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Abstract

This study models a link between ex-ante autocorrelation in expected returns and risk-neutral momentum,
enabling a straightforward interpretation of market sentiment. Correspondingly, concepts of fractal Brownian
motion are applied to option implied volatility term structures. Based on an empirical investigation of daily
SP500 and Euro Stoxx 50 data (2006–2018), we find that the expected return momentum varies over time,
as fear spreads much faster than investor confidence can be regained. Thus, we conclude that risk-neutral
momentum is a novel perspective for further research in the fields of risk management, asset allocation, and
behavioral finance.
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1. Introduction

If markets are efficient (Fama (1970)), all available information is reflected not only in the current stock
price but also in the corresponding option prices. This finding is fundamental in the risk-neutral literature
discussing option implied moments. While stocks only have one dimension of price at time t, options have the
advantage of forming a three-dimensional surface with different strikes and times-to-maturity τ , reflecting
investor expectations that are actually traded. By rewriting option prices as Black and Scholes (1973)
(hereafter B/S) volatilities, the surface is proven to embed information regarding the skewness and kurtosis
of the risk-neutral return distribution1. However, to the best of our knowledge, no study has discussed
risk-neutral momentum. We consider risk-neutral momentum to be a combination of the expected return
and ex-ante autocorrelation. Our idea builds on the concepts of fractal Brownian motion and long-term
memory (Hurst (1956); Mandelbrot and Van Ness (1968)) such that corresponding beliefs are observable
from the option implied volatility surface (e.g., Hu and Øksendal (2003)), with the implied Hurst exponent
H as a crucial determinant of risk-neutral momentum. Within our model, H > 0.5 implies the following: (i)
positive ex-ante autocorrelation and (ii) an upward-sloping implied volatility curve over times-to-maturity,
which causes expected returns to increase in τ . The opposite holds forH < 0.5. In the special case ofH = 0.5,
markets face the expectation of no momentum, thus fulfilling the assumptions of standard Brownian motion;
however, based on our empirical observations of U.S. and European markets, this is rarely observed in reality.
Furthermore, we find patterns suggesting that implied momentum is related to market fear, allowing us to
estimate the current levels of investor confidence without having to rely on backward-looking data. This
finding may be useful for investment timing, asset allocation, or risk management. In its interpretation as
market sentiment, it stems from similar dynamics as the CBOE VIX, but comes with a directional feature
allowing distinction between investor optimism and pessimism.

2. Related Literature

Two streams of the finance literature are relevant to this work. The first concerns risk-neutral measure-
ment of investor expectations, and the second concerns autocorrelation within a stochastic process. The
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field of risk-neutral distributional moments, such as ex-ante skewness or kurtosis, has enjoyed extensive
academic discussion both from theoretical and empirical perspectives1. In contrast, research investigating
the risk-neutral autocorrelation property of an expected price development is scarce. The concept we use
is based on fractal Brownian motion (Mandelbrot and Van Ness (1968)), in which Hurst (1956)’s exponent
plays a crucial role. Peters (1991, 1994) and Granger and Ding (1995) were among the first scholars to
apply fractal analysis to financial data, concluding that the U.S. market indeed shows characteristics of
long-term memory. Further support for this ex-post approach was provided by Granger and Hyung (2004);
Alvarez-Ramirez et al. (2008), and Caporale et al. (2018). Differing from these studies, research such as
that conducted by Chow et al. (1996); Caporale and Gil-Alana (2004) and Lu and Perron (2010) resulted
in opposing observations, rejecting long-term memory in stock returns. In our opinion, the chief problem
with ex-post investigation of long-term memory is that several different estimation methods are used for
fractal analysis, including rescaled range (R/S; Hurst (1956)), modified R/S (Lo (1991)), wavelet (Veitch
and Abry (1999)), rescaled variance (Giraitis et al. (2003)), and so on. Rea et al. (2009) provide an empirical
comparison of 12 such different ex-post methods. Overcoming the backward-looking bias, Hu and Øksendal
(2003), extended by Elliott and Van Der Hoek (2003), show how fractal Brownian motion can be substituted
into Black and Scholes (1973) option pricing such that the Hurst exponent can be measured on an ex-ante
basis. A detailed description of this estimation method is provided by Li and Chen (2014), who conduct an
empirical investigation using SP500 index data. Another empirical work concerning option implied measure-
ment of the Hurst exponent was conducted by Flint and Mare (2016). Funahashi and Kijima (2017) further
contributes to this fractal literature by modeling the relationships between the short and long ends of the
term structure of volatility to estimate the implied Hurst exponent.

