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ABSTRACT

Often, variables are linked to each other via a network. When such a network structure

is known, this knowledge can be incorporated into regularized regression settings via a

network penalty term. However, when the type of interaction via the network is unknown

(that is, whether connections are of an activating or a repressing type), the connection

signs have to be estimated simultaneously with the covariate coefficients. This can be done

with an algorithm iterating a connection sign estimation step and a covariate coefficient

estimation step. We develop such an algorithm and show detailed simulation results

and an application forecasting event times. The algorithm performs well in a variety

of settings. We also briefly describe the R-package that we developed for this purpose,

which is publicly available.

Keywords: Network regression; network penalty; connection sign estimation; regular-

ized regression.
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1 Introduction

Network data have become increasingly important in the last few decades. This concerns

a variety of types of data and disciplines, including pathway data in biology that reveals

information relevant for medical research, data on social networks from social media

websites with up to a couple of billion users, or networks of financial institutions relevant

for assessing financial stability and designing regulation.

However, while there have been attempts to provide statistical methods to deal with

network data in the recent past, the development of such methods seems to be generally

still in early stages, with much work left for the upcoming decades.

In this paper, we introduce a method to incorporate network information into a reg-

ularized regression setting and provide simulations showing that the method performs

well. The method is an algorithm based on Li and Li (2008) who propose a particular

network penalty on top of a Lasso penalty to incorporate network information about the

covariates (that is, it is known which covariates are linked on a network). A potential

problem with this method is that it assumes that all network connections have positive

sign (that is that they are of a activating or enforcing type). However, there may also be

network connections with negative signs (for example connections of a repressing type;

in a biological application, this could for example be one gene downregulating another

one). Often, the signs of the connections are not even known ex ante. In biology, for

example, gene expression data is often represented by an undirected graph, without in-

formation of which of the connections are of an activating and which of a repressing type.

Therefore, the algorithm described in this paper estimates the covariate coefficients and

the connection signs simultaneously.

The idea of the algorithm can be summarized as follows. In the algorithm there are

two steps. In a coefficient estimation step, the covariate coefficients are estimated by

maximizing a penalized log-likelihood given estimates of the connection signs. Then, in

a connection sign estimation step, the signs of the connections are estimated, taken the

covariate coefficients as given from the last coefficient estimation step. These two steps

are then repeated.
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One of the goals of this method is to improve prediction performance. The method

can for example be used to forecast event times of cancer patients and thereby improve

patients’ treatments or add in the development of new medical treatments. In addition

to this, the method can help to gain knowledge about the signs of the coefficients. This

can in cases where it is important to understand the signs of the connections be a goal

in its own.

This paper is organized as follows. Section 2 describes the algorithm to estimate

covariate coefficients and connection signs and its implementation in a new accompanying

R-package. Section 3 describes the simulations motivated by the availability of biological

pathway information and presents the results. Section 4 applies the method to time-to-

event microarray data. Section 5 concludes.

2 Method

We describe the method here concisely. For more detail, see the earlier unpublished

version Weber et al. (2014), which is available online.

2.1 Background

We consider a continuous response y and covariate matrix X. The numbers of observa-

tions and covariates are n and p, respectively. Thus, y = (y1, ..., yn)T and X is an n× p-

matrix with rows xTi = (xi1, ..., xip). x(j) denotes the j-th column. We assume y to be

centered and X standardized, which means
∑n

i=1 yi = 0,
∑n

i=1 xij = 0 and 1
n

∑n
i=1 x

2
ij = 1

for j = 1, ..., p. In the classical linear model yi = xTi β + εi, with εi ∼ N(0, σ2)., where β

is estimated.

The additional information for the regression problem is given by a regulatory network

depicted by a weighted graph. The vertices are the covariates and the edges indicate some

regulatory relationship between the covariates. The regulatory network is incorporated

into the network penalty via the normalized Laplace matrix of the associated graph. This
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is a p× p -matrix defined as

(L)uv =


1− w(u,v)

du
if u = v and du 6= 0

−w(u,v)√
dudv

if u and v are adjacent

0 otherwise

where u and v stand for the u-th and v-th covariate and w(u, v) denotes the weight of

the edge that links the u-th and v-th covariate (see Chung, 1997). Often the information

is given via a connection matrix which consists only of zeros and ones indicating only

which genes are connected, thus w(u, v) is usually zero or one. du is the degree of vertex

u defined as the sum of w(u, v) over all vertices v that are linked to vertex u.

Li and Li (2008) propose to estimate β by minimizing the following penalized residual

sum of squares (selecting λ1 and λ2 via 10-fold cross-validation):

RSS(λ1, λ2, β) = (y −Xβ)T (y −Xβ) + λ1

p∑
j=1

|βj|+ λ2β
TLβ.

The set of all edges is denoted by {u ∼ v} (this is the set of all directly linked pairs of

predictors). It is then βTLβ =
∑

u∼v

(
βu√
du
− βv√

dv

)2
w(u, v).

2.2 Ideas behind the Algorithm

It is implicitly assumed in Li and Li (2008) that all connections between the connected

covariates are positive, that is, that they influence the outcome in the same direction.

It is likely, though, that some of the connections have a negative sign (in a biological

application, for example, if a transcription factor suppresses another gene). In this case

it would be suitable to add a penalty of the form λ2

(
βu√
du

+ βv√
dv

)2
w(u, v) rather than

λ2

(
βu√
du
− βv√

dv

)2
w(u, v).

