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ABSTRACT

This study provides an in-depth analysis of how to estimate risk-neutral moments robustly.

A simulation and an empirical study show that estimating risk- neutral moments presents

a trade-off between (1) the bias of estimates caused by a limited strike price domain and (2)

the variance of estimates induced by micro-structural noise. The best trade-off is offered

by option-implied quantile moments estimated from a volatility surface interpolated with

a local-linear kernel regression and extrapolated linearly. A similarly good trade-off is

achieved by estimating regular central option-implied moments from a volatility surface

interpolated with a cubic smoothing spline and flat extrapolation.
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1 Introduction

Information embedded in option prices is valuable for practitioners, regulators and academics

alike. Unsurprisingly, an extensive literature has developed around the use of option-implied infor-

mation (e.g. Carr & Wu, 2009; Chang, Christoffersen, Jacobs, & Vainberg, 2011; Buss & Vilkov,

2012; Conrad, Dittmar, & Ghysels, 2013; Kozhan, Neuberger, & Schneider, 2013; Jurek, 2014; Stil-

ger, Kostakis, & Poon, 2016). Yet, there is surprisingly little literature which rigorously examines

the efficiency of different risk-neutral moment estimators. In theory, the estimation of risk-neutral

moments based on the theorem of Breeden & Litzenberger (1978) is an easy exercise given that a

continuum of option prices is available. However, the practical estimation of risk-neutral densities

from empirical option data is subject to many biases from discrete option prices and micro-structural

noise (e.g. Bliss & Panigirtzoglou, 2002; Dennis & Mayhew, 2009). These biases may also be re-

flected in the results of empirical studies. For example, the question of how option-implied skewness

is priced cannot be answered conclusively. Conrad et al. (2013) find that right skewed stocks carry

a lower return than left skewed stocks, whereas Rehman & Vilkov (2012) find the opposite. Both

studies use the method of Bakshi, Kapadia, & Madan (2003) to obtain risk-neutral skewness, but

implement it differently. Thus, the differences in results could be driven by the difference in the

estimation method. The main two studies analyzing the efficiency of risk-neutral moment estma-

tors, Dennis & Mayhew (2009) and Bliss & Panigirtzoglou (2002), rely on early implementations of

risk-neutral moments and only provide comparisons between a few select estimators. For example,

Dennis & Mayhew (2009) do not use any interpolation or extrapolation, whereas the study of Bliss

& Panigirtzoglou (2002) was published before the seminal work of Bakshi et al. (2003) and does

not incorporate the use of the central moment formulas of Bakshi et al. (2003). We fill this gap

in the literature by providing a comprehensive overview over the efficiency of the central moments

of Bakshi et al. (2003), quantile-moments, the simple VIX (SVIX) of Martin (2017), and the rare

disaster index (RIX) of Gao, Gao, & Song (2018); Gao, Lu, & Song (2018).

This study makes two contributions to the literature. First, it analyzes the efficiency of different

estimation techniques for the popular risk-neutral moments of Bakshi et al. (2003), the simple VIX

(SVIX) of Martin (2017), and the rare disaster index (RIX) of Gao, Gao, & Song (2018); Gao,
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Lu, & Song (2018) in-depth. A Monte Carlo simulation is used to price options under a stochastic

volatility and jump (SVJ) model (Bates, 1996). The SVJ model nests the Black & Scholes (1973),

the Heston (1993), and the Merton (1976) model and generates a distribution with higher levels

of skewness and kurtosis than the normal distribution. Based on this simulated option data a

classical horse race between three popular risk-neutral moment estimation methods is performed.

In the horse race risk-neutral moments estimated from an implied volatility surface obtained from

a cubic smoothing spline with horizontal extrapolation (e.g. Carr & Wu, 2009; Rehman & Vilkov,

2012; Neumann & Skiadopoulos, 2013), from a cubic smoothing spline with linear extrapolation

(e.g. Jiang & Tian, 2007), from a local-linear kernel regression with linear extrapolation (Song &

Xiu, 2016), and from a local-constant kernel regression with linear extrapolation (Aı̈t-Sahalia &

Lo, 1998) are tested. The robustness of the estimation methods is tested under real-world data

quality by restricting the range of available strike prices, increasing the spacing between strikes,

and by adding noise to the price data. All methods deliver accurate results if a large number of

options over a wide range is available. As the domain spanned by available option prices declines,

methods that extrapolate the implied volatility surface linearly in strike still perform reasonably

well whereas horizontal extrapolation of the volatility surface performs poorly. In contrast, horizon-

tal extrapolation is less affected by high levels of micro-structural noise, whereas methods which

rely on linear extrapolation are strongly affected by small levels of micro-structural noise. This

finding represents a bias-variance trade-off in real-world datasets: Researchers can choose methods

that minimize the estimation error caused by a limited strike price domain or they can choose to

minimize the variance of estimates induced by micro-structural noise in option-prices.

The second contribution is to propose the use of quantile moments to describe the risk-neutral

distribution. Quantile moments are more robust and allow for greater flexibility than central mo-

ments. In contrast to central moments, quantile moments do not rely on probability weighting of

outcomes making them more robust to the choice of extrapolation method and to data errors in

far out-of-the-money options. Under real-world data quality the tails of the risk-neutral distribu-

tion are rarely observed as they require valid prices of far out-of-the-money options. Therefore,

researchers will typically have to extrapolate the implied volatility surface or the risk-neutral dis-

tribution to artificially obtain prices of far out-of-the options. The extrapolation of the volatility
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surface requires an implicit assumption on the shape of the tail of the risk-neutral distribution.

Central moments place a high weight on the tails of the distribution. For example, central skew-

ness probability weights the cubed return thus placing an over-proportional weight on the prices

of far out-of-the-money options.1 Therefore central moments react sensitively to the choice of the

extrapolation method. In contrast, quantile moments are computed by comparing the position of

quantiles and thus are less sensitive to the choice of extrapolation method. Hinkley’s (1975) mea-

sure of quantile skewness is used in this study. Hinkley’s skewness compares the distance between

the median and a quantile in the right tail to the distance between the median and a quantile in

the left tail. The choice of quantiles provides additional flexibility compared to central moments,

allowing researchers to measure the symmetry of the distribution at different points. Quantile kur-

tosis is measured by Ruppert’s (1987) ratio of quantile ranges and quantile volatility is defined as

the inter-quartile range. Quantile moments are by construction more robust to sparsely available

option prices over a narrow domain than central moments. This intuition is confirmed in our sim-

ulation study. The findings show that quantile moments deliver accurate estimates of risk-neutral

moments even if strike prices are truncated to a small domain. However, despite their practical and

theoretical advantages, quantile moments have only been used rarely in the literature, for example

Mirkov, Pozdeev, Paul, & Söderlind (2018) use Hinkley’s skewness to measure uncertainty around

the removal of Swiss Franc cap. To the best of our knowledge, this is the first paper to propose the

use of quantile kurtosis and inter-quartile range to describe the shape of the risk-neutral distribution.

The estimation of risk-neutral moments from real option data is subject to many biases. Option

prices that span only a small domain truncate the available information. Consequently, narrow

strike price domains supply us only with accurate information close to the current stock price,

whereas tail information is lost. Furthermore, if the difference between two adjacent strike prices is

large, the information is more sparse leading to potentially inaccurate estimates of the risk-neutral

distribution. In addition to the bias caused by discrete prices, micro-structural noise in option

prices is another important source of variance in estimates of risk-neutral moments. Observed

option prices in empirical datasets are noisy. Prices are usually reported at a daily frequency, but

1There seems to be evidence that traders use the over-proportional weight of far out-of-the-money options to
manipulate central moments (Griffin & Shams, 2017).
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often the last trade in each option contract happened at a different time of the day. This asynchro-

neous trading is a source of micro-structural noise. In addition, option prices have a bid-ask spread

which requires to make an assumption on the true value of the option. Typically, the true value

of the option is assumed to be the mid-price, but it could be anywhere between bid- and ask-price

(Bliss & Panigirtzoglou, 2002).

Our study is most closely related to Dennis & Mayhew (2009) and Bliss & Panigirtzoglou (2002).

Dennis & Mayhew (2009) simulate a range of European option prices from the Black-Scholes model.

Therefore, returns follow a normal distribution and the real values of the risk-neutral moments are

known and can be compared to the estimates. The drawback of the approach of Dennis & Mayhew

(2009) is that they can only evaluate the bias in option prices which are based on a normal dis-

tribution, which is inconsistent with a the commonly observed implied volatility skew. Moreover,

they do not interpolate or extrapolate the volatility surface, which is the approach used by most

recent studies such as Conrad et al. (2013) or Jurek (2014). Nevertheless, their results show that

too large gaps between option prices or an insufficiently small range of option prices causes errors

in option-implied moments. In particular they increase the spacing between strikes from 0.1 to 5

dollar in intervals of 10 cents. They find that for a stock with a current price of 70 dollar and a

volatility of 20% risk-neutral skewness and kurtosis will start to oscillate around their true values.

The amplitude is initially small but induces non-neglectable errors at larger spacings. For example,

at a spacing just above 4.5 dollar between strikes, risk-neutral skewness takes a value smaller than

-0.4, compared to the true value of 0. Dennis & Mayhew (2009) make a similar finding about the

domain width, i.e. how far option data extends into the tails. In their normally distributed exam-

ple of a stock with a volatility of 20% the skewness estimates are only unbiased if the strike prices

extend about 20% into both tails. Bliss & Panigirtzoglou (2002) test the stability of a lognormal

mixture model similar to Söderlind & Svensson (1997) and a method based on cubic smoothing

splines similar to Jackwerth & Rubinstein (1996). They use real option data and add normally

distributed noise to the prices to simulate micro-structure noise. Their results indicate that the

smoothing spline implementation similar to Jackwerth & Rubinstein (1996) is more robust to noise

than mixture based methods. In particular they find that the mixture based model often leads to

unstable solutions or produced spurious spikes. In contrast to our study, they do not analyze the
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bias induced by small domains and discrete option data on the estimates of risk-neutral moments.

The results in our study go far beyond the results in Dennis & Mayhew (2009) and Bliss &

Panigirtzoglou (2002). Our findings show that the properties of option-implied moment estima-

tors depend on the interplay between the inter- and extrapolation method. This has important

and actionable consequences for researchers implementing option-implied moment estimators. For

example, linear extrapolation combined with local-linear kernel regressions leads to less noise sen-

sitive estimates than linear extrapolation combined with cubic smoothing splines, while having

a similar bias due to narrow domain widths. Researchers that are concerned with low bias es-

timates of risk-neutral moments and that have access to relatively clean option prices, such as

foreign exchange options, should thus prefer linear extrapolation combined with local-linear kernel

regressions. In contrast, if researchers are estimating option-implied information from relatively

noisy options, such as single stock equity options, horizontal extrapolation combined with cubic

smoothing splines should be preferred over linear extrapolation combined with local-linear kernel

regressions.

The paper proceeds as follows. Section 2 briefly reviews the risk-neutral moments of Bakshi

et al. (2003) and introduces quantile moments. Section 3 discusses the different estimation tech-

niques. Section 4 presents the methodology and the result of the horse-race between the different

estimators. Section 5 presents our empirical results. Section 6 presents alternative specifications of

the simulation study. Section 7 concludes.

2 Estimating Risk-Neutral Moments

Most of the modern literature (e.g. Bakshi et al., 2003; Carr & Wu, 2009; Kozhan et al., 2013;

Martin, 2017) on risk-neutral moments relies on the theorem of Breeden & Litzenberger (1978) to

obtain the risk-neutral density. The Breeden-Litzenberger theorem does not make an assumption

about the price process of stocks and therefore allows recovery of the probability density function
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in a model-free way as:

F (ST < K) =erτ
∂P

∂K
(1)

f(ST ) =erτ
∂2P

∂K2
(2)

where P is the price of a put, r is the risk-free rate, τ is the time to maturity, F is the cumulative

density function (CDF), and f is the probability density function (PDF) of the underlying under the

risk-neutral measure. Hence, the CDF or the PDF of the option-implied price distribution can be

obtained by estimating the first or second derivative of a put option with respect to the strike price.

2.1 The risk-neutral moments of Bakshi, Kapadia and Madan (2003)

Bakshi et al. (2003) develop an analytical solution to obtain estimates of risk-neutral moments

without obtaining the PDF first. They construct three synthetic securities that pay the squared,

cubic, and quartic return at maturity respectively. The result of Bakshi & Madan (2000) allows to

derive the analytical value of these contracts as:

V [t, τ ] =

∫ ∞
St

2(1− ln[KSt
])

K2
C(t, τ,K)dK

+

∫ St

0

2(1− ln[St
K ])

K2
P (t, τ,K)dK

(3)

W [t, τ ] =

∫ ∞
St

6ln[KSt
]− 3(ln[KSt

])2

K2
C(t, τ,K)dK

−
∫ St

0

6ln[St
K ]− 3(ln[St

K ])2

K2
P (t, τ,K)dK

(4)

X[t, τ ] =

∫ ∞
St

12(ln[KSt
])2 − 4(ln[KSt

])3

K2
C(t, τ,K)dK

+

∫ St

0

12(ln[St
K ])2 − 4(ln[St

K ])3

K2
P (t, τ,K)dK

(5)

The challenge in the estimation of central risk-neutral moments is to evaluate the integrals in Equa-

tions (3) - (5). A numerical approximation of the integrals only delivers a reasonable approximation

if a densely spaced set of option prices is available over a wide domain. The need for a wide do-

main is especially pressing for higher order moments that place a large weight on the tails of the
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distribution and thus on far out-of-the-money options. Inserting the prices of these contracts into

the definitions of central moments yields:

V olQ =
√
erτV − µ2 (6)

SkewQ =
erτW − 3erτµV + 2µ3

[erτV − µ2]3/2
(7)

KurtQ =
erτX − 4µW + 6erτµ2V − µ4

[erτV − µ2]2
(8)

where

µ = erτ − 1− erτ V
2
− erτW

6
− erτ X

24
(9)

2.2 Quantile Moments

Quantile moments are a convenient alternative to describe the shape of probability distributions.

