent

(such models typically fail the Lucas critique).

This review will focus primarily on the computational approach, though we will attempt

to discuss key influences and interactions with the more traditional equilibrium approach. We

1Indeed we will mention some alternative views here.
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believe that the computational approach will become increasingly important with time, for

several reasons. One is that this approach is easier to bring to the data, and data is becoming

more readily available. Many central banks are beginning to collect comprehensive data sets

that make it possible to monitor the key parts of the financial system. This makes it easier

to test the realism of behavorial assumptions, making such models less ad hoc. With such

models it is potentially feasible to match the models to the data in a literal, one-to-one manner.

This has not yet been done, but it is on the horizon, and if successful such models may become

valuable tools for assessing and monitoring financial stability, and for policy testing. In addition,

computational power is always improving. This is a new area of pursuit and the computational

techniques and software are rapidly improving.

The actors in the financial system are highly interconnected, and as a consequence network

dynamics plays a key role in determining financial stability. The distress of one institution can

propagate to other institutions, a process that is often called contagion, based on the analogy to

disease. There are multiple channels of contagion, including counterparty risk, funding risk, and

common assets. Counterparty risk is caused by the web of bilateral contracts, which make one

institutions assets another’s liabilities. When a borrower is unable to pay, the lender’s balance

sheet is affected, and the resulting problems may in turn be transmitted to other parties. If

a lender comes under stress, this may create problems for borrowers because loans fail to be

extended in the future. Institutions are also connected in many indirect ways, e.g. by common

asset holdings, also called overlapping portfolios. If an institution comes under stress and sells

assets, this depresses prices, which can cause further selling, etc. And there are of course other

channels of contagion, such as common information, that can affect expectations and interact

with the more mechanical channels described above.

These channels of contagion cause nonlinear interactions that can create positive feedback

loops, that can amplify external shocks or even generate purely endogenous dynamics, such as

booms and busts. Nonlinear feedback loops can also be amplified by behavioral and institutional

constraints and by bounded rationality (often in the context of incomplete information and

learning)

Behavioral and institutional constraints force agents to take actions that they would prefer

to avoid in the absence of the constraint. Often such behavioral constraints are imposed by

a regulator but they can also result from bilateral contracts between private institutions. In

principle, regulatory constraints, such as capital or liquidity coverage ratios, are designed to

increase financial stability. In many cases however, these constraints focus on increasing the

resilience of a financial institution to idiosyncratic shocks rather than the system as a whole.

Take the example of a leverage constraint. If a financial institution has high leverage, a small

shock may be enough to push it into insolvency. Hence, from a regulatory perspective, a cap on

leverage seems like a good idea. However, as we will discuss below, a leverage constraint may

have the adverse side effect that it forces distressed institutions to sell into falling asset markets.

Such distressed selling may lead to a further fall in prices. Of course leverage constraints are

needed, but the point is that their effects can go far beyond the failure of individual institutions,

and the way in which they are enforced can make a big difference. Similar positive feedback
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results from other behavioral constraints as well.

This brings up the distinction between microprudential regulation, which is designed to

benefit individual institutions without considering the effect on the system as a whole, vs.

macroprudential regulation, which is designed to take systemic effects into account. These can

come into dramatic conflict. For example, we will discuss the base of Basel II, which provided

perfectly sensible rules for risk management from a microprudential point of view, but which

likely caused substantial systemic risk from a macroprudential point of view, and indeed may

have been a major driver of the crisis. It is ironic that prudent behavior of an individual can

cause such significant problems for society as a whole.

Rational agents with complete information might be able to navigate the risks inherent

to the financial system. Indeed, optimal behavior might well mitigate the positive feedback

resulting from interconnectedness and behavioral constraints. However, we believe that optimal

behavior in the financial system is rare. Instead, agents are restricted by bounded rationality.

Their limited understanding of the system in which they operate forces agents to rely on simple

rules as well as biased methods to learn about the state of the system and form expectations

about its future states. Suboptimal decisions and biased expectations exacerbate the desta-

bilizing effects of interconnectedness and behavioral constraints but can also lead to financial

instability on their own.

In the following sections we will first discuss the fundamental drivers of systemic risk

outlined above in more detail and how our understanding of them can be informed by hetero-

geneous agent models. In particular, we will focus on models of systemic risk resulting from

leverage constraints and models of financial contagion due to interconnectedness. In the second

part of this review we will discuss how the conceptual insights from leverage and contagion

models can be combined to build robust and data driven systemic stress tests.

2 Two approaches to modeling systemic risk

As mentioned in the introduction, traditionally finance has focused on modeling systemic risk

in highly stylized models that are analytically tractable. These efforts have improved our un-

derstanding of a wide range of phenomena related to systemic risk ranging from bank runs

(Diamond and Dybvig (1983), Morris and Shin (2001)), credit cycles (Kiyotaki and Moore

(1997), Brunnermeier and Sannikov (2014)), balance sheet (Allen and Gale (2000)) and infor-

mation contagion (Acharya and Yorulmazer (2008)) over fire sales (Shleifer and Vishny (1992))

to the feedback between market and funding liquidity (Brunnermeier and Pedersen (2009)). A

comprehensive review that does justice to this literature is well beyond the scope of this paper.

However, we would like to make a few observations with regards to this traditional modeling

approach and contrast it with the heterogeneous agent approach.

Traditional models place great emphasis on the incentives and information structure of

agents in a financial market. Given those, agents behave strategically taking into account
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their beliefs about the state of the world and other agents strategies. The objects of interest

are then the game theoretic equilibria of this interaction. This allows studying the effects of,

among others, asymmetric information, uncertainty or moral hazard on the stability of the

financial system. While these models provide valuable qualitative insights, they are typically

only tractable in very stylized settings. In particular, models are usually restricted to a small

number or a continuum of agents, a few time periods and a drastically simplified institutional

and market set up. This can make it difficult to draw quantitative conclusions from such models.

Heterogeneous agent models typically place less emphasis on incentives and information

and instead focus on how the dynamic interactions of behaviorally simple agents can lead to

complex aggregate phenomena, such as financial crises, and how outcomes are shaped by the

structure of this interaction and the heterogeneity of agents. From this perspective, the key

drivers of systemic risk are the amplification of dynamic instabilities and contagion processes in

financial markets. Complicated strategic interactions and incentives are often ignored in favor

of simple, empirically motivated behavioral rules and a more realistic institutional and market

set up. Since these models can easily be simulated numerically, they can in principle be scaled

to a large number of agents and, if appropriately calibrated, can yield quantitative insights.

Two common criticisms leveled against heterogeneous agent models are the lack of strate-

gic interactions and the reliance on computer simulations. The first criticism is fair and, in

many cases, highlights an important shortcoming of this approach. Hard wired behavioral rules

need to be carefully calibrated against real data, and even when they are, they can fail in new

situations where the behavior of agents may change. For computer simulations to be credible

their parameters need to be calibrated and the sensitivity of outcomes to those parameters

needs to be understood. The latter in particular is more challenging in computational models

than in tractable analytical models.2

Traditional and heterogeneous agent models are complements rather than substitutes.

Some heterogeneous agent models use myopic optimisation, and in the future the line between

the two may become increasingly blurred.3 As methods such as computational game theory or

multi-agent reinforcement learning mature, it may become possible to increasingly introduce

strategic interactions into computational heterogeneous agent models. Furthermore, as compu-

tational resources and large volumes of data on the financial system become more accessible,

parameter exploration and calibration should become increasingly feasible. Therefore, we are

optimistic that, provided technology progresses as expected,4 in the future heterogeneous agent

models will be able to overcome some of the shortcomings discussed above. And as we demon-

strate here, they have already led to important new results in this field, that were not obtainable

via analytic methods.

2 In our view, what is not fair is to regard computer situations as inherently inferior to analytic results. Of
course, all else equal, analytic models are preferable because the ease of varying parameters leads to a deeper
understanding with less effort. But many aspects of the economic world are not simple, and in most realistic
situations computer simulations are the only possibility. Good practice is to make code freely available and well
documented, so that results are easily reproducible.

3 In fact this is already the case in the literature on financial and economic networks.
4 It seems unlikely that scientists’ ability to analytically solve models will improve as quickly as numerical

techniques and heterogeneous agent simulations, which have Moore’s law on their side.
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We will further explore this vision towards the end of this review. The following sections

will be dedicated to our current understanding of dynamic instabilities resulting from leverage

constraints and how different contagion channels on financial networks can lead to a propagation

of the stress through a financial system. We first focus on the potentially destabilizing effects

of leverage as they form the basis of fire sale models discussed in the contagion section and

because they are thought to have contributed to the build up of risk prior to the great financial

crises. We then proceed to contagion models as they form the scientific bedrock of advanced

stress testing models that will be discussed in the second part of this review. Naturally, we

will not be able to provide a complete overview of the heterogeneous agent model literature

devoted to various aspects of financial stability. For example, important topics that we will not

be able to discuss include the role of heterogeneous expectations or time scales in the dynamics

of financial markets, see for example Brock and Hommes (1998), LeBaron (2012).

3 Leverage and Endogenous Dynamics in a Financial System

3.1 Leverage and balance sheet mechanics

Many financial institutions borrow and invest the borrowed funds into risky assets. Suppose

an investor has equity E and borrows an amount D such that its total assets are A = E + D.

The investor’s leverage is the ratio of assets to equity λ = A/E. Three simple properties of

leverage are worth noting at this point. First, ceteris paribus, leverage determines the size of

the investor’s balance sheet. Second, leverage boosts asset returns and third, leverage increases

when the investor incurs losses, again ceteris paribus. Below, we discuss each property in turn.

Clearly, for a fixed amount of equity, an investor can increase the size of its balance sheet

by increasing its leverage. Further, it is easy to show that, if rt is the asset return, the equity

return is ut = λrt. In good times, leverage allows an investor to boost its return. In bad times

however, even small negative asset returns can drive the investor into bankruptcy provided

leverage is sufficiently high. Given the potential risks associated with high leverage, an investor

typically faces a leverage limit which may be imposed by a regulator, as is the case for banks,

or by creditors via a haircut on collateralized debt.

Finally, why does leverage increase when the investor incurs losses? From the definition

of leverage it can be seen that λ > 1 implies ∂λ/∂p < 0. In other words, whenever an investor

is leveraged (λ > 1), a decrease (increase) in asset prices leads to an increase (decrease) in its

leverage.

In what follows we discuss how these three properties of leverage, in combination with

reasonable assumptions about investor behavior, can lead to financial instability. We begin by

discussing how leverage constraints can force investors to sell into falling markets even if they

would prefer to buy in the absence of leverage constraints. We then show how a leverage con-

straint based on a backward looking estimator of market risk can lead to endogenous volatility

and leverage cycles.
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3.2 Leverage constraints and margin calls

Consider again the simple investor discussed above. Suppose the investor faces a leverage

constraint λ and has leverage λt−1 < λ.5 The investor has to decide on an action at time

t− 1 to ensure that he does not violate its leverage constraint at time t. Suppose the investor

expects the price of the risky asset to drop sufficiently from one period to the next, such that its

leverage is pushed beyond its limit, i.e. λt > λ. In this situation the investor has two options

to decrease its leverage: raise equity or sell part of its assets (or some combination of the two

of course). Raising equity can be time consuming or even impossible during a financial crisis.

Therefore, if the leverage constraint has to be satisfied quickly or if new equity is not available,

the investor has to sell at least ∆At−1 = max{0, (Et−1[λt]− λ)Et−1[Et]} of its assets to satisfy

its leverage constraint, where Et[·] is the conditional expectation at time t. In the following we

will set Et[λt+1] = λt and Et[Et+1] = Et. This can be done for simplicity or because a contract

forces the investor to make adjustments based on current rather than expected values. In this

case we have simply ∆At = max{0, (λt − λ)Et}.

If λt exceeds the leverage limit due to a drop in prices, the investor will sell into falling

markets. This may lead to a further drop in prices if the investor’s selling has an impact on

prices. These are the ingredients for the following feedback loop: The investor’s leverage is

pushed beyond its constraint by a fall in the price of the risky asset upon which the investor

sells part of its assets to satisfy its leverage constraint. In doing so the investor causes a further

drop in prices. This may again push its leverage beyond its constraint. This results in an

amplification of the initial drop in asset prices.

This simple mechanism has been discussed by a number of authors, see for example Gen-

notte and Leland (1990), Geanakoplos (2010), Thurner et al. (2012) or Shleifer and Vishny

(1997), Gromb and Vayanos (2002), Fostel and Geanakoplos (2008). Thurner et al. (2012)

incorporate this mechanism in a heterogeneous agent model of leverage constrained value in-

vestors. In the remainder of this section we will introduce their model and discuss some of the

quantitative results they obtain for the effect of leverage constraints on asset returns.

There is a set V of funds, a representative noise trader and a representative “fund investor”

that allocates capital to the funds. There is an asset of supply N with fundamental value V

that is traded by the funds and the noise trader at discrete points in time t ∈ N. Every period

a fund i takes a long position Ait = λitEit provided its equity satisfies Eit ≥ 0. The fund’s

leverage is given by the heuristic

λit = min{βimt , λ},

where mt = max{0, V −pt} is the mispricing signal and βi is the fund’s aggressiveness. In other

words, the fund goes long in the asset if the asset is underpriced relative to its fundamental

value V . The noise trader’s long position follows a transformed AR(1) process. The price of

the asset is determined by market clearing. Every period, the fund investor adjusts its capital

5 As mentioned above a leverage constraint can be the result of regulation or contractual obligations.
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allocation to the funds, withdrawing capital from poorly performing funds and investing into

successful funds relative to an exogenous benchmark return.

Before considering the dynamics of the full model, let us briefly discuss the limit where

the funds are small, i.e. Eit → 0. In this case, in the absence of any significant effect of the

funds, log price returns will be approximately iid normal due to the action of the noise trader.

This serves as a benchmark. The authors then calibrate the parameters of the model such

that funds are significant in size and prices may deviate substantially from fundamentals. This

corresponds to a regime where arbitrage is limited as in Shleifer and Vishny (1997). The authors

also assume that funds differ substantially in their aggressiveness βi but share the same leverage

constraint λ and initial equity Ei0.

In this setting the funds’ leverage and wealth dynamics can lead to a number of interesting

phenomena. When the noise trader’s demand drives the price below the asset’s fundamental

value, funds will enter the market in proportion to their aggressiveness βi. Due to the “built-

in” tendency of the price to revert to its fundamental value, these trades will, on average, be

profitable for the funds and more so for funds with greater aggressiveness. Hence, the equity of

aggressive funds grows quicker due to a combination of profits and capital reallocation of the

fund investor. Importantly, as the equity of funds grows, their market power increases and the

volatility of the price decreases.

Aggressive funds are also more likely to leverage to their maximum. Consider an aggressive

fund i that has chosen λit−1 = λ. Now suppose the price drops such that λit > λ. In response

the fund sells parts of its assets as outlined above. Thurner et al. (2012) refer to this forced

selling as a margin call as they interpret the leverage constraint as arising from a haircut on a

collateralized loan. Recall that the amount the fund will sell is ∆Ait = max{0, (λit−λ)Eit}, i.e.

it is proportional to the fund’s equity. As the aggressive fund is likely also the most wealthy

fund, its selling can be expected to lead a significant drop in prices. This drop may push other,

less aggressive funds past their leverage limits. A margin spiral ensues in which more and more

funds are forced to sell into falling markets. In an extreme outcome, most funds will exit or

will have lost most of their equity in the price crash. As a result, their market power is limited

and the price is dominated by the noise trader. Thus following a margin spiral, price volatility

increases due to two forces. First, it spikes due to the immediate impact of the price collapse.