It is also possible to look at a different penalty matrix. In addition to the normalized

Laplacian (or mutations of it that arise through negative connection signs), we also use
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the combinatorial Laplacian, which is defined by

(Lcomb)uv =


du − w(u, u) if u = v and du 6= 0,

−w(u, v) if u and v are adjacent,

0 otherwise.

With positive connection signs, the combinatorial Laplacian leads to the following penal-

ized log-likelihood (noting that maximizing the penalized log-likelihood is equivalent to

minimizing the penalized RSS)

l(λ1, λ2, β) = `(β)− λ1
p∑
j=1

|βj| − λ2
∑
u∼v

(βu − βv)2w(u, v).

We define for all i, j ∈ {1, ..., p}

ξij =

 -1 if there is a negative connection between covariates i and j,

1 otherwise.

Given an initial penalty matrix M with Mij = 0 if covariates i 6= j are not connected

(e.g., the normalized or combinatorial Laplacian), the optimal solution would be to use

the penalty matrix with entries −ξij|(M)ij| for i 6= j and |(M)ii| otherwise. However, in

many cases the ξij are unknown and have to be estimated.1 Similar to {u ∼ v},
{
u

+∼ v
}

denotes the set of all connections assumed to have positive signs and
{
u
−∼ v
}

that with

negative signs. Then we have

∑
u
+∼v

(
βu√
du
− βv√

dv

)2

w(u, v)+
∑
u
−∼v

(
βu√
du

+
βv√
dv

)2

w(u, v) =
∑
u∼v

(
βu√
du
− ξ̂uv

βv√
dv

)2

w(u, v).

Given estimates of the covariate coefficients (obtained via maximizing a penalized

log-likelihood with some set of connection signs), the connection signs can be estimated

(anew) as follows. To estimate the connection sign between covariates i and j, all covariate

1We assume that a penalty matrix M is symmetric and that we can write βTMβ =∑
u∼v (a(u, v)βu + b(u, v)βv)

2
, with a(u, v) and b(u, v) real numbers. The normalized and combinatorial

Laplacians are of such a form.
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coefficients β̂k are kept fixed, except for the two coefficients whose connection sign is being

estimated (k 6= i, j), and then a small linear model is fitted for covariates i and j only.

A connection sign is estimated to be positive if the coefficient estimates of the connected

covariates in this small linear model have the same sign. This is a reasonable estimate

of the connection sign as in many applications positively connected covariates influence

the output variable in the same direction, while negatively connected covariates influence

the output variable in opposite directions. These small linear models should thus reveal

information about the sign of the connection.

To be more detailed, the connection signs can be estimated as follows. X−(i,j) denotes

the input matrix excluding columns i and j, β̂−(i,j) denotes the estimate of β excluding

β̂i and β̂j, while x(i) denotes again the i-th column of the input matrix. Fitting the

small linear model for covariates i and j means considering the new response ỹ = y −

X−(i,j)β̂−(i,j) and minimizing

n∑
k=1

(ỹk −Xkiβi −Xkjβj)
2 =

ỹ − (x(i), x(j))
 βi

βj



T ỹ − (x(i), x(j))

 βi

βj




over (βi, βj)
T . Let (β̂i

∗
, β̂j
∗
)T denote the minimizer of the above residual sum of squares.

If and only if the signs of β̂i
∗

and β̂j
∗

are different, the connection between covariates i

and j is estimated to have negative sign.

As starting values for the connection sign estimates, the signs of the empirical co-

variance of the columns of the input matrix can be taken. Because the covariate matrix

is standardized, this boils down to the sign of xT(i)x(j). Thus the starting value of a

connection sign is positive if xT(i)x(j) ≥ 0 and negative otherwise.

2.3 The 3CoSE Algorithm

The description above contains the ingredients of the algorithm. We propose to call it

3CoSE (pronounced “three-cose”), standing for Covariate Coefficient and Connection
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Sign Estimation.2 Given a log-likelihood `(β), a penalty matrix M1, and fixed penalty

parameters, the algorithm consists of the following steps:

1. Determine starting values for the connection sign estimates via the empirical co-

variance, ξ̂ij = sign(xT(i)x(j)).

2. Estimate β by maximizing the penalized log-likelihood

l(λ1, λ2, β) = `(β)− λ1
p∑
j=1

|βj| − λ2βTMβ

with the current estimates of the connection signs, where (M)ij = −ξ̂ij|(M1)ij| for

i 6= j and (M)ii = |(M1)ii|.

3. Update the connection sign estimates by running mini OLS models, with the current

estimate of β from step 2, so that ξ̂ij ← sign(β̂∗i ) · sign(β̂∗j ).

4. Iterate steps 2 and 3 until convergence (or for a fixed number of repetitions).

This procedure is often still be feasible when straightforward maximization of the

penalized log likelihood over all coefficients and connection signs is computationally pro-

hibitive, which is not unusual for big or high-dimensional data. The algorithm usually

converges. When it does not converge, it can be run for a certain number of repetitions.

It is very unlikely that a large number of connections have still changing signs and that

their coefficients are important. It is much more likely that the few connections with still

changing signs have coefficients that are estimated to be zero. No converge is thus not

necessarily problematic.

2.4 Implementation and R-Package LassoNet

For these simulations, the accompanying R-package LassoNet was developed, which is

publicly available (Striaukas and Weber, 2020). It implements the covariate coefficient

estimation step via coordinate descent (see Friedman et al., 2007). This means that only

2In Weber et al., 2014, the algorithm has no proper name yet and carries the working title “Network
Algorithm”.
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one covariate is updated at a time; all βk, k = 1, ...p except one, say βj, are kept fixed at

their current value and the maximization of the log-likelihood is conducted only for βj,

which is then updated. This is carried out for all βj, j = 1, ..., p and then the whole cycle

is repeated until convergence.

