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SUMMARY 

 

Summary  
The manufacturing industry is still a critical sector to generate economic wealth in 
many countries. From the end of the 18th century, the manufacturing industry has 
undergone several paradigm shifts from craftmanship to western-dominated mass 
production and eventually to lean manufacturing (LM). LM builds on the Toyota 
Production System and has enabled companies around the globe to increase quality 
and productivity by eliminating waste. Nevertheless, companies are pressured to 
increase the performance of their lean production system (LPS) to meet steadily 
increasing customer demands. Literature suggests that LM may benefit from the 
integration of emerging smart manufacturing (SM) technology. A survey on the next 
stage of lean indicates that especially data collection and analysis will be a key driver 
to increase the performance of LPSs. Existing literature on the integration of SM into 
LM, however, tends to stay on a generic level and fails to address the impact of SM 
technologies on concrete lean practices.  
These observations motivated the research of the question of how manufacturing 
companies can be enabled to implement data-based applications (DBAs) to support 
lean practices. To answer this question three sub-research questions (SRQ) have 
been derived. SRQ 1 addresses the question: "which DBAs exist and what are their 
objectives" by conducting a comprehensive literature review and providing a 
structured classification of DBAs in manufacturing. SRQ 2 documents challenges and 
enablers for DBAs based on qualitative studies, including case studies with awarded 
successful practice companies and expert interviews with two senior academics in the 
field of data utilization in manufacturing. Finally, SRQ 3 bridges the gap of data 
utilization and LM by evaluating the potential of DBAs to support 10 established lean 
practices. The methodology follows a pairwise DBA—lean practice impact evaluation, 
resulting in the DBA—Lean Practice Impact Matrix.  
Accordingly, the structured DBA overview and the DBA—Lean Practice Impact 
Matrix—are key contributions of this dissertation. The former allows manufacturing 
managers to identify opportunities to capitalize on their existing manufacturing data, 
while the latter provides impulses for lean managers on how to improve the 
performance of their LPS by using DBAs. The documentation of challenges and 
enablers allows readers to learn how real-world challenges can be addressed and 
thus enable inter-organizational learning. In addition, the research proposes a 
theoretically backed approach to better understand an observed hesitation of 
manufacturing companies to invest in DBA, although high potential is expected. 
In conclusion, in the broader context of the interplay of LM and SM, this dissertation 
can serve as a starting point to better understand the potential but also the challenges 
of exploiting manufacturing data to enable LPSs to meet steadily increasing customer 
demands.



ZUSAMMENFASSUNG 

 

Zusammenfassung 
Die produzierende Industrie ist nach wie vor ein wichtiger Sektor für den Wohlstand 
in vielen Ländern. Sie hat seit dem Ende des 18. Jahrhunderts mehrere 
Paradigmenwechsel durchlaufen, vom Handwerk über die Massenproduktion bis hin 
zur schlanken Produktion, Lean Manufacturing (LM) gennant. LM ermöglichte es 
Unternehmen, Qualität und Produktivität durch Vermeidung von Verschwendung zu 
steigern. Stetig steigenden Kundenanforderungen verlangen jedoch von 
Unternehmen die Leistungsfähigkeit ihrer Lean Produktions Systeme (LPS) 
permanent zu erhöhen. Die Literatur legt nahe, dass LM von der Integration neuer 
Industrie 4.0 Technologie profitieren kann. Eine Umfrage zur nächsten 
Entwicklungsstufe von Lean zeigt zudem, dass besonders die Datennutzung ein 
wichtiger Faktor zur Steigerung der Leistung von LPSs sein wird. Bestehende Literatur 
über die Integration neuer Technologien in LM bleibt jedoch oft auf einer allgemeinen 
Ebene, sodass eine Analyse der Effekte auf konkrete Lean-Praktiken fehlt.  

Diese Beobachtungen begründen die Fragestellung, wie Produktionsunternehmen in 
die Lage versetzt werden können, datenbasierte Anwendungen (DBAs) zur 
Unterstützung von Lean-Praktiken zu implementieren. Um diese Frage zu 
beantworten, wurden drei Unterforschungsfragen (UFF) abgeleitet. UFF 1 befasst 
sich mit der Frage: "welche DBAs gibt es und was sind ihre Ziele" und beantwortet 
diese mithilfe einer umfassende Literaturrecherche, die eine strukturierte 
Klassifizierung bestehender DBAs ermöglicht. UFF 2 dokumentiert 
Herausforderungen und Befähiger für die Anwendung von DBAs, welche sich aus 
Fallstudien mit ausgezeichneten Praxisunternehmen sowie zwei Experteninterviews 
ableiten. Schließlich schließt UFF 3 die Lücke zwischen Datennutzung und LM, indem 
es das Potenzial von DBAs zur Unterstützung von zehn etablierten Lean-Praktiken 
bewertet. Die Methodik folgt einer paarweisen DBA-Leanpraktik-Bewertung, welche 
die Grundlage für die DBA-Lean-Praktik Einfluss Matrix darstellt.  

Die strukturierte DBA-Übersicht und die DBA-Leanpraktik Einflussmatrix sind 
wesentliche Beiträge dieser Arbeit. Erstere ermöglicht es Managern Chancen zur 
Nutzung ihrer vorhandenen Produktionsdaten zu identifizieren, während letztere Lean 
Managern Impulse geben kann, wie sie die Leistungsfähigkeit ihres LPS durch den 
Einsatz von DBAs steigern können. Die Dokumentation von Herausforderungen und 
Befähigern vermittelt, wie reale Herausforderungen von DBA Projekten angegangen 
wurden. Darüber hinaus schlägt die Arbeit einen theoretischen Ansatz vor, um eine 
beobachtete Zurückhaltung produzierender Unternehmen in DBAs zu investieren, zu 
erklären. Im Kontext des Zusammenspiels von LM und I4.0 kann diese Dissertation 
als Ausgangspunkt dienen, um das Potenzial, als auch die Herausforderungen der 
Nutzung von Produktionsdaten besser zu verstehen, um so LPSs zu befähigen 
weiterhin steigende Kundenanforderungen zu erfüllen. 
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1 Introduction  
1.1 Motivation and Relevance 
1.1.1 Practical Relevance 

 “Data is the new oil. It’s valuable, but if unrefined it cannot really be used. It has to 
be changed into gas, plastic, chemicals, etc. to create a valuable entity that drives 

profitable activity; so must data be broken down, analyzed for it to have value.” 

 Clive Humby 

In 2018 the five most valuable companies in the world, measured by their market 
capitalization, are IT companies. At the same time, only one manufacturing company 
is listed among the top 10 most expensive enterprises. However, market capitalization 
is only one aspect of the importance of a company. Another, arguably at least equally 
important aspect, is the number of jobs a company provides. Looking at this number, 
the major relevance of the manufacturing sector becomes apparent. The Volkswagen 
AG alone employs almost twice as many employees as Apple, Google, and Microsoft 
together1. Furthermore, in Germany there are more than five times as many people in 
the manufacturing industry as in the IT sector2. Manufacturing, therefore, is still a 
critical industry for generating economic growth and economic wealth (Y. Chen, 2017, 
p. 588). 

The history of manufacturing has shown several paradigm shifts. Around 1900, the 
production of goods was dominated by craftsmanship. In 1908, Henry Ford introduced 
the Model T and in 1913 the first moving assembly line. This was the starting point of 
mass production, which was the dominating production paradigm until the emergence 
of lean manufacturing (LM) after World War II with its origins in Japan. Thanks to lean, 
Japanese companies achieved significant competitive advantages over their U.S. 
competitors in the following years. Around 1990, Toyota, which created the blueprint 
for LM, was considered the most efficient and highest-quality car manufacturer 
worldwide (Womack, Jones, & Roos, 1990, p. 49). Since then, Toyota stayed highly 
successful and is today the second-largest automotive company worldwide3. LM has 
enabled many companies worldwide to increase their productivity and quality by 
eliminating waste. Holweg (2007, p. 420), therefore, characterizes LM as the current 
most influential manufacturing paradigm.  

 
1 Number of full-time employees as of end of 2017 (in 1000): Apple (2018) : 123, Microsoft (2018) 114, 
Alphabet (2018) : 88, Volkswagen (2018) : 642  
2 Number of full-time employees as of end of 2017 (in 1,000):  
Manufacturing sector: 5.300 (Statistisches Bundesamt (2018)), IT – sector 950 (Bitkom (2018)) 
3 Based on cars sold in 2017, not considering the alliance of Renault – Nissan –Mitsubishi (Statista (2018)) 
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However, steadily increasing customer demand for highest quality, cost efficiency, 
and product variability (Gerberich, 2011, p. 392) as well as global competition, 
pressures manufacturers to further increase the effectiveness and efficiency of their 
lean production system (LPS). 

In a cross-industry benchmarking study on lean production in 2017 (Macuvele, Buess, 
& Friedli, 2018), participants reported decreasing productivity gains by standard lean 
tools and methods: the low hanging fruits in lean production have already been picked. 
Consequently, lean companies need to find new ways to improve their production 
system to meet customer demands. 

Besides LM, another manufacturing concept recently received increased attention 
from academia, media, and government. IT technology-driven smart manufacturing 
(SM) is heavily supported by governmental programs in many of the most important 
manufacturing countries (Thoben, Wiesner, & Wuest, 2017, p. 5). Lasi, Fettke, 
Kemper, Feld, and Hoffmann (2014, p. 239) argue that SM technology will lead to the 
next fundamental paradigm shift in manufacturing. However, even though most of the 
participants of the 2017 lean study recognize the potential of new IT technology, more 
than 90 percent are convinced that SM will not replace LM. Instead, new IT technology 
is considered as a complementary enabler to achieve the next level of LM.  

A core element of LM is continuous improvement (CI), which is the relentless search 
for improvement opportunities. Most CI methods rely on data to get a sound 
understanding of the problem and its root cause. Consequently, participants of the 
lean study have identified data availability and transparency, provided by state-of-the-
art IT technology, as promising resources for further operational improvements. This 
finding is supported by Qi and Tao (2018, p. 3591) who argue that data will support 
the identification of visible and invisible problems in complex manufacturing 
processes. According to O’Donovan, Leahy, Bruton, and O’Sullivan (2015b, p. 2), 
data-driven preventive maintenance has a positive effect on operating costs with a 
saving potential of more than 30 percent. Harding, Shahbaz, Srinivas, and Kusiak 
(2006, p. 969) identified the manufacturing sector as an industry where data mining 
can contribute significantly to companies' competitiveness.  

Despite the high potential of data utilization for the manufacturing industry, expected 
by practitioners and scholars, manufacturing companies find it challenging to realize 
this potential. A 2016 survey on “Manufacturing Data Analytics” conducted by the 
Institute of Technology Management (ITEM-HSG) found that only about 11 percent of 
the collected data is actually used. Most companies lack the experience of data 
utilization and "do not know what to do with the data they have, let alone how to 
interpret them to improve their processes and products" (Kusiak, 2017, p. 23). 
Therefore, research is needed to support companies in identifying and implementing 
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opportunities to better capitalize on their manufacturing data to improve quality, cost, 
and flexibility and thus, to achieve a competitive advantage. 
 

Example: Data-based application (DBA) at an automotive supplier site 
The company operates a company-wide LPS with five core principles: quality, 
delivery, cost, sustainability, and safety. A high level of overall equipment 
effectiveness (OEE) of bottleneck equipment is critical to the company to ensure 
deliverability as specified in service-level agreements with its customers. To 
minimize planned and unplanned downtime of critical production equipment, the 
company applies at least three different DBAs. First, the production equipment is 
continuously monitored by the application Real-time Control enabled through the 
installation of sensors. In case of any disturbances of the process, this application 
immediately informs the employee in charge, thus reducing the time until the 
problem is fixed. Second, based on sensor data, the DBA System Performance 
Measurement calculates and visualizes the OEE over time. This allows the 
identification of trends as well as to benchmark a machine or process to a similar 
machine or process with the objective to identify opportunities for improvement. 
Third, based on historical and current machine condition data, the DBA Predictive 
Maintenance is used to derive a more effective and efficient maintenance plan. 
Thereby, unplanned machine breakdowns are minimized, and planned 
maintenance stops are reduced to a minimal level. Both effects lead to an increased 
OEE level.  

 

Integrating new technologies is especially challenging for lean companies operating 
an LPS. Toyota, the founder of the Toyota Production System (TPS), which serves 
today as the blueprint for LPS, has tended to lag behind other companies in 
introducing new technology. New technology was not introduced before it had proven 
that it does not interfere with value-adding core processes, but provides a positive 
contribution to the existing system (Liker, 2004, p. 159).  

The emergence of DBAs as part of SM and their potential to increase competitiveness 
raises three essential questions to companies operating an LPS. First, which DBAs 
exist in manufacturing and how can they support the companies' competitive 
priorities? Second, lean managers need to understand the impact of data utilization in 
manufacturing on the established lean practices to derive informed decisions on new 
investments into DBA. And third, implementing DBAs poses special requirements to 
the technical infrastructure but also to employees and to the organization. 
Understanding the key enablers to implement and use DBAs successfully is crucial to 
managers who are keen to achieve a competitive advantage for their companies by 
fostering the utilization of manufacturing data.  



INTRODUCTION 

4 

1.1.2 Scientific Relevance 
The academic discipline of operations management (OM) is concerned with solving 
problems in the manufacturing environment (Peinado, Graeml, & Vianna, 2018, 
p. 374). Also, a central issue of scholars in the field of OM has always been to 
understand and describe the causes of competitive advantages of manufacturing 
companies (Barney, 1991; Hitt, Xu, & Carnes, 2016).  

For example, the book The Machine That Changed the World by Womack et al. (1990) 
discusses the reasons for Japanese companies' superior quality and productivity and 
the resulting competitive advantage over U.S. competitors from 1960 on. This 
contribution is one of the most cited references in OM (Holweg, 2007, p. 420) and has 
made the concept of LM known to a broader audience. Since then lean thinking has 
made a significant impact both in industry and academia (Hines, Holweg, & Rich, 
2004, p. 994), and is still an ongoing topic for future changes in the manufacturing 
environment (Prinz, Kreggenfeld, & Kuhlenkötter, 2018, p. 22). The fact that LM 
enjoys continuous popularity among managers of the manufacturing industry is 
enough justification for further research of the phenomena (Lewis, 2000, p. 976).  

In recent years, the concept of SM has not only gained significant popularity in the 
industry, but also in academia4 (Buer, Strandhagen, & Chan, 2018, p. 2924; Kusiak, 
2018, p. 509). Tao, Qi, Liu, and Kusiak (2018, p. 1) link the concept of SM to data 
analytics and argue that data analytics offers tremendous opportunities for 
manufacturing companies. Lee, Lapira, Bagheri, and Kao (2013), Clegg and Powell 
(2013), and Kusiak (2017) consider data usage as a major factor of sustained 
manufacturing competitiveness. Thoben et al. (2017, p. 3) conclude that 
manufacturing intelligence is a compelling topic for practitioners and scholars 
worldwide. However, data integration into manufacturing also receives much 
attention; Tantik and Anderl (2016) express the need for further research in this area. 

In the past, the two concepts of LM and SM have often been treated as separate 
subjects (Prinz et al., 2018, p. 21). Only recently has their relationship received 
increased attention in OM research (Rossini, Costa, Tortorella, & Portioli-Staudacher, 
2019; Wagner, Herrmann, & Thiede, 2017). While the need for integrated research of 
SM and LM has been recognized, previous OM literature fails to address the 
integration of data utilization in LM.  

This research seeks to address gaps in existing research by compiling a collection of 
DBAs in the manufacturing industry and by evaluating their potential to support lean 
practices.  

 
4 The increasing interest of the academic world in SM is reflected by the growing number of related scientific 
publications on the online database ScienceDirect. Number of search results per year for the term "smart 
manufacturing" on https://www.sciencedirect.com/ (23.06.18): 2000-2010: 20 articles; 2011-2015: 99 articles; 
2017: 193 articles. 

https://www.sciencedirect.com/
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Also, it identifies key enablers for applying DBAs. Technical-oriented papers on data 
utilization from the SM stream mainly address technological challenges. However, as 
the history of LM and the computer integrated manufacturing (CIM) era (Kolberg, 
Knobloch, & Zühlke, 2016, p. 2853) shows, applying new tools and changing the way 
of working requires acceptance of employees and often involves organizational 
changes. Following the suggestion of Hirsch-Kreinsen et al. (2018, p. 181), this 
dissertation identifies organizational enablers as well as enablers regarding 
employees to complement technological enablers to implement and use DBAs 
successfully.  

1.2  Research Gaps 
The review of the relevant literature on LM, SM, and data utilization in manufacturing 
has revealed three research gaps. 

First, from a practical perspective, many companies lack the experience to utilize 
manufacturing data. While most practitioners from the manufacturing industry believe 
that the use of data has a high potential, companies currently struggle to create value 
from the collected data. The academic literature documents a variety of use cases of 
DBAs; for instance, for predictive maintenance (Z. Li, Wang, & Wang, 2017), material 
flow management (Kolberg & Zühlke, 2015), and quality improvement (Gewohn, 
Usländer, Beyerer, & Sutschet, 2018). Also, scholars have contributed overviews on 
DBAs structured according to the underlying technology; for example, big data 
application (O’Donovan et al., 2015b), data mining applications (Harding et al., 2006), 
and artificial intelligence applications (Meziane, Vadera, Kobbacy, & Proudlove, 
2000). Also, a variety of authors from the SM or industry 4.0 stream present potential 
use cases of DBAs but remain on a generic level. For instance, Lu (2017, p. 7) argues 
that "Industry 4.0 makes factories more intelligent, flexible, and dynamic by equipping 
manufacturing with sensors, actors, and autonomous systems," without specifying 
how sensors contribute to a more intelligent factory.  

While the knowledge on DBAs exists and is documented in scientific literature, a 
comprehensive overview of DBAs relevant for the manufacturing industry is currently 
missing. This lack constitutes the first research gap. The author of this dissertation 
holds the view that a structured collection of manufacturing DBAs—including basic 
operating principles, objectives, and requirements—is valuable for scholars and 
practitioners. The latter will benefit from a scientifically-backed overview of DBAs to 
identify new opportunities to exploit manufacturing data.  

While many publications on DBA use cases present the inherent technical challenges 
of the application, they almost universally neglect the aspect of employee acceptance 
of new tools and working procedures. However, considering the rich literature of LM 
(Friedli, Basu, Bellm, & Werani, 2013, p. 110; Liker, 2004, 36; Sanders, 
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Elangeswaran, & Wulfsberg, 2016, p. 826), it is evident that employee involvement 
and qualification is a critical enabler for implementing new practices. This lesson 
learned from the lean journey should not be forgotten but kept in mind when 
introducing new technologies and tools. The lack of consideration of required non-
technological enablers for implementing DBAs constitutes the second research gap.  

Finally, although the literature of OM acknowledges the fundamental role of LM as a 
source of competitive advantage of manufacturing companies and characterizes data 
utilization as the fuel of the next industrial revolution (S. Yin & Kaynak, 2015, p. 144), 
research integrating both aspects is absent in current literature. This absence 
constitutes the third research gap.  

1.3 Terms and Definitions  
Providing clear definitions at the beginning of academic work is essential to ensure a 
shared understanding and to communicate ideas and findings accurately (Creswell, 
2014, pp. 42–43). This section provides brief definitions of the following terms: 
Production/manufacturing, lean manufacturing, lean practices, smart manufacturing, 
and data-based application. 

Production/manufacturing 

Both terms are used interchangeably and refer to the combination and transformation 
of input factors such as material, utilities, and labor to finished products.  

Lean manufacturing (LM) 

Despite, or perhaps because of, the great attention lean production has received from 
academics as well as practitioners, the definition of lean production is still elusive 
(Pettersen, 2009, p. 127). In this dissertation, the following definition of LM by Shah 
and Ward (2007, p. 791) is applied: "Lean production is an integrated socio-technical 
system whose main objective is to eliminate waste by concurrently reducing or 
minimizing supplier, customer, and internal variability." 

Lean practices 

Womack and Jones (2003, pp. 15–26) have introduced five guiding principles to 
become a “lean company.” Lean practices are tools and methods that operationalize 
these five lean principles in order to achieve high customer value with minimal waste 
(Tortorella & Fettermann, 2018, p. 2). This dissertation refers to a collection of lean 
practices, resulting from a comprehensive literature review on LM by Shah and Ward 
(2003). 

For the reason of clarity, lean practices are capitalized in this dissertation, 
(e.g., Preventive Maintenance). The introduction and use of abbreviations was 
deliberately dispensed with due to the number of lean practices. 
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Smart manufacturing (SM) 

Based on a literature review on SM, Thoben et al. (2017, p. 6) conclude that a variety 
of different definitions for SM exist. The definition used in this dissertation is provided 
by O’Donovan et al. (2015b, p. 2): “Smart manufacturing can be considered the pursuit 
of data-driven manufacturing, where real-time data from sensors in the factory can be 
analyzed to inform decision-making. More generally, smart manufacturing can be 
considered a specialization of big data, whereby big data technologies and methods 
are extended to meet the needs of manufacturing.” 

The term smart manufacturing is used synonymously with the term industrie 4.0 or 
industry 4.0 as both refer to the same concept (Wuest, Weimer, Irgens, & Thoben, 
2016, p. 23). 

Data-based application (DBA) 

The term data-based application is applied in this work as an umbrella term for several 
distinct applications from the areas of data mining (DM), machine learning5 (ML), 
mathematical optimization, and simulation. A DBA is a tool or system that is utilizing 
data to reach a particular purpose. The mere data collection without further utilization 
is not a DBA as it serves no purpose. A DBA is located at the end of the manufacturing 
data lifecycle consisting of data collection, data processing, and data application. 
Examples for DBAs are track and trace, performance measurement of the production 
system, and data-based predictive maintenance. Chapter 4.1.1 provides a more 
detailed definition by presenting four criteria for DBAs. 

As shown later, some DBAs include data analytics while others do not. Analytics is 
defined in this dissertation as “a scientific process of logical-mathematical 
transformation of data to improve decision-making” (Blum & Schuh, 2017, p. 258). The 
term data analytics DBA refers to those sophisticated DBAs that rely on advanced 
data analytics. 

For the reason of clarity, DBA categories and DBAs are written in italics and are 
capitalized in this dissertation, (e.g., Predictive Maintenance). The introduction and 
use of abbreviations was deliberately dispensed with due to the number of DBAs. 

 
5 The term ML is used synonymously with the term AI 
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1.4 Research Scope and Objectives 
This chapter outlines the research scope, the research questions, and the objectives.  

1.4.1 Research Scope 
Data utilization is of increasing importance in many industries, especially large internet 
companies such as Alphabet (the mother company of Google), Amazon, and 
Facebook that are well-known for their data-driven business models. Provost and 
Fawcett (2013b) present several use cases of data utilization. For instance, in retail 
for predicting customer demand or for communication companies to estimate the 
likelihood of customer churns. A full discussion of data utilization in general lies 
beyond the scope of this work. The scope is limited from two perspectives. First, only 
DBAs relevant to the manufacturing industry are considered. Second, although there 
are use cases of data utilization regarding customer and supplier integration, the 
scope of this work is set to the production facility.  

Regarding the relationship between LM and SM, the literature summarizes three 
different perspectives. While some scholars (Bick, 2014; Künzel, 2016; Metternich, 
Müller, Meudt, & Schaede, 2017; B. Wang et al., 2016) advocate the view that LM 
enables and facilitates SM, others (Kolberg & Zühlke, 2015; Wagner et al., 2017) take 
the perspective that SM advances LM. The third group of scholars (Sanders et al., 
2016; Tortorella & Fettermann, 2018) reports a mutually beneficial relationship 
between both production paradigms, without stating the direction of support. The 
research at hand takes the second perspective by researching the question of how 
DBAs, which are closely linked to SM, may advance lean practices and thus, support 
LM.  

1.4.2 Research Questions and Research Objectives  
The research questions and research objectives are derived from the deficiencies of 
current research as identified in chapter 1.2. Each identified research gap is 
addressed by a sub-research-question (SRQ). The combined findings of the three 
SRQs allow to provide a comprehensive answer to the main-research-question (MRQ) 
stated in Table 1. 

Table 1: Research questions 

MRQ How can manufacturing companies be enabled to implement data-based 
applications to support lean practices? 

SRQ 1 Which data-based applications exist in manufacturing and what are their 
objectives? 

SRQ 2 What are key enablers to apply data-based applications? 

SRQ 3 How can data-based applications support lean practices? 
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The MRQ intends to investigate how companies operating an LPS can benefit from 
the potential of data utilization to support the effectiveness of established lean 
practices. More effective implementation of lean practices supports the key objectives 
of every LPS: high quality, high deliverability, and low costs, and thus contributes to 
the company's competitiveness.  

To answer the MRQ, three SRQs with distinct foci have been formulated. SRQ 1 
provides the foundation for further research by consolidating existing use cases of 
DBAs in manufacturing in a structured overview. Furthermore, SRQ 1 includes a 
description of the underlying operating principle of each DBA, the objectives, and 
specific requirements for their implementation.  

SRQ 2 builds on SRQ 1 by consolidating and generalizing the specific requirements. 
Being aware of the central importance of human and organizational factors for 
implementing new tools and work methods, SRQ2 broadens the focus of enablers and 
also takes necessary organizational enablers and employee enablers into 
consideration. 

Finally, SRQ 3 links the concept of data utilization in manufacturing to LM. Referring 
to research on the interaction of SM and LM, Mayr et al. (2018, p. 623) criticize that 
most current publications address the issue on a general level, while the link to a 
particular lean practice is often missing. The dissertation at hand considers this remark 
by selecting the level of lean practices as most appropriate to evaluate the impact of 
DBAs on LM. More specifically, SRQ3 systematically evaluates the impact of DBAs 
on established lean practices by a pairwise evaluation. A key question of the 
evaluation is whether DBA will allow lean practices to be more effectively applied, or 
whether DBA might serve as a substitute, thus decreasing the importance of a 
particular lean practice. 

1.5 Research Design 
The following chapter outlines the research design of this dissertation. Chapter 1.5.1 
presents the conceptual background and discusses the basic philosophy underlying 
the research. Chapter 1.5.2 presents the research process, and chapter 1.5.3 the 
applied research methodology. Chapter 1.5.4 depicts the research framework, and 
chapter 1.5.5 closes by introducing the research theory.  

1.5.1 Conceptual Background  
The research follows the understanding of business studies as applied science as 
introduced by Ulrich (1984). According to this understanding, applied science’s intent 
is to develop rules, models, and methods for practical action based on findings of 
theoretical and basic research. In contrast to natural science, which observes and 
explains an existing reality, social science seeks to develop and create a new reality. 
Furthermore, social science is distinguished from natural science by its 
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interdisciplinary character. While natural science usually has a very distinct focus, 
social science needs to integrate the social context (Ulrich, 1982, p. 5). Social science 
recognizes the complexity of social systems and abandons the requirement of total 
control (Ulrich, 1984). 

Following Ulrich (1982, pp. 3–4), the problems researched by applied science 
originate from practice and therefore are defined outside the academic world. 
Consequently, the value of research of applied science is not defined by the validity 
of a theory but rather by the usefulness of models and rules for practical applications. 
In accordance with Ulrich's understanding of applied social science, this research is 
motivated by a practical problem with the objective to provide scientifically backed 
suggestions to the practical world on how to use DBAs to support LP. 

Creswell (2014, p. 5) differentiates four philosophical worldviews in research: 
postpositivism, constructivism, transformative, and pragmatism. The underlying 
philosophical worldview of this research is in line with Ulrich’s perception of 
management studies. The research objective is real-world practice-oriented and 
problem-centered. Following the classification of Creswell (2014, p. 6), the author of 
this research would position himself as a pragmatist. In contrast to representatives of 
the postpositivism and constructivism worldview, the pragmatic worldview is less 
constrained in selecting appropriate research methods and often uses both 
quantitative and qualitative data (Creswell, 2014, pp. 10–11).  

1.5.2 Research Process  
To ensure a structured and heuristic approach, this research follows the iterative 
learning process as described by Kubicek (1977), Tomczak (1992), and Gassmann 
(1999). The generic process is shown in Figure 1.  

Figure 1: Iterative Learning Process  
 (adapted from Gassmann (1999, p. 13) and Tomczak (1992, p. 84)) 
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Grounded on preliminary theoretical knowledge, questions are derived for research in 
practice. Preliminary theoretical knowledge is gained through literature review and 
initial discussions with research partners to get a firm understanding of the problem 
and to formulate meaningful questions to reality. Data collection may include the 
compilation of qualitative (e.g., interviews and case studies) as well as quantitative 
data (e.g., survey, access to historical data).  

Based on collected data from the practice, a new picture of reality is drawn. The new 
knowledge is critically reflected and enriches the existing theoretical knowledge of the 
researcher, resulting in a differentiation, abstraction, or change of perspective of the 
preliminary understanding of the research problem. The iterative learning process 
supports the researcher to reduce the risk of incorrect assumptions by reevaluating 
the current state of knowledge iteratively (Kubicek, 1977; Tomczak, 1992). Moreover, 
Kubicek (1977) and Tomczak (1992) argue that the iterative learning process is well 
suited for research addressing topics with limited existing knowledge.  

In the context of this research, preliminary knowledge led to the assumption that 
emerging advanced technologies will have an impact on the manufacturing industry 
and therefore also on LPSs. This assumption was integrated into a study on the status 
quo and potential directions of development of LM, called “Lean2020 – The Future of 
Operational Excellence” (Macuvele et al., 2018). To get an idea of the impact of new 
technologies on LM, we integrated aspects such as current and planned technology 
utilization as well as questions on data collection and utilization. The study results 
indicate that on average the participating companies see the highest potential of (big) 
data collection and analytics to support LM, compared to other trends of digitalization. 
Furthermore, the study revealed that successful companies invest considerably more 
into data collection and data analytics (see chapter 3).  

Critical reflection of the collected data led to a more detailed scope of the research. 
Coming from the very broad scope of the interaction of SM technologies and LM in 
general, the subsequent research focused on the impact of DBAs on LM practices. 
Following this specialization of the research scope, a comprehensive literature 
research was conducted with three objectives: (1) understand how SM creates a 
technological basis for DBAs, (2) identify and cluster existing use cases of DBAs within 
the manufacturing industry, and (3) identify examples where LM benefits from the 
integration of SM. Based on the findings of the literature review, conceptual research 
was conducted to derive propositions of DBA support for lean practices. 

In the third iteration of data collection, case study research in collaboration with three 
companies and two expert interviews with senior academics was conducted to 
complement the findings of the quantitative survey and the literature review. 
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1.5.3 Research Methodology 
The type of research question needs to be consistent with the selected research 
methodology. As this research follows an inductive approach, that is to conclude from 
a limited number of observations to general themes (Creswell, 2014, p. 4; Tomczak, 
1992, p. 77), this research follows a qualitative approach, including case study 
research and expert interviews. 

Based on the review of case study literature, Gerring (2009, p. 37) defines case study 
research as “an intensive study of a single unit or a small number of units (the cases), 
for the purpose of understanding a larger class of similar units (a population of cases).” 

Case study research is used as a primary mean of data collection for three reasons. 
First, case study research is qualified to assess problems originating from the practical 
world because the research of real-world problems of industry results in a higher 
practical relevance of the findings. Managers value case studies as they are interested 
in learning from experience. This includes, for instance, arising problems, challenges, 
and approaches—not only from their own company, but also from other companies—
thus enabling inter-organizational learning (Gassmann, 1999, p. 11).  

Second, Voss, Tsikriktsis, and Frohlich (2002, p. 198) argue that case study research 
is especially useful in research areas with little existing knowledge and unclear 
definitions of key constructs. This applies to the research at hand, as companies and 
scholars are just starting to explore the opportunities of DBAs in manufacturing.  

Third, case studies are beneficial for researching rather explanatory research 
questions beginning with how and why (R. Yin (2009, p. 36)) or what (Creswell, 2014, 
p. 140). As the MRQ and two of three SRQs are how and what questions, qualitative 
case study research is considered appropriate for this research.  

Voss et al. (2002, p. 195) highlight two additional advantages of case study research. 
First, it is not constrained as questionnaire-based surveys and allows questions to be 
answered in more depth, leading to a more comprehensive understanding of the 
nature and complexity of the unit of analysis. Second, the researched item can be 
investigated in its natural setting, thus increasing the relevance of the observations. 
The reasons for applying case study research outlined above contributed to the fact 
that case research is described by Voss et al. (2002, p. 195) as the “most powerful 
research method in operations management.” 

In addition to case study research, semi-structured expert interviews, which are also 
associated with qualitative research (Trinczek, 2009, p. 204), are part of the data 
gathering process. Expert interviews are especially attractive in situations when the 
expert can act “as a surrogate for a wider circle of players” (Bogner, Littig, & Menz, 
2009, pp. 1–2) and therefore increase the effectiveness of data collection.  
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1.5.4 Research Framework 
In general, academic problems are multilayered and multifaceted. Often there is a 
complex mesh of elements and relationships. To structure the research, the use of a 
frame of reference is advised (Wolf, 2011, p. 37). A frame of reference, or research 
framework, is first a descriptive model that provides orientation and structures the 
research process. Also, a research framework indicates relationships between the 
elements but does not explain the type or cause of the relationship. By presenting the 
core elements and the essential relationships of the unit of analysis, a research 
framework serves two purposes. First, it forces the scholar to clarify his or her 
research scope and objectives. Second, it facilitates the communication and 
discussion of research scope and objective with other academics as well as project 
partners. (Wolf, 2011).  

The research framework of this dissertation is depicted in Figure 2. 

Figure 2: Research framework 
Academic literature has treated the field of SM and LM, in general, separately. The 
research framework indicates that according to the authors' initial theoretical 
knowledge, DBAs may serve as a transmission belt that transforms the technological 
advances of SM to increased effectiveness of lean practices of LM, and therefore links 
both production paradigms. The framework visualizes the assumption that DBAs have 
a positive impact on certain lean practices. Finally, since lean practices are enablers 
of LM, more effective implementation of lean practices supports LM to achieve its 
objectives. All three SRQ are positioned within the research framework: (1) indicates 
the collection of DBA use cases in manufacturing, (2) indicates the identification of 
main enablers, and (3) indicates the systematic evaluation of the support potential of 
DBAs on lean practices. 
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1.5.5 Research Theory 
Kerlinger & Lee (2000, p. 11, cited in Levy & Ellis, 2006) define theory as “a set of 
interrelated constructs (concepts), definitions, and propositions that present a 
systematic view of phenomena by specifying relationships among variables, with the 
purpose of explaining and predicting the phenomena.” Depending on the research 
methodology, the research theory may serve a different function. In quantitative 
research, the theory proposes an explanation for the relationship between the tested 
variables. In qualitative research, a theory can either be a product of the research or 
the research theory serves as a lens for the researcher to look at the problem 
(Creswell, 2014, p. 51). 

Technology Adoption Theory 

Acceptance of employees is a fundamental requirement for every successful 
introduction of new technologies and new working methods (Kolberg et al., 2016, p. 9). 
Acceptance is this context is defined as “an antagonism to the term refusal and means 
the positive decision to use an innovation” (Taherdoost, 2018, p. 961). Due to the 
importance of users’ acceptance for technology, scholars search for fostering or 
hampering factors (Taherdoost, 2018, p. 960). Table 2 provides an overview of 
common technology adoption theories and models grouped by their purpose 

Table 2: Common technology adoption theories and models (adapted from Hillmer, 2009, p. 18) 

Theory 
Diffusion  
Theories 

User Acceptance 
Theories 

Decision-
Making 

Theories 

Organization 
Structure 
Theories 

Focus 

Technology, the 
environment, and 
the using 
organization 

Rational employee 
interest 

Rational Choice 
Theory/ Game 
Theory  

Strategic 
organizational 
interest 

Example 

Diffusion of 
Innovation Theory 
DOI 
(Rogers, 1983) 

Theory of Reasoned 
Action TRA 
(Ajzen & Fishbein, 
1973) 

Decision-Making 
under 
Uncertainty 

Creative 
Destruction Theory 
(Schumpeter 
1942)6 

Technology 
Lifecycle Theory 
(Moore, 1995) 

Technology 
Acceptance Model 
(Davis, 1989) 

Technology 
Lifecycle Theory 

Disruptive 
Technology Theory 
(Hillmer, 2009) 

 User Acceptance of 
Information 
Technology 
(Venkatesh, Morris, 
& Davis, 2003) 

Change 
Management 

 

 

 
6 Cited in Baaij, Greeven, and van Dalen (2004) 
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This dissertation intends to identify enabling factors that allow companies to 
implement and use DBAs successfully. Ensuring employees' acceptance of DBAs is 
crucial for their successful use. Employees might perceive DBAs as complex, 
intransparent, and as a potential driver of job reductions on the shop floor, thus 
threatening the acceptance of this new approach. The technology acceptance model 
is used to find conditions under which employees are more likely to accept and use 
new technologies. Hence, it is an appropriate theoretical lens to guide this research, 
especially regarding the intention to identify challenges and enablers to implement 
DBAs. 

Technology Acceptance Model (TAM) 

The TAM goes back to Davis (1989) and is probably the most often applied theory 
within the group of user acceptance theories. It is based on the theory of reasoned 
action but has been adapted to fit the context of information technology. The theory of 
reasoned action originates in the field of social science and argues that behavior is a 
function of behavioral intentions (Hillmer, 2009, pp. 17–19). The TAM postulates that 
the actual use of new technology is driven by a person's behavioral intentions to use 
(BI) the technology. The BI, in turn, is influenced by two aspects: first, by the attitude 
towards using (A) the technology and second, directly by the perceived usefulness 
(U) of the technology. Attitude towards using technology is influenced on the one hand 
by the perceived usefulness and the perceived ease of use (EOU), while both of these 
factors are influenced by external variables which are not further specified (see Figure 
3).  Davis (1989, p. 320) defines perceived usefulness as “the degree to which a 
person believes that using a particular system would enhance his or her job 
performance” and perceived ease of use as “the degree to which a person believes 
that using a particular system would be free of effort.”  

Figure 3: Technology Acceptance Model(TAM) (based on Davis, 1989) 

Employee acceptance is essential for introducing new technologies and working 
methods successfully. Therefore, employee acceptance is an important aspect to 
address when searching for key challenges and enablers for the implementation of 
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positively influence the behavioral intention to use a technology. Similarly, the 
qualitative studies in chapter 5 seek to find positive and negative influencing factors 
to employees' acceptance of new DBAs. However, to avoid biasing the answers of 
interview partners, the key influencing factors of the TAM, perceived usefulness (U) 
and perceived ease of use (EOU), are not presented during the interview.  

Nevertheless, the model is very useful to serve as a reference to the findings of drivers 
of employee acceptance of the qualitative studies. Therefore, chapter 6.3.2 contrasts 
the key factors of employee acceptance of the TAM to the factors identified in chapter 
5. By comparing the findings, the explanatory power of the TAM is critically evaluated 
and, if necessary, propositions for extensions made.  

1.6 Thesis Outline 
This dissertation has seven chapters and comprises quantitative, conceptual, 
qualitative, and concluding parts.  

Chapter 1: Introduction  

Chapter 1 discusses the practical and scientific relevance, and identifies three gaps 
in existing research. Based on these gaps, one MRQ and three SRQ questions are 
derived. Also, this chapter introduces the research design to include the conceptual 
background, research process, research methodology and framework, and the 
research theory.  

Chapter 2: State of Research 

Chapter 2 introduces the literature review process and provides an overview of the 
state of the art of two research streams. It introduces the concept of LM, followed by 
an overview of the emerging paradigm of SM, and a discussion of current research on 
the interplay of LM and SM. Furthermore, state-of-the-art techniques of data analytics 
and the role of data in SM are briefly discussed. 

Chapter 3: Smart Manufacturing Technologies in Lean Manufacturing – Quantitative 
Study Results 

This chapter presents selected results from a quantitative survey on the future of LM 
conducted by the author in 2017 (Macuvele et al., 2018). On one hand, general 
findings are shown, and on the other hand, patterns of successful practice companies 
are identified and discussed. The chapter closes with implications for the following 
chapters.  

Chapter 4: Data-based Applications in Lean Manufacturing 

Chapter 4 consists of two parts. The first part addresses SRQ 1 by conducting a 
comprehensive literature review to identify use cases of DBAs in the manufacturing 
industry. The findings are then consolidated in a structured overview. It also 
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summarizes key requirements to implement DBAs, which can be derived from the 
literature review. Thus, the first part also addresses SRQ 2.  

The second part addresses SRQ 3 and comprises a conceptual approach to derive a 
systematic evaluation of the potential impact of DBAs on lean practices. The DBA—
Lean Practice Impact Matrix—is presented and identified support potentials 
discussed. 

Chapter 5: Qualitative Studies 

The literature review and conceptual part of chapter 4 is complemented with 
qualitative study results in chapter 5. This chapter comprises the methodology and 
the results of the applied case study research as well as the results of expert 
interviews. The qualitative studies focus on organizational enablers and employee 
enablers to implement DBAs and thus complement the findings of chapter 4 to answer 
SRQ 2.  

Chapter 6: Consolidation of Findings  

Chapter 6 consolidates the findings from chapter 3, chapter 4, and chapter 5 to answer 
the three sub-research-questions. It comprises three parts. The first part summarizes 
the findings of DBAs in manufacturing in general, including an overview of DBA and 
their objectives (SRQ 1) as well as the key challenges and enablers to apply DBAs 
(SRQ 2).  

The second part takes the perspective of a company operating an LPS. It presents 
the main benefits of data utilization for LM, the potential support of DBAs to lean 
practices (SRQ 3), as well as potential threats that are specific to lean companies.  

The third part formulates three theoretical implications by abstracting the findings from 
the specific use cases. First, it introduces a DBA value model that distinguishes three 
value levels of DBAs. Second, it presents the ROI Dilemma of DBAs, which builds on 
the previous research results and might explain the hesitant approach of many 
manufacturing companies toward DBAs. Finally, the research theory TAM is critically 
evaluated and propositions for extensions are made.  

Chapter 7: Conclusion and Outlook  

The final chapter answers the MRQ by summarizing the results of the research. Also, 
it discusses the theoretical and practical contributions of the research and presents 
some limitations arising from the qualitative studies. Finally, an outlook is given on the 
potential for further research. 
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2 State of Research 
This chapter summarizes the state of research for the literature streams of LM and 
SM. Furthermore, recent work on the integration of both production paradigms is 
outlined. To understand the foundation of many of the DBAs introduced in chapter 3, 
the last section of this chapter introduces basic methods of state-of-the-art data 
analytics.  

2.1 Literature Review Process 
A review of the current state of the research in the academic literature is of utmost 
importance for every scientific work. Levy and Ellis (2006, p. 183) and Randolph and 
Justus (2009, p. 2) present several reasons for conducting a literature review prior to 
the research. First, researchers need to understand the state of the art of current 
knowledge to answer the question of what is already known and to identify gaps where 
more research is needed. Second, existing theories provide a sound theoretical 
foundation for the research. Third, by establishing the state of existing research, the 
advances through new research can be documented, and the proposed research 
justified.  

The literature review of this dissertation follows the systematic approach presented by 
Levy and Ellis (2006) comprising three phases: literature input, literature processing, 
and literature output.  

Literature Input  

The first phase includes all actions to define and search the relevant literature of 
selected research streams. In the context of this research, the two research streams 
of LM and SM have been analyzed. Besides considering the streams separately, 
current research on the interplay between both production paradigms is presented. 
Finally, state-of-the-art techniques of data analytics are briefly introduced. 

The definition of relevant input literature follows the taxonomy of literature reviews of 
Cooper (1988, p. 109). According to Cooper, the following six characteristics are used 
to classify literature reviews (see Table 3): focus (1), goal (2), perspective (3), 
coverage (4), organization (5), and audience (6).  

The first characteristic is the focus (1) of the reviewer. “The focus of a review concerns 
the material that is of central interest to the reviewer” (Cooper, 1988, p. 108). This 
review focuses on research outcomes, research methods, and in particular on 
practices and applications. The goal (2) describes what the author intends to achieve 
with the review. The objective of this review is to integrate and synthesize existing 
contributions and to identify central issues of the research field. Regarding perspective 
(3), the author takes a neutral representation. Given the abundance of academic 
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publications on LM in the last 30 years, the review intends to provide a representative 
coverage (4) rather than an exhaustive one on LM. Consequently, standard 
references and review articles are integrated rather than all current publications on 
LM.  

Although the field of SM is much younger, due to its interdisciplinary character 
between information system research and OM research, a plethora of research 
articles are available too. Therefore, the literature review targets an exhaustive 
coverage of the field of SM but relies on selective citation of current contributions. The 
same applies to the interplay of LM and SM. Concerning current data analytics 
techniques, only central concepts are covered.  

The organization (5) of the review is conceptual; that is, bringing together works 
relating to the same abstract concept. It is also methodological, as it conflates works 
applying similar methods. The target audience (6) consists of general scholars and 
especially practitioners from the manufacturing industry.  

Table 3 shows the taxonomy of literature reviews and highlights the characteristics of 
this review in italics. 

Table 3: Taxonomy of literature reviews  (Cooper, 1988) 

Characteristic Categories 

1. Focus 
Research 

Outcomes 

Research 

Methods 
Theories 

Practices or 

Application 

2. Goal Integration  Criticism Identification of Central Issues 

3. Perspective  
Neutral 

Representation 

Espousal of 

Position 
 

4. Coverage Exhaustive  

Exhaustive 

with 

Selective 

Citation 

Representative 
Central or 

Pivotal 

5. Organizational  Historical  Conceptual  Methodological 

6. Audience  
Specialized 

Scholars 

General 

Scholars 

Practitioners or 

Policy Makers 

General 

Public 
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The literature search includes high-quality journal papers and, if necessary, peer-
reviewed conference contributions. The quality of journals was, so far applicable, 
assessed by consulting the VHB ranking of the categories production management 
and technology, innovation and entrepreneurship7 as well as the ranking on IS 
journals and conferences provided by Levy and Ellis (2006, pp. 186–187). 

Although, in general, the quality and academic rigor of conference proceedings is 
perceived lower compared to journals (Levy & Ellis, 2006, p. 187). Peer-reviewed 
conference articles have also been included for two reasons. First, conference papers 
tend to be more recent (vom Brocke, Simons, Riemer, Niehaves, & Platfaut, 2015, 
p. 210), thus reflecting the most current developments. Second, conference 
contributions often follow a more practice-oriented approach in an industry setting, 
therefore the results are often less abstract and high-level but can be used to draw a 
realistic picture of state-of-the-art application of a technology in the industry.  

Journals and conference contributions are obtained from the databases 
EmeraldInsight, EBSCOhost, Web of Science, ScienceDirect, and ProQuest. A list of 
journals identified in the review and considered for this research is presented in 
Appendix A.  
At first, publications were identified by keyword search. Following vom Brocke et al. 
(2015) the search parameter is a combination of search terms (e.g., “lean”), search 
operators (e.g., “AND”), and search fields (e.g., abstract, title). Torraco (2005, p. 360) 
points out that “learning about the literature and how it was obtained, including the 
keywords and databases used, is of particular interest to readers, who may wonder if 
the literature they are familiar with was examined” and therefore asks for 
documentation of the search parameters.  

Table 48 shows the search terms and search operators applied for the literature review 
of the research areas LM, SM, and data analytics. The literature on the interplay of 
LM and SM is covered as part of the general SM literature. 
  

 
7 German: Produktionswirtschaft and Technologie, Innovation und Entrepreneurship 
8 A different set of search terms is used and presented in chapter 4 to identify use cases of DBAs. 
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Table 4: Applied search terms and search operators for literature review 

Research 
area 

Search term   
1 

Operator
1 

Search term 
2 

Operator 
2 

Search term  
3 

LM 

Lean 
TPS 
Toyota 
Production 
System 

AND production 
manufactur* 
technology 

AND Practice* 
"" 

SM 

Smart 
Digital 

AND 
factory 
manufactur* 
technology 

AND 
Data 
"" 

Industrie 4.0 
Industry 4.0 

AND 

Data 
analytics 

Data AND 

analytics 
analysis 
mining 
visualization 
optimization 

AND 

factory 
manufactur* 
production 
techniques 
methods 

 

As an example to read: The first possible combination of search terms and operators 
covers literature that includes the terms lean production or lean manufacturing, or lean 
manufacturer or lean technology in combination with the term practice or practices or 
without practices (indicated by “”). After eliminating duplications and initial screening 
for relevance based on the abstract, the initial keyword search resulted in 111 
publications. For more information on search parameters and results, see Appendix B.  

The search parameters were used as the search criteria in the five online databases 
presented before. It has to be noted that the input masks of the literature databases 
are not fully standardized, hence the search parameters have been adapted slightly 
to fit the syntax of the database. The general search criteria are as follows: only peer-
reviewed papers with full-text access and German or English language have been 
considered. The search terms have been searched within abstract and title, or within 
everything but full text, depending on the database. The search period covered 11 
years from 01.01.2008 until 31.12.2018.  
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Literature Processing  

According to Levy and Ellis (2006), literature processing comprises six steps: first, 
knowing the literature. The scholar needs to demonstrate that he or she has read the 
literature and is able to extract relevant information from it. This includes activities 
such as listing, describing, and defining. Second, comprehend the literature. In 
addition to repeating information from articles, this step requires the ability to 
differentiate, interpret, contrast, and summarize the information. Third, apply the 
literature. This step mainly includes activities such as classifying and relating. A 
common approach is first to identify a general concept and then assign the respective 
literature to the right category. Fourth, analyze the literature. This step needs to 
answer why a piece of information taken from the literature is relevant. Fifth, 
synthesize the literature. Synthesizing is combining the gained knowledge to an 
integrated whole. Sixth, evaluate the literature. The final step comprises activities such 
as assessing information, concluding, and explaining results.  

The purpose of the processing order is to support researchers in transforming a large 
number of unrelated publications to an effective literature review. It serves as 
guidance for the following literature review. Besides building on the content of 
literature identified in the literature input phase, the literature serves as a basis for 
backward and forward search. Backward search refers to reviewing the references of 
already identified literature to identify articles relevant to the research area that have 
been missed during keyword search (vom Brocke et al., 2015, p. 216). Forward search 
is the opposite approach, which is including literature that references the same articles 
already identified as relevant (Webster & Watson, 2002, p. 16). Backward search has 
proven to be valuable to broaden the literature base. In total, 28 publications were 
added to the literature base through backward search, while only four were added 
through forward search.  

Literature Output 

Based on the searched and processed literature, the final step comprises the actual 
writing of the literature review. The results of the literature review are used to outline 
the current state of research in the following sections and to identify the use cases of 
DBAs in chapter 4.  
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2.2 Lean Manufacturing 
LM is characterized by scholars as the “most influential manufacturing paradigm of 
recent times” (Holweg, 2007, p. 420). A recent survey confirms its relevance not only 
for today's but also for the future world of manufacturing (see chapter 3). This chapter 
introduces LM with a special focus on widely established lean practices.  

Chapter 2.2.1 presents the origin of LM and seeks to provide a definition, 
acknowledging that a universal definition of LM does not exist. Chapter 2.2.2 
describes the fundamental components of the TPS which serves as a blueprint for 
current LPSs. In chapter 2.2.3, a selection of 10 widely established lean practices is 
presented and the lean practices described. Chapter 2.2.4 finally discusses the role 
of technology in LM and explains the seemingly hesitant approach of companies to 
integrate new technology into their LPS.  

2.2.1 Origin and Definition  

2.2.1.1 Origin 
The term lean was introduced the first time by Krafcik (1988, p. 41). The term was 
coined during an extensive five-year comparative study of more than 50 production 
systems worldwide. Krafcik introduced the term lean9 in contrast to buffered. Buffered 
referred to the system of western mass production at that time with high levels of 
safety inventory. Womack et al. (1990) adopted the term in its world-known publication 
The Machine That Changed the World and thus made the term lean known to a broad 
audience of scholars and practitioners.  

The concept of lean originated from the TPS. After World War II, the Japanese 
automotive market was very small and capital extremely scarce (Holweg, 2007, 
p. 421), therefore copying the western model of capital intensive large batch 
production was not an option for Toyota. As a result, Toyota developed a very different 
approach to manufacturing, known today as TPS or LM.  

2.2.1.2 Definition 
LM has received great attention from scholars as well as practitioners. Despite, or 
perhaps because of this fact, the definition of LM is still elusive. Shah and Ward (2007, 
p. 786) agree and point out that discussions with managers, consultants, and 
academics quickly demonstrate the absence of a common definition of LM. One 
reason for the absence of an accepted definition is, according to Hines et al. (2004, 
p. 1005), the fact that lean has evolved and is still evolving. Therefore, any definition 

 
9 Originally, the term fragile was used, but Krafcik felt that fragile had a negative connotation and decided to 

use the term lean instead (Holweg 2007, p. 426). 
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would only be valid for a certain point in time. Although no unified definition exists, 
some commonalities between a variety of definitions can be found.  

Table 5 depicts seven commonalities of selected contributions on LM.  

Table 5: Commonalities of LM definitions 

Characteristic and elements of LM 
Key references 

1 2 3 4 5 6 7 8 9 
1
0 

1. The primary objective is waste 

reduction 
● ● ● ● ● ● ● ● ● ● 

2. Customer orientation  ● ● ●    ● ● ● ● 

3. Principle orientation  ●  ● ●  ● ●  ● ● 

4. Implementation through lean 

practices 
● ● ●  ● ● ● ● ● ● 

5. Human focus ●  ● ● ● ●    ● 

6. Continuous improvement (CI) ● ● ● ● ● ● ● ● ● ● 

7. System approach ● ● ● ● ● ● ●   ● 

References: 1. Liker (2004), 2. Shah and Ward (2003), 3. Womack and Jones (2003), 4. 
Lander and Liker (2007), 5. Friedli and Bellm (2013), 6. Toyota Material Handling (n.d.), 7. 
Bertagnolli (2018), 8. Duarte and Cruz‐Machado (2013), 9. Pettersen (2009), 10. Tortorella 
and Fettermann (2018) 

 

First, the primary goal of LM is to eliminate all kinds of waste during the value creation 
process. The concept of waste reduction is linked to the second commonality, 
customer orientation. Value has to be defined from a customer's perspective. 
Therefore, all activities that are not contributing to generate value from the customer's 
perspective are potentially wasteful. The third commonly accepted lean characteristic 
is principle orientation. As Womack and Jones (2003) note, LM follows the five 
principles of (1) define value from the customer perspective, (2) identify the value 
stream, (3) flow, (4) pull, and (5) strive for perfection. Fourth, the principles of LM are 
realized with the help of lean practices, such as preventive maintenance. Fifth, the 
TPS and its descendent LM follows a human-centered approach and considers the 
employees as the most important asset instead of a cost factor. Employees are trained 
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regularly to keep a high level of qualification and are encouraged to contribute to the 
CI of the production system. Sixth, all reviewed scholars regard CI as a key element 
of LM. Finally, most scholars highlight the fact that the TPS or LM is a holistic and 
multi-dimensional system comprising technical as well as cultural aspects. 

This dissertation does not claim to provide a universal definition of lean. However, the 
seven commonalities described above are considered good indicators of the essence 
of LM. As a working definition, the following definition of Shah and Ward (2007, p. 791) 
is used in this work:  

“Lean production is an integrated socio-technical system whose main objective is to 
eliminate waste by concurrently reducing or minimizing supplier, customer, and 
internal variability.” 

2.2.2 The Toyota Production System 
“All we are doing is looking at the time line from the moment the customer gives us an 
order to the point when we collect the cash. And we are reducing that time line by 
removing the non-value-added wastes.”  

(Ohno, 1988, ix) 

Toyota suffered less from the economic downturn in the aftermath of the first oil crisis 
in the early 1970s and recovered faster than its western mass production-oriented 
competitors (Lander & Liker, 2007, p. 3681). In the following period, Toyota 
increasingly gained market share and was considered the world's most efficient car 
manufacturer (Womack et al., 1990, p. 49). According to several scholars, the 
principal cause for Toyota's competitive advantage was the TPS (Abernathy & Clark, 
1981; Holweg, 2007; Lander & Liker, 2007; Shimokawa, 2010; Wheelwright & Hayes, 
1985). Although playing a significant role in Toyota's success, the TPS was not 
formally documented before 1965, when the Kanban system was introduced to its 
suppliers (Holweg, 2007, p. 423).  

Following an official publication of Toyota MH10 (n.d.), the TPS is a production system 
that continuously strives to eliminate waste in natural, human, and corporate 
resources. Therefore, the TPS empowers employees to improve processes and 
optimize quality permanently.  

The TPS comprises a set of values, knowledge, and procedures, which are shown in 
the TPS House in Figure 4.  

The roof of the TPS house consists of its goals, which are high quality, low costs, short 
lead times, and the highest level of safety. All goals are linked to the main objective of 
eliminating waste. The fundament of the house is formed by the two elements 
Heijunka and Standardization. Heijunka means leveling out the schedule to avoid 

 
10 Toyota Material Handling 
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unevenness (Mura) and aims to reduce variations of production volume and mix 
(Liker, 2004, p. 113). Standardization is necessary to make tasks repeatable but is 
also the foundation for CI. Only after having a process standardized and stabilized 
can it be improved (Liker, 2004, p. 142).  
 

 

Figure 4: Toyota Production System (adapted from Liker, 2004, p. 33 and Toyota MH, n.d., p. 5) 
 

The first pillar of the house is just-in-time (JIT) production. It comprises a set of 
principles and tools to deliver the right parts in the right quantity at the right time, and 
allows Toyota to respond quickly to shifts in customer demand (Shah & Ward, 2007, 
p. 788; Toyota MH, n.d., p. 8). The second pillar of the TPS house is Jidoka. Jidoka is 
often translated to automation with a human touch (Liker, 2004, p. 16) and means to 
ensure quality right at the moment of production instead of subsequent quality control. 
In the TPS, quality and problem solving is everybody's responsibility (Towill, 2007, 
p. 3620; Womack et al., 1990, p. 54).  

Finally, Liker (2004, p. 33) puts People and Teamwork and CI at the center of his 
visualization of the TPS house. Toyota encourages its workers to embrace change 
and continuously improve their working space, even at the risk of making their own 
workplace obsolete. In return, Toyota offers a high level of employment security and 
invests in training and skill development of its workers. CI, or Kaizen, is the principle 
of permanently challenging the status quo to improve it. Kaizen requires employees 
to understand and think about processes (Toyota MH, n.d., p. 12).  

The TPS house visualizes a set of principles and tools, but the TPS is more than just 
a collection of principles and tools. To quote the former CEO of Toyota, Fujio Cho 
(Liker & Morgan, 2006, p. 9): “The key to the Toyota Way and what makes Toyota 
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stand out is not any of the individual elements. . . But what is important is integrating 
all the elements together into a system. It must be practiced every day in a very 
consistent manner—not in spurts.”  

2.2.3 Lean Practices 
The absence of a universal understanding of lean and LM makes it almost impossible 
to assess the impact of any development on LM as a whole. As a consequence, this 
research focuses on the more tangible lean practices as reference for assessing the 
impact of DBAs. 

2.2.3.1 Definition and Selection  
Lean practices are management practices that are generally associated with LM 
(Shah & Ward, 2003, p. 130). After LM has been widely established, several scholars 
have investigated and described essential elements of LM. Shah and Ward (2003, 
p. 131) have conducted an extensive literature review and provide a representative 
collection of lean practices. In total, they present 21 lean practices. However, only nine 
of the 21 practices have been found relevant by the majority of the reviewed 
publications.  

