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Abstract

Financial markets — and stock price movements in particular — are often described

using simplified assumptions. However, financial markets are complex systems in-

volving various interacting components. Agents in these markets have heteroge-

neous traits and differ in many respects. Among other characteristics, they have

unique preferences, interpret information differently, pursue disparate investment

goals, and focus on different investment horizons. These heterogeneities impact

agents’ buying and selling decisions and ultimately stock prices. As a result, those

heterogeneities directly influence interdependencies between stocks and their price

dynamics. Existing methods have not been sufficiently able to capture and explain

these complexities.

For this reason, the present thesis examines stock market mechanisms and interaction

patterns using alternative mathematical filtration methods. The focus lies on inves-

tigating the price fluctuations of and the interdependencies between stocks across

different timescales (time horizons). This analysis is directly linked to the assump-

tion that market agents operate on different investment horizons.

Chapter 1 studies changes in US stock correlations for different time horizons us-

ing wavelet decomposition. Wavelet decomposition is a method that allows filtering

the dynamics of a time series within certain frequency ranges (time horizons). The

empirical observations in this study indicate that stock market correlations do not

remain constant across different time horizons. A major deficiency of the analysis

in Chapter 1 is the significant degree of randomness hidden in correlation matri-

ces. Chapter 2 therefore examines correlation structures using random matrix theory

(RMT). RMT analysis reveals that stock markets are governed by collective market

behavior and sectoral factors across different timescales. Based on these insights,

Chapter 3 studies portfolio strategies for minimizing risk at specific time horizons

(scale-based portfolio strategies). The study demonstrates that (portfolio) variances

can be minimized within a targeted frequency range using these scale-based port-

folio strategies. Based on these findings, an optimization-method for simultaneous

variance-minimization across different frequency bands is proposed.





Zusammenfassung

Finanzmärkte – und Aktienpreisbewegungen im spezifischen – werden in der Öko-

nomie und im Finanzwesen oftmals auf Basis vereinfachter Annahmen beschrieben.

Aktienmärkte sind jedoch komplexe Systeme mit einer Vielzahl interagierender

Komponenten. Die unterschiedlichen Teilnehmer an diesen Märkten weisen dabei

heterogene Eigenschaften auf und unterscheiden sich in zahlreichen Belangen. Unter

anderem zeigen sie abweichende Präferenzen, interpretieren Information unterschied-

lich, verfolgen verschiedene Investitionsziele und fokussieren sich auf unterschiedli-

che Investitionszeiträume. Diese Heterogenitäten wirken sich direkt auf das Kaufver-

halten dieser Marktteilnehmer aus. Damit beeinflussen sie letztlich die Preisbewe-

gungen von und die Interaktionsmuster zwischen verschiedenen Aktien im Markt.

Bestehende Methoden können diese komplexen Zusammenhänge nicht immer er-

fassen.

Die vorliegende Arbeit untersucht deshalb die Mechanismen und Interaktionsmuster

im Aktienmarkt mit Hilfe von alternativen mathematischen Filtrationsmethoden. Da-

bei steht insbesondere die Erforschung der Veränderung dieser Preisbewegungen und

Interaktionsmuster für verschiedene Zeithorizonte im Vordergrund. Diese Analy-

se steht in direktem Zusammenhang zur Annahme, dass Marktteilnehmer auf ver-

schiedenen Investitionshorizonten operieren.

Kapitel 1 analysiert die Korrelationsveränderungen des US Aktienmarktes für ver-

schiedene Zeithorizonte (Timescales). Hierfür wird die Wavelet Dekompositions-

methode verwendet, welche es erlaubt, Dynamiken für verschiedene Frequenzbe-

reiche (Zeithorizonte) aus der Zeitreihe zu filtrieren. Die Aktienmarktkorrelatio-

nen zeigen sich dabei als nicht konstant über die verschiedenen Zeithorizonte. Ein

Problem der Analyse in Kapitel 1 besteht im erwiesenermassen grossen Anteil an

Zufallskomponenten, welche in der Korrelationsmatrix vorliegen. Kapitel 2 unter-

sucht deshalb die Korrelationsstrukturen anhand der Random Matrix Theory (RMT).

RMT erlaubt es, innerhalb der Korrelationsmatrix zwischen informativen Bestand-

teilen und diesen Zufallskomponenten zu unterscheiden. Dabei zeigt sich, dass

der Aktienmarkt durch gesamtmarktbezogene und sektorale Strukturen geprägt ist.



Kapitel 3 analysiert auf Basis dieser Erkenntnisse Portfoliostrategien, welche ein

Portfolio über spezifische Zeithorizonte optimieren (Wavelet-basierte Optimierung).

Dabei zeigt sich, dass die (Portfolio-)Varianzen in den avisierten Frequenzbereichen

tatsächlich mit den Wavelet-basierten Portfoliostrategien minimiert werden können.

Abschliessend wird eine Optimierungsmethode für die simultane Varianzminimie-

rung über verschiedene Frequenzbereiche vorgestellt.



Synopsis

Stock markets are complex dynamic systems. They are composed of a myriad of

stocks that form complex networks with distinct interaction mechanisms and depen-

dency structures. A vast number of agents participate in those markets and thus

create system complexity. These agents are characterized by many heterogeneities:

among others, they have various investment needs, they differ in their interpretation

of information and perception of risk, and they vary in their investment perspectives.

Interactions between these heterogeneous market agents are ultimately reflected in

the complex evolution and interplay of stock prices.

Stock markets are further considered dynamic as they are subject to constant change.

A stock market system continuously adjusts to different market states and is gener-

ally non-stationary. This change may result from intrinsic shifts in the behavior of

market agents or from external influencing factors.