With network penalty matrix M , maximizing the log-likelihood is equivalent to min-

imizing this residual sum of squares:

RSS(λ1, λ2, β) =
n∑
i=1

(
yi −

p∑
h=1

xihβh

)2

+ λ1

p∑
h=1

|βh|+ λ2β
TMβ

=
n∑
i=1

(
yi −

∑
k 6=j

xikβk − xijβj

)2

+ λ1

p∑
h=1

|βh|+ λ2

p∑
h=1

Mhhβ
2
h + λ2

∑
u∼v

2Muvβuβv.

One wants to minimize over one βj while keeping all other coefficients fixed at their

current values β̃k. For βj > 0 and ỹ
(j)
i :=

∑
k 6=j xikβ̃k, the derivative with respect to βj

becomes

∂

∂βj
RSS(λ1, λ2, β) =

n∑
i=1

(
−2xij

(
yi − ỹ(j)i

)
+ 2x2ijβj

)
+ λ1 + 2λ2Mjjβj + 2λ2

∑
j 6=v

Mjvβ̃v.

Setting this equal to zero, we get

βj =

∑n
i=1 2xij

(
yi − ỹ(j)i

)
− 2λ2

∑
j 6=vMjvβ̃v − λ1

2n+ 2λ2Mjj

.

We have used
∑n

i=1 x
2
ij = n, which is the case as the input matrix is standardized. The

case of βj < 0 leads to a similar term.3

This finally leads to coordinate updates of the form

β̃j ←
S
(∑n

i=1 2xij

(
yi − ỹ(j)i

)
− 2λ2

∑
j 6=vMjvβ̃v, λ1

)
2n+ 2λ2Mjj

,

3 To be precise, for βj < 0, we obtain βj =

∑n
i=1 2xij

(
yi−ỹ(j)i

)
−2λ2

∑
j 6=v Mjvβ̃v+λ1

2n+2λ2Mjj
.
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where S(·, ·) is the soft thresholding operator defined by

S(x, κ) = sign(x)(|x| − κ)+ =


x− κ if x > 0 and |x| > κ

x+ κ if x < 0 and |x| > κ

0 if |x| ≤ κ.

Especially for big or high-dimensional data, computational efficiency is very im-

portant. Therefore we use covariance updates that can lead to a considerable reduc-

tion of compute time (adapting the version proposed in Friedman et al., 2010). It is

yi− ỹ(j)i = yi− ỹi+xijβ̃j = ri+xijβ̃j, where ỹi =
∑p

j=1 xijβ̃ and ri is the current residual.

Because the input matrix is standardized, it is
∑n

i=1 xij

(
yi − ỹ(j)i

)
=
∑n

i=1 xijri + nβ̃j

and then one can write
∑n

i=1 xijri = 〈x(j), y〉 −
∑p

k=1 〈x(j), x(k)〉β̃k, where x(j) is the j-

th column of the input matrix and 〈·, ·〉 is the inner product. This leads to coordinate

updates of the form

β̃j ←
S
(

2
(
nβ̃j + 〈x(j), y〉 −

∑p
k=1 〈x(j), x(k)〉β̃k

)
− 2λ2

∑
j 6=vMjvβ̃v, λ1

)
2n+ 2λ2Mjj

.

The inner products of y with all columns of the covariate matrix as well as all inner

products of two columns of the covariate matrix can then be computed in the beginning

and stored. At each coordinate update they can then be accessed.

Note that the coordinate descent algorithm always converges to the global minimum.

The proof is contained in the following footnote.4

In the connection sign estimation step, we use a trick decomposing some of the ele-

ments and storing them. In a high-dimensional setup, there can be a large number of

connected covariates. The 3CoSE algorithm relies on a small OLS model to update each

4The proof makes use of a theorem from Tseng (1988) stating that the coordinate descent algorithm
converges to the global minimum in cases where the function f that shall be minimized is of the form
f(β1, ..., βp) = g(β1, ..., βp) +

∑p
j=1 hj(βj), with g differentiable and convex and hj , j = 1, ..., p convex.

With a network penalty, the penalized RSS can be written as RSS(β) = g(β) +
∑p
j=1 hj(βj), with

g(β) = (y −Xβ)
T

(y −Xβ) + λ2β
TMβ and hj(βj) = λ1|βj |. Then g is a sum of differentiable and

convex functions and thus again differentiable and convex, while the hj are obviously convex.
In short, if βTMβ is convex, the coordinate wise descent algorithm is sure to converge to the global

minimum. That is in particular the case for all M which allow βTMβ to be written as a sum of squared
terms.

9



single connection sign and can thus be computationally expensive if implemented straight-

forwardly. However, as the OLS models are similar in the repetitions of the algorithm,

compute time can be saved as follows.

Denote by X̃ :=
(
x(i), x(j)

)
, the input matrix consisting only of the two columns

x(i) and x(j) and by β̃ := (β̂i
∗
, β̂j
∗
)T the OLS estimates of the small linear models de-

scribed in Section 2.2 (the tildes should not be confused with the tildes in the coordinate

descent algorithm). Then the solution of the small linear models can be written as

β̃ =
(
X̃T X̃

)−1
X̃T ỹ. Note that ỹ = y −X(i,j)β̂−i,j and therefore

β̃ =
(
X̃>X̃

)−1
X̃>y −

(
X̃>X̃

)−1
X̃>X(i,j)β̂−i,j.