To focus on the most relevant practices, this dissertation only considers those 
practices that have been stated by at least 50 percent of the reviewed literature. The 
result is a condensed list comprising nine lean practices. To ensure the actuality of 
the collection of lean practices, more recent literature on LM has been searched for 
new lean practices that need to be added to the selection. Thereby, value stream 
mapping was identified as an essential lean practice by many more recent publications 
(Albliwi, Antony, & Lim, 2015; Chiarini, Found, & Rich, 2016; Hines et al., 2004; Lander 
& Liker, 2007). Thus, value stream mapping was added to the list of highly relevant 
and established lean practices.  
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Table 6 provides an overview of the selected lean practices. 

Table 6: Selection of key lean practices  (adapted from Shah and Ward, 2003) 

No. Lean Practice Category Primary Objective 

1 
Preventive 
Maintenance TPM 

Maximize equipment availability by 
reducing unplanned maintenance and 
machine breakdowns. 

2 
(internal)  
Quality Management11  TQM 

Ensure high quality by improving processes, 
identify defective products, and analyze the 
root cause of defects. 

3 
Continuous Flow 
Production JIT 

Enable continuous flow of a product through 
the value chain without interruptions and 
stockpiling.  

4 Pull/Kanban JIT 
Prevent overproduction by triggering a 
process step only when the downstream 
process step needs replenishment. 

5 
Quick Changeover 
Techniques JIT 

Reduce the time for changing and setting up 
tools or machines.  

6 Lot Size Reduction JIT 
Reduce the lot size to reduce inventory 
while increasing flexibility.  

7 
Value Stream 
Mapping* JIT 

Visualize the process to identify waste and 
opportunities for improvements. 

8 
Continuous 
Improvement  EMS 

Set up and support a culture of active 
involvement in continuous improvement 
activities of all employees.  

9 
Cross-functional Work 
Force EMS 

Set up work teams with members of 
different backgrounds and a variety of skills 
to solve problems.  

10 
Self-directed Work 
Teams EMS 

Empower employees by setting up work 
teams with a high level of autonomy and 
individual responsibility.  

* added to the selection. The practice is identified as a key lean practice by Albliwi et al., 
2015; Chiarini et al., 2016; Hines et al., 2004; Lander & Liker, 2007; Womack & Jones, 
2003. 

 
11 Shah and Ward (2003, p. 131) identified the lean practice “total quality management.” Depending on the 

understanding of total quality management, this lean practice has a broad perspective including supplier 
and customer. As the scope of this thesis is the production facility exclusively, only the internal perspective 
of total quality management is considered. For the purpose of distinction, the lean practice is labeled 
“(internal) quality management.”  
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2.2.3.2 Description  
The Department for Production Management of the ITEM-HSG has designed a holistic 
approach to assess the operational performance of production systems. The 
assessment is part of the St.Gallen Operational Excellence Benchmarking. As the 
understanding of operational excellence has evolved from LM (Friedli & Bellm, 2013, 
p. 21), the performance assessment integrates most of the lean practices identified 
by Shah and Ward.  

For this thesis, the selected lean practices are defined in accordance with the 
understanding of the St.Gallen operational performance assessment for two reasons. 
First, the assessment integrates several established lean concepts, such as the TPS, 
and is scientifically sound (Kickuth, Friedli, Loch, & Chick, 2006, p. 47). Second, it 
provides a clear structure by assigning lean practices to five distinct categories: total 
productive maintenance, total quality management, just-in-time, effective 
management system12, and basic elements (Kickuth et al., 2006, pp. 48–52).  

This structure is adopted for the description of the lean practices in the following 
section. While the St.Gallen operational performance assessment sets the basis for 
the understanding of the 10 selected lean practices, further literature is consulted for 
complementary details.  

2.2.3.2.1 TOTAL PRODUCTIVE MAINTENANCE LEAN PRACTICES 

The primary objective of Total Productive Maintenance (TPM) is to increase the 
efficiency of the production system by maximizing equipment availability. Therefore, 
TPM aims to set up a thorough maintenance system along the full equipment life cycle 
(Friedli & Bellm, 2013, p. 17). Besides maintenance, TPM includes housekeeping as 
well as continuous improvement and process upgrades through the integration of new 
technologies (Flynn, Schroeder, & Flynn, 1999, p. 250; Friedli & Bellm, 2013, p. 18). 
TPM encourages all employees to contribute to a high level of equipment quality and 
availability (Friedli & Bellm, 2013, p. 17).  

Lean Practice 1: Preventive Maintenance 

Preventive Maintenance is an important element of TPM and aims to minimize 
unplanned production interruptions due to unexpected machine breakdowns by 
performing maintenance tasks preventively (Friedli & Bellm, 2013, pp. 17–18). A 
reduction of unplanned machine stops increases the availability of the equipment, thus 
resulting in more stable production processes and higher productivity of the production 
system (Bertagnolli, 2018, p. 183).  

 

 
12 This category was initially named management system (Kickuth et al., 2006, p. 52) and updated later to 

effective management system (Friedli, Lembke, Schneider, and Gütter, 2013, p. 40). 



STATE OF RESEARCH 

30 

2.2.3.2.2 TOTAL QUALITY MANAGEMENT LEAN PRACTICES  

Total Quality Management (TQM) can be characterized as a “very rigorous problem-
solving approach that is based on facts rather than on gut feeling” (Friedli & Bellm, 
2013, p. 18). The primary objective of TQM is to identify and understand the causes 
for deviations within the production process, to eliminate the source of variation and 
thus to establish standardized and robust processes.  

Lean Practice 2: (internal) Quality Management  

Shah and Ward (2003, p. 131) identified Total Quality Management as key lean 
practices. The term can be understood in a broad sense, including supplier 
management, customer involvement, and cross-functional product development 
(Kickuth et al., 2006, pp. 49–50). As the unit of analysis of this dissertation is the 
production facility exclusively, the definition of the lean practice Quality Management 
follows a production-focused understanding. Quality Management in this 
understanding comprises quality inspection and failure root-cause analysis.  

The purpose of quality inspection is to detect and sort out products that do not meet 
the required specifications. Arnheiter and Maleyeff (2005, p. 10) note that LM quality 
inspection prefers source inspection by employees and automated inspection over 
time-consuming end-of-line inspections. In the event of defective products, root-cause 
analysis methods, such as the DMAIC circle, are applied to gain a better 
understanding of the underlying factors of the defect (Friedli, Lembke, Schneider, & 
Gütter, 2013, p. 54).  

2.2.3.2.3 JUST-IN-TIME LEAN PRACTICES 

Just-in-Time (JIT) is a key element of the TPS. JIT lean practices allow companies to 
meet their customer requirements for a wide variety of product variants while keeping 
or even reducing their inventories (Friedli & Bellm, 2013, p. 19). The reduction of large 
inventory is desired for three reasons: first, inventory ties up capital; second, it takes 
up precious warehouse space; and third, it results in a comparably high number of 
defects (Holweg, 2007, p. 422). According to Ohno (1988, p. 75), JIT implies to “have 
all parts for assembly at the side of the line just in time for their user.” Bertagnolli 
(2018, p. 84) describes JIT as a system to deliver the right material or service, in the 
right quantity and quality, to the right location and the right time. The idea of JIT is to 
produce only what is needed by the customer and therefore builds on a pull system. 

Lean Practice 3: Continuous Flow  

Continuous Flow Production describes a situation in which the material or product 
flows through the value-adding process steps without interruptions and waiting times 
in between (Friedli, Lembke et al., 2013, pp. 55–56; Womack & Jones, 2003, p. 21). 
In contrast to batch production, process steps in flow production are arranged in 
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sequential order so that the product moves from one step to the next without being 
stocked. Therefore, flow production requires a shop floor layout that allows the 
installation of equipment in the right order. According to Bertagnolli (2018, p. 65), 
benefits of flow production are low inventory, low waiting times (and therefore minimal 
lead times), as well as high transparency of the material flow. 

Continuous Flow Production requires a high level of equipment availability as a 
machine breakdown results in stopping the whole production line. Therefore, flow 
production is often accompanied by TPM practices (Womack & Jones, 2003, pp. 60–
61). Furthermore, Continuous Flow Production requires the JIT provision of the right 
parts (Womack & Jones, 2003, p. 58). Finally, in Continuous Flow Production, it is 
crucial to ensure that products passed on to downstream processes are error-free, as 
otherwise the following process steps are forced to stop and wait for correct parts 
(Womack & Jones, 2003, pp. 60–61). 

Lean Practice 4: Pull/Kanban 

Pull/Kanban implies a demand-oriented material flow in which a process step only 
produces parts when triggered by the need for replenishment by the downstream 
process step (Womack & Jones, 2003, p. 67). Hopp and Spearman (2004, p. 142) 
define pull in contrast to push production as “a system, that explicitly limits the amount 
of work in process (WIP) that can be in the system.” They argue that Pull/Kanban has 
at least three benefits. First, Pull/Kanban limits the release of material in the process, 
thus reducing WIP levels. Second, by leveling the fluctuation of WIP levels, 
Pull/Kanban allows a smoother production flow. Third, quality is improved. As only 
limited stock is available in pull production, the system is pressured to improve quality 
to work without yield loss and rework. 

The term Kanban is Japanese for card and describes the flow of information in a pull 
system. A Kanban card indicates when the minimal level of stock is reached. Based 
on the information on the Kanban card, an ordering process for replenishment from a 
warehouse is triggered. The Kanban system is used both internally and together with 
suppliers. However, Kanban also has two downsides. First, it is not applicable in cases 
of high fluctuations in lead times and demands. Second, due to the absence of security 
stock, a process step is highly dependent on the delivery availability of the upstream 
process step (Bertagnolli, 2018, pp. 86–87). 

Lean Practice 5: Lot Size Reduction 

The lean practice Lot Size Reduction is linked to the practice of Quick Changeover 
Techniques as the latter is the prerequisite of the former. Smaller lot sizes have a 
positive effect on the flexibility of a production plant (Friedli, Lembke et al., 2013, 
p. 55). Large lots, in contrary, result in high inventory before and after a process step 
(Bertagnolli, 2018, p. 31), thus causing high cost of tied capital as well as waste of 
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storage space. Another benefit of small lot sizes is reduced rework due to insufficient 
quality as quality issues are detected faster and fewer parts are affected in comparison 
to large batches (Bertagnolli, 2018, p. 60). 

Lean Practice 6: Quick Changeover Techniques  

The primary purpose of the lean practice Quick Changeover Techniques is to reduce 
setup times between different products (Friedli, Lembke et al., 2013, p. 55). From a 
lean perspective, small lot sizes are desirable to increase flexibility. Small lot sizes, 
however, result in a high number of changeovers. Therefore, small lot sizes are only 
reasonable with short changeover times (Bertagnolli, 2018, p. 186). Quick 
changeovers have several positive effects: By reducing lot sizes, WIP inventory is 
reduced along with the cost of tied capital and required space. Also, flexibility is 
increased, thus allowing fast responses on order changes and shorter lead times. 
Finally, productivity increases because of less downtime due to changeovers 
(Bertagnolli, 2018, p. 189). To reduce changeover, Shigeo Shingo developed the 
SMED13 method. The SMED method aims to reduce the changeover time to a single 
digit minute range by preparing and adjusting the new tool while the other one is still 
in action (Bertagnolli, 2018, p. 188). 

Lean Practice 7: Value Stream Mapping  

The lean practice Value Stream Mapping (VSM) is used to visualize the current status 
of a production process. VSM follows a holistic approach and integrates process steps 
along the whole value stream (e.g., from receiving the raw material until the delivery 
of the finished product to the customer). The identified value stream includes 
interfaces between different units along the value stream. VSM documents processing 
and waiting times, as well as the flow of material and the flow of information 
(Bertagnolli, 2018, p. 104; Friedli, Mänder, & Bellm, 2013, p. 309).  

The objective of VSM is to analyze how lean the process is and to identify 
opportunities to reduce wasteful activities (Friedli, Lembke et al., 2013, p. 56). Due to 
the holistic end-to-end perspective of VSM, this practice helps to overcome local 
optimization but instead facilitates a process-oriented optimization approach. VSM not 
only helps to identify waste within the process but also its root cause. It is, therefore, 
an essential first step for end-to-end process optimization projects (Bertagnolli, 2018, 
p. 104). 

2.2.3.2.4 EFFECTIVE MANAGEMENT SYSTEM LEAN PRACTICES  

In addition to the three technical categories TPM, TQM, and JIT, the St.Gallen 
operational performance assessment comprises the category Effective Management 

 
13 Single-minute exchange of dies 



STATE OF RESEARCH 

33 

System (EMS). A mature and well-designed EMS supports the management in 
“motivating and aligning people to work for a common goal” (Friedli & Bellm, 2013, 
p. 20).  

According to Friedli and Bellm (2013, p. 20), the EMS has four main objectives: First, 
to ensure that employees can develop multiple skills that allow working in cross-
functional teams. Second, to provide autonomy and a sense of belonging to the 
employees (e.g., by introducing working methods such as self-directed teams). Third, 
to involve employees in the continuous effort of process optimization and waste 
reduction. Fourth, to ensure the definition of consistent and challenging goals as well 
as ongoing management commitment.  

Lean Practice 8: Continuous Improvement 

Continuous Improvement (CI) originates from the Japanese philosophy of Kaizen. 
Kaizen is composed of the two Japanese terms Kai and Zen and translates to change 
for the better. It focuses on the continuous improvement of processes, services, and 
products. Kaizen is an integrative process (Bertagnolli, 2018, pp. 151–152). Key to 
Kaizen is the involvement of all employees into continuous thinking on improvements 
and waste reduction instead of leaving CI to dedicated industrial engineers. Ensuring 
employee involvement in CI activities is a major challenge for the management of 
manufacturing companies (Friedli & Bellm, 2013, p. 21). A well-designed suggestion 
program supports employees in providing improvement suggestions (Friedli, Lembke 
et al., 2013, p. 57). Most CI activities follow a rigorous scientific approach. Both well-
known improvement cycles comprise a planning (PDCA) or an analyzing (DMAIC) 
phase that relies on accurate data from the process and requires a sound 
understanding of the underlying process (Sokovic, Pavletic, & Kern Pipan, 2010, 
p. 480).  

Lean Practice 9: Cross-functional Work Force 

The lean practice Cross-functional Work Force suggests to build teams consisting of 
employees with different backgrounds and a variety of different skills to improve 
productivity and quality by mastering challenging technical problems (Liker, 2004). 
Friedli, Lembke et al. (2013, p. 57) agree and characterize cross-functional project 
teams as an enabler for problem-solving. Setting up cross-functional work teams from 
different departments has several positive effects. On one hand, it creates a sense of 
unity of the workforce (Friedli, Basu et al., 2013, p. 110). On the other hand, according 
to Anand, Ward, Tatikonda, and Schilling (2009, p. 457), cross-functional project 
teams ensure a holistic perspective on process improvements.  

Members of cross-functional teams need to have a range of skills related to teamwork, 
including the ability to listen to colleagues, to present their ideas, and to negotiate to 
identify the best solutions. Other critical competencies of team members are domain 
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expertise as well as a sense of responsibility not only for their own part but for the 
overall result of the team's task (Chiarini et al., 2016, p. 250).  

Lean Practice 10: Self-directed Work Teams 

Self-directed Work Teams can be seen as a synonym for empowering employees 
(Shah & Ward, 2003, p. 134). Similar to the lean practice Cross-functional Work 
Force, the objective of Self-directed Work Teams is problem-solving. The practice, 
however, puts less emphasis on the diversity of background and skills of the group 
members but instead on the degree of autonomy of the team.  

According to van Amelsvoort and Benders (1996, p. 160), Self-directed Work Teams 
are characterized by a maximum level of autonomy. For example, team members are 
responsible for their work assignment. Also, members enjoy a certain degree of 
freedom to select their work methods independently. Linked to a higher level of 
autonomy is a higher level of responsibility, thus employees should be empowered to 
make decisions without needing approval from the superior management level 
(Friedli, Lembke et al., 2013, p. 57).  

2.2.4 The Role of Technology in Lean Manufacturing 
The superior competitiveness of the TPS, the blueprint of the current LPS, does not 
originate from the extensive use of cutting-edge technology. Quite on the contrary, 
traditionally Toyota was not among the first companies that introduced new technology 
but rather lagged behind. Liker (2004, pp. 159–160) argues that this is not due to a 
general rejection of new technology but is rooted in the Toyota DNA of rigorously 
testing if new technology supports people and existing processes or not. Many 
technologies have failed this test, and therefore, Toyota rejected their introduction and 
relied on well-tried production equipment. Also, contrary to popular belief, LM does 
not reject automation per se. Already in the 1960s, Taiichi Ōno, one of the founders 
of the TPS, was in favor of process automatization with the process being supervised 
by employees (Kolberg & Zühlke, 2015, p. 1872). Although Toyota is not a leader in 
acquiring new technology, the company is still considered a global benchmark for 
using value-adding technology that supports core processes (Liker, 2004, p. 160).  

At Toyota, new technology is seldom perceived as the savior for productivity problems, 
especially IT technology, which is viewed critically as it often increases the level of 
complexity. Bell and Orzen (2010, p. 53) emphasized that “the many benefits of 
electronic information systems are often offset by the waste they generate.”  

Maguire (2016) argues that lean and IT technology have been traditionally in conflict 
due to fundamental differences in the basic philosophy. For instance, while lean 
promotes simplicity, IT technology often introduces complexity. Another conflict is 
push vs. pull. Historically, production planning software planned the manufacturing 
process centrally, thus  “‘pushing’ products through the manufacturing process” 
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(Maguire, 2016, p. 32). Lean, in contrast, advocates the pull approach, which is one 
of the five lean principles (Womack & Jones, 2003) as well as a key lean practice 
(Shah & Ward, 2003). Bell (2006, p. 16) agrees and lists “complexity versus simplicity, 
planning versus acting, one side pushing while the other is pulling” as ongoing 
conflicts between LM and information technology.  

However, literature also presents contradicting results. Powell, Alfnes, Strandhagen, 
and Dreyer (2013, p. 324) argue that modern IT allows some conflicts to be bridged. 
For instance, recent developments in production planning systems enable a hybrid 
production control that combines the push and pull approaches. Other scholars 
present examples for IT support of existing lean practices. Kolberg and Zühlke (2015, 
p. 1871), for example, emphasize the potential of IT technology to support traditional 
Kanban systems. Coming back to Toyota, IT is critical to the company for many 
processes, such as financial transactions, handling of customer orders, and 
manufacturing process control. Like automation technology, IT technology needs to 
prove that it supports existing, value-creating processes in a test pilot before being 
introduced. Mikio Kitano, a plant manager of one of Toyota's largest production sites, 
is quoted by Liker (2004, p. 162):  “At Toyota we do not make information systems. 
We make cars. Show me the process of making cars and how the information system 
supports that.” 

In conclusion, it is a myth that LM is inherently resistant to apply leading-edge 
technology. However, LM is hesitant to accept new technology being pushed into the 
production system, without having demonstrated that it fulfills the critical criteria for 
new technology: to serve and support the people, process, and values of the LPS 
(Liker, 2004, p. 160). 
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2.3 Smart Manufacturing 
This chapter consists of five parts. Chapter 2.3.1 discusses the origins of SM and 
provides a working definition. For a deeper understanding of the concept of SM, 
chapter 2.3.2 presents the 5C Architecture. As SM is technology-driven (Metternich et 
al., 2017, p. 347), chapter 2.3.3 outlines core technologies that drive SM. Chapter 
2.3.4 discusses the role of data utilization in SM, and chapter 2.3.5 introduces the 
manufacturing data lifecycle.  

2.3.1 Origin and Definition 
The term smart manufacturing was coined by the U.S. National Institute of Standards 
and Technology (2017). Accordingly, SM is a “fully-integrated and collaborative 
manufacturing system that responds in real-time to meet the changing demands and 
conditions in the factory, supply network, and customer needs.” Following Thoben et 
al. (2017, p. 7), Wallace and Riddick define SM as “a data-intensive application of 
information technology at the shop floor level and above to enable intelligent, efficient, 
and responsive operations.” Likewise, O’Donovan et al. (2015b, p. 2) consider SM as 
“the pursuit of data-driven manufacturing, where real-time data from sensors in the 
factory can be analyzed to inform decision-making.” The last definition provided by 
O’Donovan et al. is used as the working definition of SM in this dissertation. 

SM is characterized as the fourth technical or industrial revolution. According to Lasi 
et al. (2014, p. 239), all industrial revolutions in the past have triggered technological 
leaps. Significant improvements in the field of mechanization were drivers of the first 
industrial revolution. The use of electrical energy caused the second industrial 
revolution, and computer technology triggered the third industrial revolution (Kang et 
al., 2016, p. 111; O’Donovan et al., 2015b, p. 5).  

The objectives of SM are manifold. Thoben et al. (2017, p. 15) identified agility, quality, 
and efficiency improvements as well as economic and environmental sustainability as 
the most important objectives. Lasi et al. (2014, p. 239) consider individualization, 
flexibility, decentralization, and resource efficiency as major drivers for SM.  

Research on SM is supported by governmental programs in the most important 
manufacturing countries. Under different terms14, the United States, China, Germany, 
Japan, and Korea have formulated SM strategies. Although there are differences in 
the exact scope and focus, all strategies promote the use of modern IT technologies 
in manufacturing (Tao et al., 2018, p. 1; Thoben et al., 2017, pp. 5–8).  

 

 
14 In Germany the concept is called Industrie 4.0. China has initiated the China 2025 initiative. In the United 

States smart manufacturing and industrial internet are referring to the same basic concept (Tao et al., 2018, 
p. 1).    
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2.3.2 5C Architecture of Smart Manufacturing  
For a better understanding of the concept of SM, the 5C Architecture of SM proposed 
by Lee, Bagheri, and Kao (2015) is shown in Table 7. 

Table 7: 5C Architecture for smart manufacturing (adapted from Lee et al. (2015, p. 19)) 

5C Architecture Level Main Attributes Main Function 

V. Configuration Level Self-configure and self-optimization Decision implementation 

IV. Cognition Level Collaborative diagnostic and 
decision-making Decision support 

III. Cyber Level Twin models for machines Self-comparison 

II. Conversion Level Smart analytics Self-awareness 

I. Connection Level Sensor network Condition monitoring 
 

Each level of the 5C architecture serves a different function (Lee et al., 2015, pp. 19–
20; Lidong & Guanghui, 2016, p. 3; Qin, Liu, & Grosvenor, 2016, p. 175). 

I. The Connection level is the foundation for the four higher levels by proving the 
hardware to collect, communicate, and store data from the manufacturing 
equipment. The data might be obtained from machine controllers, enterprise 
manufacturing systems, or directly by sensors. 

II. By applying data analysis technologies, meaningful information is inferred on the 
Conversion level from the raw data collected on level 1. For instance, by predicting 
the remaining useful life, the conversion level increases the self-awareness of the 
equipment.  

III. The Cyber level acts as a central information hub as it collects and processes data 
from every machine connected in the production system. A digital twin of the 
equipment allows cross-machine data analysis, such as peer-to-peer 
performance comparison.  

IV. The Cognition level aims to collaborate and support manufacturing operators in 
decision-making. Therefore, the available data on individual machine status and 
comparative information has to be adequately visualized to transfer the acquired 
knowledge to the human counterpart. 

V. The Configuration level is responsible for reconnecting the virtual cyberspace 
back to the physical world. It triggers corrective actions based on decisions taken 
in cyberspace to the machines in the physical world and therefore acts as a control 
system. Through feedback to the physical world, the production system applies 
self-configuration to increase resilience and adapt to variation. 
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2.3.3 Core Technologies 
Based on a literature review on SM, Thoben et al. (2017) conclude that a variety of 
different definitions for SM exist. However, they also found that all descriptions of the 
concept consistently highlight advanced IT technologies as well as data analytics as 
critical elements to improve manufacturing operations (Thoben et al., 2017, p. 7). 
Similarly, Tao et al. (2018, p. 1) point out that all SM initiatives promote the integration 
of state-of-the-art technology in manufacturing systems. Hence, this chapter identifies 
and briefly defines four core technologies of SM. 

Table 8 exhibits 10 technologies of SM according to twelve selected contributions to 
SM.15 It indicates that the concept of SM comprises a wide range of technologies. 
Furthermore, it illustrates that there is no perfect consent among the reviewed 
scholars in regard to core SM technologies. However, the overview shows that four 
technologies are listed in almost all reviewed publications, namely Big Data (found in 
10 of 12 publications), Cloud Computing (9), Cyber-Physical Systems (8), and Internet 
of Things (11).  

Table 8: Selected technologies of SM and their appearance in key references 

Technology  
Key references 

1 2 3 4 5 6 7 8 9 10 11 12 

Additive Manufacturing      ●   ●    
Artificial Intelligence (AI) /  
Machine Learning (ML)  ●     ●   ●   

Augmented Reality / 
Virtual Reality    ●  ●   ●    

Big Data (incl. Data Mining) ● ● ● ●  ●  ● ● ● ● ● 
Cloud Computing  ● ● ●  ● ●  ● ● ●  ● 
Cyber-Physical (Production) 
System (CPS/CPPS) ●  ● ● ●  ● ● ●  ●  

Internet of Things / 
Industrial Internet of Things  ● ● ●  ● ● ● ● ● ● ● ● 

Robotics/Automation ●     ●   ●    
Simulation       ● ●      
Smart Sensors (incl. RFID)   ● ●    ●     

References 

1. Thoben et al. (2017), 2.Qi and Tao (2018), 3.Kang et al. (2016),    
4. Prinz et al. (2018), 5.Sony (2018), 6. Lidong and Guanghui (2016), 
7.O’Donovan et al. (2015b), 8.Pilloni (2018), 9.Y. Chen (2017)10.S. 
Wang, Wan, Li, and Zhang (2016), 11.Z. Li et al. (2017), 12.Lu (2017) 

 

 
15 Some papers address the concept of Industry 4.0. However, as Industry 4.0 and SM both refer to the same 

concept (Wuest et al. (2016, p. 23), SM and Industry 4.0 technologies are regarded as congruent and are 
used interchangeably. 
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The four outstanding technologies are considered as core technologies for SM. The 
remainder of this chapter introduces the four core technologies adding smart sensor 
technology, as it is an enabling technology for the four core technologies.  

1. Smart Sensor Technology  

The basic technology for collecting data in real-time are smart sensors. By collecting 
a range of different types of structured (times, quantities, process parameters) and 
unstructured (videos, picture, sound recordings) data, smart sensors are essential 
components of CPS and IoT networks and, therefore, fundamental for SM (Kang et 
al., 2016, p. 120). A key element of sensor technology is the radio frequency 
identification device (RFID) technology. RFID tags allow tracking the position of 
manufacturing objects. It is used for traceability of quality problems and to manage 
the material flow of the entire shop floor (Zhong, Huang, Dai, & Zhang, 2014, p. 828).  

Today, data generated by embedded sensors in manufacturing exceeds the volume 
of two exabytes16 annually, with higher rates expected in the future (S. Yin & Kaynak, 
2015, p. 143).  

2. Internet of Things (IoT) 

The term IoT is frequently used in the literature, but there is no consensus about its 
definition (Tao, Cheng, Xu, Zhang, & Li, 2014, p. 1436). The definition below follows 
the recommendation of the IoT Global Standards Initiative (International 
Telecommunication Union, 2012, p. 7): 

“Internet of Things: A global infrastructure for the information society, enabling 
advanced services by interconnecting (physical and virtual) things based on existing 
and evolving interoperable information and communication technologies. Thing: With 
regard to the Internet of things, this is an object of the physical world (physical things) 
or the information world (virtual things), which is capable of being identified and 
integrated into communication networks.”  

The IoT network collects data from smart sensors and exchanges data with 
information systems. Thus, the IoT network creates the database for big data analysis. 
The vision of IoT is to integrate the virtual with the real world by connecting all entities 
and facilitate communication by standard communication protocols. As IoT is not 
limited to applications within the manufacturing realm, the term Industrial Internet of 
Things (IIoT) for industrial assets such as machines, tools, and logistics operations, 
has emerged (Thoben et al., 2017, p. 8). 

 

 
16 1 exabyte equals 1018 bytes or 1 billion gigabytes.  
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3. Cyber-Physical System (CPS) 

CPSs are physical items (e.g., tools, machines, vehicles) that are equipped with 
sensors, microprocessors, communication interfaces, and actuators. CPSs are able 
to collect and process data of themselves and their environment (Thoben et al., 2017, 
p. 5). Also, they can communicate with other CPSs and interact with the physical world 
with actuators. Due to the communication interface with the internet or factory IT 
systems, CPSs have permanent access to real-time data of the factory. This enables 
a convergence of the physical world and the virtual world. The vision of SM contains 
a CPS that connects to other CPSs and forms decentral networks. Based on real-time 
data, these networks are supposed to optimize themselves autonomously (Vogel-
Heuser, Bauernhansl, & Hompel, 2017, p. 11). 

4. Cloud Computing 

Cloud computing is essential for connecting physically dispersed production 
components. Cloud computing allows the central storage and processing of data from 
several sources. Also, it enables remote access to production equipment. However, 
although the user perceives the data as stored centrally, in fact, the data is stored on 
multiple servers at the same time. This guarantees a high level of accessibility to the 
cloud services and data, even in the case of a server breakdown (Vogel-Heuser et al., 
2017, p. 135). Cloud computing provides scalable storage space and computational 
power. Thus, cloud computing meets the demand for big data analytics, without 
requiring large-scale investments in its own servers. Databases and analysis are 
accessible remotely through mobile devices connected to the cloud (Hagerty, 2017, 
p. 11). By enabling the integration of all devices that are equipped with communication 
technology in the same cloud, cloud computing provides the technological basis for 
IoT (S. Wang et al., 2016, p. 3). 

5. Big Data  

Big data generally refers to a set of data with a wide range, high volume, and complex 
structure that cannot be handled by traditional methods of data processing (Kang et 
al., 2016, p. 119). The objective of big data analytics is to extract from the tremendous 
amount of different data, meaningful and usable information, also called smart data 
(Kletti, 2015, p. 173). According to Kang et al. (2016, p. 119), big data analytics needs 
to provide effective analysis and visualization of data from different sources. The 
combination and analysis of data from various sources enable several improvement 
opportunities. Provost and Fawcett (2013a) argue that big data analytics, including 
artificial intelligence (AI) and data mining (DM), supports data-based decision-making. 
S. Wang et al. (2016, p. 6) add that big data analytics can provide real-time, complete, 
and effective information on every aspect of the factory, thus increasing the 
transparency of the manufacturing process.   
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2.3.4 Data in Smart Manufacturing  
The relevance of data in SM is expressed by the two definitions of SM as “a data-
intensive application of information technology at the shop floor level and above to 
enable intelligent, efficient, and responsive operations” (Thoben et al., 2017, p. 7) and 
SM as “the pursuit of data-driven manufacturing, where real-time data from sensors 
in the factory can be analyzed to inform decision-making” (O’Donovan et al., 2015b, 
p. 2). 

As seen in the last chapter, SM implies a progressing integration of manufacturing 
technology, sensors, and IT technology. Thereby, the volume, accurateness, and real-
time availability of manufacturing data increases (Tao et al., 2018, p. 2). As a 
consequence, the rate in which data is created in modern manufacturing systems 
shows significant growth (S. Yin & Kaynak, 2015, p. 143). However, not only has the 
volume of data dramatically increased, but also the ability to store and process data 
has significantly enhanced. According to Tao et al. (2018, p. 3), several cost-effective 
tools for data collection, storage, and processing have emerged recently.  

SM strives to capitalize on both developments; that is, to apply new solutions for data 
collection and new techniques for data processing to convert raw manufacturing data 
into smart data to inform decisions. The potential positive impact of data exploitation 
is not limited to a particular use case. Data analytics can contribute to improvements 
in multifold aspects of manufacturing (O’Donovan et al., 2015b, p. 1). 

Several research articles discuss use cases of exploiting manufacturing data. Zhang, 
Ren, Liu, and Si (2017) suggest big data analytics for optimizing maintenance 
processes. Chongwatpol (2015, p. 64) uses data analysis techniques, including DM, 
to lower defect rates, thereby improving the quality and overall performance of the 
manufacturing system. Similarly, Wuest, Irgens, and Thoben (2014) describe 
opportunities to improve quality by applying AI tools to data collected over the whole 
manufacturing process. According to Kusiak (2017), manufacturing companies 
become more and more aware of the strategic importance of data. Data—especially 
the ability to transform big data into smart data—will be a key factor for superior 
manufacturing competitiveness.  

Data Analytics Capabilities  

Following a publication of Gartner Inc. in 2016, many authors distinguish the following 
four levels of data analytics capabilities: descriptive, diagnostic, predictive, and 
prescriptive analytics (see Figure 5) (Banerjee, Bandyopadhyay, & Acharya, 2013; 
Hagerty, 2017; O’Donovan et al., 2015b; Shao, Shin, & Jain, 2014; Shuradze & 
Wagner, 2016).  
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Figure 5: The Four Data Analytics Capabilities (based on Hagerty (2017, p. 10) 

Descriptive analytics aims to answer the question of what happened. Descriptive 
analytics mainly provide different views of data, such as monitoring data from sensors 
and databases, to describe an observed phenomenon. At this first level of data 
analytics, no analysis of root causes is conducted (Banerjee et al., 2013, p. 2). 

Diagnostic analytics addresses the question of why did it happen. Answering this 
question requires techniques like visualization to identify the root cause. Diagnostic 
analytics are valuable to understand the business environment better and are mostly 
used for strategic and forward-looking decision-making (Banerjee et al., 2013, p. 2). 

Predictive analytics addresses the question of what will happen and seeks to predict 
potential future outcomes. By using statistical and DM techniques, drivers of observed 
phenomena are identified. In manufacturing, predictive analytics is applied to predict 
potential equipment breakdowns, thus enabling a more efficient maintenance system 
(Y. Chen, 2017, p. 592). 

Prescriptive analytics addresses the question of what should be done. It combines 
describing, understanding, and predicting with suggesting approaches to achieve a 
desired future state. Prescriptive analytics compares various results of different 
decisions and presents the decision with the most desired expected outcome 
(Banerjee et al., 2013, p. 2). 

Figure 5 also indicates a shift from human-centered decision-making to machine-
centered decision-making. While the first three levels—descriptive, diagnostic, and 
predictive—merely provide the empirical foundation for informed decisions of humans, 
the fourth level, prescriptive analytics, already proposes an action. The next level 
towards machine-centered decision-making is decision automation (Hagerty, 2017, 
p. 10). 
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2.3.5 Manufacturing Data Lifecycle 
As discussed in the previous section, data utilization is an enabler for SM. The most 
important and most challenging activity, thereby, is to convert big data from various 
sources into smart data. Smart data consists of meaningful information that can be 
utilized to inform concrete actions by the user (Kletti, 2015, p. 173; O’Donovan et al., 
2015b, p. 3; Vogel-Heuser et al., 2017, p. 128). However, for the conversion from 
unstructured data to smart data, the data must undergo several steps. Tao et al. 
(2018, p. 4) refer to this process, including defining data sources (1), data collection 
(2), storage (3), processing and analysis (4), visualization (5), and application (6) as 
the manufacturing data lifecycle. 

Figure 6 depicts the six steps of the manufacturing data lifecycle. 

Figure 6: Manufacturing data lifecycle  
(own illustration based on Tao, Qi, Liu, and Kusiak (2018) and Kletti (2015)) 

1. Data Sources 

Tao et al. (2018, p. 3) present five sources of data, namely, management data, 
equipment data, user data, product data, and public data. Management data refers to 
all kind of data that is collected by manufacturing information systems (e.g., the 
manufacturing execution system MES or the enterprise resource planning system 
ERP). This type includes data related to product and production planning, material 
and inventory management, maintenance, as well as supply chain and financial data. 
Equipment data includes data such as real-time performance and operating conditions 
data. User data includes data from e-commerce providers (e.g., Amazon) and social 
networks (e.g., Facebook) and can be used to identify user preferences. Product data 
gathered by smart products with IoT functionality may contain product performance-
related data (e.g., time) and environmental data (e.g., temperature). 

2. Data Collection  

Data originates from various sources and is collected primarily by sensors. This 
includes RFID technology that allows collecting product-related data such as 
processing time, environmental conditions, and current location (Saygin & 
Sarangapani, 2006). Built-in sensors in manufacturing equipment enable a permanent 
monitoring of the operational conditions (Tao et al., 2018, p. 4).  

1. Data sources 2. Data collection 3. Data storage

Manufacturing Data Lifecycle

4. Data processing 5. Data visualization 6. Data application
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3. Data Storage 

As the foundation for subsequent analysis, the collected manufacturing data needs to 
be stored and made available for all users (Tao et al., 2018). Cloud computing 
provides a convenient way to store structured and unstructured data. The scalability 
of cloud computing allows paying for just the right size of storage capacity and 
computational power needed. Also, it allows secure and remote access to data and 
services (Hagerty, 2017, p. 11). 

4. Data Processing 

Data processing describes activities to convert big data into actionable knowledge, 
often referred to as smart data. Smart data, in turn, is used to inform decisions (Kletti, 
2015, p. 173). The processing step includes data cleaning and reduction, which 
involves activities to deal with redundant, missing, or inconsistent data. The cleaned 
data is then analyzed by various techniques. Gandomi and Haider (2015) have 
identified clustering, association rules, regression, classification, and prediction 
analysis as key data analysis methods. The type of analysis methods applied depends 
on the optimization problem and the structure of the data.  

5. Data Visualization  

The primary objective of data visualization is to support the understanding and 
interpretation of the presented data. Commonly used visualization techniques are 
various forms of charts and diagrams. Mittal, Khan, Romero, and Wuest (2017, p. 7) 
conducted a review on enabling factors of SM and found visual technology, such as 
virtual reality and augmented reality, as an important technology cluster.  

6. Data Application  

Data application are applications that use data to improve a certain aspect of the 
manufacturing process. Tao et al. (2018) distinguishes three categories of data 
applications: first Design; second Manufacturing; and third Maintenance, Repair, and 
Operations. Design can be improved by getting new insights into customer 
preferences and market trends. Applications in the manufacturing category comprise 
applications to track and monitor manufacturing equipment in real-time. MRO 
applications cover the manufactured products and include functionalities to identify 
product defects and the need for maintenance early, thus allowing precautionary 
actions.  
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2.4 Conjunction of Smart and Lean Manufacturing 
LM and SM have often been treated separately in the past (Prinz et al., 2018, p. 21). 
Only recently, their relationship has received increased attention in OM research 
(Rossini et al., 2019, p. 2). According to Dombrowski, Richter, and Krenkel (2017), the 
existing literature discusses the conjunction of SM and LM from two perspectives: 
Either LM is considered as the basis for SM technologies, or SM technologies are 
seen as promoters of LM. Mayr et al. (2018, p. 623) added a third perspective, arguing 
that the combination of both manufacturing concepts yields positive synergies, without 
stating the direction of support.  

Table 9 shows the perspective of 15 publications on the link between SM and LM. 

Table 9: Perspectives on the conjunction of SM and LM  

Perspective  

References 

1 2 3 4 5 6 7 8 9 
1
0 

1
1 

1
2 

1
3 

1
4 

1
5 

1. LM is the foundation 
    of SM ● ● ● ●       ●     

2. SM advances LM     ● ● ● ● ● ● ● ●    

3. SM and LM are  
   mutually beneficial              ● ● ● 

References 

1. Künzel (2016), 2. B. Wang et al. (2016) 3. Metternich et al. (2017),  
4. Bick (2014), 5. Netland (2015), 6. Wagner et al. (2017),  
7. Rafique, Ab Rahman, Saibani, Arsad, and Saadat (2016),  
8. Rüttimann and Stöckli (2016), 9. Sanders et al. (2016) ,  
10. Riezebos and Klingenberg (2009), 11. Dombrowski et al. (2017), 
12. Kolberg et al. (2016), 13. Tortorella and Fettermann (2018) 
14. Rossini et al. (2019), 15. Lorenz, Buess, Macuvele, Friedli, and Netland 
(2019) 

1. Lean Manufacturing as Foundation for Smart Manufacturing  

The perspective of LM as a basis for SM follows three different argumentations (Mayr 
et al., 2018, p. 623). First and found most often in literature, several authors argue 
that a successful introduction of SM requires robust, transparent, and standardized 
processes as a foundation (e.g., Dombrowski et al., 2017, p. 1063). The digitization 
or automation of inefficient processes will not reduce the inefficiency, but on the 
contrary, will intensify it. Second, authors such as Künzel (2016) promote lean as a 
critical foundation for SM, as lean principles force managers to always consider the 
impact of new technology on customer value and reduction of waste. Third, by 
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reducing process and product complexity, LM facilitates the efficient application of SM 
technologies and tools (Bick, 2014, p. 46).  

2. Smart Manufacturing advances Lean Manufacturing  

The literature also provides support for this perspective. For instance, Rüttimann and 
Stöckli (2016) discuss the potential of CPPS as part of SM to increase the flexibility of 
existing LPS. Wagner et al. (2017, p. 130) analyzed the impact of SM technologies on 
lean elements such as 5S, Kaizen, and Pull, and conclude that industry 4.0 
applications can support lean principles and have a positive impact on the stability of 
the system. Sanders et al. (2016, p. 827) developed a framework to identify barriers 
and challenges for lean implementation and evaluated how SM technologies can 
mitigate these barriers. They see great potential to overcome some of the existing 
shortcomings of LM through integrated information and communication (ICT) systems. 
Lean and ICT together can yield higher productivity and eliminate waste. 

A promising concept called Value Stream Mapping 4.0 is coined by Meudt, Metternich, 
and Abele (2017, p. 415) and summarized by Buer et al. (2018, p. 2930). They argue 
that traditional VSM is a manual pen-and-paper process and the necessary data 
collection time consuming and tedious. Furthermore, standard VSM only provides a 
snapshot of the current state of the process, not reflecting changes over time. By 
collecting real-time data, SM technologies reduce the effort and increase the 
accurateness and timeliness of data and thus enabling a real-time VSM system. 
Thereby, a dynamic picture of the shop floor is provided, which supports 
manufacturing employees in their decision-making.  

3. Smart Manufacturing and Lean Manufacturing are mutually beneficial 

The majority of contributions discussed above provide use case-based or exemplary 
evidence of support of LM to SM or vice versa. Quantitative studies investigating the 
relationship between LM and SM, however, are rather rare. One exception is Rossini 
et al. (2019) and Tortorella and Fettermann (2018). Rossini et al. (2019) conducted 
an empirical study with 108 European manufacturers and found a positive link 
between the implementation level of lean methods and a higher adoption level of 
industry 4.0 technologies. Similarly, Tortorella and Fettermann (2018) conducted a 
study on the relationship between LM and industry 4.0 among 110 Brazilian 
manufacturing companies and concluded that industry 4.0 and LM are positively 
associated. 

A recent joint research paper of the University of St. Gallen and the ETH Zurich found 
supporting evidence from the Swiss manufacturing sector. As shown by Lorenz et al. 
(2019), the lean maturity of the company shows a significant positive correlation 
(p<0.01) with its digital maturity.  
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These quantitative studies indicate that there is no inherent contradiction between the 
human-centric lean approach and the implementation of SM technologies. However, 
they are not able to sufficiently explain how both concepts interact in concrete terms. 
This fact provides enough justification for further qualitative research to better 
understand the levers to increase performance by integrating both production 
paradigms. 

2.5  Data Analytics - Methods and Techniques  
The purpose of this chapter is to provide a basic understanding of the terms data 
mining and machine learning to the reader. For this introduction, the discussion of the 
mathematical basis of the presented methods and techniques is renounced. 

The term analytics can be defined as “a scientific process of logical-mathematical 
transformation of data to improve decision-making” (Blum & Schuh, 2017, p. 258). 
The objective of data analytics is to concentrate and extract useful information hidden 
in a set of chaotic raw material (M. Chen, Mao, & Liu, 2014, p. 190). Furthermore, it 
seeks to identify inherent patterns to understand the logic behind the data and use 
this logic for extrapolation and forecasting. Although a variety of data analytics 
methods exist, this chapter focuses on the fundamental concepts of DM and ML. For 
a detailed introduction to a broad set of techniques related to data science for 
business, Provost and Fawcett (2013b) is recommended.  

Data Mining 

Following Choudhary, Harding, and Tiwari (2009, pp. 503–504), DM is an 
interdisciplinary field with the objective to uncover patterns in data and use this pattern 
to predict outcomes. DM includes techniques to find associations, anomalies, and 
patterns from a large set of data.  

An overview of DM functions and techniques is shown in Table 10. 

Table 10: Data mining functions and techniques (based on Choudhary et al. (2009, p. 515) 

Data Mining Functions and Techniques 

Function Association Prediction Cluster Classification 

Techniques 
Decision tree Association rule Regression Neural network 

Statistics Fuzzy C means Rough set  
 

The data sources may include historical data from databases as well as real-time data 
that are streamed into a system dynamically (Z. Li et al., 2017, p. 379). In the 
manufacturing context, description and prediction are the main objectives of DM. 
Descriptive DM seeks to describe the data set by identifying patterns and prescriptive 
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DM seeks to predict the future state of a model by extrapolating patterns of key 
variables found in the dataset.  

Cross Industry Standard Process for Data Mining 

To place a structure on the DM process, several guiding frameworks have been 
developed. Among these frameworks, the Cross Industry Standard Process for Data 
Mining (CRISP-DM) is one of the most widely applied ones (Harding et al., 2006, 
p. 970). The CRISP-DM shown in Figure 7 provides a high-level step-by-step 
instruction for DM. 

Figure 7: Cross Industry Standard Process for Data Mining (Provost & Fawcett, 2013b, p. 27) 

It consists of six steps. The first two phases of business understanding and data 
understanding stress the importance of understanding the context of the intended 
analysis. There is no one size fits all approach for DM. One of the main challenges in 
DM is to transfer the business problem into a DM problem; thus, a good understanding 
of the business problem and context is crucial. 

The data preparation phase is concerned with converting the data in appropriate forms 
to apply DM techniques. The actual application of DM techniques takes place in the 
modeling phase. In the evaluation phase, the DM results are assessed rigorously to 
ensure that they are valid and reliable before proceeding to the next step. In the 
deployment phase, the results of the DM are used to inform a decision. For instance, 
the DM process discovers patterns that are then used to implement a predictive 
model.  
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The process diagram visualizes the integrative approach. Going through the circle 
once without finding the expected solution is rather the rule than the exception. 
However, every iteration increases the understanding of the DM team of the 
underlying problem and the available data (Provost & Fawcett, 2013b, pp. 26–32). 

Machine Learning 

“ML is allowing computers to solve problems without being specifically programmed 
to do so” (Wuest et al., 2016, p. 25). This understanding goes back to Samuel (1959), 
who programmed a computer to learn to play checkers. In the context of 
manufacturing, ML techniques may be used to identify complex patterns within raw 
data and, based on this underlying logic, derive models. These models are applied for 
forecasting, classification, and prediction. From the basis of ML, the concept has 
developed over time, resulting in a variety of different techniques, algorithms, and 
application areas. However, no shared understanding of the structure of the different 
element exists. For an overview of the main ML techniques, Figure 8 presents a 
classification following the work of Pham and Afify (2005, p. 401). They also provide 
a brief review of the shown ML techniques. 

Figure 8: Classification of machine learning techniques (Pham & Afify, 2005, p. 401) 

Artificial Intelligence 

Besides ML the term AI (artificial intelligence) is often used in the literature. There are 
different voices on the question of whether AI and ML are the same, or one is part of 
the other. For instance, Wuest et al. (2016, p. 24) describe AI as a subgroup of ML. 
Quite on the contrary, Rimpault, Balazinski, and Chatelain (2018, p. 1) see ML as part 
of the AI domain, and Z. Li et al. (2017, p. 381) describe AI and ML as distinct parts 
of DM. In this dissertation, both terms will be used interchangeably and refer to the 
ability of computers to learn from databases and find hidden patterns in the data.  
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Wan, Yang, Wang, and Hua (2018) conducted a comprehensive review of AI 
applications in smart factories and link application objects with the respective AI 
method and resulting improvements. In total, they list 18 application objects for AI in 
a smart factory.  

Contrasting DM and ML, two main differences can be found: first, ML can perform self-
learning by adapting the identified rules as per the scenario. DM, on the contrary, 
follows predefined rules. Second, DM requires human involvement all the time, while 
in ML humans are only involved a the initial definition of the ML algorithm. Afterward, 
it will conclude everything by its own means. In conclusion, DM and ML are techniques 
used to analyze a large set of chaotic data and, therefore, fit the conditions often found 
in manufacturing. Especially in the light of the advancing integration of sensors and 
advanced ICT technology in manufacturing, the volume of accurateness of 
manufacturing data will dramatically increase (Tao et al., 2018, p. 1). Consequently, 
the application of ML and DM is becoming increasingly relevant to exploit the data to 
optimize the production system.  
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3 Smart Manufacturing Technologies in LM – 
Quantitative Study Results 

This chapter presents selected results from a quantitative survey on the future of LM 
conducted by the author in 2017. Chapter 3.1 introduces the concept and objectives 
of the study, as well as the data collection process. Chapter 3.2 presents general 
findings and highlights differences between mature lean companies and the overall 
sample. Chapter 3.3 summarizes the findings and derives implication for the following 
chapters.  

3.1 Introduction and Data Collection 
3.1.1 Introduction  
Inspired by the success of LM in the automotive industries, other industries within and 
outside the manufacturing sector have adopted many elements of LM. The focus on 
customer value, elimination of waste, and the principles of Pull and Flow are today 
found in many companies of different sizes and products. The high relevance of lean 
in practice was the essential motivation to assess the status quo of lean 30 years after 
the term was coined in 1988. Furthermore, after a long time of adopting and refining 
existing lean practices from the TPS, the question arose: Quo vadis lean?  

Therefore, the objective of the study was to assess the current state of lean across 
different industries and to take a look in the future. To reflect this intention, the title of 
the study was: Lean2020 – The Future of Operational Excellence. 

To ensure the practical relevance of the results, the study was designed in cooperation 
with three international manufacturing companies from the aviation, pharmaceutical, 
and mechanical engineering sectors. The study was carried out following an 
established procedure of a benchmarking study, comprising four phases. In the first 
phase, the questions are derived from current academic discussions on lean as well 
as from input of the benchmarking industry partner. The questions are clustered, and 
a questionnaire developed and tested. In the second phase, the questionnaire is 
implemented as an online survey and sent to a set of companies. The raw data from 
the online survey is evaluated and, based on the maturity level of participating 
companies, a condensed sample of so-called Leading Companies is built. The 
maturity level is calculated by ex-ante defined metrics, such as the level of 
implementation of various lean tools and the spread of lean within the company.  

In the third phase, interviews with the Leading Companies are scheduled to verify the 
information given in the only survey and to collect additional context information on 
the company and their lean approach. Based on these interviews, the research team 
selects the 10 most mature companies and creates anonymous case studies about 
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the companies. Based on the case studies the industry partners select five companies 
which are, from their perspective, most promising to learn from.  

These five companies are called Successful Practice (SP) companies. To get real-
world insights and enable a face-to-face discussion, these companies are visited in 
one-day site visits during the fourth and final phase of the benchmarking procedure.  

3.1.2 Data Collection 
The online survey was sent to more than 500 companies, mainly in the German-
speaking area. Contacts have been lean managers from global lean units as well as 
lean managers at a production site, plant managers, and production managers. The 
online survey took place in the second and third quarter of 2017. From all 
questionnaires filled, 75 were qualified for subsequent analysis.  

Sample Structure  

The structure of the study sample is shown in Table 11. 

Table 11: Sample structure of study: Lean2020  – The Future of Operational Excellence 

Sample Structure Study: Lean2020 – The Future of Operational Excellence  

Participants 75 Industries  14 

Revenue  
51% of all participants 
generate more than 250 million 
EUR in revenue 

49% of all participants generate 
less than 250 million EUR in 
revenue 

Employees 74% large companies with 
more than 250 employees 

26% small and medium-sized 
enterprises (SMEs) with less than 
250 employees 

Lean Experience 
50% of all participants have 
five or more years of Lean 
experience 

25% of all participants have even 
more than 10 years of Lean 
experience 

Company Type17 

68% of all participants are in 
Industrial Goods (B2B) 
business 

31% of all participants are in 
Consumer Goods (B2C) business  

 

  

 
17 One percent of the participating companies is working primarily for the government (B2G) 
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3.2 Study Results and Successful Practice Companies Patterns 
As discussed in chapter 2.2.1, there are a plethora of lean definitions in the academic 
world. The same applies to the industry. Therefore, the term lean may be used slightly 
differently within the participating companies. The lean understanding of the study 
follows the five lean principles that define value from the customer perspective (1), 
identify the value stream (2), flow (3), pull (4), and strive for perfection (5), and includes 
lean outside the manufacturing realm, such as logistics but also R&D and service.  

In the remainder of this chapter, selected results of the study are presented and briefly 
discussed. They have built the foundation and motivation for this research. Some of 
the results have been published in previous or amended versions in the following 
publications.  

▪ Lorenz, Rafael; Buess, Paul; Macuvele, Julian; Friedli, Thomas; Netland, Torbjørn H. 
(2019): Lean and Digitalization—Contradictions or Complements? In: Farhad Ameri, 
Kathryn E. Stecke, Gregor von Cieminski und Dimitris Kiritsis (Hg.): Advances in 
production management systems. Production management for the factory of the 
future: IFIP WG 5.7 International Conference, APMS 2019, Austin, TX, USA, 
September 1-5, 2019: proceedings, Bd. 566. Cham: Springer (IFIP Advances in 
Information and Communication Technology, 566), S. 77–84. 

▪ Macuvele, J., Buess, P., Friedli, T. (2018): Lean2020 – The Future of Operational 
Excellence. Final Report. Institute of Technology Management at the University of St. 
Gallen, St.Gallen. 

Lean Remains Critical for Future Competitiveness  

As shown in Figure 9, almost all participants believe that the relevance of lean for 
competitiveness will either increase or remain as it is today. Only a tiny fraction 
expects a decreasing relevance of lean. This assessment applies to the overall 
sample and the five successful practice (SP) companies.  

Figure 9: Lean and competitiveness 
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How critical will Lean be for staying competitive in the next five years?
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Digitalization will Support Lean 

Especially interesting for the topic of this dissertation is the perspective of how lean 
companies deal with emerging digital technologies. Like academic literature, the 
overall sample takes two different perspectives. The majority of 56 percent assumes 
that digitalization will advance lean (see Figure 10). Thirty-eight percent also expect a 
positive interrelation between lean and digitalization but consider the former as the 
foundation of the latter. A coexistence of lean and digitalization without major mutual 
impact is predicted by only four percent. The trend is in line with the expectations of 
the SP companies. Four out of five see digitalization as a promising way to enhance 
lean. 

Figure 10: Impact of digitalization on lean 
Interestingly, no participant expects a complete shift from lean to a new production 
paradigm driven by digital technologies. 

Big Data is the Digitalization Trend with the Highest Potential to Support Lean 

In the study, participants are asked to evaluate the potential of four high-level 
technology trends to support lean. According to Figure 11, big data collection and 
analytics is the technology trend with the highest potential to support lean.  

Figure 11: Potential to improve lean of selected trends of digitalization 
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While on average, a medium potential is also foreseen for the technologies of 
automatization and robotization as well as IoT, comparably few expect an important 
role of additive manufacturing to enhance lean.  
Following Figure 11, the SP company group is more optimistic in general and 
especially considers big data as a promising technology to take lean to a new level. 
In response to the question, which of these technologies can support the five lean 
principles, big data was also selected more often than the other trends—especially 
regarding defining customer value, identifying the value stream, and seeking 
perfection—and participants consider big data as a promising technology trend.  

Given the expected relevance of Big Data, Figure 13 addresses the share of 
equipment with real-time monitoring, while Figure 14 depicts the maturity of data 
analytics in several areas.  

Lack of Management Capabilities and Shortage of Manpower are Barriers to Use 
Digital Technologies to Improve Lean  

As this dissertation is interested in identifying key enablers of DBAs, Figure 12 is a 
good starting point to look at. It provides a list of potential barriers companies face 
when planning to utilize digital technologies to support their LPS.  

Figure 12: Barriers to improve lean by utilizing digital technologies 

From an overall perspective, the main barrier is the lack of experience and capabilities 
to manage the introduction of digital technologies. Furthermore, participants report a 
shortage of manpower especially of employees with the right qualification. Financial 
restrictions are also perceived as an important barrier. The remaining elements on the 
list are considered comparably less challenging. Some elements that have been 
critical to the implementation of lean, such as employee acceptance and involvement, 
communication, and transparency, are still rated on average as a minor barrier. In 
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contrast to the lack of skills to manage digital technologies, most companies are sure 
to have the right LM capabilities in place.  

The evaluation of barriers of the SP group is quite diverse from the overall sample. 
For this group, aspects such as employee resistance, lack of communication, and 
involvement are much more prevailing than financial or infrastructure restrictions. It 
appears that the SP companies have learned the importance of employee acceptance 
and involvement for new ways of working from their lean journey and, as a 
consequence, emphasize these soft factors.   

Successful Practice Companies Monitor More Equipment in Real-time  

The positive expectation towards data analytics of SP companies seems to be 
reflected in the investment to monitor production equipment to collect data (see Figure 
13).  

While within the overall sample only 13 percent have equipped more than 80 percent 
of the production equipment, and only 30 percent more than 40 percent, the proportion 
among the SP companies is 60 percent and 80 percent, respectively. 

Figure 13: Real-time monitoring of production equipment  

Data Analytics is on Average on the Maturity Level Diagnostic  

Figure 14 illustrates the current status of data analytics maturity regarding the four 
levels of data analytics capabilities introduced in chapter 2.3.4.  

Figure 14: Applied type of data analytics 
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In general, participants report that they are currently operating on the diagnostic level 
to optimize processes, improve planning, identify root causes, reduce waste along the 
value chain, and prevent failures from reoccurring. SP companies not only collect 
more data due to a higher level of production equipment monitoring, but also utilize 
their data on a high analytics level. For capacity and resource planning, these 
companies have already reached the predictive analytics level. A deep dive in the 
survey data reveals that prescriptive analytics is currently the exception. 

3.3 Implications  
The study suggests that the time of lean is far from over. Quite on the contrary, a 
substantial majority of study participants expect even a rising relevance of lean for the 
future competitiveness of their companies. With regard to the interplay of lean and 
digitalization, the study results are in line with the current discussion of academic 
literature. Both perspectives, lean as the foundation of digitalization and digitalization 
as a means to enhance lean, are represented with a majority supporting the second 
perspective. From a set of four digital technology trends, big data was selected as 
most promising to support lean. This applies to the whole group, especially to SP 
companies. These companies are also pioneering in data collection (high share of 
real-time monitoring) and data-analytics (higher analytics maturity level). These 
findings support the underlying assumption of this thesis, that data analytics will have 
a positive impact on the manufacturing industry, including companies operating an 
LPS.  

Although valuable to get a quantitatively backed overview of the role of data in 
manufacturing and its potential for LM, the study is not capable of addressing the 
questions of how data utilization can support LM. The research of this thesis is 
motivated by the aspiration to close this gap. Therefore, the following chapters intend 
to identify actual applications of data utilization in manufacturing and investigate 
challenges and enablers in more detail. 

The following, chapter 4, starts with a comprehensive literature review to identify 
common DBAs and summarizes inherent challenges. Furthermore, based on 
literature input, theoretical reasoning, and discussions with researchers and 
practitioners, propositions on the impact of DBAs on lean practices are derived and 
visualized in a DBA – Lean Practice Impact Matrix. Chapter 5 complements these 
findings with qualitative case study and expert interviews, focusing on the identification 
of key challenges and enablers for applying DBAs. 