The quantile function is the inverse of the CDF and thus maps from the interval [0, 1] onto the

real line. The quantile function is obtained by numerically inverting the estimated CDF. Quantile

moments, such as the median, have the advantage that they are more robust in the presence of

data errors and outliers than traditional central moments. The idea behind quantile moments is to

compare the relative position of quantiles to describe the shape of a probability distribution. Thus,

it is possible to describe the shape of different portions of the probability distribution depending on

the choice of the quantiles. For example, quantile skewness can be used to measure the symmetry

in the center or tails of the distribution, making quantile moments more flexible than central

moments. The principle behind quantile moments is illustrated in Figure 1. Their main difference

from central moments is that they are not based on probability weighting of outcomes. Therefore,

quantile moments react less to extreme events in the tails, making them inherently more robust

than central moments. The inter-quartile range is used to measure quantile volatility which is

defined as:

QVol = Q(0.75)−Q(0.25) (10)
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Inter-quartile range is a measure of dispersion that corresponds to the standard deviation of a

probability distribution. It can be interpreted as the expected 50% confidence interval of the stock

return (Figure 1 b). If the quantiles are further apart, the uncertainty about future returns is

higher. It is also possible to compute the inter-quantile range from different quantiles given that

they have the same distance from the median.2 Quantile skewness allows for an equal flexibility.

Hinkley (1975) defines quantile skewness as:

QSkew(p) =
[Q(p)−Q(0.5)]− [Q(0.5)−Q(1− p)]

Q(p)−Q(1− p)
(11)

where 0.5 < p < 1. Quantile skewness can take values between −1 and 1 whereas a value of 0

indicates that the distribution is symmetric (Groeneveld & Meeden, 1984). Quantile skewness is

the normalized difference in the distance of the p quantile to the median and the 1 − p quantile

to the median. Therefore, it compares the length of the right tail to the length of the left tail

(Figure 1c). Economically, quantile skewness measures whether there is more (risk-neutral) upside

potential than downside risk. The study relies on Ruppert’s (1987) measure of quantile kurtosis

which is defined as:

QKurt(p) =
Q(p)−Q(1− p)
Q(q)−Q(1− q)

(12)

where 0.5 < q < p < 1. Quantile kurtosis is the ratio between two quantile ranges. It is always

positive and larger than 1. Quantile kurtosis measures how far the tails extend in comparison to

a reference interval. We choose p = 0.95 and q = 0.75 because in this case we scale with the

inter-quartile range. The flexibility in the choice of p and q is an advantage over the traditional

central kurtosis. Central kurtosis is difficult to define as it measures tail-weight and peakedness

at the same time. Balanda & MacGillivray (1988) define central kurtosis as the “location- and

scale-free movement of probability mass from the shoulders of a distribution into its center and

2An interesting case arises if the confidence interval is increased to nearly 100% because then the confidence
interval of the risk-neutral measure Q is identical to the confidence interval of the real probability measure P. The
idea behind risk-neutral pricing is that in a complete and arbitrage-free market the risk-neutral measure Q exists
and is equivalent to the real probability measure P. The definition of equivalence states that if Q is equivalent to P,
both probability measures must agree on the states of the world with zero probability. Therefore, the 0th and 100th

percentiles of both distributions must be identical. Even though the information embedded in the confidence interval
is less exhaustive than the information of the complete physical density, it can be obtained with mild assumptions
(uniqueness of the risk-neutral density) compared to e.g., Ross (2015).
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tails”. Schmid & Trede (2003) discuss that depending on the choice of p and q, quantile kurtosis

can measure either tail-weight or peakedness. For large values of p, quantile kurtosis measures

tail-weight, but for small values it measures peakedness. Economically, quantile kurtosis can be

interpreted as an indication of how large extreme returns are in comparison to normal returns.

[Figure 1 approximately here.]

Obtaining the quantile function requires an estimated CDF. The CDF is obtained using the

theorem of Breeden & Litzenberger (1978) and estimate the derivatives with central differences3.

2.3 A näıve quantile approximation

In addition to the model-free method based on the theorem of Breeden & Litzenberger (1978)

this study tests a näıve approximation of the CDF based on the model of Black & Scholes (1973)

and Merton (1976). The Black-Scholes model states that the price of a put is:

P (S,K, σK , τ, r) = e−rτKΦ(−d2(σ))− S0Φ(−d1(σ)) (13)

where Φ is the CDF of the normal distribution, σ is the implied volatility, and d1 and d2 are defined

as usual. Differentiating once with respect to the strike and rearranging yields:

F (Sτ < K) =erτΦ(−d2(σ)) (14)

Hence, the CDF of the stock price is näıvely recovered from the Black-Scholes formula. Note that

the näıve approximation of the CDF is biased as it does not account for the implied volatility skew.4

However, we opt to include the näıve approximation as it avoids taking a numerical derivative and

should therefore be more stable than the model-free methodology.

3The choice of numerical differentiation method is not of particular relevance as we take the derivative of the
interpolated volatility surface which has a very dense continuum of strike prices. Using other differentiation methods,
e.g. a five point approximation, does not change the results.

4Practitioners often use a skew correction (Gatheral, 2011, p. 104) which involves the derivative of the implied
volatility surface with respect to the strike price and is essentially identical to the model-free methodology.
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2.4 Beyond option-implied moments: RIX, VIX, SVIX

The recent literature introduces a number of innovative option-implied measures. In particular,

we analyze three measures in-depth. To begin with, Martin (2017) introduces a simplified volatility

index SVIX which estimates option-implied variance more robustly. Traditional variance swaps

and the VIX are based on the entropy of the underlying return process, i.e. they estimate the risk-

neutral variance from log returns. However, the entropy based definition of the VIX only provides

an unbiased estimate of volatility if the underlying process does not contain any jumps. Martin

(2017) points out additional deficiencies of the traditional variance swaps, e.g. if the underlying

stock goes bankrupt, the payoff of a variance swap would be infinite. To alleviate these problems,

Martin (2017) proposes to estimate the variance from simple returns:

SV IXt =
2erτ

τFt(τ)2

(∫ Ft(τ)

0
P (t, τ,K)dK +

∫ ∞
Ft(τ)

C(t, τ,K)dK

)
(15)

where Ft(τ) is the forward price at time t with maturity τ . The major difference of the SVIX to

the VIX is that the VIX measures entropy whereas the SVIX measures variance. Entropy is more

sensitive to the left tail of the distribution and thus the VIX loads more strongly on out-of-the-

money put options. It is possible to construct a measure of non-lognormality by comparing VIX

and SVIX (Martin, 2017). This idea is also used by Gao, Gao, & Song (2018) and Gao, Lu, & Song

(2018) who propose a rare disaster concern index (RIX) incorporating all higher-order moments.

Their RIX measure is essentially the left-tail difference between the VIX and the jump-invariant

version of the VIX similar to the variance measure of Bakshi et al. (2003) in Equation 3:

RIX =
2erτ

τ

(∫ St

0

ln(St/K)

K2
P (t, τ,K)dK

)
(16)

Gao, Gao, & Song (2018) show that their RIX incorporates all higher-order cumulants and

thus provides a natural downside tail-risk measure. Finally, we also include the classic VIX in our

analysis:

V IX =
2erτ

τ

(∫ St

0

1

K2
P (t, τ,K)dK +

∫ ∞
St

1

K2
C(t, τ,K)dK

)
(17)
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3 Robust estimation of risk-neutral moments

To obtain an accurate estimate of risk-neutral moments densely-spaced strike prices over a wide

domain are needed. This requirement poses two problems: First, interpolation of the existing

data, and second, the extrapolation outside the observed domain of option prices. The accuracy

of the estimation of risk-neutral moments is thus dependent on the amount of available option data.

3.1 Interpolating the volatility surface

While there are many different approaches to obtain a smooth implied volatility surface, we

focus on two approaches that are common in the literature and are easy to implement as they are

available in most common software packages. The first approach uses a cubic smoothing spline and

is the most common in the literature (e.g. Carr & Wu, 2009; Rehman & Vilkov, 2012). A smoothing

spline fits multiple polynomials which connect smoothly to each other at knots. Smoothing splines

require two parameters: The degree of the polynomials and the smoothness of the spline. We

follow the most common approach to use cubic polynomials of order three. We set the smoothing

parameter to allow for an average variation of 0.01 in implied volatilities. In most software packages

the smoothing factor is the maximum sum of squared errors that is admissible and the number of

knots will be increased until this condition is achieved.

Second, we follow Aı̈t-Sahalia & Lo (1998) and Song & Xiu (2016) and interpolate the implied

volatility surface with a non-parametric kernel regression. Aı̈t-Sahalia & Lo (1998) smooth the

implied volatility surface with the local-constant or Nadaraya-Watson kernel estimator. However,

in small samples the local-constant estimator tends to be inaccurate at the boundaries of the do-

main (e.g., Li & Racine, 2004) and thus artificially flattens the volatility surface. This leads to

flatter than implied surfaces and should thus bias estimates of risk-neutral moments. Song & Xiu

(2016) propose to use a local-linear kernel-regression instead to avoid under- or over-estimation of

the implied volatility at the boundary. We use the local-linear estimator proposed by Stone (1977)

and Cleveland (1979). The local-linear estimator has superior properties over the local-constant

estimator (e.g., Fan, 1993). We choose to use a Gaussian kernel, but the choice of the kernel has
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little influence on the results (Aı̈t-Sahalia & Lo, 1998). In contrast, the choice of the bandwidth

is crucial to avoid over- or under-smoothing the implied volatility surface. We use leave-one-out

cross-validation to select the bandwidth which is readily available in most software packages.

3.2 Extrapolating the volatility surface

Extrapolating the implied volatility surface is more challenging than interpolating it. The strikes

of most traded options are located around the current stock price. In contrast, far out-of-the-money

options are traded less frequently. Thus, we are observing the center portion of the risk-neutral

distribution and under real-world data researchers will have make a choice about the extrapolation

of the implied volatility surface. The extrapolation of the implied volatility surface is comparable

to adding tails to the risk-neutral probability density function. Extrapolating the implied volatility

surface is a crucial step in the estimation of risk-neutral moments as higher order moments place

a large weight on the tails of the risk-neutral distribution.

We analyze three different extrapolation techniques: First, we analyze risk-neutral moments if

the volatility surface is not extrapolated similar to Conrad et al. (2013). If the volatility surface is

not extrapolated researchers avoid making a decision about the shape of the tails of the risk-neutral

distribution. However, under sparse option data the risk-neutral moment estimates will be biased

as they focus only on the center of the distribution. For example, risk-neutral central skewness esti-

mated from raw option data will estimate the skewness mostly from the center and shoulders of the

risk-neutral distribution thus effectively creating a different measure of skewness. This limitation

is particularly unfavorable if the risk-neutral moments of different assets should be compared, i.e.

when sorting stocks on an estimate of risk-neutral skewness. Without extrapolation, stocks with

more liquid option markets will generate skewness estimates which are mainly driven by the tail

of the distribution while stocks with less liquid option markets generate skewness estimates which

are constrained to the center of the risk-neutral distribution. Second, we extrapolate the implied

volatility surface horizontally outside the known domain of strike prices, which is the most common

procedure in the literature (e.g. Carr & Wu, 2009; Rehman & Vilkov, 2012). Assuming that the

volatility surface is flat beyond the last observed strike is equivalent to assuming that the tails
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are normal. This assumption is unlikely to be true because the implied volatility surface typically

exhibits a volatility skew and thus risk-neutral distributions are not normal. Moreover, horizontal

extrapolation causes additional problems because it induces a kink in the volatility surface at the

lowest and highest observed strike if the volatility surface is not flat at this point. The kink in

the volatility surface is a discontinuity which can cause the risk-neutral PDF to become negative.

Therefore, it is necessary to run an isotonic regression on the estimated cumulative density function

to ensure that it is strictly increasing. Nevertheless, extrapolating the implied volatility surface

horizontally is a simple procedure which avoids any erratic behavior in the tails of the distribution

making it a robust choice. Third, we use linear extrapolation, which extends the implied volatility

surface as a linear function beyond the last observed options. Jiang & Tian (2007) show that

extrapolating linearly is superior to the common method of flat extrapolation. If the volatility

surface is upward sloping at the bounds the resulting tail will be heavier than the tail generated

by a normal distribution. Linear extrapolation also has the advantage that the volatility surface is

not kinked at the bounds helping to avoid a negative risk-neutral PDF. The slope at the bounds

of the observed volatility surface is calculated with respect to the strike price.

3.3 Further considerations: Smoothing factor, degree of splines, and choice of

variable

The estimation of risk-neutral moments is dependent on a variety of additional parameters.