β̃ only changes with updates of the estimates β̂, while the rest of the elements can be

computed from the data alone. The elements that can be computed from the data alone

are

Bi,j
y︸︷︷︸

2×1

:=
(
X̃>X̃

)−1
X̃>y and Bi,j

x︸︷︷︸
2×(p−2)

:=
(
X̃>X̃

)−1
X̃>X(i,j).

By pre-computing these elements for each connected pair of covariates (i, j), each linear

regression is simplified to a single multiplication and subtraction.

3 Simulations

The motivation for the simulations is of biomedical nature, where network informa-

tion about gene expression data is of great interest. Such data, which is usually high-

dimensional, can be used for prediction purposes (e.g., to predict event times of patients

in medical applications), but the signs of the network connections are also of interest

in themselves for biomedical research (as it is important to know which genes influence

other genes in what ways). The simulations that we report are similar (but not identical)

to the ones reported in Li and Li (2008) and Weber et al. (2014).
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3.1 Setting

We consider two similar sets of simulations with four scenarios each. The difference

between the two sets is that the first one contains fewer variables, 1100 covariates as

compared to 2200 in the second set, while the number of non-zero covariate coefficients is

identical in both sets. That is, in the first set there are relatively more informative covari-

ates. We first describe the first set in detail and briefly mention the small modifications

for the second set thereafter.

Note that of the four scenarios in each of the two sets of simulations the third and

fourth scenarios should be seen more as robustness checks. In these scenarios all connec-

tions between covariates are per definition positive. These scenarios do thus not promise

any potential for the 3CoSE algorithm to do better than the penalty introduced by Li and

Li (2008), which already assumes positive connections. Nevertheless, is is interesting to

see whether the algorithm does significantly worse in case that all connections are indeed

positive.

Simulations with 1100 covariates (100 transcription factors). Suppose that in-

formation is available about a regulatory network with 100 transcription factors and 1000

genes that are controlled by these transcription factors. Each transcription factor con-

trols ten genes. The resulting network thus consists of 1100 genes and the connections

between the transcription factors and the genes that they regulate. The covariate matrix

X consists of 1100 columns, where the first column consists of the expression levels of

the first transcription factor, the next ten columns are the expression levels of the genes

regulated by the transcription factor in the first column, and so on.

The four different scenarios differ mainly in the true covariate coefficient vector β.

We assume a linear model, i.e. yi = Xiβ + εi. The number of observations is 100

and εi ∼ N(0, σ2) with σ2 = (
∑

j β
2
j )/4. The expression levels of the 100 transcription

factors are independently and identically distributed according to a standard normal

distribution. The expression level of a gene depends on the level of the transcription

factor that regulates it. The expression level of a gene of observation i that depends on
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the j-th transcription factor follows a N(1 · 0.7 · TFi,j, 0.51) distribution, where 1 is the

indicator function, which depends on the connection sign and is equal to 1 or −1.

In the first scenario the true coefficient vector is of the following form:

β1 = (5,
−5√

10
, . . . ,

−5√
10︸ ︷︷ ︸

3

,
5√
10
, . . . ,

5√
10︸ ︷︷ ︸

7

, 5,
5√
10
, . . . ,

5√
10︸ ︷︷ ︸

3

,
−5√

10
, . . . ,

−5√
10︸ ︷︷ ︸

7

,

5,
−5√

10
, . . . ,

−5√
10︸ ︷︷ ︸

3

,
5√
10
, . . . ,

5√
10︸ ︷︷ ︸

7

, 5,
5√
10
, . . . ,

5√
10︸ ︷︷ ︸

3

,
−5√

10
, . . . ,

−5√
10︸ ︷︷ ︸

7

, 0, . . . , 0︸ ︷︷ ︸
1056

).

In the second scenario the denominators of
√

10 are replaced by 10, keeping all else equal.

In these two scenarios, the indicator function 1 takes the value −1 for the first three reg-

ulated genes of a transcription factor, while it takes the value 1 for the other seven genes.

The coefficient vector in the third scenario is

β3 = (5,
5√
10
, . . . ,

5√
10︸ ︷︷ ︸

10

,−5,
−5√

10
, . . . ,

−5√
10︸ ︷︷ ︸

10

, 5,
5√
10
, . . . ,

5√
10︸ ︷︷ ︸

10

,−5,
−5√

10
, . . . ,

−5√
10︸ ︷︷ ︸

10

, 0, . . . , 0︸ ︷︷ ︸
1056

).

The indicator function 1 in this scenario always equals 1 (this is intuitive as the coefficients

of the transcription factors and the regulated genes always have the same sign). The

fourth scenario is identical to the third one, except that the denominator values of
√

10

are replaced by 10.

Simulations with 2200 covariates (200 transcription factors). In addition to the

first set of four scenarios described above, we also consider very similar scenarios with

additional zero-coefficients. That is, instead of considering 100 transcription factors, we

consider 200 transcription factors, again each one regulating ten genes. The four scenarios

resemble the four previously discussed scenarios but with additional 1100 zero coefficients

in the coefficient vector β. The coefficient vector in the first scenario, for example, is then

12



as follows:

β1 = (5,
−5√

10
, . . . ,

−5√
10︸ ︷︷ ︸

3

,
5√
10
, . . . ,

5√
10︸ ︷︷ ︸

7

, 5,
5√
10
, . . . ,

5√
10︸ ︷︷ ︸

3

,
−5√

10
, . . . ,

−5√
10︸ ︷︷ ︸

7

,

5,
−5√

10
, . . . ,

−5√
10︸ ︷︷ ︸

3

,
5√
10
, . . . ,

5√
10︸ ︷︷ ︸

7

, 5,
5√
10
, . . . ,

5√
10︸ ︷︷ ︸

3

,
−5√

10
, . . . ,

−5√
10︸ ︷︷ ︸

7

, 0, . . . , 0︸ ︷︷ ︸
2156

).