DATA-BASED APPLICATIONS IN LEAN MANUFACTURING 

58 

4 Data-based Applications in Lean Manufacturing 
This chapter has three objectives related to the three SRQ. Based on a 
comprehensive literature review, chapter 4.1 addresses the first SRQ by identifying 
use cases of DBAs in the manufacturing industry. Furthermore, it summarizes key 
requirements described in the DBA use cases, thus contributing to answering the SRQ 
2. Afterward, SRQ 3 is addressed in chapter 4.2, which discusses the potential 
implications of DBAs for established lean practices  

4.1 Data-based Applications  
This chapter comprises seven subchapters. Chapter 4.1.1 provides a definition of the 
term data-based application. Chapter 4.1.2 describes the process of identifying DBA 
use cases from the literature. Chapter 4.1.3 provides an overview of identified use 
cases and proposes a classification system. The individual DBA use cases are 
presented in chapter 4.1.4. Shared core functions of DBAs are identified and 
discussed in chapter 4.1.5. Chapter 4.1.6 summarizes the key requirements found in 
the DBA use cases, and chapter 4.1.7 closes with a summary. 

4.1.1 Definition: Data-based Applications 
The term data-based application (DBA) is a word creation of this dissertation and as 
such not directly adopted from existing publications. The term application, however, 
is frequently used in the context of data analytics. For instance, Russom (2015, p. 2) 
uses the term datadriven applications to describe IT applications that automate 
“business processes, problems, and opportunities that can only be driven forward, 
solved, and leveraged via ample volumes of diverse data.”  

Other scholars refer to the term application in various ways, without providing a 
specific definition. Åkerman et al. (2018, p. 411) use the term Big Data applications in 
the context of enabling data-driven decisions. Wuest et al. (2016, p. 25) use the term 
machine learning applications, Mehta, Butkewitsch-Choze, and Seaman (2018, 
p. 1043) the term manufacturing analytics application, and Shao et al. (2014, p. 2192) 
the term DA (data analytics) application.  

Although the term application is not explicitly defined, is it reasonable to assume that 
all quoted scholars share the basic understanding of the term as Tao et al. (p. 5). They 
have suggested a six-step manufacturing data life cycle (see chapter 2.3.5) 
comprising the steps data sources (1), data collection (2), data storage (3), data 
processing (4), result visualization (5), and data application (6). This dissertation 
follows this understanding of a data application as the final output of the manufacturing 
data lifecycle.  
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The term DBA is defined in this dissertation as an umbrella term for use cases of data 
utilization in manufacturing. To be classified as a DBA, an application must meet the 
following four criteria: 

1. According to the Cambridge University Press (2019a), an application is “a way in 
which something can be used for a particular purpose.” In line with this 
understanding, a DBA needs to serve a particular purpose. Therefore, data 
collecting and storing data for the sake of having the data available is not a DBA.  

2. A DBA is dependent on the availability of data. Therefore, applications such as 
repetitive automatization are not considered as a DBA. 

3. The data collection and data analysis are enabled by emerging (smart) 
technologies (e.g., smart sensors). Thus, traditional six sigma, including manual 
data collection, is not considered as a DBA. 

4. DBAs considered in this dissertation are applicable in a manufacturing facility. 
Although literature has shown the potential of DBAs to increase performance over 
the whole value chain,e.g., by predicting customer demand (Harding et al., 2006, 
p. 974) or integrating suppliers (Kolberg & Zühlke, 2015, p. 1871), this dissertation 
does not consider applications that go beyond the boundaries of a factory. 

4.1.2 Search Process 
The process to identify relevant use cases of DBAs follows the literature review 
process introduced in chapter 2.1 and includes the same five online databases. The 
applied search terms and search operators are shown in Table 12.  

Table 12: Applied search terms and operators for DBA literature review 

ST 1 OP 1 ST 2 OP 2 ST 3 OP 3 ST 4.1 

Smart 
Digital AND 

factory 
manufactur* 
technology 

AND 

data 
“ ” 

AND 
 

application 
example 
use case 

ST 4.2 

Industry 
4.0 

Industrie 
4.0 

AND 

Analytics/analysis 
maintenance 
fault detection 

root cause 

ST 4.3 

challenges 
requirements 
capabilities 

ST: search term, OP: operator  
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The selected search terms cover the combination of all terms related to SM (smart 
manufacturing, industry 4.0, etc.) and data. The keywords under the search-term (ST) 
4.1 were selected with the purpose to find use cases and examples of data utilization 
in manufacturing. The keywords under ST 4.2 were selected due to prior knowledge 
that functions such as predictive maintenance might be realized with DBAs. The third 
group of keywords, ST3, intends to identify papers that deal with challenges and 
capabilities of data utilization in manufacturing in general, thus providing first insights 
to answer SRQ 2. 

As in the literature review in chapter 2, this review includes journal papers as well as 
papers of renowned conferences. Conference papers not only tend to be more recent 
but also focus more often on actual use cases and provide context to these use cases 
whereby journal papers rather conflate the main findings of several use cases. After 
the initial keyword search, forward and backward search was applied to identify further 
relevant articles. The result of the search process is shown in Table 13 to Table 15.  
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4.1.3 Classification and Overview 
The DBA classification system presented in Figure 15 is inspired by several existing 
classifications in the literature. These classifications mostly comprise applications of 
a particular type, such as data mining applications or artificial intelligence applications.  

Table 13 presents five classification systems of applications with four different 
classification objects related to data utilization in manufacturing. These applications 
should be covered by a comprehensive collection of DBAs in manufacturing and serve 
as the basis for the overview of DBAs shown in Figure 15.  

Table 13: Classifications of applications related to data utilization 

Classification 
object 

Data-driven 
methods 

Data mining 
application 

Data mining 
application 

Artificial 
intelligence 
application 

Data 
analytics 
enabled I.40 
application 

Applications 

Process and 
planning* Design Quality 

control* Design Asset 
utilization* 

Business and 
enterprise 

Manufacturing 
systems* 

Job shop 
scheduling* 

Process 
planning* 

Quality 
control* 

Maintenance 
and 
diagnosis* 

Shop floor 
control and 
layout* 

Fault 
diagnostic* Quality* Supply Chain 

Management 

Supply chain 

Fault 
detection & 
quality 
improvement* 

Manufacturing 
process* 

Maintenance 
and 
diagnosis* 

Product 
Monitoring* 

Transport and 
logistics* Maintenance* Maintenance* Control* Workplace 

Safety* 

EHS*  Defect 
analysis* Scheduling*  

Product 
design  Yield 

improvement*   

Quality 
management*  

Condition-
based 
monitoring* 

  

  CRM   

Reference 

O’Donovan, 
Leahy, Bruton, 
and O’Sullivan 
(2015a, p. 8) 

Harding et al. 
(2006, p. 972) 

Choudhary et al. 
(2009, 504 - 
513) 

Meziane et al. 
(2000, p. 18) 

Pilloni (2018, 
p. 5) 

* Applications are applicable in manufacturing. EHS: Environment, Health, and Safety  
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Instead of clustering the DBAs according to the underlying technique (e.g., data 
mining), the classification in Figure 15 is based on their primary purpose. It comprises 
six DBA categories: Planning and Scheduling (I); Production Control (II); Maintenance 
(III); Internal Logistics (IV); Product Quality Management (V); and Environment, 
Health, and Safety (VI). 

Figure 15: Overview and classification of data-based applications 
Each DBA category comprises two to three DBAs. DBAs belonging to the same DBA 
category have similar objectives but might follow a different approach to achieve them. 
For instance, the DBA category Product Quality Management aims to ensure a high 
quality of the finished product. The two DBAs of this category support this objective 
but in different ways. The DBA Product Quality Monitoring detects faulty parts and 
sorts them out, thus preventing the shipment of defective products to the customer. 
The DBA Product Quality Improvement uses historical data on product defects to 
identify its root cause. Thereby, this application systematically reduces the risk of 
defective products.  

The presented classification system of Figure 15 covers all manufacturing-related 
applications listed in Table 13. It also integrates applications of data utilization that 
have not been included in the reviewed classification systems but have been identified 
during the DBA use case search process. In total, the classification system consists 
of six categories, comprising 14 DBAs. Although all categories and DBAs presented 
in Figure 15 originate from literature, the titles are no 1:1 replication of terms from 
literature but instead reflect a synthesis of different terms used in the literature. The 
result of the literature review for DBAs is presented in Table 14 and Table 15. Table 
14 depicts which DBAs are listed in review articles or general articles on data 
utilization. Only peer-reviewed journal publications have been considered for this 
overview. Table 15 then provides an overview, including a short description of each 
DBA.  

 

Data-based Application

(I) Planning & 
Scheduling (II) Production Control (III) Maintenance (IV) Internal 

Logistics
(V) Product Quality 

Management

Layout Planning Real-time Control 

System Performance
Measurement

Condition 
Monitoring
Predictive 

Maintenance
Prescriptive 
Maintenance

Track and Trace

Material Flow 
Management

Product Quality 
Monitoring

Product Quality 
Improvement

DBA 
Category DBA

Production 
Scheduling

(VI) Environment, 
Health and Safety

Energy Monitoring

Environmental 
Monitoring

Inventory 
Management
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Table 14: Data-based applications in key references  

 

 Scope Big Data  DM  ML  IC  SM / I4.0 

Category 
Data-based 
Application 

1 2 3  4 5  6 7  8  9 10 11 12 

I. Planning 
and 
Scheduling 

Production 
Scheduling 

● ● ●  ● ●  ● ●  ●  ●   ● 

Layout Planning   ● ●  ● ●           

II. Production 
Control 

Real-time Control  ●   ● ●     ●  ● ● ● ● 
System 
Performance 
Measurement 

  ●             ● 

III. 
Maintenance 

Condition 
Monitoring  

● ● ●   ●  ●     ● ● ● ● 

Predictive 
Maintenance 

● ● ●   ●  ● ●    ● ● ● ● 

Prescriptive 
Maintenance 

                

IV. Internal 
Logistics 

Track and Trace  ●     ●       ● ● ●  
Material Flow 
Management 

●            ● ● ●  

Inventory 
Management 

●    ●    ●        

V. Product 
Quality 
Management 

Product Quality 
Monitoring 

● ●   ● ●   ●    ● ● ● ● 

Product Quality 
Improvement 

 ● ●  ● ●  ●     ● ● ● ● 

VI. 
Environment, 
Health, and 
Safety 

Energy 
Monitoring  

● ● ●          ● ● ● ● 

Environmental 
Monitoring 

 ●            ●   

References 1. J. Li, Tao, Cheng, and Zhao (2015), 2. O’Donovan et al. (2015a), 3. Yan, Meng, Lu, 

and Li (2017), 4. Choudhary et al. (2009), 5. Harding et al. (2006), 6. Wuest et al. (2016), 

7. Wan et al. (2018), 8. Zhang et al. (2014), 9. Tao et al. (2018), 10. Pilloni (2018), 11. 

Lidong and Guanghui (2016), 12. Illa and Padhi (2018) 

Key DM: data mining, ML: machine learning; IC: information capturing;    
I4.0: industry 4.0 
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The twelve publications of Table 14 originate from different literature streams. 
References 1–3 primarily address the topic of Big Data, for instance, in PLM 
(Reference 1), in manufacturing (2), and in an Industry 4.0 environment (3). 
References 4–5 are concerned with DM in manufacturing. Referencse 6–7 address 
applications of ML/AI in manufacturing in general (6) and in a smart factory setting (7). 
Reference 8 takes a different perspective and investigates real-time information 
captured in an IoT environment. Finally, references 9–12 are considering data 
utilization as part of SM and deal with data-driven SM (9), data collection and Big Data 
as pillars of industry 4.0 (10), Big Data as part of CPSs in industry 4.0 (11), and the 
transition to smart factory with Big Data and edge analytics (12).  

Table 15 presents a short description of every DBA, including its objective (O) and a 
possible approach (A).  
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Table 15: Data-based applications short description and use case references  

C Application DBA Short Description R P 

I 

Production 

Scheduling 

O: Determination of an optimal production plan. 
A: Mathematical optimization model using data (e.g., 
machine availability) to optimize a target value (e.g., cycle 
times). 

1 

2 
67 

Layout 

Planning  

O: Determination of an optimal production layout. 
A: Mathematical model optimizing a target value (e.g., 
minimal WIP, minimal material handling) under given 
constraints (e.g., number and type of machines, space, 
flow orientation).  

3  

4 
69 

II 

Real-time 

Control 

O: Real-time monitoring of the production process. 
A: Permanent comparison between the expected behavior 
and the actual behavior of the production system, including 
real-time notification in case of deviations.  

5 70 

System 

Performance 

Measurement 

O: Transparent overview of the overall system performance 
and visualization of trends. Use of metrics for 
benchmarking. 
A: Automatic collection of operations metrics (e.g., times, 
scrap rates) and calculation and visualization of KPIs (e.g., 
OEE). 

6 

7 
71 

III 

Condition 

Monitoring  

O: Increase maintenance effectiveness and efficiency. 
A: Monitoring equipment health status to trigger 
maintenance activities only in the case of unusual behavior. 

8 73 

Predictive 

Maintenance 

O: Increase maintenance effectiveness and efficiency. 
A: Equipment condition monitoring and prediction of 
degradation to derive maintenance plans that ensure 
equipment availability (effective) but avoid unnecessary 
maintenance (efficient). 

9 

10 
74 

Prescriptive 

Maintenance 

O: Increase maintenance effectiveness and efficiency. 
A: As Predictive Maintenance but in addition, the 
Prescriptive Maintenance application also suggests, or 
even starts, maintenance activities autonomously.  

11 75 

References 

1. Vallhagen, Almgren, and Thörnblad (2017) (C), 2. Zhong et al. (2014), 3. Kumar, 
Singh, and Lamba (2018), 4. Agard and Cunha (2007), 5. Hirmer et al. (2017), 6. 
Meissner, Müller, Hermann, and Metternich (2018) (C), 7. Friedemann, Trapp, 
Stoldt, Langer, and Putz (2016) (C), 8. Yunusa-kaltungo and Sinha (2017), 9 . Z. 
Li et al. (2017), 10. Åkerman et al. (2018), 11. Matyas, Nemeth, Kovacs, and 
Glawar (2017) 

C: Category, O: Objective, A: Approach, R: Reference; P: Page in dissertation,  
(C) Conference article  
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C Application DBA Short Description R P 

IV 

Track and 

Trace  

O: Traceability of material and products (e.g., position, 
cycle times). 
A: Track and trace of containers, materials, and products 
by using unique identifiers such as RFID tags. 

12 

13 
76 

Material Flow 

Management 

O: Demand-oriented, automated control of the material 
flow. 
A: Two variations: (1) Push approach: a central production 
control system knows the demand, the position, and the 
availability of materials. An algorithm calculates the optimal 
material flow to meet demands with little material handling 
effort and low WIP inventories.  
(2) Pull approach: a digital Kanban system (e-Kanban) 
detects automatically if the available material falls below a 
minimum threshold and triggers the replenishment process.  

14 

 

 

 

 

15 

77 

Inventory 

Management 

O: Smart inventory management to ensure material 
availability with minimal inventory.  
A: Accurate tracking of inventory enables low stocks and 
timely re-ordering from the supplier.  

16 78 

V 

Product 

Quality 

Monitoring 

O: Identification of defective products (reactive quality 
control). 
A: Comparison of real-time quality data (e.g., geometrical 
dimensions) with reference values.  

17 79 

Product 

Quality 

Improvement 

O: Systematic and preventive avoidance of errors. 
A: The availability of accurate quality-related data enables 
failure root cause methods to identify and eliminate 
systematic error causes. 

18 78 

VI 

Energy 

Monitoring  
O: Reduction of energy consumption. 
A: Measuring energy consumption to find saving potentials. 

19 82 

Environmental 

Monitoring 
O: Ensure healthy working conditions for employees. 
A: Measuring environment conditions such as air quality.  

201 83 

References 12. Louw and Walker (2018) (C), 13. Segura Velandia, Kaur, Whittow, Conway, 
and West (2016), 14. Jarupathirun, Ciganek, Chotiwankaewmanee, and Kerdpitak 
(2009), 15. Wan et al. (2018), 16. Saygin and Sarangapani (2006), 17. Wuest et 
al. (2014), 18. Oliff and Liu (2017), 19. Lenz, Kotschenreuther, and Westkaemper 
(2017), 20. Pilloni (2018) 

Cat: Category, O: Objective, A: Approach, R: Reference; P: Page in dissertation, (C) 
Conference article 
1 DBA is described as part of the article among other applications, no focused case study. 
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4.1.4 Data-based Applications Description  
This chapter provides more information on each DBA shown in Figure 15. The 
reference in column P of Table 15 refers to the page in this work. The chapters are 
structured as follows: first, a brief description of the category is given. Second, each 
DBA of this category is presented, including a general description, a use case 
example, as well as its objectives and key requirements.18 As stated before, the DBA 
notation is derived by the author following the primary purpose of the DBA. Hence, 
the notion used in the dissertation might differ from the referenced literature, however, 
it describes the same concept. 

4.1.4.1 Planning & Scheduling 
The first category is concerned with production preparation. It comprises two DBAs: 
Layout Planning and Production Scheduling. Layout Planning is infrequently used but 
might have a significant impact as it defines the production layout and thus imposes 
physical constraints. Production Scheduling is used iteratively to define the production 
sequence. 

4.1.4.1.1 PRODUCTION SCHEDULING 

General Description 

Production Scheduling determines the process of orders and assigns key production 
resources, such as machines, to the production orders. The objective is to derive an 
optimal production plan, for example, maximizing asset utilization or minimizing cycle 
time while meeting the constraints of the manufacturing process. Therefore, data-
based Production Scheduling takes manufacturing resource data—such as available 
equipment and capacity data, as well as material data—and other constraints into 
consideration (Zhu, Qiao, & Cao, 2017). 

Use Case Example 

Vallhagen et al. (2017) present a Production Scheduling use case for bottleneck 
resources in an aircraft component manufacturer. Part of the production process of 
several products is the heat treatment, which is a shared resource for internal and 
external products. It is highly utilized, and long waiting queuing times have occurred 
frequently. Therefore, reducing waiting times by increasing asset utilization has been 
a key objective. The heat treatment facility comprises six furnaces with different 
characteristics. The process of scheduling the furnaces is very complex, and efficient 
scheduling was difficult. In the past, the heat treatment process has been 
characterized by frequent priority changes, rescheduling, and waiting times. In order 

 
18 Key requirements are general and high-level requirements, such as machine learning skills, without going 

into technological details. 



DATA-BASED APPLICATIONS IN LEAN MANUFACTURING 

68 

to determine an optimal scheduling plan while considering all constraints, the 
company introduced a mathematical optimization solver into the scheduling process. 
The optimization model integrates various kinds of data from the ERP system, 
manufacturing control system, and manual input. The scheduling optimization model 
has substantially contributed to a higher utilization rate of the furnaces and thus 
reduced queuing times.  

Main Objectives 

The main objectives of this application are an accurate and fast planning process, the 
ability to reschedule in case of disturbances, and high asset utilization. 

By integrating several types of information, plans derived by Production Scheduling 
systems are more accurate than human-made plans (Qi & Tao, 2018, p. 3587). It also 
improves the planning speed and reduces human effort (Ray Y Zhong, Xun Xu, & 
Lihui Wang, 2017, p. 12). Zhong et al. (2014, p. 827) emphasize the significance of 
near real-time and adaptive production scheduling as in real-life production 
environments, unexpected disturbances may occur and make fixed plans obsolete. 
The ability to increase asset utilization is demonstrated in the presented use case. 

Key Requirements 

To derive accurate plans, Production Scheduling requires accurate and up-to-date 
data of the manufacturing system. For instance, planning tools often rely on standard 
operation times (SOTs) that are calculated based on experience. However, due to 
variations in the production process, these SOTs do inadequately reflect the real 
operating times. Zhong et al. (2014, p. 827), therefore, suggest applying RFID 
technology for real-time tracking of material and products to provide more realistic 
SOTs. This increases the accuracy of the scheduling process and allows for quick 
adjustments in case of disturbances. This view is supported by Landherr, Schneider, 
and Bauernhansl (2016, p. 30), who argue that having online data on production 
processes and logistic components available allows a faster reaction to unexpected 
events. To enable frequent updates of data, Vallhagen et al. (2017, p. 669) propose 
to automate data collection as much as possible.  

A second key requirement is an in-depth process understanding. Production 
Scheduling often applies a mathematical optimization model. As each production area 
is different and has different constraints, a distinct optimization model needs to be 
designed for each area (Vallhagen et al., 2017, p. 669). The ability of the optimization 
model to adequately represent the shop floor reality thereby depends on the domain 
knowledge of the involved team.  
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4.1.4.1.2 LAYOUT PLANNING  

General Description 

The physical layout of the plant is a critical part of efficient and effective production 
(Kumar et al., 2018, p. 644). Production lines and material supply should be designed 
to achieve the highest level of productivity, safety, and quality (Kadane & 
Bhatwadekar, 2011, p. 59). Data-based layout planning can support the derivation of 
a layout plan that allows low WIP inventory, minimal material handling effort, and high 
asset utilization while meeting all layout constraints such as available space, 
emergency path space, or maximum floor weight. The optimization criteria of the 
model can be weighted to derive layout plans that meet the specific needs of the 
organization (Kumar et al., 2018).  

Use Case Example 

Kumar et al. (2018) present a use case of data-based layout design planning with a 
focus on sustainability. The layout planning design and selection comprises three 
phases. In the first phase, 14 layout criteria have been identified from the literature 
and expert discussion. With a principal component analysis, the 14 criteria were 
reduced to four factors: material handling distance, maintenance, adjacency, and 
hazard. To ensure environmental sustainability, the authors added electric energy 
consumption as the fifth factor in the optimization model. In the second phase, input 
data concerning the number of machines, products, and production cells is computed 
as basis for the optimization model. Variation of the production process in terms of 
product volume and used production equipment was modeled by computing 10 
different production settings. Afterward, a mathematical optimization model is 
formulated and based on the input data, 10 different layout plans generated. The third 
phase comprises the evaluation and ranking of the layout. The authors applied three 
different techniques to rank the proposed layouts, resulting in similar but not equal 
rankings. Therefore, the final selection was still to be done by humans. 

Main Objectives  

Dependent on targets, different optimization criteria are selected. Therefore, the 
application provides a range of possible objectives, most notably WIP inventory 
reduction, movement reduction, high utilization of space and equipment, and short 
distances (Kumar et al., 2018, p. 644). 

Key Requirements 

To derive a layout plan that matches the real-world conditions, the optimization model 
requires the input of manufacturing data. Among these are volume data, such as the 
number of products and machines, variety data, including the number of different 
product types and data related to demand as well as SOTs (Kumar et al., 2018, 
p. 645).  
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4.1.4.2 Production Control 
The general purpose of the category Production Control is to provide transparency on 
the performance of the manufacturing system to supervisors. Thereby, the two 
perspectives of the DBA Real-time Control and the DBA System Performance 
Measurement are differentiated. 

4.1.4.2.1 REAL-TIME CONTROL 

General Description 

The basic idea of Real-time Control is to get instant feedback in case of deviations of 
the manufacturing process. The real-time comparison between sensor data from the 
physical production system and reference data allows ubiquitous process control, 
such as being able to detect deviation with very low latency times (J. Manyika et al., 
2011, p. 81; Markarian, 2018, p. 11). Data-based production control is more and more 
relevant as production processes become increasingly complex and thus problems 
increasingly difficult to detect. Qi and Tao (2018, p. 3591) argue that “these visible 
and invisible problems in smart manufacturing can be reflected by the data.” According 
to James Manyika et al. (2015, p. 4), anomaly detection and real-time control are 
some of the most applied forms of data utilization on the shop floor. 

Use Case Example 

Hirmer et al. (2017) present a use case of Real-time Control in the context of computer 
server surveillance. The basic approach, called SitOPT,19 however, is also applicable 
to manufacturing settings. SitOPT proposes an architecture system consisting of three 
layers: Sensing (1), Situation Recognition (2), and Situation-Aware Workflow (3). The 
Sensing layer comprises physical sensors, monitoring the environment and providing 
data for the upper layers. The Sensing Layer aggregates and processes data from 
layer 1. Anomalies in the process (called situations) are assessed based on so-called 
Situation Templates. Based on the situation identified in layer 2, the Situation-Aware 
Workflow layer either sends a notification to the system administrator or issues a 
predefined action to mitigate the situation.  

Main Objectives  

The main objective of this application is ubiquitous process control to detect deviations 
(James Manyika et al., 2015, p. 4) and to provide immediate feedback to the operator 
in case of deviations in the production process or to initiate a prefined mitigation action 
(Hirmer et al., 2017, p. 176).  

 

 

 
19 SitOPT is the name of a research project of the German Research Foundation (DFG) at the university of 

Stuttgart.  
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Key Requirements 

Yan et al. (2017, p. 23484) emphasize the relevance of using advanced sensors and 
IT systems to ensure high availability of up-to-date and high-quality data from the shop 
floor. Pilloni (2018, p. 3) adds that real-time control of industrial processes requires 
stable data connections with low latency. Thoben et al. (2017, p. 12) point out that 
collecting and transferring a wide range of manufacturing data increases the 
motivation for external parties to gain access to the IT system illegally and therefore 
adds high IT security standards as another key requirement.  

4.1.4.2.2 SYSTEM PERFORMANCE MEASUREMENT  

General Description 

In contrast to Real-time Control, the application System Performance Measurement 
has a more long-term and holistic perspective. The DBA provides a data-based 
overview of the current overall performance of the manufacturing system and allows 
trends to be identified. Therefore, key performance indicators (KPIs) are calculated 
automatically and visualized on a dashboard (Illa & Padhi, 2018, p. 55165). 
Automatically generated KPIs are an important element of performance measurement 
in the context of digital shop floor management (Meissner et al., 2018, p. 83). 

Use Case Example 

Friedemann et al. (2016) present a use case of productivity indicator calculation. One 
of the most established KPIs in production is the Overall Equipment Efficiency (OEE) 
rate. The OEE is the de facto standard for measuring equipment availability. Based 
on track and trace data, a so-called Cycle Time Analysis (CTA) is performed. This KPI 
not only serves as an indicator for cycle time but also as input for an automated OEE 
calculation. In the context of automated KPI calculation, Friedemann et al. outline the 
scenario of employees equipped with wearables displaying the KPIs of the machine 
the employee is looking at.  

Main Objectives  

The application has two main objectives. First, to provide a holistic overview of the 
current overall performance of the system and second, to support the production 
supervisor in detecting trends within performance metrics. This increases 
transparency and allows earlier detection of problems in the process. Automated 
calculation of KPIs reduces the effort and enables regular benchmarks within the plan 
or the production network (Meissner et al., 2018, p. 84). 

Key Requirements 

The calculation of KPIs requires accurate data from several machines in the 
production process and therefore has similar requirements as the application Real-
time Control  
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regarding sensors, data connection, and data security. 

Meissner et al. (2018, pp. 83–84) argue that besides the technology basis, two more 
requirements must be met. First, while new technology minimizes the effort to 
calculate KPIs, management must resist the temptation to track too many KPIs. 
Second, the automation of data collection and processing bears the risk that shop 
floor workers feel disconnected from the performance measurement process and 
therefore leads to alienation from shop floor management. As a consequence, it is 
crucial for employees to understand how automatically generated KPIs are calculated 
and how they are to be interpreted. 

4.1.4.3 Maintenance 
Maintenance increases process stability by ensuring equipment availability 
(Lodewijks, Kraijema, Godjevac, & Corman). Insufficient or late maintenance has 
negative impacts on process performance and product quality (Sipsas, Alexopoulos, 
Xanthakis, & Chryssolouris, 2016, p. 236). Maintenance is critical for equipment 
uptime but is itself a significant cost driver, and may account for more than 50 percent 
of the machine lifecycle cost (O’Donovan et al., 2015b, p. 2). Therefore, maintenance 
staff is challenged by the trade-off between increasing equipment availability and 
minimizing maintenance expenditures (Z. Li et al., 2017, p. 377).  

The importance of maintenance continues to grow because of the forecasted 
emergence of smart factories. The technical complexity of SM requires a 
comprehensive maintenance program to avoid unplanned breakdowns (Mayr et al., 
2018, p. 625). O’Donovan et al. (2015b, pp. 2–3) add that the customer-focused and 
highly optimized supply chain of SM increases the need for high equipment 
availability.  

The literature differentiates four kinds of maintenance policies: corrective 
maintenance, preventive maintenance, predictive maintenance, and prescriptive 
maintenance. In addition, the literature presents condition-based maintenance. 
Corrective maintenance, also called run-to-failure maintenance, is the simplest 
maintenance policy. As long as the equipment does not show a defect, it is assumed 
that it is in good condition. Corrective maintenance is purely reactive and does not 
follow any maintenance plan. Preventive maintenance is currently the most popular 
maintenance policy. It is a periodic policy that follows a maintenance plan that was 
designed at the moment of the equipment installation. The basic assumption is that 
the equipment will break if not maintained as planned (Munirathinam & Ramadoss, 
2014, p. 895). Fixed intervals, however, come with disadvantages. Intervals that are 
too long bear the risk of unexpected breakdowns, and intervals that are too short 
cause unnecessary maintenance costs (Liao & Wang, 2013, p. 225).  
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The maintenance policies of condition monitoring, predictive, and prescriptive 
maintenance include the collection and analysis of data and are therefore considered 
DBAs. 

4.1.4.3.1 CONDITION MONITORING  

General Description 

Condition Monitoring allows the monitoring of load, wear, and defects during 
operations. Due to continuously monitoring the current health situation of the 
production equipment, defects are detected earlier, resulting in less machine 
downtime and the prevention of consequential damages (Mayr et al., 2018, p. 625). 
Condition Monitoring may include, among others, the monitoring of noise and 
vibration. Anomalies in those features can be detected and used to identify equipment 
trouble or failure and thus, make better decisions in terms of maintenance and parts 
replacement (X. Li et al., 2017, p. 34). Condition Monitoring helps to overcome the 
disadvantages of fixed intervals, namely the risk of unexpected breakdowns and the 
risk of investing unnecessary maintenance costs (Liao & Wang, 2013, p. 225). 
Thereby, Condition Monitoring not only increases the effectiveness, but also the 
efficiency of maintenance activities.  

Use Case Example 

Yunusa-kaltungo and Sinha (2017) present a use case of Condition Monitoring on 
industrial rotating machines. They developed a vibration-based method to classify 
equipment faults. In the first step, vibration data was monitored from two machines, at 
three different speed levels and under six different states of health condition for 20 
weeks. By clustering the vibration data, six distinct patterns of vibration are identified. 
These patterns are used to classify new vibration data, thus allowing faster 
identification of abnormal behavior. In this use case, the authors focused on vibration 
data only but highlight the potential to gain machine health information by monitoring 
other data, such as temperature, power consumption, sound, or the condition of 
lubricants. 

Main Objectives  

Summarizing the general description and the use case example, Condition Monitoring 
has at least three objectives. First, to increase equipment uptime and reliability by 
reducing unexpected breakdowns. Second, to increase process stability due to higher 
equipment reliability. Third, to reduce costs and minimize resource-intensive 
excessive maintenance by initiating maintenance activities only if condition monitoring 
data suggests an abnormal behavior of the equipment. 
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Key Requirements 

The use case suggests at least three key requirements. First, sensors at the 
production equipment are necessary to collect equipment health data, such as 
vibration, temperature, or power consumption data. New machines usually already 
integrate a range of sensors. However, condition monitoring is not limited to brand-
new equipment, but existing equipment can be upgraded with sensors at reasonable 
costs (Schöning & Dorchain, 2014, p. 545). Second, as the monitoring data needs to 
be stored and processed, an appropriate IT infrastructure is required. And third, to 
facilitate meaningful interpretations of visualizations (e.g., vibration clusters), 
employees need both a general process understanding as well as technical expertise 
of the monitored equipment. 

4.1.4.3.2 PREDICTIVE MAINTENANCE 

General Description 

Predictive Maintenance is going beyond the concept of monitoring equipment 
conditions to find anomalies. Based on historical and real-time data, indicators of 
anomalies are predicted even before they happen. By performing maintenance 
activities based on the forecasts preventively, unexpected breakdowns are reduced 
and equipment life is maximized (Munirathinam & Ramadoss, 2014, p. 896). Liao and 
Wang (2013, p. 225) have observed a shift of many manufacturers from traditional 
corrective and preventive maintenance to predictive maintenance. 

Use Case Example 

Z. Li et al. (2017) present a Predictive Maintenance use case for mechanical systems 
based on DM in a smart factory environment. They describe a system framework for 
fault diagnosis and prognosis in machine centers. The framework consists of the 
following five modules: The sensor selection and data acquisition module (1) includes 
the selection and installation of suitable sensors as well as the definition of the data 
collection strategy. As the collected data contains much irrelevant information, it 
enters the data preprocessing module (2), including data cleaning, data integration, 
data reduction, and data transformation. The DM module (3) is responsible for failure 
detection, classification, and failure forecasting. In the use case, the backlash error 
between screw and table is the indicator of the need for imminent maintenance. The 
research team collected data on the backlash error for 22 weeks without maintenance. 
Seventy percent of the data was used to train an artificial neural network, the rest to 
test the artificial neural network and to forecast the backlash error. The decision 
support module (4) visualizes the results. Finally, the maintenance implementation 
module (5) derives a maintenance plan.  
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Main Objectives  

Predictive Maintenance aims to find the optimal balance between too much and too 
little maintenance, thus ensuring a required level of equipment uptime while 
minimizing the necessary maintenance costs (Z. Li et al., 2017, pp. 377–378). Going 
beyond the concept of condition monitoring, Predictive Maintenance intends to predict 
the future conditions of the equipment. By forecasting the remaining useful life of a 
machine element, the application can determine the best time for maintenance 
activities more accurately than fixed schedule maintenance approaches.  

Key Requirements 

Predictive Maintenance depends on accurate and up-to-date machine condition data. 
By monitoring and analyzing a variety of data over an extended period, predictions 
about the failure probability of critical components are derived. A prescriptive indicator 
for the need for maintenance is, for instance, slow changes in vibration intensity 
(Schöning & Dorchain, 2014, p. 545). Several authors explicitly highlight the essential 
relevance of manufacturing expert knowledge for Predictive Maintenance. Data 
analysts struggle to select the correct data sources and to derive well-founded 
hypotheses or optimization models without having access to the sound process 
understanding of domain experts (Åkerman et al., 2018, p. 416; Lee, Kao, & Yang, 
2014, p. 7; Liao & Wang, 2013, p. 229; Mayr et al., 2018, p. 625).  

4.1.4.3.3 PRESCRIPTIVE MAINTENANCE 

General Description 

Prescriptive Maintenance is an extension of the concept of Predictive Maintenance. 
Following the concept of the four data analytics capabilities of Gartner (see chapter 
2.3.4), the first three levels descriptive, diagnostic, and predictive merely provide the 
foundation for informed decisions of humans. The prescriptive analytics level, in 
contrast, already proposes, or even initiates, an action. Transferring the concept of 
prescriptive analytics to maintenance, Prescriptive Maintenance aims to derive data-
based decisions about the optimal maintenance plan independently from humans 
(Bokrantz, Skoogh, Berlin, & Stahre, 2017, p. 165).  

Use Case Example 

As the overview of DBA in key references (see Table 14) has shown, Prescriptive 
Maintenance is currently no relevant part of the maintenance discussion in the 
literature. Only one paper addressing the application was found in the literature 
review. Matyas et al. (2017) present a use case of Prescriptive Maintenance applied 
to a triaxial machining center in an automotive facility. Based on incoming real-time 
machine data and identified correlations, a mathematical reaction model predicts 
machine conditions. A software tool called “Prescriptive maintenance decision support 
system” (Matyas et al., 2017, p. 463) visualizes the predicted trends and provides 
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suggestions for anticipative maintenance measures. The authors report that the 
system was able to predict 43 percent of unplanned machine breakdowns caused by 
mechanical failures, thus leading to substantial cost savings. On the other hand, the 
design of the 3D model of the machine, serving as the basis for the reaction model, is 
very resource consuming. While the authors do not specify the logic behind the 
suggested maintenance measures, they point out that the system cannot substitute 
the knowledge of operators.  

This system matches the first of the two levels of prescriptive analytics (see Figure 5). 
A use case of Prescriptive Maintenance, including decision automation, was not found 
in the literature. As of today, AI is not able to substitute domain expertise adequately 
to justify a shift from human-based decision-making to automated decision-making.  

Main Objectives  

The DBA Prescriptive Maintenance has the same main objectives as the DBA 
Predictive Maintenance in terms of equipment reliability, process stability, and 
maintenance efficiency. The DBA Prescriptive Maintenance provides data-based 
support to operators by suggesting anticipative maintenance measures. The final 
stage of Prescriptive Maintenance will not only derive maintenance decisions but also 
initiates activities without human confirmation. 

Key Requirements 

Very similar to the key requirements of Prescriptive Maintenance, the two most 
essential requirements for Predictive Maintenance are access to relevant data and 
employee know-how. This includes manufacturing domain knowledge and data 
science skills (Nemeth, Ansari, Sihn, Haslhofer, & Schindler, 2018, p. 1039), including 
exploratory data analysis methods and ML (Nemeth et al., 2018, p. 1040). 

4.1.4.4 Internal Logistics  
This category is concerned with the tracking, transport, and storage of raw materials, 
intermediates, and final products. It comprises three DBAs with a distinct scope. The 
DBA Track and Trace collects a variety of product-related data and is thus the 
precondition for more sophisticated applications. The second DBA Material Flow 
Management seeks to optimize the flow of material within the factory, and the third 
DBA Inventory Management aims to derive an optimal level of warehouse inventory. 

4.1.4.4.1 TRACK AND TRACE  

General Description 

The purpose of the DBA Track and Trace is described by its name. Unique identifiers 
such as RFID tags are used to track and trace the real-time status (e.g., position within 
the plant) of various objects in manufacturing, such as material, container, and 
products (Ray Y Zhong et al., 2017, p. 2). Tracking data is collected in real-time and 
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uploaded in the central IT system, thus increasing the transparency of the internal 
material and product flow (Mayr et al., 2018, p. 624).  

Use Case Example 

Segura Velandia et al. (2016) present a use case of Track and Trace in crankshaft 
manufacturing. They proposed to use RFID tags to trace the product's life cycle and 
provide full transparency over the components process history. Full product history 
transparency reduces costly downtime to rectify processing defects and product 
recalls.  

In the use case, the crankshafts are transported by a gantry system. The gantry arm 
is equipped with an integrated antenna reader, including an RIFD transmitter and 
receiver. The RFID tag is attached to the crankshafts directly. As the gantry arm is 
moving with the crankshafts through all process steps, one integrated antenna reader 
is sufficient to track the complete process history. The maximal distance of typical 
RFID tags and RFID reader are approximately six meters. The installation of the RFID 
system costs around 17,500 EUR, including 1,000 RFID tags, demonstrating that 
RFID technology is a cost-effective opportunity for track and trace. 

Main Objectives  

The main objective is to identify each object and to track its way through the production 
process. Thereby, the production history of each product can be traced back in case 
of quality issues, a feature that is often requested by OEMs from its suppliers (Segura 
Velandia et al., 2016, p. 67). Track and Trace allows the tracking of WIP, increases 
the transparency of the material flow, and might contribute to a reduction of safety 
stock (Mayr et al., 2018, p. 624).  

Key Requirements 

Track and Trace is enabled by RFID technology. RFID systems comprise three 
components: the RFID tag or transponder; the RFID reader; and a small computer 
unit that processes, stores, and transmits the data. As a comparably low effort 
implementation of an RFID system is feasible, it is also interesting for SME companies 
(Louw & Walker, 2018, p. 256). A challenge highlighted by Segura Velandia et al. 
(2016, p. 76) is the integration of RFID data into MES or ERP systems.  

4.1.4.4.2 MATERIAL FLOW MANAGEMENT 

General Description 

The application Material Flow Management aims to provide input material to 
production equipment at the right time while minimizing material handling effort and 
WIP inventory. Two opposing strategies for material flow control can be 
distinguished—push and pull. A push system is the result of central production and 
material flow planning that follows deterministic rules. The use of a push system was 
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driven by the emergence and nowadays widespread application of MES systems 
(Gerberich, 2011, p. 234). Pull is a demand-oriented material flow principle in which 
the material is only supplied if requested by the downstream process step (Womack 
& Jones, 2003).  

Use Case Example 

Kolberg and Zühlke (2015, p. 1871) present two use cases for IT technology 
enhanced material flow systems. The Würth Industrie Services GmbH & Co. KG 
introduced in 2013 an optical pull-oriented order system called iBin. The filling status 
of the bin is monitored by a camera system. The current level is reported wirelessly to 
an inventory control system, thus allowing a real-time assessment of the current stock 
of material stored in iBins. The system can be configured to automatically send orders 
for replenishment if a minimal level of inventory is reached.  

The second use case presents a combination of pull and push. The Wittenstein AG 
and the Bremer Institut für Produktion und Logistik GmbH work on an IT-supported 
material supply system. Based on real-time demand a central IT system calculates 
intervals for milk-run supply rounds.  

A third use case is described by Wan et al. (2018, p. 55421). Manufacturing data and 
AI enable intelligent path planning for automated guided vehicles (AGV), thus reducing 
transport times and energy consumption. 

Main Objectives  

The main objectives of this application are the timely delivery of required material at 
the production equipment, minimum WIP inventory, and safety stocks levels (Mayr et 
al., 2018, p. 624) as well as minimal handling and transportation effort due to 
intelligent path planning (Wan et al., 2018, p. 55421). 

Key Requirements 

Both presented approaches—push and pull—depend on highly accurate data of 
current stock availability and demand. New technologies, such as smart sensors and 
RFID tags, collect accurate data of the current material flow. The push system benefits 
from the precise planning of the underlying planning tool due to the availability of high-
quality planning data. The pull system benefits from track and trace and other material-
related data, as transparency on material availability and current consumption allow 
for the optimal time for replenishment to be determined.  

4.1.4.4.3 INVENTORY MANAGEMENT 

Basic Description 

The purpose of the DBA Inventory Management is to balance the need for high 
availability of input material or finished products on one hand, and low inventory levels 
to minimize stock keeping costs on the other hand (J. Li et al., 2015, p. 677). 
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Use Case Example 

Saygin and Sarangapani (2006) provide a use case of RFID optimized inventory 
management of time-sensitive materials in a manufacturing company. They compare 
the performance of three inventory management models in terms of service level and 
expired materials. The first two models are static and rely on fixed baseline inventory 
levels for replenishment. The third model integrates a dynamic inventory forecast 
based on track and trace data. It considers the difference between the current 
inventory level of an object at a storage area and the predicted demand to determine 
the right amount of material for replenishment. The results suggest that the RFID data-
based dynamic model can adapt more effectively to system dynamics than fixed 
baseline-oriented inventory management approaches while holding reduced levels of 
inventory. 

Main Objectives  

The main objective of Inventory Management is to increase the transparency of the 
current inventory status (Sanders et al., 2016, p. 823) to “replace inventory with 
perfect information” (Clegg & Powell, 2013, p. 1497). Due to full transparency of 
inventory and demands, the objectives of material availability and minimal stocks can 
be balanced more effectively. 

Key Requirements 

The key requirement of Inventory Management is full transparency on current 
inventory, planned production, and expected replenishment. This translates to the 
requirement to accurately measure the incoming and outgoing material to assess the 
current inventory status (J. Li et al., 2015, p. 677). This requirement can be met with 
RFID technology. To allow inventory forecasting, current inventory data needs to be 
combined with data on replenishment orders and production planning data. Kletti 
(2015, p. 98) adds that to have real-time transparency on the inventory, tracking data 
needs to be fed back into the MES or ERP system with low latency.  

4.1.4.5 Product Quality Management 
The category Product Quality Management seeks to provide customers with flawless, 
high-quality products. This category comprises two DBAs: the DBA Product Quality 
Monitoring monitors product quality and detects defective products, and the DBA 
Product Quality Improvement uses quality-related data to identify root causes of 
defects. 

4.1.4.5.1 PRODUCT QUALITY MONITORING  

Basic Description 

Product Quality Monitoring aims to identify defective parts or finished products and 
thus prevent defects from being passed on to the next process step or even to the 
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customer. By monitoring product quality, deviations from the nominal quality 
characteristics can be identified and either corrected automatically or via manual 
intervention (Majstorovic et al., 2018, p. 504). For example, machine vision, including 
visual inspection per camera system and image processing algorithms, is used to 
detect scratches on the product's surface. Machine vision is a high-reliability, efficient, 
and accurate application to monitor visible product quality characteristics (Wan et al., 
2018, p. 55421). 

Use Case Example 

Wuest et al. (2014) present an approach to quality monitoring in manufacturing using 
supervised machine learning. First, cluster analysis is used to define a finite set of 
desired product states. Afterward, ML is used to monitor several product quality 
characteristics simultaneously to detect product states that are not within the defined 
set of desired states. The objective of the approach is to trigger an action if a product 
state shows too much variation from the desired state. This might include notifying a 
quality inspector to adjust the manufacturing process or initiate the scrapping of the 
product to avoid passing on the defective part to the next process step. Another 
example of product quality monitoring is surface inspections, to test whether geometric 
parameters (e.g., surface roughness) are in accordance with specifications (Tao et 
al., 2018, p. 9).  

Main Objectives  

The main objectives are threefold: the first objective is to ensure the production and 
delivery of defect-free products to the customer. Furthermore, by avoiding defective 
products being passed on to the next process step, the quality costs for late defect 
detection are reduced. Thirdly, data of monitoring product quality form the basis for 
consistent reporting on quality issues (Gewohn et al., 2018, p. 459). Quality data can 
be used to identify and rank failure clusters and thus support quality inspection as a 
basis for a data-based root cause analysis. 

Key Requirements 

Based on the use case example, three requirements can be derived for quality 
monitoring. First, sensors and cameras are required to monitor product quality 
characteristics. Monitored data needs to be compared to a set of reference values. 
Therefore, a database comprising thresholds of reference values as well as 
reoccurring defects needs to be established. To ensure an accurate and up-to-date 
quality database, Gewohn et al. (2018, p. 459) suggest consistent quality feedback 
processes in real-time. Finally, depending on the complexity of the quality monitoring 
approach, various skill sets of employees are required. The presented ML approach 
needs expertise in statistics (for cluster analysis) and ML programming as well as 
manufacturing domain expertise to interpret the results of statistical analysis. 



DATA-BASED APPLICATIONS IN LEAN MANUFACTURING 

81 

4.1.4.5.2 PRODUCT QUALITY IMPROVEMENT  

General Description 

In contrast to Product Quality Monitoring, which is a reactive element of product quality 
management, the DBA Product Quality Improvement seeks to learn from failures in 
the past, to identify defect root causes systematically and derive measures to ensure 
quality preventively. As Harding et al. (2006, p. 973) argue, a common approach to 
solving quality problems is to examine past quality issues, to better understand the 
process, and use this knowledge to improve the system to minimize future quality 
problems. Knowledge gained from analytics of manufacturing data, especially product 
quality data, can be integrated with knowledge-based systems to support product 
quality improvement (Harding et al., 2006, p. 973).  

Use Case Example 

Oliff and Liu (2017) present a use case of data-based Product Quality Improvement 
at a company producing washing machines. The provided dataset on previous failures 
includes information on the fault group and details on the specific nature of the fault. 
Based on this information, a rule-based learning algorithm was used to derive rules 
for failure classification. After using a sample of 5,000 failures for training the 
algorithm, the rate of correct classification of new failures achieved almost 95 percent. 
The failure classification is used to improve the design of products and make future 
quality monitoring more efficient.  

Lokrantz, Gustavsson, and Jirstrand (2018) provide a conceptual paper on ML 
techniques for root cause analysis of quality deviations in manufacturing. Bayesian 
Networks are selected to construct models that draw conclusions on the root cause of 
quality deviations. Besides explaining the concept of Bayesian networks as a 
technique to identify causes for deviation, the authors demonstrate the importance of 
expert knowledge of interdependencies of manufacturing process elements. Bayesian 
networks, including expert input, perform much better in terms of failure detection 
accuracy than networks without expert input, regardless of the size of the training set. 

Main Objectives  

The main objective of Product Quality Improvement is to exploit quality-related data 
to understand product defects and derive systematic measures to prevent those 
defects from reoccurring (Illa & Padhi, 2018, p. 55169). Failure detection and 
prevention leads to a higher quality of the final product and decreases costs for rework 
and scrapping of defective parts.  

Key Requirements 

Requirements for the DBA Product Quality Improvement are similar to those of the 
previous application. The collection and storage of quality-related data is the basis for 
subsequent analysis for failure clustering and root cause analysis (Ngo & Schmitt, 
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2016, p. 499). Depending on the actual application, different skills are necessary. For 
instance, DM skills are required for a classification system and image processing 
techniques know-how for surface inspections. To ensure a meaningful interpretation 
of quality data and to evaluate the outcome of data analytics, employees require 
process and product specific knowledge.  

4.1.4.6 Environment, Health, and Safety  
The category Environment, Health, and Safety has two primary purposes: to monitor 
and reduce energy consumption, and to ensure healthy and safe working conditions 
by monitoring the working environment.  

4.1.4.6.1 ENERGY MONITORING  

General Description  

Energy costs constitute a significant part of the overall costs of manufacturing. Almost 
all production equipment—such as machines, robots, and sensors—consume energy. 
Energy Monitoring aims to measure energy consumption, to identify energy usage 
patterns, and to derive measures to reduce the overall energy consumption (Illa 
& Padhi, 2018, p. 55169). 

Use Case Example 

Lenz et al. (2017) present a use case of Energy Monitoring of manufacturing 
equipment. The objective is to reduce energy consumption by quantifying the current 
consumption of different machine components. The current energy consumption is 
visualized per period and per component. The visualization enabled the research team 
to identify components that unexpectedly consume too much energy. For instance, in 
the use case, the main consumer of energy are auxiliary units, such as the hydraulic 
system. Energy consumption reduction is achieved by switching to more efficient 
auxiliary units. Furthermore, the authors found considerable saving potential of energy 
by using the sleep mode of idle components more frequently. In total, the authors 
reported a decrease in energy consumption of 28 percent. 

Main Objectives  

The main objective is to detect sources of unnecessary energy consumption and to 
minimize overall energy consumption.  

Key Requirements 

According to Lenz et al. (2017, p. 366), the energy consumption of the machine is 
measured by analyzing the signals from a power monitor PLC (programmable logic 
controller). The accurateness thereby depends on the sampling rates of the PLC.  
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4.1.4.6.2 ENVIRONMENTAL MONITORING  

Basic Description  

The application Environmental Monitoring seeks to monitor the production 
environment to provide a safe and healthy working space for the shop floor employees 
(Pilloni, 2018, p. 6).  

Use Case Example 

Pilloni (2018) discusses workplace safety as one aspect of Big Data in industry 4.0. 
Accordingly, smart devices, such as helmets and watches equipped with sensors, are 
used to detect workplace hazards before causing any harm. For instance, sensors in 
helmets can monitor the concentration of gases, such as CO2, SO2, and SH4 in the 
air and raise an alarm if reference values are exceeded. 

Main Objectives: The application's main objective is to ensure a safe and healthy 
working space. 

Key Requirements: The prerequisite for the presented use case are sensors that 
monitor the environment and can be carried by humans without much effort (Pilloni, 
2018). 

4.1.5 Core Functions 

4.1.5.1 Introduction and Overview  
The previous chapter has indicated a broad spectrum of DBAs with different objectives 
(see Table 14). However, abstracted from the individual goals, all DBAs comprise one 
or more of four core functions, which are Monitoring (1), Deviation Control (2), 
Decision Support for humans (3), and Autonomous Optimization (4).  

Table 16 depicts the core functions per DBA.  
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Table 16: Core functions of data-based applications  

Data-based Application 

Core Function 

Monitoring Deviation 
Control 

Optimization 

Decision 
Support 

Autonomous 
by DBA 

I. Planning and Scheduling    

 Production Scheduling    ● 

 Layout Planning   ●  

II. Production Control    

 Real-time Control ● ●   

 System Performance 
Measurement ●  ●  

III. Maintenance    

 Condition Monitoring ● ●   

 Predictive Maintenance ●  ●  

 Prescriptive Maintenance ●   ● 

IV. Internal Logistic    

 Track and Trace ●  ●  

 Material Flow Management ●   ● 

 Inventory Management ●   ● 

V. Product Quality Management    

 Product Quality Monitoring ● ●   

 Product Quality Improvement ●  ●  

VI. Environment, Health, and Safety     

 Energy Monitoring ●  ●  

 Environmental Monitoring ● ●   
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The four core functions are derived based on a comparison of the functional range of 
the DBAs identified and discussed in chapter 4.1.4. When comparing the scope of the 
individual DBA, it is evident that although they have different objectives, the underlying 
functions required to deliver the objectives are quite similar. 

For example, the two DBAs Real-time Control and Condition Monitoring have different 
objectives (detection of process anomalies vs. reduction of equipment breakdowns). 
However, on an abstract level, both applications collect data and compare the data to 
reference data of a desired state; thus, both share the functions (data) Monitoring and 
Deviation Control. Functions that have been identified recurrently in several DBAs are 
called core functions in this dissertation. An analysis of all 14 DBAs revealed that their 
functionalities can be described by the four core functions presented in Table 16.  

For example, as seen above, Condition Monitoring can be described by the two core 
functions Monitoring and Deviation Control. Predictive Maintenance monitors data too 
but also applies prediction models to forecast the future condition of a machine. Based 
on the forecast, the maintenance staff derives optimized maintenance plans. Hence, 
Predictive Maintenance comprises the two core functions Monitoring and Decision 
Support for humans. In the vision of Prescriptive Maintenance, historical and current 
equipment health data is used to predict future equipment conditions and derive 
maintenance plans automatically. Therefore, Prescriptive Maintenance combines the 
two core functions Monitoring and Autonomous Optimization.   

4.1.5.2 Characterization 
This chapter provides a characterization of the four DBA core functions introduced 
above. 20 

1. Monitoring 

The first core function is Monitoring. It includes the monitoring of manufacturing 
system elements, such as machine and material. Data is collected and stored and 
thereby provides the basis for more advanced functions. The primary objective of this 
function is to increase transparency by providing accurate and, if required, real-time 
data from the manufacturing system.  

Monitoring is a core function of all the DBAs except for those of the category Planning 
and Scheduling. Monitoring is a basic function. The three functions Deviation Control, 
Decision Support, and Autonomous Optimization build on the data of the basic 

 
20 The concept of core functions in the context of data utilization in manufacturing and the distinction of the 

four core functions has been derived by the author of this dissertation based on the information presented 
in chapter 4.1.4. Consequently, no reference to external literature is given in the characterization of the four 
core functions. 
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function Monitoring to achieve a specific purpose and are therefore referred to as 
advanced core functions.  

2. Deviation Control 

The second core function is Deviation Control. Data from the basic function Monitoring 
is compared in real-time to reference values, and a notification is given if the monitored 
data are outside predefined thresholds.  

Deviation Control is a core function of the following applications. Real-time Control 
reports deviation in the manufacturing process and highlights the position of the 
deviation. Condition Monitoring detects abnormal behavior of machines and informs 
maintenance personnel. Product Quality Monitoring identifies products which are not 
in specifications and sorts them out, and Environmental Monitoring raises the alarm if 
limit values for dangerous substances are exceeded. 

3. Optimization – Decision Support 

The third core function Decision Support enables manufacturing employees to make 
more informed decisions. It comprises the analysis and visualization of manufacturing 
data. Data analysis may include finding correlations and patterns and based on that, 
the evaluation of different options. For instance, the DBA Layout Planning provides 
different layout design suggestions along with a ranking based on several criteria. 
However, the decision on the final layout is made by humans. System Performance 
Measurement automatically calculates and visualizes KPIs and their development 
over time. Thereby, it supports manufacturing employees to keep track of the 
performance of the system and to identify negative trends. 

Predictive Maintenance forecasts a machine future condition, thus enabling 
maintenance personnel to derive better maintenance plans. Track and Trace 
visualizes the current flow of material and products, thus supporting employees to 
detect bottlenecks. Product Quality Improvement comprises different approaches, 
such as ML, to support employees in identifying the root cause of quality problems 
systematically. Finally, Energy Monitoring documents current energy consumption of 
a machine, which serves as a basis for employees to decide on actions for energy 
consumption reduction. 

4. Autonomous Optimization  

The fourth core function allows decision-making without human interaction. Based on 
a mathematical prediction or optimization model, decisions aiming at optimizing the 
manufacturing system are derived automatically.  

Production Scheduling automatically derives the production plan, based on customer 
orders and available resources. Prescriptive Maintenance seeks to identify patterns in 
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machine data to forecast future machine conditions and, going beyond Predictive 
Maintenance, derive maintenance activities autonomously. Material Flow 
Management organizes an optimal material flow based on material demand and 
availability, and Inventory Management ensures an optimal level of inventory by 
triggering replenishment from suppliers automatically.  

The advanced core functions build on the basic core function. Except for Production 
Scheduling and Layout Planning, which rely on central data from the ERP system, all 
DBAs require at least near real-time data from the manufacturing system. Therefore, 
almost all DBAs include Monitoring as a basic core function. Monitoring as a 
standalone function, however, does contribute little value to the manufacturing 
system. Only by utilizing the data for a specific purpose creates value that justifies 
data collection in the first place.  

4.1.5.3 Summary 
Generally speaking, manufacturing data can be used for three purposes (see Table 
16). The function Deviation Control compares manufacturing data to threshold values. 
This function is of comparably low complexity and comparably easy to implement. 
However, Deviation Control does not contribute to continuously improving the 
manufacturing system. Instead, it supports maintaining the status quo. Hence, the 
potential added value of the function Deviation Control to the manufacturing system 
is limited.  

The core function Decision Support seeks to utilize manufacturing data to find a better 
solution as the status quo. In contrast to the first two core functions, the third and 
fourth core functions Optimization – Decision Support and Autonomous Optimization 
include data analytics. Following the definition presented in chapter 1.3, data analytics 
is “a scientific process of logical-mathematical transformation of data to improve 
decision-making,” DBAs that include the third and fourth core functions, therefore, 
form the subgroup of (data) analytics DBAs. 

For example, the DBA Predictive Maintenance uses data analytics techniques to 
identify patterns within equipment data. Thereby, the DBA provides decision support 
to employees to derive an improved maintenance plan. However, the higher potential 
value add comes at the cost of a higher complexity of data analytics.  

The most advanced core function is Autonomous Optimization. The promise of this 
function is a self-optimization of the manufacturing system by optimization models 
(e.g., to optimize the material flow) or ML applications to derive optimal maintenance 
plans automatically. Reducing the time and reducing human effort for decision-making 
by self-optimization may sound very promising for manufacturing companies. 
However, this function is linked to the highest complexity level of all four core 
functions. Mathematical optimization models and self-learning ML techniques require 
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a high level of manufacturing and DBA specific expertise. Moreover, ML requires large 
samples of high-quality data to learn from.  

In summary, two conclusions can be made. First, Monitoring is a basic core function 
that is needed as a prerequisite for the three other core functions but provides little 
value as a standalone function. Second, the three functions Deviation Control, 
Decision Support, and Autonomous Optimization use the monitored manufacturing 
data for a specific purpose and therefore create value for the system. However, there 
is also a tendency of higher complexity and effort that comes with the higher value of 
the more advanced core functions.  

4.1.6 Key Requirements 
This chapter consolidates the key requirements from the DBA descriptions in chapter 
4.1.4 into the three categories Technical infrastructure, Data availability, and Know-
how (see Table 17). 