But then, it remains at an elevated level due to lack of value investors that push the price

towards its fundamental value. These dynamics are illustrated in Fig. 1. These dynamics

reproduce some important features of financial time series in a reasonably quantitative way,

in particular fat tails in the distribution of returns and clustered volatility (cf. Cont (2001)),

as well as a realistic volatility dynamics profile before and after shocks Poledna et al. (2014).

These are difficult to reproduce in standard models.

One would expect these dynamics to be less drastic if funds took precautions against

margin calls and stayed some ε > 0 below their maximum leverage allowing them to more

smoothly adjust to price shocks. However, it is important to note that a single “renegade” fund

that pushes its leverage limit while all other funds remain well below it, can be sufficient to
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Figure 1: Time series of fund wealth dynamics from Thurner et al. (2012).

cause a margin spiral.

It should be noted that the deleveraging schedule ∆Ait that a fund follows can depend on

how the leverage constraint is implemented. In Thurner et al. (2012), the leverage constraint

results from a haircut applied to a collateralized loan, i.e. the fund obtains a short term loan

from a bank, purchases the asset with the loan and its equity and then posts the asset as

collateral for the loan. The haircut is equivalent to leverage and determines how much of its

assets the fund can finance via borrowing. When the value of the asset drops, the bank will

make a margin call as outlined above and the fund will have to sell assets immediately. However,

a leverage constraint can, for example, also be imposed by a regulator. In this case, the fund

may be allowed to violate the leverage constraint for a few time steps while smoothly adjusting

to satisfy the constraint in later periods. Such an implementation will increase the stability

of the system. Finally, the schedule ∆Ait = max{0, (λit − λ)Eit}, assumes the price remains

unchanged from the current to the next period. A more sophisticated fund might take its own

price impact into account when determining the deleveraging schedule.

3.3 Procyclical leverage and leverage cycles

In the model presented in the previous section, funds actively increase their leverage when the

price falls until they reach a leverage limit. Of course, a variety of other leverage management

policies are possible. In an effort to study leverage management policies Adrian and Shin (2010b)

analyze how changes in leverage ∆λt relate to changes in total assets ∆At (at mark-to-market

prices) during the period 1963-2006 for three types of investors: non-financial firms, commercial

banks and security broker dealers (such as Goldman Sachs).

For each type of investor the authors find a distinct correlation between leverage and

asset changes, see Fig. 2. For non-financial firms changes in leverage are negatively correlated

to changes in assets: Corr(∆λt,∆At) < 0. For commercial banks the two variables are uncor-

related Corr(∆λt,∆At) ≈ 0 and, surprisingly, for broker dealers they find a positive correlation

Corr(∆λt,∆At) > 0. This points towards three distinct leverage management policies.

Non-financial firms appear to be passive investors since leverage decreases when assets

appreciate, ceteris paribus. Commercial banks appear to target a specific leverage as leverage
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(a) Households (b) Commercial banks. (c) Broker dealers.

Figure 2: Change in total assets vs change in leverage from Adrian and Shin (2010b).

changes little as assets change. Such a constant target leverage could arise if the bank faces a

constant leverage constraint and chooses to leverage maximally. Finally, suppose an investor

has a state contingent target leverage which is high in good times and low in bad times. Let us

say that good times are identified by increasing asset prices while bad times are identified by

falling asset prices (there are other ways of identifying the state of the world as we will discuss

below). In this case, in response to an increase (decrease) in the price of the asset, the investor

will increase (decrease) its target leverage and adjust its balance sheet accordingly. Adrian

and Shin (2010b) call this a procyclical leverage policy. With such a leverage policy we expect

Corr(∆λt,∆At) > 0. Hence, it appears that broker-dealers follow a procyclical leverage policy.

A procyclical leverage policy could arise if the broker-dealers face a time varying leverage

constraint and choose to leverage maximally. In fact, Adrian and Shin (2010b), Danıelsson et al.

(2004) and others show that a time varying leverage constraint arises when the investor faces

a Value-at-Risk (VaR) constraint as was required under the Basel II regulatory framework.

As we will show below, the effect of a VaR constraint is that the investor faces a leverage

constraint that is inversely proportionally to market risk. Thus, when market risk is high (low),

the leverage constraint is low (high). In this setting the level of risk identifies the state of the

world: in good times risk is low while in bad times risk is high.

In summary, three leverage management policies are borne out by the data: passive lever-

age, constant target leverage and procyclical target leverage. The type of leverage management

policy used by the investor can have significant implications for financial stability. Indeed, at

least anecdotally, a time series of broker-dealer leverage, perceived risk (as measured by the

VIX) and asset prices (as measured by the S&P500) in Fig. 3 suggests a relationship between

these three variables which is potentially induced by the dealers’ procyclical leverage policy. In

the following, we will introduce a model developed by Aymanns and Farmer (2015) that links

leverage, perceived risk and asset prices in order to illustrate the effect of procyclical leverage

and VaR constraints.

There is a set B of leveraged value investors (banks for short) and a representative noise

trader. There is a risk free asset (cash) and a set A of risky assets that are traded by banks and

the noise trader at discrete points in time t ∈ N. At the beginning of every period, the banks

and the noise trader determine their demand for the assets. For this, each bank i picks a vector

wit of portfolio weights and is assigned a target leverage λit. The noise trader is not leveraged
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Figure 3: Time series of broker-dealer leverage, perceived risk (as measured by the VIX) and asset prices (as
measured by the S&P500) from Aymanns and Farmer (2015).

and therefore only picks a vector vt of portfolio weights. Once the agent’s demand functions

have been fixed the markets for the risky assets clear which fixes prices. Given the new prices

banks choose their next period’s balance sheet adjustment (buying or selling of assets) in order

to hit their target leverage. We refer the reader to Aymanns and Farmer (2015) for a detailed

description of the model.

As mentioned above, banks are subject to a Value-at-Risk constraint. Here, a bank’s VaR

is the loss in market value of its portfolio over one period that is exceeded with probability 1−a,

where a is the associated confidence level. The VaR constraint then requires that bank holds

equity to cover these losses, i.e. Eit ≥ VaRit(a). We approximate the Value-at-Risk by VaRit =

σitAit/α, where σit is the estimated portfolio variance of bank i and α is a parameter. This

relation becomes exact for normal asset returns and an appropriately chosen α. Rearranging

the VaR constraint yields the bank’s leverage constraint λit = α/σit. We assume that the bank

chooses to be maximally leveraged, e.g. for profit motives. The leverage constraint is therefore

equivalent to the target leverage we discussed above. To evaluate their VaR banks compute

their portfolio variance as an exponentially weighted moving averages of past log returns.

Let us briefly discuss the implications of this set up. As mentioned at the outset of this

section, banks follow a procyclical leverage policy. In particular, the banks’ VaR constraint

together with its choice to be maximally leveraged at all times, imply a target leverage that is

inversely proportional to the banks’ perceived risk as measured by an exponentially weighted

moving average of past squared returns. Why is such a leverage policy procyclical? Suppose,

a random drop in an asset’s price causes an increase in the level of perceived risk of bank i.

As a result the bank’s target leverage will decrease (while its actual leverage simultaneously

increases) and it will have to sell some of its assets, similar to the funds in the previous section.6

The banks selling may lead to a further drop in prices and a further increase in perceived risk.

In other words, the bank’s leverage policy together with its perception of risk can lead to an

unstable feedback loop. It is in this sense that the leverage policy is procyclical.

Banks in this model have a very simple, yet realistic, method of computing perceived (or

expected) risk. Similar, backward looking methods are well established in practice, see for exam-

6 Note that this selling will be spread across all assets according to the bank’s portfolio weight matrix.
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Figure 4: Example paths for a risky asset (stock in the above) from Aymanns and Farmer (2015).

ple Andersen et al. (2006). It is important to note that perceived risk σit and realized volatility

over the next time step can be very different. Since banks have only bounded rationality in this

model, their expectations about volatility are not necessarily correct on average.

Let us now consider the dynamics of the model in more detail. In Fig. 4 we show

two simulation paths (with the same random seed) of the price of a single risky asset for two

leverage policy rules. In the top panel, banks behave like the non-financial firms in Adrian and

Shin (2010b) — they are passive and do not adjust their leverage to changes in asset prices

or perceived risk. In the bottom panel, banks follow the procyclical leverage policy outlined

above. The difference between the two price paths is striking. In the case of passive banks, the

price follows what appears to be a simple mean reverting random walk. However, when banks

follow the procyclical leverage policy, the price trajectory shows stochastic, irregular cycles

with a period of roughly 100 time steps. These complex, endogenous dynamics are the result

of the unstable feedback loop outlined above. Aymanns and Farmer (2015) refer to these cycles

as leverage cycles. Leverage cycles are an example of endogenous volatility – volatility that

arises not because the arrival of exogenous information but due to the endogenous dynamics of

the agents in the financial system. To better understand these dynamics consider the state of

the system just after a crash has occurred, e.g. at time t ≈ 80. Following the crash, banks’

perceived risk is high, their leverage is low and prices are stable. Over time perceived risk

declines and banks increase their leverage. As they increase their leverage, they buy more

of the risky assets and push up their prices. At some point leverage is sufficiently high and

perceived risk sufficiently low that a relatively small drop of the price of an asset leads to large

downward correction in leverage. A crash follows and prices fall until the noise trader’s action

stops the crash and the cycle begins anew. Naturally, these dynamics depend on the choice of

parameters. In particular, when the banks’ are small relative to the noise trader, banks trading

has no significant impact on asset prices and leverage cycles do not occur. For a detailed

discussion of the sensitivity of the results to parameters see Aymanns and Farmer (2015).
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These results show that simple behavioral rules, grounded in empirical evidence of bank

behavior (Adrian and Shin (2010b), Andersen et al. (2006)), can lead to remarkable and unex-

pected dynamics which bear some resemblance with the run up to and crash following the 2008

financial crises. The results originate from the agents’ bounded rationality and their reliance

on past returns to estimate their Value-at-Risk. These features would be absent in a traditional

economic model in which agents are fully rational. Indeed, rational models rarely display the

dynamic instabilities that Aymanns and Farmer (2015) observe. If we believe that real economic

actors are rarely fully rational, we should take note of this result. Of course, the agents in this

model are really quite dumb. For example, they do not adjust to the strong cyclical pattern in

the time series. However, they also live in an economy that is significantly simpler than the real

world. Thus their level of rationality in relation to the complexity of the world they inhabit,

might not be too far off from real economic agents’ level of rationality.

The model discussed above can also yield insights for policy makers on how bank risk

management might be modified in order to mitigate the effects of the leverage cycle. Aymanns

et al. (2016) present a reduced form version of the model outlined above in order to investigate

the implications of alternative leverage policies on financial stability. The authors show that,

depending on the size of the banking sector and the properties of the exogenous volatility

process, either a constant leverage policy or a Value-at-Risk based leverage policy is optimal

from the perspective of a social planner.

4 Contagion in Financial Networks

In analogy to epidemiology, financial contagion refers to the process by which “distress” may

spread from one bank to another, where distress can be broadly understood as a bank’s distance

to insolvency or illiquidity. Typically, financial contagion arises when, via some mechanism or

channel, a distressed bank’s actions negatively affect some subset of other banks. This subset

of banks is said to be connected to the distressed bank. Taken together, the set of all such

connections form a network over which financial contagion can spread. Note that there may

be multiple channels of contagion, such as interbank loans or derivatives exposures, and the

financial networks associated to each channel may differ. In the following, we will discuss the

notion of channels of contagion and the associated financial networks more formally.

4.1 Financial linkages and channels of contagion

As mentioned above, the channel (or mechanism) of contagion determines the relevant connec-

tions that make up the financial network over which contagion may spread. Depending on the

channel, connections in this network may arise directly from bilateral contracts between banks,

such as loans, or indirectly via the markets in which the banks operate. In the literature, one

typically distinguishes between three channels of contagions: counterparty loss, overlapping
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portfolio and funding liquidity contagion.7 Before discussing each channel of contagion in turn,

it is helpful to introduce a simple model of a bank’s balance sheet.

Suppose there is a set B of banks in the financial system. Then, as before, the balance

sheet of some bank i ∈ B is composed of assets Ai, liabilities Li and equity Ei such that

Ai = Li +Ei. It is useful to decompose the bank’s assets into three classes: bilateral interbank

contracts AB
i , such as loans or derivative exposures; traded securities AS

i , such as stocks; and

external, unmodeled assets AR
i whose value is assumed exogenous. Of course we must have that

Ai = AB
i +AS

i +AR
i . Each asset class can again be decomposed into individual loan contracts,

stock holdings and so on. The bank’s liabilities can be decomposed in a similar fashion. For

now, let us decompose the bank’s liabilities simply into bilateral interbank contracts LB
i , such

as loans or derivative exposures, and external, unmodeled liabilities LR
i which are assumed

exogenous. Again we must have that Li = LB
i + LR

i and interbank liabilities can be further

decomposed into individual bilateral contracts. Naturally, interbank liabilities are just the flip

side of interbank assets such that summing over all banks we must have
∑

iA
B
i =

∑
i L

B
i .

With the exception of external assets, the value of the banks’ assets depends on the internal

state of the financial system. This fact gives rise to the counterparty loss and overlapping

portfolio channels of contagion. This is easy to see for the case of counterparty loss contagion

and bilateral interbank contracts. Suppose bank i has lent an amount C to bank j such that

AB
i = LB

j = C. Now suppose the value of bank j’s external assets AR
j drops due to some

exogenous shock. As a result, the probability of default of bank j is likely to increase. In

some way or another, the probability of default of bank j will affect the value of the claim AB
i

that bank i holds on bank j. If bank i’s interbank assets are marked to market, that is their

value is recomputed in every period based on market prices, a change in bank j’s probability

of default will affect the market value of AB
i . In the worst case, if bank j defaults, bank i will

only recover some fraction r < 1 of its initial claim AB
i . If the loss of bank i exceeds its equity,

i.e. (1− r)AB
i > Ei bank i will default as well.8 Now, how can this lead to financial contagion?

To elaborate on the above toy example, suppose that bank i in turn borrowed an amount C

from another bank k such that AB
k = LB

i = C. In this scenario, it can be plausibly argued that

an increase in the probability of default of j increases the probability of default of i which in

turn increases the probability of default of k. If all banks mark their books to market, an initial

shock to j can therefore end up affecting the value of the claim that bank k holds on bank i.

Again, in the extreme scenario, the default of bank j may cause bank i to default which may

cause bank k to default. This is the essence of counterparty loss contagion. Naturally, in a real

financial system the structure of interbank contracts will be much more complex than in the toy

example outlined above. The financial network associated with the counterparty loss contagion

channel is therefore the network induced by the set of interbank liabilities.

The overlapping portfolio channel is slightly more subtle. Suppose bank i and bank j

have both invested an amount C in the same security l such that AS
il = AS

jl = C, where we

7 Information contagion (cf. Acharya and Yorulmazer (2008)) is another channel of contagion but won’t be
discussed in this section.

8 In reality this scenario is excluded due to large exposure limits which require that AB
i < Ei.
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have introduced the additional index to reference the security. Now suppose the value of bank

j’s external assets AR
j drops due to some exogenous shock. How will bank j respond to this

loss? In the extreme case, when the exogenous shock causes bank j’s bankruptcy (Ei < 0), the

bank will liquidate its entire investment in the security. However, even if the bank does not go

bankrupt, it may wish to liquidate some of its investment. This can occur for example when the

bank faces a leverage constraint as discussed in Section 3. Bank j’s selling is likely to have price

impact. As a result, the market value of AS
il will fall. If bank i also faces a leverage constraint,

or even goes bankrupt following the fall in prices, it will liquidate part of its securities portfolio

in response. How will this lead to contagion? Suppose that bank i also has invested an amount

C into another security m and that another bank k has also invested into the same security,

such that AS
im = AS

km = C. If bank i liquidates across its entire portfolio, it will sell some of

security m following a fall in the price of security l. The resulting price impact will then affect

the balance sheet of bank k which was not connected to bank j via an interbank contract or a

shared security. This is the essence of overlapping portfolio contagion. Banks are linked by the

securities that they co-own and the fact that they liquidate with market impact across their

entire portfolios. Empirical evidence from the 2007 Quant meltdown for this contagion channel

has been provided in Khandani and Lo (2011).