Economics and finance employ various simplifying assumptions to describe these

complex and dynamic stock market systems. The most central assumption is perhaps

the description of stock price fluctuations by means of a Brownian motion. This the-

ory was first proposed by Bachelier (1900) in his groundbreaking and (at least at the

time) underappreciated thesis on "Théorie de la Spéculation."1 It laid the foundation

for the Efficient Market Hypothesis (EMH) and now forms the bedrock of modern

financial theory. However, other simplifying assumptions have also been used to

describe stock prices and stock markets. For example, economists long relied on

the assumption of completely rational investors and propagated concepts such as the

assumption of representative agents. Heterogeneities had little or no place in these

theories or were simply assumed to dissolve in the holistic system. Clearly, these

ideas have not remained undisputed in economics since their formulation. As Buiter

(2003) highlighted, James Tobin regarded the concept of the representative market

agent as one of the "unfortunate theoretical developments in macroeconomic the-

ory." Similarly, Mandelbrot (1963b, 1997) was an early critic of the assumption of

1Several decades later, the concept of Brownian motion was developed further by Osborne (1959) —
an astrophysicist.
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Gaussian-distributed price fluctuations and of the EMH. However, especially in the

past two decades, researchers have progressively moved away from and questioned

the irrefutability of these simplifying assumptions.2 Not least, this metamorphosis

was further accelerated by the global financial crisis of 2008 and by the failure of

existing economic models to explain the frequency with which such collapses occur.

Stock markets are increasingly regarded as what they are: complex dynamic sys-

tems. New theories that take into account these complexities have evolved over time:

for example, adaptive expectations (Arthur, Holland, LeBaron, Palmer & Tayler,

1997; Routledge, 1999, 2001),3 bounded rationality (Anufriev, Bottazzi & Pancotto,

2006; Brock & Hommes, 1998), Lévy motion (Mandelbrot, 1962, 1963b, 1967),

fractional Brownian Motion (Mandelbrot, 1963a, 1965, 1997), adaptive market hy-

pothesis (Lo, Andrew, 2005; Lo, 2004), fractal market theory (Peters, 1994, 1996;

Weron & Weron, 2000), and heterogeneous market theories (Müller et al., 1993,

1997). Similarly, new methods for analyzing these systems have been introduced:

for example, detrended fluctuation analysis, graph theory, multifractality analysis,

random matrix theory, and wavelet theory.

This thesis contributes to the understanding of stock markets as complex and dynamic

systems by examining three facets in more detail: time horizon effects, structural

dependency, and changing market conditions. Its main focus lies on investigating

how correlations in the stock market change under consideration of different time

horizons. Is the stock market structure different in the short term compared to the

long term? How do dependencies between stocks adjust as we consider monthly

rather than daily time horizons? How do they behave in crisis periods? These and

other questions are at the heart of this thesis.

To clarify these questions, I employ methods from econophysics4 and specifically

focus on filtration methods: like wavelet theory and random matrix theory. RMT re-

spectively its derivatives have already been broadly applied in economics and finance
2There is ample empirical evidence that returns of financial assets are not Gaussian-distributed

(Bouchaud & Potters, 2003; Dacorogna, Gençay, Müller, Olsen & Pictet, 2001; Lo & MacKinlay, 1999;
Mantegna & Stanley, 2004).

3See LeBaron (2006) and Hommes (2006) for a detailed review of adaptive expectations models.
4I interpret the field of econophysics more broadly than other literature. I understand it not only as the

application of mathematical methods from physics — but from many different disciplines — to problems
of economics and finance.
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while wavelet theory has only recently been introduced to the discipline. Below, I

illustrate these methods in more detail and present the various studies comprising

this thesis.

The first study uses wavelet analysis to investigate correlations and their changes

over different time horizons (bi-daily up to yearly). Stock correlations are usually

only considered for a specific time horizon (timescale), i.e., short- or long-term.

Wavelet analysis is a method for examining the dynamics of a time series over sev-

eral frequencies (timescales) and offers many advantages over other methods for

timescale analysis.5 These advantages include transformation without loss of infor-

mation and simultaneous time and frequency resolution.

Using data of 268 US stocks for the period between June 30, 1980 to June 30, 2018,

I find significant evidence that the relationship between stocks changes with time

horizon (timescale). I demonstrate that correlations in non-crisis market periods rise

for longer time horizons. In crisis periods, on the other hand, the level of correla-

tion is shown to be high irrespective of the time horizon considered. As a result,

only minor differences exist between short- and medium-term correlations. Only

for longer time horizons is an increase in correlations once again detected. These

findings have important implications for portfolio and risk management. They in-

dicate that different investment decisions are necessary for investors with different

investment horizons. A limitation of this study is the existence of comparatively high

measurement inaccuracies in correlations of longer time horizons.

The second study introduces a more efficient way to examining correlation struc-

tures across different time horizons: random matrix theory (RMT).6 This method is

applied here in response to the results of the first study. RMT allows filtering in-

formative and random components from a system based on eigendecomposition. In

5Alternative timescale methods, for example, include Fourier transformation, windowed Fourier
transformation, or temporal aggregation. Temporal aggregation refers to adjusting the sampling rate in
the time domain (calculating, e.g., daily, weekly, or monthly returns).

6The same sample of 268 US stocks and the same time period as in the first study are used. Thus,
the second study effectively extends the investigation of wavelet correlations performed in the first study.
However, it focuses on changes in the general correlation structures and substructures for different time
horizons rather than on the overall correlation dynamics.
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earlier research, RMT has already proven to be an effective instrument for investigat-

ing stock correlation structures. However, my study demonstrates the applicability

of this method for analyzing wavelet correlations and thus for examining correlations

across different time horizons.

Regardless of the time horizon, the largest eigenvalues are found to be closely linked

to macroeconomic factors. The dominant (largest) eigenvalue reflects a collective ef-

fect of the whole market and thus is associated with a general market factor. In turn,

the subdominant (next lower) eigenvalues relate to sectoral factors. While this in-

terpretation remains consistent across different time horizons, the influence of these

factors on the correlation structure changes. Almost all eigenvalues associated with

sectoral factors increase with the time horizon. This increase is observable in non-

crisis and crisis periods. This implies that sectoral structures in the correlation matrix

become relatively more influential with increasing time horizon and irrespective of

the market state.

For the largest eigenvalue — i.e., the eigenvalue associated with the market factor

— more complex structures emerge. In non-crisis periods, the largest eigenvalue

similarly increases with the time horizon. In times of crisis, the eigenvalue initially

shows no difference at low timescales. Only at higher timescales, it also starts to

rise. However, the eigenvalue is significantly higher in times of crisis than in times

of non-crisis. This increase is more significant in comparison to the increase of the

subdominant eigenvalues, so that — in crisis periods — the market factor represents

the dominant component defining correlation at all time horizons.