We opted to restrict this paper to the most relevant parameters, but for completeness we discuss

these additional estimation options. To begin with, all our estimations are based on smoothing the

implied volatility over strike prices. However, Shimko (1993) or Jurek (2014) propose to smooth

the implied volatility surface over option delta calculated with the at-the-money implied volatility.

Other authors (e.g. Carr & Wu, 2009; Stilger et al., 2016) choose to smooth the volatility surface

over log-moneyness. In unreported results we also tested smoothing over deltas and over log-

moneyness. In general, smoothing over strike prices and log-moneyness is less affected by narrow

domains and noisy option data and the differences between both methods are neglectable. Smooth-

ing over deltas has the theoretical advantage that it allows for most variation in close to-the-money

implied volatilities where option prices are the most accurate. However, higher order moments are
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sensitive to the prices of far out-of-the-money options and changes in options close-to-the-money

have relatively little influence on the risk-neutral moments. Therefore, the relatively lower varia-

tion in the tail is a disadvantage leading to a slightly increased bias. Nevertheless, differences are

small compared to total errors induced by narrow strike price domains and micro-structural noise.

Furthermore, we vary the smoothing factor. In unreported results we tested smoothing factors

allowing for an average approximation error in implied volatilities of 0.1 and 0.001, but found only

minor differences in results. Finally, splines require that the degree of the polynomial functions

between knots is defined. We repeated our simulation study with quartic splines and found little

differences. In addition, we tested quartic smoothing splines with a single knot placed at-the-money

as suggested by Birru & Figlewski (2012) but found no significant differences to cubic splines.

4 Results of the simulation study

To test the efficiency of the different extraction methods we extend the idea of Dennis & Mayhew

(2009) and simulate option data. Simulated option data has the advantage that the true underlying

distribution is known and estimates of moments can be compared to their true values. We test the

efficiency of the different extraction methods by limiting the strike price domain of option prices,

increasing the spacing between option prices, and by adding noise to the data.

4.1 Simulating option prices

Option prices generated by a stochastic-volatility-jump model similar to Bates (1996), where

stock prices have stochastic volatility and a Poisson jump process with normally distributed jumps.

An SVJ model gives us the flexibility to simulate non-normal distributions that are more realistic

than the normal distribution assumed in the Black-Scholes model. The stochastic-volatility jump

process is defined as:
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corr(dZ1, dZ2) = ρdt (20)

prob(dN = 1) = λdt (21)

Z1, Z2 ∼ N(0, 1) (22)

ln(1 + J) ∼ N(ln(1 + µJ)− 0.5σ2J , σ
2
J) (23)

Where S is the stock price, r is the risk-free rate, σ is the volatility, κ is the mean reversion

speed, σL is the long-run variance, ν is the volatility of volatility, Z1 and Z2 are two correlated stan-

dard normally distributed variables with correlation ρ, N is a Poisson distributed random variable

with intensity λ where jumps, Jt, are log-normally distributed. The equations are discretized with

an Euler scheme and option prices are based on 100’000 paths simulated with antithetic variables

and moment matching. The volatility process is initialized with the long-run variance.

We generate two different scenarios: First, a standard scenario with central (quantile) volatility

of 0.23 (0.14), skewness of -0.89 (-0.20), and kurtosis of 4.72 (2.61). And second, a crisis scenario

with central (quantile) volatility of 0.64 (0.30), skewness of -2.27 (-0.55), and kurtosis of 10.39

(3.07). In both scenarios we simulate option data with 90 days to maturity, time steps of half

a day, an interest rate of 5%, and a stock price of 100 dollars. Based on the process we create

option data that spans the domain from 1 dollar to 199 dollars in 0.5 dollar intervals. Thus, the

domain half-width is 99% of the stock price and the spacing is 0.5 dollars or 0.5% of the stock price.5

In each of the scenarios, the impact of narrow domains and micro-structural noise on the risk-

neutral moments is tested following the methodology of Dennis & Mayhew (2009) and Bliss &

5The exact parameters for replication in the standard scenario are: κ = 2, σL = 0.05, ν = 0.1, ρ = −0.6,
λ = µJ = σJ = 0. The parameters are chosen to match the moments on a regular day, e.g. July 30 1997. Parameters
for replication in the crisis scenario are: κ = 0.5, σL = 0.3, ν = 0.4, ρ = −0.95, λ = 1, µJ = −0.15, σJ = 0.05. The
parameters are chosen to match the moments on a crisis day, e.g. October 12 2008 where the S&P500 had a return
of -5.20%.
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Panigirtzoglou (2002). We also test the impact of wide strike price spacings. However, increased

spacing between strike prices is relatively benign as filling the gaps is an interpolation exercise that

is inherently easier then extrapolation. To keep the paper concise, we opt to present the results

of restricted strike price domains and micro-structural noise in more depth. To test the effect of

reduced domain width on risk-neutral moment estimates, the spacing is held constant at 50 cent

and the dataset is truncated to a domain half-width of 10% of the stock price, from 90 to 110

dollars. Risk-neutral moments are then estimated from the truncated dataset. The domain half-

width is then increased in 1% steps to a maximum of 99%. In each step, the risk-neutral moments

are estimated from the truncated dataset. A similar procedure is also applied to test the effect of

different strike price spacings. The domain half-width is held constant at 99% of the stock price

and the spacing between strike prices is increased from 1 dollar (1%) to 10 dollars (10%) in 50

cent steps. The bias induced by market micro-structural noise is analyzed by perturbing the option

prices in the dataset. Micro-structure noise is simulated by perturbing option prices as follows:

P̃i = Pi(1 + θη) η ∼ N(0, 1) (24)

where θ is increased from 1% to 10%. Micro-structural noise can be interpreted as the uncertainty

about the true value of an option within the bid-ask spread. Assuming that perturbed option prices

fall into the bid-ask bounds in 95% of all cases, the simulation can also be interpreted as varying the

bid-ask spread from approximately 3.9% to 39%. After perturbing option prices, implied volatil-

ities are again extracted and quantile and central moments are estimated and compared to the

true moments. This procedure is repeated 1000 times for each noise level. To test the influence of

micro-structural noise under realistic conditions we restrict the domain from 80 to 120 dollar and

keep the spacing at 2.5 dollar.

In each step we interpolate and extrapolate the implied volatility surface using three different

methods: First, we use a cubic smoothing spline with horizontal extrapolation (spline-flat), second,

a cubic smoothing spline with linear extrapolation (spline-linear), and third, a local-linear kernel

regression with linear extrapolation (kernel-linear). The smoothing factor of the splines allows for

an average error in implied volatilities of 0.01 and the bandwidth of the local-linear kernel regression
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is determined through leave-one-out cross-validation. Our results are benchmarked against a plain-

vanilla implementation of Bakshi et al. (2003) with no inter- or extrapolation as used by Dennis &

Mayhew (2009) and Conrad et al. (2013). In addition to the central risk-neutral moments of Bakshi

et al. (2003), we also estimate quantile moments based on the model-free approach and the näıve

Black-Scholes approximation. Quantile volatility is defined as the inter-quartile range between the

75th and 25th percentile. Quantile skewness is measured at the 10th and 90th percentile (p = 0.9)

and quantile kurtosis is estimated with an outer range between the 95th and 5th percentile and an

inner range between the 75th and 25th percentile (p = 0.95 and q = 0.75). Estimation errors are

calculated in percent of the true values because the estimates of quantile and central moments are

not on the same scale.

4.2 Results of risk-neutral moments

We begin by analyzing the bias in risk-neutral moments introduced by an insufficiently wide

domains. The results are presented in Table 1 and Figure 2. Panels A & B of Figure 2 show

the efficiency of different inter- and extrapolation techniques. In the calm scenario all estimation

methods provide accurate estimates of central volatility. However, the plain-vanilla implementa-

tion (BKM-raw) converges more slowly to the true value in comparison to the other methods. The

estimation errors are higher for estimates of central skewness. Notably, the two methods that rely

on linear extrapolation deliver a speedy convergence to the true value of skewness. In contrast,

a smoothing spline approach with horizontal extrapolation estimates skewness initially with an

absolute error of 40% and converges at a domain half-width of 60%. Moreover, no inter- or extrap-

olating yields an error of 60% initially. The results are similar for kurtosis. Linear extrapolation

delivers lower initial errors and faster convergence to the true value. This finding becomes even

more apparent in the crisis scenario (Panel B). While both extrapolation methods only converge

to the true value of central moments at a domain half-width of approximately 90%, linear extrap-

olation has a significantly lower estimation bias if the domain of option prices spans only a narrow

domain. This observation is in line with the results of Jiang & Tian (2007) and can be attributed

to the different tail shapes of the risk-neutral density that are caused by the different extrapolation

methods. Horizontal extrapolation assumes a flat volatility surface beyond the last available option
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prices and thus essentially adds the tail of a normal distribution. In contrast, linear extrapolation

leads to heavier than normal tails if the surface is upward sloping at the bounds, leading to a better

approximation of the underlying distribution. Moreover, the choice of the smoothing method, cubic

smoothing splines or a kernel regression, does not have a large influence on the bias of the estima-

tion caused by an insufficiently wide domain. Panels C & D show a comparison of quantile and

central moments based on a kernel regression. Notably, the model-free implementation of quantile

moments delivers accurate estimates even for narrow domains under both scenarios for all mo-

ments. This finding becomes especially apparent when the performance of the model-free quantile

moments estimator is compared to the common Bakshi et al. (2003) cubic spline implementation

with horizontal extrapolation. This finding is not coincidental and is related to the construction

of quantile and central moments. Central moments require to find E[X], E[X2], E[X3], etc. The

higher the order of the desired moment, the larger is the weight on the tail of the distribution.

Thus, the estimation of higher order central moments is almost certainly biased until the entire

PDF is recovered. In contrast, quantile moments only require the correct estimation of the relevant

quantiles and thus can deliver accurate estimates even when option prices do not reveal the entire

PDF. Moreover, the näıve Black-Scholes approximation does not converge to the true value of any

quantile moment; however, it nearly instantly converges to a stable value. In addition to the results

in Figure 2, Table 1 shows the results in tabular from for the domain half-widths of 10%, 50%, and

80%. In addition, Table 1 also contains estimates of quantile moments based on cubic splines with

flat extrapolation. Even under a horizontal extrapolation quantile moments have a lower bias under

narrow domains than their central counterparts. However, the estimation of model-free quantile

skewness from a spline-linear model does not converge to the true value of quantile skewness in

the standard scenario. This finding is most likely due to the kink in the implied volatility sur-

face caused by the horizontal extrapolation leading to numerical problems when differentiating the

option-price surface to obtain the CDF. If the relevant quantile happens to be close to the kink,

estimates of quantile moments become unstable and biased. We therefore recommend to estimate

quantile moments from linearly extrapolated volatility surfaces. Moreover, Table 1 also contains

estimates obtained from a local-constant kernel regression comparable in magnitude to the bias of

the cubic smoothing spline with horizontal extrapolation.
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[Figure 2 & Table 1 about here.]

The sensitivity of estimates to micro-structural noise is shown in Figure 3 and Table 2. Panels

A and B show the standard deviation of estimates from different inter- and extrapolation methods

to micro-structural noise under a standard (Panel A) and crisis scenario (Panel B). We can observe

that a plain-vanilla implementation of Bakshi et al. (2003), without inter- and extrapolation, is

the most robust to noise for all moments and for both scenarios. Moreover, a cubic spline with

linear extrapolation is very sensitive to micro-structural noise. For example under the spline-linear

method, perturbing option prices with a standard deviation of 5% leads to a standard deviation of

central skewness estimates of 147.09% in the standard scenario (Panel A of Table 2). In contrast,

the commonly used method of cubic smoothing splines with horizontal extrapolation fares relatively

well for all moments in all scenarios. For example, even under micro-structural noise with a stan-

dard deviation of 10%, the standard deviation of central skewness estimates is just 6.60% under the

crisis scenario (Panel B of Table 2). Estimates of the kernel regression technique are reasonably ro-

bust to micro-structural noise, but are slightly more affected than estimates using cubic smoothing

splines with horizontal extrapolation. Moreover, the local-constant kernel regressions with linear

extrapolation deliver relatively stable estimates and perform even slightly better than the cubic

smoothing splines with horizontal extrapolation in some cases. The standard deviations of quantile

moments are comparable to their central counterparts. Under the standard scenario (Panel C in

Figure 3) the quantile moments estimated from a näıve Black-Scholes approximation are the least

affected by noise. In contrast, model-free quantile moments tend to pick up more micro-structural

noise. In comparison with central moments, näıve Black-Scholes quantile moments are slightly

less affected by noise, whereas model-free quantile moments are more affected by micro-structural

noise. Under the crisis scenario, the differences between estimation methods are smaller. Central

moments estimated with smoothing splines and horizontal extrapolation are the most robust to

micro-structural noise. However, the differences between moments are relatively small.