Funding liquidity contagion often occurs in conjunction with overlapping portfolio con-

tagion and can be seen as the complement to counterparty loss contagion. To see this, let us

reconsider the scenario we discussed for counterparty loss contagion. Suppose bank i has lent an

amount C to bank j such that AB
i = LB

j = C. As before, suppose the value of bank j’s external

assets AR
j drops due to some exogenous shock and as a result, the probability of default of bank

j increases. Now, suppose that every T periods bank i can reevaluate and decide whether to roll

over its loan to bank j. Further assume that bank i is bank j’s only source of interbank funding

and LR
j is fixed. Given bank j’s increased default probability, bank i may choose not to roll

over the loan at the next opportunity. Ignoring interest payments, if bank i does not roll over

the loan, bank j will have to deliver an amount C to bank i. In the simplest case, bank j may

choose not to roll over its own loans to other banks which in turn may decide against rolling

over their loans. This is the essence of funding liquidity contagion. As for counterparty loss

contagion, the associated financial network is induced by the set of interbank loans. Empirical

evidence on the fragility of funding markets during the past financial crisis has been provided

for example in Afonso et al. (2011), Iyer and Peydro (2011). In a further complication, bank j

may also choose to liquidate part of its securities portfolio in order to pay back its loan. Funding

liquidity contagion can therefore lead to overlapping portfolio contagion and vice versa. This

interdependence of contagion channels makes the funding liquidity and overlapping portfolio

contagion processes the most challenging from a modeling perspective.

In the remainder of this section we will discuss models for counterparty loss, overlapping

portfolio and funding liquidity contagion as well as models for the interaction of all three

contagion channels.

16



4.2 Counterparty loss contagion

Consider a set of banks B, with N = |B|, and a matrix of nominal interbank liabilities L. Banks

hold interbank assets AB
i =

∑
j L

T
ij and external assets AR

i which can be liquidated at no cost.

Banks have interbank liabilities LB
i =

∑
j Lij only. All interbank liabilities mature at the same

time. Now suppose banks are subject to a shock si ≥ 0 to the value of their external assets

such that ÂR
i = AR

i − si. Given an exogenous shock, we can ask a number of questions. First,

which loan payments are feasible given the exogenous shock? Second, which banks will default

on their liabilities? And finally, how do the answers to the first two questions depend on the

structure of the interbank liabilities L. There is a large literature that studies counterparty

loss contagion in a set up similar to the above, including Gai and Kapadia (2010), Elliott et al.

(2014), Acemoglu et al. (2015), Battiston et al. (2012) and Amini et al. (2013). In the following,

we will briefly introduce the seminal contribution by Eisenberg and Noe (2001), who provide a

solution to the first two questions. We will then consider a number of extensions of Eisenberg

and Noe (2001) and alternative approaches to addressing the above questions.

Define the relative, nominal, interbank liabilities matrix as Πij = Lij/L
B
i for LB

i > 0 and

Πij = 0 otherwise. The relative liabilities matrix corresponds to the adjacency matrix of the

weighted, directed network G of interbank liabilities. Let p = (p1, . . . , pN ) denote the vector

of total payments made by the banks when their liabilities mature. Naturally, a bank pays at

most what it owes in total, i.e. pi ≤ LB
i . However, it may default and pay less if the value of

its external assets plus the payments it receives from its debtors is less than what it owes. The

individual payments that bank i makes are given by Πijpi. The vector of payments, also known

as the clearing vector, that satisfies these constraints is the solution to the following fixed point

equation

pi = min{LB
i , Â

R
i +

∑
j

ΠT
ijpj}. (1)

Eisenberg and Noe (2001) show that such a fixed point always exists. In addition, if within

each strongly connected component of G there exists at least one bank with ÂR
i > 0, Eisenberg

and Noe (2001) show that the fixed point is unique. In other words, there exists a unique way

in which losses incurred due to the adverse shock {si} are distributed in the financial system

via the interbank liabilities matrix. It is important to note that in this set up losses are only

redistributed – contagion acts as a distribution mechanism but does not, in the aggregate, lead

to any further losses to bank shareholders beyond the initial shock. To see this define the equity

of bank i prior to the exogenous shock as Ei = AB
i + AR

i − LB
i and after the exogenous shock

as Êi = ÂB
i (p) + AR

i − si − L̂B
i (p). Note that post shock both bank i’s assets and liabilities

depend on the clearing vector p. Taking the difference and summing over all banks we obtain∑
iEi − Êi =

∑
iA

R
i − (AR

i − si) =
∑

i si since
∑

iA
B
i =

∑
i L

B
i and

∑
i Â

B
i (p) =

∑
i L̂

B
i (p).

Also note that, while bank shareholder losses are not amplified, losses to the total value of bank

assets are amplified due to indirect losses, i.e.
∑

iA
B
i −ÂB

i (p)+si ≥
∑

i si. Some authors argue

that this is a more appropriate measure of systemic impact of the exogenous shock than bank

shareholder loss, see Glasserman and Young (2015). Finally note that the mechanism of finding

a clearing vector removes any potential frictions in the financial system and ensures that the
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Figure 5: Expected number of defaults as a function of diversification in Elliott et al. (2014).

maximal payment is made given the exogenous shocks. Other authors have argued that this is

too optimistic and assume instead that once a default has occurred, some additional bankruptcy

costs are incurred, see for example Rogers and Veraart (2013) and Cont et al. (2010). In this

case aggregate bank shareholder losses may be larger than the aggregate exogenous shock.

The clearing vector and the associated number of defaulting banks, given an exogenous

shock and a nominal interbank liabilities matrix L, can be computed via the following simple

default cascade algorithm. First, initialize a payment vector p = LB. Then update its entries

pi based on Eq. (1) for all i, each iteration taking the previous iteration’s payment vector as

input to the right hand side of Eq. (1). Repeat this process until convergence. A well known

result is that, as banks’ interbank lending AB
i becomes more diversified over B, the expected

number of defaulting banks first increases and then decreases, see Fig. 5. If banks lend only

to a very small number of other banks, the network is not fully connected. Instead it consists

of several, small and disjoint components. A default in a particular component cannot spread

to other components hence limiting the size of the default cascade. As banks become more

diversified, the network will become fully connected and default cascades can spread across

the entire network. As banks diversify further, the size of the individual loans between banks

declines to the point that the default of any one counterparty becomes negligible for a given

bank. Thus default cascades become unlikely. However, if they do occur, they will be very

large. This is often referred to as the “robust-yet fragile” property of financial networks, see

for example Gai and Kapadia (2010) and Amini et al. (2013) who show this property for large

financial networks via a branching process approximation.

The model and solution method in Eisenberg and Noe (2001) are very simple and reduce

to finding a fixed point payment vector. Other models of counterparty contagion, for example

Gai and Kapadia (2010), Amini et al. (2013) or Battiston et al. (2012), also rely on finding

a fixed point, albeit numerically in the latter case. These equilibrium models often form the

starting point for heterogeneous agent models that try to incorporate additional dynamic effects

and more realism into the counterparty loss contagion process, see for example Georg (2013)

where the effect of a central bank on the extent of default cascades is studied.

Finally, note that it is widely believed that large default cascades are quite unlikely for

reasonable assumptions about the distribution of the exogenous shock and nominal interbank
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liabilities matrix, see for example Glasserman and Young (2015). For larger cascades to occur,

default costs or additional contagion channels are necessary. Nevertheless, the existence of a

counterparty loss contagion channel is important in practice as it affects the decisions of agents,

for example in the way they form lending relationships. In other words, while default cascades

are unlikely to occur in reality, they form an “off-equilibrium” path that shapes reality, see

Elliott et al. (2014).

4.3 Overlapping portfolio contagion

Consider again a set of banks B, with N = |B|. There is an illiquid asset whose value is

exogenous and a set of securities S, with M = |S|, traded by banks at discrete points in time

t ∈ N. Let pt = (p1t, . . . , pMt) denote the vector of prices of the securities and let the matrix

St denote the securities ownership of all banks at time t. The assets of bank i are then given

by Ait = Sit · pt +AR
i , where AR

i is the bank’s illiquid asset holding. Let Eit and λit = Ait/Eit

denote bank i’s equity and leverage, respectively.

As mentioned above, overlappping portfolio contagion occurs when one bank is forced to

sell and the resulting price impact forces other banks with similar asset holdings to sell. What

might force banks to sell? In an extreme scenario, a bank might have to liquidate its portfolio if

it becomes insolvent, i.e. Eit < 0. This is the approach taken in Caccioli et al. (2014). But even

before becoming insolvent, a bank might be forced to liquidate part of its portfolio if it violates

a leverage constraint λ as we have shown in Section 3. This is the approach taken in Cont

and Schaanning (2014), where banks liquidate part of their portfolio if their leverage exceeds

their leverage constraint. Other papers that discuss the effects of overlapping portfolios include

Duarte and Eisenbach (2015), Greenwood et al. (2015), Cont and Wagalath (2016, 2013). Let

us first discuss the simpler case without a leverage constraint.

Suppose bank i is subject to an exogenous shock si > 0 that reduces the value of its

illiquid assets to ÂR
it = AR

it − si. If si > Eit the bank becomes insolvent and liquidates its entire

portfolio. Let Qjt =
∑

i∈It Sijt denote the total amount of security j that is liquidated by banks

in the set It of banks that became insolvent at time t. The sale of the securities is assumed

to have market impact such that pjt+1 = pjt(1 + fj(Qjt)), where fj(·) is the market impact

function of security j. Caccioli et al. (2014) assume an exponential form fj(x) = exp(−αjx)−1

where αj > 0 is chosen to be inversely proportional to the total shares outstanding of security

j. In the next period, banks reevaluate their equity at the new securities prices. The change

in equity is equal to ∆Eit+1 =
∑

j Sijtfj(Qjt)− si. Note that in this setting we hold Sijt fixed

unless a bank liquidates its entire portfolio. Thus banks who share securities with the banks

that were liquidating in the previous period will suffer losses due to market impact. These losses

may be sufficiently large for additional banks to become insolvent. If this occurs contagion will

spread and more banks will liquidate their portfolios leading to further losses. Over the course

of this default cascade, banks may suffer losses that did not share any common securities with

the initially insolvent banks.
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Figure 6: Expected number of defaults as a function of diversification in Caccioli et al. (2014).

The evolution of the default cascade outlined above can be easily computed numerically by

following the procedure outlined above until no further banks default. Caccioli et al. (2014) also

show that the default cascade can be approximated by a branching process provided suitable

assumptions are made about the network structure. For their computations, Caccioli et al.

(2014) assume that a given bank i invests into each security with a fixed probability µB/M ,

where µB is the expected number of securities that a bank holds. The bank distributes a fixed

investment over all securities it holds. When µB/M is high, the portfolios of banks will be highly

overlapping, i.e. banks will share many securities in their portfolios. Similar to the results for

counterparty loss contagion, the authors find that as banks become more diversified, that is µB

increases while M is held fixed, the expected number of defaulting banks first increases and

then decreases, see Fig. 6. The intuition for this result is again similar to the counterparty

loss contagion case. If banks are not diversified, their portfolios are not overlapping and price

impact from portfolio liquidation of one bank affects only a few banks. As banks become more

diversified, their portfolios become more overlapping and price impacts spreads throughout

the set of banks leading to large default cascades. Eventually, when they become sufficiently

diversified, the losses resulting from a price change in an individual security become negligible

and large default cascades become unlikely. However, when they do occur, they encompass

the entire set of banks. Thus, here again the financial network displays the robust-yet fragile

property. Interestingly, the authors also show that for a fixed level of diversification, there exists

a critical bank leverage λit at which default cascades emerge. The intuition for this result is

that, when leverage is low, banks are stable and large shocks are required for default to occur,

as leverage grows banks become more susceptible to shocks and defaults occur more easily.

As mentioned above, banks are likely to liquidate a part of their portfolio even before

bankruptcy, if an exogenous shock pushes them above their leverage constraint. This is the

setting studied in Cont and Schaanning (2014). In this case, the shocks for which banks start

to liquidate as well as the amount liquidated are both smaller than in the setting discussed

above. If banks breach their leverage constraint due to an exogenous shock si to the value of

their illiquid assets, Cont and Schaanning (2014) require that banks liquidate a fraction Γi of

their entire portfolio such that ((1 − Γi)Sit · pt + ÂR
it)/Eit = λ. The corresponding liquidated

monetary amount for a security j is then Qjt =
∑

i∈B ΓiSijtpjt. Again, the sale of the securities
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is assumed to have market impact such that pjt+1 = pjt(1 + fj(Qjt)). However, in contrast to

Caccioli et al. (2014), the authors assume that the market impact function fj(x) is linear in x,

where x is the total monetary amount sold rather than the number of shares. Similar market

impact functions are used by Greenwood et al. (2015) and Duarte and Eisenbach (2015). Indeed

the shape and parameterization of the market impact function is crucial for the impact of fire

sales. Only if markets are sufficiently illiquid will fire sales leads to contagion. So far, most

models take market liquidity, i.e. the market impact parameter, as exogenously given (one

exception is Brunnermeier and Pedersen (2009)). Hence, endogenizing market liquidity remains

an important challenge.

While the results of Cont and Schaanning (2014) are qualitatively quite similar to Caccioli

et al. (2014), the former calibrate their model to realistic portfolio holdings and market impact

parameters and are hence able to obtain quantitative estimates of the extent of losses due to

overlapping portfolio contagion. As such their contribution provides a good starting point for

more sophisticated financial system stress tests that will be discussed in the following sections.

The above outlined models can be improved in many ways. In one interesting attempt, Cont

and Wagalath (2016) study the effect of overlapping portfolios and fire sales on the correlations

of securities in a continuous time setting, where securities prices follow a stochastic process

rather than being assumed fixed up to the price impact from fire sales.

4.4 Funding liquidity contagion

Both counterparty loss and overlapping portfolio contagion involved essentially no strategic

decisions. Instead agents simply reacted to constraints and contractual obligations. In principle,

funding liquidity contagion could be modeled in a similar way. For example, when banks need

to deleverage, they not only sell assets but also refuse to roll over short term loans to other

banks. This can lead to a funding liquidity cascade. Traditionally though, the withdrawal of

funding, i.e. a bank run, is modeled as a coordination game, see Diamond and Dybvig (1983).

If in addition lenders have private information, these coordination games can be solved using

global games, see Morris and Shin (2001). In this framework, given the right conditions, funding

liquidity cascades can be self-fulfilling. As mentioned above, most heterogeneous agent models

abstract from strategic interactions. One notable exception that tries to combine both strategic

interactions and network effects is Anand et al. (2015).

4.5 Interaction of contagion channels

So far we have focused on counterparty loss and overlapping portfolio contagion in isolation. Of

course, focusing on one channel in isolation only provides a partial view on the system and thus

ignores important interaction effects. Indeed, it has been shown by a number of authors that the

interaction of contagion channels can substantially amplify the effect of each individual channel

leading. Constructing models with multiple contagion channels is tricky yet some progress has

been made.
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Caccioli et al. (2015) and Cifuentes et al. (2005) study the interaction of counterparty loss

and overlapping portfolio contagion by combining variants of the contagion processes outlined

above into a comprehensive simulation model. In particular, using data from the Austrian inter-

bank system Caccioli et al. (2015) show that the expected size of a default cascade, conditional

on a cascade occurring, can increase by orders of magnitude if overlapping portfolio contagion

occurs alongside counterparty loss contagion rather than in isolation.