3. The Idea of Ex Ante Momentum

Our starting point is the Black and Scholes (1973) option implied volatility surface. If investor expecta-
tions match the assumptions of normally distributed returns and zero autocorrelation, the implied volatility
surface actually traded would be flat in all dimensions; however, empirically, this is rarely the case (cp. Figs.
1 and 2). Risk-neutral measures of the shape of ex-ante distribution typically fix the time to maturity and
decompose the volatility surface over the degrees of moneyness. Similarly, we believe that for a given strike
level, the implied volatility curve over maturities (i.e., the term structure of volatility) provides information
regarding the expected momentum.
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Figure 1
SP500’s actually traded B/S at-the-money implied volatility curve over τ on two different dates. In theory, this curve
should be flat. Empirically, in growing markets, this curve is typically upwards sloping (2018-10-01) and vice versa
during pessimistic periods (2008-10-01).

1Examples include Jarrow and Rudd (1982); Backus et al. (2004); Bali and Hovakimian (2009); Xing (2010), Bali et al.
(2019), etc.
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Basic Relation

Let us begin with a simplified logic experiment involving two portfolios, that is, A and B.
Assume that we are at time t0 and that the (annualized) expected risk E[σ] of A is greater than that

of B; thus, no-arbitrage requires the expected return E[r] of A to be above that of B: E[σA] > E[σB ] =⇒
E[rA] > E[rB ] − a very basic law. We suggest that each portfolio is simply a replicated pay-off of the same
underlying built from a 1:1 relationship of at-the-money2 Put and Call options having time-to-maturities
of τCallA = τPutA and τCallB = τPutB but τA > τB . We derive two portfolios that are identical in all their
fundamental characteristics but only distinguished by the time horizon τ . Under Black and Scholes (1973)
assumptions, A and B should be priced at the same risk, but based on market data, where E[σ] = σBS is
directly derived from the implied volatility surface, we observe that E[σA] > E[σB ] (cp. Fig. 1 ’2018-10-01’).
Thus, to re-establish the no-arbitrage principles, E[r(τA)] > E[r(τB)] has to hold. Therefore, the underlying
E[r] is dependent on the future time horizon τ and is not constant as assumed in classical theory. Since E[r]
is a function of τ , at t0, we can compare how the expected return is believed to develop for the future τ

ahead. In the described case of ∂E[σ]
∂τ > 0, investors expect returns to increase in the future or, following the

fractal model below, believe in positive momentum. Thus, in contrast, ∂E[σ]
∂τ < 0, would imply a negative

expected momentum in E[r]. Given that the observations are made with respect to the traded implied
volatility surface, our concept is considered under risk-neutral beliefs. Simplified, the coherences evolve as
follows:

∂E[σ]
∂τ

< 0 =⇒ ∂E[r]
∂τ < 0 =⇒ negative R.N. momentum

= 0 =⇒ ∂E[r]
∂τ = 0 =⇒ no R.N. momentum

> 0 =⇒ ∂E[r]
∂τ > 0 =⇒ positive R.N. momentum

(1)

These basic relationships sketch the first idea that emerges from the fractal model, where ex-ante autocor-
relation is directly linked to risk-neutral momentum.

Ex Ante Long-Term Memory

We define stock momentum as the autocorrelation in returns. Therefore, to quantify risk-neutral mo-
mentum, the assumptions of zero autocorrelation must be released within the stochastic process used. Here,
we introduce fractal Brownian motion and long-term memory. While the fractal form is similar to classical
Brownian motion, it has the advantage of being a self-similar process with allowance for correlation among
increments3. Under this framework, the Hurst exponent H is a crucial determinant of the process autocor-
relation. H ∈ (0, 1) with 0.5 as an important level. If H > 0.5, returns will face positive autocorrelation;
H < 0.5 represents negative autocorrelation, while an H equaling exactly 0.5 will again result in a standard
Brownian motion.

Hu and Øksendal (2003) (and further extended by Elliott and Van Der Hoek (2003)) substitute the
standard Brownian motion by its fractal form within the Black and Scholes (1973) option pricing formula
such that the implied B/S volatility surface over maturity σBS(τ) can be divided into its (non-autocorrelated)
fractal volatility σf and the Hurst exponent H, which is expressed as:

σBS(τ) = σfτ
H− 1

2 . (2)

Using logarithms, Eq. 2 can be rewritten in a linear form such that

ln(σBS(τ))︸ ︷︷ ︸
ŷ

= ln(σf )︸ ︷︷ ︸
α̂

+ (H − 0.5)︸ ︷︷ ︸
β̂

· ln(τ). (3)