The previous results reveal a bias-variance trade-off.6 Methods with a relatively low bias under

narrow domains, i.e. central moments estimated from a smoothed volatility surface with linear

6The bias-variance trade-off exists under real-world data. Asymptotically all methods are unbiased.
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extrapolation, are relatively strongly affected by micro-structural noise leading to a high variance

in the estimates. In contrast, methods with a high bias under narrow domains, i.e. a plain-vanilla

implementation of Bakshi et al. (2003), have a low variance of estimates even under high levels of

micro-structural noise. The most common method in the literature, central moments estimated

from cubic smoothing splines with flat extrapolation, has a relatively high bias under narrow

domain-width, but is relatively little affected by micro-structural noise. These properties make this

method attractive for datasets with relatively wide domains, such as single stocks with highly liquid

option markets or S&P 500 index options. In contrast, central moments estimated from datasets

with narrow domains, such as single stocks with relatively illiquid options, likely carry a high bias

and under or over estimate risk-neutral moments. At the same time, the relatively high level of

micro-structural noise in prices of illiquid single stock options will have only a minor affect on the

estimates of risk-neutral moments based on the spline-flat method. An opposite result is delivered

by quantile moments estimated from a linearly extrapolated volatility surface. While the estimates

carry a low bias, they are affected by micro-structural noise to a greater extent. Quantile moments

estimated from a linearly extrapolated volatility surface have a significantly lower bias compared

to the standard method, especially under narrow domains.

[Figure 3 and Table 2 about here.]

The approximation errors for different domain spacings (Table 3) are generally smaller than the

approximation errors caused by a small domain. The error is also easier to control as smoothing

over strike prices is an interpolation task whereas extending the domain requires extrapolation.

The approximation errors of all methods do not seem to be systematically biased by strike price

spacings and are negligible in most scenarios. The only exception are the estimation errors of the

plain-vanilla implementation of Bakshi et al. (2003) without inter- or extrapolation, which increase

slightly with larger strike price spacings.

[Table 3 about here.]

4.3 Results of RIX, VIX, and SVIX

In addition to the classic risk-neutral moments and their quantile equivalents we also analyze

the sensitivities of the RIX (Gao, Gao, & Song, 2018; Gao, Lu, & Song, 2018), the classic VIX, and
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the SVIX (Martin, 2017) to changes in the domain width, micro-structural noise, and strike price

spacing with the same methodology. The results are presented in Table 4.

Panel A shows the effect of reduced domain half-widths on the estimates of the VIX, RIX, and

SVIX. The results of the VIX and SVIX are comparable to the option-implied volatility measure of

Bakshi et al. (2003). All three measures provide accurate estimates at a domain half-width of 50%

under both the standard and crisis scenario. Notably, the RIX requires a much narrower domain

than corresponding central moments, e.g. skewness or kurtosis, to deliver accurate an unbiased es-

timate. For example, RIX estimated with a local-linear kernel regression at a domain half-width of

50% has an error of 0.01% under the crisis scenario. In contrast, the risk-neutral kurtosis measure

of Bakshi et al. (2003) is estimated with an error of 14.30%. The RIX should provide a complete

measure of all higher order moments and is therefore a suitable candidate for studies that aim to

estimate downside risk. The differences between estimation methodologies mirrors the previous

findings. Linear extrapolation leads to a lower bias under narrow domain half-width, but the dif-

ferences are less severe as the VIX, RIX, and SVIX converge faster to their true values.

Panel B shows the impact of micro structural noise on the VIX, RIX, and SVIX estimates. The

results are approximately on par with the previous findings. Linear extrapolation combined with a

local-linear kernel regression leads to a higher sensitivity towards micro-structural noise, especially

in the crisis scenario. In contrast, the spline-flat method is less affected by micro structural noise

under the the crisis scenario, but slightly more affected under the standard scenario. The best per-

forming methodology is the local-constant kernel regression of Aı̈t-Sahalia & Lo (1998) with linear

extrapolation. For example, under the crisis scenario, the percentage error of the RIX estimate

from a local-constant kernel regression has a standard deviation of 32.49% whereas the standard

deviation from the spline-flat method is 37.84%.

Panel C displays the effect of changes in strike price spacing on the estimates of VIX, RIX, and

SVIX. Changes in strike price spacing are negligible compared to other errors. The error induced

by a 5% strike price spacing on is less than 1% for all methodologies for VIX, RIX, and SVIX if the

volatility surface is interpolated. Even if the volatility surface is not interpolated the maximum error
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is only 5.13% for the RIX estimated under the standard scenario. In conclusion, the local-constant

kernel regression estimator with linear extrapolation appears to offer the best trade-off between bias

and variance. Local-linear kernel regression leads to reduced bias but increased variance. Cubic

smoothing splines with horizontal extrapolation lead to a similar bias as the local-constant kernel

regression with linear extrapolation but their estimates are more affected by micro-structural noise.

[Table 4 about here.]

5 Empirical estimation

We aim to verify the efficiency of the extraction methods also empirically by comparing sum-

mary statistics for different inter- and extrapolation techniques as well as for quantile and central

moments.

5.1 Data and estimation

The analysis focuses on S&P 500 options. Daily option data is sourced from the OptionMetrics

price database (provided by Wharton Research Data Service) for the sample time period from

January 1996 to December 2017.

OptionMetrics provides two datasets, raw option data and a pre-smoothed volatility surface.

For most applications the use of the volatility surface will lead to stable results and computations

will be less expensive. However, to provide a true comparison between the previous methods, we

estimate option-implied moments from raw option data. The estimation of risk-neutral moments

from raw option price data poses a number of additional challenges. To begin with, the goal of

most studies is to compare option-implied information at a constant maturity. However, real-world

option data is often not available at the target maturity. Especially, when working with single

stock options this poses a challenge as options mature only once a month. We tackle this challenge

by first interpolating implied volatility across log-moneyness and then interpolate linearly between

volatilities. Moreover, the implied volatility of an option can be computed either at its ask, bid, or
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mid price. We use the OptionMetrics provided implied volatilities which are estimated at the mid

price and account for dividends.

Another challenge is to ensure that sufficient option data is available. Many studies (e.g. Conrad

et al., 2013) filter out options with zero volume or zero open-interest to avoid stale prices. In our

experience, strong filters, e.g. requiring strictly positive volume, lead to more noisy estimates

especially when combined with an extrapolation technique. This might seem counter-intuitive at

first, as strong filters should remove stale prices. However, strong filters also change the available

data from period to period. This effect is particularly severe if the surface is extrapolated. Removing

a deep out-of-the-money option can have a drastic effect, especially on option-implied information

that rely on the tails of the distribution such as skewness. We do not employ any volume or

open-interest filters. Instead, we filter out all options with a delta absolutely smaller than 0.1 to

avoid erratic behavior in the tails of the distribution. However, the choice of filter should always

be tailored to the research application of the extracted option-implied information.

Moreover, we rely only on out-of-the-money options, thus all options with a strike below the

current stock price are put options and all options with strikes above the current strike prices are

calls. Therefore, the call and put volatilities have to be joined at-the-money. For the S&P 500

at-the-money put and calls typically have identical volatilities.7

Our estimation approach is as follows: We begin by filtering out all in-the-money options and

options with a negative implied volatility as well as all options with an absolute delta smaller than

0.1. We restrict our sample to options between with a maturity 1 and 60 days and target a con-

stant maturity of 30 days. Implied volatilities are first interpolated for each maturity across strikes

the implied volatility surface over a strike price interval from −99% to +99% with a spacing of 1

cent between strikes. We create volatility surfaces using the two most promising techniques from

section 4: A local-linear kernel regression with linear extrapolation and a cubic smoothing spline

with horizontal extrapolation. From the volatility surface we obtain risk-neutral quantile moments

using the previously described methodology and the moments of Bakshi et al. (2003).

Summary statistics of the S&P 500 options are provided in Table 5. The S&P 500 has a large

7Note that this is non-trivial for single-stock options. Single-stock options are American options and thus calls
and puts do not necessarily have the same volatility (see Cremers & Weinbaum, 2010). Naively joining put and call
volatilities at-the-money will lead to a jump at-the-money.
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and liquid option market with an average contract volume of 371.83 contracts traded daily per

option. Moreover, on average the open interest is 4064.11 contracts per options and the average

domain width of the S&P 500 is 103.85% and the spacing between strikes is on average 1%.

5.2 Comparison of quantile and central moments

Summary statistics for option-implied moments and the VIX, RIX, and SVIX, are provided

in Table 6. Panel A shows that the risk-neutral distribution of the S&P 500 is on average left-

skewed and leptokurtic. This observation matches the findings of other studies in the literature (e.g.

Neumann & Skiadopoulos, 2013). However, we can observe notable differences between the different

estimation techniques as well as between central and quantile moments. The summary statistics of

quantile moments estimated from a kernel-linear and spline-flat method are similar. The spline-flat

method leads to slightly (absolutely) higher estimates of quantile-skewness and quantile-kurtosis

although the differences are not statistically significant. Furthermore, the summary statistics for

central volatility are similar for both estimation methods. In contrast, central skewness and central

kurtosis are heavily affected by the choice of the estimation method. Central moments estimated

with the kernel-linear method show that the implied distribution of the S&P 500 is more left skewed

and leptokurtic than if central moments are estimated with the spline-flat method. For example, the

spline-flat method estimates the mean option-implied skewness as -0.79. This result is consistent

with estimates in the literature that use a similar technique, e.g. -0.91 for 60 day maturity options

in the study of Neumann & Skiadopoulos (2013). In contrast, the kernel-linear method estimates

central skewness to be -0.97. However, central skewness estimates from the kernel-linear method

are more volatile (standard deviation of 0.49%) than those obtained from the spline-flat method

(standard deviation 0.37%). Moreover, the results of quantile skewness and kurtosis results are

more robust to the modeling choice of the volatility surface and deliver consistent results for both

estimation methods. In contrast, central moments use probability weighting of outcomes and are

very sensitive to small shifts in the tail probability mass. For example, central excess kurtosis has

a mean of 1.04 and takes a maximum value of 6.85 if it is estimated with the spline-flat method.

In contrast, it has a mean of 1.93 and takes a maximum value of 59.55 if it is estimated with the

kernel-linear method. The results of the VIX, and SVIX show that their distribution is relatively

unaffected by the choice of estimation method. This finding is in line with the previous results
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from the simulation study.

The observed results mirror the bias-variance trade-off observed in the simulation study. Mo-

ments obtained from the spline-flat method likely carry a bias but are less volatile than moments

obtained from the kernel-linear method. Panels B and C show the correlations between the time

series of moments. The correlations between quantile and central moments estimated from the

kernel-linear (spline-flat) method are 75.05% (71.40%), 60.10% (73.84%), and 38.37% (48.74%) for

volatility, skewness, and kurtosis, respectively. The correlations and show that quantile and cen-

tral moments capture similar properties of the risk-neutral distribution. Moreover, the correlation

between central and quantile kurtosis is notably lower than for volatility and skewness in Panel C.

Quantile kurtosis of Ruppert (1987) is a pure measure of tail-weight, while central kurtosis measures

tail-weight and peakedness simultaneously. Furthermore, the correlation pattern within quantile

and central moments matches in sign. The findings indicate that quantile and central moments

measure similar attributes of the risk-neutral distribution. The correlation of the VIX, RIX, and

SVIX also provides interesting insights. SVIX and quantile volatility are all highly correlated with

a correlation coefficient of 94.54% (94.24%) estimated with the kernel-linear (spline-flat) methodol-

ogy. In contrast, VIX and central volatility are highly correlated 99.94% (99.98%). Moreover, RIX

is only weakly correlated with the skewness and kurtosis showing that RIX captures left tail-risk

differently than traditional risk-neutral moments.

[Table 6 about here.]

6 Robustness tests

To address concerns that our results are driven by our particular choice of distribution, the

analysis is repeated with two alternative distribution choices. First, a sinh-arcsinh transformed

(Jones & Pewsey, 2009) normal distribution and second, a mixture of two normal distributions

to capture multi-modal distributions. The sinh-arcsinh distribution transforms a random variable

with a standard normal distribution to a new random variable with different skewness and kurtosis.
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The transformation is defined as follows:

Yε,δ(x) ≡ sinh[δsinh−1(z)− ζ] z ∼ N(0, 1)

ζ controls the symmetry of the distribution of the new random variable Yε,δ(z) and δ controls its

tail weight. The hyperbolic sine function is denoted by sinh. A property of the transformation

is that it defaults to the standard normal distribution if ζ = 0 and δ = 1. The advantage of the

sinh-arcsinh transformation is that it has a parsimonious form that allows us to modify higher

moments and offers easy implementation.

Pricing European options based on the sinh-arcsinh distribution and the mixture of normals dis-

tribution is done by a Monte Carlo simulation with 100’000 repetitions and antithetic variables.

The mean of the prices is forced to be equal to the forward price to make sure that our sample is

arbitrage-free.

The results for the sinh-arcsinh distribution are presented in Tables 7 - 9 in the Appendix. The

results mirror the previous results of the SVJ model. In Table 7 we can observe the same bias

pattern as in the results of the SVJ generated option prices. Linear extrapolation leads to a faster

convergence with lower initial errors than horizontal extrapolation. Moreover, model-free quantile

moments have lower errors than their central counterparts, especially if the domain of available

option prices is narrow. Table 8 shows that methods with flat extrapolation are less affected by

micro-structural noise. Errors from different strike price spacings (Table 9) are small compared to

the bias induced by narrow domains. The observations are similar if the simulation study is based

on a mixture of two normal distributions (Table 10 - 12 in the Appendix).

7 Conclusion

We contribute to the literature by performing an in-depth study on the robust estimation of

risk-neutral moments. In theory, the estimation of risk-neutral moments is a straightforward task.