In a very simple model, Brunnermeier and Pedersen (2009) argue theoretically how mech-

anisms behind funding liquidity and overlapping portfolio contagion can amplify each other.

Kok and Montagna (2013) combine the work all of the above authors and construct a model in

which counterparty loss, overlapping portfolio and funding liquidity contagion interact. Such

comprehensive stress testing models are the subject of the remainder of this paper and will be

discussed in detail in the following sections, see Section 5.

5 Models in Policy: Stress Tests as a Tool for Macroprudential

Policy Making

The insights from the models discussed so far are increasingly used in the design of tools for

assessing and monitoring financial stability. In this section, we will discuss the most striking

of these tools; financial stress tests. By combining insights from various systemic risk models

and linking those to policy, stress tests give traction to the thinking discussed so far. In this

section, we first outline the functions and types of stress tests, and then provide an overview

and evaluation of current micro- and macroprudential stress tests.

5.1 Background and Purpose

Stress tests are designed to assess the resilience (or fragility) of a financial institution, market, or

contract, or even of the financial systems as a whole, under hypothetical but plausible stressed

circumstances (Siddique and Hasan 2012, Scheule and Roesh 2008, Quagliariello 2009, Moretti,

Stolz and Swinburne 2008). At its core, this implies that a stress test is a simulation that runs

under a set of parameters that, together, are referred to as “scenarios”. These scenarios can

take many forms, including general economic shocks (such as a drop in housing prices or a rise

in the unemployment rate) and financial shocks (the collapse of a major financial institution).

On the basis of detailed information about the institution or sector under investigation, stress

tests evaluate the resilience (or fragility) of the institution under investigation for each of these

scenarios, providing valuable insights to regulators and market participants.

Stress tests are a relatively novel part of the regulatory toolkit. The potential utility of stress

tests had been extensively discussed in the years preceding the financial crisis, and stress tests

were in fact used by the International Monetary Fund to evaluate the robustness of countries’

financial systems. But it was only during the financial crisis that they were used on a large
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scale.

In February 2009, with uncertainty about the capitalization of banks still paramount, the U.S.

Treasury Department led by Timothy Geithner introduced the Supervisory Capital Assessment

Program (SCAP) (Schuermann 2014, Geithner 2014). Under the auspices of this program, the

Federal Reserve Board created a stress test and required the U.S.’ 19 largest banks to apply it.

The immediate motivation was to determine how much capital a bank would need to ensure

its viability even under adverse scenarios, and - relatedly - whether capital injections from

the U.S. tax payer were needed. A secondary motivation was to reduce uncertainty about the

financial health of these banks, and thereby to calm the markets and restore confidence in the

U.S. financial markets (Anderson 2016, Tarullo 2016). In an environment marked by suspicion

about the financial health of large banks, a tool was needed that would bridge informational

asymmetries and credibly showcase their resilience to potential shocks.

In later years, SCAP was replaced by the Comprehensive Capital Analysis and Review (CCAR)

and the Dodd-Frank Act Stress Test (DFAST), which have been run on an annual basis since

2011 and 2013, respectively (FED 2017b,a). These early stress tests gave investors and regula-

tors, as well as the public at large, insight into previously opaque balance sheets of banks. They

have been credited with restoring trust in the financial sector, and thereby contributing to the

return of normalcy in the financial markets (Bernanke 2013).

Across the Atlantic, European authorities followed suit and introduced a stress test of their

own (EBA 2017a). This resulted in the first EU stress tests in 2009, overseen by the Committee

of European Banking Supervisors (CEBS) (Acharya, Engle and Pierret 2014). Due to concerns

about their credibility (Ong and Pazarbasioglu 2014), the CEBS stress test was replaced in

2011 by stress tests conducted by the European Banking Authority (EBA). These have been

maintained ever since (EBA 2017b).

In 2014, the Bank of England also introduced stress tests in line with the American example (Ban

2014). Around that time, stress tests became a widely used regulatory tool in other countries

too (Boss, Krenn, Puhr, Schwaiger et al. 2007), and are regarded as a cornerstone of the post-

crisis regulatory and supervisory regime. Daniel Tarullo, who served on the board of the U.S.

Federal Reserve from 2009 to 2017 and was responsible for the implementation of stress tests in

the U.S., has hailed stress tests as “the single most important advance in prudential regulation

since the crisis” (Tarullo 2014).

Stress tests, however, are not a uniform tool. They can take a variety of forms, which can

be helpfully classified along two dimensions. The first dimension concerns their object; does

the stress test only cover banks, or non-banks as well? In the early days of stress testing,

only banks were considered, but now there is an increasing trend towards including non-banks

as well. Given the composition of the financial system in most advanced economies, and the

importance of non-banks in these financial systems, it is increasingly acknowledged that these

institutions can generate systemic risk too. In the United Kingdom, for example, almost half of

the assets in the financial system are held by non-banks (Burrows, Low and Cumming 2015),

as is illustrated by the map of the UK financial system depicted in Figure 7.
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Figure 7: Map of the UK financial system. Source: Burrows et al. (2015).

The second dimension concerns the scope of the stress test. Microprudential stress tests focuses

on the resilience of invidual financial institutions (Siddique and Hasan 2012, Scheule and Roesh

2008, Quagliariello 2009, Moretti, Stolz and Swinburne 2008), whereas macroprudential stress

tests assess the resilience of a larger group of financial institutions, or even of the whole financial

sector (Cetina, Lelyveld and Anand 2015, Bookstaber, Cetina, Feldberg, Flood and Glasserman

2014). The latter type takes feedback loops and interactions between financial institutions into

account, whereas the former does not.

This section will proceed by discussing the most important stress tests in each category, starting

out with the microprudential stress tests and moving on to macroprudential stress test - in both

cases focusing on banks first, and non-banks second. For each case, we will discuss, with some

abstraction, the methodology and models used, and evaluate the strengths and weaknesses of

the approach taken.

5.2 Microprudential Stress Tests

5.2.1 Microprudential Stress Test of Banks In general terms, the process of conducting

microprudential stress tests takes the following three steps. First, the designated regulator

designs an initial stressed scenario, which stipulates a crisis narrative and an associated set of

exogenous shocks. This scenario is designed in such a way that it is adverse, plausible, and

coherent (Siddique and Hasan 2012, Scheule and Roesh 2008, Quagliariello 2009, Moretti, Stolz

and Swinburne 2008). In other words, the scenario must capture a crisis tail event that is

not wholly inconceivable. The set of shocks must be chosen such that they do not violate the

relationships among variables historically observed or deemed conceivable. For example, the

shocks would typically not simultaneously include a downward shock in GDP and an downward

shock unemployment. Typically, the exogenous shocks comprise shocks to a set of macro-

variables, such as equity prices, house prices, unemployment rate, and GDP, and financial

variables, such as interest rates and credit spreads.
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Second, when the scenario has been determined, its effect on the balance sheet of banks is

determined (depending on the regime, these calculations are either made by the regulator or

by banks themselves) to calculate the post-stress regulatory capital ratio9 and profits. This

calculation is based on an evaluation of how the shocks change the values of the assets and

liabilities on the balance sheet as well as expected income. Such value changes on the balance

sheet materialize either through a re-evaluation of the market value (if the asset or liability is

marked-to-market), or through a credit shock re-evaluation. Typically, the first two are captured

by market risk models and credit risk models, such as those described in (Siddique and Hasan

2012, Scheule and Roesh 2008, Quagliariello 2009, Moretti, Stolz and Swinburne 2008). The

size of the credit loss is typically computed by multiplying the loss given default (LGD), the

probability of default (PD) and the exposure at default (EaD). Estimating these variables is

therefore key to the credit risk component of stress testing (Foglia 2008). Value changes in

expected income materialize through shocks that affect income, such as interest rate shocks.

The “stressed income” (in other words: the retained earnings) feeds into the stressed regulatory

capital. The post-stress regulatory capital, after all, is the post-stress retained earnings plus

regulatory capital over the stressed risk-weighted assets.

Stress tests must not only compute post-stress values of assets, liabilities, and income, but

also the post-stress risk weights10. Capital ratios are commonly calculated relative to risk-

weighted assets (RWAs), rather than total assets, and in stress these risk-weights can change. To

determine this change, stress tests can either include the stressed risk-weights of the standards

approach, or use those calculated based on the internal models of banks (Capgemini 2014).11

Third, once the post-stress capital ratio has been determined, it is compared to a hurdle rate

set by the regulator. If it does not meet this hurdle rate, the bank is said to have failed the

stress test. In such circumstances, the regulator commonly has the authority to require the

bank to raise extra capital. Microprudential stress tests are thus used as a tool to recapitalize

undercapitalized banks, thereby reducing their leverage and increasing their resilience.

5.2.2 Microprudential Stress Test of Non-Banks

5.2.2.1 General Methodology Given the importance of particular non-bank finan-

cial institutions to the financial system (FSB 2015, ECB 2015, Burrows, Low and Cumming

2015, Pozsar, Adrian, Ashcraft and Boesky 2010, Pozsar and Singh 2011, Mehrling, Pozsar,

Sweeney and Neilson 2013, Pozsar 2013), it was only a matter of time before the scope of stress

tests would be extended beyond banks. So far, at least three types of non-banks have been

subjected to stress tests; insurers, pension funds and central clearing parties (CCPs). By exam-

ining representative stress tests for each of these three institutions, this section illustrates the

methodology applied. In each of the cases, the scenario design is similar to that for banks – so

we will limit ourselves to the methodological components that are particular to the stress test

9The tier I capital ratio is equal to the tier I equity value of a bank over its risk-weighted assets.
10Risk-weights, weight the on or off-balance sheet assets of a bank according to its riskiness.
11The methodology to compute the risk-weights based on the standards approach is found in (BIS 2015a).
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of each type of institution.

5.2.2.2 Insurers and Pension Funds Insurance stress tests have been conducted

by the Bank of England (BoE 2015), the FSAP program of the IMF (Jobst 2014), the Federal

Reserve (Accenture 2015, Robb 2015), and the European Insurance and Occupational Pensions

Authority (EIOPA) (EIOPA 2016). Pension fund stress tests have been conducted by the

International Organisation of Pension Fund Supervisors (IOPFS) (Ionescu and Yermon 2014)

and EIOPA (EIOPA 2017). The general methodology of the insurer and pension fund stress

tests will be illustrated using the EIOPA insurer stress tests and EIPOA pension fund stress

test, respectively.

Its 2016 stress test of (life-) insurers tested the impact of the initial scenario on the asset of

liability (AoL) ratio of insurers (EIOPA 2016). The AoL ratio helps inform whether insurers

will have sufficient assets to meet their insurance liabilities. In addition, the stress test included

a cash flow analysis to investigate the degree to which the timing of insurers’ cash inflows

coming from assets matched the insurers’ expected outflows due to insurance liabilities. Instead

of revealing the results of the stress tests for individual institutions, they were published as

aggregate results to indicate the vulnerability of the insurance sector on a country or EU-wide

level.

Its 2015 stress test of (occupational) pension funds assessed the resilience of defined benefit

(DB) and hybrid pension schemes against adverse market scenarios. It also assessed increase

in life expectancy as well as to identify potential vulnerabilities of defined contribution (DC)

schemes.

5.2.2.3 Central Clearing Parties Central clearing parties (CCPs) step into bilat-

eral trades by means of novation, becoming the buyer to every seller and the seller to every

buyer (Cont 2015, Murphy 2013, Duffie, Scheicher and Vuillemey 2015, Duffie and Zhu 2011).

In doing so, they take on counterparty credit risk which they subsequently mitigate, thereby

insulating members from default losses. To absorb such losses, CCPs have an elaborate “default

waterfall”, which stipulates exactly how losses are absorbed, and who bears that burden (Mur-

phy 2013, Capponi, Cheng and Rajan 2015). The default waterfall consists of various layers of

collateral (e.g. initial margin, variation margin, default fund contributions) and some equity.

Generally, to absorb losses initial and variation margins posted by the counterparties of the

CCP, the so-called clearing members (CMs), are drawn upon first. The value of the initial mar-

gin is set so that upon the default of a clearing member its positions can be unwound without

incurring a loss. However, market conditions can change, so to achieve the same result even if

conditions change an additional variation margin is charged. If losses exceed the margin posted

by the defaulted clearing members, the CCP uses its equity to absorb further losses. Such “skin

in the game” is meant to ensure that the CCP engages in prudent risk management, including

by requiring sufficiently high margins instead of aggressively lowering margins to attract new

business.
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If losses exceed the CCP’s equity, losses are absorbed by default fund contributions of other

clearing members. In such cases, clearing members whose default contributions are hit expe-

rience a hit to their equity, as they are required to replenish the default fund contributions.

If default fund contributions are still insufficient to cover the losses, the CCP can require its

clearing members to make further contributions to the default fund, typically in the form of

cash. Clearing members might not be able to post such additional collateral, especially not in

times of stress, and it is therefore unclear whether this last line of defense is credible (Cont

2015). Finally, if the entire default waterfall is insufficient to cover the losses, the CCP itself

defaults.

Given the high volume of trades larger CCPs process, their failure is generally thought to

have catastrophic consequences for the financial system (ESMA 2015, Murphy 2013). After

the financial crisis, their importance has only grown, since it has become mandatory to clear

certain derivatives, in jurisdictions, such as the EU and the US (ESMA 2017, EY 2013), through

CCPs. Although this has brought down bilateral exposures (Cont and Kokholm 2014), it has

concentrated exposures in CCPs.

The critical role CCPs fulfil has prompted regulators to create CCP-specific stress tests to as-

sess whether their default waterfall can absorb losses even under extreme circumstances. CCP

stress tests have been conducted by the commodity futures and trading commission (CFTC)

in the US (CFTC 2016), the German and British regulatory authorities (Erbenova 2015) (will

include a US regulator in 2017 (Robb 2015)), and the European Securities and Markets Au-

thority (ESMA). We will use the ESMA methodology to illustrate how the process can be

designed (ESMA 2015).

In the 2015 scenario, the CCP’s two largest clearing members (those with the largest exposure

to the CCP’s default fund) were assumed to default12 when simultaneously a severe adverse

market shift hit.13 Because clearing members often trade in multiple CCPs, the two defaulted

clearing members for each CCP were assumed to default in all CCPs where they cleared – which

is referred to as “cross default contagion”.

Following the scenario design, the losses to each step of the default waterfall are calculated. If

there are losses beyond the absorption capacity of the default waterfall, those are calculated

too. Taken together, these insights are used to make a judgment about the capitalization of the

CCP.

Further, an attempt was done to compute the contagion effects following the initial scenario.

This was done by computing the hit to equity of the non-defaulted clearing members in case

12This scenario tests the default of the two largest clearing members per CCP. It translates at EU level the
cover 2 principle established in Article 43 of EMIR and Article 53 (1) of the RTS (Regulation EU No 153/2013),
which states: “A CCP’s stress-testing programme shall ensure that its combination of margin, default fund
contributions and other financial resources are sufficient to cover the default of at least two clearing members to
which it has the largest exposures under extreme but plausible market conditions.”

13It is important that both the default of two counterparties and a severe adverse market shift hit simultane-
ously. If two clearing members default, but there is no market shift, the total margin posted should be sufficient
to absorb all losses of the defaulted clearing members. If only the market conditions change, the CCP is not at
risk of default because its variation margin ensures it is not exposed to changes in market conditions.
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the initial scenario caused the default fund contributions of the non-default clearing members

to be affected. If the hit to equity of a non-defaulted clearing member would exceed a threshold

percentage of the non-defaulted CM’s equity, that clearing member would be identified to be

at vulnerable to such a scenario. If the hit to the CM’s equity would wipe out all its equity, it

was said to default.