2Strike is set to at-the-money such that the skewness and kurtosis effects are captured within the implied volatilities.
3Details are provided by Hurst (1956); Mandelbrot and Van Ness (1968). In fact, fractal theory is frequently discussed in

disciplines of physics and mathematics, but is not yet that prominent in the field of finance.
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Since σBS(τ) and τ are directly observable, the implied Hurst exponent H is to be estimated based on the

coefficient β̂ from fitting Eq. 3 by OLS regression.
To draw the connection between ex-ante autocorrelation and risk-neutral momentum, we refer to the

stochastic return definition for which the functional form is the same under both the classical and fractal
notations (see Eq. 4). Therefore, the underlying’s expected return from t0 to T is defined through the
parameters of constant drift µ and volatility σ as

E
[
ln

(
ST
S0

)]
=

(
µ+

1

2
σ2

)
︸ ︷︷ ︸

r̄

τ. (4)

Obviously, this notation implies that the expected rate of return r̄ is constant and independent of the horizon
τ : ∂r̄

∂τ = 0. In the presence of autocorrelation beliefs, implementing fractality from Eq. 2 into the expected
return notation of Eq. 4 releases this assumption:

r̄ = µ+
1

2
σ2
fτ

2H−1 =⇒ ∂r̄

∂τ
= (H − 0.5) σ2

fτ
2(H−1) (5)

such that r̄ = f(τ). Regarding the first order derivative ∂r̄
∂τ , our autocorrelation indicator H determines

whether r̄ is expected to remain, increase, or decrease in τ . Thus, since sgn(H − 0.5) = sgn( ∂r̄∂τ ) 4, ex-ante
autocorrelation maps into risk-neutral momentum analogously as demonstrated in Eq. 1. Consequently, our
ex-ante momentum model suggests how investors expect the rate of return to evolve in the future.

4. Empirical Observations

Our sample covers SP500 and Euro Stoxx 50 data ranging from January 2006 to October 2018; this set
is divided into the following three time-periodic subsamples: pre-crisis (01-2006 to 05-2007), crisis (06-2007
to 05-2009), and post-crisis (06-2009 to 10-2018). All data are derived from Bloomberg L.P. We draw the
B/S implied volatility surface using at-the-money options with time-to-maturities from 3 to 18 months. The
implied Hurst exponent H is estimated by daily OLS regression following Eq. 3. The corresponding results
are displayed in Table 1 and Fig. 2. Generally, the regressions’ goodness of fit measured by R2 is considered
high, ranging between 94.5% and 99.7% for SP500 and between 75.4% and 95.6% for Europe5. The time
pattern of risk-neutral momentum is found to indicate investor confidence. While H is mainly above 0.5
when markets are growing, the momentum clearly drops during times of uncertainty. In Fig. 2, we can
observe such critical times; examples include the financial crisis and early 2018, when the markets faced
a substantial loss. Moreover, a comparison of Europe and the U.S. reveals the impact of the Euro crisis.
While the risk-neutral momentum of SP500 recovered soon after 2009, that of Euro Stoxx 50 implied that the
Hurst exponent continued oscillating around the critical 0.5 level. Thus, H provides insights that uncertainty
remained in Europe after the financial crisis; this finding may relate to the weak growth of the Euro Stoxx 50
compared to that of the SP500. Overall, it appears that downward movements in H occur much faster than
upward trends. The skewness in the log changes of H is significantly negative at -1.07∗∗∗ (U.S.) and -0.17∗∗∗

(Europe)6. This result suggests that fear spreads in a market much more quickly than trust in growth can
be regained. To control the statement of H referring to investor sentiment, the correlations between H and
broadly used volatility indices are measured7. The Pearson correlation between SP500’s H and the VIX
is substantially negative at −0.84∗∗∗. For Europe, there is a similar converse relationship between H and
VSTOXX at −0.81∗∗∗. Such an opposing pattern suggests that if market fear (represented by VIX and

4sgn denotes the sign function. In fact, sgn( ∂ lnσBS
∂τ

) = sgn( ∂σBS
∂τ

), ∀τ . Therefore, sgn( ∂σBS
∂τ

) = sgn(H − 0.5) = sgn( ∂r̄
∂τ

)
and is, thus, equal to the direction of risk-neutral momentum.

5The 1st and 3rd quartile of 3188 regressions per market index. The high goodness of fit supports the applicability of the
fractal pricing model.