4.1.6.1 Technical Infrastructure 
The DBAs document several different requirements related to the technical 
infrastructure. Data needs to be collected in the right quality, posing high requirements 
to the availability, accurateness, and reliability of sensors. Despite the increasing 
number of sensors, some data points (e.g., failure codes) are still entered manually. 
This kind of data collection is time-consuming and prone to errors. As far as 
technological and economically feasible, data collection should be automated. These 
requirements are summarized as key requirement Data collection. 

Data needs to be up to date. DBAs, such as Real-time Control, rely on real-time data 
from different sensors. Therefore, these applications require a stable data connection 
with low latency times. These requirements are summarized as key requirement Data 
transfer. To this end, Waibel, Steenkamp, Moloko, and Oosthuizen (2017, p. 736) 
consider the incomplete presence of broadband expansion and the absence of a 
sophisticated mobile data network, as a barrier for many SM applications as the 
transfer rate is too slow and the latency times too high.  

As data is originating from different sources and in different formats, it must be 
preprocessed before being used for applications. This includes data integration and 
transformation in specific formats. The process of data preprocessing is especially 
challenging for unstructured data, which is present in the majority of manufacturing 
systems (Wan et al., 2018, p. 55427). These requirements are summarized as key 
requirement Data preprocessing. 

Finally, as Thoben et al. (2017, p. 12) point out, the vast amount of manufacturing 
data collected by the DBAs is an attractive target of criminals. IT systems must meet 
the highest safety standards to avoid data theft and sabotage acts. For this reason, 
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cybersecurity is considered a critical element of SM (Ghobakhloo, 2018, p. 921). A 
survey among 126 SMEs has found that SMEs currently lack confidence in IT and 
data security, a fact that might hamper the introduction of SM technologies in these 
companies (Sommer, 2015, p. 1515). Hence, Data protection is added as another key 
requirement of DBAs.  

4.1.6.2 Data Availability 
Chapter 4.1.4 reveals differences between the DBAs regarding the need for historical 
data, real-time data, and central data. Historical data thereby refers to data that has 
been collected by the DBA itself in the past. For instance, Predictive Maintenance 
needs historical machine failure data to identify patterns for predictions. To 
characterize real-time data, the definition of real-time follows the understanding of the 
Cambridge dictionary. Accordingly, the term real-time is “used to describe the way in 
which a computer system receives data and then communicates it or makes it 
available immediately” (Cambridge University Press, 2019c). Thus, real-time data is 
data that is available very shortly after it was monitored. Real-time data is required, 
for example, by the application Real-time Control. The third type of data required is 
data that is usually available in central ERP or MES systems, including manufacturing 
orders, production plans, and inventory data. Central data is required, for instance, for 
the application Production Scheduling.  

4.1.6.3 Know-how 
The third category of DBA key requirements is Know-how. Several authors (Åkerman 
et al., 2018, p. 416; Lee et al., 2014, p. 7; Liao & Wang, 2013, p. 229; Mayr et al., 
2018, p. 625) highlight the decisive importance of process understanding for the 
success of data utilization in manufacturing. Manufacturing domain expertise, such as 
product and maintenance know-how, is essential for several DBAs for two reasons. 
First, the quality of any model representing the shop floor condition depends on the 
ability to accurately describe the interdependencies of the process and thus requires 
domain knowledge. Second, when it comes to the interpretation of manufacturing data 
as well as results of data analytics, manufacturing domain expertise is indispensable.  

Depending on the complexity of a DBA, specialized application expertise is needed. 
For instance, the application Predictive Maintenance requires expertise in DM or ML 
to identify patterns as a basis for predictions. These skills are currently rare among 
shop floor employees. 

As a stable and performant IT infrastructure is the foundation for data collection, 
transfer, storage, and processing as well as for data protection, IT know-how is 
required to install, update, and maintain this system and is therefore also a key 
requirement of many DBAs.  
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4.1.6.4 Overview and Summary 
Table 17 presents a consolidated overview of key requirements per DBA. The key 
requirements discussed above thereby serve as a reference and each DBA was 
evaluated against these requirements. For example, the requirement Data protection 
was stated explicitly only once, but in fact, applies to every DBA. Consequently, Table 
17 exhibits this requirement as a requirement for all applications.  

Advanced requirements refer to emerging SM technologies such as Cloud Computing 
or the next-generation mobile communication network 5G and are indicated by the 
symbol (●). Basis requirements refer to technologies that are today's standard in 
manufacturing and are indicated by the symbol (○). If a requirement is not applicable 
for a DBA, no symbol is used. The same concept is applied to the know-how category, 
where (●) indicates the need for advanced know-how and (○) the need for basic know-
how. Taking a look at Table 17 allows one to draw three conclusions:  

First, the majority of the requirements discussed in the use cases originating from 
literature focus on technological capabilities. While almost all articles discuss 
requirements of data collection, transfer, and processing, only a few include the aspect 
of the human factor as a critical enabler of DBAs. Only by highlighting the importance 
of manufacturing domain knowledge, authors indirectly discuss the role of the existing 
workforce for the implementation of DBAs. Similarly, organizational capabilities are 
scarcely present in the reviewed papers. This fact might be explained by the 
technological scope of the reviewed articles. Qualitative case studies in chapter 5, 
focusing on employee and organizational capabilities, will compensate for this 
shortage.  

Second, in line with the observation of different complexities of DBA core functions, 
Table 17 indicates different levels of complexity of DBAs, reflected by different 
requirements. The DBAs Track and Trace and Condition Monitoring mainly require 
the existence of an appropriate technical infrastructure. Installing the sensors and 
tracking the respective data requires a financial investment but comparably low levels 
of manufacturing domain expertise and DBA specific expertise. As sensors can be 
bought and their installation be supported by suppliers, the basic requirements can be 
met in a relatively short period of time. More sophisticated DBA, such as Material Flow 
Maintenance and Predictive Maintenance, however, strongly depends on 
manufacturing domain knowledge and DBA specific expert knowledge. Therefore, 
those capabilities cannot be sourced externally but must be built internally. Building 
these capabilities requiring an existing pool of employees with sufficient prior 
knowledge and skills, as well as a comparable long time horizon, thus making the 
implementation of these DBAs more challenging. 
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Table 17: Key requirements originating from DBA use cases in literature 

DBA Key Requirements 

Requirement Category 
Technical 

infrastructure 
Data 

availability Know-how 

Requirement 

 
D

at
a 

co
lle

ct
io

n 

D
at

a 
tra

ns
fe

r 

D
at

a 
pr

ep
ro

ce
ss

in
g 

D
at

a 
pr

ot
ec

tio
n 

 

H
is

to
ric

al
 d

at
a 

R
ea

l-t
im

e 
da

ta
 

C
en

tra
l d

at
a 

IT
 K

no
w

-h
ow

 

M
an

uf
ac

tu
rin

g 
do

m
ai

n 
ex

pe
rti

se
 

D
BA

 s
pe

ci
fic

 
ex

pe
rti

se
 

C Data-based Application           

I Production Scheduling   ● ●  ● ● ○ ● ● 

 Layout Planning   ○ ●   ●  ● ● 

II Real-time Control ● ● ○ ●  ● ● ○ ○  

 System Performance 
Measurement ● ○ ○ ● ●  ● ○ ●  

III Condition Monitoring ● ○ ○ ●  ●  ○ ○ ○ 

 Predictive Maintenance ● ○ ● ● ● ●  ○ ● ● 

 Prescriptive Maintenance ● ○ ● ● ● ●  ○ ● ● 

IV Track and Trace ● ● ○ ●    ○ ○ ○ 

 Material Flow 
Management ● ● ● ●  ● ● ○ ● ● 

 Inventory Management ● ● ● ● ● ● ● ○ ● ● 

V Product Quality 
Monitoring ● ○ ○ ● ●  ● ○ ○ ○ 

 Product Quality 
Improvement ● ○ ○ ● ●  ● ○ ● ● 

VI Energy Monitoring ● ○ ○ ●    ○ ● ○ 

 Environmental Monitoring ● ○ ○ ●    ○ ○ ○ 

C: Category, ○ Basic requirements, ● Advanced requirements  
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Third, supporting the differentiation in basic and advanced DBA core functions in the 
last chapter, the more complex DBAs can build on the data foundation created by the 
rather basic DBAs. This observation can be made in four of six categories. The 
applications Real-Time Control, Condition Monitoring, Track and Trace, and Product 
Quality Monitoring may serve as data provider for the applications System 
Performance Measurement, Predictive Maintenance, Material Flow Maintenance, and 
Product Quality Improvement respectively.  
4.1.7 Summary DBAs in Manufacturing 
Data utilization is discussed in several distinct literature streams. As shown in Table 
14, the literature covered in this chapter to identify DBAs includes literature dealing 
with ML, DM, big data in general, and publications related to SM and Industry 4.0. 
Likewise, the review has revealed a wide range of applications for DBAs. As depicted 
in Figure 15, six DBA categories consisting of 14 individual DBAs have been identified. 
These DBAs address several functions of a manufacturing system including 
production planning, production control, maintenance, logistics, and quality 
assurance. In addition, monitoring the environment can contribute to healthy working 
space and reduced energy consumption.  

Based on the review of twelve identified articles on data utilization in manufacturing, 
Table 14 presents an overview of how often each DBA was mentioned in the articles. 
The following five DBAs have been discussed most frequently. Production Scheduling 
(discussed in 10 out of 12 articles), Condition Monitoring (9), Predictive Maintenance 
(10), Product Quality Monitoring (9), and Product Quality Improvement (9).  

Since DBAs are applied in several functions of a manufacturing system, the individual 
objectives are quite diverse. Table 15 shows the individual objectives of each DBA, 
along with a short description of a possible approach to achieve the objective. 
However, abstracted from the individual goals, all DBAs are comprised of one or more 
four core functions. These are Monitoring, Deviation Control, Decision Support, and 
Autonomous Optimization. Monitoring is considered as a basic core function, as it is 
the foundation for the other three functions, but does not provide much value to the 
company as a standalone function. Value is only created by actually using the 
collected manufacturing data to serve a specific purpose. The core function Deviation 
Control compares (near) real-time manufacturing data to predefined thresholds, thus 
detecting deviations. 

The core function Decision Support provides databased support for humans to make 
informed decisions. By contributing to improving the system, the potential added value 
of this function is higher than the rather simple deviation control. At the same time, the 
complexity of the data analysis required to provide decision support is significantly 
higher than for Deviation Control. The most advanced core function is Autonomous 
Optimization. Without human interaction, this core function derives decisions based 
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on data analysis and transfers this insight into concrete actions. While the potential 
value add of Autonomous Optimization is exceptionally high, the requirements are 
very challenging. As the lack of use cases of fully autonomous prescriptive 
maintenance demonstrates, data-based Autonomous Optimization is still in its 
infancy. Generally speaking, a tendency is seen that the potential value added by a 
core function goes hand in hand with its level of complexity.  

Chapter 4.1.4 presents a description of each DBA along with a use case example from 
literature and their requirements. Based on the requirements discussed for the 
individual DBAs, requirements are collected and grouped into three requirements 
categories, comprising 10 key requirements (see Table 17). The three key 
requirement categories are Technical infrastructure (1), Data availability (2), and 
Know-how (3).  

Technical infrastructure comprises the physical and IT infrastructure needed for data 
collection, transfer, processing, and protection. Data availability includes access to 
three distinct kinds of data, namely, historical data, (near) real-time data from the 
manufacturing system, and central data from the MES or ERP system. The 
requirement category Know-how addresses the needed expertise of the IT system, 
manufacturing domain expertise, and DBA specific expertise.  

By comparing the requirements of all DBAs, three conclusions can be made. First, 
reviewed literature has a clear focus on technological aspects of DBAs, hence the 
majority of requirements discussed are technological in nature with only a few 
addressing employee capabilities and none addressing organizational capabilities. 
Second, the DBAs reveal different levels of complexity, which is reflected by different 
requirements. While some DBAs, such as Track and Trace, only need an appropriate 
technical infrastructure of tags and readers, more sophisticated DBAs, such as 
Predictive Maintenance, strongly depend on manufacturing domain knowledge and 
expert knowledge specific to the DBA. Third, the more complex DBAs can build on 
the data foundation created by the rather basic DBAs (e.g., Condition Monitoring can 
provide the data needed for Predictive Maintenance).  

In summary, chapter 4.1 provides a sound and literature backed basis to answer the 
first SRQ: Which data-based application exist in manufacturing and what are their 
objectives? The DBA use cases demonstrate a high potential to increase the 
effectiveness and efficiency of a manufacturing system.  

Chapter 5 will contrast the potentials identified in this chapter to the actual status quo 
of data utilization in three industry companies. Furthermore, by consolidating the 
requirements originating from the discussion of the individual DBAs in chapter 4.1.4, 
chapter 4.1 also addresses the second SRQ: What are key enablers to apply data-
based applications? 
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However, due to the technical focus of the papers reviewed in this chapter, the 
identified requirements are also mainly technical. Chapter 5 will complement the 
collection of critical enablers by focusing on organizational requirements and required 
employee capabilities in qualitative case studies and expert interviews.  

4.2 Impact of Data-based Applications on Lean Practices 
This chapter builds on the findings of chapter 4.1. It addresses the third SRQ by 
evaluating how DBAs impact the implementation of lean practices. This chapter is 
structured as follows: chapter 4.2.1 describes the methodological approach. Chapter 
4.2.2 presents the DBA – Lean Practice Impact Matrix, which summarizes and 
visualizes potential impacts of DBAs on lean practices. Chapter 0 provides more 
details on each DBA – lean practice impact by describing the kind and degree of 
impact. Finally, chapter 4.2.4 provides a summary of the most impactful DBA – lean 
practice relations. 

4.2.1 Methodology 
The basic motivation for researching the impact of DBAs on lean practices originated 
from the result of the Lean2020 study (see chapter 3). Participants reported a large 
potential of Big Data utilization for lean. Furthermore, mature and successful lean 
companies show a higher level of data collection and data utilization. This chapter 
strives to address the question of how data can support lean in a systematic way. 
According to Mayr et al. (2018, p. 623), current publications address the impact of SM 
technology on lean on a rather general level, while missing the link to a particular lean 
practice. Taking this remark into consideration, this research chooses lean practices 
as appropriate points of reference to evaluate the impact of data utilization on LM. 

The selected methodology of a pairwise evaluation of the impact of the DBAs on lean 
practices is inspired by a dissertation from Gerberich (2011). He investigated the 
interaction of MES functionalities and lean elements in the automotive industry and 
developed a “Lean-MES-Interdependency Matrix” (Gerberich, 2011, p. 226). The 
matrix visualized whether an MES function and a lean element are supporting each 
other to achieve an objective (positive impact), contradicting, or substituting each 
other (negative impact) or reveal no impact. 

Following this methodology, chapter 4.2.2 presents a DBA – Lean Practice Impact 
Matrix. Therefore, every combination of the 10 lean practices introduced in chapter 
2.2.3 and the 14 DBAs identified in chapter 4.1 is assessed individually as to whether 
the DBA has a positive impact, a negative impact, or no impact on the respective lean 
practice. 

The assessment followed a four-stage procedure, visualized in Figure 16. The first 
stage Literature Research comprises the identification of literature that addresses the 
conjunction of lean in general, not limited to lean practices, and the use of advanced 
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technologies. The consulted literature is depicted in Table 18. Impacts of data 
utilization on lean practices documented in the literature were directly used as input 
for the DBA – Lean Practice Impact Matrix (see Table 19). Impact evaluations that are 
directly based on literature input include references to the respective literature in the 
DBA – lean practice impact discussion (see 4.2). 

The reviewed literature did only provide statements on some DBA – lean practice 
impacts (e.g., the DBA Predictive Maintenance supports the same objective as the 
lean practice Preventive Maintenance), while many combinations would remain blank 
after stage 1.  

Figure 16: Four-stage procedure: DBA – lean practice impact evaluation 

Hence, the second stage Theoretical Reasoning goes beyond the evidence provided 
by literature. By theoretical reasoning additional DBA – lean practice impacts 
assumptions have been derived by the author. However, as these findings were not 
grounded in literature, conducting a sense check was reasonable prior to including 
the assumptions into the DBA – Lean Practice Impact Matrix. The sense check was 
conducted in the third and fourth stages.  

In the third stage, the personal assumptions were challenged in internal discussions 
with research associates at the ITEM-HSG as well as in discussions with a fellow 
researcher at the chair of Production and Operations Management at the ETH Zurich. 
The adapted findings were included in the matrix with two exceptions. If a specific 
DBA – lean practice impact was either ambiguous (e.g., does DBA Track and Trace 
have a positive or negative impact on lean practice Value Stream Mapping?) or 
potentially highly impactful (e.g., the DBA Predictive Maintenance on the Lean 
Practice Continuous Flow), the DBA – lean practice combination was discussed with 

1. Literature Research
Literature addressing the conjunction of lean and advanced technologies was 
searched and reviewed for possible impacts of data utilization on lean. 

DBA – Lean Practice 
Impact Matrix  

Four-stage Procedure for DBA – Lean Practice Impact Evaluation

2. Theoretical Reasoning 
Based on input from the literature and theoretical reasoning, additional 
assumptions on DBA – lean practices were derived by the author. 

3. Academic Feedback 
Individually derived assumptions by the author were challenged in discussions 
with internal and external fellow researchers. 

4. Industry Expert Feedback 
Ambiguous and theoretically high-impact DBA – lean practices combinations 
have been discussed with industry experts. 
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practioners from the industry as part of case study interviews21 in stage four. The 
restriction on controversial and high impact combinations was necessary due to the 
limited resources of the case study partners. 

Table 18 provides an overview of the consulted literature in the first stage. If only a 
particular chapter of a book is of relevance, the reference includes the respective 
page. 

Table 18: Input literature to assess the impact of DBAs on lean practices 

Focus Reference 

Lean and IT systems Bell (2006), Clegg and Powell (2013), Gerberich (2011), Kletti 
(2015) Maguire (2016), Powell et al. (2013), Ward and Zhou (2006) 

Lean and SM /  

Industry 4.0 

Bertagnolli (2018, p. 192), Bick (2014), Buer et al. (2018), 
Dombrowski et al. (2017), Karre, Hammer, Kleindienst, and 
Ramsauer (2017), Kieviet (2016, p. 42) , Mayr et al. (2018), 
Meissner et al. (2018), Metternich et al. (2017), Mrugalska and 
Wyrwicka (2017), Rüttimann and Stöckli (2016), (Sanders et al., 
2016), Wagner et al. (2017) 

Lean automation Hedelind and Jackson (2011), Kolberg et al. (2016), Kolberg and 
Zühlke (2015) 

Other Hicks (2007), Uriarte, Ng, and Moris (2018), Rafique et al. (2016) 

 

As shown in Table 18, two main clusters can be identified. Several authors discuss 
the role of IT systems in LM, including the use of central IT systems as ERP (Clegg 
& Powell, 2013), MES (Gerberich, 2011), and IT as a driver for CI (Bell, 2006). The 
second cluster is by far the most comprehensive one and comprises authors 
addressing the interaction of lean and SM from several perspectives. These 
publications cover the two dimensions of lean as an enabler of SM and SM as a 
toolbox to advance lean (see chapter 2.4). A small cluster is found around lean 
automation. The cluster Others include contributions on the application of lean thinking 
to information management (Hicks, 2007), supporting lean with simulations (Uriarte et 
al., 2018), and the application of RFID to mitigate barriers of LM (Rafique et al., 2016).  

 
21 For details on the interview partner and the case study companies, see chapter 5.2.1 
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4.2.2 DBA – Lean Practice Impact Matrix 

4.2.2.1 Evaluation Criteria  
The matrix differentiates three levels of positive impact. The impact of a DBA on a 
lean principle is considered as high (+++) if the DBA enables the lean practice to 
overcome an existing barrier or the DBA and the lean practice are fully complementary 
regarding achieving a common objective. Furthermore, the impact needs to be both 
theory-based and confirmed as significant by practitioners.  

The impact of a DBA on a lean principle is considered as low (+) if the lean principle 
is supported only to a small degree or the impact is only indirect. Indirect impact refers 
to a situation, where a DBA has an objective that is distinct from the objective of the 
lean practice and the support is rather a byproduct. For example, the DBA Predictive 
Maintenance increases equipment health. Equipment health, in turn, is positively 
linked to product quality. Therefore, maintenance has an indirect positive impact on 
the lean principle of Quality Management. Impacts between high and low are 
considered as moderate (++). No impact is marked with (○). The possibility of negative 
impacts have been considered, and scenarios of negative impacts of a DBA on a lean 
practice are also discussed in the next chapter.  

At this point, it has to be noted that the evaluation of the impact levels is subject to a 
certain degree of subjectivity of the authors and involved partners from academia and 
industry. In a different environment, other evaluation judgments are conceivable. 
However, discussions with researchers and practitioners have revealed a fairly good 
match regarding the DBA – lean practice impact evaluation. Although there have been 
discussions about the extent of the impact, there has usually been an agreement 
about the basic impact of a DBA on a lean practice. 

4.2.2.2 Overview 
Table 19 shows the DBA – Lean Practice Impact Matrix, including six framed clusters 
of a high positive impact of DBAs on lean practices. All identified DBA – lean practice 
combinations that have been found to have an impact are discussed in the following 
chapter, including a rationale for the respective evaluation of the degree of impact. In 
addition, the six clusters of high positive impact are summarized in chapter 4.2.4. 

The DBA – Lean Practice Impact Matrix provides an overview of all DBA – lean 
practice combinations discussed in this dissertation. Reading example: The DBA 
Production Scheduling (2) has a small positive impact on the lean practice Preventive 
Maintenance (A). 

 



DATA-BASED APPLICATIONS IN LEAN MANUFACTURING 

98 

Table 19: DBA – Lean Practice Impact Matrix 

DBA Category Production 
Planning 

Production 
Control 

Maintenance Internal Logistics 
Product 
Quality 
Mgmt. 

EHS 

DBA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Lean Practices               

A. Preventive 
Maintenance ○ + ○ + ++ +++ +++ ○ ○ ○ ○ ○ ○ ○ 

B. Quality 
Management ○ ○ + + + + + ○ + ○ ++ +++ ○ ○ 

C. Continuous 
Flow Production + ○ + ○ ++ ++ ++ ++ ++ + ○ + ○ ○ 

D. Pull/Kanban +/- ○ ○ ○ ○ ○ ○ ++ +++ ○ ○ ○ ○ ○ 

E. Quick 
Changeover  ○ ○ ○ ○ ○ ○ ○ ++ ○ ○ ○ ○ ○ ○ 

F. Lot Size 
Reduction ○ ○ ○ ○ + + + ○ ○ ○ ○ + ○ ○ 

G. Value Stream 
Mapping ○ ○ ++ ++ ++ ++ ++ +++ ○ ○ ++ ○ ++ ○ 

H. Continuous 
Improvement ○ ○ ++ +++ ++ ++ ++ ++ ○ ○ ++ ○ ++ ○ 

I. Cross-functional 
Teams ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

J. Self-directed 
Work Teams ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

- negative impact, ○ no impact,  
+ small or indirect positive impact, ++ moderate positive impact, +++ high positive impact  

1. Layout Planning, 2. Production Scheduling, 3. Real-time Control, 4. System Performance Measurement,        
5. Condition Monitoring, 6. Predictive Maintenance, 7. Prescriptive Maintenance, 8. Track and Trace, 9. 
Material Flow Management, 10. Inventory Management, 11. Product Quality Monitoring, 12. Product Quality 
Improvement, 13. Energy Monitoring, 14. Environment Monitoring  
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4.2.3 DBA – Lean Practice Impact Discussion  
This chapter is structured along the four lean practice categories TPM, TQM, JIT, and 
EMS as introduced in chapter 2.2.3. It elaborates the DBA – lean practice relations 
visualized in Table 19 in more detail. If supporting evidence is available, the 
argumentation of the impact evaluation is supported by references to the literature 
shown in Table 18. 

No reference indicates that the impact evaluation is based on logical reasoning and 
personal assumption. The assumptions are presented in its final form, which means 
after the initial assumption was refined in discussions with other researches and 
practitioners.  

4.2.3.1 TPM Lean Practice 

4.2.3.1.1 PREVENTIVE MAINTENANCE 

The lean practice Preventive Maintenance aims to minimize unplanned production 
interruptions due to unexpected machine breakdowns by performing maintenance 
tasks preventively. Thus, the practice is strongly supported by the DBAs of the 
category Maintenance (DBA 5-7 in Table 19). 

4.2.3.1.1.1 Applications with High and Moderate Impact  

DBA Condition Monitoring (Number 5 in Table 19) 

The application Condition Monitoring assesses the health and degradation status 
based on machine data to detect anomalies early and thus enable maintenance 
employees to initiate maintenance activities before the machine breaks down 
(Sanders et al., 2016, p. 825). Thus it increases equipment availability and avoids 
consequential damage of products due to broken machines (Mayr et al., 2018, p. 625).  

Condition Monitoring provides a data-based foundation for better maintenance plans 
and therefore supports the lean practice preventive maintenance. Impact evaluation: 
moderate. 

DBA Predictive Maintenance (6) 

The application Predictive Maintenance not only assesses the equipment condition 
but also forecasts expected future conditions. Predictive analytics increases the 
accuracy of remaining useful lifetime prognosis and thus, enables the definition of 
maintenance plans that provide an optimal balance between ensuring equipment 
uptime and reducing unnecessary maintenance cost. (Kieviet, 2016, p. 55; Mayr et 
al., 2018, p. 625; Sanders et al., 2016, p. 825). 

Predictive Maintenance provides powerful support for the lean practice Preventive 
Maintenance by providing predicted machine conditions as a foundation for well-
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informed maintenance decisions. The DBA is fully complementary regarding the 
objectives of the lean practice Preventive Maintenance. Impact evaluation: high. 

DBA Prescriptive Maintenance (7) 

The argumentation for Prescriptive Maintenance is equivalent to the Predictive 
Maintenance. 

4.2.3.1.1.2 Applications with Low Impact  

DBA System Performance Measurement (4) 

The DBA System Performance Measurement provides automated performance 
metrics. Monitoring the OEE and using the metric for benchmarking purposes allows 
employees to identify OEE improvement potentials of monitored equipment 
(Gerberich, 2011). Thereby, the application also provides indirect support for 
Preventive Maintenance: Impact evaluation: low. 

DBA Production Scheduling (2) 

The expected intensity of use of a specific machine for the next time period can be 
derived from the Production Scheduling plan. This information can be used to deploy 
limited maintenance resources more effectively according to the importance of the 
machine to execute the next production plan. Impact evaluation: low. 

4.2.3.1.1.3 Conclusion  

The lean practice Preventive Maintenance benefits from different application of data 
utilization and existing limitation of current Preventive Maintenance practices can be 
mitigated. By using machine condition data and prediction of future conditions, 
companies can better determine the optimal time for maintenance. Thereby, a better 
balance of equipment availability and maintenance costs is achieved.  

4.2.3.2 TQM Lean Practice 

4.2.3.2.1 QUALITY MANAGEMENT 

The lean practice Quality Management is a part of the broader lean practice Total 
Quality Management (see chapter 2.2.3). In this context, Quality Management focuses 
on product quality. 

4.2.3.2.1.1 Applications with High and Moderate Positive Impact  

DBA Quality Monitoring (11) 

The DBA aims to identify and reject incorrect parts before they are passed on to the 
next process step or delivered to the customer. Sensors and cameras test whether 
the characteristics of the product (e.g., thickness and surface roughness) are in 
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accordance with the specification (Tao et al., 2018, p. 9). If a product does not meet 
the requirement, it is sorted out or used to identify the cause of the deviation (Wuest 
et al., 2014, p. 1169).  

Industry feedback: an interviewee (Company B) confirms the high potential of 
automated quality monitoring. Accordingly, quality monitoring systems are for many 
parts more accurate than a human quality controller, faster, and in the long run less 
expensive. However, he also points out that even modern and highly expensive 
camera systems are not able to perform a 100 percent accurate visual quality control. 
Nevertheless, automated quality monitoring is a trend and implemented more and 
more.  

By detecting defect products, the DBA directly contributes to the objective of Quality 
Management. However, as the application Quality Monitoring is only reactive and 
does not include quality improvement, the impact is only considered as moderate.  

DBA Quality Improvement (12) 

Gerberich (2011, p. 244) has evaluated the relationship between MES functionalities 
and lean elements. Accordingly, data collection, as part of the MES system, strongly 
supports the identification of root causes of product quality problems. By providing 
relevant data, lean elements concerned with quality improvements, such as the PDCA 
cycle or Ishikawa analysis, can be applied more effectively and efficiently (Gerberich, 
2011, p. 244). By monitoring product quality, influencing factors for product quality can 
be identified and optimized (Künzel, 2016, p. 59). Quality Improvement goes beyond 
correcting or sorting out defect parts, but uses historical failure data to learn from in 
order to find and mitigate systematic root causes of quality issues.  

The overall objective of Quality Management, to provide high-quality and defect-free 
products to customers, is directly supported by the DBA Quality Improvement. Impact 
evaluation: high.  

4.2.3.2.1.2 Applications with Low Positive Impact  

The positive impacts of the three maintenance DBAs—Condition Monitoring (6), 
Predictive Maintenance (7), and Prescriptive Maintenance (8)—on product quality are 
apparent. However, production equipment in good condition produces high-quality 
products. Tools worn down will sooner or later result in lower quality of the products. 
As all three DBAs contribute to higher equipment quality, they indirectly influence 
product quality positively. Impact evaluation: low.  

The application Real-time Control (3) informs shop floor personnel in case of 
anomalies in the manufacturing process. As these anomalies may affect product 
quality, reducing the time of non-conforming process behavior decreases the 
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likelihood of products of bad quality. For instance, Sanders et al. (2016, p. 825) 
highlight the positive effect of statistical process control on product quality. 

Real-time Control supports the practice Quality Management indirectly. Impact 
evaluation: low. 

System Performance Measurement provides quality performance metrics such as 
scrap rate, which are useful to identify negative trends in terms of quality. Detecting 
declining quality may serve as a starting point for quality improvement projects. Impact 
evaluation: low. 

The DBA Track and Trace includes the use of RFID tags to identify products or 
containers. These tags cannot only be used for tracing the product but also to provide 
product-specific information, including details about the operations to be done on them 
(Bell, 2006, p. 314). This may include supporting data for manual operations (Sanders 
et al., 2016, p. 825), such as ensuring the correct order of construction. As the support 
is only indirect, the impact of Track and Trace on the lean principle Quality 
Management is rated as low.  

4.2.3.2.1.3 Conclusion  

The lean practice Quality Management is significantly supported by the DBAs that are 
designed to detect defect products and to increase product quality. Well-maintained 
production equipment supports product quality indirectly by reducing negative impacts 
due to worn down tools. 

4.2.3.3 JIT Lean Practice 

4.2.3.3.1 CONTINUOUS FLOW PRODUCTION 

In Continuous Flow Production, the material or product flows through the value-adding 
process steps without interruptions and waiting times between the process steps. 

4.2.3.3.1.1 Applications with High and Moderate Positive Impact  

DBAs Condition Monitoring (5), Predictive Maintenance (6) and Prescriptive 
Maintenance (7) 

Continuous Flow Production requires a high level of equipment availability (Womack 
& Jones, 2003, pp. 60–61). Therefore, the DBAs ensuring high equipment availability 
are likely to have a positive impact on Continuous Flow Production. 

As discussed above, the three DBAs assigned to the group of maintenance DBAs 
increases machine availability. Less machine downtime, especially less unexpected 
machine downtime, increases process stability. Stability is favorable for continuous 
flow (Mayr et al., 2018, p. 624; Wagner et al., 2017, p. 128). The impact of the 
maintenance DBAs on Continuous Flow Production is rated as moderate.  
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Industry feedback: the interview partner of Company B shares the theoretical 
argumentation and points out that Predictive Maintenance may increase the OEE and 
stability of a machine. However, stability is only one requirement of flow among others 
(e.g., timely material supply), and the effect of good maintenance on flow is therefore 
only evaluated to be moderate.  

DBA Track and Trace (8) 

Sanders et al. (2016, p. 823) have identified errors in inventory counting and capacity 
shortages as a significant cause for disruption in material flow. The application Track 
and Trace employs RFID technology and ensures an error-free inventory status 
realized by real-time and exact tracking of inventory. Therefore, the application Track 
and Trace supports Continuous Flow Production. Impact evaluation: moderate. 

DBA Material Flow Management (9) 

Based on real-time demand and material availability, the DBA Material Flow 
Management may use a mathematical optimization model to develop an optimized 
material distribution plan. The plan minimizes interruptions and waiting times, enabling 
a continuous material flow (Sanders et al., 2016, p. 823). The data-based optimization 
model can also optimize path planning for AGVs, thus supporting JIT delivery (Mayr 
et al., 2018, p. 624). Dombrowski et al. (2017, p. 1065) have analyzed 260 use cases 
of industry 4.0 to get an overview of the correlations between LPSs and industry 4.0. 
Accordingly, the combination of RFID tags and big data analysis for intelligent material 
flow planning supports the flow principle. The impact of the DBA Material Flow 
Management on the lean practice Continuous Flow Production is rated as moderate.  

4.2.3.3.1.2 Applications with Low Positive Impact  

DBA Layout Planning (1) 

Continuous Flow Production requires a layout, which facilitates the flow of products 
from one process step to the next one without high transportation effort. The 
conformance of the layout plan with the continuous flow requirements can be defined 
as a criterion for the optimization algorithm of the layout planning application. Thus, a 
smartly defined layout planning tool can facilitate Continuous Flow Production. 
Nevertheless, the impact is evaluated as low, as designing a continuous flow ready 
layout plan does not necessarily require data-based Layout Planning. 

DBA Real-time Control (3) 

The application reduces equipment downtime, but only after a problem has already 
occurred. It minimizes the time in which the uninterrupted flow of material is inhibited 
due to production stops. Impact evaluation: low.  
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DBA Inventory Management (10) 

While the application Track and Trace focuses on having a high transparency on the 
material flow, Inventory Management tracks the current amount of inventory in the 
warehouse. The status of the warehouse inventory, however, is less important for 
Continuous Flow Production as the status of WIP inventory. Thus, the impact of 
Inventory Management on Continuous Flow Production is only rated as low. 

DBA Product Quality Improvement (12) 

The DBA uses historical data from defective products to systematically identify and 
permanently eliminate the root causes of defects. Continuous Flow Production 
requires not only stable equipment but also flawless products (Womack & Jones, 
2003, p. 61). Thus, the lean principle is supported by the DBA Quality Improvement 
indirectly. Impact evaluation: low. 

4.2.3.3.1.3 Conclusion  

Continuous Flow Production is enabled by several factors; among these are stable 
equipment and reliable material availability. The stability of production equipment, on 
one hand, is improved by the applications of the category Maintenance. Material 
availability, on the other hand, is ensured by a smart material flow organized by the 
application Material Flow Management. In conclusion, these DBAs can significantly 
contribute to the reduction of barriers to Continuous Flow Production.  

4.2.3.3.2 PULL/KANBAN 

4.2.3.3.2.1 Applications with High and Moderate Positive Impact  

DBA Track and Trace (8) 

Track and Trace uses RFID and other technologies to monitor the amount and location 
of production material. Thus, the current material availability can be monitored in real-
time (Sanders et al., 2016, p. 822). If the material stock falls below a specified 
minimum threshold value, material replenishment is triggered automatically. Track 
and Trace facilitates the monitoring of material in supermarkets and therefore supports 
the lean principle Pull/Kanban. Impact evaluation: moderate.  

DBA Material Flow Management (9)  

The application Material Flow Management builds on track and trace and other data 
to organize an intelligent material flow. For instance, e-Kanban systems recognize 
empty bins automatically and trigger replenishment. Instead of cards, the signal is 
transmitted wirelessly. The concept of e-Kanban is very popular and often presented 
as an example of enhancing lean by means of industry 4.0 technologies (Bertagnolli, 
2018, p. 193; Clegg & Powell, 2013, p. 1499; Kolberg et al., 2016, p. 2851; Sanders 
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et al., 2016, p. 822). E-Kanban mitigates some limitation of traditional Kanban (Clegg 
& Powell, 2013, p. 1499) and therefore provides a direct and strong support of the 
lean practice Pull/Kanban. If AGVs are involved in material handling, optimization 
algorithms can be used for intelligent route planning, based on current demand 
(Bertagnolli, 2018, p. 194). In summary, the DBA provides a strong positive impact on 
the lean practice Pull/Kanban. 

4.2.3.3.2.2 Applications with Ambiguous Impact 

DBA Production Scheduling (2) 
The combination of IT-supported planning and lean has received considerable 
attention from scholars. It serves as the perfect example of the contradiction between 
lean and IT technology (Maguire, 2016, p. 32). The precursors of today's ERP 
systems operated according to the push principle, while lean promotes the pull 
principle (Maguire, 2016, p. 34). Taking this contradiction for granted implies a perfect 
substitution of the lean principle Pull/Kanban by the DBA Production Scheduling. 
Consequently, the impact of the DBA on the lean practice would be strongly negative. 
However, as Clegg and Powell (2013, p. 1502) point out, modern ERP systems are 
by now also able to support the pull approach and combine intelligent planning and 
the execution of the pull lean practices. Gerberich (2011, p. 234) notes the possibility 
of a hybrid system that uses both approaches, thus creating a so-called push-pull 
interface.  

Industry feedback: interviews with two lean managers have revealed different 
approaches to integrate central production planning and pull in the industry. A lean 
manager of a major automotive supplier (Company B) explained that in their factory a 
central planning system plans the material flow between the individual production 
process steps. By eliminating the supermarkets between the process steps, WIP 
inventory is reduced. The concept of pull, however, is still in place on a higher level 
as the whole production process is triggered by a customer order.  

An interview partner fo Company A, working as an specialist for connected logistics, 
does not see a conflict between IT-supported production planning and pull, as his 
company uses both approaches simultaneously. The system is planning bottleneck 
processes centrally to ensure material availability. The rest of the material flow is 
organized according to the pull principle, using an electronic Kanban system. He 
argues that the smart combination of IT-supported material flow planning and the e-
Kanban system yields the best results in terms of material availability and low WIP 
inventory.  

Taking all aspects into consideration, neither a strictly positive nor a negative impact 
of the DBA Production Scheduling on the lean practice Pull/Kanban is apparent.  
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4.2.3.3.2.3 Conclusion 

In theory and literature, the pull principle is threated to be substituted by the push 
principle due to central production and material flow planning systems. However, 
developments of those planning systems now also support pull. Discussions with lean 
responsibles revealed that the industry currently uses both approaches 
simultaneously, resulting in a partial substitution of the lean practice Pull/Kanban by 
central planning.  

A small positive impact on the lean practice Pull/Kanban can be expected from the 
increasing use of Track and Trace to monitor material availability in real-time. A strong 
positive impact on the lean practice Pull/Kanban originates from the implementation 
of e-Kanban, which can be assigned to the DBA Material Flow Management. E-
Kanban is faster, flexible, and cards cannot get lost (Clegg & Powell, 2013, p. 1499) 
and thus mitigates some of the weaknesses of traditional Kanban. 

4.2.3.3.3 QUICK CHANGEOVER 

The lean practice Quick Changeover reduces the time for changeovers to allow small 
lots being produced economically. Reviewed literature provides only one example of 
support for this lean practice. 

4.2.3.3.3.1 Applications with High and Moderate Positive Impact  

DBA Track and Trace (8) 
Comparably frequently discussed is the ability of RFID tags to carry product-specific 
data. As the product approaches the respective machine, the operations to be 
performed are transmitted to an RFID receiver. The machine can change to the 
required tools and settings to fit the requirement of the product before the product 
arrives, thus reducing setup time substantially (Sanders et al., 2016, pp. 823–824). 
Impact evaluation: moderate.  

4.2.3.3.3.2 Conclusion 

Quick Changeovers are getting increasingly important for producing different product 
variants without spending much time on changeovers. Product-specific data on RFID 
tags allow machines to adjust to the requirements of the operation to be performed 
before the product has arrived at the machine. No further DBAs supporting this lean 
practice have been found. 

4.2.3.3.4 LOT SIZE REDUCTION 

For the lean practice Lot Size Reduction, no reference of a possible impact of any of 
the 14 DBAs has been found in the reviewed literature. However, based on the 
assumption that small lot sizes imply little WIP and security stock, two possible impact 
scenarios can be imagined.  
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4.2.3.3.4.1 Applications with Low Positive Impact  

Maintenance DBAs (6-8) 
If only little WIP inventory and security stock are held, it is essential to have reliable 
equipment to ensure the timely supply of needed parts. The impact of the maintenance 
DBAs on the lean practice Lot Size Reduction is minor and indirect. Impact evaluation: 
low.  

DBA Product Quality Improvement (12) 

Building on the same argument, little WIP and security stocks require defect-free parts 
for further processing to avoid production stops. The impact is minor and indirect. 
Impact evaluation: low.  

4.2.3.3.4.2 Conclusion 

By assuring machine stability to produce needed parts quickly and assuring low defect 
rates, DBAs can contribute to the ability to work with small lot sizes. The impact, 
however, is limited and in conclusion rated low.  

4.2.3.3.5 VALUE STREAM MAPPING 

The lean practice Value Stream Mapping is used to visualize the current production 
process. Increasing accuracy and reducing the effort of value stream analysis by 
integrating production data into the VSM process is a frequently discussed approach 
to improve lean through data utilization (Buer et al., 2018, pp. 2930–2931; Mrugalska 
& Wyrwicka, 2017, p. 471; Prinz et al., 2018, p. 23; Tantik & Anderl, 2016, p. 208). 

J. C. Chen and Chen (2014, p. 839) propose a system to create a value stream map 
automatically, using performance monitoring data. Creating the VSM automatically 
reduces errors and human effort. Furthermore, by integrating real-world 
manufacturing data, the value stream map represents the reality more accurately and 
supports supervisors to make more informed decisions on the shop floor. Particularly 
for companies manufacturing a high variety of products, IT-supported value stream 
mapping is a promising tool to adequately reflect the minor differences in the process 
between the different types of product. This approach is also referred to as VSM4.0 
(Buer et al., 2018, p. 2930). Tantik and Anderl (2016, p. 208) even propose to assign 
the current value to each product, based on the current position in the manufacturing 
process. Following Mayr et al. (2018, p. 625), VSM4.0 increases the transparency in 
the value chain and facilitates the identification of waste, thus enabling a lean value 
creation.  
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Industry Feedback 

Due to the potentially high impact of VSM4.0 on the lean practice Value Stream 
Mapping, the presented suggestion of VSM4.0 was discussed with representatives of 
the three case companies.  

In general, the interviewees appreciate the idea of integrating real-time manufacturing 
data into the value stream mapping process. An interviewee of Company A argues 
that especially in regard to the increasing number of variants with possibly distinct 
value streams, standard value stream mapping is very time-consuming. 
Manufacturing data are considered to be valuable to uncover dynamic changes in the 
process. For instance, bottlenecks are not static and may change over time and from 
product to product. All three interviewees, however, agree that the basic idea of Value 
Stream Mapping will get lost if go (to the process) and see is replaced by the remote 
extraction of data from the IT system. The objectives of VSM includes gaining a 
personal understanding of the actual process, which is impossible without being on 
the shop floor. The interviewees point out that without understanding the underlying 
process, the risk of data misinterpretation rises considerably. Consequently, they opt 
for a combination of traditional VSM and the usage of real-time manufacturing data. 
By bringing the best of the two worlds together, process understanding is ensured by 
go and see while manufacturing data is integrated to reduce human effort and 
increase the accuracy of the value stream map. One partner puts it like this: “Go and 
see plus measure is always better than measure and interpreting data at the 
computer.”  

4.2.3.3.5.1 Applications with High and Moderate Positive Impact  

Data required for VSM4.0 is collected by several DBAs. Real-time Control tracks 
anomalies in the production process such as machine stops, Condition Monitoring 
provides data on the current equipment health.22 Performance indicators that, for 
instance, measure the average lead time for a large sample is provided by the 
application System Performance Measurement. Product Quality Monitoring provides 
data on defect and rejected parts. Energy Monitoring reveals potentials for energy 
waste reduction. By providing the required data, these DBAs support the lean practice 
VSM. Impact evaluation: moderate.  

Most relevant for measuring the actual value stream, however, are track and trace 
data. This data helps to identify bottlenecks as well as situations of long waiting times 
and high inventory. Hence, the impact of Track and Trace is rated as high. 

 

 
22 The DBAs Preventive Maintenance and Predictive Maintenance also have the functionality of condition 

monitoring, hence have the same potential to support the lean practice VSM. The additional functionalitities 
of the more advanded maintenance DBAs, however, have no additional value. Therefore, the rating is equal.  
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4.2.3.3.5.2 Conclusion 

In conclusion, the lean practice VSM is likely to benefit substantially from integrating 
manufacturing data into the value stream map. VSM can be conducted more 
accurately and reflect different value streams of different product variants. Updates of 
the value stream map require less human effort and can also reflect changes over 
time. However, manufacturing data extracted from IT systems is only valuable as a 
complementary source of information and must not replace the presence on the shop 
floor.  

4.2.3.4 EMS Lean Practice 
The category Effective Management System is concerned with the objective to 
motivate and align people to work for a common goal. From the 10 lean practices 
presented in chapter 2.2.3, the following lean practices are assigned to this group: 
Continuous Improvement, Cross-Functional Teams, and Self-directed Work Teams. 
Like Value Stream Mapping, Continuous Improvement will benefit from the availability 
of more and more accurate data. For the other human-centered lean practices—
Cross-Functional Teams and Self-directed Work Teams—examples for data-based 
support have neither been found in the literature nor have been derived theoretically.  

4.2.3.4.1 CONTINUOUS IMPROVEMENT 

Manufacturing data increases the transparency of the production. This transparency 
is used to identify opportunities for improvement, which is the starting point of CI. 
According to Bell (2006, p. 36), delivering the right information, in the right format, to 
the right place, and at the right time is “a powerful tool for continuous improvement.” 
The CI tools PDCA and DMAIC both comprise a planning (PDCA) or an analyzing 
(DMAIC) phase that rely on accurate data (Sokovic et al., 2010, p. 480). Hence, 
particular CI tools can be applied more effectively with access to the right kind of data 
at the right time. Several researchers cited in this work support the assumption that 
CI can significantly benefit from manufacturing data (Gerberich, 2011, p. 79; Meissner 
et al., 2018, p. 83; Prinz et al., 2018, p. 23; Wagner et al., 2017, p. 128).  

4.2.3.4.1.1 Applications with High and Moderate Positive Impact  

Similar to Value Stream Mapping, it is difficult to assess the impact of the 14 DBAs on 
CI individually, as the required data depends on the CI approach and its objective. 
Therefore, the DBAs most relevant for monitoring and collecting data, including Real-
time Control, Condition Monitoring, Track and Trace, Product Quality Monitoring, and 
Energy Monitoring are equally considered as facilitators of CI. By providing relevant 
data in the right quality, CI tools can be applied more effectively (Gerberich, 2011, 
p. 244). The listed DBAs, therefore, provide a direct support for the lean practice CI. 
Impact evaluation: moderate. 
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DBA System Performance Measurement (4) 

The DBA System Performance Measurement is especially valuable to support CI. 
While the DBAs listed above can serve as data provider to better understand a given 
problem, the DBA System Performance Measurement has an additional, highly 
important function. By calculating and visualizing KPIs, the DBA allows for the ability 
to track trends and do benchmarking against reference values. Hence, the DBA 
supports employees in detecting weaknesses within the production system and thus 
serve as a starting point for diverse CI activities addressing these weaknesses. Impact 
evaluation: high. 

4.2.3.4.1.2 Conclusion 

The lean practice Continuous Improvement comprises several aspects; among these 
are encouraging employees to think about improvement activities constantly as well 
as providing the right tools and information needed for problem-solving. DBAs such 
as the DBA System Performance Measurement increases transparency about the 
production system and facilitates the identification of hidden problems. Depending on 
the actual problem, different data may be required to identify the problem’s root cause. 
The need for accurate up-to-date data can be met by those DBAs, which include a 
data monitoring function. Hence, DBAs can support CI in two ways: detecting 
problems and providing the data for an effective root-cause analysis.  

4.2.3.4.2 CROSS-FUNCTIONAL TEAMS AND SELF-DIRECTED WORK TEAMS 

The literature review did not reveal an example of data-based support of any DBA for 
the two human-centered lean practices Cross-Functional Teams and Self-directed 
Work Teams. Also, the author of this dissertation did not find a scenario in which the 
two lean practices unambiguously benefit from the availability of manufacturing data. 
Cross-Functional Teams and Self-directed Work Teams are concerned with 
organizing the work but, unlike the other DBAs, are not inherently linked to the product 
or the production process. Without this link, it seems reasonable to assume that 
product and process-related manufacturing data is generally of little relevance for 
these two lean practices.  

The direction of support is even reversed in this case. As seen in the DBA requirement 
analysis in chapter 4.1.6, several DBAs require different skills, comprising IT-know-
how, manufacturing domain expertise, and DBA specific expertise. This broad 
collection of required skills is seldom found within one function and hence calls for 
cross-functional teams comprising several skill sets.  
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4.2.4 Summary Impact of DBAs on Lean Practices 
The pairwise analysis has revealed the potential for broad support for lean practices 
by utilizing manufacturing data. Table 19 indicates that at least six out of 10 
considered lean practices are likely to be highly supported by one or more DBAs.  

First, the detailed evaluation in chapter 0 shows a strong positive impact of Predictive 
Maintenance on the lean practice Preventive Maintenance. Predictive Maintenance is 
a well-established application of data utilization in manufacturing. It is not only 
discussed frequently in academic articles as an example of data utilization in 
manufacturing but is also seen by practitioners as a promising approach to increase 
equipment availability and process stability. All interviewed companies report having 
Predictive Maintenance, at least to some extent, already in use. A barrier for a broader 
implementation at the moment are high costs for Predictive Maintenance, which in 
many cases still exceed the costs for changing spare parts routinely by following a 
fixed plan. However, there is little doubt that Predictive Maintenance will be 
increasingly relevant and will eventually advance to the new standard of maintenance.  

Second, the application Quality Improvement has a strong positive impact on the lean 
principle Quality Management. Literature suggests that by monitoring and collecting 
root cause analysis can be conducted faster and more systematically and thus more 
effectively. To this end, ML is a promising technique to classify and detect failures but 
also to identify their defect root causes.  

In general, data-based product quality improvement is perceived as highly relevant by 
the case companies. The partner companies follow different approaches to use data 
for quality improvements. Company A has a dedicated quality department which has 
access to product data, machine data, and track and trace data. In this department, 
quality experts conduct data supported root-cause analysis and provide feedback to 
manufacturing and R&D. In Company B, failure data is used for root-cause analysis 
primarily as part of shop floor management meetings.  

Third, Continuous Flow Production is supported from two perspectives. On one hand, 
maintenance DBAs decrease the likelihood of unexpected machine breakdowns and 
therefore impact process stability positively. Process stability, in turn, is essential for 
Continuous Flow Production; consequently, the lean practice is supported by 
purposeful maintenance activities. On the other hand, Continuous Flow Production 
depends on the timely availability of material. Tracking the current status of material 
availability with Track and Trace and based on the data, derive an intelligent material 
distribution plan supports the reduction of interruptions and waiting times, thus 
enabling a continuous material flow. 

Fourth, the Pull System is strongly supported by the DBA Material Flow Management. 
Very popular in academic literature is the concept of e-Kanban. Scholars have 
identified several advantages of e-Kanban compared to traditional Kanban including 
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faster transmission of signals, no lost cards, and the ability to adjust the lot size 
dynamically. The advantages of e-Kanban are confirmed by all interview partners 
operating a physical production. As a consequence, both manufacturing companies 
have replaced traditional paper-based Kanban with e-Kanban by now.  

Fifth, the lean practice VSM may benefit considerably from integrating real-time 
manufacturing data into the value stream map. Literature and practitioners 
acknowledge the potential of real-time data enhanced VSM, also called VSM4.0, to 
draw a more precise picture of the actual value stream. Especially regarding the trend 
for increased product variety, one partner argues that the value streams of similar but 
slightly different products may not be perfectly identical. Manufacturing data can be 
used to reflect these minor differences as well as dynamic changes in the value 
stream, for instance, product-specific bottlenecks. Furthermore, having the necessary 
data available allows conducting VSM regularly with low human effort.  

Similarly, CI is supported by access to manufacturing data. CI applies systematic tools 
such as the DMAIC cycle and Ishikawa diagrams. The rigor of these tools is enhanced 
by accurate manufacturing data collected by multiple DBAs including Real-time 
Control, Condition Monitoring, Track and Trace, Product Quality Monitoring, and 
Energy Monitoring. 

Before a problem can be addressed by CI methods, however, it needs to be detected. 
By providing automatically calculated KPIs and visualizing their trends the DBA 
System Performance Measurement facilitates the identification of hidden problems 
within the production system.  

The evaluation in chapter, however, has not only indicated several opportunities for 
lean support by DBAs but has also highlighted some conflicts. 

A basic conflict frequently discussed in academic literature is push vs. pull. While LM 
undoubtedly advocates the pull principle, IT-supported planning and scheduling 
systems often rely on the push principle. Discussions with two industry partners have 
shown that, at least to some degree, internal material supply is planned by a central 
system, thus replacing the lean practice Pull/Kanban for some parts. From a 
practitioner's view, however, the contradiction described in the literature is of less 
importance as reality shows that push and pull can be used simultaneously.  

The concept of VSM 4.0 has aroused both interest and concern from practitioners. 
The positive implications have already been discussed above. On the negative side, 
industry representatives  see the risk of substituting the presence on the shop floor for 
VSM with remote access to manufacturing data. Consistently highlighted is the 
importance of being “where the action happens” to gain a sound understanding of the 
real process. Accordingly, process data without process understanding is of little value 
and bears the risk of data misinterpretation. The basic principle of VSM is described 
as “go and see.” Therefore, a virtual value stream created by remotely accessible data 
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would contradict the fundamentals of VSM. Nevertheless, a balanced integration of 
few metrics is desirable as long as it does not replace shop floor presence.  

No cases for DBA support for the human-centered lean practices of Cross-Functional 
Teams and Self-directed Work Teams were found. Taking the DBAs' requirement for 
cross-functional skills into account, a reverse implication can be argued. 
Cross-Functional Teams comprising employees with different skill sets are likely to 
introduce the DBA more effectively than a group of manufacturing engineers or a 
group of data scientists without complementary expertise.  

Lean practices have demonstrated for many years, in many industries, and in many 
countries worldwide the ability to support the objectives of LM—high quality, low costs, 
and fast delivery. The previous chapters have found a positive impact of DBAs on 
several widely established lean principles. By supporting these lean principles, DBAs 
contribute to the achievement of lean objectives. This chain of effects might be useful 
for managers to justify investments needed to introduce applications that exploit the 
potential of manufacturing data.  
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5 Qualitative Studies 
Chapter 4 provided a literature-based foundation to answer the first SRQ (“Which 
data-based application exist in manufacturing and what are their objectives?”) and the 
third SRQ (“How can data-based applications support lean practices?”). Furthermore, 
it consolidated key requirements described in the DBA use cases and thus also 
addressed the second SRQ (“What are key enablers to apply data-based 
applications?”) already. The insights gained from the following qualitative studies are 
used to complement the findings of chapter 4. Case study research and expert 
interviews are thereby selected as primary sources of qualitative data 

5.1 Case Study 
This chapter introduces the methodology of case study research in chapter 5.1.1, 
describes the case selection in chapter 5.1.2, and discusses the sources for data 
collection in chapter 5.1.3. 

5.1.1 Case Study Methodology 
Case study research was selected for the following reasons. Case study research is 
qualified to investigate problems originating from the practical world because 
researching real-world problems often results in a high practical relevance of the 
findings (Gassmann, 1999, p. 11). Also, case study research is suitable for research 
in areas with little existing knowledge (Voss et al., 2002, p. 198) and to investigate 
explanatory research questions beginning with how and why (R. Yin, 2009, p. 36) or 
what (Creswell, 2014, p. 140). While quantitative research is appropriate to test a 
hypothesis by analyzing large samples, qualitative research aims to obtain 
generalizable patterns from a small set of cases, thus following the induction principle 
(Tomczak, 1992, p. 77).  

According to Ketokivi and Choi (2014, p. 233), three modes of conducting case 
research are distinguished (see Figure 17).  

Figure 17: Three modes of conducting case research (Ketokivi & Choi, 2014, p. 233) 

General theory General theory General theory

Theory
generation

Theory 
testing

Theory 
elaboration

Empirical context Empirical context Empirical context
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All three modes of case research seek to formulate theoretical insight that results from 
the interaction between an existing general theory offered by literature and the 
empirical context of the case. Theory generation, testing, and elaboration differ in the 
relative importance of empirical context and general theory, as represented by 
different thicknesses of the arrows in Figure 17.  

The research at hand is guided by the theory of the TAM, as introduced in chapter 
1.5.5. Consequently, the primary objective of qualitative research in this dissertation 
is not theory generation in the sense of creating a new theory. However, the existing 
TAM theory is challenged by the findings of the qualitative studies as to whether the 
theory can explain the major findings from a theoretical perspective. Therefore, the 
initial objective can be described as theory testing. Compared to theory-generating 
case studies, theory-testing case studies approach the research with a more a priori 
theoretical discipline (Ketokivi & Choi, 2014, p. 235). Nevertheless, theory testing may 
shift to theory elaboration, if evidence for lack of explanatory power is found in the 
existing general theory (Eisenhardt, 1989, p. 536). Therefore, if such a lack is 
identified, adapting and extending the TAM theory to increase its explanatory power 
of the phenomenon at hand is a further objective of this qualitative research.  

Eisenhardt (1989) stresses the need for a priori specifications of constructs intended 
to be researched to increase the accuracy of their measurement. Miles and Huberman 
(1994) suggest doing this by creating a conceptual research framework, as introduced 
in chapter 1.5.4. Clearly defined research questions are essential to define a clear 
scope, which in turn supports the selection and collection of relevant data. However, 
it is common that researchers refine the research question during their work (Voss et 
al., 2002). 

Before conducting case study research, researchers need to specify which type of 
case study design to do. R. Yin (2009, p. 85) differentiates four types of case studies. 
The four types are differentiated by the number of case studies, and the number of 
units of analysis. Research focusing on only one case is called single-case design, in 
contrast to a multi-case design with more than one case study. Given the required 
resources and access to good cases, multiple-case designs are favored over single-
cases. Conclusions independently originating from at least two cases are more 
reliable than those arising from a single case alone. When only two cases are planned, 
R. Yin (2009, p. 105) suggests selecting cases with very similar conditions (direct 
replication) or contrasting situations (polar cases). 

Triangulation increases the validity of the findings of case study research. The 
opportunity to integrate data from different sources and research methods is 
considered a major strength of case study research. Triangulation may comprise 
methods such as questionnaires, observations, analysis of documents, historical data, 
and various forms of interviews (Eisenhardt, 1989; Voss et al., 2002).  



QUALITATIVE STUDIES 

116 

5.1.2 Case Selection 
Case selection was performed based on theoretical sampling. According to 
Eisenhardt and Graebner (2007, p. 27), theoretical sampling means that “cases are 
selected because they are particularly suitable for illuminating and extending 
relationships and logic among constructs.”  

Following R. Yin (2009) and Eisenhardt (1989), who suggest favoring multiple-case 
designs over single-cases, this research has selected three companies for case study 
research in total. Additionally, two expert interviews with senior academics in the field 
of data utilization in manufacturing have been conducted. Both interview partners have 
extensive experience and a sound reputation in the field of data analytics in 
manufacturing and can contribute insights from different projects and companies. 
Therefore, the experts can serve as “a surrogate for a wider circle of players” (Bogner 
et al., 2009, pp. 1–2).  