5.2.3 Strengths and Weaknesses of Current Microprudential Stress Tests Micro-

prudential stress tests add value in at least three ways. First, they give market participants more

insight into the opaque balance sheets of the financial institutions being evaluated (Bookstaber,

Cetina, Feldberg, Flood and Glasserman 2014). Opacity coupled with asymmetric information

can, especially in times of financial distress, lead to a loss of confidence (Diamond and Dybvig

1983, Brunnermeier 2008). After all, if the type and quality of a financial institution’s assets

and liabilities are unclear, outsiders may conceivably fear the worst and, for example, pull

back their funding (Akerlof 1970). Such responses feed speculative runs which can turn into

self-fulfilling prophecies and, ultimately, (further) destabilize the financial system at the worst

possible time (He and Xiong 2012, Diamond and Dybvig 1983, Martin, Skeie and Von Thadden

2014, Copeland, Martin and Walker n.d.). Credibly executed microprudential stress tests pro-

vide insight into an institution’s balance sheet, and can signal confidence about the institution’s

ability to withstand severe stress (Ong and Pazarbasioglu 2014, Bernanke 2013).

Second, microprudential stress tests help financial institutions to improve their own risk-management.

By forcing them to assess their resilience to a variety of novel scenarios, stress tests require banks

to take a holistic look at their own risk-management practices (Bookstaber, Cetina, Feldberg,

Flood and Glasserman 2014). As a consequence, more banks are now also engaged in serious

internal stress tests (Wackerbeck, Crijns and Karsten 2016).

Third, microprudential stress tests have proven to be an effective mechanism to recapitalize

banks (Armour, Awrey, Enriques, Gordon, Mayer and Payne 2016). In the EU, the stress

tests have forced banks to raise their capital by 260 billion euros from 2011 to 2016 (Arnold and

Jenkins 2016), and in the US the risk-weighted regulatory ratio of the banks that participated in

the stress test went up from 5,6 procent at the end of 2008 to 11,3 at the end of 2012 (Bernanke

2013). Against a backdrop of frequent questions about the adequacy of banks’ capital buffers14,

in part due to the gaming of risk weights (Behn, Haselmann and Vig 2016, Fender and Lewrick

2015, Groendahl 2015), many regulators have welcomed the role that stress tests have played to

enhance the resilience of banks. Even if microprudential stress tests are not, strictly speaking,

designed to assess and evaluate systemic risk, their role in raising capital adequacy standards

can have the effect of enhancing resilience (Greenwood, Landier and Thesmar 2015).

Despite their strengths in specific areas, the current microprudential stress tests have been criti-

cized on at least four grounds. First, and most importantly from the perspective of this chapter,

microprudential stress tests ignore the fact that economies are complex systems (see, 1) and

therefore are ill-suited to capture systemic risk. As discussed in section 3 and 4 of this chapter,

14See, for example, Admati and Hellwig (2014).
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systemic risk materializes due to interconnections between heterogeneous agents (for example,

in terms of leverage). By considering institutions in isolation, ignoring the interconnections

and interactions between financial institutions that serve to propagate and amplify distress, the

losses that result from adverse scenarios are substantially underestimated (Bookstaber, Paddrik

and Tivnan 2014). Bernanke (2015), for example, describes describes that the majority of the

losses in the last financial crisis can be traced back to such interactions as opposed to the initial

shock emerging from credit losses in subprime mortgage loans.

Second, microprudential stress tests tend to impose an unrealistically large initial shock. Be-

cause regulators are aware of the fact that a microprudential modelling strategy does not capture

the higher order losses on the balance sheets of individual financial institutions, they use a more

severe initial scenario that causes direct losses to compensate for that. To generate a sufficiently

large initial shock the scenario tends to depart quite strongly from reality. Often, the initial sce-

nario posits a substantial increase in the unemployment rate as well as a sharp drop in GDP.15

In reality, however, it is uncommon these conditions to precede a financial crisis, so the stress

test might be testing for the wrong type of scenario.16 Imposing an unrealistic shock – and not

including higher order effects – can also affect the outcome of the stress test in unexpected ways.

In particular, while stress tests with large initial shocks might get the overall losses right, they

might fail to accurately capture the distribution of losses across institutions which ultimately

determines which banks survive and which do not. For an investigation of this issue see for

example Cont and Schaanning (2014).

Third, the value of the information produced by microprudential stress tests is increasingly being

questioned. The outcomes of stress tests have converged (Glasserman, Tangirala et al. 2015),

perhaps because banks seem increasingly able to “adapt to the test”. This has left some to

wonder what the information produced by the stress tests is actually worth (Hirtle, Kovner and

Zeller 2016), and others to find that the value of such information is declining over time (Can-

delon and Sy 2015). Such concerns have been further fuelled by the apparent willingness of

some regulators to allow banks to pass the test on the basis of dubious assumptions.17

Finally, the stress tests are commonly calibrated to the losses incurred during the last financial

crisis, raising questions about their relevance in relation to current, let alone future, scenar-

ios (Baptista, Farmer, Kleinnijenhuis, Wetzer and Williamson 2017) – not least because the

financial system constantly changes.

5.3 Macroprudential Stress Tests

If the financial system is a complex system (see section 1), the whole is different from the sum of

its parts (Farmer 2012). In other words, measures focused on the health of individual institutions

15See, for example, FED (2016), BoE (2016), ESRB (2016).
16Instead, exogenous shocks such as declining house prices or stock markets precede financial crises. These

are commonly also part of the initial scenario.
17Deutsche bank, which has seen its share price fall significantly in 2016 on fears that it could face a US fine

of up to 14bn was given a special treatment by the European Central Bank in the 2016 EBA stress tests, so that
it could use the result of the stress test as evidence of it’s healthy finances (Noonan, Binham and Shotter 2016).
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(as microprudential stress tests would prescribe) will not necessarily guarantee the health of the

financial system as a whole. In fact, such measures might destabilize the system Aymanns and

Farmer (2015). To understand the system as a whole - and, by implication, systemic risk -

stress tests have to account for feedback loops and non-linearities.

The inability of microprudential stress tests to appropriately account for systemic risk has

prompted the development of a specific type of stress tests focused on this goal; the macro-

prudential stress test. Macroprudential stress tests aim to assess the resilience of the whole

financial system, rather than that of one particular institution. To do that, they extend the

microprudential stress test by including contagion effects between interconnected financial in-

stitutions that can arise following the initial adverse scenario. This means that the regulators

must not only assess the effect of the initial shocks on the individual balance sheets, but must

capture how the balance sheets are interlinked. They should also address what consequences

such interlinkages have for the ability of financial distress to propagate throughout the system.

The contagion models discussed in 4 can help inform regulators on how to model these higher

order spill-over effects.

This section discusses two macroprudential models for banks, and one that combines banks

and non-banks. The first two models, the Bank of England’s “Risk Assessment Model of

Systemic Institutions” (RAMSI) and the Bank of Canada’s “MacroFinancial Risk Assessment

Framework” (MFRAF), are used in stress tests. The last model, Office of Financial Research’s

(OFR’s) “Agent-Based Model for Financial Vulnerabilities”, is not.

5.3.1 Macroprudential Stress Tests of Banks

5.3.1.1 RAMSI Stress Test of the Bank of England

The Bank of England has pioneered the development and use of a macroprudential banking

stress test, called the RAMSI model, to enhance its ability to assess the health of the UK’s

financial system and the financial institutions therein. The model evaluates how adverse shocks

transmit through the balance sheets of banks and can cause further contagion effects (Bur-

rows, Learmonth, McKeown and Williams 2012). It is based on earlier research that has been

conducted by Bank of England researchers and others (Aikman, Alessandri, Eklund, Gai, Ka-

padia, Martin, Mora, Sterne and Willison 2009, Kapadia, Drehmann, Elliott and Sterne 2012,

Alessandri, Gai, Kapadia, Mora, Puhr et al. 2009). The RAMSI stress test can be summarized

as follows.

The stress test begins as a microprudential stress test. The effect on the balance sheet and profit

and losses of banks projected following a set of adverse exogenous macro and financial shocks.

Subsequently, possible feedback effects within the banking system are considered. If the initial

shocks have caused a bank to fall below its regulatory capital ratio or have caused the bank

to be shut out of all unsecured funding markets, the bank respectively suffers an insolvency

or illiquidity default. Subsequently, the default causes two interbank contagion effects: firesale
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contagion and interbank contagion. The assets of the bank that are available for sale (AFS) are

firesold. This causes mark-to-market (MtM) losses of the banks that hold the same assets. Banks

that have interbank exposures to the defaulted bank suffer a credit losses. The combined effect

of the MtM losses and the credit losses can cause other banks to default through insolvency or to

default through illiquidity by being shut out of the funding market. If this happens the loop is

repeated. If this does not happen, each bank’s net operating expenses are invested in assets such

that the bank targets its regulatory risk-weighted target ratio. The credit losses persist, but

the MtM are assumed to disappear as each asset price returns to its fundamental value. Then,

the next time step arises, and the process can be repeated starting with a balance sheet that

includes the credit losses incurred in the previous time step. Thus, the RAMSI stress test turns

a microprudential foundation into a macroprudential model by including interbank contagion

effects, via firesales, interbank losses and funding liquidity contagion. Figure 8 displays what

happens at each step of the RAMSI model. In what follows, the modelling approach used in

each time step is described in more detail.

Figure 8: Description of the RAMSI stress test of the Bank of England. Source: Aikman et al.
(2011).

The key inputs of the stress test are the composition of the initial balance sheets of banks, their

interconnections, and the initial adverse exogenous shocks. The balance sheets are decomposed

in 400 asset classes and 250 liability classes, and include various maturity buckets. The interbank

exposures are estimated and common asset holdings stipulated. The evolution of the adverse

macroeconomic and financial variables over the three-year time span of the stress test are

determined with a large-scale Bayesian vector autoregression (BVAR). These variables are used

as inputs in the stress test, and include levels and/or growth rates of real GDP, CPI inflation,

real FTSE index, real house prices, government bond rates, unemployment, LIBOR spread and

corporate bond spread.

A macroeconomic model then takes these variables as inputs to produce new variables, such as

the post-stress yield curve, probability of default and loss given default, that are used to compute

the factors that determine the first-round impact of the shock on the banks, via changes in a
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bank’s balance sheet values, and profit and losses. These factors are: (i) credit risk; (ii) net

interest income; (iii) noninterest (non-trading) income and operating expenses; and (iv) profit,

taxes and dividends. The credit losses affect the bank’s asset values and solvency position. The

other factors effect the bank’s profit and losses which ultimately feedback into a bank’s solvency

position.

Now that the direct impact of the adverse scenario on the balance sheet and the profit and

losses (PL) is determined, the subsequent system-wide effects are considered. The first such

affect is a funding liquidity shock. Based on the shocked balance sheets and PL, the credit score

for the bank is computed, which the authors assume affects the funding cost of the bank and

its ability to access the long-term and short-term funding market. This credit score takes into

account liquidity and solvency characteristics of the bank’s balance sheet, but also system-wide

market distress. Examples include the maturity mismatch and asset liquidity, expected Tier I

capital ratio, interbank market spread, and equity market fall. The greater the funding and or

market liquidity, the greater the concerns about future solvency. The greater the wider market

distress, the higher the credit score. If the credit score is above 25 points, a bank is assumed to

be shut out of the long-term unsecured funding market. It can then try to replace its long-term

unsecured funding with short-term unsecured funding, but this further deteriorates its credit

score by increasing the maturity mismatch. If its credit score is above 35 points, the bank is

shut out of the unsecured funding markets altogether (both long-term and short-term) and is

assumed to default. Even if a bank is not shut out of a funding market, it can still experience

an increase in its funding cost, which negatively affects its PL and thus increases its future

vulnerability to shocks. The second such affect is a default, either due to insolvency following

the direct effect of the credit shock on the balance sheet, or due to illiquidity following a loss of

access to the funding market.

If a bank defaults two network contagion effects are considered: firesale contagion and interbank

contagion. Upon default all of a bank’s assets that were held as AFS are firesold. This causes

the MtM value the assets of other banks who hold the assets that are firesold on their balance

sheet to decrease, because the firesale causes a price impact. The price impact of the firesale is

estimated using the following concave price impact function:

P I
j = max{0, Pj [2− expφ

Sij
Mj + εj

]}. (2)

This equation shows that the price impact in asset class j of a firesale is larger if a bank i:

sells more assets of j (ie Sij is higher) and the market depth (which can be shocked in stressed

periods by εj) is shallower (ie Mj is smaller). Upon a bank’s default, other banks that have

direct exposures to the defaulted bank suffer a loss given default (LGD) to their exposures that

reflects a bankruptcy cost. The interbank losses are computed using the Eisenberg and Noe

(2001) algorithm, as has been explained in section 4. If firesale losses or interbank losses cause

a bank to default through insolvency or through being shut out of the funding market, the loop

of network losses and balance sheet and funding liquidity updates is continued.
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If no other bank defaults, the net operating income is computed, which is used to reinvest in

assets to return to the bank’s Tier I capital ratio (i.e. risk-weighted (RW) leverage) target. The

net operating income is the difference between the operating income and operating expenses.

The operating income consists of the interest income, noninterest income, and trading income.

Depending on whether the net operating income is negative or positive a different rule is used

to return to the RW-leverage target. The authors justify their assumption of RW-leverage

targeting banks based on the observation that the RW-leverage of UK banks has been quite

stable and based on research from Adrian and Shin (2010b) that shows that banks tend to do

so (see, section 4). It should be noted that although bank’s target a RW-leverage, they do not

target a (unweighted) leverage ratio. As the initial scenario affects the PDs and thus the value

of the Basel II RWs used in the RW-leverage calculation, targeting a constant RW-leverage

means that bank’s leverage can evolve in a pro-cyclical manner. This could lead to leverage

cycles as discussed in section 3.

Finally, the reinvestment choice and incurred credit losses are used to update the balance sheet

of each bank to start the next time step.

The results of the RAMSI model described in (Aikman, Alessandri, Eklund, Gai, Kapadia, Mar-

tin, Mora, Sterne and Willison 2009) have illustrated the role that funding liquidity contagion,

firesales and exposure losses can play in driving banks to default who might have not defaulted

if only the direct effect of the exogenous shock was taken into account. Using a macropru-

dential stress test, in other words, elucidates dynamics that would have gone unnoticed if only

microprudential stress tests were used - as is to be expected in a complex system.

Three key findings illustrate this point. First, by looking at capital alone, the defaulting banks

remain above the 4% regulatory minimum. But a combination of relatively mild solvency con-

cerns, a weak liquidity position and elevated market interbank spreads is sufficient for wholesale

depositors to withdraw funding, causing a bank default.

Second, the cumulative change in funding liquidity rating of banks that have defaulted has

changed more than that on non-defaulted banks. This shows how a progressively worsening

funding liquidity position can cause otherwise solvent financial institutions to default. Once a

bank’s funding liquidity position worsens its funding cost go up, decreasing its future profits.

This in turn makes the bank more vulnerable to future shocks, which can again result in rising

funding costs. This feedback loop of ever-worsening funding liquidity conditions can then drive

a financial institution to default, while (other) healthy institutions that do not experience such

a feedback loop remain alive.

Finally, the UK banking system’s distribution of total assets is bimodal across simulations. In

particular, they find that in most simulations the total asset value is high, but that in some

simulations the total asset value is significantly lower. This shows that, once it materializes,

contagion (i.e. fire sale and exposure contagion upon default, and funding liquidity contagion,

see section 4) can have a significant negative impact on the total asset value in the system. In

many cases the initial shock of the stress test does not cause significant losses and most banks

remain healthy, but beyond a certain threshold these contagion effects are triggered and the
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total asset value is significantly reduced.