Based on the theorem of Breeden & Litzenberger (1978) it is possible to obtain risk-neutral mo-
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ments from the option-price surface. The caveat of this approach is that it assumes a continuum

of option prices that spans a large domain. Real-world option data, however, is discrete and often

spans only narrow domains with large gaps between strike prices. In addition, option-prices are

not free from micro-structural noise introduced through bid-ask spreads and asynchronous trading

of options. We test three different inter- and extrapolation techniques: cubic smoothing splines

with horizontal extrapolation, cubic smoothing splines with linear extrapolation, and a local-linear

kernel regression with linear extrapolation. These methods are benchmarked against a plain-vanilla

implementation of Bakshi et al. (2003). Furthermore, we propose to use of quantile moments, which

are more flexible than their central counterparts and allow for a more robust estimation.

Based on a SVJ model we simulate option data to test how strongly estimates of risk-neutral

moments are affected by narrow domains, large strike price spacings, and micro-structural noise.

Our findings suggest that estimates of risk-neutral moments are highly dependent on the estima-

tion technique. Methods that rely on horizontal or no extrapolation tend to carry a large bias

under narrow domains leading to a severe misestimation of risk-neutral moments. However, these

methods are less affected by micro-structural noise. In contrast, methods that rely on linear ex-

trapolation deliver more accurate estimates of risk-neutral moments under narrow domains, but

are more affected by micro-structural noise. These results reveal a classic bias-variance trade-off

between different estimation-methods. Two methods offer especially favorable bias-variance trade-

offs. First, model-free quantile moments estimated from a local-linear kernel regression with linear

extrapolation have only a small bias even under narrow domains and are only moderately affected

by micro-structural noise. Second, central risk-neutral moments based on a cubic smoothing spline

with horizontal extrapolation are not strongly affected by micro-structural noise and their bias

under narrow domains is acceptable. A viable alternative to cubic-smoothing splines are local-

constant kernel regressions that carry a similar level of bias and variance. Moreover, if either a

kernel regression or a smoothing spline is used, gaps between strike prices have a neglectable ef-

fect on the estimates of risk-neutral moments. We recommend to base the decision with respect

to the estimator on the planned use of the risk-neutral moment estimates and the properties of

the dataset. Model-free quantile moments obtained from a linearly extrapolated volatility surface

should be used if a low bias in the estimates is required. In contrast, if researchers prefer a low
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variance of estimates, they should implement the central moments of Bakshi et al. (2003) and base

them on a volatility surface interpolated with a cubic smoothing spline and extrapolated horizon-

tally.

Moreover, we also analyze the sensitivity of the SVIX (Martin, 2017), the RIX (Gao, Gao, &

Song, 2018; Gao, Lu, & Song, 2018), and the VIX. The results of risk neutral moments extend also

to the SVIX, RIX, and VIX. Linear extrapolation leads to a higher sensitivity to micro-structural

noise but reduces the bias compared to a flat extrapolation. However, it should be noted that SVIX

and VIX are volatility indices and are thus much less affected by the extrapolation as prices of far-

out-of-the-money options carry less weight compared to higher order moments. In contrast, RIX

captures all higher order cumulants of the risk-neutral distribution and is thus a viable alternative

for researcher that aim to obtain a left tail risk index.

The same results are also observable when comparing empirical risk-neutral moments of the

S&P 500 index. Estimates based on a volatility surface obtained from cubic splines with horizontal

extrapolation have lower standard deviations than estimates based on a volatility surface smoothed

with a local-linear kernel regression and extrapolated linearly. Moreover, estimates of central

skewness and kurtosis are higher if they are based on the kernel-linear method, an effect likely

due to a downward bias induced by horizontal extrapolation.
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Figure 1. : Quantile moments

This figure illustrates the principle behind quantile moments. The plotted distribution is a sinh-arcsinh
transformed normal distribution (Jones & Pewsey, 2009).Quantile volatility is the inter-quartile range which
is defined as the difference between the 75th and 25th percentile. Quantile skewness is defined by Hinkley’s
(1975) measure at the 90th percentile. Quantile kurtosis is defined by Ruppert’s (1987) ratio of quantile
ranges with an outer range between the 95th and 5th percentile and an inner range between the 75th and
25th percentile. However, the quantiles can be varied to describe a different portion of the probability
distribution.

(a) Median (b) Quantile volatility

(c) Quantile skewness (d) Quantile kurtosis
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Figure 2. : Errors in the approximation of implied moments by domain half-width

This figure shows the approximation errors of option-implied moments for different strike price domain half-
widths. The strike price spacing is held constant at 50 cents. The return process is based on a stochastic
volatility jump process (Bates, 1996). Option-implied moments are estimated under two different scenarios:
Panels A & C show the results of a standard scenario with central (quantile) volatility of 0.23 (0.14), skewness
of -0.89 (-0.20), and kurtosis of 4.72 (2.61). Panels B & D display the results of a crisis scenario with central
(quantile) volatility of 0.64 (0.30), skewness of -2.27 (-0.55), and kurtosis of 10.39 (3.07). For each of the
scenarios risk-neutral moments are estimated under different domain half-widths. Panel A & B show the
performance of different inter- and extrapolation techniques. Risk-neutral moments in these panels are
based on Bakshi et al. (2003, BKM). Moments are estimated from raw option data (raw), or a smoothed
volatility surface based on cubic splines with flat or linear extrapolation or a non-parametric local-linear
kernel regression similar to Song & Xiu (2016). Panel C & D compare the standard approach of Bakshi
et al. (2003) with quantile-moments estimated either model-free (QuantMF) or from a näıve Black-Scholes
approximation (QuantBS). The error in the plots is truncated at 80%.

Panel A: Standard Scenario - Different Inter- and Extrapolation

(a) Central volatility (b) Central skewness (c) Central kurtosis

Panel B: Crisis Scenario - Different Inter- and Extrapolation

(d) Central volatility (e) Central skewness (f) Central kurtosis

continued on the next page
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Figure 2 continued

Panel C: Standard Scenario - Different Estimators

(g) Quantile and central volatility (h) Quantile and central skewness (i) Quantile and central kurtosis

Panel D: Crisis Scenario - Different Estimators

(j) Quantile and central volatility (k) Quantile and central skewness (l) Quantile and central kurtosis
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Figure 3. : Errors in the approximation of implied moments for different levels of
micro-structural noise

This figure shows the standard deviation of estimates of option-implied moments for different levels of micro-
structural noise. The strike price spacing set to 2.5 dollar and strikes cover a range from 80% to 120% of the
strike price. The return process is based on a stochastic volatility jump process (Bates, 1996). Option-implied
moments are estimated under two different scenarios: Panels A & C show the results of a standard scenario
with central (quantile) volatility of 0.23 (0.14), skewness of -0.89 (-0.20), and kurtosis of 4.72 (2.61). Panels
B & D display the results of a crisis scenario with central (quantile) volatility of 0.64 (0.30), skewness of -2.27
(-0.55), and kurtosis of 10.39 (3.07). Micro-structure noise is simulated by perturbing option-prices by a
percent of their value. Percentages are drawn randomly from a normal distribution with a standard deviation
ranging from 1% to 10%. For each level of micro-structural noise risk-neutral moments are estimated 1000
times. Panel A & B show the performance of different inter- and extrapolation techniques. Risk-neutral
moments in these panels are based on Bakshi et al. (2003, BKM). Moments are estimated from raw option
data (raw), or a smoothed volatility surface based on cubic splines with flat or linear extrapolation or a non-
parametric local-linear kernel regression similar to Song & Xiu (2016). Panel C & D compare the standard
approach of Bakshi et al. (2003) with quantile-moments estimated either model-free (QuantMF) or from
a näıve Black-Scholes approximation (QuantBS). The standard deviation of the estimates in the plots is
truncated at 100%.

Panel A: Standard Scenario - Different Inter- and Extrapolation

(a) Central volatility (b) Central skewness (c) Central kurtosis

Panel B: Crisis Scenario - Different Inter- and Extrapolation

(d) Central volatility (e) Central skewness (f) Central kurtosis

continued on the next page
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Figure 3 continued

Panel C: Standard Scenario - Different Estimators

(g) Quantile and central volatility (h) Quantile and central skewness (i) Quantile and central kurtosis

Panel D: Crisis Scenario - Different inter- and Extrapolation

(j) Quantile and central volatility (k) Quantile and central skewness (l) Quantile and central kurtosis
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Table 1: Errors from truncated domain half-width - SVJ

This table shows the approximation errors of option-implied moments for different strike price domain half-
widths in percent. The strike price spacing is held constant at 50 cents. The return process is based on a
stochastic volatility jump process (Bates, 1996). Option-implied moments are estimated under two different
scenarios: Panel A shows the results of a standard scenario with central (quantile) volatility of 0.23 (0.14),
skewness of -0.89 (-0.20), and kurtosis of 4.72 (2.61). Panel B displays the results of a crisis scenario with
central (quantile) volatility of 0.64 (0.30), skewness of -2.27 (-0.55), and kurtosis of 10.39 (3.07). For each
of the scenarios risk-neutral moments are estimated under different domain half-widths (10%, 50%, & 80%).
Moments are estimated from raw option data (raw), or a smoothed volatility surface based on cubic splines
with flat or linear extrapolation, a non-parametric local-linear kernel regression (kernel), or a local-constant
kernel regression (lckernel). Quantile moments are estimated either model-free (MFree) or from a näıve
Black-Scholes approximation (BS). The central risk-neutral moments are based on Bakshi et al. (2003).

Volatility Skewness Kurtosis
Domain half-width 10% 50% 80% 10% 50% 80% 10% 50% 80%

Panel A: Standard Scenario

Central Moments
BKM-raw-none 12.35 0.06 0.08 61.45 1.58 0.81 68.22 2.54 0.46
BKM-spline-flat 2.56 0.08 0.00 38.34 2.55 1.63 30.45 1.36 0.31
BKM-spline-linear 0.22 0.08 0.00 3.17 2.40 1.25 2.51 0.94 1.05
BKM-kernel-linear 0.20 0.00 0.01 2.01 0.92 0.45 2.90 0.91 0.57
BKM-lckernel-linear 2.66 0.01 0.01 37.26 0.35 0.36 29.40 0.08 0.10

Quantile Moments
MFree-kernel-linear 0.11 0.11 0.11 6.00 0.61 0.64 0.56 0.09 0.09
MFree-spline-flat 0.55 0.17 0.33 17.96 16.16 12.94 0.24 0.57 0.06
MFree-lckernel-linear 0.25 0.32 0.32 20.70 1.71 1.71 0.34 0.39 0.39
BS-kernel-linear 7.53 7.53 7.53 11.35 13.02 13.02 1.99 1.09 1.09
BS-spline-flat 7.55 7.37 7.49 35.06 15.54 14.72 6.73 0.65 0.98
BS-lckernel-linear 7.89 7.89 7.89 35.49 13.23 13.23 7.41 1.72 1.72

Panel B: Crisis Scenario

Central Moments
BKM-raw-none 44.66 8.37 0.72 94.86 35.40 5.84 94.50 58.44 14.65
BKM-spline-flat 19.30 4.37 0.40 71.28 21.02 3.48 70.66 39.71 8.92
BKM-spline-linear 1.92 0.97 0.19 1.41 6.22 1.78 8.79 14.07 4.20
BKM-kernel-linear 0.77 1.00 0.19 6.89 6.36 1.87 15.59 14.30 4.41
BKM-lckernel-linear 19.21 4.44 0.39 70.65 21.41 3.37 71.06 40.80 9.28

Quantile Moments
MFree-kernel-linear 0.70 0.04 0.04 2.63 0.32 0.36 2.79 0.20 0.19
MFree-spline-flat 14.84 0.05 0.75 17.77 0.24 0.64 22.97 11.26 0.36
MFree-lckernel-linear 14.53 0.13 0.21 18.30 0.23 0.23 22.55 11.32 0.12
BS-kernel-linear 28.35 28.01 28.01 18.40 18.00 18.00 10.61 10.76 10.55
BS-spline-flat 14.84 27.88 27.67 73.32 18.21 18.22 22.97 14.80 10.22
BS-lckernel-linear 14.27 27.21 27.21 72.63 18.01 18.01 22.47 14.41 10.03
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Table 2: Errors from micro-structural noise - SVJ

This table shows the standard deviation of estimates of option-implied moments for different levels of
micro-structural noise in percent. The strike price spacing is set to 2.5 dollar and strikes cover a range
from 80% to 120% of the strike price. The return process is based on a stochastic volatility jump process
(Bates, 1996). Option-implied moments are estimated under two different scenarios: Panel A shows the
results of a standard scenario with central (quantile) volatility of 0.23 (0.14), skewness of -0.89 (-0.20), and
kurtosis of 4.72 (2.61). Panel B displays the results of a crisis scenario with central (quantile) volatility
of 0.64 (0.30), skewness of -2.27 (-0.55), and kurtosis of 10.39 (3.07). Micro-structure noise is simulated
by perturbing option-prices by a percent of their value. Percentages are drawn randomly from a normal
distribution with a standard deviation of either 1%, 5%, or 10%. For each level of micro-structural noise
risk-neutral moments are estimated 1000 times. Moments are estimated from raw option data (raw), or
a smoothed volatility surface based on cubic splines with flat or linear extrapolation, a non-parametric
local-linear kernel regression (kernel), or a local-constant kernel regression (lckernel). Quantile moments
are estimated either model-free (MFree) or from a näıve Black-Scholes approximation (BS). The central
risk-neutral moments are based on Bakshi et al. (2003).