Like the three company cases in chapter 5.2, the expert interviews are presented and 
discussed separately, at first, in chapter 5.3. Afterward, the three case studies and the 
two expert interviews serve as input material for the cross-case study analysis in 
chapter 5.4. 

The three companies have been selected due to the fact that they have been awarded 
as SP companies during two benchmarking studies. One of the studies was focusing 
on the future of lean and the other on digital technologies in manufacturing. The case 
selection is based on the assumption that these companies are better suited to learn 
from than randomly collected companies, and thus well suited for case study research 
(Eisenhardt, 1989, p. 537).  

The selection process was the same for both benchmarking studies. In the first step, 
the results of an online survey were evaluated. Based on consistent and predefined 
criteria (e.g., level of lean deployment, kind, and maturity of digital technologies 
applied), researchers have identified 10–12 SP candidates. Afterward, semi-
structured interviews were conducted with the candidates to validate the answers 
given in the online survey and to gather complementary and in-depth information. An 
anonymized case study was prepared for each SP candidate. In the second step of 
the selection process, industry professionals from the field of lean, operational 
excellence, and digital technologies selected up to five companies, which they 
consider to be mature companies other companies can learn from.  

This two-stage process ensures that on one hand, all SP companies fulfill consistent 
and predefined criteria, and on the other hand that they are considered as role models 
also from a practitioner's perspective too.  

By selecting the cases from the sample of SP companies of these two benchmarking 
studies, particular expertise in both fields, lean and digital technology, is ensured. 
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Company C is not a manufacturing company but is in the ICT business. Therefore, it 
does not fit the definition of DBAs as applicable to manufacturing, however, the 
company has included it mainly for two reasons. First, as an ICT company, using 
digital technologies to collect and process data is nothing new, as it’s been daily 
business for many years. Consequently, the company is likely to have a high level of 
maturity of data utilization, which may be superior to those of manufacturing 
companies. Second, it is interesting to contrast the challenges and enablers of data 
utilization identified in an ICT company to those identified in the manufacturing 
industry in order to find commonalities and differences. 

The three companies are presented in anonymized form in chapter 5.2.1. Since all 
companies employee at least 5,000 employees, all companies are large companies, 
thus constraining the variation of results due to the size of the case company 
(Eisenhardt, 1989, p. 537).  

There is no clear consensus about the minimal, maximal, or right number of case 
studies in the literature. While Eisenhardt (1989, p. 545) suggests between four and 
ten case studies, Meredith (1998, p. 452) deems two to eight cases appropriate. R. 
Yin (2009, p. 105) agrees that already two cases might be enough. In general, for a 
limited set of resources, fewer case studies allow more depth of observation (Voss et 
al., 2002, p. 201). However, a small number of cases limits the opportunity for cross-
case analysis and thus generalizability. Eisenhardt (1989, p. 533) presents the 
concept of theoretical saturation to determine the appropriate number of cases. 
Consequently, a sufficient number of cases is reached, when marginal additional 
insights from the next case becomes small. In this dissertation, reaching theoretical 
saturation for specific challenges was not possible during the three cases. However, 
a convergence of case study results regarding more general aspects, such as required 
employee qualification, was observed. To enhance the generalizability of the case 
study results, the findings are complemented with the results of two expert interviews 
in chapter 5.4.  

5.1.3 Data Collection 
Data triangulation—combining several data sources to study a phenomenon—
improves the validity of findings of case study research (Eisenhardt, 1989, p. 538; 
Voss et al., 2002). For this research, an online survey, semi-structured interviews, 
workshops, and on-site visit observations were used as primary sources of data. 
Internal documents, such as presentations, reports, and publicly available information 
from the internet, have been used as a source of complementary information.  

All companies selected for this case study research are SP companies from the two 
benchmarking studies outlined above. The respective online survey of the study 
serves two functions. First, the survey results already contribute to the data basis for 
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the case study, and second, it serves as the foundation for the selection of SP 
candidates.  

The survey questionnaire was developed in a joined exercise of industry 
representatives and academics, thus ensuring practical relevance as well as 
academic rigor. The initial version was tested with industrial companies, especially 
regarding the structure of the questionnaire, clarity of the questions, and duration. 
Feedback was integrated and the final version of the questionnaire was sent to more 
than 500 companies, mostly located in Central Europe. For the benchmarking study 
“Lean2020 – The Future of Operational Excellence,” focusing on the status quo as 
well as the future of lean, five SP companies have been selected from a total sample 
of 75 companies (see chapter 3.1). For the benchmarking study “Digital Technologies 
– Evolution of production in high-wage countries,” focusing on selected digital 
technologies such as MES and Big Data analytics, five SP companies have been 
selected from a total sample of 139 companies (Benninghaus, Elbe, Budde, & Friedli, 
2018). 

Semi-structured interviews have been the most important source of information of the 
case study research. After initial interviews as part of the benchmarking procedure, 
additional interviews have been conducted with a dedicated focus on the research at 
hand. Five dedicated interviews have been conducted, ranging from 70 to 130 minutes 
in duration. To structure the interview, an interview guideline was developed and 
distributed to the interviewee prior to the interview (see Appendix C). Following 
Saunders, Lewis, and Thornhill (2009, p. 320) semi-structured interviews are not 
standardized. Instead, the researcher has a selection of questions and topics to be 
covered. However, this selection can vary from interview to interview. Considering the 
specific context, some questions may be omitted while others are added. Also, 
depending on the flow of the conversion, the order of questions may be altered.  

With the exception of one interview, all discussions have been audio-recorded, 
allowing the interviewer to focus more on the interview than on note-taking. Notes 
from the interview have subsequently been cross-checked with audio recordings and 
updated. The refined and detailed interview notes were sent to the interview partner 
for confirmation or clarification if necessary.  

Workshop and site visit observation provides additional information and contributes to 
data triangulation. All SP companies have been visited at least once for a full-day on-
site visit, thus allowing direct observation at the site. Moreover, as several 
representatives of the hosting company have been present, the risk of single response 
bias found in interviews is reduced. Finally, additional information from internal and 
publicly available documents have been integrated into the case studies. These 
documents comprise internal reports and company presentations as well as publicly 
available marketing publications and annual reports.  
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5.2 Within-case Study Analysis  
This research follows the case study approach described by Eisenhardt (1989). 
Analyzing the data consist of two parts: within-case analysis and cross-case analysis. 
The objective of the within-case analysis is to gain familiarity with the collected data 
of each case as a standalone entity. Within-case study is also motivated by the risk of 
“death by data asphyxiation” (Pettigrew, 1990, p. 281) due to too much data. A within-
case study consists of detailed descriptions of each case and supports researchers to 
deal with the large volume of data in the early phase of the data analysis. Starting with 
a focus on cases as a standalone entity allows for identifying patterns that are unique 
to the case before searching for generalizable patterns across several cases. Also, by 
gaining familiarity with the data during within-case analysis, cross-case comparison 
can be conducted faster (Eisenhardt, 1989, p. 540).  

5.2.1 Overview 
Table 20 presents an overview of the three case study companies.  

Table 20: Case overview 

Company 

A B C 

Automotive 
Supplier Company 
 

Automotive 
Supplier Company 
 

Information and 
Communication 
Technology 
 Company 

Market  B2B & B2C B2C B2B & B2C 

Employees  > 100,000 > 5,000 > 20,000 

Revenue in USD > 15 bn > 2 bn  > 10 bn 

Scope of case  Plant  Company  Company 

 

The three companies present several commonalities. First, all three companies have 
been selected as SP companies. Second, all companies are (or among) leaders in 
their respective markets. Third, they all serve the B2B market, while two also operate 
in the B2C market. Fourth, with a minimum number of employees above 5,000 and an 
annual revenue above $2 billion, all companies are large companies, operating and 
selling their products and services internationally. Fifth, all companies can be 
described as technology companies. Sixth, all companies are located in Central 
Europe and also generate a major share of their revenues in Europe. Company A and 
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Company B are both automotive supplier companies, but develop and produce 
different products. 

Anonymity was granted as a precondition for case study interviews. Thus a more 
detailed description of products must be dispensed with. Having the high pressure on 
cost efficiency in the automotive supplier industry and the fact that lean and data 
utilization both aim at reducing waste and increase efficiency in mind, it is not 
surprising that two SP companies are from the automotive supplier industry.  

On the other hand, there are also some differentiating characteristics. Whereas 
Company B and Company C are portrayed from a company perspective, the scope of 
Company A is the manufacturing plant. Furthermore, whereas the main interview 
partners of Company B and Company C are working in corporate functions, both main 
interview partners from Company A have a site role.  

Company C is a special case, as it does not operate a manufacturing system in the 
classical sense of converting physical raw materials to finished products. Instead, 
Company C offers ICT services to different industries as well as private end 
customers. Therefore, some aspects of the questions might not be equally applicable 
to Company C. However, challenges of data utilization regarding employee and 
organizational enablers may be similar to those of manufacturing companies and the 
comparison might yield interesting commonalities or differences. Hence, Company C 
can be considered to a certain degree as a polar type case (Eisenhardt, 1989, p. 537).  

The cases vary in length and depth, depending on the level of interaction (e.g., joint 
projects, workshops, site visits, case interviews) or other forms of exchange as well 
as on the relevance for the research at hand. All cases follow the same basic structure, 
however, the specific content may vary due to different contexts. The case description 
comprises the following sections: general information (1), lean status quo (2), strategic 
alignment of lean and digitalization (3), use of data-based applications (4),23 data 
utilization use case (5), challenges and enablers of data utilization (6), impact of data 
utilization on lean (7), and key implications (8). 

The section general information provides background information on the industry the 
company is working in, its size in terms of the number of employees and the annual 
turnover in 2018. Also, the role of our main contact person is outlined as well as 
specific peculiarities discussed. The section lean status quo evaluates whether the 
company is organizing its operations according to lean principles and which of the 10 
key lean practices is actually applied in the company. This information is relevant to 
assess the ability of the interview partner to evaluate the impact of DBAs on the lean 
practices.  

 
23 Only in case I and case II 
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Lean and digitalization24 pursue similar goals, including high transparency, waste 
reduction, and customer value creation. Some publications claim that the integrated 
consideration of lean and digitalization in manufacturing yields considerably higher 
potentials for efficiency gains than if one of the approaches is implemented alone 
(Küpper, Heidemann, Ströhle, Spindelndreier, & Knizek, 2017, p. 2). This observation 
motivates the question if companies already align both concepts. Thus in the section 
strategic alignment of lean and digitalization, the interviewees are asked whether their 
company has an integrated strategy and whether lean and digitalization 
responsibilities are organizationally integrated.  

Section 4, use of data-based applications, addresses the question of which of the 
identified DBAs in chapter 4.1 are actually used in the industry. The section data 
utilization use case presents a self-selected, recent use case of data utilization. Based 
on this specific use case, the following questions were discussed. First, what are the 
main drivers that motivated the use case? Second, what are the objectives? And third, 
the interview partners are asked to outline the most critical challenges and enablers 
from the following three perspectives: technological, organizational, and employee 
qualification (Hirsch-Kreinsen et al., 2018, p. 181). Also, to evaluate the validity of the 
TAM theory introduced in chapter 1.5.5, acceptance problems among employees and 
potential mitigation strategies are discussed.  

The scope of the section challenges and enablers of data utilization in manufacturing 
is very similar to the section before, but instead of focusing on a specific use case, the 
scope is broader. This section discusses challenges and enablers, as well as 
acceptance issues and mitigation strategies from a general perspective. The final 
section, impact of data utilization on lean, was designed to discuss DBA – lean 
practice combinations, where a high impact is assumed. The feedback has been 
integrated into the DBA – lean practice impact evaluation in chapter 4.2.  

Finally, the last section summarizes the key implications from each case as the basis 
for the cross-case study analysis in chapter 5.4. 

5.2.2 Case I: Company A 

5.2.2.1 General Information  
Company A is a global technology company with several divisions. Both interview 
partners of this case have answered the interview questions from a site perspective. 
The site belongs to a division producing components for powertrains in the automotive 
industry. Therefore, Company A is described in the overview and in the following as 
an automotive supplier company. The figures on the number of employees and 

 
24 The term digitalization refers in this context to the use of modern, digital technologies, such as the core 
technologies presented in chapter 2.3.3. 
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revenue, however, reflect the figures of the whole company. In total, Company A 
employs more than 100,000 employees worldwide and has generated an annual 
turnover in 2018 of over $15 billion. The site represented in the case study is one of 
the most mature sites regarding the integration of SM technologies within the 
manufacturing network, which comprises more than 50 sites worldwide.  

For the case study, specific interviews have been conducted with two representatives 
of Company A in addition to the insights from the benchmarking. Representative 1 is 
a key employee for integrating industries 4.0 solutions and data analytics into the 
existing production system. Representative 2 has a focus on internal material flow and 
logistics and is responsible for piloting connected logistics solutions and the 
digitalization of value streams. The interviews have been conducted separately, but 
all data gathered are combined in this case study.  

5.2.2.2 Lean Status Quo 
Company A operates a company-specific production system that follows the principles 
of the TPS. Lean, however, is not only considered as an approach to minimize 
wasteful activities but is also described as the basis for innovation. Clear standards 
are essential prerequisites for connected manufacturing and connected logistics. The 
five lean principles introduced in chapter 2 are guiding principles of the company's 
LPS. To ensure continuous improvement, Company A applies system-CIP 
(continuous improvement process) as a method for the process and value stream 
design (at least four times per year) and point-CIP for process stabilization and 
improvement (every week).  

Of the 10 lean practices, serving as the foundation for the DBA-lean impact evaluation, 
all 10 are applied at the site at different implementation levels. Preventive 
Maintenance is used, including first applications of predictive maintenance. For 
Quality Management DataMatrix-Code track-and-trace data are collected for most but 
not all products. Continuous Flow Production is an objective of Company A, but at the 
site partially challenging to realize due to building restrictions. Therefore, the site 
seeks to implement smart intralogistics solutions to enable flow. The Pull system is 
used whenever applicable. Quick Changeover Techniques are applied as well as 
measures to reduce the lot size. Value Stream Mapping is performed at least once a 
year and always in case of process changes. It is supported by a dedicated LPS unit. 
CI and employee involvement is fostered by an idea suggestion system, support for 
creating CI suggestions, and a small financial incentive, even if the idea is not 
implemented. Cross-functional Teams are formed for time-critical projects and 
rollouts. Self-directed Work Teams are not very common, but there are some scrum 
teams working in a self-directed mode. 
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5.2.2.3 Strategic Alignment of Lean and Digitalization 
Company A has both a strategy to implement lean as part of the company's LPS and 
a formalized digitalization strategy. The digitalization strategy is formulated at the 
highest level of the division. The strategy provides a framework for production sites. 
Depending on the current need and maturity, elements of the strategy are prioritized 
over others. Striving for the highest level of digitalization is not always aspirational. 
The main objectives of the digitalization strategy are the digitalization of value 
streams, the implementation of AGV systems, and a high level of MES connection of 
the production equipment for automated data collection.  

The value proposition of these efforts is increased transparency, increased equipment 
availability, and the integration of production and logistics. Data collection and 
integration is expected to yield new insights that have been hidden hitherto. On the 
site level, the site leader is formally responsible for digitalization initiatives but has 
delegated the responsibility for the operative design and implementation of 
digitalization initiatives to interview partner 1.  

From an organizational embedding perspective, lean and digitalization are separated. 
Lean know-how is concentrated at a central unit for the company LPS and 
digitalization expertise is concentrated at a unit dedicated to the MES and data 
analytics system. Also, an integrated strategy, taking lean and digitalization into 
consideration simultaneously, does not exist. However, although both units are 
separated organizationally, they often interact closely in projects. Within Company A, 
lean is considered as the basis for digitalization. Therefore, when introducing new 
production equipment, the lean unit defines the process to ensure high OEE and low 
inventory levels. The lean process is then digitalized by mirroring the process in the 
MES system.  
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5.2.2.4 Use of Data-based Applications 
From 12 DBAs25 identified in chapter 4.1, Company A has already eight DBAs in use, 
and three more are currently in the piloting and testing phase (Table 21).  

Table 21: Overview: use of data-based applications – Case I 

Overview: Use of Data-based Applications 

Layout Planning Production 
Scheduling Real-time Control 

System 
Performance 
Measurement 

Condition 
Monitoring 

Predictive 
Maintenance 

Prescriptive 
Maintenance Track and Trace 

Material Flow 
Management 

Inventory 
Management 

Product Quality 
Monitoring 

Product Quality 
Improvement 

Key Not in use Testing phase In use  
 

Real-time Control is used to enable a faster reaction to problems. In the event of a 
disturbance, employees receive relevant information on the problem and its location 
directly on a mobile device. The availability of spare parts can be checked and the 
delivery issued remotely. Real-time Control has contributed to a reduction in downtime 
of 20 percent.  

System Performance Measurement is applied as part of a digital shop floor 
management. Manufacturing data are tracked and visualized to increase the 
transparency of the value stream. Consistent definitions of KPIs across several 
manufacturing sites allow comparisons across the manufacturing network. To 
minimize human effort, data collection and processing are already automated to a high 
degree, with the intention to further decrease the share of human collected data. 
Information collected and visualized by the application System Performance 
Measurement is accessible remotely to everybody with access rights.  

Track and Trace is used as well as smart Material Flow Management systems; for 
instance, e-Kanban and AGVs with automated generated path planning. Condition 
Monitoring and Predictive Maintenance is implemented for some machines. For 
example, the vibration of a spindle is monitored to detect patterns and derive 
preventive maintenance plans. Prescriptive Maintenance is not in place. Product 
Quality Monitoring is supported by collaborative robots, which perform visual product 
quality inspection. Data collected by the MES system is accessible to the quality 
department. By using product and process data, root-cause analysis is supported.  

 
25 At the time of the interviews, the two DBAs of the EHS category were not yet part of the collection. 
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5.2.2.5 Data Utilization Use Case: Manufacturing Analytics Solution  
During the case study interview, one or two use cases of data utilization were 
discussed in detail. The interview partners were free to select the use case and were 
not restricted to the DBAs identified in the literature. The use cases were selected 
based on two criteria. First, the relevance of the use case for the company and second, 
the personal involvement of the partners in the project, which ensures a sound 
knowledge base on the objectives, challenges, and enablers of the use case.  

Company A presents a use case of the System Performance Measurement 
application. Initially, the process of data integration from different sources was 
extremely tedious and time-consuming. Employees needed to spend several days, in 
an extreme case, up to 50 days, for locating and merging data from different sources 
and databases. Many ideas for data analytics were not pursued further, as the initial 
effort of data collection was too high. As a result, the plant initiated the project 
Manufacturing Analytics Solution (MAS) to enable easy and fast access to distributed 
data via a central platform. The proposition that the MAS would decrease the effort of 
data analytics applications significantly convinced the management to invest in the 
technological infrastructure.  
The main components of the technological infrastructure were scalable data storage 
as well as powerful and scalable computing power. The MAS system was realized 
with a distributed Hadoop system. Only a few new sensors needed to be installed, as 
the majority of the relevant manufacturing data was already collected.  

Major challenges for the MAS project were to create full transparency on the data 
integrated into the system, to ensure data quality and data integrity, to ensure 
employee acceptance of the new system, and enable employees to use it. Data-
integrity includes the standardization of metrics and failure codes across several sites 
to enable consistent data architecture across the production network. This 
standardization must be driven by management, as there is little intrinsic motivation 
of the sites to do this exercise. 

Having the technological infrastructure and data architecture in place, a critical enabler 
of data analytics application was to bring together manufacturing data from the MAS 
and manufacturing domain knowledge of employees for data interpretation. To 
empower employees to use the system, basic training was provided to employees by 
internal MAS experts, so-called Citizen Data Scientists.  

Citizen Data Scientists are plant employees without formal education as data 
scientists, but a strong intrinsic motivation to build necessary skills for data analytics. 
They often have a high IT affinity and some IT skills they have gained in a private 
context. Citizen Data Scientists receive extensive on-the-job training in data analytics 
tools. In addition, they may reduce their amount of daily workload to have time for 
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individual and self-organized training, including the internet and YouTube as a source 
of training material.  

Besides the basic training, employees are supposed to familiarize themselves with the 
opportunities of data analytics in workshops aiming at interactive learning by hands-
on testing of their own ideas. Afterward, the Citizen Data Scientists serve as sparring 
partners and provide support to employees who propose a data analytics approach to 
solve a problem within their working area.  

From an acceptance perspective, most employees welcome the new MAS system, 
especially younger colleagues who desire to improve the previous situation of tedious 
data integration and the work with local data in excel. Interestingly, most persuasions 
were needed to convince employees of the value of the new system, that have worked 
a lot with data in the past and are considered as experts in the field of data analytics. 
The acceptance of the MAS system by employees depends to a high degree if the 
individual perceives the analytic solution as an improvement for his or her daily job or 
as an act of paternalism, decreasing his or her autonomy. 

A second driver of acceptance is active involvement in the development of the 
solution. For instance, a maintenance employee is much more likely to accept a data 
analytics solution for preventive maintenance if he or she was involved in the 
development of the solution. On the contrary, the willingness to follow data analytics 
results instead of personal know-how to derive maintenance actions decreases, if the 
solution was developed without personal involvement and if it was introduced top-
down by the management. 

Although not every employee can be involved in the solution development process 
equally, our interview partner stresses the point that each employee must have at 
least the opportunity to provide feedback: “Introducing a new solution without 
collecting feedback first does not work.” In Company A, workshops are conducted if 
new solutions are integrated into the process and these workshops usually comprise 
a basic introduction to the solution and the opportunity to provide feedback. Thereby, 
all affected employees can provide concerns and improvement suggestions.  

A general barrier for data utilization in manufacturing is the potential to use the data 
for individual performance measurement or even individual behavior control. 
Necessary to overcome this barrier is early and open communication with the 
employee representation, to create transparency about which data are used for what 
purpose and to define clear limits for tracking individual behavior and performance. 
Without approval of the employee representation body, specific DBAs may not be 
implemented.  

The maturity of the MAS project is currently at approximately 70–80 percent. After a 
successful rollout in the plant of this case, it is intended to also be implemented in 
other sites of the division.  
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5.2.2.6 Challenges and Enablers of Data Utilization 
The last section has presented challenges and enablers of data utilization in 
manufacturing, linked to the presented use case of MAS. This section discusses the 
question of challenges and enablers of data utilization more broadly and detached 
from the specific use case. The interview partners were asked to outline challenges 
and enablers from three categories: technology, organization, and employees. The 
focus, however, is chosen by the interviewee, depending on the individual perception 
of relative relevance and criticality. As some challenges and enablers are mentioned 
in the discussion of the data utilization use case and as general challenges and 
enablers of DBAs, occasional duplications occur.  

Technological Challenges and Enablers  

Both interview partners put little emphasis on technological challenges and enablers. 
It is common sense that the collection, transfer, and storage of data requires an 
appropriate IT system that is reliable and able to process large amounts of data 
quickly. Therefore, Company A uses a scalable Hadoop system that allows the 
carrying out of intensive computing processes with large amounts of data on 
distributed computer clusters. Furthermore, data security is seen as an obvious 
challenge. Therefore, Company A not only invests in technological protection 
measures against external hackers but also in training for employees to avoid data or 
access credential theft by social engineering or phishing. Access and identification 
security are part of mandatory training for all employees regarding data security. To 
ensure data integrity, Company A strives to automatically collect as many data points 
as possible with an MES system. Currently, this applies to more than 80 percent of 
the data. MES data meet the VDA26 requirements of data integrity and therefore are 
considered as highly reliable. 

Besides meeting these basic technological requirements, Company A enables data 
analytics by providing a smart analytics platform, which is designed and implemented 
by central units in collaboration with the manufacturing experts in the plant. As seen 
in the example above, this platform provides a powerful basis to perform targeted 
analysis without spending days for data collection and individual solutions 
programming in excel. The reduced effort substantially increases the motivation of 
manufacturing employees to think about data analytics opportunities and build a 
prototype to test the idea.  

Organizational Challenges and Enablers  

According to the interview partners, enabling sustainable data utilization projects 
requires a systematic process to identify promising opportunities. Therefore, in the 

 
26 German Association of the Automotive Industry 
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respective plant, Analytic Business Case Reviews are conducted. During these 
reviews, the responsible for digitalization in the plant, who is also the head of the 
internal Citizen Data Scientist expert network, presents tested and rolled-out solutions 
from other areas to a value stream manager. He thereby acts as a competent advisor 
as well as a sparring partner.  

If the value stream manager recognizes enough potential for similar applications in his 
or her area of responsibility, potential analytic projects and support of the internal 
Citizen Data Scientist network are discussed. Given the intention to implement a 
selected analytic project, objectives and resources, including financial and human 
effort, of the project are defined. Only if enough resources can be dedicated to the 
project, the implementation starts. If necessary, a higher-level committee, comprising 
the site leadership team, can be asked to provide additional resources.  

The approach of setting an Analytic Business Case Review as a starting point of an 
analytic project has several advantages. First, the expertise of data analytic projects 
is combined with expert knowledge on the value stream at hand. It will only start if the 
digitalization responsible and the value stream manager jointly recognize enough 
potential in a project.  

Second, by having supported several data analytics projects before, interview 
partner 1 has a good feeling for the required human and financial effort, thus 
supporting a realistic cost-benefit consideration. Also, this experience ensures that 
projects are staffed adequately to achieve the project objectives in time.  

Third, data analytic projects are implemented only if the responsible value stream 
manager requests the implementation. The projects are primarily implemented by 
workers of the respective value stream, supported by the Citizen Data Scientist 
network. By keeping the decision and implementation on the operative level, the 
acceptance of the solution among shop floor employees is increased.  

Another positive aspect is that the Analytic Business Case Reviews link different 
management levels (operative shop floor management, staff unit for digitalization, and 
the site leadership team), while the internal Citizen Data Scientist expert network 
creates links on the operative level.  

Company representative 2 adds further organizational requirements. He argues that 
due to the increasing use of manufacturing data, more decisions are taken 
automatically. For instance, AGVs already optimize their route planning 
autonomously. Nevertheless, the company should not entirely rely on the robustness 
of the system but rather prepare itself for the case of disturbances. Therefore, he asks 
for a risk assessment and an emergency concept, so that employees are prepared to 
react quickly and efficiently in case the data-based self-optimized systems crashes.  
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To ensure acceptance of employees and avoid legal conflicts, Company A has 
established clear standards, detailing which data is allowed to be tracked and which 
is not allowed to be tracked. While employees are welcoming digital technologies and 
data analytics in general, acceptance is limited if data can be used to monitor 
individual behavior and performance. To be compliant with data security and privacy 
regulations, each plant has its own Data Security Officer.  

Employee Challenges and Enablers  

Providing a basic understanding of DBAs to shop floor employees is key for the ability 
to use the application effectively and to ensure acceptance of the application among 
the prospective users. What is new and not understood may create uncertainty and 
rejection. Also, only by understanding the logic behind a data analytics solution, shop 
floor employees can provide qualified feedback to the solution developer. 
Consequently, all involved employees are trained when a new data analytics solution 
is introduced.  

Usually, an existing data analytics solution needs to be adapted to the specific 
process. End-users are encouraged to participate in the adaption process to bring in 
firsthand process knowledge. Thereby, the end-user is also part of the solution 
development and as such, shows a higher interest in the successful implementation 
of the solution compared to the implementation of a top-down provided, ready-to-use 
solution. Basic training is essential to enable shop floor employees to be part of the 
application development, which in turn contributes to the acceptance of the result.  

The critical importance of the acceptance of a new solution is illustrated by a 
preventive maintenance example. A new data analytics solution was presented to 
support maintenance employees in predictive maintenance. However, experienced 
maintenance employees rejected the proposed solution and argued that they 
preferred to rely on their longtime experience instead of on suggestions from the new 
tool. Although the analytic solution worked from a technological perspective, it was 
never successfully integrated into the existing maintenance process.  

A key takeaway for the management was to involve all stakeholders early in the 
development process of data analytics solutions. The solution developer and all 
relevant stakeholders on the job floor need to discuss and agree which action needs 
to be triggered if the predictive maintenance application detects a particular signal. 
Taking this lesson into consideration, another DBA use case of quality monitoring was 
jointly developed and successfully integrated into the process. Representative 1 
summarized it as follows: “The main challenge of an analytic solution is often not 
technical, but a question of employee acceptance.” 

In terms of employee qualification, it is neither feasible nor necessary to provide 
advanced training in data analytics for every employee. As discussed before, 
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Company A instead selects few especially motivated employees with preexisting basic 
knowledge of IT, programming, and data analytics and provides extensive training to 
those individuals to become Citizen Data Scientists. Citizen Data Scientists are 
internally referred to as the masters of the data. Unrelated to a specific use case of 
data analytics to be implemented, there is currently no standard training in data 
analytics for all employees. However, the topic of data utilization in manufacturing, 
especially data security, is addressed to some degree in compulsory training on 
industry 4.0.  

The training of the Citizen Data Scientists rests on three pillars. First, they receive 
basic training comprising different training modules provided by the company. 
Second, as new data analytic techniques and approaches are developed frequently, 
self-learning is a central element. Citizen Data Scientists are encouraged to search 
and use non-standardized learning material, also including, for instance, internet blogs 
and YouTube tutorials. To be effective, self-learning must be supported by the 
supervisor (e.g., by providing additional resources to the employee, such as time 
dedicated to training and, if required, a budget for fee-based training). The third pillar 
comprises the ongoing exchange of Citizen Data Scientists with experts of Company 
A's central units (e.g., professional data scientists). Within the plant, knowledge and 
experience is supposed to be shared during regular meetings of the Citizen Data 
Scientists network.  

Citizen Data Scientists combine manufacturing domain know-how with data analytic 
skills. This combination is highly appreciated by external companies but also central 
units of Company A. As a result, Citizen Data Scientists receive an above-average 
number of job offers.  

Hiring professional data scientists from the job market is challenging due to intense 
competition for few available experts. In comparison to banks and consultancies, a 
manufacturing company often struggles to offer competitive salaries. However, as one 
interview partner proudly points out, the manufacturing site allows testing new 
solutions in a physical setting within 100 meters of the working place. The opportunity 
to easily test an idea and receive feedback instantly is seen by many candidates as a 
strong argument for Company A, although higher salaries may be offered elsewhere. 
Also, Company A has a good reputation as a reliable employer, a fact that also 
facilitates the hiring of highly demanded data scientists.  
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5.2.2.7 Impact of Data Utilization on Lean  
“Lean remains lean” in terms of the basic philosophy of waste reduction. Company A 
does not expect major changes of lean due to DBAs on the level of lean principles, 
such as pull or flow. However, some implications are expected on the level of lean 
practices. Interview partner 1 suggests increased transparency, preventive 
maintenance, and internal logistics as examples of lean being supported by DBAs.  

Regarding transparency, data can be used to evaluate the result of performed 
improvement measures to a machine. Prior to the introduction of the MAS system 
described above, the effort for this use case was too high, with the result that there 
was some vagueness whether or not the taken improvement measures have been 
useful. Furthermore, increased transparency is expected to identify unnecessarily 
high inventories, which then can be optimized. A current project is concerned with the 
simulation of material flows, integrating real-time inventory data.  

After initial barriers, the DBA Predictive Maintenance (monitoring the vibration of a 
spindle to detect patterns) has been implemented successfully, thus supporting the 
lean practice Preventive Maintenance. In regard to internal logistics, Company A uses 
milk runs as one element of internal material distribution. Real-time data from the 
production system allows changing the takt from static to dynamic, based on actual 
demand. Thereby, the objective is to reduce the number of milk run tours, while still 
ensuring timely delivery of materials to the machines.  

DBA – Lean Practice Impact Evaluation – Industry Feedback  

Interview partner 2, serving as an specialist for internal material flows, was asked to 
evaluate three DBA – lean practice combinations with a theoretically high impact. The 
evaluations given in the interview have been integrated into the impact evaluation of 
DBAs on lean practices in chapter 4.  

The first combination discussed was the DBA Production Planning, and the lean 
practice Pull/Kanban. From a theoretical perspective, a contradiction between push, 
resulting from central production and material flow planning, and demand-oriented pull 
can be derived (see chapter 4.2.3.3.2). And in fact, in the plant of Company A, the pull 
system is substituted at least partially as the production of critical parts is planned 
centrally instead of being triggered by a Kanban card. However, apart from the 
production of critical parts, the material flow and replenishment of supermarkets is 
managed by a pull system. Central planning and the Pull/Kanban system are 
considered more as complementary elements of the systems than as opponents.  

The second theoretical proposition discussed was that by having access to real-time 
data, such as current demand and material availability, the DBA Material Flow 
Management could strongly support the lean practice Pull/Kanban. This proposition 
was supported by the logistics specialist. 



QUALITATIVE STUDIES 

132 

The Pull/Kanban is realized in Company A as e-Kanban. Data on consumed material 
and projected demand are feedbacked from machines and current material stock 
feedbacked by smart supermarkets to the ERP inventory management system. Based 
on these data, the system calculates the optimal lot size for replenishment. Thus, the 
e-Kanban is controlled by a virtual representation of the physical material flow. Major 
advantages over traditional Kanban systems are a fast and secure transfer of Kanban 
signals as well as the ability for dynamic lot size adaptions.  

Thirdly, interview partner 2 was asked to evaluate the potential of the application Track 
and Trace to support the lean practice Value Stream Mapping. Literature suggests 
that Track and Trace and other manufacturing data can be used to perform a cost-
efficient assessment of the current value stream, an approach referred to as “VSM 
4.0” (see chapter 4.2.3.3.5). 

The concept was very well received by the interviewee. He especially appreciates the 
perspective to perform several value stream mappings for different product variants 
with reduced human effort. Furthermore, due to a wide variety of products, bottlenecks 
may not be static but depending on the product. Such dynamic changes are likely to 
be better reflected in repeated and data-enriched value stream maps compared to 
standard value stream maps. However, VSM requires a physical presence on the 
shop floor. Merely relying on manufacturing data without being at the place of the 
process significantly increases the risk of data misinterpretation. In summary, a virtual 
VSM is rejected, while data supported traditional VSM is perceived as a worthwhile 
approach to enhance the current VSM methodology. 

5.2.2.8 Implications Case I : Company A. 
Table 22 presents key implications of the first case study. They serve as input for the 
cross-case analysis in chapter 0. Findings from the discussion on DBA - lean practice 
impacts have been included in chapter 4.2 and are not listed in the table below 
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Table 22: Key implications – Case I 

I Company A - Automotive Supplier Company P 

I.1 Company A has a lean strategy as part of the LPS and a formalized digitalization 
strategy on a division level. Lean is a foundation for digitalization. 123 

I.2 
Lean and digitalization are not combined in a common strategy and are separated 
from an organizational embedding perspective. Lean and digitalization experts 
mainly work together in projects (e.g., when introducing new production equipment).  

123 

I.3 Company A already uses eight out of twelve discussed DBAs at least partially in the 
case plant. Three more DBAs are currently in the testing phase.  124 

I.4 
The main barrier for data analytics application was an immense effort to find, 
combine, and analyze relevant manufacturing data. This barrier has been overcome 
by implementing the Manufacturing Analytics Solution (MAS) system. 

125 

I.5 Key technological requirements of the MAS are scalable computing and storage 
capacity. The MAS system is built on a distributed Hadoop system. 125 

I.6 
A key challenge for the MAS was to ensure data quality and data integrity by setting 
plant or even company-wide standards. Enforcing the standardization is a 
management task. 

125 

I.7 

The concept of Citizen Data Scientists is useful to build integrated manufacturing 
and data analytics expertise internally. Training of Citizen Data Scientists includes 
regular training, self-training, and regular exchange with plant and central unit data 
analytics experts. 

125 

I.8. 
Active involvement in the development is a driver of the end-user acceptance of 
analytic solutions. “Introducing a new solution without collecting feedback first does 
not work.” 

126 

I.9 A general barrier for data utilization in manufacturing is the potential to misuse data 
for individual performance measurement and individual behavior control. 126 

I.10 The identification and implementation of DBAs should follow a structured approach, 
such as the Analytic Business Case Review approach. 127 

I.11 
To create transparency on data utilization, Company A has developed clear data 
utilization guidelines. To ensure compliance with internal and external data 
protection requirements, every plant has a dedicated Data Security Officer. 

129 

I.12 

Training for DBA end-user, including the basic logic behind the DBA, is essential for 
three reasons: to enable effective use of the application, to enhance end-user 
acceptance, and to facilitate qualified feedback to developers. Training is provided 
to the relevant stakeholders if a new solution or new equipment is introduced. 

129 

I: Implications, P: Page  
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5.2.3 Case II: Company B 

5.2.3.1 General Information  
Company B is a major automotive supplier company, headquartered in central 
Europe. It has more than 5,000 employees worldwide and has generated an annual 
turnover in 2018 of over $2 billion. Since 1980, the turnover has grown significantly 
through internal growth and external acquisitions with a compound annual growth rate 
of 13 percent. The company operates more than 15 R&D and production facilities in 
the EU, Asia, North and South America. The main contact is Head of Lean 
Management. He has answered the interview questions from a corporate perspective.  

5.2.3.2 Lean Status Quo 
Lean is considered a tool to ensure a basic level of standardization among the sites 
of the production network, however, lean is also seen as a philosophy to foster 
continuous improvement and employee involvement in CI activities. Current 
objectives of lean management in Company B are quality improvements by failure 
reduction, thus reducing failure costs and improving delivery capability.  

Company B operates a company-specific production system that is based on lean 
principles. The five key objectives are safety, quality, delivery, cost, and sustainability. 
The company-specific LPS visualization has the PDCA circle at its core, thus 
highlighting the importance of CI within the company. CI is part of the daily job and all 
employees are expected to be actively involved in CI activities, especially during the 
implementation phase of new processes. During a site visit, a manager revealed that 
at the site, on average, two improvement ideas are contributed for every employee, 
which amounts to 2,000 improvement suggestions per year in one plant.  

From the lean practices described in chapter 2.2.3, all 10 are used at Company B to 
varying degrees. All 10 lean practices are well-known to the interview partner, so he 
is considered to be qualified to provide industry feedback in the DBA – lean practice 
impact evaluation. 

5.2.3.3 Strategic Alignment of Lean and Digitalization 
Company B has a digitalization strategy with a strong focus on a cross-plant MES 
system with comprehensive analytics functionalities. Implementing a company-wide 
MES system needs to be managed by corporate, to ensure standards and provide 
sufficient resources. On a site level, individual digitalization projects are developed, 
tested, and implemented, but on a comparably small scale.  

Regarding the integrated consideration of digitalization and lean, our interview partner 
highlights the importance of close interaction between IT teams and the lean team. 
The ideal process from an IT perspective does not necessarily equal the perfect 
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process from a practitioner's perspective on the shop floor. As a result, the lean unit 
is needed to ensure the applicability and user-friendliness of IT tools for the company 
LPS. Nevertheless, the digitalization strategy is currently not aligned with the lean 
strategy embodied by the LPS.  

Also, from an organizational embedding perspective, the lean responsible and the 
responsible person for the MES system are separated. The interviewee argues that 
the integrated consideration of lean and digitalization is the responsibility of the top 
management. This responsibility is often delegated to project teams, for instance for 
the implementation of a new MES system. The MES project team was supported by 
the corporate lean unit, thus ensuring to have both perspectives in the team.  

5.2.3.4 Use of Data-based Applications 
Company B has eight out of twelve DBAs discussed in the interview already in place, 
with two more DBAs in the testing phase. The overview shown in Table 23 applies to 
Company B as a company, whereas the individual sites may have fewer DBAs in use.  

Table 23: Overview: use of data-based applications – Case II 

Overview: Use of Data-based Applications 

Layout Planning Production 
Scheduling Real-time Control 

System 
Performance 
Measurement 

Condition 
Monitoring 

Predictive 
Maintenance 

Prescriptive 
Maintenance Track and Trace 

Material Flow 
Management 

Inventory 
Management 

Product Quality 
Monitoring 

Product Quality 
Improvement 

Key Not in use Testing phase In use  

 

Data-based Production Planning was rolled out only recently with the primary 
objective of integrated planning across several sites within the production network. In 
the production network, site X produces parts used in site Y. Planning across sites 
allows increasing flexibility while reducing inventories at site Y. Currently, three 
production sites are linked to the central planning system.  

For Real-time Control a central cockpit was designed that visualizes real-time data 
from process control sensors. Remote access to the dashboard is possible, given the 
access rights. As an example of the application System Performance Measurement, 
the KPI OEE of almost all production machines is measured and visualized on a 
remotely accessible dashboard.  
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Predictive Maintenance is currently tested at a few machines. However, currently, the 
effort and costs for Condition Monitoring and Predictive Maintenance are often 
exceeding the costs for preventive maintenance on a fixed schedule basis. Hence, 
those DBAs are not prioritized. 

Track and Trace, in contrast, is widely rolled-out as traceability is a basic requirement 
of many OEM customers. Material Flow Management is realized by e-kanban and 
AGVs. In one plant, 25 AGVs are used to automate the intralogistics and since their 
introduction, significant fewer accidents have occurred and as a result, fewer goods 
were damaged.  

As part of the DBA Product Quality Monitoring, critical to quality product characteristics 
are monitored and documented automatically. This documentation is requested by 
compliance requirements. Using product and manufacturing data for Product Quality 
Improvement is applied mainly in mechatronics manufacturing. Previously, the 
integration of several data has been very time consuming, which was a barrier to data-
based quality improvement. Accessing and combining different sources of data is 
strongly facilitated by the new MES system.  

5.2.3.5 Data Utilization Use Case: Global Performance Cockpit  
The main objective of the Global Performance Cockpit, which is part of a new MES 
system, is to consolidate machine data to ensure delivery capabilities. To keep service 
level agreements, new equipment often needs to be fully utilized. When falling below 
an OEE threshold of 75 percent for some machines, the site's delivery capability is at 
risk. This, in turn, may have negative impacts on another site in the network, 
depending on the timely delivery of parts. Based on real-time data (updated every five 
seconds), the Global Performance Cockpit highlights critically low OEE performance 
levels early. The small latency time allows rescheduling in other production sites in 
time before the production is impacted by missing supply of intermediate parts. 

In addition, the Global Performance Cockpit allows internal benchmarking between 
similar production equipment to detect problems, with low effort and even across sites.  

The main technological requirement is to build the physical infrastructure for the 
system, including the installation of sensors at the production equipment and the 
definition of interfaces for data transfer to the central MES system. To make 
performance metrics comparable, they need to be standardized company-wide. This 
standardization exercise is an organizational challenge, as different sites may have 
used different KPI definitions historically.  

A critical enabler is to train employees to understand the value of extra effort for data 
collection and the importance of providing data without errors to the system. Although 
most of the data is collected automatically, extra effort may arise for some employees 
for manual data input. 
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Therefore, change management is necessary to “take the people on board.” It is a 
leadership task to communicate the benefits of the system and explain why it is 
beneficial for the company (e.g., in terms of competitiveness) as well as for every 
employee.  

For the successful implementation of the use case, ongoing leadership commitment 
was critical as large-scale IT projects as the implementation of an MES system are 
often complex, very expensive as well as time and resource consuming.  

5.2.3.6 Challenges and Enablers of Data Utilization 

Technological Challenges and Enablers  

Out interview partner has identified three areas that might constitute barriers to 
implementing DBAs. First, enabling access to distributed data requires the integration 
of several data sources and IT systems. This integration is expensive and time-
consuming. Second, IT system stability is fundamental for some DBAs. For example, 
production scheduling and control requires 100 percent IT system availability; 
otherwise, the whole production system stops running. Third, data protection is 
considered critical as hacking manufacturing data systems may allow competitors to 
gain business-critical information.  

Organizational Challenges and Enablers 

Organizational challenges and enablers comprise management commitment for DBA 
projects, effective change management, and the protection of personal data. 

As discussed in the previous section, providing the IT infrastructure for DBAs in a large 
company is a highly expensive and effortful project, which can only be successfully 
completed with ongoing management support. 

Moreover, management has a critical role in the change management process as 
some DBAs bear the risk to reduce the scope of a job description or even to make the 
job redundant. For instance, the Predictive Maintenance application can decrease the 
total amount of maintenance efforts and, thus, reduce the number of maintenance 
jobs. Fear of job losses is a strong driver for employee resistance. Consequently, 
management needs to communicate the value and needs of the application and offer 
employees a reliable perspective within the company in case of job reductions.  

Data protection has not only a technological perspective but is also an organizational 
challenge. Management must ensure the protection of personal related data. Apart 
from the fact that companies are bound by law to adhere to personal data protection 
regulations, at least in the EU labor unions have the power to block the rollout of 
manufacturing data systems that enable monitoring individual behavior. 
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Employee Challenges and Enablers 

The major importance of employee qualification to work with a new system or 
application has been discussed in the use case section. Employees need to 
understand the implications of the data they enter into the system. Our interview 
partner emphasizes that knowing the “why” of data collection significantly increases 
the quality of the manually entered data.  

On the middle management level, a holistic understanding of IT systems and 
manufacturing systems is required to drive DBA projects. However, nobody can fully 
gain a complete understanding of both the IT system and the manufacturing system, 
thus bringing together IT and manufacturing experts in cross-functional project teams 
remains a critical enabler of DBAs. 

5.2.3.7 Impact of Data Utilization on Lean  
“Full transparency of data and processes on the shop floor with digital interfaces on 
the shop floor.” This statement summarizes the expectations of the integration of 
digital technologies in Company B's LPS. Full access to data will enable near real-
time analysis capabilities and thus supporting the lean continuous improvement 
process. An example provided by Company B are six sigma projects, which can be 
executed faster and may deliver more reliable results. 

DBA – Lean Practice Impact Evaluation – Industry Feedback  

The first question addressed the potential to support the lean practice Quality 
Management by the DBA Product Quality Monitoring.  

From the interviewee's perspective, data-based quality monitoring, such as visual 
inspection, has an enormous potential to automate quality inspection. Currently, a 
large part of visual inspection is done by a considerable number of employees. Due 
to the monotonous nature of the task, it is difficult to keep concentration high during 
the whole shift. Decreasing concentration increases the likelihood of defect products 
not being detected and sorted out. Camera systems, in contrast, promise a constant 
inspection quality. Also, visual inspection systems are faster and, although being 
extremely expensive to acquire, likely to be more cost-effective in the long run.  

Nevertheless, until today, a camera system-based visual inspection also does not 
achieve a 100 percent accuracy rate. For products with complex geometry, the 
material handling effort is too high to justify automated inspection economically. 
Nevertheless, for identifying defect products, the impact of automated product quality 
monitoring is expected to be high. However, as sorting out defect products does not 
improve the quality of the product systematically, the general impact on the lean 
practice Quality Management is only moderate.  
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The second question addressed the impact of the DBA Predictive Maintenance on the 
lean practice Continuous Flow.  

The argumentation that equipment stability supports flow, based on Womack and 
Jones (2003), was presented as justification for the initial assumption of a strong 
impact. According to the interview partner, the assumption that equipment stability 
supports flow can be backed from practical experience on the shop floor. Because 
Predictive Maintenance may reduce equipment downtime, the OEE and thus, the 
stability is positively influenced. Hence, Prescriptive Maintenance supports flow.  

However, as technical breakdowns and maintenance are only two determinants of the 
OEE among others, the impact of Predictive Maintenance on Continuous Flow is more 
realistically to be rated as moderate than as high. Only if all other requirements for a 
high OEE, such as on-time material delivery are met, the impact of Predictive 
Maintenance on Continuous Flow is considered high.  

The third question addressed the impact of the DBA Production Scheduling on the 
lean practice Pull/Kanban.  

As discussed in chapter 4.2.3.3.2, literature documents a conflict of central IT-based 
production planning, promoting the push principle, and lean promoting the pull 
principle (Maguire, 2016, p. 32). The representative of Company B recognizes a 
theoretical conflict but argues that both approaches work well together in reality. In 
Company B's production sites, push and pull are used at the same time. The pull 
approach is used to trigger the production process of a product at the moment a 
customer places an order. The customer order is transferred digitally to the planning 
system, thus following the logic of an e-Kanban system.  

The material flow between multiple process steps is then planned by the central 
planning system. Hence, Pull/Kanban is made redundant between the process steps. 
As a result, fewer WIP is necessary as Kanban inventory between process steps is 
not needed. Having a traditional LPS, with the Kanban system as the only mean of 
material flow management in mind, the example of Company B indicates at least a 
partial substitution of the lean practice Pull/Kanban by the DBA 
Production Scheduling.  
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5.2.3.8 Implications Case II: Company B 
Table 24 summarizes the key implications of the second case study. 

Table 24: Key implications – Case II 

I Company B - Automotive Supplier Company P 

I.1 
Company B operates a company-specific LPS. A digitalization strategy exists with a 
strong focus on a cross-plant MES system. The digitalization strategy is not aligned 
with the lean strategy of the LPS.  

134 

I.2 
Organizationally, the responsibility for lean and for digitization is separated. The lean 
unit is involved in projects to ensure the applicability and user-friendliness of IT 
solutions for the shop floor during implementation projects. 

134
-
135 

I.3 Company B already uses eight out of twelve DBAs at least partially in one of its sites. 
Two more DBAs are currently in the testing phase. 135 

I.4 
Company B has implemented a new MES system, comprising a Global Performance 
Cockpit to track performance metrics and generate early warnings of critical OEE 
levels. 

136 

I.5 
Challenges for the MES system were the installation of sensors at all relevant 
equipment, definitions of interfaces to the MES system, and the standardization of 
metrics.  

136 

I.6 

A key organizational challenge for introducing DBAs is change management. 
Employees need to understand the value of a new application to create acceptance 
for the DBA. Acceptance is threatened by extra effort for data collection as well as 
the fear of job loss. 

136 

- 
137 

I.7 Ongoing leadership commitment is critical for the implementation of long term 
projects. 137 

I.8. General technological challenges for DBAs are the integration of several data 
sources or IT systems, IT system stability, and data protection against data theft. 137 

I.9 Data protection is increasingly important, to avoid misuse of personal related data 
as well as theft of manufacturing data by externals. 137 

I.10 
All employees working with a new system or application need to have basic training 
to understand its functions but also to understand the importance of error-free data 
that needs to be entered manually.  

138 

I.11 

To drive DBAs projects, a holistic understanding of IT and manufacturing systems, 
as well as data analytics, is required on the management level. For the actual 
implementation, experts from both fields need to be involved in a cross-functional 
project team. 

138 

I.12 Full transparency of data and processes is considered as the main benefit of data 
utilization for lean. 138 

I: Implications, P: Page  
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5.2.4 Case III: Company C  

5.2.4.1 General Information  
Company C is a major European ICT company and has around 20,000 employees 
generating a revenue of around $10 billion. It offers corporate and residential 
customers mobile and fixed-line telephony, internet, digital TV, and various cloud 
services. In addition, Company C is a large provider of IT services in the energy, 
advertising, entertainment, banking, and healthcare sector. The main contact during 
the joint project and the case study is the Head of Lean Management. 

Company C constitutes a special case in this selection as it does not operate a 
manufacturing system in the sense of transforming raw material to finished products. 
Internally, however, the physical infrastructure to provide its services, including 
internet, telephony, and TV, is considered as the company's manufacturing system. 
As an ICT company, Company C has much experience in collecting, processing and 
analyzing data. Due to the high maturity in terms of data utilization, it is useful to 
include the company in the study even without a traditional manufacturing system. 

As the DBAs introduced in chapter 4.1 are applicable within a manufacturing site only, 
they are not part of this case study. Instead, this case focuses on use cases of data 
utilization, which are different from those in the manufacturing area. Contrasting 
findings of this case study to the other three allows deriving conclusions whether 
particular challenges and enablers are specific to the manufacturing industry or can 
be generalized more broadly.  

5.2.4.2 Lean Status Quo 
“We are active in an increasingly competitive market where we need to address rising 
customer expectations, higher volumes, and changing technologies at the same time, 
all while lowering the cost base of our company—this means that we need to 
continuously improve our value creation activities.” 

With this statement, our main partner at Company C explains the criticality of CI and 
lean thinking in its organization. The company is guided by the five lean principles: 
define value from the customer perspective (1), identify the value stream (2), flow (3), 
pull (4), and strive for perfection (5). Customer orientation is one of three strategic 
objectives and customer satisfaction is a central metric for the company and relevant 
for financial bonuses for all employees.  

Lean is understood as a system to create transparency on goals and value creation, 
to foster employee empowerment, and to support CI. The company emphasizes that 
lean should be carried out by all employees and managers in the organization. CI is 
requested and encouraged in different ways. As part of their agile work in development 
areas, participants meet every two weeks for retrospectives to critically evaluate the 
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working method and the results of the past weeks to find ways to work smarter. 
Operating divisions, including network operation and customer service, use an app 
specifically designed to provide improvement suggestions. The app is embedded in a 
feedback process that ensures timely and qualified feedback.  

Interestingly, from the lean practices of chapter 2.2.3, only the practices Quick 
Changeover Techniques and Lot Size Reduction are not part of Company C's lean 
efforts due to the lack of a physical manufacturing system. 

Preventive Maintenance is used for base stations for mobile communication. For 
Quality Management, the quality of phone or internet connection is monitored. 
Continuous Flow aspires for customer tickets across different departments. The 
Pull/Kanban system is used to trigger the replenishment of warehouse products. 
Kanban is also used in software development as part of agile working methods. Value 
Stream Mapping is described as an “all-purpose weapon” of Company C. It is regularly 
applied in operating divisions as well as in software development, always aiming to 
identify non-value adding activities and reduce waste. Cross-functional teams are 
often set up as DevOps teams, primarily for product development. The practice Self-
directed Work Teams is a key element of agile working often used in software 
development. The main objective of Self-directed Work Teams is an increased speed 
of decision-making. 

The examples of the application of the lean practices show that Company C builds on 
traditional lean practices and has adapted the lean practices to a non-manufacturing 
environment and a modern working setup, including agile working methods. 

5.2.4.3 Strategic Alignment of Lean and Digitalization 
As of today, Company C has not formulated a dedicated digitalization strategy. 
However, Operational Excellence is one of three strategic objectives. Operational 
Excellence comprises the internal digital transformation, including an increased level 
of process automation (e.g., robotic process automation) as well as data analytics 
applications (e.g., ML applications). Operational Excellence aims to reduce the cost 
basis, to free cash flow for investments in new business areas.  

Company C has a corporate lean unit, headed by the head of LM. Due to the fact that 
digitalization is happening parallel in many areas of the company, there is no single 
person responsible for digitalization. The internal digital transformation is driven by 
the process automation team.  

Organizationally, the lean team and the process automation team are separated. 
There is no integrated leadership of lean and process automation, as both teams have 
very different tasks and core competencies. However, there is close cooperation 
between the two teams, which is mainly based on the fact that the value of each other 
is known. A regular exchange takes place, with discussions focusing on how existing 
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cases can be handled most effectively: only automate them or design them lean 
beforehand and then automate them. 

5.2.4.4 Data Utilization Use Case: Smart Support 
Company C possesses a very high level of knowledge about disturbance patterns of 
its services. Thereby, the knowledge of the whole organization exceeds the 
experience a single service agent can possibly have. Exploiting this organizational 
knowledge to improve customer satisfaction of Company C's customer support was 
the main driver to develop the Smart Support system. 

Customer satisfaction in this context is measured by two metrics. The first metric is 
the time a customer has to wait until he or she receives a solution to the problem. The 
second metric is the first-time right rate, which measures the ratio of the number of 
customer issues solved with a sustainable solution at the first contact with the service 
unit, divided by the total number of customer issues.  

To support service employees in their daily work, the Smart Support system provides 
decision support. The system builds on an ML application that is trained by a database 
comprising all recorded quality issues in the past, along with successful mitigation 
strategies.  

Smart Support works as follows. A customer reports per phone or internet a problem 
to the service employee. Based on the customer's problem description and a near-
real-time measurement of the customer's connection, an ML application analyzes the 
problem and searches the database of past quality issues for similarities. If the 
problem description matches an existing problem and a respective solution is 
documented, the solution is proposed by the system to the service employee. If more 
than one solution may be plausible, the system ranks the suggestions according to 
the likelihood of a sustainable solution to the described problem.  

Smart Support supports the service agent mainly in two ways. First, it enables the 
agent to propose a solution that is informed by all tracked quality issues that occurred 
and solutions proposed in the past. Therefore, the likelihood to find the best solution 
is increased strongly. Second, Smart Support reduces the number of interactions the 
service employee has to perform with its computer to identify a possible solution and 
hence, allows the employee to focus more on the customer. 

In the aftermath of the communication with the customer, Company C tracks whether 
the problem is solved and whether it is solved sustainably. Both data points are 
feedbacked, thus enlarging the database and improving its accuracy every time the 
Smart Support system is used. As a result, blank spots of the system, where no data-
based solution can be provided, are reduced over time.  
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Smart Support has considerably increased customer service by reducing the time until 
a solution is given and by reducing the number of non-sustainable solutions. By 
minimizing non-sustainable solutions waste is reduced and service employees use 
the freed time for other tasks.  

Three technological challenges needed to be overcome to implement Smart Support. 
A key challenge was to translate the implicit experience-based knowledge of service 
employees to explicit machine-readable knowledge. As a result, in the beginning, only 
a small fraction of quality problems were covered in the database and the system 
needed time and permanent input of quality problems and solutions to increase this 
share. By now, the system covers almost all known quality problems and is applied in 
almost every interaction of a service employee with the customer. A second challenge 
was to move from the existing IT system to the new one without interrupting the 
customer support service. And third, a new process had to be designed for customer 
support. While the existing system required to follow a fixed path through the system, 
the new one allows jumping directly to a solution with the highest likelihood of solving 
the problem sustainably.  

In the early phase of the Smart Support System, service employees rejected the idea 
of ML-based decision support. Some feared that the system would patronize them 
and expected a downgrade of their job from being a competent, self-determined 
solution developer to an order receiver that only communicates the system's solution 
to the customer. Company C took these concerns seriously and decided to design the 
Smart Support system in a way that always allows the service employee to take the 
final decision. If specialized knowledge enables him or her, the employee is free to 
propose a solution that differs from the one suggested by the system. The approach 
is comparable to a driver of an autonomous car who still has the power to oversteer 
the autopilot. 

From a practical perspective, the system gets better every day as the probability of 
blank spots in the system decreases permanently. In the meantime, Smart Support 
has proven its value to enhance the job of service employees and increase customer 
satisfaction, thus resulting in a broad perception of the system as welcomed support. 
Nevertheless, keeping the service employee “in the driver seat” remains essential for 
the acceptance of the system. 
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5.2.4.5 Challenges and Enablers of Data Utilization 

Technological Challenges and Enablers 

Apart from the technological challenges described in the use case above, no further, 
more general technological challenges were discussed. 

Organizational Challenges and Enablers 

The main contact of Company C is Head of Lean Management, which explains his 
strong process orientation and ambition to enable flow within his organization. In an 
ICT company flow usually does not refer to physical but virtual entities; for example, 
customer tickets. To enable the flow of virtual flow objects through the organization, a 
standardized definition and identification of theses flow objects is required as well as 
access to all relevant data for all involved departments. Ensuring a standardized 
definition and a unique identification of virtual flow objects within the whole 
organization is considered a major organizational challenge.  

Company C has defined the objective of becoming a data-driven company, hence, to 
learn from data to support operational and strategic decision-making. However, 
Company C has recognized that transparency created by data is not universally 
welcomed. Transparency might also be perceived as an instrument to control 
individual performance of employees. This perception results in a negative attitude 
towards data collection and analytics among employees.  