This discovery of eigenvalue dynamics helps to explain why some capital market

models provide meaningful results for monthly data while not exhibiting similar

consistency for daily data. At the same time, the results provide important insights

into the time-variant structures of stock markets in non-crisis and in crisis times.

These observations offer crucial information for risk and portfolio management.

Based on the previous findings, the third study examines the application of portfo-

lio strategies optimized for specific time horizons. This study again uses wavelet

decomposition to derive stock covariances of different timescales. These wavelet-
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based covariance matrices are then used to compute minimum variance portfolios

optimized for particular timescales.

Portfolios are constructed for a sample of 23 US stocks for the period between

March 29, 1969 and December 30, 2016. The results show that these timescale-

based portfolio optimization strategies can indeed minimize variance at a specific

time horizon. Consequently, investors should construct portfolios under considera-

tion of their investment horizon and in accordance with the horizon over which they

measure performance.

However, variance at low timescales (short time horizons) is found to contribute

significantly more to total variance than variance at high timescales (long time hori-

zons). It is unlikely that investors will fully ignore this high energy (variance) in

stock fluctuations at low timescales. Hence, investors will focus on more than one in-

vestment horizon. Portfolio strategies that are optimized for one particular timescale

might therefore not be pragmatic. In accordance with the multi-horizon preferences

of investors, I propose a portfolio optimization method that allows for jointly mini-

mizing variance over multiple time horizons.
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Chapter I

Analysis of Frequency Dynamics in US

Stock Correlations
Christian Vial

1 Introduction

Correlation measures the interplay of assets in the complex financial market system.

Quantifying the degree of correlation is thereby crucial for gaining a general un-

derstanding of stock market interdependencies and the management of investment

risk. A factor often ignored in this quantification of correlation is the measurement

period and a possible variation of correlation over time. Many financial market mod-

els assume that correlations remain constant over different time horizons and rarely

conceive interrelations between stocks as changing with sampling frequency (daily,

weekly, monthly). This intuition is usually justified by the assumption of rational

investors, who share an identical investment horizon.

The present study aims to demonstrate that correlations vary with the time hori-

zon (timescale) and thus have a multi-horizon (multiscale) nature. This hypothesis

follows from heterogeneous market theories and is in line with the understanding

of financial markets as complex systems:1 Heterogeneous market theories assume

that stock markets consist of many heterogeneous agents with differing beliefs and

investment needs. These heterogeneous agents operate at different investment hori-

zons and process information by considering their respective investment timescale.

The impact of new data on stock prices thereby depends on how agents perceive

and interpret this information.2 While certain information is relevant for short-term

1Prominent representatives of heterogeneous market theories include the fractal market hypothesis
(Peters, 1994), the heterogeneous market hypothesis (Dacorogna, Müller, Pictet & Olsen, 1998; Müller et
al., 1993), and the adaptive market hypothesis (Lo, 2004).

2The concept of heterogeneous investment horizons is closely related to the concept of heterogeneous
expectations, where the former is likely a central component of the latter (Chen & Li, 2016; Kirman,
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agents, the same information might not equally affect the views and decision-making

of long-term agents. In particular, agents with a short-term investment horizon are

more interested in the relationship between stocks at higher frequencies (short-term

fluctuations), whereas long-term agents focus on comovements of stock returns at

lower frequencies (long-term fluctuations) (Candelon, Piplack & Straetmans, 2008;

Jammazi & Aloui, 2012; Madaleno & Pinho, 2012, 2014).

Even though agents show perceptual differences and dissimilar investment horizons,

this does not imply that they are necessarily driven by different factors. Short- and

long-term agents may react to the same market news and economic announcements,

yet may weigh and process this information differently. How they incorporate infor-

mation into their investment decision ultimately defines stock prices and the corre-

lations between stocks: Given the multitude of heterogeneous agents with dissimilar

investment horizons and disparate interpretation of information, stock correlations

are likely to exhibit time-horizon-variant characteristics.3 Therefore, heterogeneous

market theories equally imply multiscale dependency structures.

This study intends to explore the possible multi-horizon nature of the relationship

between stocks. A lack of analytical tools has prevented previous research from

studying the properties of correlations for diverse time horizons: In general, con-

ventional time domain methods use different sampling intervals (employing, among

others, daily, weekly, or monthly data) to deduce the short- and long-term character-

istics of time series. However, an increase in the sampling interval and the associated

removal of data points are always accompanied by information loss. So far, correla-

tion analysis with conventional time domain methods has thus mostly been limited to

short- and long-term time perspectives (In & Kim, 2006; Masih, Alzahrani & Al-Titi,

2010; Shah, Deo & King, 2016).

This study employs wavelet transformation — a non-parametric filtering technique

— to overcome these temporal limitations. In contrast to conventional short- and

long-term time domain analysis, wavelet transformation allows for a more granu-

2006). Similarly, behavioral finance theories and market anomalies such as bounded rationality, herding,
and momentum trading can be integrated into heterogeneous market models and often appear as leitmotifs
for the rationale of non-homogeneous market agents.

3Information can affect both short- and long-term stock price movements, although to different de-
grees.
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lar filtration of the frequency spectrum while preserving full time series informa-

tion (Shah et al., 2016). The transformation decomposes stock returns into different

timescale (time horizon) components. Thereby, each timescale represents a certain

frequency band in the spectrum of possible time horizons. These timescale compo-

nents (wavelet coefficients) enable deriving multiscale correlations.

Wavelet functions are localized in time and in timescale. Compared to other fre-

quency filtering methods such as the Fourier transformation, wavelet transforma-

tion thus allows simultaneously representing correlation in both the time and the

timescale (frequency) domain. Additionally, the underlying time series need to

be neither periodic nor stationary. Consequently, wavelet transformation is ideally

suited to investigating the timescale properties of stock correlations (Gençay, Selçuk

& Whitcher, 2003).