5.3.1.2 MFRAF Stress Test of the Bank of Canada

Contrary to the RAMSI model, the Bank of Canada’s MacroFinancial Risk Assessment Frame-

work (MFRAF) is at its core not a heterogeneous agent model but a global games model, such

as those described in Morris and Shin (2001). In the way it sets up funding runs (i.e. as a global

coordination game) it is similar to the seminal model of Diamond and Dybvig (1983) (discussed

in 4. It captures three sources of risk that banks face (Anand, Bédard-Pagé and Traclet 2014,

BoC 2014, 2012): solvency, liquidity, and spill-over risk (see Figure 9).

Figure 9: Description of the MFRAF stress test of the Canada. Source: Anand et al (2015).

The MFRAF stress test has been applied to the Financial Sector Stability Assessment (FSAP)

of the Canadian financial sector conducted by the International Monetary Fund (IMF) in 2014

( IMF (2014)). The 2014 FSAP stress test, which considers the direct effects of adverse shocks on

the solvency of banks, is microprudential. When extending it to capture system-wide effects (i.e.

liquidity effects and spill-over effects) using MFRAF, overall losses to the capital of the Canadian

banks rose with 20 percent. Again, it is clear that microprudential stress tests significantly

underestimate system-wide losses. We will now discuss the theoretical underpinnings of the

MFRAF stress tests, which builds on research at the Bank of Canada and elsewhere (Anand,

Gauthier and Souissi 2015, Gauthier, Lehar and Souissi 2012, Gauthier, Souissi, Liu et al. 2014).

The theoretical model is described in Anand et al. (2015). The model captures how solvency

risks, funding liquidity risks, and market risks of banks are intertwined. In essence, this works as

follows: a coordination failure between a bank’s creditors and adverse selection in the secondary

market for the bank’s assets interact, leading to a vicious cycle that can drive otherwise solvent

banks to illiquidity. Investors’ pessimism over the quality of a bank’s assets reduces the bank’s

access to liquidity, which exacerbates the incidence of runs by creditors. This, in turn, makes

investors more pessimistic, driving down other banks’ access to liquidity. The model does not

capture interbank contagion upon default, although this is captured in MFRAF (IMF 2014).

We will now turn to the key equations in this model that describe the interaction between these

various risks.

The model has three time periods, t = 0, 1, 2, and is populated by N ∈ N banks. A bank i’s
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initial balance sheet consists of assets Ai and liabilities Li and equity Ei. A bank i’s assets

consists of risky assets Ii and liquid assets Mi. The risky assets can be of high quality or low

quality. Low quality assets are worth less than high quality assets φL < φH , and φH ∈ [0, 1).

Although the bank knows the quality of the risky assets, the investors do not. Instead, they

have a prior belief about the fraction of the risky assets that are of high quality, ωt . This prior

belief determines the price ψ̄ that investors are willing to pay for the assets if the bank sells

them. This price is referred to as the “pooling price”, and is given by

ψ̄t = ωtφH + (1− ωt)φL. (3)

The pooling price determines the price discount that investors require on risky assets, and thus

the price impact resulting from the sale of risky assets. The pooling price is endogenously

updated in the model as investors update their beliefs about the quality of the risky assets. If

a bank sells a part of its liquid assets, this causes no price impact.

The liability side of a bank’s balance sheet consists of demandable debt Di and equity Ei. The

demandable debt is held by a pool of risk-neutral investors. The debt contract is issued at time

t = 0. At time t = 2 the debt contract matures, and delivers a return of 1 + ri if the bank has

not defaulted, and otherwise returns nothing. At time t = 1 the investors can decide not to roll

over the debt. In other words, they can decide to run. They will do this if they have concerns

about a bank’s solvency or liquidity position or fear that others will run.

We will now describe the evolution of the model over time, as depicted in Figure 10.

Figure 10: Time steps in theoretical model of MFRAF stress test of the Bank of Canada.
Source: Anand et al (2015).

At time t = 0 the banks issue debt Di and creditors invest in this debt, k ∈ [0, Di]. At time

t = 1 each bank’s assets are shocked with a Si. A creditor k receives a noisy signal of the credit

shock:

xk = Si + εk, (4)

where εk ∼ U [−ε, ε]. At time t = 2 each bank i will experience another credit shock Li. Based

on the expectation of a bank’s solvency at time t = 2 conditional on the information known

35



at time t = 1, assuming for now that there is no noise around the value of the credit shock at

time t = 1, creditors take one of three actions: they always run, the never run, or they run

with some probability. Creditors always run if given a bank i’s current equity Ei and given the

size of the shock that has materialized at time t = 1 Si the bank is always insolvent at time

t = 2, regardless of the size of the shock at time t = 2. Creditors never run if given a bank

i’s current equity Ei and given the size of the shock that has materialized at time t = 1 Si the

bank is always solvent at time t = 2 regardless of the size of the shock at time t = 2. Creditors

run with some probability if depending on the size of the shock that materializes at time t = 2

and given the information known at time t = 1 the bank is either insolvent or solvent. Hence,

conditional on the shock size at time t = 1 Si the probability that bank i is insolvent at time

t = 2 is given by:

Prob(Ei − Si − Li < 0) =


1, if Si > Ei − Li,

1−Gi(Ei − Si), if Si ∈ [Ei − L̄i, Ei − Li],

0, if Si < Ei − L̄i,

where Li ∈ [Li, L̄i].

So without noise, there are three equilibria.

To resolve the multiplicity of equilibria, a global games refinement of Morris and Shin (2001)

is considered. The model is embedded in an incomplete information setting, and each bank

observes a noisy signal of the shock as discussed above. If the shock that a creditor observes xk

is above a critical threshold x∗i , then creditor k withdraws funding from bank i. The illiquidity

threshold is implicitly defined by the indifference condition for the expected payoff to a creditor

between rolling over and withdrawing. It is increasing in the bank’s equity, Ei, liquid assets,

Mi, and returns, ri, but is decreasing in its debt level, Di. The illiquidity threshold is increasing

in the investor’s belief, ω, and the prices, ψH and ψL.

The comparative statistics make sense. If the bank’s equity Ei increases, it has a larger buffer

to absorb the credit shocks at time t = 1 and t = 2. Hence, creditors are less likely to withdraw

because they judge the probability of insolvency of the bank at time t = 2 to be lower. If the

bank’s level of liquid assets Mi is larger, then the bank’s ability to raise cash is greater, and

the bank is more able to meet runs at the interim date. Therefore, the creditors are less likely

to run. If the return ri upon solvency increases, the creditors view it more favorable not to

run and wait until time t = 2 instead, rather than to run at t = 1 and only obtain unity. If

a bank has more debt Di, it has relatively less access to liquidity to meet withdrawals. This

incentivizes creditors to run sooner. The prior beliefs about the quality of the risky assets also

affect the probability that creditors will run. If the investors’ beliefs ω and prices ψH and ψL

increase, the pooling price improves. This raises the ability of a bank to obtain cash to meet

withdrawals, which in turn makes it less likely that creditors run in the first place.

Whether or not a bank defaults if a fraction of its creditors run, depends on the fraction of

36



creditors that run li relative to the recourse to liquidity of the bank λi(Si; ψ̄). The recourse to

liquidity of bank i is defined as

λi(Si; ψ̄) ≡ Mi + ψ̄[Yi − Si]
Di

. (5)

The bank’s recourse to liquidity λi(Si; ψ̄) measures the fraction of depositors Di that can at most

be paid back (given the realised shock Si and the pooling price ψ̄). The numerator measures

the maximum amount of cash the bank raises. It is equal to the sum of the liquid assets Mi and

the cash value of the risky assets (post the shock Si), which depends on the price investors are

willing to pay (ie the pooling price ψ̄). The denominator normalizes the numerator to arrive at

the fraction of depositors that can at most be paid back.

If the fraction of depositors that run is greater than the fraction of depositors that can at

most be paid back, bank i defaults. That is, the bank defaults at the intermediate time step

if li > λi(Si; ψ̄). If banks default through illiquidity, the investors become more pessimistic.

That is, ω goes down, and as a consequence the pooling price ψ̄ falls. This reduces the banks’

recourse to liquidity, which increases the probability that investors will run. If a run takes place,

this makes investors more pessimistic again and further reduces the pooling price. This vicious

cycle of self-fulfilling illiquidity between the investor updating the belief and the actions of bank

creditors terminates once there is no additional information to be gained by the investor from

observing the outcomes for banks.

Finally, at time t = 2, a second credit shock arrives. If this does not turn a bank insolvent, it

will pay out its creditors the promised return on their investment.

This model is calibrated to the Canadian banking system, as explained in Anand et al. (2015).

The key results of the MFRAF stress test, described in BoC (2012), are that tail risk can be

underestimated if contagion is not taken into account and that systemic risk is affected by the

particular combination of the levels of three factors.

First, if the Canadian banking system’s capital ratio is sufficiently low, the share of illiquid

assets is sufficiently high, and the reliance of short-term funding sufficiently high, the tail of the

loss distribution following a severe crisis scenario is significantly underestimated if the higher

order liquidity risks and/or network spillover risks are not taken into account; only the initial

credit losses of the severe scenario are captured. Figure 11 illustrates this results. However, the

fat tail in the case with liquidity risks and/or network spillover risks completely disappears if

the capital ratio is sufficiently high, the share of illiquid assets sufficiently low, and the reliance

on short-term funding sufficiently small. This indicates that a highly leveraged financial system

with many illiquid assets and much short-term funding is especially prone to contagion losses.
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Figure 11: Loss distributions of a hypothetical banking system. The tail risk is underestimated
if liquidity risks and/or network spill overs are not taken into account. Source: Bank of Canada
Review (2012).

Second, the level of systemic risk, measured as the probability that at least one bank defaults,

increases as the leverage of the banking system, illiquidity, and reliance on short-term funding

increases (see figure 12). It shows that systemic risk kicks in much later if the leverage is lower.

Only when the illiquidity is large and the short-term funding reliance is large will systemic risk

materialize. But if systemic risk materializes, it kicks in as severely as in the case with a lower

leverage.

Third, the positive relationship between systemic risk and reliance on short-term funding is

much steeper when banks have fewer liquid-asset holdings, for both levels of capital. This

means that an illiquid bank is more sensitive to disruptions in short-term funding markets.

Similarly, the negative relationship between systemic risk and holdings of liquid assets is more

significant when banks have a greater reliance on short-term funding.

Figure 12: Systemic risk (measured as the probability of having at least one bank default) for
different initial capital ratios (left panel: 6 procent; right panel: 8 procent) as a function of the
fraction of liquid assets and the fraction of short-term funding, following an initial crisis shock.
Source: Bank of Canada Review (2012).
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5.3.2 Macroprudential Stress Tests of Banks and Non-Banks

5.3.2.1 ABM for Financial Vulnerabilities developed at the Office of Financial

Research

The final system-wide stress testing model that will be discussed, the Agent-Based Model (ABM)

for Financial Vulnerabilities (Bookstaber, Paddrik and Tivnan 2014), captures similar contagion

mechanisms as MFRAF, but it does so using a different methodology. As it says on the tin,

this is an agent-based model, designed to investigate the vulnerability of the financial system

to asset- and funding-based firesales.

The financial system consists of banks that act as intermediaries between the cash provider (a

representative agent for various types of funds) and the ultimate investors (i.e. the hedge funds).

The hedge funds can receive funding from banks for long positions in return for collateral. The

banks, in turn, receive funding from the cash provider in return for collateral. Funding and

collateral therefore flow in opposite directions, as is illustrated in Figure 13.

Figure 13: Map of the financial system and its flows, as considered in the ABM for Financial
Vulnerabilities. Source: Bookstaber et al (2014).

Building on this detailed mapping of the transformations and dynamics of the financial system,

the model explores contagion dynamics. It demonstrates that a stress test that only considers

the direct effect of an adverse initial shock and not the higher order contagion effects, and

excludes non-banks, would underestimate systemic risk. We now describe the model in greater

detail, covering the model set up and the evolution of the prices, the cash provider, the hedge

fund, and the bank.

Set up: The model consists of K banks, N hedge funds, one cash provider, and M asset markets.

Price formation: The evolution of the price of asset m is determined by
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Pm(t+ 1) = max{0, Pm(t)(1 +Rm(t))}. (6)

Thus, the price floor is zero. The price in the next period t+ 1 updates relative to price at time

t based on the return Rm(t). The return is given by

Rm(t) = BmQ
T
m(t) +RR

m(t). (7)

This formula expresses that the price shift occurs because of a random price move CR
m(t) and

because of the price impact of the total net number of forced sales BmQ
T
m(t). This price impact

in asset class m is a function of the price elasticity of demand Bm and the total quantity of

forced sales by the banks and the hedge funds. That is,

QT
m(t) =

K∑
i=1

QBD
m,i (t) +

N∑
i=1

QHF
m,i (t). (8)

Cash provider: The role of the cash provider c in the model is to provide secured funding to

banks. The cash provider is a representative agent that represents financial institutions that

typically provide funding to banks such as asset managers, pension funds, insurance companies,

and security lenders, but most importantly, money market funds. Although the cash provider

is not actively modelled, it can take two actions. First, it can set the haircut, and second it

can pull funding from the banks. These actions affect the financial system in the following way.

If the cash provider sets a higher haircut, this can force the hedge fund to engage in firesales

(because the bank is assumed to pass on the haircut to the hedge fund). If the cash provider

pulls funding from a bank, the bank needs to raise cash to pay back the secured loan. It can

do so by pulling the funding from hedge funds, which may in turn force hedge funds to firesale.

Alternatively, the bank firesales assets itself, if it cannot pull funding and has no cash.

The size of the loan the cash provider c extends to bank k depends on the amount of collateral

the bank pledges, the haircut it receives, and the maximum amount of loan that the cash

provider is willing to give to this bank. Thus, the amount of loan bank k receives at time t from

cash provider c given that k has pledged a total amount of collateral equal to Ck(t) is equal to

Lc,k(t) = min{LMax
c,k (t), Ck(t)(1−Hc,k(t))}. (9)

The haircut that the cash provider sets depends on the liquidity and solvency characteristics of

the bank.

Hedge fund: Hedge funds are actively modelled. It has a balance sheet that consists of cash and

tradable assets on the asset side, and secured loans and equity (and possibly short positions) on

the liability side. A hedge fund funds its long positions in assets using funding from banks in the

form of repo contracts. When funding themselves this way, hedge funds receive cash in return
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for collateral they pledge to the bank. A hedge fund achieves its short positions by borrowing

securities from the bank against cash. Although the hedge fund does not face a regulatory

leverage constraint, it faces an implicit leverage constraint based on the haircut it receives on

its collateral. The haircut determines how much equity a hedge fund needs for a given amount

of repo funding. If the haircuts on all types of collateral (i.e. on all types of assets that can be

pledged as collateral) is the same, and assuming that the bank passes on the haircut it receives

from the cash provider, the maximum leverage of the hedge fund n at time t is given by

λMax
n (t) =

1

Hc,k(t)
. (10)

If the leverage of the hedge fund exceeds the maximum leverage, the hedge fund is forced to

de-lever. It will do so by fire selling assets. This can cause MtM losses on other banks or hedge

funds who hold the same assets. A hedge fund’s leverage can exceed the maximum due to asset

prices depreciations (as a consequence of firesales, for example) or increases in the haircut (due

to the cash providers downward assessment of the bank’s solvency and/or liquidity). If the

hedge fund is forced to de-lever, it will attempt to go back to a “buffer leverage” level, which is

below the maximum leverage value. If the hedge fund’s leverage is below the maximum leverage,

then it will increase or decrease its leverage to hit a “target leverage”. Its actions to de-lever

in such cases are assumed not to have a price impact, as these reflect day-to-day balance sheet

adjustments which typically do not affect prices.