3.2 Simulation Details and Definitions

For each scenario, we simulate 50 training data sets and 50 test data sets. In each

training set, we select the lasso and the network penalty parameters with ten-fold cross

validation. The regression coefficients and connection signs are then computed using the

full training data set and selected penalty parameters. Prediction mean squared errors

are then calculated on one full test data set. Note that this means that we evaluate the

prediction performance out of sample (which is completely different from just reporting

a better fit in sample due to additional parameters or steps).

To evaluate the prediction performance, we use the following definitions:

1. Prediction mean squared error (k here indicates the index of the data set, k =

1, . . . , T , and i indicates the observation number, i = 1, . . . , N ; in our case T = 50

and N = 100)

PMSE(yk) = 1
N

∑N
i=1 (yk,i − ŷk,i) = 1

N

∑N
i=1

(
yk,i −Xk,iβ̂k,i|λ1,λ2

)
PMSE(y) = 1

T

∑T
k=1 (PMSE(yk))

2. Standard errors, denoted by s, for the estimated variable of interest, i.e. PMSE(y),

are computed as follows

s = 1
T

√∑T
k=1 [PMSE(yk)− PMSE(y)]2

The grid from which the possible values of λ1 and λ2 are chosen in the cross validation
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is the following:

λ1 = {600, . . . , 100︸ ︷︷ ︸
in steps of 100

, 99, . . . , 20︸ ︷︷ ︸
in steps of 3

}

λ2 = {0, . . . , 100︸ ︷︷ ︸
in steps of 5

}

This grid was chosen based on values found in a variety of small model simulations (these

models were similar to the scenarios that we consider but with fewer covariates).

In the simulation studies, we compare the following methods. First, the regular 3CoSE

algorithm, using the normalized Laplacian as penalty matrix (abbreviated unsurprisingly

as 3CoSE in the tables). Second, the 3CoSE algorithm using the combinatorial Laplacian

as penalty matrix (abbreviated as 3CoSE-CL). Third, penalized regression with a network

penalty as in (Li and Li, 2008), which is abbreviated as Net (Li Li) in the tables.5 Fourth,

we use the Lasso as a benchmark model, which incorporates information about the levels

of the covariates but not about the network structure. As comparison, we also partly show

a null model ignoring all covariate information (that is, always forecasting the intercept)

and the true model (that is, forecasting with the β used to create the data).

3.3 Simulation Results with 1100 Covariates

Now, we consider the prediction mean square errors (PMSEs), sensitivity and specificity

estimates, and the estimates of the fractions of correctly estimated connection signs for

the simulations with 1100 covariates (100 transcription factors). Standard errors are

always given in parentheses.

The prediction performance of the different methods is given in Table 1. The 3CoSE

algorithm with the normalized Laplacian and with the combinatorial Laplacian perform

much better than the other methods in the first scenario. In the other three scenarios

there are no large differences in PMSEs. This includes the scenarios with all positive

5We do not apply any double-shrinkage correction, which is mentioned in Li and Li (2008). Unlike
in the elastic net (Zou and Hastie, 2005), where one may indeed talk of double shrinkage, the additional
network penalty pulls different coefficients toward each other and not toward zero.
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connection signs. Thus, the algorithm seems to be able to improve prediction performance

considerably in some cases while not leading to worse performance even in the extreme

cases with only positive connection signs.

Table 1: Prediction mean squared errors (PMSEs)
3CoSE 3CoSE-CL Net (Li Li) Lasso True Null

Scenario 1 105.94 124.45 134.72 136.49 53.44 1121.22
(3.24) (4.81) (4.82) (4.34) (1.05) (22.11)

Scenario 2 52.58 51.75 51.75 61.3 28.11 320.79
(1.45) (1.38) (1.38) (1.97) (0.56) (7.17)

Scenario 3 104.18 115.33 100.25 131.88 52.28 1150.07
(4.13) (4.13) (4.25) (4.26) (0.93) (23.46)

Scenario 4 50.78 50.17 51.64 56.85 27.2 315.56
(1.58) (1.39) (1.36) (1.58) (0.46) (6.45)

Measures of sensitivity and specificity can be found in Tables 2 and 3). The sensitiv-

ity shows the fraction of non-zero coefficients that have been correctly estimated to be

non-zero, the specificity shows the fraction of zero coefficients that have been correctly

estimated to be zero. 3CoSE identifies non-zero coefficients similarly well as Net (Li Li)

in most scenarios and considerably better in the first one. The standard algorithm with

the normalized Laplacian in general performs better than the one with the combinatorial

Laplacian, which still performs quite well. Specificity estimates are similar for 3CoSE

and Net (Li Li) in all scenarios, while the values are very close to one for the Lasso,

which estimates many variables to be zero (reflected in very good specificity but very

poor sensitivity).