This study contributes to existing research by analyzing the timescale cross-correla-

tion structure of a large universe of US stocks using wavelet transformation. Wavelet

transformation has previously been used to study timescale cross-correlations be-

tween assets (see, e.g., Gençay, Selçuk & Whitcher, 2001a, 2005; In & Kim, 2006;

Xu & Gençay, 2003). However, the investigation of timescale correlations in stock

markets has mostly been limited to a few stocks. Considering correlation structures

for a larger sample provides new insights into the multiscale relationship between

stocks and the general functioning of the overall stock market.

Further, this study contributes to existing research by analyzing the timescale prop-

erties of correlations during different market states. Longin and Solnik (2001), Ang

and Chen (2002), Fenn et al. (2011), and others have shown that correlations vary

considerably between normal and distressed market periods. However, these studies

are mostly limited to a specific time horizon. In turn, studies that consider multiscale

correlation structures usually do not investigate different market states. The present

study provides new insights into the structural timescale relationships in stock mar-

kets by jointly examining changes in the correlation structure across different market

phases and time horizons.

Finally, this study contributes to existing research by examining both individual

wavelet correlations and the multivariate wavelet correlation structure. Most pre-
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vious studies have been limited to only one of these analyses. However, to gain a

deeper understanding of the timescale-varying dependency structures in stock mar-

kets, it is crucial to jointly examine individual correlations and the overall correlation

structure.

The results for the full observation period show that stock correlations are indeed

time-horizon-inconsistent and that the dependency structure between stocks varies

with the time horizon. The analysis of different market phases reveals even more

complex correlation structures. Distinctive temporal mechanisms define the interac-

tion between stocks in different market states:

In non-crisis periods, correlations are generally lower at short-term horizons and

increase with the time horizon. A non-negligible number of stocks demonstrate

these timescale-variant correlation patterns. The heterogeneous market hypothesis

provides a possible explanation for this trend. Lower correlations at short-term hori-

zons might result from a greater influence of firm-specific (idiosyncratic) factors on

stock price movements. These firm-specific factors induce lower correlations be-

tween stocks. On the other hand, increasing comovement between stocks at long-

term horizons might result from a growing influence of long-term common factors.

Macroeconomic trends, which affect all stocks, might gain in influence with increas-

ing time horizons.

In contrast, in crisis periods, the correlations across different timescales vary only

slightly. This homogeneity of correlations in times of crisis might be explained by the

fact that stock prices are determined by the same cross-market news during distressed

market periods. Information might affect short-term and long-term investors equally

during such market states. As a result, asset correlations are high at all timescales.

The remainder of this study is organized as follows. Section 2 presents wavelet trans-

formation to derive stock correlations for different timescales. Section 3 describes

the dataset. Section 4 presents the empirical analysis of the stock correlations for

different timescales. First, a reduced sample of representative stocks is used to gain

an understanding of the mechanisms of timescale correlations. The analysis is then

extended to the complete sample of 268 US stocks. In a next step, the timescale sen-

sitivity of correlations is studied with regard to various market states. Then, the over-
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all correlation structure is investigated using multivariate analysis based on wavelet

multiple correlation. Finally, I test the empirical results for robustness. Section 5

discusses the limitations of this study and suggests avenues for future research.

2 Wavelet Transformation

Wavelet transformation decomposes a time series into sets of coefficients that are

associated with distinct time horizons (timescales). The elements of each set relate

to a particular time location (Conlon, Cotter & Gençay, 2018). Hence, this method

partitions the original time series into multiresolution components and represents the

signal in the time-timescale-domain (time-frequency-domain).

Wavelet transformation is achieved by filtering the time series with a collection of

high-pass and low-pass filters. These high- and low-pass filters are called wavelet

and scaling filters, respectively. A high-pass filter attenuates low- while preserv-

ing high-frequency characteristics of a time series. Contrastingly, a low-pass filter

discards high- and preserves low-frequency features of a signal.

Cascading these filters allows constructing a succession of frequency intervals. The

bandwidths of these frequency intervals are halved with every application of the

filters, in the descent from high to low frequencies. Thus, the filtering procedure

enables decomposing a time series into certain frequency bands (timescales).4 Cor-

relation matrices for every timescale can then be derived from the collection of these

transformed time series.

2.1 Wavelet and Scaling Filter

Let
{
h̃l; l = 0, . . . , L− 1

}
in RL be the wavelet filter, where L is the width of the

filter and is required to be an even number. For the wavelet filter to have width L, it

4A band-pass filter (i.e., a filter that passes frequencies within a certain range and attenuates fre-
quencies outside that range) can be constructed by recursively applying a combination of low-pass and
high-pass filters.
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must hold that h̃0 6= 0 and h̃L−1 6= 0. However, h̃l = 0 applies for l < 0 and l ≥ L

such that
{
h̃l
}

is an infinite sequence. Further, a wavelet filter must satisfy the basic

properties

L−1∑
l=0

h̃l = 0,
L−1∑
l=0

h̃2
l = 1

2 , and
∞∑

l=−∞
h̃lh̃l+2n = 0, (1)

for all non-zero integers n. These properties ensure that the wavelet filter i) sums to

zero and thus identifies changes in the data, ii) has half-unit energy, which guaran-

tees variance preservation, and iii) is orthogonal to its even shifts, which facilitates

multiresolution analysis. While the second property requires some of the coefficients

to deviate from zero, the first condition guarantees that these deviations cancel each

other out in sum.

The scaling filter {g̃l; l = 0, . . . , L− 1} in RL complements the wavelet filter h̃l. It

is a quadrature mirror filter. Thus, the frequency response of g̃l (Fourier transform of

g̃l) is the mirror image of the frequency response of h̃l around π/2 and the following

relation must hold:

g̃l = (−1)l+1
h̃L−1−l. (2)

The basic properties of the scaling filter are thus given by

L−1∑
l=0

g̃l = 1,
L−1∑
l=0

g̃2
l = 1

2 , and
∞∑

l=−∞
g̃lg̃l+2n = 0, (3)

for all non-zero integers n. In contrast to the wavelet filter, the coefficients of the

scaling filter sum to 1. The remaining properties of the scaling filter accord with the

wavelet filter (half-unit energy and orthogonal to even shifts).