Bank Intermediaries The banks act as an intermediary between buyers and sellers of securities

and between lenders and borrowers of funding. In its role, it facilitates maturity, liquidity, and

risk transformations. The banks have various desks that play a role in these processes: the

prime broker, the finance desk, the trading desk, the derivatives desk, and the treasury.

The various equations associated with the functioning of the bank dealer and its various subdesks

can be found in Bookstaber, Paddrik and Tivnan (2014). On the whole, the bank can contribute

to financial distress pre-default and post-default in various ways. Pre-default, the bank may

have to fire sell assets or to pull funding from the hedge fund (which consequently may also have

to engage in firesales) in order to raise cash, de-lever, or pay back funding to the cash provider

(if the cash provider pulled its funding). In addition, by passing on an increased haircut to the

hedge fund it can trigger a hedge fund to engage in firesales. Post-default, the bank contributes

to exposure losses and further firesale losses.

The results of the ABM for Financial Vulnerability focus on the role of leverage, liquidity, and

asset crowding in systemic risk, as well as on the evolution of contagion.

A key result concerns the forward-looking dynamic evolution of the value-at-risk (VaR) of the

hedge fund’s capital. It is found that the VaR in the forward simulation is very different

depending on how far forward you simulate the model. The implication is that a portfolio

investor’s future estimate of the VaR depends on how long it wants to hold the portfolio. This

value-at-risk is not dependent on the historical volatility of prices but on the forward-looking
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volatility of prices. This makes sense, because the future volatility of prices, especially following

crisis shocks, does not have to be similar as the historical volatility of prices.

Another key result is that financial institutions that are not seemingly exposed to shocked assets

can nonetheless experience losses. In this model, a hedge fund that receives an asset price shock

might be forced to de-lever, thereby fireselling assets. If it does, it may firesell the asset that

was shocked, but it can also firesell in other asset classes. In the latter case, financial insitutions

that did not hold the initial shocked asset but do hold some of the other assets that are firesold

experience asset price losses too. Potentially, this may force them to de-lever themselves, further

passing on the shock.

This phenomenon can be described as common asset holding contagion. The degree and path of

common asset holding contagion depends on the structure of the common asset holding network,

in particular, on the level of crowding in certain asset classes.

5.3.3 Strengths and Weaknesses of the Current Macroprudential Stress Tests

Macroprudential stress tests are strongly complementary to microprudential stress tests, be-

cause they allow regulators to assess the resilience of the financial system rather than that of

individual financial institutions. The current macroprudential stress tests have three related

strengths

First, they provide insights into the interlinkages between financial institutions, mapping out

how financial shocks transmit through individual balance sheets and affect other institutions.

The data-driven methodology to establish the model setup (as well as the subsequent calibra-

tion) provide a promising avenue for future stress tests, but also for further data-driven research

into the structure of the financial system (Aikman, Alessandri, Eklund, Gai, Kapadia, Martin,

Mora, Sterne and Willison 2009).

Second, they capture the interactions between various financial institutions and contagion chan-

nels that can drive distress, and therefore capture (some of) the feedback effects that characterize

the complex nature of the financial system. Especially the ABM for Financial Vulnerabilities

makes an important contribution by including heterogeneous financial institutions, which is key

to allow for emergent phenomena (Bookstaber 2017).

Third, in addition to capturing solvency risk, or separately investigating solvency and liquidity

risk, the current macroprudential stress tests capture funding liquidity risk and the interactions

between solvency and liquidity. The RAMSI model, for example, not only considers defaults

through insolvency, but also through illiquidity, and takes their interaction into account. In case

of the MFRAF, a particular strength is that market risk and funding liquidity are endogenously

determined. Market risk is based on the degree of adverse selection. Because of asymmetric

information, investors offer banks a pooling price for their assets. The pooling price (and hence

the market liquidity) lowers if investors become more pessimistic and the quality of the assets

is lower. Funding liquidity risk is determined as a function of the bank’s credit and market

losses (based on general market confidence, and thus a function of information contagion), its
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funding composition and maturity profile, and concerns that creditors may have over its future

solvency.

Despite these strengths, there is substantial scope for improvement. First, most macroprudential

stress tests only capture banks and its creditors, and therefore fail to capture interactions with

non-banks that make up a substantial part of the financial system. Moreover, non-banks have

played an important role in amplifying distress to the banking sector during the 2007-2009

financial crisis (Bernanke 2015). Therefore, failing to capture non-banks does not just exclude

many institutions from the analysis, but also leaves regulators less well-equipped to understand

the resilience of the subset of financial institutions they do study. The ABM for Financial

Vulnerabilities is an exception, since it does include multiple types of financial institutions, but

contrary to the RAMSI and the MFRAF models it is not used as a regulatory stress test.

Second, and relatedly, most macroprudential stress tests capture only a few types of intercon-

nections, even though it is clear that the multiplicity of channels and interconnections between

financial institutions play a critical role in spreading distress (Brunnermeier 2008). Notable

examples of such contractual linkages include securitized products and credit default swaps.

Third, most current macroprudential stress tests only capture post-default contagion. However,

in financial crises pre-default contagion is rampant, often resulting from actions that are pru-

dent from a firm-specific risk-management perspective, but destabilizing from a system-wide

perspective. A bank, for example, might engage in precautionary de-leveraging to avoid insol-

vency (i.e. breaking a leverage constraint), and this can add to further negative price spirals.

Not capturing such dynamics implies that the total size of contagion, as well as the timing of

contagion, is misunderstood.

These three areas of improvement essentially come down to the same point: the current macro-

prudential stress tests insufficiently capture the diversity of agents and interactions that make

up the financial system, and therefore do not do justice to the complex nature of the financial

system (or, for that matter, to the insights of the heterogeneous agent model literature, see

sections 3 and 4). One of the important challenges is to device a modelling strategy that can

capture these various effects, and the ABM for Financial Vulnerabilities offers a promising start;

the model could easily be extended to capture more types of financial institutions (e.g. central

clearing parties, pension funds), financial contracts (e.g. derivative contracts, securitized prod-

ucts), and constraints that drive behavior under stressed circumstances (Cetina, Lelyveld and

Anand 2015). However, to fully realize its potential as a prototype for more advanced stress

tests, the modelling framework should be further generalized and made more modular. We will

now turn to a modelling framework that is designed to do just that.
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6 The Future of Stress Testing is System-Wide

18So far, we have focused on the stress testing models that are currently being used. When

thinking about what stress test models should look like, a starting point is to determine their

purpose. The purpose we focus on in this section is to capture systemic risk. Such risk would

not exist if firms existed in isolation, so adopting a system-wide perspective that takes account

of interconnections and interactions is necessary. This view is increasingly shared amongst

regulators and central bankers. Alex Brazier, head of financial stability at the Bank of England,

recently emphasised that “the whole is different from the sum of the parts”, and that tools

are needed to take a system-wide perspective (Brazier 2017). This remark aligns with the

observation made earlier that, if the financial system is a complex system, then the whole will be

different than the parts. To understand the resilience of the financial system, microprudential

stress tests are not sufficient, and macroprudential stress tests of banks and non-banks that

better capture the diversity of actors and instruments in the financial system are necessary.

Our view is that such system-wide stress tests serve at least three important goals; to monitor

financial stability, identify vulnerabilities in the financial system, and to evaluate policies de-

signed to mitigate systemic risk. The first, monitoring financial stability, involves developing

metrics that would allow regulators to see whether systemic risks are building up over time,

and to have early-warning indicators to ensure that they can intervene in a timely manner.

The second, identifying vulnerabilities in the financial system, enables regulators to become

aware of structural deficiencies in the financial system that render it vulnerable to systemic

risk. Another way of phrasing the same point would be to say that it should identify sources

of systemic risk, the factors that contribute to such risk, and the relative importance of those

factors. Regulators should, on the basis of the stress tests, for example be able to analyze the

network structure of the financial system (Acemoglu, Ozdaglar and Tahbaz-Salehi 2015, Cac-

cioli, Shrestha, Moore and Farmer 2014, Cont, Moussa et al. 2010, Battiston, Puliga, Kaushik,

Tasca and Caldarelli 2012, e Santos, Cont et al. 2010), evaluate asset-holding patterns and con-

centration risk, identify systemically important nodes (Battiston, Puliga, Kaushik, Tasca and

Caldarelli 2012), and examine the maturity structure and leverage of a financial institution’s

balance sheet (Puhr, Santos, Schmieder, Neftci, Neudorfer, Schmitz and Hesse 2003, Hirtle and

Lehnert 2014). Regulation or regulatory practice can also be the source of systemic-risk. For

example, microprudential regulation that is meant to enhance the resilience of individual insti-

tutions can increase the fragility of the system in times of crisis when these requirements have

procyclical effects (Aymanns and Farmer 2015, Danıelsson, Shin and Zigrand 2004).

The third, evaluating policies designed to mitigate systemic risk, touches on those latter concerns

related to microprudential policies but include macroprudential policies as well. As noted,

microprudential regulation may have undesirable procyclical effects. But it could also be the

case that various regulatory instruments interact in ways that are undesirable from a system-

wide perspective, or that macroprudential policies designed to make the whole system safer end

18This part of the paper is based on Baptista et al. (2017)
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up doing the opposite. A system-wide stress testing model should be capable to study, at least

qualitatively, such effects, and can therefore serve as a laboratory to run policy experiments.

Achieving these goals has proven challenging. Broadly speaking, there are two modeling strate-

gies that could be pursued; microprudential stress tests could be made more macroprudential19,

or macroprudential stress tests are conducted in addition to microprudential stress tests and

be developed on a stand-alone basis. We prefer the latter approach, because microprudential

stress tests have value in terms of supervision and institution-specific risk management that is

worth preserving in its own right.

If the macroprudential stress tests is going to capture the emergent phenomena that characterize

the complex nature of the financial system, it has to be based on sufficiently granular data. To

analyze how shocks propagate and to understand interacting effects, we need to have a clear

sense of the connections between the financial institutions. When looking at the total aggregate

exposures, as most current macroprudential stress tests do, measures of such interconnectedness

will be too crude, making it difficult to assess how distress propagates. To understand how

solvency and liquidity drive the dynamics of the system during normal times and in times of

stress, we believe that macroprudential stress tests should be designed so that they can, when

available, utilize data granular enough to capture individual contracts and legal entities (for

examples of such datasets, see, BIS (2015b), Abad et al. (2016)).

In this section, we propose a blueprint for a new generation of macroprudential stress test (Bap-

tista, Farmer, Kleinnijenhuis, Wetzer and Williamson 2017). This general framework provides

the building blocks for developing bespoke system-wide stress test models. These building blocks

– financial institutions, financial contracts, markets, constraints, information, and behavior –

are discussed next.

6.1 A General Framework for System-Wide Stress Testing

6.1.1 Financial Institutions

Financial institutions sit at the heart of the financial system. In the literature, a common

distinction is drawn between banks and non-banks. As discussed, including both in the same

model is key to understanding systemic risk, since these sectors are of similar sizes in the US,

UK and the EU (Burrows, Low and Cumming 2015, ECB 2015, FSB 2015) and are, in reality,

highly intertwined (Adrian and Shin 2010a, Pozsar, Adrian, Ashcraft and Boesky 2010, Pozsar

and Singh 2011, Mehrling, Pozsar, Sweeney and Neilson 2013, Pozsar 2013). Distress in the non-

banking sector can easily propagate to the banking sector, and that is exactly what happened

in 2008 (Kacperczyk and Schnabl 2010).

Despite these linkages being salient in reality, they are less so in systemic risk models or stress

tests. As discussed, microprudential stress tests may have started out with banks alone, but

19RAMSI and MFRAF follow this approach; they model starts as a microprudential stress test, but then
macroprudential elements were added on top
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are now increasingly conducted on non-banks. The downside, however, of such microprudential

stress tests is that they do not capture the critical interconnections between the various sectors.

Such interconnections may not only increase the severity of the shocks, but can also completely

change their dynamics. Microprudential stress tests of insurers or CCPs of the kind discussed

above may therefore assess the individual resilience of these institutions, but will not say much

about the contribution of such firms to systemic risk (either by originating or amplifying such

risks), or whether such a firm is particularly vulnerable to distress coming from various types

of interactions with other financial institutions.

To illustrate this point, the stress tests in ESMA (2015) might underestimate the vulnerability

of a CCP and cannot assess the contribution to financial distress the CCP might cause upon

its default, because it does not consider the (higher order) network effects of such a default.

In addition, it might underestimate the vulnerability of the CCP to defaults elsewhere in the

financial system. The model excludes the extra intra-financial system contagion losses that

might hit the CCP default waterfall following the default of the largest two clearing members

(CMs). Only the direct losses that the default of the largest two CMs might impose on the CCP

are taken into account. Such losses stem from the CCP’s losses on the derivative positions of

these CMs that were not absorbed by the collateral the CMs posted. The contagion losses that

the default of the largest two CMs might cause in the financial system, via financial contracts

that are not cleared through the CCP, is not taken into account. If the ensuing contagion losses

cause another CM of the CCP to default, this may impose extra losses to the CCP, which might

cause the CCP to default.

Likewise, an insurer must be modelled in a system-wide stress test as part of the network.

The EIOPA (2016) stress test does not fully capture the insurer’s vulnerability to systemic risk

as it does not capture the contagion losses (in addition to the initial losses) that might hit the

insurer. It also insufficiently captures the insurer’s contribution to systemic risk. For example,

the Solvency II regulation might force insurers to react in a one-sided way to shocks (Baptista,

Farmer, Kleinnijenhuis, Wetzer and Williamson 2017), thereby potentially contributing to the

destabilization of markets. In conclusion financial institutions must be modelled as part of the

financial network to accurately capture its vulnerability and contribution to contagion.

There are only few papers that have made (preliminary) attempts at capturing different types of

financial institutions in one model. See, for example, Bookstaber, Paddrik and Tivnan (2014),

Gennaioli et al. (2013).

6.1.2 Financial Contracts

Contracts populate the balance sheets of financial institutions, creating compositions of con-

tracts unique to each. In stress testing models, these compositions of contracts are revalued

in the face of shocks (usually as aggregates rather than individual contracts) to calculate an

institution’s new equity value. Moreover, contracts connect financial institutions in either di-

rect or indirect ways. Direct interconnections include funding contracts between counterparties,

whereas indirect interconnections can arise as a result of, for example, common asset holdings.
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These interconnections can be useful in normal times, but under stressed circumstances they

can act as carriers of contagion (Farmer, Kleinnijenhuis and Wetzer 2017).

We have already discussed in section 4 how the systemic risk literature has documented some

of these interconnections, including interbank loans and common asset holdings. Some au-

thors have covered interconnections through derivatives, in particular credit default swaps

(CDSs) (Kaushik and Battiston 2013, Cont and Minca 2016, Markose, Giansante, Gatkowski

and Shaghaghi 2010). However, most of these models only capture one financial contract type,

and thus only one channel of contagion, which implies that the networks of interbank loans,

asset holdings and CDSs are treated in isolation. As discussed in section 5.3.3, current macro-

prudential stress tests also only take a limited view of (interacting) contagion channels into

account.