Table 2: Sensitivity estimates
3CoSE 3CoSE-CL Net (Li Li) Lasso

Scenario 1 0.93 0.75 0.67 0.52
(0.02) (0.03) (0.02) (0.01)

Scenario 2 0.47 0.41 0.41 0.26
(0.03) (0.01) (0.01) (0.01)

Scenario 3 0.94 0.84 0.96 0.52
(0.02) (0.03) (0.02) (0.01)

Scenario 4 0.46 0.42 0.57 0.27
(0.02) (0.02) (0.04) (0.01)

Furthermore, we compute the fractions of correctly estimated connections signs. We

consider the connection sign to be correctly identified if the coefficient estimates of the two
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Table 3: Specificity estimates
3CoSE 3CoSE-CL Net (Li Li) Lasso

Scenario 1 0.94 0.95 0.95 0.99
(0.0023) (0.0026) (0.0025) (0)

Scenario 2 0.96 0.96 0.96 1
(0.003) (0.0029) (0.0029) (0)

Scenario 3 0.94 0.94 0.94 0.99
(0.0026) (0.0025) (0.0028) (0)

Scenario 4 0.96 0.97 0.96 1
(0.0026) (0.0025) (0.0029) (0)

connected covariates are non-zero and either both estimates and both true coefficients

have the same signs or if both have different signs (this allows us to also talk about

correctly identified connections for Net (Li Li) and the Lasso, although these methods

are not intended to estimate network connection signs. As can be seen in Table 4, 3CoSE

performs much better than Net (Li Li) in the first scenario, similarly in the second and

third and a bit worse in the fourth (remember, however, that scenarios 3 and 4 are

designed as favorably to Net (Li Li) as possible as all connection signs are positive). The

Lasso does much worse in identifying the connection signs than the other methods across

the different scenarios.

Table 4: Fractions of correctly estimated connection signs
3CoSE 3CoSE-CL Net (Li Li) Lasso

Scenario 1 0.95 0.82 0.8 0.66
(0.03) (0.05) (0.06) (0.07)

Scenario 2 0.62 0.58 0.58 0.48
(0.07) (0.07) (0.07) (0.07)

Scenario 3 0.94 0.84 0.96 0.52
(0.03) (0.05) (0.03) (0.07)

Scenario 4 0.46 0.42 0.57 0.27
(0.07) (0.07) (0.07) (0.06)

The 3CoSE algorithm converges in all simulations and scenarios. In the first scenario,

only in 10% of cases the algorithm needs more than one iteration to converge. In the

second scenario, convergence happens after the first iteration in 36% of cases, while in the

third and fourth scenarios the algorithm converges after the first iteration in all cases.

Tables 3.3 and 3.3 show the parameters that were selected via cross-validation in the

different scenarios for the different methods. Average selected λ1 parameters for the first
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three methods (3CoSE, 3CoSE-CL and Net(Li Li)) are between 83 and 135, while for the

lasso it is always 400. The selected network penalty parameter λ2 varies across methods

and simulations in a range from 0 to 71.

Table 5: Average selected λ1 values
3CoSE 3CoSE-CL Net (Li Li) Lasso

Scenario 1 84.36 90.40 99.06 400
Scenario 2 108.30 118.62 118.62 400
Scenario 3 83.30 85.36 89.70 400
Scenario 4 128.60 134.08 109.86 400

Table 6: Average selected λ2 values
3CoSE 3CoSE-CL Net (Li Li)

Scenario 1 21.30 8.50 3.60
Scenario 2 1.60 0.00 0.00
Scenario 3 27.30 14.70 70.60
Scenario 4 1.70 0.70 19.60

3.4 Simulation Results with 2200 Covariates

The results for simulations with 200 transcription factors (and thus 2200 covariates) are

similar to the results for the simulations with 100 transcription factors. These results are

reported in Tables 7 to 12.

Table 7: Prediction mean squared errors (PMSEs), 2200 covariates
3CoSE 3CoSE-CL Net (Li Li) Lasso True Null

Scenario 1 123.17 139.28 146.92 144.94 51.59 1140.37
(6.15) (5.75) (6.12) (6.1) (0.98) (27.61)

Scenario 2 52.27 52.03 51.89 57.82 27.32 308.51
(1.69) (1.66) (1.65) (1.95) (0.55) (6.33)

Scenario 3 118.61 131.76 111.98 136.6 51.65 1152.17
(4.21) (4.47) (3.94) (4.43) (0.99) (23.61)

Scenario 4 52.15 50.93 53.18 58.26 27.89 315.07
(2.06) (1.99) (2.07) (2.75) (0.61) (6.59)

In short, in terms of PMSEs, 3CoSE performs again extremely well in the first scenario,

while prediction errors are similar to those of Net (Li Li) in the other scenarios. The

sensitivity and specificity estimates are comparable to the ones in the simulations with
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Table 8: Sensitivity estimates, 2200 covariates
3CoSE 3CoSE-CL Net (Li Li) Lasso

Scenario 1 0.86 0.72 0.6 0.48
(0.03) (0.03) (0.02) (0.01)

Scenario 2 0.4 0.37 0.37 0.25
(0.02) (0.01) (0.01) (0.01)

Scenario 3 0.84 0.69 0.92 0.49
(0.03) (0.03) (0.02) (0.01)

Scenario 4 0.44 0.39 0.54 0.27
(0.03) (0.01) (0.04) (0.01)

Table 9: Specificity estimates, 2200 covariates
3CoSE 3CoSE-CL Net (Li Li) Lasso

Scenario 1 0.97 0.97 0.98 0.99
(0.0013) (0.0012) (0.0011) (0)

Scenario 2 0.98 0.98 0.98 1
(0.0014) (0.0014) (0.0014) (0)

Scenario 3 0.97 0.97 0.97 0.99
(0.0011) (0.0013) (0.0012) (0)

Scenario 4 0.98 0.98 0.97 1
(0.0015) (0.0015) (0.0015) (0)

Table 10: Fractions of correctly estimated connection signs, 2200 covariates
3CoSE 3CoSE-CL Net (Li Li) Lasso

Scenario 1 0.91 0.8 0.74 0.63
(0.04) (0.06) (0.06) (0.07)