Several different filters fulfill the conditions in formulas 1 and 3. Each of these filters

can be suitable for a specific analysis and may best match the underlying dataset. The
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choice of a wavelet filter and its respective length is a non-trivial task. A wavelet filter

should match the characteristic features of the underlying data series.5

The choice of filter length is also characterized by a trade-off between frequency and

time localization. A short wavelet filter (time domain) may not capture the complex-

ities in the spectral density of certain time series. It may also introduce undesirable

artifacts into the wavelet coefficients. Contrastingly, a filter that is too long decreases

the degree of time localization of the decomposed series. Additionally, it renders

the influence of boundary conditions more severe (see the following section 2.2)

(Masset, 2008; Percival & Walden, 2000).

Comparing different wavelet filters has shown that the Daubechies Least-Asymetric

wavelet filter (symmlet) of length eight LA(8) is an appropriate choice for analyzing

the sample in this study.6 It provides a good balance between time and frequency

localization. This conclusion is consistent with the observations of Percival and

Walden (2000). Furthermore, the LA(8) wavelet filter is widely used in financial

research. According to Gençay, Gradojevic, Selçuk and Whitcher (2010), Gençay

et al. (2002), and Gençay et al. (2005), it is well-suited for analyzing financial time

series.

5For example, a smooth wavelet filter may be chosen if the original data series is smooth. Similarly,
the filter length should be chosen so that it accurately reflects the frequency information of a time series.

6The Daubechies class of filters are best defined in terms of the squared gain function for the
Daubechies scaling filter:

G (f) = 2cosL (πf)

L
2 −1∑
l=0

(
L
2 − 1 + l

l

)
sin2l (πf) ,

where the lengthL is a positive even integer and f is the frequency. Using the relation between the squared
gain function of the scaling function and the squared gain function of the wavelet function H (f) =
G
(
f + 1

2

)
, the corresponding squared gain function of the wavelet filter is obtained by

H (f) = 2sinL (πf)

L
2 −1∑
l=0

(
L
2 − 1 + l

l

)
cos2l (πf) .

However, these gain functions do not define unique sequences of Daubechies wavelet filters. Procedures
known as factorization can be used to obtain specific filters (for further details, see Oppenheim and Schafer
(2009); Bruce and Gao (1996); Härdle, Kerkyacharian, Picard and Tsybakov (1998); Daubechies (1992)).
One of these factorizations produces the least asymmetric (LA) class of wavelet filters used in this study
Gençay, Selçuk and Whitcher (2002).
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2.2 Maximal Overlap Discrete Wavelet Transformation

The Maximal Overlap Discrete Wavelet Transform (MODWT) is a special form of

wavelet transformation.7 It is usually implemented on the basis of Mallat’s (1989)

pyramid algorithm (Gençay et al., 2002). With this algorithm, wavelet transforms

are obtained by successively filtering the vector of observations with the wavelet and

the scaling filter.

Let r be a time series of returns {rt; t = 0, . . . , N − 1} in RN of length N . Then,

the wavelet coefficients W̃j,t and scaling coefficients Ṽj,t for iteration j > 0 and

time t are obtained by:

W̃j,t =
L−1∑
l=0

h̃lṼj−1,t−2j−1l mod N , Ṽj,t =
L−1∑
l=0

g̃lṼj−1,t−2j−1l mod N , (4)

for t = 0, 1, . . . , N − 1 and Ṽ0,t ≡ rt. Hence, the wavelet and scaling coefficients in

the first step of the pyramid algorithm are derived by convolution of the wavelet and

scaling filter with the original time series. For every next step, the filtering operation

is repeated with the output of the prior scaling coefficients.

The wavelet coefficients W̃j,t cover detailed fluctuations of the original time series.

They are related to changes for timescale (time horizon) λj of length 2j−1 at decom-

position (scale) level j and time location t. The scaling coefficients Ṽj,t represent

the overall trend in the time series for scale λj and time location t. Therefore, the

wavelet transforms (i.e., the collection of wavelet coefficients of a certain timescale)

are filtered time series that are associated with distinct time horizons. For a data

series with daily sampling rate, the first scale level coefficients capture fluctuations

at frequencies of 2–4 days. The next higher scale level covers frequencies of 4–8

days. This decomposition can be continued up to a maximum level of decomposi-

tion, which is given by J = blog2 (N)c.
This study uses seven levels of decomposition J = 7. The coefficients for these

7Several names have been used in the literature to refer to the MODWT: the undecimated DWT, non-
decimated DWT, translation-invariant DWT, shift-invariant DWT, time-invariant DWT, stationary DWT,
or wavelet frames.
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seven levels of decomposition are: W̃1,t (2–4 days), W̃2,t (4–8 days), W̃3,t (8–16

days), W̃4,t (16–32 days), W̃5,t (32–64 days), W̃6,t (64–128 days), W̃7,t (128–256

days), and Ṽ7,t (256– days). The collection of wavelet transforms
{
W̃1,t, W̃2,t, . . . ,

W̃7,t, Ṽ7,t
}

fully reflects the information of the original time series and provides a

seamless time-timescale representation.

Note that the modulo operator in formula 4 results in a circular filtering over the

finite time series. This operation is necessary to derive the wavelet coefficients both

at the beginning and at the end of the time series. Evidently, this modification leads

to a bias in these boundary coefficients. To derive an unbiased statistical measure

(e.g., the unbiased wavelet correlation), those wavelet coefficients affected by the

boundary condition need to be accounted for (see section 2.3).

The circularity operation also makes an implicit assumption about the continuation

of the time series for values outside the observable spectrum. Directly applying this

circular filtering operation to the original time series implies the signal to be periodic.

This is a rather unrealistic and inadequate assumption, unless strong seasonality ef-

fects exist in the time series. An alternative and effective technique borrowed from

Fourier analysis is to mirror the time series at its last observation. This mirroring

produces a new time series of length 2N . The reflection of the time series mitigates

the assumption of periodicity. At the same time, the procedure prevents sudden shifts

(discontinuities) at the boundaries of the return series.8 Therefore, I use this reflec-

tion of the time series to derive the wavelet transforms in this study.