6∆Ht = ln( Ht
Ht−1

); skewness is tested according to D’Agostino (1970). ∗∗∗ denotes a p-value below 1%.
7A large body of evidence confirms that CBOE’s volatility index (VIX) reflects market fear, for example, Whaley (2000);

Baker and Wurgler (2007), Caporale et al. (2018), and so on. In the following, the VIX and the Euro Stoxx 50 Volatility index
(VSTOXX) are considered market fear gauges for the U.S. and Europe, respectively.
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VSTOXX) is high, risk-neutral momentum H is low and vice versa. Therefore, the interaction between the
implied Hurst exponent and market fear confirms our argument. Regarding the measurement of market
sentiment, the advantage of using the fractal approach instead of volatility indices is clearly illustrated in
Fig. 2 as follows: under H, one can directly observe whether the market mood is optimistic (H > 0.5),
neutral (H = 0.5), or pessimistic (H < 0.5). − volatility indices per se do not allow for such a clear-cut
interpretation.
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Figure 2
Daily risk-neutral momentum as implied by H, measured based on the SP500 and the Euro Stoxx 50 (ESX50). In
times of market growth, investors trade on positive autocorrelation in expected returns with H above 0.5. During
periods of nervousness, when the market is stagnating or in a crisis, H is primarily below 0.5, indicating an expected
decline in returns. Generally, H’s correlation between the U.S. and European markets is high at 0.76. Decreases in
H are observed to occur faster than regrowth to higher levels. Generally, with a link to market fear, H > 0.5 suggests
that investor sentiment is positive, and analogously, H < 0.5 reflects pessimistic times.
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Table 1
Fractal analysis of SP500 and Euro Stoxx 50’s implied volatility surface. Outside times of crisis, investors feel confident
in trading on persistence in expected returns (H > 0.5). During the financial crisis, the volatility curve was downward
sloping (H < 0.5) such that the risk-neutral momentum was negative. The risk-neutral momentum between the two
markets was similar before and during the financial crisis. Following the crisis, when Europe additionally fell into the
Euro crisis, we observe greater recovery in investor confidence in the U.S. market. σf denotes fractal volatility, which
can be interpreted as the base level of non-autocorrelated volatility. The period is divided into pre-crisis (01-2006 to
05-2007), crisis (06-2007 to 05-2009), and post-crisis (06-2009 to 10-2018).

Panel A: SP500
H σf return

mean std. dev. mean std. dev. mean std. dev.
Pre-crisis 0.59 0.03 0.09 0.02 0.15 0.10
Crisis 0.48 0.06 0.34 0.25 -0.26 0.35
Post-crisis 0.61 0.07 0.11 0.07 0.12 0.15

Panel B: Euro Stoxx 50
H σf return

mean std. dev. mean std. dev. mean std. dev.
Pre-crisis 0.60 0.03 0.15 0.02 0.16 0.14
Crisis 0.48 0.06 0.28 0.11 -0.30 0.33
Post-crisis 0.54 0.09 0.20 0.06 0.03 0.20

From realized returns, it is already broadly verified that the no-autocorrelation assumption does not hold8.
With our empirical investigation we find that this assumption does not even hold for return expectations
since H is significantly different from 0.5. The fractal analysis of ex-ante data allows us to investigate
current investor confidence, H is typically above 0.5 in times of smooth returns and low volatility, indicating
positive expected autocorrelation. In times of nervousness, market expectations either revert to a random
walk (H = 0.5) or lead to negative ex-ante momentum. Thus, substituting classical Brownian motion with
its fractal form may cause improvements in tasks of equity and option pricing as the realistic component of
momentum beliefs can be considered. Due to the clear interpretation and almost continuous data availability,
we believe that information regarding the implied Hurst exponent embeds a high potential for investment
timing and allocation, especially for VIX based strategies in which such a directional interpretability is not
given.

5. Conclusion

Momentum is a known phenomenon in financial markets and is typically measured ex-post. To quantify
momentum ex-ante, model assumptions of zero autocorrelation must be released, which can be achieved
by introducing fractal Brownian motion. With fractal analysis, the option implied volatility term structure
can be decomposed into its non-autocorrelated base level and Hurst exponent H. Technically, the Hurst
exponents fulfill the following two functions: indicating the log slope of the volatility term structure and
reflecting expected autocorrelation. Combining this ex-ante long-term memory with arbitrage free principles,
we make the link to positive (negative) risk-neutral momentum as an expected increase (decline) in the rate
of return. The empirical observations indicate that risk-neutral momentum highlights market fear as follows:
during times of constant growth, the ex-ante momentum is positive, while during crises, momentum beliefs
are negative. The correlations between H and volatility indices (as common market fear measures) are
highly significant, but the Hurst exponent has the great advantage of a clear and directional interpretability
in terms of investor sentiment. Through the feature of market mood, the advance measurement of actually
traded momentum expectations may be useful for research in the field of behavioral finance, investment

8Empirical evidence goes back to Cowles and Jones (1937).
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timing, or risk management. Thus, this work should contribute to the discourse related to market sentiment
from a new perspective.
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