Volatility Skewness Kurtosis
Noise 1% 5% 10% 1% 5% 10% 1% 5% 10%

Panel A: Standard Scenario

Central Moments
BKM-raw-none 0.14 0.72 1.42 0.50 2.47 5.04 0.34 1.66 3.28
BKM-spline-flat 0.15 1.90 18.13 0.57 9.92 16.86 0.51 2.72 7.75
BKM-spline-linear 0.20 22.47 104.44 2.43 147.09 339.19 3.31 312.15 565.41
BKM-kernel-linear 0.20 0.80 1.58 2.11 7.25 18.54 2.84 10.03 34.48
BKM-lckernel-linear 0.15 0.75 1.49 0.64 3.80 6.86 0.53 2.87 5.27

Quantile Moments
MFree-kernel-linear 2.38 6.14 9.15 10.86 22.05 28.64 2.55 7.62 15.73
MFree-spline-flat 0.99 13.27 22.13 4.79 54.83 90.14 1.15 17.32 696.33
MFree-lckernel-linear 5.73 8.57 12.54 25.27 32.45 43.07 5.90 10.16 31.29
BS-kernel-linear 0.31 1.05 1.89 0.80 2.69 5.24 0.34 1.25 2.50
BS-spline-flat 0.21 2.22 4.93 0.65 4.96 25.13 0.26 2.13 11.82
BS-lckernel-linear 0.37 1.28 2.46 0.95 3.56 6.56 0.37 1.44 2.62

Panel B: Crisis Scenario

Central Moments
BKM-raw-none 0.09 0.46 0.92 0.13 0.67 1.38 0.05 0.25 0.49
BKM-spline-flat 1.00 5.73 6.59 0.55 7.11 6.60 0.75 3.22 3.98
BKM-spline-linear 20.36 80.89 67.27 34.09 1.02e3 1.12e3 44.56 1.24e3 1.77e4
BKM-kernel-linear 2.50 9.17 19.22 6.05 15.05 24.77 8.15 19.02 25.25
BKM-lckernel-linear 0.24 1.06 2.03 0.46 2.22 4.42 0.27 1.36 2.57

Quantile Moments
MFree-kernel-linear 3.06 8.62 12.92 2.90 9.18 14.35 3.67 14.69 28.66
MFree-spline-flat 8.25 18.71 21.30 14.11 30.86 31.27 8.13 67.96 103.64
MFree-lckernel-linear 5.86 16.52 21.45 6.50 12.83 15.97 5.69 16.44 23.56
BS-kernel-linear 0.95 5.01 30.41 3.00 8.72 14.47 2.92 7.96 11.33
BS-spline-flat 0.80 3.12 7.00 1.60 4.18 5.84 0.52 1.62 32.55
BS-lckernel-linear 0.50 2.19 3.81 0.60 3.00 5.70 0.13 0.96 1.25
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Table 3: Errors from different strike price spacing - SVJ

This table shows the approximation error of option-implied moments for different strike price spacings
in percent. The domain-half width is set to 99% of the current stock price. The return process is based
on a stochastic volatility jump process (Bates, 1996). Option-implied moments are estimated under two
different scenarios: Panel A shows the results of a standard scenario with central (quantile) volatility of 0.23
(0.14), skewness of -0.89 (-0.20), and kurtosis of 4.72 (2.61). Panel B displays the results of a crisis scenario
with central (quantile) volatility of 0.64 (0.30), skewness of -2.27 (-0.55), and kurtosis of 10.39 (3.07). For
each of the scenarios risk-neutral moments are estimated under different strike price spacings (1%, 2%, &
5%). Moments are estimated from raw option data (raw), or a smoothed volatility surface based on cubic
splines with flat or linear extrapolation, a non-parametric local-linear kernel regression (kernel), or a local-
constant kernel regression (lckernel). Quantile moments are estimated either model-free (MFree) or from a
näıve Black-Scholes approximation (BS). The central risk-neutral moments are based on Bakshi et al. (2003).

Volatility Skewness Kurtosis
Spacing 1% 2% 5% 1% 2% 5% 1% 2% 5%

Panel A: Standard Scenario

Central Moments
BKM-raw-none 0.08 0.13 0.44 0.81 0.34 10.53 0.46 0.38 2.93
BKM-spline-flat 0.00 0.01 0.02 1.63 1.01 1.51 0.31 0.49 0.56
BKM-spline-linear 0.00 0.01 0.04 1.25 0.02 0.84 1.05 3.32 1.85
BKM-kernel-linear 0.01 0.02 0.09 0.45 0.47 0.83 0.57 0.70 0.62
BKM-lckernel-linear 0.00 0.00 0.02 0.34 0.35 0.35 0.08 0.11 0.20

Quantile Moments
MFree-kernel-linear 0.11 0.55 0.25 0.64 0.76 4.03 0.09 0.58 0.27
MFree-spline-flat 0.33 0.28 0.26 12.94 6.78 12.09 0.06 0.71 0.07
MFree-lckernel-linear 0.02 0.51 7.48 15.82 3.87 6.48 0.47 0.67 12.66
BS-kernel-linear 7.53 7.54 7.63 13.02 13.12 13.77 1.09 1.11 1.15
BS-spline-flat 7.49 7.52 7.53 14.72 13.62 14.24 0.98 0.94 0.96
BS-lckernel-linear 7.45 7.91 10.22 14.11 14.62 17.33 1.58 1.31 4.60

Panel B: Crisis Scenario

Central Moments
BKM-raw-none 0.04 0.07 0.04 0.59 0.51 0.19 0.33 0.27 0.36
BKM-spline-flat 0.08 0.07 0.09 0.82 0.85 1.14 1.29 1.36 2.30
BKM-spline-linear 0.05 0.05 0.03 0.47 0.52 0.47 0.01 0.14 0.05
BKM-kernel-linear 0.06 0.05 0.01 0.62 0.59 0.46 0.56 0.45 0.11
BKM-lckernel-linear 0.05 0.05 0.03 0.64 0.60 0.62 1.67 1.60 1.94

Quantile Moments
MFree-kernel-linear 0.04 0.06 0.16 0.33 0.50 0.83 0.20 0.04 0.18
MFree-spline-flat 0.25 0.45 1.04 0.92 0.88 0.14 0.14 0.31 0.97
MFree-lckernel-linear 0.76 0.37 3.90 1.40 5.74 5.79 0.37 2.19 1.33
BS-kernel-linear 28.01 28.01 27.98 18.00 18.01 18.13 10.55 10.54 10.48
BS-spline-flat 27.95 28.00 27.77 18.20 18.19 18.25 10.38 10.42 10.22
BS-lckernel-linear 27.17 27.17 29.24 18.13 17.93 20.28 9.51 9.29 11.41
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Table 4: Results of VIX, RIX, and SVIX

This table shows the approximation errors of the VIX, RIX, and SVIX measures for different strike price
domain half-widths (Panel A), micro-structural noise (Panel B), and different strike price spacings (Panel
C) in percent. The return process is based on a stochastic volatility jump process (Bates, 1996). Option-
implied moments are estimated under two different scenarios: A standard scenario and a crisis scenario. For
each of the scenarios risk-neutral moments are estimated under different domain half-widths levels, levels
of micro-structural noise, and strike price spacings. Moments are estimated from raw option data (raw),
or a smoothed volatility surface based on cubic splines with flat or linear extrapolation, a non-parametric
local-linear kernel regression (kernel), or a local-constant kernel regression (lckernel). Panel A and C display
the absolute percentage error compared to the true estimate. Panel B shows the standard deviation of the
percentage error. All results are shown in percent.

VIX RIX SVIX

Panel A: Domain half-width

Domain half-width 10% 50% 80% 10% 50% 80% 10% 50% 80%

Standard scenario
kernel-linear 0.41 0.00 0.00 0.34 0.01 0.01 0.67 0.00 0.00
lckernel-linear 4.01 0.00 0.00 25.91 0.00 0.00 1.96 0.00 0.00
spline-flat 4.05 0.02 0.02 26.11 0.30 0.24 1.98 0.04 0.03
spline-linear 1.06 0.02 0.02 3.76 0.30 0.23 1.03 0.04 0.03
raw 21.92 0.00 0.00 64.35 0.04 0.00 19.50 0.00 0.00
Crisis scenario
kernel-linear 0.41 0.00 0.00 0.34 0.01 0.01 0.67 0.00 0.00
lckernel-linear 4.01 0.00 0.00 25.91 0.00 0.00 1.96 0.00 0.00
spline-flat 4.05 0.02 0.02 26.11 0.30 0.24 1.98 0.04 0.03
spline-linear 1.06 0.02 0.02 3.76 0.30 0.23 1.03 0.04 0.03
raw 21.92 0.00 0.00 64.35 0.04 0.00 19.50 0.00 0.00
Panel B: Noise

Noise 1% 5% 10% 1% 5% 10% 1% 5% 10%

Standard scenario
kernel-linear 0.36 1.58 3.12 1.92 6.60 31.81 0.34 1.53 2.83
lckernel-linear 0.31 1.55 3.05 0.48 2.92 5.35 0.32 1.56 3.07
spline-flat 0.31 1.58 3.46 0.46 2.62 79.31 0.31 1.59 3.42
spline-linear 0.39 365.81 533.75 2.55 2.06e4 2.83e4 0.33 43.88 153.16
raw 0.30 1.47 2.95 0.37 1.87 3.61 0.30 1.49 2.99
Crisis scenario
kernel-linear 5.90 19.20 70.19 78.89 287.17 1.72e3 1.55 4.94 10.75
lckernel-linear 0.64 2.80 5.38 3.82 16.91 32.49 0.40 1.81 3.51
spline-flat 0.67 3.04 6.14 3.85 18.00 37.84 2.71 3.65 6.72
spline-linear 56.29 445.50 421.62 1.15e3 1.33e4 1.18e4 10.42 142.22 363.67
raw 0.26 1.28 2.54 0.39 1.96 3.90 0.26 1.27 2.51
Panel C: Strike price spacing

Spacing 1% 2% 5% 1% 2% 5% 1% 2% 5%

Standard scenario
kernel-linear 0.01 0.02 0.08 0.01 0.01 0.01 0.01 0.02 0.10
lckernel-linear 0.01 0.01 0.05 0.00 0.02 0.15 0.01 0.01 0.05
spline-flat 0.00 0.02 0.10 0.24 0.20 0.14 0.04 0.03 0.06
spline-linear 0.00 0.02 0.10 0.23 0.20 0.13 0.04 0.03 0.06
raw 0.14 0.27 1.22 0.11 0.22 5.13 0.14 0.28 1.91
Crisis scenario
kernel-linear 0.00 0.01 0.01 0.10 0.08 0.06 0.01 0.00 0.02
lckernel-linear 0.01 0.01 0.01 0.24 0.21 0.12 0.01 0.00 0.00
spline-flat 0.03 0.03 0.07 0.24 0.24 0.43 0.01 0.01 0.04
spline-linear 0.01 0.02 0.04 0.09 0.10 0.15 0.01 0.01 0.04
raw 0.02 0.04 0.03 0.01 0.02 0.48 0.03 0.06 0.38
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Table 5: Summary statistics of options

This table displays descriptive statistics of the sample of S&P 500 options. The sample is restricted to
options with an absolute delta larger or equal to 0.1. Days to expiration measures the days until the option
expires. The domain width is calculated for each day-maturity combination by subtracting the smallest
strike from the largest strike and dividing this range by the closing price of the S&P 500 (SPX). Spacing is
the average spacing between strike prices for each day-maturity combination divided by the closing price of
the S&P 500. Domain and spacing are displayed in percent. The sample spans the period between January
1996 and December 2017.

Mean Std. Med. Min Max

Days to expiration 28.80 16.45 28.00 2.00 59.00
Strike Price 1725.46 517.96 1770.00 50.00 3500.00
Implied Volatility 0.33 0.32 0.24 0.02 3.00
Volume 371.83 1960.44 0.00 0.00 200777.00
Open interest 4064.11 13697.76 100.00 0.00 370769.00
Delta 0.15 0.57 -0.00 -1.00 1.00
Domain width in % of SPX 103.85 43.17 93.85 26.30 266.06
Spacing in % of SPX 1.07 0.47 1.07 0.38 2.62
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Table 6: Summary statistics of option-implied moments

This table displays descriptive statistics of quantile and central risk-neutral moments for the S&P 500.
Quantile volatility is the inter-quartile range which is defined as the difference between the 75th and 25th

percentile. Quantile skewness is defined by Hinkley’s (1975) measure at the 90th percentile. Quantile kurtosis
is defined by Ruppert’s (1987) ratio of quantile ranges with an outer range between the 95th and 5th percentile
and an inner range between the 75th and 25th percentile. The central risk-neutral moments are based on
Bakshi et al. (2003). Moments are estimated from a smoothed implied volatility surface based on a local-
linear kernel regression with linear extrapolation or a cubic spline with flat extrapolation. Panel A shows
descriptive statistics for the moments. Quantile and central kurtosis are reported as excess kurtosis over the
normal distribution. Panel B shows the correlation among the time series of the moments estimated from
the kernel-linear method. Panel C shows the correlation among the time series of the moments estimated
from the spline-flat method. The sample spans the period between January 1996 and December 2017. All
volatility measures, including VIX and SVIX, are displayed in percent. The values of RIX are multiplied by
1000.