The MODWT is related to another wavelet transformation: the Discrete Wavelet

Transform (DWT). The MODWT is an undecimated wavelet transformation whereas

the DWT is not. Hence, the MODWT does not remove redundant wavelet coeffi-

cients through decimation9. Due to this redundancy, the MODWT filters in formulas
8This reflection has no influence on the sample mean and variance. Both remain identical to those of

the original time series.
9Decimation is derived from the Latin term "removal of the tenth." Originally, this referred to a

practice of military discipline in the Roman army to punish units found guilty of capital offenses. A
cohort of renegade soldiers would be divided into groups of ten men. One soldier of each group would be
chosen by lots and executed by his comrades. It was a pragmatic approach to punishing a large group of
offenders. While bearing a sinister connotation due to its original context, the term decimation has a less
violent meaning in signal processing. It refers to the procedure of reducing the sampling rate of a signal.
It is also known as downsampling or subsampling.
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1 and 3 are rescaled versions of the filters typically used in the DWT. This rescaling is

necessary to ensure energy preservation (aggregate variance). It guarantees that the

MODWT accurately reflects the variance and covariance contribution at particular

timescales.

The MODWT offers some distinct advantages over the DWT (among others): shift-

invariance, a non-dyadic time series length requirement, and an asymptotically more

efficient (co-)variance estimator. In turn, the DWT also shows some useful proper-

ties, like DWT transformed time series being typically decorrelated (in contrast to

MODWT).10 While this study uses the MODWT transformation, the inherent rela-

tionship between the two transformations enables benefiting from some of the ad-

vantageous properties of the DWT. For example, the decorrelating properties of the

DWT are used to derive the confidence intervals of the MODWT wavelet correlations

(see next section).

2.3 Wavelet Correlation

The MODWT wavelet coefficients represent the changes in the time series at a par-

ticular timescale. Percival and Mofjeld (1997) showed that the MODWT is energy-

preserving. Hence, the variance of the wavelet coefficients also reflects the energy

of the original time series at a certain timescale. The transformation thus allows

decomposing the variance of the time series r on a scale-by-scale basis:

||r||2 =
N−1∑
t=0

r2
t =

J∑
j=1

N−1∑
t=0

W̃ 2
j,t +

N−1∑
t=0

Ṽ 2
J,t

=
J∑
j=1

∣∣∣∣W̃j

∣∣∣∣2 +
∣∣∣∣ṼJ

∣∣∣∣2, (5)

10For a detailed coverage of the DWT, see Percival and Walden (2000).
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where W̃j =
{
W̃j,t; t = 0, . . . , N − 1

}
, ṼJ =

{
Ṽj,t; t = 0, . . . , N − 1

}
, and

||. . .||2 is the squared Euclidean norm specifying the energy of the time series. These

results can be transferred analogously to covariance decomposition (Whitcher, 1998).

Given two return series {rp,t} and {rq,t} of stocks p and q, the unbiased wavelet

cross-covariance derived from MODWT wavelet coefficients for scale λj is defined

as

ṽp,q (λj) = 1
Ñj

N−1∑
t=Lj−1

W̃p,j,tW̃q,j,t, (6)

where Ñj ≡ N − Lj + 1 specifies the coefficients unaffected by the boundary

conditions, Lj ≡
(
2j − 1

)
(L− 1) + 1 refers to the length of a filter at scale level j,

and W̃p,j,t and W̃q,j,t describe the wavelet coefficients of the time series {rp,t} and

{rq,t}, respectively.

The wavelet cross-correlation ρ̃p,q (λj) is now specified as

ρ̃p,q (λj) = ṽp,q (λj)
ṽ2
p,p (λj)ṽ2

q,q (λj)
, (7)

where ṽ2
p,p (λj) and ṽ2

q,q (λj) are equivalent to the variances of the two processes

p and q at timescale λj , respectively. This wavelet cross-correlation measures the

relationship between two processes on a scale-by-scale basis.

Confidence intervals for wavelet correlation coefficients are obtained based on large

sample properties and by applying the Fisher z-transformation, F (·) ≡ tanh−1 (·).

For the correlation estimate p̂ based on N independent samples,
√
N − 3 [F (p̂)−

F (p)] is approximately normally distributed, where p is the population correlation.

Therefore, the approximate 1− α confidence interval for a wavelet correlation coef-

ficient is given by
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F [p̃p,q (λj)]−
Φ−1 (1− α

2
)√

N̂j − 3

 ,

tanh

F [p̃p,q (λj)] +
Φ−1 (1− α

2
)√

N̂j − 3


 ,

(8)

where N̂j = 2−jN − d(L− 2)
(
1− 2−j

)
e and Φ−1 (·) specifies the probit func-

tion. The operation tanh (·) transforms the confidence intervals back to the inter-

val [−1, 1]. The quantity N̂j corresponds to the number of coefficients used in a

(decimated) DWT at scale level j. The distributional assumption of the Fisher z-

transformation is only valid if the observations of the wavelet processes W̃p,j,t and

W̃q,j,t are uncorrelated (Gençay et al., 2002). As mentioned, the DWT is an approx-

imately decorrelating transformation. Consequently, the quantity N̂j is a reasonable

measure for the sample size in formula 8.

3 Data

The dataset for the empirical analysis consists of daily closing prices for all stocks

of the S&P 500 index between June 30, 1980 and June 30, 2018 with a full price

history (survival period). This results in a sample of 268 stocks and a time series

length of 9,935 data points (roughly 38 years). Price history data were obtained

from the Center of Research in Security Prices (CRSP). Data for index affiliation

were gathered from Compustat.

The restriction to index components with full history is imperative for analyzing

long-term dynamics in time series. It ensures that sufficiently long observation peri-

ods are available to adequately describe long horizon comovements between stocks.

Yet, the restriction might be detrimental with regard to the representative portrayal of

overall market behavior. However, a regression of the market capitalization-weighted

portfolio of the sample on the return series of the S&P 500 index showed high coher-
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ence between the two time series (not shown). The underlying stocks can therefore

be regarded as representative of the general market.

The requirement for the full time series history might introduce an imminent sur-

vivorship bias to the analysis. Therefore, section 4.4 also tests the results using a

larger sample of stocks over a shorter observation period. However, these robustness

tests are limited due to the increasing measurement errors at longer time horizons.