The company does not deny that data is increasing transparency, also including the 
possibility for objective performance evaluation. The message, however, is that data 
is not used to control individual behavior but enables a transparent and fair leadership 
based on objective metrics. A transparent communication, which metrics are collected 
and used for performance assessment, has helped to increase the acceptance for 
metric-based performance assessment among employees.  

Employee Challenges and Enablers 

Employee qualification is an essential enabler for applying new DBAs such as the 
Smart Support system. The optimal qualification thereby depends on the role of the 
employee. End-users benefit from training that not only focuses on how to use a new 
application but also conveys an understanding of the underlying logic of the 
application. Understanding the underlying logic has proven to be helpful to use the 
application more effectively, compared to only follow the user guidelines. However, 
the effort for additional training has to be economically reasonable. Advanced 
technological knowledge (e.g., of the ML algorithm) does not provide additional value 
for the daily job of service agents and thus is not part of the company provided training.  
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To develop and implement applications such as the Smart Support system, 
developers and managers require advanced skills in various areas, such as ML, data 
science, and DM. To cover the need for qualified employees, Company C has created 
an advanced training system building on two pillars.  

The first pillar consists of formal education in cooperation with a well-known university. 
In a 150-hour course, comprising web-based and classroom training, more than 100 
employees are trained as a data scientist. Although Company C offers a three-digit 
number of places in the course, the demand is exceeding the number of available 
places by far, demonstrating the high motivation of employees for advanced training 
in the field of data analytics. 

The second pillar consists of a systematic building and the exchange of internal know-
how. One concept of the second pillar is called Stage. During a predefined period, 
often between 20 to 40 weeks, an employee from a non-IT unit works for a fixed 
percentage of his time in an IT department or data science team. With this form of 
learning on the job, cross-functional know-how exchange is fostered as well as the 
creation of personal links between different departments. Nevertheless, finding and 
training sufficient data-affine employees internally is very challenging as the interview 
partner admits: “We know that we need more data-affine employees.” 

To complement internal know-how building, Company C regularly screens the labor 
market for qualified persons. However, well-trained people with an affinity to data are 
rare and many companies compete for them on the market. Although a strong 
company brand is helpful to convince data talents they know their market value, 
resulting in comparably high salaries. Therefore, Company C is active to hire data 
talents, however not at all costs.  
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5.2.4.6 Impact of Data Utilization on Lean  
“Gaining direct data-based insights on where the biggest potentials for optimization 
and the next improvements are, as opposed to relying on opinions and prioritizing 
them” was the answer of a second member of Company C's corporate lean team to 
the question of what the next step in lean regarding digitalization will be. The quote 
summarizes the intention of Company C to use data to identify improvement 
opportunities and support decision-making.  

Data-based support of optimization is a pivotal element of Company C's vision for the 
next stage of lean. The why for optimization should thereby be determined by business 
needs. Data and advanced analytics then provide insights on what and how to best 
improve.  

Also, the company strives to use DBAs, such as the Smart Support System, to 
increase customer value while reducing waste and thus following two lean principles. 
Robotic process automation is used in combination with ML to automate processes. 
For instance, an intelligent chatbot was developed to minimize response time to 
customers for written requests (best case less than one minute). Voice recognition is 
another ML application that is tested to reduce the effort for customers to identify 
themselves on the telephone.  

Most value-creating processes of Company C are non-physical. Data collection and 
analysis allows the monitoring of the performance of these virtual processes. 
Comparable to traditional manufacturing KPIs, virtual process performance metrics 
increase transparency on process performance and indicate occurring, but invisible, 
process problems.  

In conclusion, as Company C does not have a physical manufacturing system, it is 
not feasible to evaluate the impact of data utilization on traditional lean practices. 
However, on the level of lean principles, the potential of data utilization to support lean 
objectives, especially CI, customer value creation, and waste reduction is evident.  
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5.2.4.7 Implications Case III: Company C 
Table 25 summarizes the key implications of the third case study. 

Table 25: Key implications – Case III 

I Company C - Information and Communication Technology Company          P 

I.1 
Although being an ICT company without a physical production system, Company C 
follows the five lean principles and applies several lean practices in their daily 
operations.  

142 

I.2 

Lean and digitalization are not managed in an integrated way. However, the skills and 
competencies of the lean team are known to the teams driving the digital 
transformation and vice versa. This knowledge fosters a close collaboration on a 
project basis. 

142 

I.3 Company C is very advanced in data utilization. The Smart Support system is a mature 
ML application that uses historical data to increase customer satisfaction. 143 

I.4 A key technological challenge of the Smart Support system was the translation of 
implicit knowledge of service employees to explicit knowledge eligible for ML. 144 

I.5 

An initial barrier was the perception of the new system as a threat to the autonomy of 
employees and their self-image as a solution developer. By granting final decision-
making power, also against the proposition of the system, the perception of the system 
has changed and it is now considered a useful supporting tool in customer services. 

144 

I.6 Standardizing definitions and identifications of virtual flow objects, such as customer 
tickets, across all departments is a major organizational challenge.  145 

I.7 
Increased transparency due to data collection was partially perceived as an instrument 
for controlling employees. Transparent communication about which metrics are used 
for performance evaluation and which are not has helped to overcome this perception. 

145 

I.8. 
Employees require job-specific training to use DBAs effectively. End-users of an 
application, such as the Smart Support application, need to be able to operate the 
system and understand the underlying logic behind the application.  

145 

I.9 
Developers and managers need advanced training, which is realized with a dedicated 
external course on data analytics as well as with learning on the job in different 
departments. Demand for advanced training is currently exceeding the offer by far. 

146 

I.10 Data talents are attractive for many companies, thus making it difficult and expensive 
to hire data scientists from the labor market. 146 

I.11 
“Gaining direct data-based insights on where the biggest potentials for optimization 
and the next improvements are” is the primary value proposition of digitalization for 
the next step of lean.  

147 

I.12 Company C uses data in several ways to support the lean objectives of customer value 
and waste reduction, including several advanced applications of ML. 147 

I: Implications, P: Page  
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5.3 Academic Expert Interview  
The following two chapters present the results from expert interviews with two senior 
academics. Expert interviews were conducted for two reasons. First, to broaden the 
basis of qualitative data for the cross-case analysis in chapter 5.4. As described 
above, the experts serve as “surrogates for a wider circle of players” by contributing 
insights from several DBA projects in the manufacturing industry. Second, the senior 
academics were asked to challenge a theoretical model that emerged during this 
dissertation project. Due to their practical and theoretical experience in the field of 
data utilization in manufacturing, they are deemed to be competent sparring partners 
to discuss the initial versions of a DBA value model. The DBA value model and the 
derived ROI dilemma of DBAs theory will be introduced in the consolidation chapter 
6. Feedback given during the two expert interviews on the model and the theory is not 
discussed in this chapter but instead in the respective chapter 6.3.1 

Both academics have an excellent reputation in the field of manufacturing data 
analytics and share the perspective that doing research in manufacturing data 
analytics requires close interaction with real-world manufacturing companies. The 
guideline used to structure the semi-structured interview is based on the case study 
interview guideline but has been adapted to the particular research focus of the 
interviewee (see Appendix D).  

The two interviews share a brief introduction, providing background information about 
the position, career, and research focus of the interview partner. The second section 
investigates the motivation of companies to initiate DBA projects. The third section is 
distinct. Expert I is currently involved in several data utilization projects and is, 
therefore, asked to provide some insights on the current status quo of selected DBAs. 
Expert II has lived, worked, and conducted research for several years in the USA and 
Europe. Due to the fact that he knows both regions well, he was asked to evaluate 
differences between the USA and Europe regarding the application of ML/AI.27 The 
fourth section focuses on the main challenges and enablers for data utilization in 
manufacturing. The last section summarizes key implications per interview.  

5.3.1 Expert Interview I 

5.3.1.1 Background Information  
Dr. Guido Schuster is a professor at the University of Applied Sciences Rapperswil in 
Switzerland and works at the Institute for Communication Systems (ICOM). His 
professional career combines research and industry experience. He has gained a 
master's and a doctoral degree at Northwestern University, Illinois, USA. During his 

 
27 The term machine learning is used synonymiously with the term artificial intelligence 
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Ph.D., he worked for the Motorola Corporate Research Laboratories in Illinois and was 
part of the development of the MPEG-428 standard.  

In the following years, Professor Schuster was involved in several research projects. 
He specializes in applied science and development in the following two areas: First, 
digital signal processing, including computer vision and image processing; and 
second, AI, including ML and deep learning. He has been honored with several 
awards for his research and holds more than 60 international patents. As a researcher, 
he has published more than 65 peer-reviewed publications. 

5.3.1.2 Motivation of Data Utilization in Manufacturing  
Based on his experience, Professor Schuster argues that initiatives for data utilization 
in manufacturing are often initiated by the top management, although he has observed 
a lack of technical expertise among many top executives. One reason for this is that 
management is afraid that their company is lacking behind its competitors in terms of 
data utilization capabilities and therefore pressures the organization to search for 
opportunities for data utilization. Today, stakeholders of larger companies, such as 
the supervisory board, expect the top management to have a kind of “data strategy.” 
Therefore, data-based initiatives are regularly driven top-down.  

Comparably few initiatives are driven by manufacturing responsible. It appears that 
they are, in general, already quite satisfied with the current situation, and as a 
consequence, have little motivation to invest much effort to collect data or to lay the 
technological foundation of DBAs. Except for large and technological mature 
companies, the current availability and quality of data of manufacturing companies are 
quite limited. In addition, Professor Schuster perceives some resistance by production 
managers and shop floor employees against DBAs. Shop floor employees may 
perceive DBA as a driver of rationalization and finally as a driver of job reduction, 
resulting in little enthusiasm to support the introduction of such applications. 
Production managers are often not eager to initiate DBAs for a different reason. In the 
experience of Professor Schuster, they tend to feel criticized if somebody suggests 
they use data to support decision-making instead  

of relying on the personal experience of the production managers.  

In conclusion, in many cases, top management initiates projects to implement DBAs 
to demonstrate their willingness to prepare the company for the digital transformation, 
whereas manufacturing units tend to show initial inertia. Overcoming the initial inertia 
is a crucial enabler for the successful introduction of DBAs.  

 

 
28 MPEG-4 is a method of defining compression of audio and visual (AV) digital data.  
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5.3.1.3 Status Quo of selected DBAs in Manufacturing 
Due to his broad experience in data utilization in manufacturing, both from an 
academic perspective but also from several industry projects, Professor Schuster was 
asked to comment on the current status of DBA projects he was or is personally 
involved in.  

DBA Production Scheduling  

The objective of the DBA Production Scheduling is to determine the optimal production 
plan, based on current orders and the availability of manufacturing resources. 
Professor Schuster is currently involved in a production scheduling research project 
with a large automotive supplier.  

The project seeks to optimize production scheduling to reduce the number of 
changeovers of two machines. Previously, production scheduling for the two 
machines was done by intuition without the support of operations research 
optimization tools. By describing the current situation as a mathematical optimization 
problem and solving the problem with a brute force approach, the productive time of 
both machines was increased by more than three percent, thus resulting in higher 
daily throughput.  

Professor Schuster reports a gap between operation research in the academic world 
and the industry. While academia deals with highly complex operation research 
problems, most industrial companies fail to formulate and solve even comparably 
simple operation research problems. In addition, he has identified a lack of a strategic 
approach to use optimization applications systematically. Instead, most companies 
follow their instinct for production scheduling. As only a few percentages of 
improvements (e.g., of equipment utilization) already yield considerable savings, 
systematic, data-based production planning promises high potentials for cost 
reduction, or as Professor Schuster puts it: “There is still money on the street.” 

DBAs Condition Monitoring and Predictive Maintenance 

The objective of a current project on Predictive Maintenance using ML is to monitor 
the current condition of the equipment (corresponds to the DBA Condition Monitoring) 
and to predict the remaining useful life (corresponds to the DBA Predictive 
Maintenance). The value proposition of sensor-based condition monitoring is to be 
able to monitor several signals permanently and simultaneously. The intention is to 
use internal signals to identify failures of the production equipment before they 
negatively impact product quality.  

The task of Professor Schuster in this project is the analysis of selected sets of data 
to identify patterns within the data. The project has made good progress in achieving 
the first objective, which is to monitor the current condition of the machine. However, 
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a substantial barrier emerged that is currently hindering the project from making 
progress in regards to predicting the remaining useful life. Because the company pays 
much attention to maintain the machine properly, only very few failures occur. 
However, sufficient data on past failures are essential to finding patterns within the 
data. Without failure data, prediction of future data proves to be extremely challenging.  

A second yet related problem is that the lack of failure data hinders the research team 
to validate the predictions made. Currently, the machine is running with very few 
disturbances, but nobody can seriously tell whether this is an effect of predictive 
maintenance or if it would be the same with less maintenance effort. Although not 
backed by data, Professor Schuster holds the view that currently, more effort in 
maintenance is invested as economically reasonable. Furthermore, based on this 
experience, he is generally rather pessimistic about whether predictive maintenance 
can fulfill the high expectations raised by scholars and practitioners.  

DBA Material Flow Management 

A third project is concerned with optimizing the flow of materials within an intralogistics 
system. The objective is to increase the throughput (number of completed 
orders/time), by reducing the number of sorting operations. The optimization strategy 
includes the use of simulation software. Therefore, the situation was formulated as a 
material routing problem. Iterative simulation is selected over a long time planning for 
two reasons. First, planning a longer time horizon makes the problem increasingly 
complex and therefore requires much time and computing power. Second, problems 
(e.g., machine breakdowns) may occur dynamically, thus making long-time plans 
obsolete. To find the best solutions, different material routing scenarios are 
implemented and simulated. By comparing the simulation results, the best performing 
scenario is determined.  

Due to the limited complexity of the simulation problem and the simulation model, the 
technological requirements have not been a barrier. A modern standard personal 
computer was able to solve the simulation problem within hours. However, as the 
complexity of the problem is increasing exponentially when adding new elements, 
Professor Schuster expects that in the near future, simulations will be run on cloud 
computing services using the scalable computing power. More complex simulation 
problems also require high-performing network connections.  

However, similarly to the status quo of the DBA Production Scheduling, the 
manufacturing industry seems to be far from exploiting the full potential of simulations 
to optimize material flow. The application of simulation techniques is still in its infancies 
in most manufacturing companies. As a result, the discussion about the optimal 
material flow is more an academic than a practitioner issue.  
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5.3.1.4 Challenges and Enabler for Data Utilization in Manufacturing 

Technological Challenges and Enablers  

Key technological challenges identified by Professor Schuster are well in line with the 
key requirements identified from the literature and summarized in chapter 4.1.6. A 
basic challenge for DBAs is to provide the required data. Manufacturing equipment 
needs to be equipped with sensors and connected to a central data management 
system. Depending on the application and the complexity of the problem, the 
bandwidth of data connections, connection stability and access to sufficient computing 
power are additional requirements.  

Organizational Challenges and Enablers 

According to Professor Schuster, a major challenge for companies to introduce DBAs 
is a lack of technological expertise, especially on the higher management levels. As a 
result, the decision if a management team appreciates or rejects DBAs is often “a 
question of faith” rather than the result of an informed decision. From personal 
experience, Professor Schuster has observed that managers tend to follow his opinion 
without being able to challenge it critically.  

However, a certain level of technical expertise of company representatives is essential 
to serve as a critical sparring partner for consultants and service providers. Having 
this minimum level of expertise within the company is one of the traits that 
distinguishes companies that are successful in implementing DBAs from companies 
that tend to fail to do so.  

Based on long-term experience from several industry projects, Professor Schuster 
has identified the following two enabling factors for implementing DBA projects.  

First, DBA projects need to be driven by a dedicated person, that has the time and the 
competence to manage and push the project. DBA projects are too time-consuming 
to be driven in addition to the day-to-day business. Also, the person optimally has 
access to financial and personal resources within the company. This is linked to the 
requirement of having a certain degree of seniority, on one hand, to have access to 
the top management and on the other hand, to overcome internal resistance. Finally, 
a certain “terrier” mentality and persuasiveness are also useful to overcome internal 
resistance and to keep stakeholders motivated, in case the project is delayed or does 
not deliver as intended.  

Second, top management support is critical. A key barrier to implementing DBAs is 
that nobody can predict the result or the value of the applications in advance. 
Therefore, management commitment is inevitable, especially if DBA projects do not 
deliver the expected results in the first attempt. Management buy-in is therefore critical 
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for the implementation, as quick wins are rarely found. Successful DBA companies 
show persistence against setbacks in the early phase of DBA projects.  

The combination of high technical expertise and high executive power is found in 
organizations that have a CTO. These organizations are found to have an advantage 
for implementing technologically challenging projects, to which some DBA projects 
surely belong.  

Professor Schuster regularly works as a consultant and solution provider with 
companies. From his perspective, members of the middle management with technical 
expertise have so far been the best project partner as they tend to have some seniority 
in the organization but also the time to be involved personally in the project.  

When working as a consultant for DBAs, another very fundamental challenge 
becomes apparent, which can briefly be characterized as a “chicken and egg 
problem.” Company managers typically like to have an estimate of the return on 
investment (ROI) before granting resources for projects. However, an ROI estimation 
of DBAs that include data analytics called data analytics DBA (see chapter 4.1.5.3) is 
highly afflicted with uncertainty. Finding useful patterns in the data cannot be 
guaranteed seriously before the analysis has been performed.  

Without having a clear business case, however, managers are very hesitant to invest 
in data collection. At the same time, the consultant can only demonstrate the value of 
a data analytics DBA, after data was collected and analyzed.  

The problem can be mitigated if the consultant can provide successful practice 
examples from other, but similar, situations. Having seen a proof of concept often 
increases the willingness of managers to take the risk to invest resources in a project 
without a predictable payoff.  

Employee Challenges and Enablers 

Having discussed the high relevance of technical expertise regarding data utilization 
to drive DBA projects, questions arise regarding how this expertise can be built most 
effectively. A full content course on data analytics would be highly time-consuming 
and would require a lot of existing knowledge in the fields of mathematics and 
programming. 

Assumingly, such a course would not be selected by many top managers, as they 
neither have the time nor the basic knowledge required. However, a tailored course 
covering the basics, to enable managers to evaluate internal and external DBA project 
pitches adequately, would be valuable for many companies. Nevertheless, at the time 
of the interview, the University of Applied Sciences Rapperswil had no plans to design 
and offer such a course to top executives.  
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5.3.1.5 Implications Expert Interview I 
Table 26 summarizes the key implications of the first expert interview. 

Table 26: Key implications – Expert interview I 

I Expert Interview I P 

I.1 
Data utilization projects are often driven by top management rather than by 
manufacturing managers. Companies' stakeholders expect the company to have a 
strategy to utilize data.  

150 

I.2 
Manufacturing units tend to show some internal resistance. Some manufacturing 
managers feel criticized by the request to use data analytics as a basis for decision-
making. Shop floor employees may perceive DBAs as a threat to their jobs. 

150 

I.3 Overcoming the initial resistance of manufacturing employees is a crucial enabler 
for the successful introduction of DBAs.  150 

I.4 
There is great potential for cost savings for manufacturing companies by switching 
to a systematic, data-based production scheduling, using operations research 
methods. 

151 

I.5 
A key barrier to predictive maintenance applications may be the lack of failure data 
to detect patterns or to validate predictions. Well-maintained machines produce too 
few errors for analyzing the data for patterns.  

151 

I.6 
High complex simulation problems require scalable computing and high performing 
data connections. However, the application of simulation techniques is still in its 
infancies in most manufacturing companies. 

152 

I.7 Technological challenges identified in praxis are well in line with those identified in 
the literature.  153 

I.8. 

If DBA projects are driven by a dedicated person, with access to sufficient financial 
and human resources and the ability to overcome internal resistance, the success 
rate is significantly higher. Middle managers, with technical expertise, are suitable 
partners for DBA projects.  

153 

I.9 Top management support is critical for DBA projects, especially in case of setbacks 
in the early phase of a DBA project.  153 

I.10 

The chicken and egg problem applies to data analytics DBA projects. The 
management asks for guarantees of results before granting resources for data 
collection and analysis. However, only after the data analysis, the value of the 
project can be determined. 

154 

I.11 A tailored course for managers, covering basic concepts of data analytics, would be 
useful to enable them to evaluate proposals for DBA projects adequately.  154 

I: Implications, P: Page  
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5.3.2 Expert Interview II 

5.3.2.1 Background  
Dr. Thorsten Wuest serves as Assistant Professor for Smart and Advanced 
Manufacturing at the West Virginia University and works at the Department for 
Industrial and Management Systems Engineering (IMSE). Among his research focus 
is SM, ML, data analytics, hybrid analytics, as well as information and data 
management with a focus on manufacturing systems. His research is characterized 
by an emphasis on an interdisciplinary and holistic approach towards analysis and 
optimization. He has published over 100 peer-reviewed articles. He is a member of 
the Editorial Board of the Journal of Manufacturing Systems (JMSY).  

5.3.2.2 Motivation of Data Utilization in Manufacturing  
Usually, projects to exploit data in manufacturing are initiated by top management. 
“We need to do something in regards to Smart Manufacturing” is what many 
leadership teams believe. However, the project ideas are usually rather unspecific, 
and it is the responsibility of the manufacturing unit to define, specify, and implement 
appropriate data utilization opportunities. Professor Wuest has seen a variety of 
reactions of the manufacturing unit to data utilization plans of top management. While 
some appreciate the initiative and soon become an active driver of the initiatives, 
some manufacturing units are quite resistant.  

Generally speaking, data utilization is promoted from two perspectives. On one hand, 
manufacturing companies seeking to use data utilization to improve the performance 
of their production system. On the other hand, production machinery manufacturers 
develop and offer increasingly sophisticated applications building on data utilization. 
They perceive data utilization as an enabler for new business models, including pay-
per-use contracting or outcome-based contracting, as well as an additional feature of 
their products, which serves as a sales argument. 

From a financial and technological perspective, a key driver for the increase of data 
utilization in recent years is the development of reliable, yet inexpensive technical 
components. The performance and robustness of components, such as sensors, has 
significantly increased. At the same time, the cost of sensors has been reduced by 50 
percent and even higher cost reduction applies to other components, including 
computing power, storage space, and bandwidth. Many companies have introduced 
cloud solutions that allow fast, reliable, and secure access to data. Also, algorithms 
and tools for data analytics have been refined and become more user-friendly. In 
conclusion, the ratio of required financial investments and expected outcomes has 
become attractive for a significant number of companies in recent years for the first 
time.  
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5.3.2.3 Machine Learning in the USA and Europe  
According to the media,29 the USA and China are the ML superpowers. Professor 
Wuest is an expert in the field of ML and has lived and worked for years in Europe 
and the USA. For that reason, he was asked to evaluate the differences between 
Europe and the USA regarding ML. 

The positioning of the USA and China at the forefront of ML is correct. From a general 
perspective, the two nations are leaders in research and application of ML by far. The 
reasons for this development are multifaceted. One important enabler is the 
availability of an abundance of data. In the USA, large tech companies such as Google 
and Amazon collect enormous amounts of social media and customer data. Other 
companies such as UBER collect vast amounts of position data. The companies not 
only collect these data but invest large amounts of time and financial resources in 
exploiting it. In Europe, in contrast, comparably few companies collect data on such a 
large scale. Furthermore, data protection laws in Europe are far more strict than in the 
USA, thus reducing the opportunity for data collection and analytics.  

Another reason is the ability of the USA to attract many of the leading researchers in 
the field of ML. Besides the large tech companies, governmental institutions such as 
NASA and military research institutions have the financial power to provide attractive 
working conditions for the best ML specialists. However, ML is not only driven by large 
companies and governmental organizations but also by agile start-ups. The USA has 
managed to established an active start-up community, combining technical expertise, 
entrepreneurial spirit, and high investments of venture capitalist firms. So in general, 
Europe indeed is already lagging behind the USA in ML and there is little evidence to 
assume that this will change in the future.  

However, when focusing on the manufacturing industry, the picture is different. The 
applications of ML in manufacturing are often very specific and require a deep 
understanding of the manufacturing processes. Companies from Switzerland and 
Germany are often global technological leaders in their industries and therefore have 
excellent technical expertise. From personal experience, Professor Wuest argues that 
many European manufacturing companies are leaders in ML for specific applications. 
As a result, the large gap between the USA and Europe that is very evident for ML in 
general, is currently not recognizable in the manufacturing industry. Thus, as of today, 
ML is not a threat to the competitiveness of European manufacturing companies. 
Nevertheless, prospectively U.S. companies but also Chinese companies may 
increasingly benefit from the high maturity of their nations in ML.  

 

 
29 Frankfurter Allgemeine Zeitung GmbH (2017), ZEIT ONLINE GmbH (2018), Handelsblatt GmbH (2019) 
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5.3.2.4 Challenges and Enablers for Data Utilization in Manufacturing 

Technological Challenges and Enablers  

Building the technological infrastructure, including sensors for data collection, stable 
network connections for data transfer, cloud or on-premise solutions providing 
scalable capacity for data storage and computing power for data processing, has been 
a central challenge until recently. However, due to the sharp reduction in prices, the 
technological infrastructure is available for the first time for a large number of 
companies at a reasonable price. Therefore, the role of the technological infrastructure 
as a critical challenge will decrease.  

As an expert for ML, Professor Wuest reports a challenge specific to ML in 
manufacturing that has not been discussed hitherto. Currently, a majority of available 
ML algorithms are not specifically designed for an application within manufacturing 
but instead are optimized for very large samples and data with rather low complexity, 
such as the recognition of images. In manufacturing, however, production data are 
often complex and have smaller sample sizes. While a social media ML applications 
can use billions of pictures from the internet for training, data to train an ML algorithm 
for predictive maintenance is limited to the data the machine generates itself.  

Organizational Challenges and Enablers 

Although companies have built some experience with DBAs, the fact that the result of 
DBAs on the bottom line is still challenging to estimate remains a key challenge. 
Answering the question “what is the real value generated by data-based applications” 
is still almost impossible to answer before the application was implemented and 
tested. There are many successful DBA examples, but also many examples without 
any sustainable impact. Even more important to inform investment decisions but also 
even more challenging to answer is the question “if we invest now, when do we benefit 
from the investment and how can the return on investment be measured?”  

Although the success of a data-utilization project cannot be guaranteed beforehand, 
Professor Wuest was asked to describe patterns of companies that have a higher 
chance to implement DBA applications more successfully than other companies.  

First, manufacturing companies intending to implement ML applications require a 
certain minimal level of digital maturity, including a certain level of digitalized 
processes and IT knowledge. For analog companies, the way to benefit from ML 
applications may be too tedious. Without the perspective of success stories, 
motivation, and management support, it is challenging to go full force all at once.  

Second, the personality of the project owner is very important. Especially with more 
complex data analytics, DBAs require persistence to overcome barriers along the way. 
The project owner must have access to sufficient resources to drive the project. The 
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same applies to project employees. Without the necessary technological resources 
(e.g., access to the data in the cloud) and time resources, the motivation of the 
employee and thus the likelihood of a successful DBA project decreases considerably. 
Providing enough resources is a management responsibility. 

DBA projects often take more time than initially planned, or fail to deliver the promised 
results in the first iteration. To maintain the support of the management and to keep 
the motivation of all DBA project stakeholders high, Professor Wuest recommends 
built-in Quick Wins from the beginning. Quick Wins are easy to achieve intermediate 
results, which are not necessarily part of the final solution but help to maintain the 
motivation of stakeholders on the way. An example of a Quick Win would be a 
threshold-based control system as part of a predictive maintenance DBA.  

Third, maybe biased to his role as senior academic, Professor Wuest recommends 
companies to partner up with partners to use external resources. Universities may 
serve as an attractive collaboration partner for manufacturing companies for three 
reasons. First, Master and Ph.D. students have the capacity to work dedicated on a 
project, while company employees usually have other obligations in parallel. Second, 
Master and Ph.D. students are intrinsically motivated to complete a project within a 
given period. And third, universities have access to valuable skills and resources while 
being less expensive than consultant companies.  

No clear answer could be given to the question of the main reasons for the failure of 
DBA projects. However, a phenomenon that was frequently observed by Professor 
Wuest was that companies started to collect data without having defined explicitly for 
what they intend to use the data in advance. The lack of a clear predefined use case 
then resulted in data collection and data analytics, both consuming resources, but no 
practical application. Even though data collection is getting cheaper and more 
convenient, Professor Wuest recommends starting with understanding the problem, 
derive a use case for data utilization, and only then start to collect and analyze data.  

Employee Challenges and Enablers 

As SM technologies and data analytics are likely to change the way of working in the 
manufacturing industry, the required skill sets of employees will change accordingly. 
In the ideal situation, manufacturing employees combine manufacturing know-how 
and data analytics expertise. Professor Wuest assumes that the combination of both 
skills will be rather a result of the training of technicians and manufacturing engineers 
in data analytics skills than the training of data scientists in manufacturing know-how. 
As technicians and engineers are usually technology and mathematics affine, they 
have good preconditions to learn data analytics skills quickly.  The starting point for 
successful training is thereby an intrinsic motivation for additional qualification. 
Companies are advised to conduct hands-on workshops with actual use cases to 
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demonstrate the opportunities of data utilization. Professor Wuest recommends a 
step-by-step qualification roadmap, where the employee decides self-reliably which 
level of qualification is at the moment most appropriate for the current tasks. 
Companies should focus their effort on fostering employees' motivation for additional 
qualifications; for example, by providing the perspective of more interesting jobs. 

5.3.2.5 Implications Expert Interview II 
Table 27 summarizes the key implications of the second expert interview. 

Table 27: Key implications – Expert interview II 

I Expert Interview II P 

I.1 Data utilization projects are mostly initiated by the top management, which feels 
pressured to “do something in regards to Smart Manufacturing.”  156 

I.2 
The manufacturing unit is responsible for identifying and implementing suitable 
applications. While some manufacturing units are actively supporting data utilization, 
others show strong resistance.  

156 

I.3 
The emergence of data utilization in manufacturing is driven by production 
machinery manufacturers looking for new business models, and production 
machinery users seeking to improve the performance of their production system.  

156 

I.4 
Components of the technological infrastructure needed for data utilization have 
become significantly better and cheaper in recent years, thus making it economically 
attractive for companies to invest in data utilization for the first time.  

156 

I.5 
The USA and China are technology leaders in AI and ML, with Europe lagging 
behind. However, in the manufacturing realm with specific requirements, European 
companies are competitive in terms of AI utilization  

157 

I.6 
A technological challenge specific to manufacturing companies is to adapt the 
existing ML algorithms from other areas of application to the specific conditions of 
manufacturing. 

158 

I.7 
A key challenge for data utilization projects is to estimate the value prior to the 
project. Forecasting the ROI and the time of the ROI seriously is currently almost 
impossible. 

158 

I.8. A certain digital maturity of a company is a prerequisite to implementing data 
utilization applications successfully. 158 

I.9 The owner of a data utilization project needs to be persistent and equipped with 
sufficient resources. 158 

I.10 
Data utilization projects often take more time than initially planned. Built-in “Quick 
Wins” is an option to keep the motivation of project stakeholders and management 
high. 

159 

I.11 New technologies require additional qualifications. Companies should provide 
opportunities for training to achieve a self-determined optimal level of qualification. 159 

I: Implications, P: Page  
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5.4 Cross-case Study Analysis 
After having presented three case studies as well as two expert interviews with 
academics, this chapter seeks to draw generalizable conclusions based on a cross-
case analysis (R. Yin, 2009, p. 49). 

According to Eisenhardt (1989, p. 541), the idea of cross-case analysis is to “force 
investigators to go beyond initial impressions, especially through the use of structured 
and diverse lenses on the data.” The tactic is motivated by the fact that people and 
thus also researchers are poor in information processing. Eisenhardt (1989, p. 540) 
argues that humans tend to jump to conclusions prematurely based on a limited set 
of data, disregard statistical properties, overlook conflicting evidence, and are over 
proportionally influenced by elite respondents. These information-processing biases 
put researchers at risk to draw premature and even false conclusions. Looking at the 
data in divergent ways and contrasting evidence from different cases is a good 
strategy to counteract these biases. Voss et al. (2002, p. 215) agrees and emphasizes 
that seeking confirmation from using multiple data sources is important in case study 
research as it leads to more reliable and more generalizable results.  

Eisenhardt (1989, p. 540) and Voss et al. (2002, p. 214) propose to define categories 
and then search the case material for similarities and differences between the cases. 
Categories are typically suggested by the research problem or by existing literature. 
Contrasting seemingly similar cases, searching for differences may allow researchers 
to overcome too simplistic frames while searching for similarities in apparently 
different cases increase the problem understanding (Eisenhardt, 1989, p. 541). The 
results of the cross-case analysis are used for both testing existent theories and 
hypotheses as well as for developing or extending theory (Voss et al., 2002, p. 216). 

This chapter contrasts and combines the findings from the case studies and the expert 
interviews and comprises three subchapters. Chapter 5.4.1 focuses on the current 
status quo of lean management in the case companies and investigates the question 
of whether these companies have started to integrate lean and digitalization from a 
strategy perspective, an organizational embedding perspective, or both.  

Chapter 5.4.2 then focuses on data utilization in the industry. It describes the principal 
motives of companies to invest in data utilization and outlines the current status of the 
actual use of DBAs. A focus is set on collecting, contrasting, and consolidating 
challenges and enablers of data utilization from the cases and interviews. Chapter 
5.4.3 contrasts the findings of the three cases to identify commonalities and 
differences between the manufacturing companies and the ICT company. 

The cross-case study analysis builds on the implications drawn from the three case 
studies and the two expert interviews. To ensure transparency on which basis the 
conclusions are derived, the respective implications from chapter 5.2 and chapter 5.3 
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are referenced. For instance, the reference (C1-I.1) refers to the first implication of 
case I and the reference (E2.I.3) refers to the third implication of the second expert 
interview. For the readers' convenience, the references contain a hyperlink to navigate 
to the respective implication chapter. Furthermore, the implication overview tables 
contain references to the respective section where the implication is derived from. If 
findings from the qualitative studies are used in this chapter but have not listed as a 
key implication, direct references are provided to the respective section (e.g., p. 122). 

5.4.1 Lean and Digitalization 
The first section of the cross-case analysis is concerned with the current status of LM 
and the integrated consideration of lean and digitalization.  

Assessing the status quo of lean is relevant for this dissertation for two reasons. First, 
as lean is understood differently by many researchers and practitioners, it is necessary 
to ensure a shared understanding of lean (e.g., is lean considered the foundation of 
the production system or even as a guiding principle of the whole organization, or is it 
instead perceived as a toolbox for the shop floor?). Second, only if the case study 
partners are familiar with the lean practices, and their company applies those 
practices, are they qualified to contribute to the DBA – lean practice impact 
assessment. The status quo of lean in the case companies is summarized in chapter 
5.4.1.1. 

Second, several researchers have found indicators that LM and digitalization is 
positively associated. Küpper et al. (2017) report higher potentials for cost savings of 
an integrated lean and industry 4.0 approach, compared to standalone approaches. 
Tortorella and Fettermann (2018) found in a quantitative study a positive relationship 
between LM and industry 4.0 technologies.  

These findings are supported by two research contributions of the author of this 
dissertation. First, the survey presented in chapter 3 shows that a majority of 95 
percent of the participants expects a mutually beneficial relationship between lean and 
digitalization (Macuvele et al., 2018). Second, Lorenz et al. (2019) found that 
companies with a high digital maturity and a high lean maturity tend to perform better 
than companies with only a high digital maturity or a high lean maturity.  

These findings raise the question of whether companies share the perspective that 
combing lean and digitalization is beneficial and whether companies try to foster the 
integration of lean and digitalization. Therefore, chapter 5.4.1.2 summarizes the case 
study results on the strategic or organizational integration of lean and digitalization.  
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5.4.1.1 Status Quo of Lean Manufacturing 
Company A and Company B operate a large manufacturing network. Both companies 
have organized their production according to lean principles and describe their system 
as an LPS. However, the production systems are company-specific and no 1:1 replica 
of the TPS.  

Company A's LPS consists of nine elements and seeks to support the three 
competitive priorities of low cost, high quality, and high delivery reliability. More high-
level objectives are customer and employee satisfaction. Company B has designed 
an LPS with a strong focus on CI, having the PDCA cycle at its heart. Employees are 
strongly encouraged to participate in CI by submitting improvement suggestions. 
Company C does not operate a physical production system and therefore has no LPS. 
Nevertheless, Company C works according to the five lean principles. Customer 
orientation is a key metric and a share of employees' salary is linked to achieving 
customer satisfaction-specific goals. Company C demonstrates that principles 
originating from LM can be transferred and applied successfully in non-manufacturing 
settings.  

From an organizational perspective, all three companies have a central lean team that 
supports the whole organization with tools and methods but also training. Company A 
and B additionally have dedicated lean managers on a site level.  

The 10 lean practices, identified by Shah and Ward (2003) and complemented by the 
author of this dissertation, are indeed widely established lean practices. Both 
manufacturing companies, Company A and Company B, apply all 10 of the practices 
at least in some of their plants. Although the degree of implementation varies between 
the practices, all 10 have proven to be relevant to modern manufacturing companies 
and are well-known to production managers.  

Interestingly, even Company C has started to apply eight of the 10 practices, despite 
being an ICT company. Some practices, as preventive maintenance, are applied in 
the traditional understanding of the lean practice. Other practices have been adapted 
to non-manufacturing areas. For instance, the lean practice Continuous Flow is 
implemented to reduce the lead time of customer tickets, which are virtual objects that 
need to be processed by different departments.  

In summary, for the sample of the three case companies, lean is of fundamental 
relevance as the underlying and guiding principle of the production system but also 
as a toolbox of lean practices.  
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5.4.1.2 Integrated Consideration of Lean and Digitization 
As described in the introduction to this chapter, several publications suggest that the 
integrated consideration of lean and digitalization increases the effectiveness of both 
approaches mutually. 

The assumption that the integrated consideration of lean and digitalization is beneficial 
is supported by the findings of the case studies. Company A explicitly characterizes 
its company-specific LPS as the basis for innovation (C1-I.1). Lean thinking is 
essential to define clear standards and interfaces. In turn, these standards are 
essential prerequisites for connecting hitherto distinct manufacturing units and thus 
pave the road to connected manufacturing and connected logistics. Company B 
highlights the importance of bringing in a lean perspective, as the ideal process from 
an IT perspective does not necessarily equal the perfect process from an employee 
perspective on the shop floor. To balance both requirements, lean and IT responsible 
therefore need to interact closely (C2-I.2). Quite similarly, Company C promotes the 
interaction of the lean team and the team responsible for the internal digital 
transformation. Before a business process is automated, both teams discuss if the 
current process is already suitable for automation, or needs to be designed according 
to lean principles first (see page 142). 

In summary, all three companies argue concordantly for the integrated consideration 
of lean and digitalization activities. This finding motivated two questions. The first one 
is whether the desired close interaction of lean and digitalization is fostered by an 
integrated strategy that considers both approaches as complementary elements. 
However, although it appears to be reasonable to do so, the cases provide 
contradicting evidence. Company A and Company B both operate an LPS and have 
a digitalization strategy in place. However, in both cases, the digitalization strategy is 
not aligned with the lean strategy expressed by the company-specific LPS (C1-I.2) 
(C2-I.1). Company C has no dedicated digitalization strategy for its value creation 
processes. Consequently, no integrated lean – digitalization strategy exists currently.  

The second question motivated by the aspiration for close interaction of lean and 
digitalization responsibilities is whether these individuals are linked from an 
organizational embedding perspective. Again, the assumption cannot be supported 
by the case results. All companies have a dedicated lean unit on a corporate level, 
Company A and B also have lean managers on a site level. The responsibility for the 
digitalization of the value creation processes is less simple to identify. While Company 
A and B perceive the teams responsible for introducing and optimizing the company-
wide MES system as an internal driver of digitalization, in Company C the internal 
digital transformation is driven by the business processes automation team. However, 
all three companies have in common that lean and digitalization responsibilities are 
not organizationally linked (e.g., by a shared staff position) (C1-I.2), (C2-I.2), (C3-I.3). 
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The fact that lean and digitalization is neither considered holistically from a strategic 
nor from an organizational embedding perspective seems to be contradictory at first. 
However, as one case partner points out, it is quite reasonable as the tasks and core 
competencies of the lean unit are very different from those of the digitalization team. 
Another partner argues that an integrated consideration falls into the responsibility of 
the top management. If necessary, the top management delegates the responsibility 
to project teams. And indeed, temporary cooperation on a project basis is the 
preferred approach to ensure close interaction between lean and digitalization 
responsibilities. Company A brings together lean and digitalization specialists 
regularly when introducing a new process or new equipment (C1-I.2). Only after the 
new process was designed in accordance with lean principles was it digitalized by 
connecting the equipment and mirroring the process in the MES system. The same 
approach is found in Company B (C2-I.2) and C. The interview partner of Company C 
also points out that close cooperation between lean and digitalization specialists is 
strongly enhanced, if both teams understand the competencies of the other team and 
the potential value they can contribute to the project (C3-I.2).  

5.4.2 Data Utilization in Manufacturing  
This chapter comprises four subchapters. Chapter 5.4.2.1 consolidates the main 
drivers of data utilization in manufacturing. Chapter 5.4.2.2 summarizes the main 
challenges to exploiting manufacturing data, while chapter 5.4.2.3 discusses key 
enablers. Finally, chapter 5.4.2.4 discusses the results of the case studies on the 
impact of data utilization on LM. 

5.4.2.1 Motivation  
As discussed in chapter 4.1, a wide variety of DBAs exists and consequently, there is 
not one single objective but several objectives that might motivate the utilization of 
data in manufacturing. This chapter contrasts and summarizes the underlying 
motivation of the individual use cases discussed per case company. These use cases 
have been implemented only recently and are of high importance to the company, and 
thus, they are eligible to conclude the main motives of these companies to invest in 
data utilization. Besides these company-specific motivations, the experience of the 
two academic experts is used to shed light on the motivation for data utilization of a 
broader spectrum of companies. 

5.4.2.1.1 USE CASE SPECIFIC MOTIVATION  

Company A's primary motive to initiate the Manufacturing Analytics Solution project 
was to severely reduce the time and effort needed to access data for several analytics 
applications. Previously, the high effort for searching and combining relevant data 
made a majority of the analytics ideas uneconomical to realize. With the new system, 
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employees are enabled and encouraged to perform their own analytics on an ad hoc 
basis without the need for long preparation times (C1-I.4).  

The basic motivation of Company B's Global Performance Cockpit can be 
summarized as gaining supply chain transparency to minimize production stops. As 
the different production sites work in a network, some sites depend on the timely 
delivery of intermediate products of other sites. Hence, potential delivery problems 
need to be identified and communicated early. Therefore, Company B regularly 
assesses the OEE of critical equipment in all production sites and visualized the data 
on a cross plant performance cockpit (C2-I.4).  

The main driver of the Smart Support system of Company C was to improve customer 
service and to free service employees' capacities. Therefore, Smart Support builds on 
historical data on customer problems and potential solutions to provide decision 
support to facilitate fast and sustainable solution suggestions to the customers. 
Enabling ad-hoc analytics (Company A), receiving early indicators for delivery 
problems (Company B), and providing decision support to employees (Company C) 
are three examples that demonstrate the motivation for using data is very diverse and 
highly dependent on the actual application. 

5.4.2.1.2 EXPECTATION OF STAKEHOLDERS  

To capture the motivation for data utilization of a larger set of manufacturing 
companies, this question was discussed with two recognized academic experts.  

One main motive for DBA projects raised by both experts is rather trivial. Stakeholders 
of manufacturing companies (e.g., the supervisory board) increasingly pressure the 
top management to “do something in regards to Smart Manufacturing” (E2-I.1). Also, 
stakeholders increasingly expect from the top management to formulate a strategy on 
how to use manufacturing data (E1-I.1). As a consequence, initiatives for data 
utilization are regularly driven top-down. Often, however, as Dr. Schuster observes, 
the top management is rather keen to make sure that “something is done” than being 
actively involved in the data utilization initiative.  

The manufacturing unit is usually responsible for identifying and implementing useful 
DBAs. Both experts agree that top-down driven initiatives for data utilization are often 
seen critically by the manufacturing units, and thus, an initial resistance is observed 
frequently (E1-I.2). However, this observation cannot be generalized as in other 
projects the manufacturing unit was welcoming of the initiative and immediately 
started to actively support the project (E2-I.2).  

5.4.2.1.3 FURTHER DRIVERS 

Besides top management's intention to fulfill external expectations as well as concrete 
improvement objectives, as seen in the company examples, three more drivers of data 
utilization in manufacturing have been identified. First, machinery manufacturers are 
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equipping new machines with sensor technology as a prerequisite to offer additional 
services, such as remote and predictive maintenance, and new business models, 
such as pay-per-use (E2-I.3). Hence, the technical prerequisite for DBAs as well as 
“ready-for-use applications” for data utilization is pushed by suppliers into 
manufacturing companies.  

The second argument to start investing in data utilization now are favorable economic 
conditions. Due to the significant reduction of cost for the required technological 
infrastructure, investing in data utilization has become attractive for a wide set of 
companies for the first time (E2-I.4).  

The final driver is specific to companies in the USA and China. Both countries are 
leading in the field of ML (E2-I.5). Although the expertise is currently used by large 
internet companies and governmental agencies, it might be that in the long run the 
manufacturing industry in these countries may benefit from the know-how that is built 
around ML/AI.  

5.4.2.2 Challenges  
Following Hirsch-Kreinsen et al. (2018, p. 181), the identified challenges are grouped 
into three categories. The category Employee addresses all challenges that are 
related to an individual person, such as qualification and personal preferences. The 
category Organization comprises challenges that go beyond individuals but affect the 
whole organization. The category Technology includes technological requirements, 
such as the IT infrastructure.  

An overview of the challenges is given in Table 31 in the consolidation chapter 6. 

The individual challenges have been consolidated as far as possible into one over 
category. The over categories, in turn, were assigned to one of the three main 
categories Employees, Organization, and Technology. The assignment, however, is 
not exclusive. Employee qualification, for instance, can be considered both a 
challenge concerning employees and a challenge for the organization to organize the 
needed training to support employees in achieving the required level of qualification. 
Data security can even be discussed from all three perspectives, as it involves 
employee training to raise awareness (Employee), company guidelines for data 
protection (Organization), and technical infrastructure to avoid external intrusion into 
the IT system (Technology). 
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5.4.2.2.1 EMPLOYEES 

C-E.130. Initial Resistance of Employees  

A significant challenge, which emerged during the qualitative studies, is ensuring 
employee acceptance of DBAs. The underlying assumption of the TAM model 
introduced in chapter 1.5.5 is that new technology is only used successfully if accepted 
by users. Both the company case studies, as well as the expert interviews, have 
revealed potential threats to employees' acceptance of DBAs. The initial resistance of 
employees may be caused by the fear of job loss, the fear of loss of autonomy in the 
job, and the fear of control during work.  

C-E.1.1 Fear of Job Loss  

As demonstrated by the Smart Support use case of Company B, DBAs have the 
potential to significantly increase the efficiency of an employee in terms of speed and 
required effort. Consequently, the assumption that the increased application of DBAs 
may result in a reduction of jobs is very understandable. Addressing these fears of job 
loss by demonstrating the value of DBAs (e.g., for competitiveness) is a key challenge 
for companies (C2-I.6). The senior researchers confirm the emergence of fears of job 
loss in the context of DBA, especially among shop floor employees (E1-I.2). For 
instance, maintenance employees may expect that predictive maintenance reduces 
the total amount of maintenance effort needed in the future and, as a consequence, a 
cut of maintenance jobs.  

C-E.1.2 Fear of Loss of Job Autonomy  

Fear of loss of job autonomy has also been documented by the Smart Support case. 
The support system was initially perceived as a threat to the autonomy of service 
employees. The perspective of being downgraded from a competent, self-determined 
solution developer to a mere interface to communicate solutions proposed by the 
system to the customer, was not welcomed by the employees (C3-I.5). Similarly, a 
DBA use case of predictive maintenance of Company A was rejected by maintenance 
employees. As noted by the interview partner, maintenance employees did not reject 
the new DBA due to technological inabilities, but because they disliked not being 
involved in the development of the new approach (p.129).  

Even some manufacturing managers feel uncomfortable with the concept of data 
analytics as a basis for decision-making since the request for using data-based 
decision support systems is perceived as questioning their competence (E1-I.2). 

 

 
30 Each challenge has a unique identifier to allow linking enablers to the corresponding challenge. 
 C-E.1 stands for first main challenge of the category employee, C-E.1.1 is referencing to the first sub-challenge 
of the first main challenge of the category employee. 
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C-E.1.3 Fear of Control  

The third challenge in this category is fear of control. The potential of misusing 
manufacturing data to monitor the behavior of individuals on the shop floor is as a 
general barrier for data utilization in manufacturing (C1-I.9). As a representative of 
Company A observes, employees are welcoming digital technologies and data 
analytics in general, but the acceptance is very limited if data can be used to monitor 
individual behavior and performance. The challenge is linked to the challenge Misuse 
of data which is discussed in the section on organizational challenges.  

C-E.2. Employee Qualification 

Employee Qualification was raised by all three case companies as well as the two 
experts as a key challenge for companies striving to implement DBA successfully. The 
following section discusses the qualification requirements of three different groups of 
employees: shopfloor employees (1), who are the end-users of DBAs; managers from 
middle management (2), who usually drive the implementation of DBA projects; and 
top managers (3), who often initiate and sponsor the projects.  

C-E.2.1 Shopfloor employees  

New technologies and applications require additional qualifications for end-users. 
Thereby, an adequate qualification is necessary for at least three reasons: first, end-
users need to be trained to use the new application effectively and to exploit its full 
potential (C1-I.12). For instance, employees of Company A require basic training on 
the functionalities of the new MAS system to be able to perform analysis on their own.  

Second, as data quality is crucial for the quality of the result of DBAs, employees need 
to understand the importance of entering correct data into the system. By gaining a 
rough understanding of how a DBA is processing the manually entered data and thus 
to be able to link entered data to outcome results, employees can better understand 
the implications of their work. This understanding significantly increases the 
motivation to invest effort to input manual data correctly (C2-I.10).  

Finally, shop floor employees are a valuable source of information for DBA 
developers, as they have the best understanding of the actual conditions and pain 
points on the shop floor. However, only by understanding the underlying logic of a 
DBA, shop floor employees are able to provide qualified feedback and change 
requests to developers (C1-I.12).  

C-E.2.2 Middle Management 

While DBA projects are often initiated by the top management, it is usually the task of 
the middle management to drive the actual implementation (p. 156). Due to the 
interdisciplinary nature of DBAs, driving DBA implementation projects requires a 
broad understanding, not only of the manufacturing system and the IT system but also 
of data analytics methods (C2-I.11). 
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In order to overcome initial resistance of employees (see above), change 
management is an additional skill that appears to be of high value for middle managers 
driving DBA projects. Although middle managers do not need to be an expert in every 
field discussed above, they need to have a good understanding to set the right 
directions. Identify the right individuals from the middle management to drive DBA 
projects and provide sufficient training to meet the diverse requirements constitutes a 
challenge for many companies. As Company C reports, the demand for advanced 
training in data analytics is currently exceeding the offer by far (C3-I.9).  

C-E.2.3 Top Management 

A key challenge of many companies striving for DBAs is a lack of technological 
expertise on higher management levels. The missing technological expertise results 
in the inability of top managers to critically evaluate the usefulness of a DBA project 
(p.153). As a consequence, Professor Schuster perceives the decision for or against 
a DBA project often as “a question of faith.” If they believe the consultant, managers 
tend to follow his advice uncritically.  

5.4.2.2.2 ORGANIZATION 

C-O.1. ROI Calculation of Investment Decisions 

A key barrier for DBAs, which is identified by both academic expert interview partners 
consistently, is the uncertainty of the ROI of DBA projects. This is mainly due to two 
reasons: first, due to the uncertainty of results and second, due to the chicken and 
egg problem that applies to many DBAs.  

C-O.1.1 Uncertainty of Results 

In traditional investment decision-making, managers used different approaches to 
forecast the value that is likely to emerge as a result of a specific project. By translating 
the expected value into financial numbers and contrasting investment costs and 
expected financial benefits, managers derive the decision in favor of or against a 
project proposal. This basic concept reaches some limitations in the case of data 
analytics DBA projects, as their outcomes, cannot be predicted seriously in advance 
(E2-I.7). As a consequence, calculating the ROI and forecasting the expected break-
even point of investments into DBA projects is afflicted with a high level of uncertainty. 
Therefore, the risk of such investments and the possibility for unprofitable investments 
is higher than in projects that do not rely on data analytics findings.  

C-O.1.2 Chicken and Egg Problem 

The uncertainty of results leads to a second challenge that is inherent to DBA projects 
comprising data analytics, which can be summarized as a chicken and egg problem 
(E1-I.10). As company managers usually like to have an estimate of the ROI and a 
clear business case before granting project funds, they are very reluctant to do so if 
no ROI can be presented, or if the ROI calculation is afflicted with high risks. However, 
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consultants or other individuals that intend to implement the DBA are only able to 
demonstrate the value of the application after they had access to the data and found 
useful patterns in the data. From a theoretical point of view, this situation prevents 
investments in DBA projects that are not only for the purpose of learning but have to 
compete for scarce resources with other investment proposals.  

C-O.2. Misuse of Data  

C-O.2.1 Internally  

Tracking more and more data from the manufacturing system facilitates transparency 
on the performance of the production system. However, the same data might be used 
to monitor the performance not only of the system but also of individual employees 
(C3-I.7). Superiors that are suspicious that some of their workers are underperforming 
may feel tempted to use this new opportunity. Furthermore, data might be misused to 
create a relatively accurate picture of the individual behavior of a shop floor worker 
(C1-I.9). Misusing data internally for employee control not only lowers the motivation 
among workers but can also have legal and business implications. In countries with 
strict data privacy regulations, companies can be sued for misuse of personnel-related 
data. Furthermore, at least in the EU, labor unions are powerful enough to block even 
major projects if they do not feel privacy rights are protected sufficiently (p.137).  

C-O.2.2 Externally  

Protecting data from being accessed from unauthorized persons from outside the 
organization is a central theme and is perceived as one of the greatest challenges for 
data utilization in manufacturing by Company A (p.127) and B (C2-I.9). Although data 
security is mostly discussed from a technical point of view, our case partners 
emphasize that often the weakest part in the firewall is not the IT system but 
employees. By methods like social phishing, employees are tricked into passing on 
access authorizations or data to unauthorized persons. Preventing data theft from 
external actors by creating awareness of the risks of data theft and providing 
employees with guidelines is at least as critical for data security than keeping the IT 
system up to date.  

C-O.3. Comparability of Data 

Several DBAs require combining data from different data sources. Hence, the 
challenge arises to make datasets from different sources comparable by 
standardization.  

C-O.3.1 Within the Plant  

An example of the required standardization of data referred to in the case studies are 
failure codes (p.125). The integration of failure data of several machines of the same 
kind in order to enhance the effectiveness of a data-based root cause analysis 
requires fully standardized failure codes.  
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C-O.3.2 Within the Manufacturing Network 

As seen in the data utilization use cases of Company A and B, data may not only 
collected and combined within the borders of a factory. The Global Performance 
Cockpit allows monitoring performance metrics from different production sites within 
the manufacturing network. To ensure comparability of metrics from different sites, 
those metrics need to be standardized not only within one factory but within the whole 
manufacturing network (C2-I.5).  

C-O.4. Access to Expert Knowledge  

C-O.4.1 Limited Internal Resources 

Developing DBAs requires specific expertise in different fields of data analytics and 
IT, depending on the actual use case. These skills can hardly be trained in a few 
weeks but rather require a full-time study. As the field of data analytics is comparably 
new, many companies face the challenge to have insufficient internal data analytic 
experts. Even Company C, which is working with data for many years, struggles to 
find and train sufficient data experts internally. Our interview partner put it concisely: 
“We know that we need more data-affine employees” (p. 146). 

C-O.4.2 Strong Competition for Data Scientists 

The limited internal resources of data experts, the high demand, and the fact that 
professional training of data scientists is very time demanding suggests the approach 
of hiring new data experts from the labor market. As shown in a study by Macuvele et 
al. (2018, p. 39), almost every second company is already hiring employees with data 
analytics skills or intends to do so. However, professional data scientists are not only 
wanted by manufacturing companies but also by financial institutions and 
consultancies. The high demand for data scientists and the scarce availability on the 
labor market results in a “war for data talents.” Consequently, hiring data scientists is 
currently very challenging and expensive due to high salaries paid by other employers. 
This observation was made by the manufacturing company A (p.130), as well as the 
ICT company C (C3-I.10).  

5.4.2.2.3 TECHNOLOGY 

C-T.1 Basic Requirements  

Within the qualitative studies, no surprising findings regarding the technological 
challenges have emerged. On the contrary, the main technological challenges raised 
by the interview partners are in line with the challenges identified in the literature, 
based on the individual DBA use cases (see chapter 4.1.6) (E1-I.7).  

However, two technological challenges are emphasized as essential basic 
requirements for data utilization: IT system performance and data security.  
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C-T.1.1 IT System Performance 

In this context, IT system performance addresses the ability of the IT system to 
transfer, store, and process large amounts of data within a reasonable amount of time. 
The definition of a reasonable amount of time is highly dependent on the use case of 
data utilization. The performance of the IT system is mainly determined by the 
bandwidth of the data connection and by the computing power. Hence, very complex 
DBAs, for instance, complex simulation problems, as well as DBAs relying on near 
real-time data require high performing IT systems (E1.I-6).  

C-T.1.2 Data Security 

As discussed in chapter 4.1.6, the literature considers data security as a critical 
challenge for utilizing manufacturing data (Ghobakhloo, 2018, p. 921; Sommer, 2015, 
p. 1515; Thoben et al., 2017, p. 12). This observation is in line with the perception of 
all interview partners, that data security is a key technological challenge (C2-I.9). As 
the case and interview partner are experts in the area of lean and manufacturing rather 
than IT, they did not go into detail about how to ensure data security from a 
technological perspective. However, to complement the data security efforts of the IT 
department, employees are briefed to be aware of the risks of data theft (e.g., by 
guidelines to avoid social engineering or phishing). Access and identify security are 
included in mandatory training for all employees (p. 173). 

C-T.2. Distributed Data 

The rationale for the introduction of the Manufacturing Analytics Solution system of 
Company A was the enormous effort required to locate and merge distributed 
manufacturing data (C1-I.4). A majority of the ideas for data analytics were not 
realized as the initial effort to create the necessary database was not economically 
justifiable. This data utilization use case sheds light on two challenges companies 
need to address to minimize the effort for analyzing distributed data. First, integrating 
data from different sources and databases (machines, IT systems, production sites) 
and second, to enable the employee to access the data relevant for their job.  

C-T.2.1 Data Integration 

Integrating data from several data sources and IT systems was a key challenge of 
Company B during the implementation of the Global Performance Cockpit (C2-I.5). 
Thereby, defining interfaces between different IT systems, or combining several 
systems into a new one, has shown to be complex and time-consuming.  

A particular form of data integration, more specific knowledge integration, was needed 
to realize the Smart Support use case of Company C. Historically, the knowledge 
about customer complaints and solutions was distributed among the service 
employees in the form of implicit human knowledge. Translating this implicit 
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knowledge into explicit machine-readable knowledge that can be used for ML 
application was a key technological challenge for the Smart Support case (C3-I.4).  

C-T.2.2 Data Access 

The second challenge to facilitate manufacturing data analytics is to create a fast and 
user-friendly interface for employees to get access to the data relevant for their 
intended analysis (p.127). Besides providing the technical opportunity to access a 
central database remotely, companies need to balance the desire to access as much 
data as possible and the risk of data theft or misuse if too many people have access.  