Scenario 2 0.59 0.57 0.56 0.48
(0.07) (0.07) (0.07) (0.07)

Scenario 3 0.84 0.69 0.92 0.49
(0.05) (0.07) (0.04) (0.07)

Scenario 4 0.44 0.39 0.54 0.27
(0.07) (0.07) (0.07) (0.06)

Table 11: Average selected λ1 values, 2200 covariates
3CoSE 3CoSE-CL Net (Li Li) Lasso

Scenario 1 111.82 112.24 146.34 400.00
Scenario 2 109.76 114.88 115.48 400.00
Scenario 3 91.80 119.16 86.18 400.00
Scenario 4 103.52 109.60 91.52 400.00

Table 12: Average selected λ2 values, 2200 covariates
3CoSE 3CoSE-CL Net (Li Li)

Scenario 1 19.40 6.40 1.80
Scenario 2 1.20 0.10 0.10
Scenario 3 14.60 8.10 56.70
Scenario 4 0.90 0.00 15.30
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100 transcription factors, meaning that the sensitivity is considerably better in the first

scenario for 3CoSE than for Net (Li Li) while differences are relatively small in the other

scenarios. Specificity is similar between the methods. The Lasso again estimates many

variables to be zero leading to high specificity but low sensitivity.

Again, in all cases the algorithm converged. Convergence took place similarly fast as

in the set with 1100 covariates suggesting that the number of covariates is not a driving

factor in determining the rate of convergence of the algorithm. In the first two scenarios,

for example, convergence took more than one iteration (of the connection sign estimation

step) in only 16 % and 32% of the cases, respectively. It is also worth mentioning here that

in both sets of simulations, the algorithm converged after at most 4 iterations. Average

selected penalty parameters in the second set of simulations are also similar to the ones in

the regressions with 1100 covariates, with slightly lower values for λ2 in the 2200 covariate

setup.

4 Data Application

4.1 Data

We apply the method to time-to-event data from patients with diffuse large B-cell lym-

phoma (Rosenwald et al., 2002). The data contain 240 observations with 7399 microarray

features, the number of events is 138. We restrict the analysis forecasting event times

to the microarray features represented in regulatory and cancer pathways in the KEGG

pathway database. This reduces the number of microarray features to 1281 (however,

we do use the additional microarray features for inverse probability weighting, which we

employ, because part of the data are censored or truncated). The regulatory network

linking the 1281 microarray features contains in total 3645 connections. For details on

pre-processing of the data, see Schumacher et al. (2007) or Binder and Schumacher (2008).
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4.2 Regression Specification

In order to account for censored or truncated data, we use inverse probability weighting

(e.g., Wooldridge, 2007). We compute the inverse probability weights in a two-step

procedure. First, for variable selection (as the problem is high-dimensional), we employ

a Lasso logit regression on the 6119 covariates that we do not use for forecasting. In this

regression, the dependent variable is the binary variable indicating whether an event was

reported for an observation or not (1 = yes, 0 = no). We use 10-fold cross validation to

determine the penalty parameter that leads to the best prediction. This in turn yields

a selection of 24 covariates. In the second step, we use the selected 24 covariates to

compute the inverse probability weights by estimating the probabilities with a regular

logit regression (to avoid the bias of the Lasso logit estimates). We denote the estimated

probability (from the second step) that an event is reported for observation i by p̂i.

We then use the inverse probability weights to reweight the data. Therefore, we

restrict the data to those observations for which an event is reported. We reweight each

observation i by
p̂−1
i∑N

k=1 p̂
−1
k

, where N is the number of observations with an event and∑N
k=1 p̂

−1
k is a normalization factor. The restricted and reweighted data account for the

censored and truncated variables, so that we can adequately forecast (log) event times.

Reweighting means that the part of the log-likelihood or the RSS that reads without

any reweighting (y −Xβ)T (y −Xβ) or equivalently
∑N

i=1 (yi − xTi β)2 becomes

N∑
i=1

p̂−1i∑N
k=1 p̂

−1
k

(yi − xTi β)2.

This expression equals (z − Uβ)T (z − Uβ), where z and U are the variables arising from y

and X by multiplying each element of observation i by the square root of the weight, that

is by

√
p̂−1
i∑N

k=1 p̂
−1
k

, for i = 1, ..., N . That is, with y denoting the vector of log event times of

the unweighted data of all observations with an event, the dependent variable that can

be used as input in the regular version of the regression or algorithm software z equals

(

√
p̂−1
1∑N

k=1 p̂
−1
k

y1, ...,

√
p̂−1
N∑N

k=1 p̂
−1
k

yN)T . Similarly, with X denoting the covariate matrix of the

unweighted data of all observations with an event, the covariate matrix that can be used
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as input in the regular version of the regression or algorithm software U is constructed

by multiplying all elements in row i of X by

√
p̂−1
i∑N

k=1 p̂
−1
k

, i = 1, ..., N . This means that

the inverse probability weighting can be accounted for by this pre-multiplication of the

data, so that z and U can (after standardization) be used as straightforward inputs for

the software. It is thus not necessary to use a different version of the code (for the

3CoSE algorithms or similarly for the method proposed by Li and Li, 2008, or for Lasso

regression).