Hence, the presence of an imminent survivorship bias cannot be rejected completely.

4 Empirical Results

This section applies wavelet decomposition to determine whether correlation struc-

tures in US stocks vary over different time horizons. I start describing the general

distribution of (wavelet) correlations for different timescales. Next, I study inter-

actions between stocks on individual timescales in more detail: In a first step, I

use a representative subsample of the stocks to gain a general understanding of the

timescale-dependency of correlations (term-structure of correlations). In a second

step, the analysis of the term-structure of correlations is extended to the full data

sample.

Aste, Shaw and Di Matteo (2010) showed that correlations of untransformed times

series vary between crisis and non-crisis periods. If correlations are sensitive to the

prevailing market condition, it is likely that the timescale structure of correlations

also differs across market states. Therefore, I also divide the observation period into

crisis and non-crisis periods to study changes in the term-structure of correlations

during different market states. Finally, I examine the overall structure of the wavelet

correlation matrix using multivariate analysis.

4.1 Statistics of Multiscale Correlation

Studying the distribution of (wavelet) correlations ρ̃p,q (λj) allows identifying pos-

sible changes in the relation between stock correlations across time horizons. The
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(wavelet) correlation matrix for each timescale λj consists of M (M − 1) /2 unique

correlation coefficients {ρ̃p,q (λj) ; p 6= q} where M specifies the number of assets.

For the given sample of 268 stocks, this amounts to 35,778 coefficients per timescale.

Figure I.1 presents the distribution P (ρ̃p,q (λj)) of these elements for each timescale

{λj ; j = 0, . . . , 7}. The distributions of the correlations of the original, untrans-

formed time series P (ρ̃p,q (λ0)) and those of wavelet-decomposed series of the

lowest timescale (P (ρ̃p,q (λ1)); 2–4 days) exhibit similar shapes. Both distributions

are centered around a positive correlation value, positively skewed, and relatively

peaked. However, with increasing timescale, the distribution of the correlation coef-

ficients flattens, showing higher variance and a lower level of kurtosis.

-0.2 0 0.2 0.4 0.6 0.8

0

1

2

3

4

5
Orig. series
Scale 1
Scale 2
Scale 3
Scale 4
Scale 5
Scale 6
Scale 7

ρ̃p,q

P
(ρ̃

p
,q
)

Figure I.1: Distribution of correlation coefficients of the original (untrans-
formed) return series {ρ̃p,q (λ0) ; p 6= q} and of wavelet transformed return
series {ρ̃p,q (λj) ; p 6= q; j = 1, . . . , 7} (scale levels 1 to 7). Notes: A
Daubechies least asymmetric MODWT filter of length 8 was used to decompose
returns; correlations were calculated between 268 stocks, covering the period
June 30, 1980 to June 30, 2018.
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Interestingly, mainly the right tail of the correlation distribution extends with higher

timescales: The probability of higher correlations grows with the time horizon. This

observation is consistent with the general belief that stock prices are increasingly

driven by common systematic factors at longer time horizons and that macroeco-

nomic news exert greater influence at these timescales. The greater impact of those

common systematic factors induces average correlations to increase. This intuition

is also supported by previous research. For example, Handa, Kothari and Wasley

(1989) found that the capital asset pricing model (CAPM) gains in explanatory power

with increasing return interval.

Table I.1: Descriptive statistics of correlation coefficients of the original (un-
transformed) return series {ρ̃p,q (λ0) ; p 6= q} and of wavelet transformed re-
turn series {ρ̃p,q (λj) ; p 6= q; j = 1, . . . , 7} (scale levels 1 to 7).

Mean Std. dev. Min. Max. Skew. Kurt. JB-stat.

Orig. series 0.2526 0.0803 -0.0089 0.7670 0.6314 4.4343 5,525***

Scale 1 0.2467 0.0808 -0.0346 0.7226 0.5753 4.5284 5,538***

Scale 2 0.2512 0.0814 -0.0274 0.7779 0.5422 4.2952 4,318***

Scale 3 0.2617 0.0846 0.0026 0.8624 0.6680 4.2971 5,246***

Scale 4 0.2619 0.0921 -0.0019 0.9113 0.5884 3.8284 3,134***

Scale 5 0.2707 0.0998 -0.0682 0.9471 0.3798 3.5579 1,344***

Scale 6 0.2897 0.1276 -0.1754 0.9610 0.2339 3.0011 331***

Scale 7 0.2819 0.1453 -0.2417 0.9717 0.0239 2.7698 84***

Notes: JB-stat. shows the Jarque-Bera test statistics for the null hypothesis of normality in the correlation
coefficient distribution; a Daubechies least asymmetric MODWT filter of length 8 was used to decompose
returns; correlations were calculated between 268 stocks, covering the period June 30, 1980 to June 30, 2018.
*, **, and *** indicate rejection of the null hypothesis of the test statistics at the 1%, 5%, and 10% level of

significance, respectively.

Table I.1 shows the descriptive statistics corresponding to the correlation distribu-

tions presented in Figure I.1. Along with Figure I.1, the table exemplifies four char-

acteristics of correlations at different timescales in more detail:

First, for the period under study, US stocks generally exhibit positive comovements

in their price dynamics at all timescales. While negative correlations exist, they are

relatively scarce.

Second, the average correlation increases with increasing timescale. The mean rises

from 0.2467 at scale level 1 to 0.2897 at scale level 6 with a slight reduction to 0.2819
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at scale level 7. While more extreme correlations are reported for larger timescales,

the increase in probability of positive correlations outweighs the increase in negative

correlations.

Third, skewness and kurtosis decrease with increasing time horizon. While the dis-

tributions feature fat right-tails over shorter horizons, they become more normally

distributed with increasing timescale. Nevertheless, they remain non-normal even

for higher time horizons. The Jarque-Bera statistic rejects the null hypothesis of a

Gaussian distribution at all timescales (including the untransformed data) at a 1%

level of significance.