C-T.3. Miscellaneous 

The two senior academics serving as expert interview partners have gained in-depth 
knowledge and a broad range of experience in their field of study. Due to their 
involvement in several industry projects, they are capable of recognizing specific 
challenges of data utilization in manufacturing, which are not evident at first. The last 
category Miscellaneous lists two of these challenges, first the problem of insufficient 
failure data for a predictive maintenance application and second the challenge to find 
algorithms that are applicable in the context of the manufacturing industry.  

C-T.3.1 Insufficient Data 

Predictive maintenance relies on a large set of machine error data to identify patterns 
and to forecast the optimal time for maintenance. However, if the availability of a 
machine is of high importance, companies tend to invest ample maintenance effort to 
keep the machine running. Consequently, this machine is likely to generate none or 
only very few machine failure data. This has several negative implications for the 
predictive maintenance application (E1.I-5). 

First, patterns identified on the base of a small database are less robust. Second, with 
few failure data, it is challenging to assess whether the predictions made by the 
predictive maintenance application are correct or not. As a consequence, nobody can 
seriously assess if the low number of machine failures is a result of a well-working 
predictive maintenance application or rather the result of much or even unnecessary 
much maintenance effort. In that case, predictive maintenance is not able to fulfill a 
central value proposition, which is to determine the optimal balance between investing 
too few and too much maintenance efforts.  

C-T.3.2 Inapt Algorithms 

A majority of state-of-the-art ML algorithms are developed for contexts different from 
the manufacturing industry. ML algorithms developed from internet companies are 
designed for large samples and low complexity. As discussed above, the sample size 
of data in manufacturing can be comparably small, while the structure of the data is 
often more complex. Developing tailored algorithms will, according to Professor 
Wuest, pose a challenge to the whole manufacturing industry. 
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5.4.2.3 Enablers  
According to the Cambridge University Press (2019b) dictionary, the term enabler is 
defined as “something or someone that makes it possible for a particular thing 
to happen or be done.”  

In this context, an enabler is a measure that increases the likelihood of the successful 
implementation of DBAs. In the previous chapter, challenges for data utilization that 
have emerged in the qualitative studies have been presented and discussed. This 
chapter builds on this work and consolidates enablers that are useful to address a 
large part of the identified challenges. Thereby this chapter follows the same basic 
structure by grouping the enablers in the three established categories Employees, 
Organization, and Technology. 

Like the challenges in chapter 5.4.2.2, the enablers in this chapter are derived directly 
from the qualitative studies. The enablers are discussed in more detail below. An 
overview of the enablers, including a link to the corresponding challenge, is presented 
in Table 32 in the consolidation chapter 6. 

5.4.2.3.1 EMPLOYEES 

E.1. Foster Acceptance 

The cross-case analysis of the three case studies and the two expert interviews has 
uncovered three threats to employees’ acceptance of new DBAs. Following the TAM 
proposition that the efficient use of technology depends on the users' attitude to use 
the system, companies need to foster the acceptance of new DBAs by addressing the 
three subchallenges of the main challenge Initial Resistance of Employees. The sub-
challenge Fear of Job Loss might be addressed by communicating the benefits and 
the added value of new DBAs. Integrating end-users in the development of a new 
DBA solution decreases the Fear of Loss of Job Autonomy.  

The third sub-challenge Fear of Control is covered in the Organization section as part 
of data transparency and utilization guidelines.  

E.1.1 Understand the Value of DBAs 

To address the Fear of Job Loss, it is a key leadership task to communicate the 
benefits of a new DBA for the whole company as well as for every employee. By 
demonstrating how a new DBA contributes to the overall company's competitiveness, 
the Fear of Job Loss can be mitigated. An effective change management that is 
“tak[ing] the people on board” (Company B) is even more important, if a new 
application requires extra effort by shop floor employees (e.g., to enter data manually) 
while the benefits for that effort are hard to see from an individual point of view (p.136).  

 

 

https://dictionary.cambridge.org/de/worterbuch/englisch/possible
https://dictionary.cambridge.org/de/worterbuch/englisch/particular
https://dictionary.cambridge.org/de/worterbuch/englisch/happen
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E.1.2 Being Part of the Solution Development 

A second cause of lacking employees' acceptance for a DBA can be the perception 
that the individual role and autonomy for finding the best solution is reduced due to 
data-based decision support systems. Company A (Predictive Maintenance 
application) and Company C (Smart Support system) have witnessed rejection of 
DBAs due to this reason in the past. 

A valid approach to mitigate the fear of employees of being deprived of their influence 
is to allow an active involvement in the development of the DBA of the final end-users. 
Following the example of Company A, maintenance staff is more likely to welcome 
predictive maintenance solutions if they have been personally involved in the 
development compared to a solution that was introduced top-down without the 
opportunity for feedback. As different restrictions do not allow to include every shop 
floor employee in the design and development phase of DBAs, the opportunity to 
provide feedback is fundamental: “introducing a new solution without collecting 
feedback first, does not work” (C1-I.8). Hence, training and feedback workshops are 
organized regularly when a new solution is introduced.  

Company C observed resistance of service employees when introducing the Smart 
Support system as some feared that their role will change from determining the best 
solution for the customer to just communicating the output of the new system. Taking 
these concerns into account, Company C gave its service employees the freedom to 
decide whether to follow the system's proposal or to propose an individual solution 
based on personal experience. The approach resembles the concept of an 
autonomous driving car, which allows the driver to take over control whenever he or 
she feels it is necessary. Hence, employees do not feel their job autonomy diminished, 
although they follow the system's recommendation most of the time. By now the Smart 
Support system is perceived as a useful support tool and is generally accepted among 
service employees (C3-I.5).  

E.2. Role-specific Training 

Analyzing the challenge to adequately qualify a company's employees has revealed 
different requirements for different hierarchical levels. This section proposes an 
approach of role-specific training, tailored to the individual needs of shop floor 
employees, middle managers, and members of the top management level. However, 
equally relevant for all employees who deal with data is training to raise awareness of 
the risk of data and or access credential theft and to provide guidelines for individual 
behavior to protect data and access credential.  

E.2.1 Basic Training of End-users 

Employees require additional qualifications to work effectively with new technologies 
(E2-I.11). Furthermore, understanding the basic logic behind a DBA allows end-users 
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to use the application more effectively as well as to provide more qualified feedback 
to the solution developer (C1-I.12). This not only improves the user-friendliness of a 
new DBA but also increases its acceptance among end-users. Accordingly, 
companies should not only train employees in using an application but also to 
understand their underlying logic (C3-I.8). Advanced training for end-users (e.g., to 
fully understand the ML foundation of the Smart Support tool) does yield little 
additional value for the daily job and is therefore economically not viable.  

E.2.2 Citizen Data Scientists 

A promising approach to built-in data analytics skills has emerged in the qualitative 
studies and is referred to as Citizen Data Scientists. 

The basic concept is simple. Very motivated employees who already have prior 
knowledge in IT or data analytics receive extra training in data analytics. Afterward, 
they serve as internal advisors for other employees, who plan to implement a data 
analytic application. The approach was suggested by academia and industry 
representatives. Professor Wuest argued from a theoretical point of view that 
technicians and engineers already have a good mathematical understanding and thus 
are well-prepared for additional training in data analytics (E2-I.12). He points out that 
training selected technicians intensively in data analytics allows companies to 
combine existing manufacturing know-how with data analytic skills. In this context, he 
suggests to offer motivated employees a range of voluntary training programs, thus 
allowing the employee to determine their optimal level of qualification for their tasks 
individually (E2-I.11).  

Company A has already introduced the concept of Citizen Data Scientists in one of its 
lead factories for digitalization. The word Citizen refers to the fact that they are not 
professional data scientists with a formal education in data science. Basic 
requirements to receive the additional training are a strong intrinsic motivation, high 
IT-affinity as well as basic IT-skills. Selected employees receive extensive on-the-job 
training in data-analytics tools but are also requested to perform self-organized 
training to keep their knowledge up to date. Company A supports Citizen Data 
Scientists by providing additional resources to the employee, such as extra time 
dedicated to training and, if required, a budget to also select external, fee-based 
educational programs. In addition to courses and self-learning, regular exchange 
within the plant and with data analytics experts from central company departments is 
part of the training (C1-I-7). 

When reached a certain level of expertise, Citizen Data Scientists serve as internal 
consultants and sparring partners to all topics related to data. Internally, they are 
referred to as “the masters of data.” Citizen Data Scientists thereby take an 
intermediate role between end-user and middle-manager. On one hand, they have a 
deep understanding of the needs of shop floor employees and will act as end-users 
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of DBAs themselves. On the other hand, they support middle managers in driving the 
implementation of DBA projects by combining manufacturing domain and data 
analytics expertise. 

This approach has supported Company A to overcome the challenge of a lack of data 
analytics expertise within its lead factory for digitalization. Due to their expertise in 
manufacturing and data analytics, Citizen Data Scientists enjoy high appreciation and, 
as a result, are often offered jobs from central units and competitors (p.130). 

E.2.3 Advanced and Holistic Understanding at the Middle Management Level 

From his experience of several data analytics projects with partners from the 
manufacturing industry, Professor Schuster has presented some characteristics that 
distinguish companies that are successful in implementing DBAs from companies that 
fail to do so.  

Accordingly, a key enabler of a successful DBA project is the availability of relevant 
technical expertise within the company. As top managers often lack this expertise as 
well as the time, the responsibility to drive DBA projects is usually passed on to the 
middle management. Consequently, it is critical to have managers on this level with 
an advanced understanding of data analytics. The availability of expertise on this level 
is crucial for two reasons: first, to allow managers to serve as critical sparring partners 
for consultants or service providers and second, to drive DBA projects internally. 
However, as shown in the challenge C-E.2.2 Middle Management, DBA projects are 
at the interface of manufacturing, IT but also require change management skills to 
overcome initial resistance. Thus, the ideal driver of DBA projects combines 
manufacturing and IT know-how, leadership qualities, and as a new requirement, data 
analytics skills.  

As leaders with data analytics skills are still rare, Company C has created a two-pillar 
training system for managers from the middle management level. The first pillar 
comprises formal training. In cooperation with a well-known university, a specific 150-
hour course was developed to train employees in data science. The second pillar 
consists of building competencies internally by fostering internal knowledge 
exchange. For instance, interested employees can choose to work for a maximum of 
40 weeks for a fixed percentage of their time in an IT or data science team. The 
training offer is highly appreciated by employees, resulting in a large request for 
participation in the university course that is currently exceeding the more than 100-
course places by far (C3-I.9). 

E.2.4 Basic but Holistic Understanding at the Top Management Level 

The lack of technical expertise of top managers has been discussed in challenge 
C-E.2.3 Top Management. However, following Professor Schuster, there are no 
simple solutions to this challenge. A full content course, such as the course presented 
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in the section above, would be challenging to fit into the calendar of most top 
managers. Besides, such a course requires significant existing knowledge in the fields 
of mathematics and software. For that reason, he expects few participants from the 
top management level in such courses. 

However, a course with a reduced scope, tailored to the special requirements of top 
managers is expected to be valuable and attractive for many companies. Even by 
understanding only the basic concepts of data analytics, managers will be better 
prepared to evaluate internal and external DBA project pitches adequately (E1-I.11). 
Ideally, additional expertise can be consulted internally if required. 

5.4.2.3.2 ORGANIZATION 

O.1. Favorable Conditions 

As discussed in challenge C-O.1.1 Uncertainty of Results the outcomes of data 
analytics DBAs are not predictable and desired outcomes cannot be guaranteed. 
There is no strategy to avoid the risk of finding no useful patterns in the data. 

However, DBA projects can fail for several other reasons, too. Thus, creating 
favorable conditions by mitigating as many potentials barriers as possible reduces the 
risk of failure of DBA projects. This section consolidates four enablers from an 
organizational perspective to create favorable conditions for DBA projects. First, 
applying a structured approach to select potential DBA projects. Second, to ensure 
management buy-in—not only to start a project but also to overcome difficult project 
phases. Third, having the right kind of leader in place. And fourth, maintain the 
motivation in case of setbacks.  

O.1.1 Structured Approach to Select DBAs 

As seen in chapter 4.1 and the three data utilization use cases, a wide variety of 
potential DBAs exists. Selecting the most promising DBAs is an essential first step for 
implementing DBAs successfully. Thereby, a structured process can help to identify 
potential DBAs and to evaluate their economic rationale. In case of Company A's 
digitalization lead factory, this process is called Analytic Business Case Review (C1-
I-10). As part of this review process, the plant responsible for digitalization (including 
data analytics) gets in contact with value stream managers in the plant. At a joint 
meeting, he presents successful practice examples of data analytics solutions that 
have already been tested and rolled out successfully in other areas. Acting as advisor 
and sparring partner, he discusses the potential of the set of successful practice use 
cases with the respective value stream manager. Based on experience, the 
digitalization responsible has a good sense for the required human and financial effort, 
thus supporting a realistic cost-benefit consideration. Only if both managers recognize 
enough potential to justify a new project, the process goes on.  
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In a second step, the project is defined in more detail, and if required, additional 
resources are requested from the plant leadership team. During the implementation 
phase, the project is then supported by the internal Citizen Data Scientists. Besides a 
well-informed discussion on the basis of existing use cases and a realistic cost-benefit 
consideration, a third advantage of this process was expressed. By including the value 
stream manager early in the Analytic Business Case Review process, the decision on 
the implantation of a new DBA is supported at the operational level. 

O.1.2 Ensure Management Buy-in 

DBA projects often require the investment of initial effort to collect the necessary data, 
before any analytics can be performed. However, the uncertainty of data analytic 
outcomes results in little willingness of the management to grant a budget to cover for 
the initial effort. To overcome the chicken and egg problem (see challenge C-O.1.2), 
Professor Schuster proposes to provide success practice examples of similar 
situations and is thus in line with the Analytic Business Case Reviews approach. 
Providing a proof of concept facilitates managers to overcome the dilemma of 
investing resources in projects with uncertain ROIs. 

Top management support is still critical after the initial phase for at least two reasons. 
Some DBA projects require the adjustment or new implementation of IT systems (e.g., 
Global Performance Cockpit case of Company B), which is often very time-consuming. 
Second, due to the uncertainty of DBA results, management commitment is inevitable, 
especially if DBA projects do not deliver the expected results in the first attempt.  

As discussed in chapter 2.5, data analytics is not a linear but an iterative process (see 
Figure 7: ) and finding useful results may require more than one iteration round. 
Therefore, a lack of management commitment can result in a hasty termination of the 
project. According to Professor Schuster, companies with a high persistence against 
setbacks in the early phase of DBA projects are more likely to implement DBAs 
successfully. 

To foster continuous management support, Professor Wuest proposes to build in 
“Quick Wins.” This approach will be discussed in enabler O.1.4 Maintain the 
Motivation. 

O.1.3 Put the Right Leader in Place 

The selection of the leader in charge of a DBA project strongly influences the project's 
probability of success. Summarizing his personal experience from joint DBA projects 
with industry, Professor Schuster presents a profile of requirements for a good DBA 
project leader. 

First, DBA projects are too time-consuming to be driven in addition to the daily 
business. Therefore, a DBA project leader should have dedicated time to manage the 
project. Second, a certain level of seniority of the project leader does certainly help to 
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have access to enough financial and personal resources. Furthermore, seniority is 
valuable to convince the top management for support as well as to overcome internal 
resistance against DBA. Third, persistence (“a certain terrier mentality”) and 
persuasiveness is a necessary character trait of a leader, not only to overcome initial 
resistance but to keep the project running despite potentials setbacks. (E1-I.8).  

Professor Wuest agrees and especially highlights the two key characteristics of 
persistence and access to sufficient human and financial resources as decisive 
(E2-I.9).  

Again, based on personal experience as a consultant for DBA projects, Professor 
Schuster notes that members of the middle managers who meet the requirements 
described above and have deep technical expertise have been the best project partner 
so far. In contrast to representatives of the higher management, middle managers 
may not only meet the key requirements of a good DBA project leader but are usually 
rather in the position to invest the time needed in the project.  

O.1.4 Maintain the Motivation 

Because DBA may not deliver the expected results within the planned timeframe, the 
motivation of project members and other stakeholders can diminish. However, as 
highlighted by both expert interview partners, persistence is an essential feature to 
implement DBAs effectively. According to Professors Schuster and Wuest, little 
success stories along the way, so-called Quick Wins, mitigate the risk of falling 
motivation, even if the desired outcome is not (yet) reached. “‘Quick Wins keep people 
happy and management calm” (Professor Wuest).  

However, natural Quick Wins are rare (p. 153) and therefore need to be built into the 
DBA project from the start (E2-I.10). An example of a Quick Win presented by 
Professor Wuest is a comparably simple threshold-based control system, which is 
developed as part of a more complex predictive maintenance DBA. In case the DBA 
does not achieve to fulfill the requirements instantly, the project is not considered as 
failure, as some additional value is created by the threshold-based control system. 
Arguably, the motivation to further invest the effort to achieve the full potential of the 
DBA is higher with small success stories along the way than without any reward on 
the previous investments.  

O.2. Data Transparency  

The challenge C-E.1.3 Fear of Control has demonstrated the risk of intransparency of 
data utilization in manufacturing to the acceptance of employees of DBAs. During the 
qualitative studies, two approaches have briefly discussed to mitigate the risk of data 
misuse. Binding data guidelines and establishing the role of a Data Security Officer. 
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O.2.1 Data Guidelines 

To avoid misuse of personal data, Company A has created data guidelines. The 
guidelines are supposed to create transparency over the collection and utilization of 
data. Furthermore, the guidelines define clear limits for tracking individual behavior 
and performance. Creating transparency includes open discussions with employee 
representations, with the results of the discussion informing the guidelines. The strict 
and transparent data policy supported the plant management in ensuring acceptance 
among its employees for DBAs. 

The fact that growing data collection is increasing the transparency of individual 
performance is not denied by Company C. However, transparency is also perceived 
as a chance to establish a fair and transparent performance evaluation system. 
Transparency and guidelines on the data collected and the performance metrics used 
for individual performance assessment is key to secure employee acceptance for that 
approach (p. 145).  

O.2.2 Data Security Officer 

In addition to establishing data guidelines, each plant of Company A has its own Data 
Security Officer (C1-I-11). He or she is in charge to ensure full compliance with internal 
and external data security and privacy regulations.  

O.3.Standardization 

As shown in challenge C-O.3 Comparability of Data many DBAs require standardized 
and comparable data, for instance, failure codes and performance metrics.  

O.3.1 Management Responsibility for Standardization  

Standardization of metrics company-wide may require some production sites to 
change their definitions and calculations. Usually, sites are hesitant to change internal 
definitions as it takes much effort to modify all calculation processes and also because 
the new metrics are not compatible with legacy data anymore. Consequently, setting 
and enforcing company-wide standards need to be driven and ensured by the 
management on a corporate level (C1-I.6). 

O.4. Internalize external Expertise  

The challenge C-O.4. Access to Expert Knowledge has illustrated the difficulty of the 
case companies to meet the internal demand for employees trained in data analytics 
skills. The approach of training their own employees has already been discussed in 
enabler E.2. Role-specific Training.  

The second option is to internalize external expertise. However, strong competition 
for data scientists on the labor market makes it challenging for manufacturing 
companies to hire as many externals as desired, especially due to solvent competitors 
from other industries. To convince potential candidates despite financially more 
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attractive job offers, manufacturing companies need to highlight non-monetary 
benefits. Alternatively, companies can benefit from external expertise by collaborating 
with external partners.  

O.4.1 Convince with non-monetary Benefits 

Due to collective agreements, Company A is somehow restricted to offer very high 
salaries, which are out of the standard range. Financial institutions and consultants, 
in contrast, can offer salaries that exceed the maximum limit of those of Company A. 
Nevertheless, Company A manages it to attract and hire highly qualified data 
scientists. A key argument for some candidates is the fact that they can see the result 
of their work come to a reality in the plant “within 100 meters of their working place.” 
The chance to test new ideas quickly in a physical setting and to receive real-world 
feedback instantly is a strong argument in favor of Company A (p.183). 

Also, Company A and Company C have observed that a high reputation as an 
employer is beneficial for hiring highly demanded specialists.  

O.4.2 Benefit from Cooperation 

Professor Wuest recommends companies to partner up with external partners in order 
to benefit from their experience and resources. Companies can collaborate, for 
instance, with consultancy companies and research institutions. Maybe biased by his 
role, Professor Wuest argues that universities are attractive collaboration partners for 
manufacturing companies. Master and Ph.D. students not only bring a high intrinsic 
motivation to complete a project successfully in time but also have in contrast to 
company employees the time to work on it almost full time. 

Furthermore, universities may have access to experienced experts in the field of data 
analytics as well as software and computing power. As their primary objective is 
progress in academic research, universities are eager to participate in projects not 
primarily for financial reasons and are thus often more affordable as cooperation 
partners than consulting companies. 

5.4.2.3.3 TECHNOLOGY 

From the six technological challenges (see chapter 5.4.2.2.3), only for the challenge 
C- T.1.1 IT System Performance a corresponding enabler was discussed in the case 
studies. Cloud computing is a promising technology to provide companies access to 
scalable computing and storage capacity. An external enabler for DBAs is the 
significant reduction of costs for technical equipment in the last 10 years. 

T.1. State-of-the-art Technology 

T.1.1 Benefit from falling Component Costs 

The technical infrastructure to collect, transfer, process, store, and protect data (see 
chapter 4.1.6) remains a key prerequisite for DBAs. However, as Professor Wuest 
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notes, referring to the final report of the World Manufacturing Forum 2018 (Taisch et 
al., 2018, p. 15), prices for technical equipment have decreased significantly in the 
last decade. Sensor prices have been halved in the last 10 years. The costs for data 
transmission bandwidth were reduced by a factor of 40, the costs for data storage by 
a factor of 50, and the costs for computer performance for data processing by a factor 
of 60. These significant cost reductions make these technologies affordable for more 
and more companies and are, thus, an external enabler for DBAs (E2-I.4). 

T.1.2 Cloud Computing 

Cloud computing was introduced in chapter 2.3.3 as a core technology of SM. Indeed, 
the case studies have shown that cloud computing can serve as a technological 
enabler for DBAs. 

One example from an industry partner and one example from an academic partner 
underline the increasing relevance of scalable IT resources. Scalable computing and 
storage capacity have been key enablers of the MAS system of Company A (C1-I.5). 
Following Professor Schuster, scalable computing resources will also be increasingly 
relevant for simulation applications as their complexity increases exponentially when 
adding new elements (E1-I.6).  

To cover the increasing and also fluctuating demand for computing and storage 
capacity, fixed IT resources are not flexible enough and either not powerful enough or 
too expensive. Cloud computing services will enable companies to use and pay 
exactly the amount of computing power and storage capacity needed for their DBAs.  
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5.4.2.4 Impact on Lean Manufacturing  
This chapter consolidates the results of the case studies on the impact of data 
utilization on LM. Therefore, this chapter comprises two parts. The first part presents 
a summary of the general expectation of the case companies, how data utilization will 
influence LM. The second part then summarizes the impact of 10 real-world DBAs on 
different lean elements. The term lean elements comprises lean principles (see 
chapter 2.2.1) and lean practices (see chapter 2.2.3).  

5.4.2.4.1 GENERAL EXPECTATIONS OF CASE COMPANIES 

Lean remains lean. Company A expects no significant changes to the basic principles 
of LM. Lean practices that support lean principles, however, are expected to benefit 
from data utilization in manufacturing. This statement is supported by the findings 
exhibit in Table 28 in part two of this chapter. It provides four real-world examples of 
DBAs supporting lean practices from one plant of Company A. The single most 
important impact of data utilization on LM is increased transparency. The new MAS 
system, for instance, will allow Company A to perform data analysis more efficiently. 
Hitherto, it was challenging to evaluate the effectiveness of different measures of 
improvement. Accurate data from the MAS system, in combination with advanced 
analytic tools, allow this evaluation to be more reliable and more efficient. Also, the 
data will increase the transparency on inventory and thus facilitates the identification 
of opportunities for inventory reduction.  

Full transparency is also the main value proposition of data utilization regarding lean 
for Company B (C2-I.12). Near real-time data analytics performed on accurate data 
will support the lean continuous improvement process. 

“Gaining direct data-based insights on where the biggest potentials for optimization 
and the next improvements are, as opposed to relying on opinions and prioritizing 
them,” is the expected main benefit of digital technologies on LM. Accordingly, 
Company C expects a strong positive impact of data utilization on the identification of 
improvement potentials (C3-I.11).  

Besides the use cases of DBAs discussed in the case study in detail, Company C 
applies several advanced DBAs to support the lean objectives of customer value and 
waste reduction. Among these are an intelligent chatbot to reduce waiting times of 
customers for written requests and a voice recognition ML application to reduce 
customers' effort to identify themselves on the telephone.  

5.4.2.4.2 IMPACT OF DBAS ON LEAN ELEMENTS  

The second part of this chapter summarizes use cases of DBAs documented in the 
case studies with a special focus on the impact of lean elements. 
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Table 28 provides an overview of nine use cases of data utilization, the corresponding 
DBA according to the classification in 4.1.3, the impacted lean element, and a brief 
description of the impact.  

Table 28: Impact of DBAs on lean elements (documented in the case studies) 

C  
Application 
Name 

Corresponding 
DBA 

Impacted  
Lean Element Impact P 

A 
Manufacturing 
Analytic Solution 
system (MAS) 

System 
Performance 
Measurement 

Waste 
reduction, 
Continuous 
Improvement 

Increased transparency allows a 
better identification of waste and 
supports CI by allowing to asses 
the effectiveness of CI 
measures.  

131 

A Predictive 
Maintenance 

Predictive 
Maintenance 

Preventive 
Maintenance  

Increased accuracy of 
maintenance planning. 131 

A 
Advanced 
Planning and 
Scheduling 

Production 
Planning Pull/Kanban 

Pull is replaced partially due to 
the central production planning 
of critical parts. 

131 

A E-Kanban  Material Flow 
Management Pull/Kanban 

Support of Pull/Kanban due to 
the fast and secure transfer of 
Kanban signals and the ability 
for dynamic lot size adaptions. 

131 

B 
Global 
Performance 
Cockpit 

System 
Performance 
Measurement 

Continuous 
Improvement 

Full transparency of data and 
processes on the shop floor 
supports the lean continuous 
improvement process. 

138 

B Predictive 
Maintenance 

Predictive 
Maintenance 

Continuous 
Flow 

Predictive Maintenance 
increases equipment stability 
which in turns enables 
Continuous Flow. 

139 

B Production 
Planning System 

Production 
Planning Pull/Kanban 

Pull is replaced between 
process steps due to central 
planning of the material flow. 

139 

C Smart Support 
system 

Product Quality 
Improvement 

Create 
Customer 
Value 

Based on historical quality data, 
a ML algorithm support the 
identification of the best 
solution, thus increasing 
customer value. 

143 

C 

Performance 
measurement of 
non-physical 
processes 

System 
Performance 
Measurement 

Continuous 
Improvement 

Comparable to shop floor 
management KPIs, the 
performance of non-physical 
processes is measured and 
visualized. 

147 

C: Company, P: Reference to the respective page  
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5.4.3 Commonalities and Differences: ICT vs. Manufacturing Companies  
Case Company C is an ICT company and although they consider the physical 
infrastructure to provide its services as their manufacturing system, the value creation 
processes are mostly non-physical. This chapter contrasts the findings of the three 
case studies to identify commonalities and differences between Company C and the 
two manufacturing companies A and B.  

Commonalities 

First, all three companies have reported to advocate a close interaction between 
digitalization specialists and lean specialists. The benefit of making a process first 
efficient and robust with lean approaches before digitalizing it is stated consistently. 
However, none of the three companies has formalized an integrated perspective on 
lean and digitalization, neither from a strategic perspective nor from an organizational 
embedding perspective. All three have a central lean unit on the corporate level, while 
the responsibility for digitalization cannot be clearly assigned to a unit. Interaction 
between lean and digitalization responsible is fostered and realized on a project basis 
in all three companies. Mostly, these project teams are established when a new tool 
or process is introduced. 

Second, the perceived threat of loss of job autonomy is shared between employees 
of Company A and Company C. Service employees of Company C feared that their 
role will be impacted negatively due to the introduction of the Smart Support system. 
Similarly, maintenance employees of Company A rejected a data-based predictive 
maintenance tool, which was introduced top-down but preferred instead to rely on their 
own experience. The response of both companies to the initial resistance is also 
similar, as both ensured their employees to be part of the solution. The Smart Support 
users always have the power to overrule the suggestion by the system. Company A 
reacted to the situation by involving stakeholders in the development process of new 
applications, thus allowing them to provide earlier feedback. Being involved in the 
solution development increases the acceptance of an application, regardless of 
whether in manufacturing or in customer service.  

Third, the request for role-specific training is present in both companies. End-users 
should receive basic training that includes the understanding of the underlying logic 
of a new tool. Thus, end-users are not only able to use the tool more effectively but 
also to provide qualified feedback to the developer. Related to the common need for 
employee qualification is the challenge to hire data talents from the labor market. 
Company A and C report an intense competition for those data talents but also state 
to be in a comparably favorable situation due to their strong employer brand. 

Fourth, standardization is a key organizational challenge for all companies. While the 
manufacturing companies A and B require standardized failure codes and KPIs to 
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ensure data integrity and data comparability for analysis, the ICT company C seeks 
to standardize virtual objects, like customer tickets, to enable an uninterrupted flow 
across department borders. 

Differences 

The case study research has also shown four significant differences. 

First, the experience in working with data is higher in the ICT company. For Company 
C, working with data is part of the daily business for many years. Therefore, the 
company has had much time to built data analytics skills internally. Data utilization, 
especially in real-time and in big scale, is a trend that has emerged in the 
manufacturing industry only a few years ago.  

Second, Company C has formulated explicitly the objective to use data to inform 
operational and strategic decision-making and thus to become a data-driven 
company. This clear commitment to data as the foundation for decision-making is 
unique among the three companies. 

Third, while Company A and B have presented use cases concerned with integrating 
data from different sources, Company C has presented an application that is already 
exploiting data to improve a key business objective, which is customer satisfaction. In 
general, the maturity of Company C—in terms of data utilization and especially 
regarding the use of ML application—is higher compared to the manufacturing 
companies. The higher maturity of data analytics DBAs in the ICT company is likely 
to be a result of the first two differences. Years of experience and expertise building 
in data utilization and a strong commitment to exploit data for decision-making, have 
enabled Company C not only to develop but already to apply highly advanced DBAs 
in core activities such as customer support.  

Fourth, increased transparency due to increased data collection is perceived mainly 
as a threat to user acceptance in companies A and B. Transparency on individual 
performance has a negative touch. As a result, companies A and B have guidelines 
to restrict the use of operational data to monitor employees' performance. Although 
Company C also recognizes the threat of employees' rejection of individual 
performance monitoring, the company at the same time considers the possibility of 
data-based individual performance assessment as a chance for fair and objective 
leadership. 
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6 Consolidation of Findings  
This chapter consolidates the results of the quantitative survey of chapter 3, the 
literature-based findings of chapter 4, and the insights from the qualitative studies of 
chapter 5. In addition, following the recommendation of Eisenhardt (1989, p. 533), 
literature was consulted to provide support or contradictions to key findings of the 
qualitative studies.  

This chapter comprises three subchapters. Chapter 0 consolidates the findings 
regarding DBAs in manufacturing in general. Chapter 6.2 then considers the findings 
from an LM perspective and discusses the positive and negative implications of DBAs 
for LM. Finally, chapter 6.3 intends to abstract the findings from the specific use cases 
and formulates two theoretical implications.  

This chapter combines the findings of chapters 3 to 5 to answer the three SRQs on a 
sound basis. Table 29 provides references to navigate directly to the respective 
chapter of each SRQ. 

Table 29: Sub-research-questions and references to research results 

Sub-research-question 
Reference 
Chapter / Page  

SRQ 1 Which data-based applications exist in 
manufacturing and what are their objectives? 

6.1.2 / 191 

SRQ 2 What are key enablers to apply data-based 
applications? 

6.1.3 / 194 

SRQ 3 How can data-based applications support lean 
practices? 6.2.1.2 / 208 
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6.1 Data-based Application in Manufacturing 
This chapter consolidates the findings on DBA in manufacturing from a general point 
of view and comprises three subchapters. First, chapter 6.1.1 presents five general 
observations regarding DBAs in manufacturing. Second, chapter 6.1.2 presents the 
DBAs and their objectives identified in chapter 4.1 and third, chapter 0 presents key 
challenges and enablers to apply DBAs.. 

6.1.1 General Observations  
This chapter summarizes five general observations of DBAs from literature and praxis.  

First, the motivation of manufacturing companies to engage in data utilization is 
manifold (see chapter 5.4.2.1). Companies can be motivated by the outlook to achieve 
a particular use case-specific objective, such as increased maintenance 
effectiveness. However, often the decision to invest in data utilization does not emerge 
from a concrete need but is driven by the expectation of external stakeholders. 
Accordingly, top management is pressured to “do something in regard to Smart 
Manufacturing” and formulate a data utilization strategy. Further drivers are production 
machinery manufacturers, which equip new machines with sensors as a prerequisite 
to offer additional services or new pay-per-use models. In doing so, suppliers push 
the technical prerequisite for DBAs into manufacturing companies. 

Second, there is a wide variety of DBAs available fitting the need of the manufacturing 
industry. As discussed in chapter 4.1, six DBA categories comprising 14 individual 
DBAs have been derived from a systematic literature review. Those DBA cover a wide 
range of manufacturing operations, including Planning and Scheduling (I); Production 
Control (II); Maintenance (III); Internal Logistics (IV); Product Quality Management (V); 
and Environment, Health, and Safety (VI). Thereby the complexity of DBAs ranges 
from rather low (e.g., Track and Trace) to very high (e.g., Prescriptive Maintenance). 
An overview of the six categories and the14 DBAs, including their status of the 
application in the case companies, is given in the next chapter 

Third, by abstracting from the individual objectives of the DBAs, four DBA core 
functions have been derived in chapter 4.1.5. The four DBA core functions Monitoring 
(1), Deviation Control (2), Decision Support (3) for humans, and Autonomous 
Optimization (4) are able to describe the key functionalities of all 14 DBAs. The core 
function Monitoring is thereby defined as basic core function, as the other three core 
functions depend on the availability of data collected by this core function. The 
characterization of the four core functions revealed different levels of value add. While 
Monitoring is a prerequisite for other core functions, it provides little value as a 
standalone function. The second core function Deviation Control adds value by 
controlling and maintaining the status quo. However, from a theoretical point of view, 
higher value is generated by the core functions Decision Support and Autonomous 
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Optimization as they not only seek to maintain but to improve the status quo. As the 
core functions, Decision Support and Autonomous Optimization include advanced 
data analytics, they are more complex and more challenging to implement than the 
core functions Monitoring and Deviation Control. Thus, a tendency that higher added 
value of DBAs comes at the cost of higher complexity can be concluded.  

Fourth, the two major data utilization use cases of the manufacturing companies are 
concerned with facilitating easy and quick access to distributed data. The MAS system 
of Company A was explicitly driven by the motivation to reduce time and effort to find 
and access relevant data for diverse data analytics projects (p.125). Before, many of 
the planned data analytics projects have been cancelled as the effort to collect the 
data was just too high. The Global Performance Cockpit of Company B is motivated 
by the outlook to have cross plant data available in near-real time to avoid a negative 
impact of production stops in one plant on other plants (p.136). Apparently, integrating 
the diverse data sources into one central data management system is still a major 
task for manufacturing companies. The ICT company has shown to be more mature 
in terms of data utilization. While the manufacturing companies still focus on 
establishing a central database, Company C has already developed and rolled out 
advanced DBAs to support key objectives. For instance, customer satisfaction, which 
is a key objective of Company C, is increased by the ML-based Smart Support system. 

Fifth, investing in the technical infrastructure for DBAs is getting economically 
attractive for many companies for the first time. According to the World Manufacturing 
Forum 2018 (Taisch et al., 2018, p. 15), relevant components such as sensors but 
also costs for computing and storage capacity have reduced dramatically in the last 
decade. Budget restrictions were considered a main barrier for digitalization in the 
2017 survey presented in chapter 3. Due to the substantial cost reductions, however, 
it can be assumed that this perception will change in the near future.  

6.1.2 Overview and Objectives  
This chapter combines the DBA identified in the literature review in chapter 4.1 and 
the DBAs described in the qualitative studies in chapter 5. Table 30 presents an 
overview of DBAs identified in the literature along with their objectives and their current 
state of application in the case companies. Table 30 thus answers the first SRQ. 
 

SRQ 1: Which data-based applications exist in manufacturing and what are their 
objectives? 
 

The systematic search process of DBAs in the literature is explained in chapter 4.1.2. 
The overview shows that the range of DBAs covers a broad spectrum of 
manufacturing activities. Two aspects may indicate the relevance of a DBA in scientific 
literature and in the manufacturing industry. First, the number how often a DBA was 
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mentioned in a selection of 12 publications (see Table 14) is indicated in the left 
column of Table 30. Second, the current status in the two manufacturing case 
companies is indicated in the right column of Table 30.  

Table 30: DBAs in theory and practice – overview and objectives 

DBA 
[Number of 
references] 

DBA Objective 
Status in 
Case 
Companies  

I. Planning and Scheduling 

Production 
Scheduling 
[10/12] 

Determination of an optimal production plan (e.g., in terms of 
maximized asset utilization or minimized cycle time) while 
meeting the constraints in terms of available material and 
equipment capacity. (p. 67) 

Testing phase    
in companies 
A and B.  

Layout 
Planning  
[4/12] 

Determination of an optimal production layout (e.g., in terms of 
low WIP inventory, minimal material handling, and flow 
orientation) while meeting the constraints in terms of available 
space and number and type of machines. (p. 69)  

Not in use          
in companies 
A and B  
 

II. Production Control 

Real-time 
Control 
[8/12] 

Real-time monitoring of the production process by 
permanently comparing the actual behavior of the production 
system to the expected behavior. Real-time notification in case 
of deviations outside the tolerance. (p. 70) 

In use  
in companies 
A and B.  

System 
Performance 
Measurement 
[2/12] 

Transparent overview of the overall system performance by 
automatic calculation and visualization of KPIs, such as the 
OEE. KPIs are used to identify trends and for benchmarking 
against similar machines. (p. 71) 

In use  
in companies 
A and B.  
 

III. Maintenance 

Condition 
Monitoring  
[9/12] 

Increase maintenance effectiveness and efficiency by 
monitoring the equipment health status of machines in real-
time. Maintenance activities are triggered only in case of 
unusual machine behavior. (p. 73) 

In use  
in companies 
A and B.  
 

Predictive 
Maintenance 
[10/12] 

Increase maintenance effectiveness and efficiency by 
monitoring equipment health and forecasting future machine 
degradation. By forecasting the expected time of machine 
failure, a maintenance plan is derived that ensures equipment 
availability while avoiding unnecessary maintenance. (p. 74) 

In use  
in companies 
A and B 

Prescriptive 
Maintenance 
[0/12] 

Increase maintenance effectiveness and efficiency. The same 
approach as Predictive Maintenance but in addition, this DBA 
also derives or even initiates maintenance activities 
autonomously. (p. 75) 

Company A: 
testing phase 
Company B: 
not in use 
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DBA 
[Number of 
references] 

DBA Objective 
Status in 
Case 
Companies  

IV. Internal Logistics 

Track and 
Trace 
[5/12] 

Traceability of material, container, and products (e.g., position, 
cycle times, components) by using unique identifiers such as 
RFID tags. Trace and trace data allow to evaluate a product's 
history in case of quality issues and increases the 
transparency of the material flow, thus reducing the level of 
safety stock. (p. 76) 

In use  
in companies 
A and B 

Material Flow 
Management 
[4/12] 

Efficient control of the material flow based on real-time 
demand. Material flow can be controlled either by a production 
control system, which plans the demand and distribution of 
material centrally or by a digital pull system. A digital Kanban 
system detects automatically a need for replenishment and 
triggers the process by sending virtual Kanban cards. 
Optimization of the physical distribution of material by data-
based path planning for AGVs or milk runs. (p. 77) 

In use  
in companies 
A and B 
 

Inventory 
Management 
[3/12] 

Intelligent inventory management to ensure material 
availability with minimal inventory by increasing the 
transparency of the current inventory and demands. The 
objective is to “replace inventory with perfect information.” (p. 
78) 

In the testing 
phase in 
companies A 
and B 

V. Product Quality Management 

Product 
Quality 
Monitoring 
[9/12] 

Automatic identification and sorting out of nonconforming 
products by comparing quality data (e.g., geometrical 
dimensions) in real-time against reference values. (p. 79) 

In use  
in companies 
A and B 

Product 
Quality 
Improvement 
[9/12] 

Systematic identification and preventive avoidance of errors by 
using collected data on quality issues to perform a systematic 
root cause analysis. (p. 81) 

In use  
in companies 
A and B 

VI. Environment, Health, and Safety 

Energy 
Monitoring  
[7/12] 

Reduction of energy consumption, by measuring the 
consumption of several components and identifying sources of 
unnecessary energy consumption. (p. 82) 

No information 
on the status 
quo as DBA 
was added to 
the collection 
after case 
interviews 

Environmen-
tal Monitoring 
[2/12] 

Ensure healthy working conditions for employees by 
monitoring the environmental conditions such as air quality in 
real-time and compare current condition against reference 
values. (p. 83) 
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6.1.3 Key Challenges and Enablers  
This chapter summarizes the key challenges and key enablers found in the qualitative 
studies. In the first part of this chapter, the challenges are discussed since they are 
important to understand the enablers presented in the second part.  

6.1.3.1 Key Challenges 

6.1.3.1.1.1 Overview 

Table 31 provides an overview of the key challenges of using DBAs. 

Table 31: Challenges of data utilization in manufacturing (emerged in qualitative studies) 

Category  Main Challenge Sub-challenge  Page 

Employees 
(E) 

C-E.1. Initial Resistance of 
Employees 

C-E.1.1 Fear of Job Loss 

168 C-E.1.2 Fear of Loss of Job 
Autonomy 
C-E.1.3 Fear of Control 

C-E.2. Employee 
Qualification 

C-E.2.1 Shop floor Employees  
169 C-E.2.2 Middle Management  

C-E.2.3 Top Management 

Organization 
(O) 

C-O.1. ROI Calculation of 
Investment Decisions 

C-O.1.1 Uncertainty of Results 
170 

C-O.1.2 Chicken and Egg Problem 

C-O.2. Misuse of Data  
C-O.2.1 Internally  

171 
C-O.2.2 Externally  

C-O.3. Comparability of 
Data 

C-O.3.1 Within the Plant 
171 C-O.3.2 Within the Manufacturing 

Network 

C-O.4. Access to Expert 
Knowledge  

C-O.4.1 Limited Internal Resources 
172 C-O.4.2 Competition for Data 

Scientists 

Technology 
(T) 

C-T.1 Basic Requirements 
C-T.1.1 IT System Performance 

172 
C-T.1.2 Data Security  
C-T.1.3 Technical Infrastructure1  

C-T.2 Distributed Data 
C-T.2.1 Data Integration 

173 
C-T.2.2 Data Access 

C-T.3 Miscellaneous 
C-T.3.1 Insufficient Data 

174 
C-T.3.2 Inapt Algorithms 

Key 
C-E.1.1: sub-challenge 1 of main challenge 1 of the category Employees 
1Identified as key requirement of DBAs based on use cases from literature 
(see chapter 4.1.6)  
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This chapter consolidates key challenges discussed in the case studies and the expert 
interviews with the key DBA requirements identified in chapter 4.1.6. As shown in 
Table 31, a variety of challenges for data utilization in the context of manufacturing 
exists.  

Some of the challenges discussed are DBA context-sensitive while others have been 
indicated by several partners. DBA context-specific challenges are, for instance, the 
need to translate implicit human knowledge to explicit machine-readable knowledge 
(Company C), and the challenge of insufficient data to evaluate the effectiveness of a 
predictive maintenance DBAs.  

Context independent challenges have emerged in all three main categories. 
Overcoming initial resistance of employees was mentioned as consistently as a key 
challenge as ensuring the right level of employee qualification. Similarly, a performant 
IT system and data security were identified unison as challenges for data utilization. 
Finally, the impossibility to seriously forecast the results of data analytics DBA and, 
thus, the organizational challenge to deal with the unpredictable ROI was a 
reoccurring theme in the discussions. 

Table 31 lists eight main challenges plus two additional and rather specific sub-
challenges assigned to the challenge C-T.3 Miscellaneous. When also considering 
the key requirements of DBAs identified form the literature in chapter 4.1.6, three more 
challenges need to be added: technical infrastructure (1), data availability (2), and 
know-how (3).  

Taking a closer look, however, reveals significant overlaps of the three additional 
challenges to the challenges listed in Table 31, hence allowing the integration of the 
key requirements into the key challenges. The requirement technical infrastructure 
can be logically assigned to the main challenge C-T.1 Basic Requirements. The 
requirement data availability is covered by the main challenge C-T.2 Distributed Data, 
and the requirement know-how can be merged into the main challenge C-E.2. 
Employee Qualification.  

The remaining eight main challenges are briefly summarized below. More details can 
be found by following the reference to the respective page in chapter 5.4 in the right 
column of Table 31. By following the references, each challenge can be traced back 
to the respective section in the case study or expert interview.  

6.1.3.1.2 EMPLOYEES 

6.1.3.1.2.1 Initial Resistance of Employees  

Ensuring employees’ acceptance of new DBAs and overcome initial resistance is the 
first key challenge. Employee resistance may be provoked for three reasons. First, 
fear of job loss due to the perception that DBAs are more efficient than humans and 
will gradually replace human labor (C-E.1.1). Second, fear of loss of job autonomy. 
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The case studies have shown that employees fear to lose the freedom to derive self-
determined decisions, if they have to work with a decision support system, such as 
the Smart Support (Company C) system or a predictive maintenance application (C-
E.1.2). Third, fear of control is triggered due to the constant expansion of the data 
collection. Manufacturing data can be misused to control the behavior of individuals 
on the shop floor (C-E.1.3).  

6.1.3.1.2.2 Employee Qualification 

Employee qualification is the second key challenge that was identified consistently by 
all interview partners. The first challenge is to define the required level of competence 
of each employee and the second challenge is to provide target-group-specific 
training. During the qualitative studies the critical competencies of three different 
groups of employees were outlined: shop floor employees (C-E.2.1), middle 
management (C-E.2.2) and top management (C-E.2.3). 

The consolidation of key requirements of DBAs (see chapter 4.1.6) comprises 
primarily technological requirements but also know-how. According to Table 17, the 
implementation and use of DBAs require multidisciplinary skills, including IT know-
how, manufacturing domain expertise as well as expertise that is specific to the DBA. 
For instance, predictive maintenance requires specific skills such as data analytics 
skills to detect patterns and forecast future equipment health. In conclusion, literature 
and qualitative research indicate the challenge of building the broad set of skills, which 
are necessary to implement and use DBAs.  

6.1.3.1.3 ORGANIZATION 

6.1.3.1.3.1 ROI Calculation of Investment Decisions 

From a managerial perspective, a key challenge is the infeasibility to forecast the ROI 
of investment decisions in data analytics DBAs. While traditionally investment 
decisions are based on an ROI calculation, this concept is hardly applicable for data 
analytics DBA projects. The underlying problem is that the result of those DBAs is not 
predictable before the analysis (C-O.1.1). The situation is characterized as a 
chicken and egg problem. Managers wait for a proof of concept before granting project 
funds, but the proof of concept cannot be provided prior to the analysis. Overcoming 
the chicken and egg problem is a key organizational challenge (C-O.1.2).  

6.1.3.1.3.2 Misuse of Data  

Data protection and avoidance of data misuse is a second organizational challenge. 
Misuse of data can occur internally and externally. The case companies and the 
researchers have pointed out that tracking more and more data on the shop floor 
allows relatively precise control, not only of employees' performance but also of their 
behavior. As discussed above, fear of control is a key driver of employee resistance 
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against DBAs. Missing personal data protection can even cause delays in or blockade 
of projects that collect and process personal data (C-O.2.1).  

Protection of data from external misuse is also a central theme for the case 
companies. This is in line, with the requirement data protection derived in chapter 
4.1.6. Whereas data security is mostly considered as a technological challenge, the 
discussion with practitioners revealed that it is often not the IT system but employees 
which are the weakest part of data protection (C-O.2.2). Thus, avoiding data theft is 
not only a technological but also an organizational challenge.  

6.1.3.1.3.3 Comparability of Data 

Many DBA not only process data of one machine but of several machines in one 
factory (C-O.3.1) or even from different factories in the production network. A key 
organizational challenge is to ensure the comparability of data from those different 
sources. For instance, the Global Performance Cockpit of Company B provides a near 
real-time overview of KPIs from different sites. To allow meaningful comparisons, the 
KPIs' definition and calculation need to be consistent (C-O.3.2). 

6.1.3.1.3.4 Access to Expert Knowledge  

According to the case companies, the internal resources of data analytic expertise are 
limited. For manufacturing companies, the field of data analytics is rather new, but 
even the ICT company struggles to build enough internal data analytics expertise as 
expressed by the quote: “we know that we need more data-affine employees” (C-
O.4.1). This finding is in line with the survey results presented in chapter 3. To the 
question, what are barriers to use digital, the survey participants reported, that 
shortage of manpower and employee qualification are both among the top three 
barriers (see Figure 12). Although digitalization and data utilization are not equivalent, 
the quantitative study results support the conclusion, that building expert knowledge 
for new applications internally remains a key organizational challenge.  

An alternative to building the required skills internally is to hire data experts from the 
job market. According to a study by Macuvele et al. (2018, p. 39), almost one out of 
two companies is currently hiring or intends to hire data experts. The high demand for 
data experts and the scarce availability on the labor market results in a “war for data 
talents.” Finding and hiring sufficient external data experts, despite lucrative offers 
from other industries, is a challenge not only for the manufacturing companies but also 
for the ICT company (C-O.4.2).  

6.1.3.1.4 TECHNOLOGY 

6.1.3.1.4.1 Basic Requirements  

Based on the literate-based use cases of DBAs discussed in chapter 4.1.4, key 
requirements have been summarized in Table 17 in chapter 4.1.6. Most of these 
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requirements are technological requirements and are therefore consolidated with the 
technology challenges identified in the qualitative studies in chapter 5.  

The first basic technological requirement is to create the basis for using data in a 
specific DBA. Therefore, a technical infrastructure is required to collect, transfer, 
preprocess and protect data. Data collection poses the challenge to collect data in 
high quality, thus demanding for automated data collection with accurate and reliable 
sensors. Real-time availability of data is critical for DBAs such as Real-time Control. 
Due to the lack of a high-performing mobile data network (e.g., 5G standard), ensuring 
a robust data transfer with very low latency times is currently a key technological 
challenge. Data preprocessing is identified as another challenge due to the fact that 
data in manufacturing systems is often unstructured and originates from several 
sources. Finally, data protection is critical to avoid data theft of criminals. A survey 
among 126 companies has shown that data security concerns hampers the 
introduction of digital technologies in SMEs (see chapter 4.1.6.1). 

In contrast to the literature, the qualitative studies focused more on employee and 
organizational challenges than on technological challenges. Nevertheless, IT system 
performance and data security are described as fundamental requirements. IT system 
performance is necessary to transfer and process data in reasonable time. High 
computing power is necessary for some DBAs; for instance, when including complex 
simulations (C-T.1.1). Regarding data security, the interview partner did not go into 
technical details but emphasized that data security is not only a technological 
challenge. Employees need to be briefed to avoid data theft by passing on information 
unintentionally (C-T.1.2). 

6.1.3.1.4.2 Distributed Data 

Finding and merging distributed data has caused enormous effort in Company A and 
thus made many data analytics uneconomical. This situation motivated the 
introduction of the Manufacturing Analytics Solution that provides a single platform for 
data access. Two challenges are related to the implementation of such a system. First, 
to integrate data from various sources (C-T.2.1) and second, to provide an interface 
that allows authorized employees easy and user-friendly access to the required data 
(C-T.2.2).  

The challenges of the category Miscellaneous (C-T.3) are use case-specific and are 
therefore not considered as a general key challenge.   
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6.1.3.2 Key Enablers 

6.1.3.2.1 OVERVIEW 
 

Table 32 presents an overview of the enablers of DBAs and links the enabler to a 
related challenge. Thereby, this chapter answers the second SRQ. 
 

 

SRQ 2: What are key enablers to apply data-based applications? 
 

 

Table 32: Enablers of data utilization in manufacturing  

Enablers of Data Utilization in Manufacturing   

C Main Enabler Sub Enabler 
Related 
Main 
Challenge 

Related 
Sub-
challenge  

P 

Em
pl

oy
ee

s 

E.1. 
Foster 

Acceptance 

E.1.1 Understand the Value of 
DBAs C-E.1. 

Initial 
Resistance of 
Employees 

C-E.1.1 175 

E.1.2 Being Part of the Solution 
Development C-E.1.2 176 

E.2. 
Role-specific 

Training 

E.2.1 Basic Training of End-users 
E.2.2 Citizen Data Scientists 

C-E.2. 
Employee 
Qualification 

C-E.2.1  
176 
177 

E.2.3 Advanced and Holistic 
Understanding at the Middle 
Management Level 

C-E.2.2  178 

E.2.4 Basic but Holistic 
Understanding at the Top 
Management Level 

C-E.2.3  178 

O
rg

an
iz

at
io

n 
 

O.1. 
Create 

Favorable 
Conditions 

O.1.1 Structured Approach to Select 
DBAs 

C-O.1. 
ROI 
Calculation of 
Investment 
Decisions 

C-O.1.1 179 

O.1.2 Ensure Management Buy-in 
C-O.1.1 &  
C-O.1.2 

180 

O.1.3 Put the Right Leader in Place C-O.1.1 180 

O.1.4 Maintain the Motivation 
 

C-O.1.1 181 
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Enablers of Data Utilization in Manufacturing   
O

rg
an

iz
at

io
n 

O.2. 
Data Usage 

Transparency 

O.2.1 Data Guidelines C-O.2. 
Misuse of Data 

C-O.2.1 & 
C-E.1.3 182 

O.2.2 Data Security Officer C-O.2.1 & 
C-O.2.2 182 

O.3. 
Standardizati

on 

O.3.1 Management Responsibility 
for Standardization  

C-O.3.  
Comparability 
of Data 

C-O.3.1 & 
C-O.3.2 182 

O.4. 
Internalize 
External 
Expertise 

O.4.1 Convince with non-monetary 
Benefits 

C-O.4.  
Access to 
Expert 
Knowledge  

C-O.4.2 183 

O.4.2 Benefit from Cooperation C-O.4.1 183 

Te
ch

no
lo

gy
 

T.1. 
State-of-the-

art 
Technology 

T.1.1 Benefit from Falling 
Component Costs  C-T.1 Basic 

Requirements 
C-T.1.1 - 
C-T.1.3 

183 

T.1.2 Cloud Computing 184 

Key: 
E.1.1: Sub enabler 1 of main enabler 1 of the category Employees, C: 
Category 
P: page reference to detailed enabler description in chapter 5.4.2.3. 

 

This chapter consolidates the enablers discussed in the qualitative studies and, if 
applicable, links the enabler to one of the key challenges presented in the previous 
chapter. Thereby, readers can learn how companies have addressed those 
challenges in a real-world context. In doing so, managers can benefit from the 
documentation of the challenges and enablers and apply the gained insights for similar 
problems in their companies (Gassmann, 1999, p. 11).  

As depicted in Table 32, seven main enablers and 17 sub enablers have been derived 
in the qualitative studies. Although a majority of the key challenges are addressed by 
corresponding key enablers, no complete coverage was reached. Due to the lack of 
interview partners with a background as technician or in IT, the technological 
challenges are less addressed than the challenges of the categories Employees and 
Organization.  

The seven key enablers are presented briefly in the remainder of this chapter. Like in 
the previous subchapters of this consolidation chapter, links to the detailed enabler 
description are provided on the one hand in the overview Table 32 
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Table 32 and on the other hand at the end of each enabler brief description. From 
there, further references are given to navigate to the text passage in the case studies 
or expert interviews in which the enabler was introduced and discussed originally.  

6.1.3.2.2 EMPLOYEES  

According to a study conducted by the Fraunhofer IAO, human labor in industrial 
production will continue to be of central importance in the coming years (Spath et al., 
2013, p. 45). With regard to the interaction between DBAs and human employees in 
production, the two challenges Resistance of Employees and Employee Qualification 
have been identified. The corresponding enablers to address these challenges are 
Foster Acceptance and Role-specific Training. 

6.1.3.2.2.1 Foster Acceptance  

The case studies have revealed three risks for employee's acceptance of DBAs: Fear 
of Job Loss (C-E.1.1), Fear of Loss of Job Autonomy (C-E.1.2), and Fear of Control 
(C-E.1.3). The corresponding enabler Foster Acceptance comprises two components. 
First, employees need to understand the value of DBAs and second, employees need 
to be involved in developing a new solution.  

Understand the Value of DBAs 

To support employees' understanding of a DBA's value, the management needs to 
communicate clearly how the application is beneficial for the company (e.g., 
increasing the competitiveness by decreasing costs and thus securing jobs). Thereby 
the Fear of Loss of Job is reduced. In terms of data quality, understanding the 
implication of entering flawed data into the system for the outcomes, increases the 
motivation of end-users to invest extra effort into entering data correctly (E.1.1). 

Being Part of the Solution Development 

Involving employees in the development of a new solution has been a critical enabler 
for the DBA use cases in the case studies. For instance, maintenance employees 
refused to work with a predictive maintenance DBA that was developed without their 
involvement. Service employees showed resistance against a data-based decision 
support tool, as they felt they are losing the autonomy to develop the best solution to 
a customer's problem on their own. Involving the maintenance employees in the 
development of the predictive maintenance application and granting the service 
employees the ability to overrule the decision support system has shown to be 
effective to reduce the Fear of Loss of Job Autonomy (E.1.2). 

The third cause of employee resistance, Fear of Control, is discussed as part of the 
enabler Data Usage Transparency  in subchapter 6.1.3.2.3 (organizational enablers).  
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A comparison of the results on employee resistance with Figure 13 in chapter 3 shows 
a strong consensus. Figure 13 visualizes the barriers of using digital technologies to 
support lean. However, as data utilization is closely linked to the emergence of digital 
technologies, a comparison between the quantitative (survey) and qualitative findings 
is considered worthwhile.  

Interestingly, employee resistance was one of the main barriers to digitalization for SP 
companies, while it was only a minor barrier for the overall sample. This observation 
implicates a limitation for the generalizability of the finding that employee resistance 
is a key challenge. All case study companies are large and technological mature 
companies, the perspective of SME companies, however, is not covered in the case 
studies. It might be, that challenges like budget and infrastructure restrictions (see 
Figure 12) are a more significant challenge for companies in the initial phase of 
digitalization. Only if these barriers are overcome and concrete applications are 
implemented, like in the case companies, the challenge of employee resistance gains 
importance.  

Hirsch-Kreinsen et al. (2018, p. 176) have reviewed several studies on the future of 
work in a digitalized production environment and found conflicting results. While some 
studies are optimistic and expect a general upgrading of industry jobs, other studies 
refer to the risk of job loss and the risk of reduced competencies. Furthermore, they 
conclude that the potential for employee control is a central risk of digital technologies 
(Hirsch-Kreinsen et al., 2018, p. 180). These findings are in line with the three risks 
for employees’ acceptance of DBAs presented above.  