4.3 Results

We analyze the performance of the different methods employing the .632-bootstrap (Efron

and Tibshirani, 1993) with 50 bootstrap samples (that is, we draw 0.632n observations

per sample, which is the expected number of unique observations when drawing with

replacement). Over the 50 bootstrap samples, the 3CoSE algorithm with the normalized

Laplacian selects on average 91 microarray features (out of 1281), 3CoSE-CL selects 202,

Net (Li Li) selects 82, while a pure Lasso regression selects only 9 (penalty parameters

are again selected via 10-fold cross validation).6

Table 13 reports the forecast errors (.632-bootstrap estimates of prediction errors),

multiplied by 100 for convenience (standard errors are computed over the bootstrap

samples and also multiplied by 100). We can see that the three methods taking into

account network information improve considerably over the standard Lasso with forecast

errors that are about 20 percent lower. However, there are hardly any differences between

3CoSE, 3CoSE-CL, and Net (Li Li). 3CoSE has the lowest forecast error, followed by

Net (Li Li), but differences between the three network methods are minimal.

Table 13: Forecast errors (.632 bootstrap), diffuse B-cell lymphoma data
3CoSE 3CoSE-CL Net (Li Li) Lasso

Error .632 (×100) 0.7302 0.7327 0.7309 0.9116
Bootstrap SEs (×100) (0.2115) (0.2119) (0.2116) (0.2185)

6The grid of penalty parameters consists of the combinations of λ1 = {300, . . . , 100︸ ︷︷ ︸
in steps of 25

, 99, . . . , 1︸ ︷︷ ︸
in steps of 6

} and

λ2 = { 0, . . . , 400︸ ︷︷ ︸
in steps of 10

}.
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Table 14 shows the average selected penalty parameters. The penalty parameters

selected by 3CoSE, 3CoSE-CL, and Net (Li Li) are of similar magnitude with a somewhat

lower L1 penalty parameter for 3CoSE-CL but a bit higher network penalty parameter.

Pure Lasso has a higher L1 penalty parameter than the other methods, in line with the

observation that Lasso selects fewer covariates.

Table 14: Average selected λ1 and λ2 values
3CoSE 3CoSE-CL Net (Li Li) Lasso

λ1 61.96 45.4 67.44 250
λ2 105.8 113.2 88.4

On average, both 3CoSE and 3CoSE-CL estimate about 70% of network connections

to be positive and 30% to be negative. However, the number of negative connection

signs of connections between two covariates that are estimated to be non-zero is much

lower. 3CoSE estimates that on average about 4 connections between selected covariates

are negative, while 3CoSE-CL estimates that no connections between non-zero covariates

are negative. This may explain why the forecasting performance is so similar between

3CoSE, 3CoSE-CL, and Net (Li Li): Despite the fact that many connections in the whole

regulatory network are estimated to be negative, the connections between the relatively

few selected covariates are almost exclusively estimated to be positive. In that sense,

the data resembles the simulations with only positive connections, and we see again that

also in such a case the new algorithm performs as well as the method already assuming

positive connections in terms of predictive power (while the newly gained information

about connection signs can be of interest also for connections between covariates that

have an estimated coefficient of zero).

5 Summary

This paper shows that incorporating network information into regularized regression via

the introduced 3CoSE algorithm can lead to improved prediction performance. This al-

gorithm can furthermore contribute to discovering signs of network connections when

these are unknown. This can be helpful in a variety of fields where networks play an
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important role, including biology and biomedicine (from where we have borrowed the

motivation of the conducted simulation studies and the microarray data to which we

applied the method), economics, finance, and computer science. We make the accompa-

nying R-package LassoNet (Striaukas and Weber, 2020) publicly available, in the hope

that this method will be more widely applied in different fields. The availability of the

R-package may also facilitate refining the method to adapt it to different settings.
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Friedman, J., Hastie, T., Höfling, H., and Tibshirani, R. (2007). Pathwise coordinate

optimization. Annals of Applied Statistics, 1(2):302–332.

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized

linear models via coordinate descent. Journal of statistical software, 33(1):1.

Li, C. and Li, H. (2008). Network-constrained regularization and variable selection for

analysis of genomic data. Bioinformatics, 24(9):1175–1182.

Rosenwald, A., Wright, G., Chan, W., Connors, J., Campo, E., Fisher, R., Gascoyne,

R., Muller-Hermelink, H., Smeland, E., and Staudt, L. (2002). The use of molecular

profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. The

New England Journal of Medicine, 346(25):1937–1947.

Schumacher, M., Binder, H., and Gerds, T. (2007). Assessment of survival prediction

models based on microarray data. Bioinformatics, 23:1768–1774.

23



Striaukas, J. and Weber, M. (2020). Lassonet: 3CoSE algorithm. R-package, available

online at https://cran.r-project.org/web/packages/LassoNet/index.html.

Tseng, P. (1988). Coordinate ascent for maximizing nondifferentiable concave functions.

Technical report, Massachusetts Institute of Technology, Laboratory for Information

and Decision Systems.

Weber, M., Schumacher, M., and Binder, H. (2014). Regularized regression incorporating

network information: Simultaneous estimation of covariate coefficients and connection

signs. Tinbergen Institute Discussion Paper 14-089/1.

Wooldridge, J. M. (2007). Inverse probability weighted estimation for general missing

data problems. Journal of Econometrics, 141(2):1281–1301.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net.

Journal of the Royal Statistical Society. Series B (Methodological), 67(2):301–320.

24


	1-1_SBF_Weber
	20_01_ Weber et al_Network Constrained Covariate Coefficient and Connection Sign Estimation
	Introduction
	Method
	Background
	Ideas behind the Algorithm
	The 3CoSE Algorithm
	Implementation and R-Package LassoNet

	Simulations
	Setting
	Simulation Details and Definitions
	Simulation Results with 1100 Covariates
	Simulation Results with 2200 Covariates

	Data Application
	Data
	Regression Specification
	Results

	Summary