Panel A: Descriptive statistics

Kernel-linear Spline-flat
Mean Std. Med. Min Max Mean Std. Med. Min Max

Quantile Volatility 4.77 2.83 4.07 0.66 31.39 4.80 2.89 4.15 0.40 34.50
Quantile Skewness -0.18 0.13 -0.19 -0.59 0.36 -0.21 0.12 -0.20 -0.62 0.18
Quantile ex. Kurtosis 0.52 0.64 0.35 -0.82 6.43 0.46 0.59 0.29 -0.91 7.13
Central Volatility 19.51 8.68 17.95 6.83 86.67 19.09 8.40 17.67 6.72 83.07
Central Skewness -0.97 0.49 -0.93 -5.83 0.31 -0.79 0.37 -0.77 -2.29 0.32
Central ex. Kurtosis 1.93 2.72 1.38 -1.31 59.55 1.04 0.83 0.91 -1.08 6.85
VIX 19.34 8.47 17.87 6.83 82.56 18.98 8.27 17.56 6.71 80.08
RIX 1.50 5.28 0.48 0.01 165.90 1.13 3.15 0.42 0.01 81.16
SVIX 14.86 9.25 12.50 1.77 88.05 14.56 8.98 12.33 1.73 88.38

Panel B: Correlation between moments - kernel-linear

1 2 3 4 5 6 7 8 9

Quantile Volatility1 100.00
Quantile Skewness 2 -35.54 100.00
Quantile Kurtosis 3 15.61 -42.30 100.00
Central Volatility 4 75.05 -16.12 4.09 100.00
Central Skewness 5 -24.62 60.10 -54.73 0.32 100.00
Central Kurtosis 6 11.67 -28.14 38.37 0.60 -79.74 100.00
VIX 7 74.21 -15.15 3.05 99.94 2.25 -1.02 100.00
RIX 8 58.87 -19.03 12.53 59.80 -23.35 19.23 57.30 100.00
SVIX 9 94.54 -45.31 43.81 69.74 -39.39 24.05 68.52 58.92 100.00

Panel C: Correlation between moments - spline-flat

1 2 3 4 5 6 7 8 9

Quantile Volatility1 100.00
Quantile Skewness 2 -39.48 100.00
Quantile Kurtosis 3 13.97 -60.26 100.00
Central Volatility 4 71.40 -12.44 4.40 100.00
Central Skewness 5 -7.19 73.84 -60.62 8.74 100.00
Central Kurtosis 6 -13.08 -49.03 48.74 -22.22 -92.29 100.00
VIX 7 70.86 -11.49 3.70 99.98 9.67 -22.94 100.00
RIX 8 68.12 -25.10 12.66 67.14 -10.06 -1.74 66.11 100.00
SVIX 9 94.24 -53.97 41.89 67.49 -22.74 -0.52 66.76 65.42 100.00
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Appendix: Robustness tests
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Table 7: Errors from truncated domain half-width - transformed normal distribution

This table shows the approximation errors of option-implied moments for different strike price domain
half-widths in percent. The strike price spacing is held constant at 50 cents. The return distribution is a
sinh-arcsinh transformed normal distribution. Option-implied moments are estimated under two different
scenarios: Panel A shows the results of a standard scenario with quantile (central) volatility of 0.12 (0.20),
skewness of -0.46 (-1.44), and kurtosis of 2.52 (8.34). Panel B displays the results of a crisis scenario with
quantile (central) volatility of 0.18 (0.40), skewness of -0.63 (-2.4), and kurtosis of 3.17 (13.98). For each
of the scenarios risk-neutral moments are estimated under different domain half-widths (10%, 50%, &
80%). Moments are estimated from raw option data (raw), or a smoothed volatility surface based on cubic
splines with flat or linear extrapolation, a non-parametric local-linear kernel regression (kernel), or a local-
constant kernel regression (lckernel). Quantile moments are estimated either model-free (MFree) or from a
näıve Black-Scholes approximation (BS). The central risk-neutral moments are based on Bakshi et al. (2003).

Volatility Skewness Kurtosis
Domain half-width 10% 50% 80% 10% 50% 80% 10% 50% 80%

Panel A: Standard Scenario

Central Moments
BKM-raw-none 10.61 0.02 0.02 56.21 0.10 0.06 66.38 0.28 0.09
BKM-spline-flat 2.80 0.03 0.03 21.49 0.25 0.25 29.30 0.13 0.13
BKM-spline-linear 1.27 0.03 0.03 11.07 0.26 0.26 22.93 0.09 0.09
BKM-kernel-linear 1.08 0.00 0.00 9.53 0.07 0.07 19.97 0.33 0.33
BKM-lckernel-linear 2.63 0.00 0.00 20.46 0.00 0.00 27.19 0.02 0.02

Quantile Moments
MFree-kernel-linear 0.25 0.24 0.24 1.88 0.58 0.58 0.81 0.18 0.18
MFree-spline-flat 0.22 0.20 0.20 15.74 2.33 2.33 3.25 0.60 0.60
MFree-lckernel-linear 2.14 1.47 1.47 17.07 3.93 3.93 0.72 1.47 1.47
BS-kernel-linear 7.29 7.29 7.29 24.72 25.49 25.49 1.40 3.30 3.30
BS-spline-flat 7.26 7.04 7.04 32.02 25.48 25.48 9.60 2.84 2.84
BS-lckernel-linear 7.87 7.88 7.88 30.88 24.32 24.32 9.93 3.41 3.41

Panel B: Crisis Scenario

Central Moments
BKM-raw-none 32.83 2.46 0.02 84.88 14.84 0.42 91.34 33.03 1.35
BKM-spline-flat 14.91 1.22 0.02 55.07 8.17 0.18 67.92 20.15 0.57
BKM-spline-linear 4.06 0.17 0.01 11.43 1.37 0.05 18.22 3.88 0.07
BKM-Kernel-linear 3.25 0.11 0.01 9.29 1.01 0.13 14.59 2.90 0.30
BKM-lckernel-linear 15.13 1.35 0.07 55.89 9.63 1.02 69.79 24.58 3.86

Quantile Moments
MFree-kernel-linear 0.34 0.07 0.07 3.27 0.01 0.01 0.89 0.02 0.02
MFree-spline-flat 14.32 0.23 0.45 3.46 0.54 2.36 8.10 0.14 0.23
MFree-lckernel-linear 16.26 1.08 0.79 2.75 0.64 0.61 10.57 0.61 0.33
BS-kernel-linear 34.30 33.97 33.97 21.67 24.14 24.14 8.73 13.59 13.59
BS-spline-flat 26.63 33.57 33.61 57.42 24.27 24.59 26.86 13.17 13.17
BS-lckernel-linear 25.68 33.12 33.12 57.25 23.24 23.24 26.33 13.27 13.27
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Table 8: Errors from micro-structural noise - transformed normal distribution

This table shows the standard deviation of estimates of option-implied moments for different levels of micro-
structural noise in percent. The strike price spacing set to 2.5 dollar and strikes cover a range from 90% to
110% of the strike price. The return distribution is a sinh-arcsinh transformed normal distribution. Option-
implied moments are estimated under two different scenarios: Panel A shows the results of a standard
scenario with quantile (central) volatility of 0.12 (0.20), skewness of -0.46 (-1.44), and kurtosis of 2.52 (8.34).
Panel B displays the results of a crisis scenario with quantile (central) volatility of 0.18 (0.40), skewness of
-0.63 (-2.4), and kurtosis of 3.17 (13.98). Micro-structure noise is simulated by perturbing option-prices by a
percent of their value. Percentages are drawn randomly from a normal distribution with a standard deviation
of either 1%, 5%, or 10%. For each level of micro-structural noise risk-neutral moments are estimated 1000
times. Moments are estimated from raw option data (raw), or a smoothed volatility surface based on cubic
splines with flat or linear extrapolation, a non-parametric local-linear kernel regression (kernel), or a local-
constant kernel regression (lckernel). Quantile moments are estimated either model-free (MFree) or from a
näıve Black-Scholes approximation (BS). The central risk-neutral moments are based on Bakshi et al. (2003).

Volatility Skewness Kurtosis
Noise 1% 5% 10% 1% 5% 10% 1% 5% 10%

Panel A: Standard Scenario

Central Moments
BKM-raw-none 0.12 0.57 1.13 0.17 0.83 1.70 0.09 0.46 0.91
BKM-spline-flat 0.17 17.20 16.20 0.37 6.35 7.03 0.33 5.69 6.10
BKM-spline-linear 16.96 104.74 121.49 21.60 135.98 594.72 39.23 228.66 36051.02
BKM-kernel-linear 2.60 7.28 14.95 9.17 19.99 27.10 16.38 35.05 45.82
BKM-lckernel-linear 0.15 0.98 1.60 0.47 2.64 4.74 0.60 3.42 5.75

Quantile Moments
MFree-kernel-linear 7.36 9.30 11.65 4.31 8.64 9.95 7.71 11.21 15.71
MFree-spline-flat 5.64 21.72 26.05 2.10 31.71 29.73 5.72 247.89 91.03
MFree-lckernel-linear 5.09 13.94 16.13 7.78 22.85 28.51 5.91 15.83 20.29
BS-kernel-linear 0.46 1.49 2.95 2.05 5.28 8.54 3.96 10.79 20.28
BS-spline-flat 0.47 9.62 10.12 0.29 2.08 4.90 0.32 19.49 13.97
BS-lckernel-linear 0.32 1.74 3.26 0.49 1.97 3.66 0.34 1.75 3.35

Panel B: Crisis Scenario

Central Moments
BKM-raw-none 0.15 0.79 1.55 0.41 2.06 4.00 0.39 1.99 3.85
BKM-spline-flat 0.16 12.70 29.49 0.48 17.85 31.54 0.58 6.17 12.22
BKM-spline-linear 0.19 70.71 118.76 1.07 155.66 267.23 2.44 370.04 575.00
BKM-Kernel-linear 0.21 0.96 1.96 1.35 5.57 14.90 3.00 12.66 45.85
BKM-lckernel-linear 0.16 0.99 1.71 0.37 1.92 3.76 0.31 1.70 3.25

Quantile Moments
MFree-kernel-linear 3.58 8.19 10.49 4.83 12.06 16.81 3.74 9.57 12.77
MFree-spline-flat 1.05 16.08 23.94 1.41 26.73 41.71 1.21 1554.00 1141.92
MFree-lckernel-linear 7.59 13.99 18.27 5.49 10.86 14.75 8.79 16.45 22.73
BS-kernel-linear 0.30 1.30 2.44 0.32 1.17 2.10 0.30 1.43 2.76
BS-spline-flat 0.23 6.49 5.31 0.31 8.97 20.02 0.26 50.15 5.29
BS-lckernel-linear 0.44 2.38 3.74 0.32 1.43 2.55 0.31 1.71 2.66
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Table 9: Errors from different strike price spacing - transformed normal distribution

This table shows the approximation error of option-implied moments for different strike price spacings
in percent. The domain-half width is set to 99% of the current stock price. The return distribution is a
sinh-arcsinh transformed normal distribution. Option-implied moments are estimated under two different
scenarios: Panel A shows the results of a standard scenario with quantile (central) volatility of 0.12 (0.20),
skewness of -0.46 (-1.44), and kurtosis of 2.52 (8.34). Panel B displays the results of a crisis scenario
with quantile (central) volatility of 0.18 (0.40), skewness of -0.63 (-2.4), and kurtosis of 3.17 (13.98). For
each of the scenarios risk-neutral moments are estimated under different strike price spacings (1%, 2%, &
5%). Moments are estimated from raw option data (raw), or a smoothed volatility surface based on cubic
splines with flat or linear extrapolation, a non-parametric local-linear kernel regression (kernel), or a local-
constant kernel regression (lckernel). Quantile moments are estimated either model-free (MFree) or from a
näıve Black-Scholes approximation (BS). The central risk-neutral moments are based on Bakshi et al. (2003).