6.1.3.2.2.2 Role-specific Training  

All partners of the qualitative studies have confirmed that the right employee 
qualification is one, if not the key challenge to implementing and using DBAs 
effectively. Although chapter 4.1.6 lists primarily technical requirements, it does 
comprise know-how as essential requirement for DBAs. The qualitative studies not 
only identified employee qualification as key challenge but also highlighted the fact 
that different roles in the organization require different skills. Thereby, the following 
three groups are differentiated DBA end-users (1), who are usually working on the 
shop floor; managers from the middle management that are responsible for 
implementing DBAs (2); and top managers (3), who often initiate and sponsor DBA 
projects.  

The corresponding enabler to this challenge is Role-specific Training. To be effective, 
training needs to be tailored to the roles and requirements of employees. This finding 
is backed by the German state secretary of the Federal Ministry of Education and 
Research, who argues that job-specific qualification is decisive for industry 4.0 
(Kagermann, Wahlster, & Helbig, 2013, p. 56). 
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Basic Training of End-users 

End-users require basic training, which conveys the skill to operate the new 
application. However, end-users are likely to use a new application more effectively, 
if they do not only know how to use the application but also understand the basic logic 
beyond the tool. Furthermore, a basic understanding of the underlying logic enables 
end-users to participate in the development process of new DBAs by providing 
qualified feedback to DBA developers. Providing basic training that allows end-users 
involvement in the development of a new application contributes to a better adaption 
to the actual user needs and higher acceptance among end-users. (E.2.1) 

Citizen Data Scientists 

Several authors highlight the crucial relevance of manufacturing domain expertise; for 
example, a detailed understanding of a process or a machine for using manufacturing 
data effectively (Åkerman et al., 2018, p. 416; Lee et al., 2014, p. 7; Liao & Wang, 
2013, p. 229; Mayr et al., 2018, p. 625). Manufacturing domain expertise is, for 
instance, necessary to formulate accurate data models as well as interpreting data 
analytics results. Therefore, employees that combine years of experience on the shop-
floor with data analytics skills are vital for the effective exploitation of manufacturing 
data. To enable employees to build and combine both skills, the concept of developing 
Citizen Data Scientists has emerged as promising approach. 

Citizen Data Scientist are technicians or engineers that already work within the 
company in the manufacturing area and are selected for extra training in data analytics 
skills. Citizen Data Scientist candidates usually have a strong intrinsic interest and 
motivation in data but also have exiting IT skills, often from a personal interest. After 
intensive training—involving formal training, self-training, and exchange with data and 
IT experts—Citizen Data Scientists serve as internal consultants for DBA projects on 
the shop floor (E.2.2). 

Advanced and Holistic Understanding at the Middle Management Level 

Although DBA projects are often initiated by the top management, the responsibility 
for actually implementing a DBA is usually passed on to the middle management. 
Ensuring adequate qualifications of middle managers is especially challenging, due to 
the variety of skills required to manage DBA projects, including manufacturing system 
and process know-how, change management skills, and an advanced understanding 
of data analytics.  

There is no one single enabler that ensures the full range of required qualifications. 
However, a two-pillar training system for middle managers was presented in the case 
studies. The first pillar comprises formal training in a dedicated 150-hours data 
analytics course. The second pillar fosters internal knowledge exchange. Selected 



CONSOLIDATION OF FINDINGS 

204 

employees can work part-time in an IT or data analytics team for up to 40 weeks, thus 
learning new skills on the job. (E.2.3) 

Basic but Holistic Understanding at the Top Management Level 

A lack of technological expertise on higher management levels has been identified as 
a challenge for companies intending to apply DBAs (C-E.2.3). Due to the lack of time, 
it is unlikely that top managers will attend a full content formal course as the one 
discussed above. However, top managers can benefit from a course with reduced 
scope and depth, tailored to their requirements. By understanding the basic concepts 
of data analytics, top managers are better qualified to evaluate DBA proposals, either 
from within the organization or from external partners (E.2.4). 

6.1.3.2.3 ORGANIZATION  

6.1.3.2.3.1 Create Favorable Conditions 

The qualitative studies have revealed four organizational enablers that increase the 
probability of successful DBA projects. 

Structured Approach to Select DBAs 

First, a structured approach facilitates the identification of the most promising DBA 
opportunities and ensures adequately resource endowment. The structured approach, 
called Analytic Business Case Review in the case study, includes intense discussions 
between the DBA expert and the process owner to evaluate the potential of DBAs for 
the specific context. The extensive experience of the process owner of the process is 
essential for the evaluation (O.1.1). 

Hence, the Analytic Business Case Review is in line with the propositions of the 
CRISP-DM framework presented in chapter 2.5, which proposes that understanding 
the context of the intended analysis is the first step of the iterative CRISP-DM cycle.  

Ensure Management Buy-in 

Second, management buy-in essential at the start of a DBA project, to grand project 
resources even if the ROI on these investments is highly uncertain. However, it is also 
critical after the initial phase, especially if the DBA project takes longer as planned or 
does not deliver the intended results in the first iteration. 

Companies that are persistent even in case of setbacks tend to be more successful 
in implementing DBA projects (O.1.2). 

Put the Right Leader in Place 

Third, the ideal leader of DBA projects fulfills the following requirements. He or she 
has sufficient time to manage the project, has relevant expertise in manufacturing, IT 
and data analytics, is persistence in case of setbacks, and has a certain level of 
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seniority to ensure access to the management, access to resources, and the ability to 
break initial internal resistance (O.1.3). 

Maintain the Motivation 

Fourth, to keep the motivation of all stakeholders, including project members and 
management high, easy to achieve Quick Wins should be designed and build-in in 
DBA projects. Those little success stories along the way “keep people happy and 
management calm,” even if the main objective has not yet been achieved (O.1.4). 

6.1.3.2.3.2 Data Usage Transparency 

Data Guidelines 

The risk misuse of personal data is a general barrier to DBAs. To address employees' 
fear of control, companies are well-advised to create full transparency over the 
collection and use of data within their plants. Discussions with employee 
representatives support companies to formulate data guidelines which are transparent 
and protect individual data (O.2.1).  

Data Security Officer 

In addition, companies may appoint a Data Security Officer who is responsible for 
ensuring compliance with external and internal data and privacy policies (O.2.2). 

6.1.3.2.3.3 Standardization 

Management Responsibility for Standardization  

To use failure codes to identify patterns, these failure codes need to be standardized. 
The same applies to KPIs within a plant and across plants. Aligning historically 
differently defined metrics and codes is resource-consuming and sites show little 
intrinsic motivation to do so. As a result, it takes active leadership that enforces 
standards within and across production sites (O.3). 

6.1.3.2.3.4 Internalize External Expertise  

Convince with non-monetary Benefits 

Companies struggle to meet the internal demand for employees with data analytic 
skills. Besides the internal qualification of employees, two other options are available: 
to hire data experts externally or to cooperate with external partners. To hire data 
professionals despite the intense competition of solvent financial companies and 
consultancies, manufacturing companies need to attract candidates with non-
monetary benefits. One key argument to convince potential candidates is the 
perspective to test and evaluate ideas and prototypes in the real world, close to the 
working space, and with instant feedback (O.4.1). 
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Benefit from Cooperation 

Sourcing in external expertise can alternatively be achieved by collaborating with 
external partners (e.g., consultancies and research institutions). Universities offer 
access to human resources and expertise and are usually less expensive than 
consultancies. (O.4.2) 

6.1.3.2.4 TECHNOLOGY 

An enabler to meet the challenges IT System Performance and Technical 
Infrastructure, is to invest in state-of-the-art technology. 

6.1.3.2.4.1 State-of-the-art Technology 

As discussed in chapter 6.1.3.1, an essential requirement for DBAs is to install the 
technical infrastructure required to collect, transfer, pre-process, and protect data.  

Benefit from Falling Component Costs 

According to Figure 12 of chapter 3, budget restrictions are an important barrier to use 
digital technologies. Assuming that the same applies to DBAs, providing sufficient 
financial resources to install the required technical infrastructure is a barrier, at least 
for smaller companies. However, this challenge is mitigated by an external enabler, 
which is the fact that components such as sensors, computing power, and storage 
capacity are getting less expensive rapidly (T.1.1). 

Cloud Computing  

Part of the enabler State-of-the-art Technology is cloud computing. As shown in 
chapter 2.3.3, cloud computing is a core technology of SM and allows to use and pay 
exactly the amount of computing and storage capacity needed. Access to scalable 
resources is cost-effective and more flexible than traditional fixed IT resources (T.1.2). 
In addition to cost and flexibility aspects, Vogel-Heuser et al. (2017, p. 135) highlight 
the high robustness of cloud computing. Data remain accessible, even in the case 
than one server is temporarily down as the data is stored at multiple servers at the 
same time.  
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6.2 Implications for Lean Manufacturing  
6.2.1 Support of LM by Data Utilization 
The conjunction of SM and LM manufacturing was discussed in chapter 2.4. Three 
different perspectives are currently debated in the literature. First, LM as the 
foundation for SM. The key argument for this perspective is that SM needs robust, 
transparent, and standardized processes as a foundation. Second, SM advances LM 
(e.g., by increasing the flexibility of the LPS). The third perspective argues that SM 
and LM are mutually beneficial without concluding the direction of support. For 
instance, scholars have found empirical evidence that SM technology maturity and 
LM maturity are positively correlated. 

The work of this dissertation is in line with the second perspective. However, instead 
of researching the impact of SM or its related concepts of industry 4.0 and 
digitalization on LM as a whole, this work has focused on the impact of data utilization, 
as part of SM, on LM. The evaluation was done on two different levels. The case 
studies have shown that industry representatives tend to think about and discuss the 
impact of data utilization on lean more in general terms instead of actual applications. 
Thus, the following chapter 6.2.1.1, summarizes the expected main benefits on a 
higher level.  

This dissertation, however, has set the target to go beyond general implications of 
data utilization on lean, but to conduct a systematic evaluation of the impact of actual 
DBAs on established lean practices. Thus, the research follows the recommendation 
of Mayr et al. (2018, p. 623), who have criticized that most papers addressing the 
impact of SM technology on lean stay on a general level, not linking the impact to a 
particular lean method. The results of the DBA – lean practice evaluation is 
summarized in chapter 6.2.1.2. 

6.2.1.1 Main Benefits: Full Transparency and Decision Support 
As part of the case study interviews, the case company representatives were asked 
to evaluate the impact of data utilization on LM. Without dedicated questions on the 
impact of DBAs und lean practices, the answers remained on a general level.  

The two manufacturing companies agree that LM will not change fundamentally due 
to the opportunities of data utilization. The five basic lean principles define value from 
the customer perspective, identify the value stream, flow, pull, and strive for perfection 
(see chapter 2.2.1.2) will remain guiding principles. However, the tools and methods 
that enable companies to follow these lean principles may be impacted due to data 
utilization.  

The case studies had a strong focus on company-specific use cases of data utilization. 
The use cases were selected by the interview partners based on their perception of 
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its relevance compared to other use cases. Both use cases of the manufacturing 
companies seek to provide easy and fast access to distributed data with the key 
objective of increasing transparency of the on-site production systems as well as 
enabling production network transparency. Especially concerning LM, increased 
transparency is the main benefit of data utilization expected. Increased transparency 
of the current inventory and demand will be used to identify and reduce unnecessarily 
large inventories. Furthermore, transparency and full access to data will support the 
lean CI process by supporting CI tools that rely on accurate data.  

“Gaining direct data-based insights on where the biggest potentials for optimization 
and the next improvements are, as opposed to relying on opinions and prioritizing 
them.” Company C goes beyond the goal of creating transparency to support lean but 
seeks to gain data-based decision support for improvements. Data-based decision 
support is also the underlying concept of the Smart Support use case. This use case 
perfectly illustrates the potential of DBAs to support key lean objectives, namely 
creating customer value and reduce waste. Based on documented legacy customer 
problems and solutions, the Smart Support system proposes solutions with the highest 
likelihood of solving the customer problem sustainably in minimal time. Thus, the 
system increases customer value due to fast and qualified customer support. 
Furthermore, by defining the sustainability of the solutions as a decisive factor, waste 
due to recurring problems is eliminated.  

6.2.1.2 Support of Lean Practices by DBAs 
This subchapter summarizes the findings of chapter 4.2 Impact of Data-based 
Applications on Lean Practices and thus answers the third SRQ.  
 
 

SRQ 3: How can data-based applications support lean practices? 
 

 

The evaluation followed a systematic approach, comprising four steps. 

First, 10 widely established lean practices were identified from the literature. 
Therefore, a collection of lean practices compiled by Shah and Ward (2003) as result 
of a systematic literature review was taken as a basis. To reduce the number of lean 
practices, only the nine most cited ones were selected from a total of 21 lean practices. 
This selection was complemented by the lean practice Value Stream Mapping, which 
emerged after 2003 but is today considered to be a major lean practice (see chapter 
2.2.3).  

In a second step, 14 DBAs were identified in a systematic literature research (see 
chapter 4.1.2). The 14 DBAs are assigned to six DBA categories, as visualized in 
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Figure 15. In the third step, the concept of a DBA – Lean Practice Impact Matrix was 
introduced in chapter 4.2.2.  

The actual DBA – lean practice evaluation was performed in the final fourth step. To 
avoid a bias of the results due to personal and subjective perceptions and 
assumptions, the evaluation procedure also consists of four steps, including literature 
research, theoretical reasoning, academic feedback, and feedback from industry 
professionals (see  

Figure 16). 

The result of the pairwise evaluation is already consolidated in an overview presented 
in the Lean Impact Matrix in Table 19 in chapter 4.2.2.2. A detailed discussion of the 
impact evolution is given in the following chapter 0. The remainder of this chapter 
summarizes the six top DBA - lean practice combinations with expected high or at 
least moderate support potential.  

6.2.1.2.1 LEAN PRACTICE PREVENTIVE MAINTENANCE 

The lean practice Preventive Maintenance aims to minimize unexpected breakdowns 
by performing maintenance preventively. Fewer machine breakdowns lead to higher 
process stability. Traditionally, Preventive Maintenance usually follows a periodic 
maintenance plan with fixed intervals.  

Predictive Maintenance is an important application of data utilization in manufacturing. 
It is not only discussed frequently in academic articles but is also seen by practitioners 
as a promising approach to increase equipment availability and process stability. The 
application Predictive Maintenance uses current real-time equipment data as well as 
historic machine defect data to predict the remaining useful life. Thus, Predictive 
Maintenance mitigates the risk of too much or too little maintenance of traditional 
preventive maintenance approaches, which follow a periodic, fixed-interval 
maintenance approach. By focusing on necessary maintenance activities, not only 
equipment availability is increased, but also the costs for unnecessary maintenance 
activities are reduced. In consequence, Predictive Maintenance can considerably 
support the lean practice Preventive Maintenance to be performed more effectively 
(fewer machine breakdowns) and more efficiently (reduction of maintenance effort). 

All interviewed companies report having Predictive Maintenance, at least to some 
extent, already in use. A barrier for a broader implementation are high costs for 
Predictive Maintenance, which in many cases still exceed the costs for changing spare 
parts routinely by following a fixed plan. In general, however, there is little doubt that 
Predictive Maintenance will be increasingly relevant and will eventually advance to 
the new standard of maintenance.  
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6.2.1.2.2 LEAN PRACTICE QUALITY MANAGEMENT 

The lean practice Quality Management is a part of the broader lean practice TQM. 
The objective of the lean practice Quality Management is to minimize product failures 
by identifying faulty products and apply failure root-cause analysis for systematic 
failure reduction.  

The DBA Quality Monitoring identified defective parts or products by comparing quality 
parameters with reference values in real-time. One example of data-based Quality 
Monitoring is visual inspection with a camera system combined with an image 
processing algorithm. In case of deviations, the respective part is sorted out 
automatically. Hence, the application Quality Monitoring minimizes the risk of 
defective parts being passed on to the process step or even to the customer and thus 
support the lean practice Quality Management 

However, an even stronger positive impact on the lean practice Quality Management 
is expected from the DBA Product Quality Improvement. Literature suggests that by 
monitoring and collecting quality data, systematic root cause analyses can be 
conducted faster and more systematically and thus more effectively. As a result, 
factors for product quality can be identified and optimized. To this end, ML is a 
promising technique to classify and detect failures but also to identify their defect root 
causes.  

6.2.1.2.3 LEAN PRACTICE CONTINUOUS FLOW PRODUCTION 

The lean practice Continuous Flow Production aims to create a situation in which the 
production components flow through the value creation process without interruptions 
and waiting times. 

Continuous Flow Production can be supported from two directions. First, maintenance 
DBAs minimize the likelihood of unexpected machine breakdowns and therefore 
impact process stability positively. Process stability, in turn, is essential for Continuous 
Flow Production.  

Second, although process stability is crucial for Continuous Flow Production, the 
positive impact of a higher process stability is restricted if other requirements, such as 
timely material supply are not met. To increase the reliability of the material supply, 
the DBA Track and Trace is used to identify the exact location of material or container 
in real-time. Real-time data on material and current material position enable the DBA 
Material Flow Management to optimize the material supply (e.g., by timely 
replenishment of required parts or by smart AGV path planning). 

The combination of equipment reliability and material supply reliability is strongly 
supporting the lean practice Continuous Flow Production. 
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6.2.1.2.4 LEAN PRACTICE PULL/KANBAN 

The lean practice Pull/Kanban promotes a demand-oriented material flow. In contrast 
to a push system, the production of new parts is triggered only be the need for 
replenishment of the next downstream process step. Following the lean practice 
Pull/Kanban, therefore, limits the amount of WIP inventory in the process. Pull is most 
often realized by a Kanban system. Traditionally, Kanban works with physical Kanban 
cards.  

Popular in academic literature is the concept of a digital Kanban system, also called 
e-Kanban. In contrast to the traditional Kanban system, e-Kanban can automatically 
evaluate if replenishment is necessary and uses digital instead of physical Kanban 
cards. Scholars have identified several advantages of e-Kanban compared to 
traditional Kanban, including, faster transmission of replenishment signals, no lost 
cards, and the ability to adjust the lot size dynamically. 

The advantages of e-Kanban are confirmed by the manufacturing case companies. 
Consequently, they already have replaced traditional paper-based Kanban with e-
Kanban.  

E-Kanban can be assigned to the DBA Material Flow Management. Hence, by 
eradicating weaknesses of traditional Kanban systems, this DBA has a strong 
potential to support the lean practice Pull/Kanban.  

6.2.1.2.5 LEAN PRACTICE VALUE STREAM MAPPING 

The lean practice Value Stream Mapping documents processing and waiting times, 
as well as the flow of material and the flow of information to visualize the current status 
of a production process. 

The lean principle may benefit considerably from integrating real-time data from 
manufacturing into the value stream map. Literature and practitioners acknowledge 
the potential of real-time data-enhanced Value Stream Mapping, also referred to as 
VSM4.0, to draw a more precise picture of the actual value stream. Especially 
regarding the trend for increased product variety and customization, one interview 
partner argues that the value streams of similar but slightly different products may not 
be perfectly identical. Manufacturing data can reflect these minor differences as well 
as dynamic changes in the value stream—for instance, different bottleneck situations 
depending on the product. Furthermore, having the necessary data available allows 
for the conducting of VSM regularly with low human effort. 

6.2.1.2.6 LEAN PRACTICE CONTINUOUS IMPROVEMENT 

The lean practice Continuous Improvement focuses on the improvement of 
processes, services, and products. CI activities often follow a rigorous scientific 
approach and include the use of systematic tools such as the DMAIC cycle. The 
DMAIC cycle includes an analyze phase which benefits from access to accurate 
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manufacturing data. Due to the availability of several kinds of manufacturing data, 
such tools can not only be applied more effectively but also faster and with less effort. 
Hence, data availability supports the lean practice Continuous Improvement.  

The relevant data are collected by multiple DBAs including Real-time Control, 
Condition Monitoring, Track and Trace, Product Quality Monitoring, and Energy 
Monitoring. Before a problem can be addressed by CI methods, however, it needs to 
be detected. By providing automatically calculated KPIs and visualizing their trend 
development, the DBA System Performance Measurement facilitates the identification 
of hidden problems within the production system. Furthermore, full transparency of 
performance indicators allows internal and external benchmarking with comparably 
low effort due to automatic data collection and KPI calculation.  

In summary, all DBAs collecting data support the lean practice Continuous 
Improvement, but the strongest support potential has the DBA System Performance 
Measurement. This conclusion is consistent with the view of the industry 
representatives, who argue that transparency will be a key enabler for LM in general 
and for CI in particular.  

6.2.2 Potential Threats  
The industry representatives' expectation of the impact of data utilization on lean is 
consistently positive. Also, a majority of the DBA – lean practice combinations have 
either indicated a positive or no impact. Nevertheless, chapter 4 and chapter 5 have 
also shown at least two potential threats for LM arising from data utilization. Chapter 
6.2.2.1 outlines the risk of alienation from the basic concept of lean due to the 
omnipresent availability of manufacturing data. Chapter 6.2.2.2 sketches a possible 
incompatibility of the current technology selection process in LM with the challenge of 
the uncertainty of results of DBA investments.  

6.2.2.1 Alienation from the Basic Concept of Lean  
The suggestion that the lean philosophy is not compatible with information technology 
is advocated by lean purists for many years (Sugimori et al., 1977). Among the 
possible conflicts are push vs. pull and simplicity vs. IT complexity (see chapter 2.2.4).  

When taking a critical position to the impact of data utilization on LM, three risks for 
alienation from the basic concept of lean can be concluded based on the findings of 
this dissertation.  

6.2.2.1.1 VALUE STREAM MAPPING 4.0 VS. GO AND SEE 

The concept of VSM4.0 has aroused both interest and concern from practitioners. The 
positive implications have already been discussed in the previous chapter. On the 
negative side, industry professionals see the risk of substituting the physical presence 
on the shop floor as part of VSM with remote access to manufacturing data. 
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Consistently highlighted is the importance of being “where the action happens” to gain 
a sound understanding of the real process. Accordingly, process data without process 
understanding is of little value and bears the risk of data misinterpretation. The basic 
principle of VSM is described as “go and see.” Therefore, a virtual value stream 
created by remotely accessible data would contradict the fundamentals of VSM. 
Nevertheless, a balanced integration of a few metrics is desirable as long as it does 
not replace shop floor presence.  

Meissner et al. (2018, pp. 83–84) shares the critical view on automated data collection 
and KPI calculation and highlights the risk that the “automation of data collection and 
processing bears the risk that shop floor workers feel disconnected from the 
performance measurement process and therefore lead to alienation from shop floor 
management.”  

6.2.2.1.2 HIGH COMPLEXITY VS. EMPLOYEE INVOLVEMENT AND CI 

As discussed in chapter 2.2.3.2.4, ensuring employee involvement in CI is a key task 
of the management in an LPS.  

A threat to employee involvement in CI arises from the high complexity of some DBAs. 
For instance, the Smart Support system is based on ML. In the data science 
community, there is currently a discussion, if modern ML systems are black boxes or 
only very complex and thus merely impossible to understand (Card, 2017). Either way, 
it becomes almost impossible for employees to fully understand how an ML system 
derives its results. However, without understanding the cause and effects in a system, 
employees may be discouraged of or even deterred from thinking about how the 
system can be improved. CI will not be anybody's responsibility anymore, as 
advocated by lean, but the job of a group of highly specialized ML experts. Kieviet 
(2016, p. 41) summarizes this threat by asking: “How do you identify waste if the chaos 
is optimized digitally?” 

6.2.2.1.3 INFORMATION OVERFLOW VS. SIMPLICITY  

Lean promotes simplicity (Maguire, 2016, p. 32), which means focusing on the 
essentials. Eiji Toyoda, a former CEO of Toyota, already pointed out in 1983 the risk 
of information overflow to the ability to solve problems:  

“Society has reached the point where one can push a button and be immediately 
deluged with technical and managerial information. This is all very convenient, of 
course, but if one is not careful there is a danger of losing the ability to think. We 
must remember that in the end it is the individual human being who must solve the 
problems.” Eiji Toyoda, 1983, cited in Bell (2006, p. 0) 

The risk of information overflow is today higher than at any time before history, due to 
the omnipresent collection and accessibility of information. Meissner et al. (2018, pp. 
83–84) found that one disadvantage of digital technologies for shop floor management 
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is the risk of tracking too many KPIs due to the high availability of data and the 
automatic KPI calculation. Hence, following the lean philosophy, managers need to 
resist the temptation to track too many KPIs, as a high number of KPIs maks it difficult 
for employees to focus on the essential information. 

6.2.2.2 Technology Selection Without Proven Added Value  
The state of research chapter on LM has included a discussion on the role of 
technology in LM (see chapter 2.2.4). The key message of Liker (2004) regarding the 
integration of new technology in the TPS is that every new technology has to prove its 
ability to support established value-creating processes before it is bought and 
installed.  

As suitable as this approach is for technologies like automatization technology, it is 
not fully applicable for technologies relying on data analytics, e.g., ML-based decision 
support systems. As shown in chapter 5.4.2.2, a distinct characteristic of data 
analytics DBAs is the uncertainty of its results. Although the same application has 
worked successfully in a different context, here is no guarantee that it will deliver 
meaningful results in another context and with other data. 

As a consequence, the motto value demonstration first, investments later, may 
implicate a very hesitant position of LPS managers in terms of taking the risk of 
investing in data analytics applications. On one hand, this position reduces the risk of 
non-rentable investments, but on the other hand, chances for significant 
improvements will be missed.  

The potential of data utilization in manufacturing projected by scholars (Kusiak, 2017; 
O’Donovan et al., 2015b, p. 1; Tao et al., 2018; Wuest et al., 2016), the variety of fields 
of application for DBAs (see Figure 15), and the real-world examples of added value 
by DBAs in the case studies, however, lead to the conclusion that a strict rejection of 
risky investments in DBAs will not support a manufacturer's competitiveness in the 
long run.  
  



CONSOLIDATION OF FINDINGS 

215 

6.3 Theoretical Implications  
6.3.1 The Investors Dilemma of DBAs 
The three case companies, which are all large companies and leaders in their 
respective businesses, have invested significant resources in building the foundation 
for data utilization and are already using several DBAs.  

However, taking a look at Figure 13 in chapter 3 indicates that these SP companies 
are not representative of the manufacturing industry in general. Quite on the contrary, 
Figure 13 shows that almost every second company in the study has equipped less 
than 20 percent of their equipment with sensors for real-time monitoring. Only one out 
of eight companies claim to have more than 80 percent of the equipment monitored. 
Furthermore, collecting data is not equivalent to using data. To this end, a 2017 survey 
of the ITEM-HSG and the RWTH Aachen among 100 companies has revealed that 
only a small share of 5.5 percent of the available data, which corresponds to 11 
percent of the collected data, is actually used (Wenking, Benninghaus, & Groggert, 
2017, p. 35) (see Figure 18). 

Figure 18: Share of exploited data of available data (based on Wenking et. al [2017, p.35]) 

Given the fact that only 11 percent of the collected is exploited in some way, one can 
say that data utilization in the manufacturing industry is not a success story so far. In 
appears that apart from major companies, the manufacturing industry, in general, is 
hesitant to invest in data exploitation. This observation motivated to investigate the 
causes of this investment reluctance.  

A potential reason was indicated in the case studies and expert interviews. The 
outcomes of data analytics DBAs projects are highly afflicted with uncertainty and a 
serious ROI forecast of these DBA projects is almost impossible. The uncertainty has 
two dimensions. First, prior to analyzing a set of data, it cannot be guaranteed that 
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meaningful patterns will be found and second, if patterns are found, the resulting 
added value of exploiting the pattern is difficult to determine.  

The problem of uncertain outcomes, which also leads to the chicken and egg problem, 
is not equally important for all DBAs. Only data analytics DBAs that go beyond the first 
two core functions of data monitoring and deviation control (see chapter 4.1.5) but 
include actual data analysis are afflicted. This applies in particular to the DBAs 
Predictive and Prescriptive Maintenance (e.g., to identify wear patterns), Material Flow 
Management (e.g., to optimize AGV path planning), and Product Quality Improvement 
(e.g., to identify critical to quality factors).  

To better understand the challenges of investments in data utilization, the following 
chapter 6.3.1.1 evaluates the ratio of needed effort and expected return in terms of 
the added value of a selected DBA. Afterward, chapter 6.3.1.2 builds on the 
preliminary observations and adds the aspect of the uncertainty of results into 
consideration. The chapter presents the phenomena of the Valley of Tears in DBA 
investments, which might serve as a theory-based explanation for the reluctance of 
investments in data utilization discussed above.  

6.3.1.1 Three Levels of Added Value of DBAs 
Inspired by the observation of Shao et al. (2014, p. 2194) that influence has a higher 
value than observe, or in other words, decision support is more valuable than data 
collection, this chapter evaluates the added value of a DBA in three different stages 
of its lifecycle. In addition to the value, the required effort is assessed based on the 
requirements and challenges of DBAs identified in chapter 4.1.6 and chapter 5.4.2.2 
respectively. As a representative of all data analytics DBAs, the DBA Predictive 
Maintenance was selected for evaluation.  

The result of the evaluation is visualized in Figure 19. Accordingly, each stage has a 
distinct level of added value for the company.  

Level 1: The first level is labeled Transparency as the value proposition of the DBA 
on this stage is to make things visible. For the exemplary DBA, the objective of the 
first stage is to monitor the equipment condition to create transparency about the 
current equipment health status. In this first stage, the DBA comprises the first core 
function of data monitoring.  
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level. Also, unlike sensors, not all the expertise can be bought externally, but needs 
to be built internally over a long period. 

Level 3: The real value creation starts not before level 3, which is labeled Action. 
Accordingly, the value proposition of level 3 is to transform insights to value. The 
objective of the exemplary DBA is to exploit the patterns from the second level to 
derive more effective and efficient maintenance plans.  

Value: Only on the third level, the DBA provides significant additional value by actually 
exploiting the data and found patterns to serve a certain purpose that is beneficial for 
the company. In the exemplary case, the DBA Predictive Maintenance is now able to 
support the derivation of more effective and efficient maintenance plans, thus reducing 
the number of machine breakdowns, increasing machine productivity, and minimizing 
maintenance costs.  

Effort: As seen in the qualitative studies in chapter 5, to use a new application 
effectively, companies need to ensure end-users' acceptance of the application and 
invest in additional employee qualification. That is the reason why the required effort 
on stage 3 is still high. It is though below the effort required on level 2, as the experts 
are not needed to use the tool.  

Discussion of Assumptions with Senior Researchers  

The DBA value model rests on several assumptions and has not been tested with 
real-world use cases for generalizability. However, key assumptions of the model have 
been discussed with both senior researchers. Based on their personal experience, 
they confirm the plausibility of the following underlying assumptions of the model. 

Assumption 1: Significant value for the company is only created if the findings of data 
analysis are exploited for a certain purpose. Hence, the added value of level 3 is 
substantially higher than the added value on level 1 and level 2. 

Assumption 2: The required effort investment reaches its maximum on the second 
level. The main driver for the high effort on this level is the required expertise, which 
cannot be acquired externally in the short term (Professor Schuster). 

Assumption 3: Effort exceeds added value on the second level by far. 

Assumption 4: Effort for exploiting insights (level 3) is lower than performing the 
actual data analysis (level 2). This assumption is confirmed to be plausible for 
manufacturing applications. The fourth assumption may not apply, however, regarding 
novel data-based business models (e.g., not ownership models), as they introduce 
new complexity while companies currently have little experience with these business 
models. 
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value to effort ratio, every time unit spent on the second stage causes a significant 
loss. This loss keeps on cumulating until the third level is reached.  

Situations in which effort is higher than the return are common to all companies. What 
is critical, however, is the fact that the uncertainty of results, makes it hardly possible 
to estimate the duration of the second stage seriously. Hence, companies face the 
dilemma of losing money at every time unit on the second stage, while the duration of 
this stage is indeterminable.  

Prof. Wuest instinctively called this situation the Valley of Tears, which serves in the 
following as a metaphor to describe the unfavorable situation on the second stage.  

The remainder of this chapter contrasts traditional investment calculation against the 
investment calculation of data analytic DBA projects. Both situations are depicted in 
Figure 21  

Figure 21.  
Figure 21: Traditional investment vs. DBA investment calculation  

 (own illustration, left part based on Fleig (2019))  

The left side describes traditional investment calculations, comprising the three 
phases of investing, amortization, and profit. The key difference between both 
situations is that traditional investment decision-making relies on fairly accurately 
determinable time periods until an initial invest starts to generate value. Thus, the 
beginning of the amortization period is predictable. Furthermore, the value of the 
investment, for instance, in terms of reduced costs, can be estimated. Hence, the 
expected amortization time and thus the break-even point can be projected. 

In comparison, DBA investment decisions pose higher requirements to the 
management in their investment decision-making process. The time until the third 
value level is reached is underdetermined and thus the break-even point is 
undetermined too.  

The Valley of Tears poses three significant risks to DBA projects. 
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First and directly derivable from   

Figure 21, the DBA investment calculation is highly afflicted with uncertainty. The 
break-even point cannot be estimated seriously. Hence there is the risk of remaining 
in the second value level, which would implicate a constant high surplus of effort over 
created value. Typically, managers tend to prefer to invest resources in projects with 
a reliable ROI. Therefore, DBA projects may have a structural disadvantage in 
competing for project funds. 

Second, data analytics DBA may not deliver the expected results within the expected 
time. Risk-averse managers may react to initial setbacks by canceling the project. 
However, the qualitative studies have also shown that data analytics is an iterative 
process and results may be found only in the second or third iteration. Hence, the 
conditions of the Valley of Tears can foster the cancelation of projects which have 
already made large progress to stage 3, leading to sunken costs, no results, and 
demotivated project members. To avoid early termination, Professor Wuest suggests 
building in Quick Wins along the way (see Enabler O.1.4). 

Third, the uncertainty of the Valley of Tears can also cause the opposite effect. 
Companies may keep on going to spend money on a project which permanently fails 
to deliver the expected results, maybe just for the simple reason that there are not 
usable insights hidden in the data.  

The conscious or unconscious decision to avoid the three risks by abandoning DBA 
projects is a plausible explanatory approach for the low degree of data utilization in 
manufacturing. 

6.3.2 Technology Acceptance Model: Evaluation and Propositions for 
Extension 

The TAM model is a user acceptance theory that intends to explain the adoption of 
new technologies. In its original form as introduced by Davis (1989) the TAM 
postulates that the perceived usefulness (U) and the perceived ease of use (EOU) are 
the key determining factors of users' technology acceptance (see Figure 3). Thereby, 
a technology has a high perceived usefulness (U) if the user feels that the technology 
enhances his or her job performance and a high perceived ease of use (EOU) if the 
user believes that using the technology is free of effort.  

The number of case studies of this dissertation is too small to confirm the propositions 
of the TAM empirically. However, one use case has been discussed that indicates a 
missing element of the TAM.  

Table 33 contrasts the expected acceptance according to the TAM and the actual end-
user acceptance for this DBA use case, in two different situations.  
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Table 33: Technology Acceptance Model evaluation 

No. Situation  U EOU Acceptance 
according to TAM 

Actual end-user 
acceptance PIC 

1 
Decision Support 
system          
(initial situation) 

+ + + Initial employee 
rejection - 

2 
Decision Support 
system         
(current situation) 

+ + + 
Employee 
acceptance and 
technology usage  

+ 

Key: (U) perceived usefulness, (EOU) perceived ease of use, (PIC) perceived individual 
contribution 

 

The first situation described is inspired by the Smart Support system use case. The 
perceived usefulness (U) is rated as positive as the employee is supported to give fast 
und sustainable feedback to customer requests. Also, the perceived ease of use 
(EOU) is positive, as the new system is described as more user-friendly than the 
earlier versions. According to the TAM, two positive evaluations of these key factors 
should result in a high user acceptance of the system.  

However, the initial situation was characterized by a rejection of the system by some 
users, as they saw the system as a threat to their job autonomy. The fear was triggered 
by the perceived risk of being downgraded from a self-determined solution developer 
to a decision system order receiver (see 5.2.4.4). The obvious contradiction between 
the prognosis on user acceptance and the actual user acceptance causes the 
assumption that the TAM is missing a critical element. 

The very right column of Table 33, labeled (PIC) stands for perceived individual 
contribution and is defined by the authors of this dissertation as “the degree to which 
a person believes that his or her contribution is relevant for success.” Perceived 
individual contribution is proposed as an additional factor to explain user acceptance 
of new technology and is motivated by the reaction of the case company to initial 
employee resistance to its new decision support system.  

The company distinctly communicated that the end-user will “remain in the driver’s 
seat.” This means that service employees always have the opportunity to overrule the 
system and communicate a solution to the customer, which is different from the one 
suggests by the system. Although a majority of the system's suggestion is accepted 
by end-users, having the final decision power, significantly increases the perceived 
individual contribution to the final solution. Today, under these circumstances, the 
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decision support tool is broadly accepted and welcomed as support to enhance the 
individual job performance. This situation is represented in situation 2 in Table 33. 

The positive impact of integrating end-user in the solution development process on 
the user's acceptance of the solution has been identified as an enabler to overcome 
employee resistance (see Enabler E.1.2). The argument that perceived individual 
contribution is important for employees' motivation to use a tool or system is supported 
by the famous work: “A theory of human motivation” by Maslow (1943). Accordingly, 
all people strive for achievements, recognition, and appreciation (Maslow, 1943, 
p. 381), whether in a private or business context.  

Based on the observations in this case study, the author proposes to extend the basic 
TAM model by the factor perceived individual contribution (PIC), as shown in Figure 
22. 

 Figure 22: Proposition for extended Technology Acceptance Model  
(adapted from Davis, 1989) 
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7 Conclusion and Outlook  
This chapter provides a summary of the key results of this dissertation. Chapter 7.1 
briefly summarizes the key results and answers the MRQ. Chapter 7.2.1 consolidates 
the theoretical contribution, followed by the practical contribution in chapter 0. Chapter 
7.3.1 points out the limitations of this research, while chapter 7.3.2 gives an outlook 
on potential further research. 

7.1 Summary of Results 
LM is described as the currently most influential manufacturing paradigm. However, 
besides LM the newly emerging concept of SM, also referred to as industry 4.0, 
receives increased attention from academia, media, and government. Hence the 
question arises how these two production paradigms fit together (see chapter 1.1). 
Closely linked to the emergence of SM is the increasing attention for data utilization 
in manufacturing (see chapter 2.3). A 2017 study on the future of lean, found that 
companies perceive big data as a digitalization trend with a strong potential to support 
LM. Furthermore, the survey results illustrate than mature lean companies are 
investing more effort into real-time data monitoring and, on average, perform data 
analytics on a higher maturity level (see chapter 3.2).  

A subsequent literature review identified a lack of integrated consideration of LM and 
data utilization as a means to enhance LM. To address this gap, the following MRQ 
was formulated: “How can manufacturing companies be enabled to implement DBAs 
to support lean practices?” 

To answer the MRQ, three SRQs are derived. While the first and second SRQ focus 
on the manufacturing industry in general, the third SRQ bridges the existing gap 
between LM and data utilization. The first SRQ aims to create an overview of existing 
DBAs and their objectives in manufacturing. The second SRQ investigates key 
enablers for implementing DBAs in a real-world context. At last, SRQ 3 links the 
previous research to LM by evaluating how DBAs can support established lean 
practices. As the SRQs have already been answered in detail in the consolidating 
chapter 6, only a short summary of the results of each SRQ, including references is 
given below. 
 

 

SRQ 1: Which data-based applications exist in manufacturing and what are their 
objectives? 
 

 

The first SRQ was answered based on a systematic literature search (see chapter 
4.1.2). In total, six DBA categories, including 14 DBAs have been identified and 
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visualized in Figure 15. The six DBA categories are Planning and Scheduling (I); 
Production Control (II); Maintenance (III); Internal Logistics (IV); Product Quality 
Management (V); and Environment, Health, and Safety (VI). Table 30 in chapter 6.1.2 
provides an overview of the individual DBAs including their objectives and their current 
status in the two manufacturing case companies. The overview shows a broad variety 
of DBA objectives, addressing several distinct functions in manufacturing.  
 

 

SRQ 2: What are key enablers to apply data-based applications? 
 

 

The second SRQ was answered based on the results of qualitative studies. The 
qualitative studies include three case studies, among which are two describing leading 
manufacturing companies and one portraying the situation of a leading ICT company. 
To increase the validity of the results, the case studies were complemented by two 
expert interviews with senior researchers in the field of data utilization in 
manufacturing. To answer SRQ 2, the discussions with industry and academic 
partners addressed not only enablers but also challenges of applying DBAs.  

Based on DBA use cases identified in the literature, key requirements were 
summarized in chapter 4.1.6. Most of these requirements are technological 
requirements addressing the need for suitable technical infrastructure and data 
availability. The qualitative studies, however, have demonstrated that it would be 
unwise to consider data utilization only from a technological perspective.  

The cases and expert interviews have revealed a variety of critical challenges and 
enablers within the categories Employees and Organization. In total, this dissertation 
has identified and discussed nine main challenges, comprising 21 sub-challenges and 
seven main enablers, comprising 17 sub enablers. The challenges are consolidated 
in chapter 6.1.3.1, and an overview is given in Table 31. Key challenges related to 
employees are Initial Resistance of Employees and ensuring role-specific Employee 
Qualification. Organizational challenges are the uncertainty of the ROI Calculation of 
Investment Decisions, the risk of Misuse of Data, Comparability of Data and Access 
to Expert Knowledge. From a technology perspective, challenges are to meet the 
technical Basic Requirements, such as the technical infrastructure, and to integrate 
Distributed Data.  

As far as applicable, enablers identified in the qualitative studies are linked to identified 
challenges. Thus, readers can learn how companies have dealt with challenges in a 
real-world context. The enablers are consolidated in chapter 6.1.3.2, and an overview 
is given in Table 32, also referencing the addressed challenges.  

Key enablers related to employees are to Foster Acceptance and provide Role-
specific Training. Organizational enablers are to Create Favorable Conditions for data 



CONCLUSION AND OUTLOOK 

226 

utilization projects, to ensure Data Usage Transparency, the Standardization of 
metrics KPIs and codes and to Internalize External Expertise. Enablers from a 
technology perspective are Falling Component Costs for the technical infrastructure 
and the access to scalable computing and storage resources via Cloud Computing.  

By emphasizing the importance of employee and organizational challenges and 
enablers, the case companies show, that the industry has learned its lessons from the 
CIM era in the 1980s and early 1990s. Brandt (2017) has summarized implications 
from the CIM era for industry 4.0 and quotes Braun, Förster, and Vorspel-Rüter (1988, 
p. 21): “Practical experience shows that IT problems are not the key challenges for 
bringing the CIM philosophy to reality. First and foremost, personal and organizational 
challenges have to be overcome.” 31 
 

 

SRQ 3: How can data-based applications support lean practices? 
 

 

The current discussions in academia on the impact of SM on LM tend to remain on a 
general level and lack to address the impact on actual lean tools and methods (see 
chapter 1.4.2). To address this weakness in current research, the third SRQ evaluated 
the impact of DBAs on widely applied lean practices. The underlying assumption of 
this research indicated in the research framework (see Figure 2) is that by supporting 
lean practices, DBAs indirectly enable LM to achieve its objectives (e.g., waste 
reduction) more effectively. 

Ten lean practices were selected (see chapter 2.2.3) and considered for potential 
impacts by the 14 DBAs identified in chapter 4.1. The methodology followed a pairwise 
evaluation approach, resulting in the DBA – Lean Practice Matrix, showing all 
identified impacts in a concise overview (see chapter 4.2.2). The evaluation followed 
a four-step procedure (see Figure 16). Accordingly, the following six lean practices 
are likely to benefit substantially from the support of DBAs.  

First, the lean practice Preventive Maintenance will benefit particularly from the DBA 
Predictive Maintenance, due to more effective and efficient maintenance plans. 
Second, the lean practice Quality Management is likely to be supported by the DBAs 
Quality Monitoring, by detecting and sorting out flawed products, and especially by 
the DBA Product Quality Improvement, by exploiting legacy data on quality problems 
to perform systematic root cause analyses. Third, the lean practice Continuous Flow 
Production can profit from a high machine and process stability, due to effective 
maintenance thanks to the maintenance DBAs. Also, a stable and efficient material 

 
31 Translated from German 
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flow, ensured by the DBA Material Flow Management has a positive impact on 
Continuous Flow Production.  

Fourth, existing deficiencies of the traditional Pull/Kanban system are mitigated by e-
Kanban and smart material supply route planning, both features of the DBA Material 
Flow Management. Fifth, the lean practice Value Stream Mapping can be performed 
faster, more accurate, and with less human effort by integrating accurate and near-
real time manufacturing data. Especially, dynamic changes and small differences in 
the value stream due to a high product variety can be reflected better by integrating 
automatically collected data. This approach is referred to as VSM 4.0 in the literature.  

Supporting DBAs are all DBAs with the core function of data monitoring, namely Real-
time Control, Condition Monitoring, Track and Trace, Product Quality Monitoring, and 
Energy Monitoring.  

Sixth, very similar to Value Stream Mapping, the lean practice Continuous 
Improvement is very likely to benefit from the easy to access availability of accurate 
and (near) real-time data. For instance, several CI tools rely on data for different types 
of analysis (e.g., the DMAIC circle). Whereas all monitoring DBAs listed above are 
contributing to data availability, the application System Performance Measurement is 
seen as most promising DBA to support CI. By providing full transparency of the 
performance of the manufacturing system by automatically collected metrics and 
calculated KPIs, negative trends and areas for improvement are detected faster and 
more systematically. While a potential support of DBAs is expected for most of the 
lean practices of the categories TPM, TQM, and JIT (see chapter 2.2.3), no potentials 
to support the human-centered lean practices Cross-functional Work Force and Self-
directed Work Teams were found.  

Although the DBA – lean practice combinations with a positive support potential 
dominate, the evaluation has also found potential negative impacts. Also, the 
qualitative studies and reviewed literature have brought to light potential threats of 
data utilization in manufacturing, which are especially critical for LM companies. The 
threats are consolidated in chapter 6.2.2. The first potential threat is Alienation from 
the Basic Concept of Lean due to the temptation to rely on computer provided data 
instead of actually understanding the process behind the data by going to where the 
actions happen and see the process firsthand. The second threat arises from the 
uncertain value generated by DBAs, which is incompatible with the traditional lean 
approach to select technologies. 

By consolidating the findings of the three SRQ, MRQ is answered. 

 

How can manufacturing companies be enabled to implement data-based applications 
to support lean practices? 
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SRQ 1 has identified 14 DBAs in six categories, which cover a wide range of functions 
in manufacturing. Then a systematic evaluation as part of answering SRQ 3 has 
shown at least six opportunities to enhance the effectiveness of widely used lean 
practices by applying DBAs. Hence, companies can build on this systematic 
evaluation when striving to bring their LPS to a higher level. Investments in data 
utilization infrastructure, software, and people might be easier to justify by referring to 
positive impacts of data utilization on the established LPS. However, as shown by 
answering SRQ3, implementing DBAs successfully poses several challenges to 
companies. Hence, manufacturing companies can profit from the collection of 
enablers identified in a real-world industry context to overcome these challenges. 
Understanding that data utilization is not only a technological challenge but needs 
significant effort to overcome employee-related, and organizational challenges is 
critical to implement and use DBAs. Instead of repeating the failure of the CIM era to 
focus only on technological aspects, alleged soft factors such as employee 
acceptance and qualification as well as data protection have to be emphasized from 
the start.   
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7.2 Contributions 
Contributions of this research are twofold, impacting both academicians and 
practitioners. Chapter 7.2.1 consolidates the theoretical contribution of this 
dissertation, followed by a summary of the practical contributions in chapter 0. 

7.2.1 Theoretical Contributions 
This dissertation has four main theoretical contributions. 

First, it has consolidated literature from different streams, including Big data, DM, ML, 
and SM to compile a structured collection of DBAs for manufacturing (see chapter 
4.1.3). Furthermore, based on the identified DBAs, a systematic classification system, 
assigning fourteen DBAs to six distinct DBA categories was developed and presented 
(see Figure 15).  

Second, there is a plethora of literature focusing on LM or in different ways on data 
utilization in manufacturing; however, there is a lack of academic literature reporting 
the effects of the implementation of both. This lack was addressed by evaluating how 
data utilization can support LM. Thereby, this dissertation follows the request to 
perform the evaluation on a tangible level, which is to evaluate the impact on actual 
lean practices. To structure the analysis and visualize the results, the DBA - Lean 
Practice Impact Matrix was developed in chapter 4.2.2, following a four-step pairwise 
evaluation process of DBA – lean practice combinations.  

Third, based on two separate studies conducted by the ITEM-HSG in 2017, the 
conclusion was drawn that except large and mature organizations, manufacturing 
companies tend to be hesitant to invest courageously into data utilization. Building on 
different insights from the qualitative studies, this dissertation proposes an 
explanatory approach that may contribute to understanding the hesitant position of 
many manufacturing companies regarding investments into data utilization. Based on 
the Valley of Tears observation, three risks inherent to data analytics projects are 
described, leading to the so-called Investors Dilemma of DBAs (see chapter 6.3.1). 

Fourth, observations from the case studies were used for a critical evaluation of the 
TAM. Based on a contrary example, the explanatory power of the TAM was 
questioned and a suggestion for extension was made. In addition to the essential 
influencing factors for technology acceptance proposed by the TAM model, perceived 
ease of use and perceived usefulness, this dissertation suggests also integrating the 
perceived individual contribution of a user to the solution of a certain problem into the 
model (see chapter 6.3.2). 
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7.2.2 Practical Contributions 
From a practical perspective, this dissertation makes three main contributions. 

First, the compilation of DBAs from the literature may not only be interesting for 
academics but also for the industry. Production managers can benefit from the 
collection by getting a feeling about the wide range of improvement opportunities 
provided by DBAs. By contrasting the objectives of the DBAs with the company's 
current most pressing needs, the identification of suitable DBAs is facilitated. 
References to use cases in the literature allow industry managers to deep dive if 
further details are required.  

Second, based on the qualitative studies, nine main challenges, comprising 21 sub-
challenges of data utilization, have been derived from a real-world context. Studying 
a problem in its natural setting is a key argument for conducting case study research 
as the findings tend to have a higher practical relevance. Managers value case study 
research as they like to learn from the experience of other companies, especially 
regarding arising problems and strategies to overcome this problem. Hence, 
documentation of the challenges is very valuable for these kinds of managers.  

However, even more valuable than understanding the challenges other companies 
have faced is to understand how the companies have overcome or at least addressed 
these challenges. Following this argumentation, this dissertation has linked the 
identified enablers to the respective challenge. As shown in the enabler overview in 
Table 32, the enablers include tangible recommendations for actions, such as 
introducing the concept of Citizen Data Scientists and starting the discussion with 
labor representatives to formulate guidelines on data utilization everybody is aligned 
with.  

The collection of key enablers demonstrates that setting the focus on technological 
aspects exclusively is the wrong way to make data utilization a success story in a 
company. Decision-makers who are too young to remember the failure of the CIM era 
can especially learn from this dissertation that technology is only one among several 
critical challenges for data utilization, including employee challenges and 
organizational challenges.  

Finally, this dissertation can give lean managers new impulses to enhance the 
performance of their company's LPS. As discussed in the introduction to this work, 
companies face the challenge of steadily increasing customer demand for high quality, 
low prices, and high variant flexibility. At the same time, participants of the 2017 lean 
study have reported decreasing productivity gains by standard lean tools and 
methods, leading to the conclusion that the low hanging fruits have already been 
picked. By documenting support potential of at least six widely applied lean practices, 
this work can contribute to a stronger perception of data utilization as an enabler and 
driver of higher LPS performance.  
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Despite the fact, that the DBA – lean practice impact evaluation has found more 
potential for positive than negative impacts on lean, this dissertation has also shed 
some light on potential threats for LM due to data utilization (see chapter 6.2.2). 
Hence, lean managers are sensitized to cautiously balance the degree of data 
utilization to benefit from the support potentials without risking the alienation from the 
basic concept on lean.  

7.3 Limitations and Further Research 
7.3.1 Limitations 
In the context of this research, four limitations have to be pointed out. First, motivated 
by the intention to reduce and sharpen the scope of this dissertation, only DBAs 
applicable within the boundaries of a production site were considered for the DBA 
collection in chapter 4.1. However, the case studies have shown that such an artificial 
separation does not match real-world conditions. Companies operating more than one 
production site are eager to use the data across the network, for instance for internal 
coordination or internal performance benchmarking. Hence, by excluding network-
oriented DBAs, this work cannot claim to have encompassed all DBAs relevant to 
today's manufacturing industry.  

Second, regarding the results of the qualitative studies, the reader should bear in mind 
that only a limited number of three case studies have been conducted. All companies 
are headquartered in the German-speaking area, thus causing the risk that findings 
are not equally applicable to other regions. For example, the very strong emphasizes 
of the protection of individual data is likely to be unique for central Europe, especially 
compared to the United States and China. To mitigate the limitation of a small number 
of cases, the industry experience of the senior academics was added as an additional 
source of information in the qualitative studies.  

Third, all three case companies are large organizations and leaders in their respective 
businesses. In this respect, the question arises if the findings are transferable to SME 
companies. An indicator that differences exist are findings of the Lean2020 study 
shown in chapter 3.2. While the SP companies (of which all are large companies) 
perceive employee resistance as a key barrier to digitalization, other barriers such as 
budget restrictions are more relevant according to the overall sample, comprising 
many SME companies.  

The fourth limitation arises from the fact that the DBA value model presented in 
chapter 6.3.1 was not challenged and refined with further DBA use cases. The 
underlying assumptions of the model have been derived from the findings of this 
research but are not firmly grounded in the literature. Hence, the plausibility of these 
assumptions can be questioned. To compensate for the lack of theoretical grounding, 
the key assumptions were discussed with both senior researchers.  
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7.3.2 Further Research 
From the author's perspective, the following three aspects are worthwhile for further 
research. First, as stated in the previous section on limitations, the restriction on DBAs 
operating within the boundaries of the production site excludes several very promising 
DBAs that rely on data exchange between two or more players. Further research is 
advised to evaluate the potential of DBAs in one or more of the following areas of 
application. To improve the performance of the production system from a production 
network perspective, to optimize the supply chain by fostering the integration of 
supplier data or to better specify customer value by integrating customer data. For 
instance, DBAs integrating customer data may reveal insights on the most important 
product features, thus allowing to deploy R&D funds specifically on these features. 
Arguably, by opening the scope of DBA, new challenges will emerge. A critical 
challenge raised in discussions in the course of this work is how to organize data 
exchange with stakeholders outside the own organization, without disclosing critical 
information.  

The second suggestion for future research is motivated by the identified threats for 
the basics of lean. As shown by the Smart Support use case ML, in the current public 
discussion rather called AI, has made the transition from the developing and piloting 
phase to the integration into the daily business. It is reasonable to assume that AI will 
play an increasingly important role in almost all areas, including manufacturing, in the 
near future. Thus the contradiction of lean which is advocating simplicity and 
understanding of cause and effects, and AI, which will be perceived as a black box by 
many people, is likely to pose a complex challenge to LPS managers. Further 
research might address the question how companies can profit from the opportunities 
of AI without risking to lose the ability to understand how AI decisions are derived.  

Finally, further investigations are required to better understand the mechanisms 
underlying the investment decisions for data utilization projects. The explanatory 
approach suggested in this dissertation, called the Investors Dilemma of DBAs, is only 
a very initial description of challenges for investment decision-making inherent to data 
analytics DBA. To ensure the validity of the approach, key assumptions of the DBA 
value model need to be tested in further studies. 
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Appendix A: List of journals identified in the literature review and used in this research 

No. Journal Database 

1 Applied Sciences Web of Science 

2 Business Research Proquest 

3 Central European Business Review Proquest 

4 Computers & Industrial Engineering Web of Science 

5 Computing EBSCOhost 

6 Engineering Web of Science 

7 Enterprise Information Systems EBSCOhost 

8 IEEE Access Web of Science 

9 Independent Journal of Management & Production Proquest 

10 Industrial Management & Data Systems Proquest 

11 International Journal of Distributed Sensor Networks Web of Science 

12 International Journal of Information, Business and Management Proquest 

13 International Journal of Logistics Management Proquest 

14 International Journal of Operations & Production Management Emarald Insight 

15 International Journal of Production Research Web of Science 

16 Journal of Big Data Proquest 

17 Journal of Cleaner Production EBSCOhost 

18 Journal of Economic & Management Perspectives Proquest 

19 Journal of Enterprise Information Managemen Emarald Insight 

20 Journal of Industrial Engineering and Management Web of Science 

21 Journal of Innovation Management Proquest 

22 Journal of Intelligent Manufacturing Proquest 

23 Journal of International Trade, Logistics and Law Proquest 

24 Journal of Manufacturing Systems Web of Science 

25 Journal of Manufacturing Technology Management Emarald Insight 

26 Journal of Operations Management Proquest 

27 Journal of Quality in Maintenance Engineering Proquest 
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No. Journal Database 

28 LogForum / Journal of Logistics Proquest 

29 Logistics & Transport EBSCOhost 

30 Materials Web of Science 

31 Pharmaceutical Technology Europe Proquest 

32 Production & Manufacturing Research Web of Science 

33 Production and operations management EBSCOhost 

34 Research Technology Management EBSCOhost 

35 Technological & Economic Development of Economy EBSCOhost 

36 The Int. Journal of Advanced Manufacturing Technology Web of Science 

37 Wireless Networks Proquest 
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Appendix B: Results of systematic literature review 
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1) noft(Lean OR TPS OR Toyota Production 
System) AND noft(production OR manufactur* OR 
technology) AND noft(practice* OR "") 

2091 
(6) 

449 
(2) 

305 
(1) 

38 
(4) 

59 
(7) 

2) (noft(Smart OR Digital) AND noft(factory OR 
manufactur* OR technology) OR noft (Industry 4.0 
OR Industrie 4.0)) AND noft(data OR "") 

2642 

(20) 
200 
(3) 

610 
(9) 

193 
(6) 

225 
(34) 

3) noft(data) AND noft(analytics OR analysis OR 
mining OR visualization OR optimization OR "") 
AND noft(factory OR manufactur* OR production 
OR techniques OR methods) 

8483 

(8) 

273 

(2) 
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(5) 
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(4) 

19 

(0) 

Number of total hits and number of articles considered relevant after scanning abstract, in 
brackets.  
Comment Proquest 
Only relevant journals selected, limited to full text access and peer reviewed scholarly articles, 
only English and German, search period 01.01.2008 - 31.12.2018. , keyword search in abstract 
In Noft = not in full text. Search link (valid until 01.10.2020): Link 1, Link2, Link3 
Comment EmeraldInsight 
Limited to full text access and peer reviewed scholarly articles, only English and German, 
search period 01.01.2008 - 31.12.2018., keyword search in abstract  
Search 2: search term "data" in "title",  
Comment EBSCOhost 
Only relevant journals selected, limited to full text access and peer reviewed scholarly articles, 
only English and German, search period 01.01.2008 - 31.12.2018. keyword search in abstract,  
Search 1: search term (Lean OR TPS OR Toyota Production System) in "title" 
Comment Web of Science 
Only relevant journals selected, limited to full text access and peer reviewed scholarly articles, 
only English and German, search period 01.01.2008 - 31.12.2018. keyword search in "Topic" 
only 
Comment ScienceDirect 
Only relevant journals selected, limited to full text access and peer reviewed scholarly articles, 
only English and German, search period 01.01.2008 - 31.12.2018. keyword search in title and 
abstract 

https://search.proquest.com/search/1640503?accountid=28962
https://search.proquest.com/search/1640515?accountid=28962
https://search.proquest.com/search/1640519?accountid=28962
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