Casual empiricism reveals that such a view is at odds with events in the 2007-2009 financial

crisis (Brunnermeier 2008). Papers that model the interactions between various contagion

channels (which act over different types of financial contracts) support that view, and find that

such interactions can amplify contagion (Kok and Montagna 2013, Caccioli, Farmer, Foti and

Rockmore 2013). The macroprudential stress tests so far only capture some of the channels

of contagion, but not all relevant ones, and do not always adequately capture the interaction

between contagion channels. The Bank of England’s RAMSI-model, for example, captures

interbank contagion and firesale contagion (but only post-default), but not collateral contagion

or CDS-contagion. The Bank of Canada’s MFRAF model only captures three time-periods,

and therefore fails to properly capture higher-order contagion at all. Bookstaber’s model only

captures secured funding and common asset holdings (Bookstaber, Paddrik and Tivnan 2014).

Simultaneously including more contracts in the same model, as well as the interacting contagion

effects they can host, is therefore a significant challenge for the field.
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Box 2: Financial Institutions and Contracts Create a Bi-Partite

Multiplex Network

Taken together, the financial institutions and the contracts that connect them

form a bi-partite multi-layered network (Baptista, Farmer, Kleinnijenhuis,

Wetzer and Williamson 2017) which, provided sufficient data is collected,

regulators could construct with these two building blocks alone. The first set

of nodes in such a network consists of financial institutions, which are directly

connected through contracts (the edges), whereas the second set of nodes and

indirect interconnections are made up of common asset holdings.

Having real time data, or even quarterly snapshots, of this network can be

enormously valuable for regulators. First, simply the exercise of creating such

a map of the financial system can be insightful. Such maps show how various

institutions are connected to each other, and what their sizes and specializations

are. Ideally, this should be known at a level that is more granular than aggregate

exposures, so that the nature of the connections, and the role each institution

plays within the wider system is clear too. But the basic point is that a simple

map of the financial system allows a regulator to know what it regulates. An

example of a map of the financial system that states something about the

interconnections between financial institutions in the financial system is Pozsar

et al. (2010).

Second, based on the structure of the multi-layered network, inferences can be

made about the fragility of the financial system and about the factors contribut-

ing to this. Such measures are a priori measures of systemic risk based on the

static network, without the need to model the evolution of the the network. For

single-layered networks, typically of banks, research has demonstrated how to

study the relationship between network structure and fragility. Acemoglu et al.

(2015), for example, investigates how the fragility of the banking system depends

on the structure of the interbank loan network. What is underinvestigated in the

literature are papers that investigate how the joint structure of a multiple layers

in a multi-layered network consisting of various types of financial institutions

and financial contracts affect systemic risk.
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The latter, determining the factors that contribute to systemic risk based on the

static network, has also been studied. Various papers define centrality measures

that can be used to identify systemically important financial institutions on the

basis of their interconnected position in the network (Battiston, Puliga, Kaushik,

Tasca and Caldarelli 2012). Others study how the composition of a network

of overlapping portfolios affects systemic risk (Caccioli, Shrestha, Moore and

Farmer 2014). Such papers study the robustness of networks as a function of

diversification and concentration of asset holdings.

Third, up-to-date snapshots of the network can inform regulators about the

direct effects of an initial shock. On this basis, regulators can assess the direct

losses following the default of a particular institution, or the direct losses to

financial institutions as a consequence of an asset shock. Such information

could readily be used, for example to inform the decision to allow a financial

institution to default, or the judgment whether to be concerned about price

shocks to a particular asset class.

It is important to note that these networks do not require any modelling, and

therefore do not generate modelling uncertainty. Adding the other building

blocks (markets, constraints, information, and behavior) makes it possible to

simulate the evolution of these networks.

6.1.3 Markets

Financial contracts are traded in markets. This is where prices are formed, new contracts are

agreed upon, and existing contracts are modified and ended. Markets can take various forms,

including that of an exchange or a dealer. Depending on the research question, markets can be

modelled more or less realistically. Microprudential stress tests have so far not modelled markets

at all, because they do not consider contagion effects. Macroprudential stress tests typically

use a price-impact function (Burrows, Learmonth, McKeown and Williams 2012, Bookstaber,

Paddrik and Tivnan 2014) as is the case in the systemic risk literature. Firesale models, for

example, typically assume that price formation is affected by the net volume of sales via a

price impact function (Caccioli, Farmer, Foti and Rockmore 2015, Caccioli, Shrestha, Moore

and Farmer 2014, Cont and Schaanning 2014, Greenwood, Landier and Thesmar 2015, Duarte

and Eisenbach 2015). A key challenge, which is especially relevant for modelling liquidity, is

to include not just selling behavior but also buying behavior. For certain research questions,

it might also make sense to model the formation of exchange-traded assets based on an order

book (Bookstaber and Paddrik 2015).

6.1.4 Constraints
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Financial institutions face constraints that they must meet, which limit their option set of avail-

able eligible actions. We consider four types of constraints; regulatory constraints, contractual

constraints, market constraints, and constraints arising from internal risk-limits. Institutions

face different sets of constraints, depending on their specific circumstances. For illustrative

purposes, we can highlight various examples of such circumstances. Banks, for example, face

leverage and liquidity regulatory constraints, but hedge funds usually do not. The contractual

constraints that apply will depend on the composition of contracts an institution has on its bal-

ance sheet at a particular point in time. Not meeting these obligations will have repercussions,

which can ultimately lead to default. Market constraints can imply particular expectations

by investors, for example that banks maintain capital levels well above their regulatory re-

quirements (Burrows, Learmonth, McKeown and Williams 2012). Not meeting such market

expectations could trigger market runs (Anand, Gauthier and Souissi 2015). Finally, financial

institutions could, in whole or in part, face internal risk limits that can include exposure limits

to particular asset classes.

Constraints are important because they tend to drive the behavior of financial institutions in

stressed periods and therefore determine the direction of contagion (Baptista, Farmer, Klein-

nijenhuis, Wetzer and Williamson 2017). The extent to which they do depends on the degree

to which they “bind”; the more binding the constraint, the more likely it will drive behavior in

stress. It is not difficult to see why: breaching a binding constraint can trigger default (or trigger

the firing of an individual trader breaching internal risk limits). It is not always clear whether

constraints bind, and when. This can depend on many factors, including the market conditions,

the type of institution and its role within the system, and the resources of supervisors and

regulators.20

Current models do not capture this richness. Microprudential stress tests rely on (predominantly

regulatory) constraints to assess whether institutions pass the adverse scenario. As we have

seen, in the case of banks the key constraint is the regulatory capital ratio, and for insurers the

asset-over-loan (AoL) ratio.

The literature has studied constraints and their impact on behavior in some detail. As discussed

in section 3, Aymanns and Farmer (2015) have shown that the Basel II microprudential regula-

tion that is meant to keep banks sufficiently well-capitalized causes leverage cycles. Adrian and

Shin (2010b) found similar results. The notion that constraints can drive behavior of financial

institutions (in stressed periods) and thereby cause contagion has also found support. Firesale

models, including Greenwood et al. (2015) and Duarte and Eisenbach (2015), show that banks,

who face a regulatory leverage constraint, can be forced to firesale in order not to breach regu-

latory limits. Cetina et al. (2015) show that, depending on what regulatory constraint binds, a

bank responds differently to shocks and can trigger a different contagion channel. They show

this for the different leverage and liquidity constraints that apply to banks (the leverage ratio,

risk-weighted assets ratio, liquidity coverage ratio, and net stable funding ratio).

20Take as an example the liquidity coverage ratio. This liquidity constraint states that a bank must keep
enough highly liquid assets to cover its net cash outflows over a thirty day period, in normal times. However, in
times of stress, the regulator can loosen the requirement (Van Den End and Kruidhof 2013).
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Bookstaber’s macroprudential stress tests (Bookstaber, Paddrik and Tivnan 2014) makes clear

that contractual constraints can drive the behavior of financial institutions in stressed periods

too. In his model, the contractual constraints that drive behavior in stress are the requirement

to meet margin calls and to pay back a loan if it is not rolled over.

Typically, the financial contagion models only capture a sub-set of the relevant constraints that

drive behavior.

6.1.5 Information

Information plays an important role in the expectation formation by financial institutions about

how certain key variables (such as asset prices, interest rates and real estate prices) of the future

state of the financial system will evolve. These expectations in turn feed into the behavior of

financial institutions, to (most optimally) act (to maximize profits and/or minimize losses) given

the future expectation (and distribution) of the evolution of these variables.

Incorporating expectation formation is especially important when modelling aiming to model

buying and selling behavior properly in macroprudential stress test.

For financial institutions to form a view of how asset prices and other relevant financial vari-

ables might evolve, they must have access to public information and information about their

counterparties.

In the systemic risk literature since behavior is not properly modelled, information is certainly

not yet considered. But if behavior will be more explicitly (assumed and modelled) information

should come to play a role. Since behavior is not really part of a microprudential stress test

information is typically not considered.

6.1.6 Behavior

Behavior is central to understanding systemic risk, but at the same time it is the most challeng-

ing part to model. Understanding the types of behavior that institutions may be forced into

when under severe stress is key to modelling the dynamics that occur occur when risks start

to crystalize. In our model, behavior means making decisions regarding the buying and selling

of assets, as well as opening, continuing, or terminating contractual relationships (for example

by choosing not to roll-over a funding relationship). Institutions can also choose not to honor

contractual commitments, with the potential outcome that they default.

Constraints and information feed into behavior. At any point in time, whether under stressed

circumstances or not, constraints will limit the set of available actions to a smaller set of eligible

actions. In normal times, part of the behavior will be driven by the need to meet contractual

obligations and avoid breaching internal risk limits. A margin call due to a small change in

the collateral value must, for example, be met (unless the institution chooses to breach the

constraint). In times of stress, however, the constraints in the model will be much tighter and
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bind more strongly, leaving the institution with less room to maneuver. Rather than just meet

one constraint, an institution may simultaneously be forced to de-lever, meet a large margin

call, and respond to the fact that interbank loans are no longer rolled over. In either case,

expectations about future developments of the financial system will inform the course of action

institutions take. This is where information comes in.

The model works in the following way. First, binding constraints will reduce the set of available

actions to a (sub)set of eligible behavior. As long as an institution wants to avoid default,

this latter subset provides the options out of which an action will be chosen. The second

step, therefore, is to choose an action out of the set of eligible actions. Here, information and

expectations, as well as some form of optimization, play important roles. What information a

financial institution has access to, how it forms expectations, and what it optimizes is subject

to modelling assumptions. For example, we can assume that a financial institution reduces

assets proportionally to initial holdings, or sells its most liquid assets first. Such assumptions

are common within the systemic risk literature.

Regardless of how the behavior is chosen from the eligible set, the results the models produce

are explicitly conditional on these assumptions. The modelling framework does not ?hardcode?

such assumptions, but leaves it to the user to decide. Some might find this a weakness of the

methodological approach. But it also offers opportunities, for example the examine the impact

of a variety of behavioral assumptions. Regulators can, for example, run parameter sweeps

on the behavioral assumptions and assess what type of behavior results in the worst financial

stability outcomes. It can then consider implementing regulation that discourages institutions

to respond in this way.

Moreover, the strength of the framework must be evaluated against the alternatives. Micro-

prudential stress tests do not capture behavior at all. The bank’s reactions to initial adverse

shocks, except in some cases the ability to retain dividends, are not considered (Constancio

2016). In the systemic risk literature, behavioral assumptions are made but not always explic-

itly. For example, firesale models usually assume that banks which are forced to de-lever do so

by reducing their assets and liabilities as a vertical slice of their portfolio (Cont and Schaanning

2014, Greenwood, Landier and Thesmar 2015, Duarte and Eisenbach 2015). In reality, however,

firms tend to exhibit clear preferences regarding what asset to sell first, for example their most

liquid assets (Boyson, Helwege and Jindra 2011). Barring such examples, behavior in crisis is

mostly driven by constraints, so if constraints do not bind institutions usually do not act – they

only act to avoid breaching constraints. The macroprudential stress tests tend to follow the

same approach.

Understanding behavior remains a key are for ongoing research and model development. In

the meantime, the framework we propose is designed to give policymakers the flexibility to test

different behavioral assumptions, and to consider the conditional outcomes and their sensitivity

to these assumptions.
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Box 3: Simulating the Evolution of the Network and Capturing

Higher-Order Effects

Based on the information on financial institutions (primarily the composition of

their balance sheet) and their interconnections via financial contracts , we can ini-

tialise thet = 0 multi-layered financial network (as has been explained inBox 1).

If also the markets (market mechanism of matching buyers and sellers and setting

prices), the constraints (which drive behaviour in stress), andbehaviour(which

uses information as an input) are specified, we can simulate the evolution of the

multi-layered network in stressed scenarios. This simulation will be explicitly

conditional on the behavioural assumptions we adopt. Such simulations allow us

to further explore contagion dynamics and inform measures of systemic risk. By

running simulations, this setup can also be used as a ‘laboratory’ to run policy

experiments or system-wide stress simulations and to evaluate existing policy.

6.2 Implementing Stress Testing Models in the General Framework

6.2.1 Flexible implementation of models depending on needs

Using the general stress testing framework’s building blocks, bespoke system-wide stress testing

models can be build. To be able to flexibly change the content of the platform, be able to

separate parts of the model, and understand what is going on, the code that makes up the

framework must be flexible, modular and transparent (Baptista, Farmer, Kleinnijenhuis, Wetzer

and Williamson 2017).21

Depending on research or policy question of interest, and the data available, a different bespoke

model might be implemented. For example, if one is interested in understanding – in a toy model

setting – what the effect of trading strategies and key binding constraints applicable to key types

of institutions is on price fragility, it might make sense to model within the box ‘markets’ an

order book. Whereas, when the goal is to understand to common asset holdings contagion and

its interaction with other types of contagion it might be sufficient to model price formation in

the box ‘markets’ based on a price impact function. Or when the goal is to understand how

vulnerable CCPs are to systemic risk and how much CCPs can contribute to systemic risk, it

would be crucial to model in the box financial contracts’ derivatives. Whereas, when one would

like to understand how exposure risk, funding liquidity, and market liquidity risk interact, it

might not immediately be necessary to model derivatives. When one would like to understand

precisely how all the microprudential regulations on a bank (such as the various liquidity and

leverage regulations) jointly affect systemic risk, it might make sense to model many of the

key regulatory constraints in the ‘constraints’ box, but otherwise modelling the key leverage

21An example of a library that meets these criteria is the Economic Simulation Library (ESL). See web-
site: https://economicsl.github.io. It is a community driven, open-source project to develop a user-friendly
modeling library, both in Python and Java, for building agent-based (network) models of economic systems.
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constraint might be sufficient. To investigate the key ways in which insurers contribute to

systemic risk, it might not be necessary to model all other types of financial institutions within

the ‘financial institution’ box . But when a central bank might want to gain a comprehensive

understanding of the current systemic risk in the financial system, it might make sense to model

all relevant financial institutions and all relevant financial contracts.

Whether a layer in the financial network will be modelled at the level of financial contracts or

less granularly will depend on the data availability.

7 Conclusion

Computational models provide a useful complement to more traditional equilibrium based meth-

ods. They have already been shown to be essential for understanding the dynamics of systemic

risk and for investigating the network properties of the financial system. Their role is likely

to become even more important in the future as increasingly comprehensive fine-grained data

becomes available, making it possible to carefully calibrate such models so that they can yield

more quantitative conclusions. Due to the inherent complexity of the financial system, and in

particular its nonlinear feedback loops, analytic methods are unlikely to be sufficient. We ex-

pect that computational methods will soon begin to go beyond hard wired behavioral rules and

move increasingly toward myopic optimization. Thus in the future such models may begin to be

able to withstand the Lucas critique. Behavioral economists have documented more and more

situations in which people are not fully rational, emphasizing the obvious point that realistic

behavior lies somewhere between full rationality and zero intelligence. Computational models

offer the possibility of implementing realistic levels of strategic behavior, while allowing one to

model the complex institutional structure of the financial system. We think that computational

models will play an expanding role for understanding financial stability and systemic risk.
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