Volatility Skewness Kurtosis
Spacing 1% 2% 5% 1% 2% 5% 1% 2% 5%

Panel A: Standard Scenario

Central Moments
BKM-raw-none 0.09 0.18 0.27 0.21 0.43 8.46 0.36 0.71 2.88
BKM-spline-flat 0.03 0.04 0.06 0.21 0.27 0.46 0.13 0.09 0.18
BKM-spline-linear 0.03 0.04 0.05 0.22 0.28 0.49 0.09 0.06 0.09
BKM-kernel-linear 0.01 0.04 0.22 0.08 0.04 0.41 0.35 0.06 0.42
BKM-lckernel-linear 0.00 0.01 0.09 0.00 0.01 0.10 0.03 0.07 0.28

Quantile Moments
MFree-kernel-linear 0.52 0.23 4.07 1.25 0.08 1.58 0.55 0.23 3.59
MFree-spline-flat 0.03 1.43 1.59 1.83 1.15 3.92 0.33 2.10 2.15
MFree-lckernel-linear 3.53 2.31 20.19 3.67 9.34 15.68 2.20 4.17 12.77
BS-kernel-linear 7.28 7.23 7.08 25.49 25.49 25.23 3.29 3.25 3.16
BS-spline-flat 7.05 7.18 7.09 25.49 25.77 25.45 2.84 2.93 2.93
BS-lckernel-linear 8.76 7.30 11.22 26.10 26.77 18.93 5.15 4.03 7.41

Panel B: Crisis Scenario

Central Moments
BKM-raw-none 0.02 0.05 0.10 0.14 0.06 0.88 0.14 0.13 0.38
BKM-spline-flat 0.02 0.02 0.02 0.15 0.15 0.21 0.47 0.47 0.73
BKM-spline-linear 0.01 0.01 0.01 0.06 0.06 0.05 0.10 0.10 0.10
BKM-kernel-linear 0.01 0.01 0.04 0.11 0.09 0.03 0.21 0.20 0.02
BKM-lckernel-linear 0.03 0.02 0.01 0.44 0.41 0.29 1.63 1.55 1.29

Quantile Moments
MFree-kernel-linear 0.08 0.22 0.14 0.18 1.17 0.20 0.20 0.06 0.73
MFree-spline-flat 0.32 0.27 1.02 2.24 2.38 0.90 0.16 0.14 0.81
MFree-lckernel-linear 2.1 6.70 6.02 4.52 4.01 19.92 1.11 3.32 15.52
BS-kernel-linear 33.96 33.95 33.81 24.15 24.18 24.40 13.58 13.56 13.42
BS-spline-flat 33.65 33.69 33.58 24.58 24.58 24.42 13.22 13.26 13.17
BS-lckernel-linear 32.3 33.93 30.77 23.69 24.60 24.13 12.83 12.82 13.33
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Table 10: Errors from truncated domain half-width - mixture of 2 normal distributions

This table shows the approximation errors of option-implied moments for different strike price domain
half-widths in percent. The strike price spacing is held constant at 50 cents. The return distribution is a
multimodal mixture of 2 normal distributions. Option-implied moments are estimated under two different
scenarios: Panel A shows the results of a standard scenario with quantile (central) volatility of 0.04 (0.20),
skewness of -0.62 (-2.44), and kurtosis of 7.28 (13.25). Panel B displays the results of a crisis scenario
with quantile (central) volatility of 0.09 (0.40), skewness of -0.15 (-3.57), and kurtosis of 6.16 (22.80). For
each of the scenarios risk-neutral moments are estimated under different domain half-widths (10%, 50%, &
80%). Moments are estimated from raw option data (raw), or a smoothed volatility surface based on cubic
splines with flat or linear extrapolation, a non-parametric local-linear kernel regression (kernel), or a local-
constant kernel regression (lckernel). Quantile moments are estimated either model-free (MFree) or from a
näıve Black-Scholes approximation (BS). The central risk-neutral moments are based on Bakshi et al. (2003).

Volatility Skewness Kurtosis
Domain half-width 10% 50% 80% 10% 50% 80% 10% 50% 80%

Panel A: Standard Scenario

Central Moments
BKM-raw-none 19.90 0.02 0.02 51.98 0.07 0.06 73.46 0.17 0.10
BKM-spline-flat 8.76 0.04 0.01 22.53 0.22 0.12 40.02 0.13 0.00
BKM-spline-linear 13.97 0.04 0.01 203.24 0.23 0.12 411.34 0.13 0.01
BKM-kernel-linear 12.82 0.00 0.00 48.70 0.03 0.03 182.52 0.03 0.04
BKM-lckernel-linear 8.33 0.00 0.00 21.47 0.01 0.01 38.69 0.00 0.00

Quantile Moments
MFree-kernel-linear 0.26 0.25 0.25 4.69 2.06 2.06 10.52 0.07 0.07
MFree-spline-flat 8.29 10.27 6.59 10.52 5.50 5.40 15.92 7.76 4.31
MFree-lckernel-linear 0.60 2.68 4.45 6.71 5.23 8.08 7.02 2.16 3.99
BS-kernel-linear 177.38 177.38 177.38 15.51 19.36 19.36 51.12 57.44 57.44
BS-spline-flat 179.32 175.96 178.42 28.93 18.77 20.68 64.85 57.61 57.93
BS-lckernel-linear 175.71 175.65 175.90 29.41 19.49 19.77 64.52 57.56 57.65

Panel B: Crisis Scenario

Central Moments
BKM-raw-none 45.94 5.76 0.04 82.65 17.03 0.08 92.10 35.10 0.87
BKM-spline-flat 32.73 2.32 0.01 59.96 7.42 0.04 75.76 17.37 0.33
BKM-spline-linear 50.00 1.09 0.00 50.67 4.21 0.02 80.52 10.72 0.20
BKM-kernel-linear 31.86 0.70 0.01 48.47 2.79 0.05 83.54 7.52 0.23
BKM-lckernel-linear 33.06 2.37 0.01 60.64 7.09 0.25 76.20 17.23 0.43

Quantile Moments
MFree-kernel-linear 0.75 0.76 0.76 39.36 1.24 1.35 29.83 1.00 1.01
MFree-spline-flat 0.81 3.53 1.75 227.92 5.67 25.88 17.49 1.74 0.02
MFree-lckernel-linear 0.83 0.91 1.25 233.59 10.26 7.50 16.53 0.80 3.15
BS-kernel-linear 127.11 126.68 126.68 332.62 273.51 273.51 11.96 33.40 33.40
BS-spline-flat 114.13 125.71 124.79 113.57 273.72 272.33 61.78 33.34 32.88
BS-lckernel-linear 110.05 122.17 122.17 120.23 289.94 289.94 60.59 30.70 30.68
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Table 11: Errors from micro-structural noise - mixture of 2 normal distributions

This table shows the standard deviation of estimates of option-implied moments for different levels of
micro-structural noise in percent. The strike price spacing set to 2.5 dollar and strikes cover a range from
90% to 110% of the strike price. The return distribution is a multimodal mixture of 2 normal distributions.
Option-implied moments are estimated under two different scenarios: Panel A shows the results of a
standard scenario with quantile (central) volatility of 0.04 (0.20), skewness of -0.62 (-2.44), and kurtosis of
7.28 (13.25). Panel B displays the results of a crisis scenario with quantile (central) volatility of 0.09 (0.40),
skewness of -0.15 (-3.57), and kurtosis of 6.16 (22.80). Micro-structure noise is simulated by perturbing
option-prices by a percent of their value. Percentages are drawn randomly from a normal distribution
with a standard deviation of either 1%, 5%, or 10%. For each level of micro-structural noise risk-neutral
moments are estimated 1000 times. Moments are estimated from raw option data (raw), or a smoothed
volatility surface based on cubic splines with flat or linear extrapolation, a non-parametric local-linear kernel
regression (kernel), or a local-constant kernel regression (lckernel). Quantile moments are estimated either
model-free (MFree) or from a näıve Black-Scholes approximation (BS). The central risk-neutral moments
are based on Bakshi et al. (2003).

Volatility Skewness Kurtosis
Noise 1% 5% 10% 1% 5% 10% 1% 5% 10%

Panel A: Standard Scenario

Central Moments
BKM-raw-none 0.14 0.73 1.54 0.23 1.13 2.18 0.15 0.76 1.54
BKM-spline-flat 0.21 1.22 2.44 0.48 2.36 5.06 0.51 2.50 5.30
BKM-spline-linear 9.41 152.71 261.96 63.80 146.72 923.29 72.84 212.15 765.88
BKM-kernel-linear 4.51 26.14 58.22 16.80 61.81 79.48 49.04 163.85 188.92
BKM-lckernel-linear 0.15 0.76 1.55 0.37 1.91 3.70 0.54 2.84 5.36

Quantile Moments
MFree-kernel-linear 5.98 23.46 32.28 3.50 16.71 28.33 6.45 26.25 29.32
MFree-spline-flat 3.79 23.73 47.62 1.01 9.39 30.02 3.20 21.44 46.30
MFree-lckernel-linear 18.22 26.90 31.42 11.08 21.30 28.39 21.87 26.69 27.41
BS-kernel-linear 1.22 5.95 9.86 1.98 9.66 16.59 2.54 14.99 32.06
BS-spline-flat 1.41 8.22 13.91 0.46 1.83 4.17 0.21 1.11 2.08
BS-lckernel-linear 0.96 7.25 11.38 0.24 1.24 2.73 0.41 1.25 1.94

Panel B: Crisis Scenario

Central Moments
BKM-raw-none 0.09 0.48 0.96 0.12 0.62 1.22 0.04 0.22 0.43
BKM-spline-flat 0.20 1.01 2.17 0.35 1.75 3.65 0.19 0.99 2.01
BKM-spline-linear 38.90 139.04 143.77 18.99 93.98 2.84e3 34.59 1.07e4 3.43e3
BKM-Kernel-linear 12.50 45.59 71.27 3.76 16.09 26.23 3.63 25.59 38.26
BKM-lckernel-linear 0.17 0.88 1.77 0.32 1.56 3.10 0.26 1.28 2.51

Quantile Moments
MFree-kernel-linear 8.39 13.99 19.05 52.30 104.75 140.93 10.90 18.74 21.51
MFree-spline-flat 2.73 24.14 32.20 5.10 53.05 107.38 2.24 69.86 238.43
MFree-lckernel-linear 9.49 18.08 21.96 89.22 136.16 186.31 9.30 18.88 30.65
BS-kernel-linear 3.20 28.90 179.64 23.04 64.50 89.00 7.81 20.67 24.29
BS-spline-flat 0.77 4.37 8.89 1.82 9.23 19.63 0.07 0.49 1.01
BS-lckernel-linear 5.62 7.05 9.68 3.50 8.27 13.53 1.29 1.76 2.52
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Table 12: Errors from different strike price spacing - mixture of 2 normal distributions

This table shows the approximation error of option-implied moments for different strike price spacings
in percent. The domain-half width is set to 99% of the current stock price. The return distribution is a
multimodal mixture of 2 normal distributions. Option-implied moments are estimated under two different
scenarios: Panel A shows the results of a standard scenario with quantile (central) volatility of 0.04 (0.20),
skewness of -0.62 (-2.44), and kurtosis of 7.28 (13.25). Panel B displays the results of a crisis scenario
with quantile (central) volatility of 0.09 (0.40), skewness of -0.15 (-3.57), and kurtosis of 6.16 (22.80). For
each of the scenarios risk-neutral moments are estimated under different strike price spacings (1%, 2%, &
5%). Moments are estimated from raw option data (raw), or a smoothed volatility surface based on cubic
splines with flat or linear extrapolation, a non-parametric local-linear kernel regression (kernel), or a local-
constant kernel regression (lckernel). Quantile moments are estimated either model-free (MFree) or from a
näıve Black-Scholes approximation (BS). The central risk-neutral moments are based on Bakshi et al. (2003).

Volatility Skewness Kurtosis
Spacing 1% 2% 5% 1% 2% 5% 1% 2% 5%

Panel A: Standard Scenario

Central Moments
BKM-raw-none 0.09 0.18 0.79 0.24 0.46 1.52 0.37 0.72 2.34
BKM-spline-flat 0.01 0.02 0.02 0.13 0.16 0.17 0.02 0.07 0.10
BKM-spline-linear 0.01 0.02 0.02 0.13 0.16 0.17 0.03 0.07 0.10
BKM-kernel-linear 0.00 0.02 0.12 0.08 0.28 1.74 0.07 0.20 1.17
BKM-lckernel-linear 0.00 0.02 0.12 0.04 0.17 1.03 0.02 0.11 0.69

Quantile Moments
MFree-kernel-linear 3.20 4.91 14.14 1.35 0.76 4.40 2.62 5.54 9.36
MFree-spline-flat 8.72 11.83 14.45 4.35 4.47 3.26 6.26 9.13 11.78
MFree-lckernel-linear 1.30 21.63 25.86 12.02 8.71 26.98 1.25 18.01 20.99
BS-kernel-linear 177.47 177.59 178.09 19.40 20.05 23.14 57.46 57.48 57.64
BS-spline-flat 177.98 178.59 179.58 20.34 19.89 19.58 57.85 58.06 58.35
BS-lckernel-linear 175.27 175.27 151.10 19.80 19.17 18.06 57.56 57.56 53.14

Panel B: Crisis Scenario

Central Moments
BKM-raw-none 0.01 0.05 0.12 0.02 0.19 0.21 0.36 0.09 0.79
BKM-spline-flat 0.02 0.02 0.03 0.06 0.06 0.08 0.33 0.32 0.40
BKM-spline-linear 0.02 0.02 0.04 0.05 0.04 0.04 0.28 0.27 0.26
BKM-kernel-linear 0.00 0.00 0.06 0.06 0.00 0.37 0.21 0.28 0.60
BKM-lckernel-linear 0.01 0.01 0.10 0.16 0.12 0.13 0.38 0.42 0.76

Quantile Moments
MFree-kernel-linear 0.79 0.85 3.32 5.92 20.11 51.10 1.27 1.83 3.17
MFree-spline-flat 4.63 3.96 0.66 21.55 19.66 31.10 3.60 3.12 2.89
MFree-lckernel-linear 1.78 2.52 8.18 27.01 144.56 22.29 1.37 5.79 31.86
BS-kernel-linear 126.69 126.64 126.81 273.38 273.01 270.26 33.40 33.38 33.46
BS-spline-flat 125.09 125.19 125.66 272.98 272.59 274.63 33.15 33.16 33.21
BS-lckernel-linear 122.50 122.28 117.09 288.55 292.60 296.12 30.47 29.65 27.38
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