Fourth, the standard deviations of the correlation distributions increase and the range

of possible correlations expands with the timescale. Correlations of the US stock

market become more diverse with longer time horizon. Visual inspection of the

distributions in Figure I.1 reveals that this increase in standard deviations — in com-

bination with higher average correlations — results in higher probabilities of more

positive correlations. While more positive correlations are coherent with the pres-

ence of systematic factors, the increase in width of the distribution is less consis-

tent with this general expectation, and results in a dichotomous interpretation. One

would anticipate correlations to consolidate due to a reduction of idiosyncratic risk

(randomness) relative to the risk incurred by systematic factors.

A possible explanation of this conundrum may be the generally high level of ran-

domness present in the correlation structure (in combination with estimation errors).

Even when the contribution of the systematic (informative) component increases,

random components still define a large part of the correlation (see Laloux, Cizeau,

Bouchaud & Potters, 1999; Plerou et al., 2002). These random components lead

to assigning a large probability mass to correlation coefficients in the region around

zero (random correlation matrix). On the other hand, the systematic components

may result in a larger probability mass being assigned to high, positive correlations.

The combination of these random and systematic components in the overall corre-

lation structure may therefore lead to comparatively wide distributions. Due to the

growing contribution of the systematic component to the general correlation structure

(and the resulting rise in the level of correlation), this effect is expected to intensify

for increasing timescales.
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In fact, Figure I.1 indicates a possible bimodality in the correlation distribution for

timescales {λj ; j = 6, 7}. This observation supports the assumption regarding the

timescale-dependent composition of the correlation structure based on random and

systematic components.

Another reason for the widening of the distribution might be the non-stationarity of

correlations. The correlation estimates used to derive the distribution in Figure I.1

and the statistics in Table I.1 are smoothed over the entire observation period. How-

ever, correlations may change both with different market states and with temporal

evolution (see, e.g., Fenn et al., 2011; Sandoval & Franca, 2012). Similarly, it is

likely that the way in which correlations change with respect to market states varies

across timescales. For example, macroeconomic information is likely to differently

impact short- and long-term correlations in calm and distressed market periods. The

combination of the correlation distributions of the different market phases may cause

an expansion of the overall distribution. However, following general intuition, one

would expect the distribution of short-term rather than of long-term correlations to

expand.

Section 4.3 examines the effects of different market conditions on the term-structure

of correlations in more detail. Analysis reveals different timescale-dependency struc-

tures in non-crisis and crisis periods. Consistent with our expectation, correlations

exhibit larger differences at lower timescales. Consequently, the non-stationarity of

correlations seems less effective in explaining the widening of the distribution at

higher timescales (as seen in Figure I.1).

To summarize, correlation measures exhibit varying statistical properties across dif-

ferent timescales. Wavelet correlation coefficients at the lowest timescales feature

similar distributional shapes as the correlations of the original, untransformed time

series. In contrast, correlation distributions at longer time horizons display largely

different distributional characteristics. Both the mean correlation and the width of

the distribution increase with timescale. These results indicate that stock returns

show varying degrees of interaction over different time horizons and justify addi-

tional statistical tests.
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4.2 Multiscale Wavelet Correlation Pairs

This section examines individual wavelet correlations to identify the underlying char-

acteristics of correlations and their properties over different timescales in more de-

tail. In contrast to the previous analysis, individual features of correlations might be

preserved and not obscured by the conflation of distributions and by pooling obser-

vations.

Section 4.2.1 first only considers a subset of four stocks out of the full sample of 268

stocks. The focus on this smaller sample helps to reduce analytical complexity. Sec-

tion 4.2.2 then extends the analysis to the entire data sample. Finally, section 4.2.3

divides the sample into non-crisis and crisis periods and analyzes timescale correla-

tions for both phases. This progression enables understanding correlation properties

at different timescales and deciphering potential enigmatic features in correlation

structure.

4.2.1 Subsample Analysis

The subset studied in this section consists of four stocks (resulting in a total of six

mutual interactions), which serve as a proxy for stock interrelation over different

timescales. It comprises General Electric (GE), International Business Machines

(IBM), Exxon Mobil (XOM), and Procter & Gamble (PG). These stocks are part of

the S&P 500 and are also constituents of the Dow Jones Industrial Average (DJIA).

At the same time, they belong to different sectors: Industrials, Information Technol-

ogy, Energy, and Consumer Staples. The subset can be understood as an indicative

and diverse sample of the US stock market.

Figure I.2 displays wavelet correlations for the subset of stocks over different time-

scales. The timescale spectrum ranges from scale level 1, which encompasses fluctu-

ations of 2–4 days, up to scale level 7, which spans oscillations within 128–256 days.

The blue shaded region in each graph represents the 95% confidence intervals of the

correlations (as defined in formula 8). The dashed horizontal line in each subfigure

represents the lower confidence bound of the wavelet correlations of scale level 1, ex-

trapolated across all timescales. This reference line enables assessing the deviations

of higher timescale correlations from those correlations of the first timescale.
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Figure I.2: Wavelet correlations between four selected stocks: Exxon Mobil
(XOM), General Electric (GE), International Business Machines (IBM), and
Procter & Gamble (PG), covering the full period June 30, 1980 to June 30,
2018. Notes: The blue shaded region in each graph represents the 95% con-
fidence intervals; the horizontal dashed line extrapolates the lower confidence
bound of wavelet correlation at scale level 1 to all scale levels; a Daubechies
least asymmetric MODWT filter of length 8 was used to decompose returns.

Figure I.2 reveals significant deviations in correlations between different timescales.

For each pair of stocks, the reference line characterizing the lower confidence bound

of the scale level 1 correlation is undercut by at least one observation at longer time

horizons. For example, the correlation between the stock pair IBM/XOM at scale

level 1 (2–4 days) is 0.41, with a lower 95% confidence bound of 0.38 (reference

line). The correlation at scale level 2 (4–8 days) already decreases to a value of

0.31 with an upper 95% confidence bound of 0.35, i.e., well below the 0.38 lower

confidence bound of the first scale level. This decrease in correlation continues up to
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scale level 3, for which the measure further reduces to 0.26 (upper confidence bound

of 0.31). Thus, the correlation between IBM and XOM declines by almost 35%

from a bi-daily (scale level 1) to a weekly/bi-monthly time horizon (scale level 3).

Figure I.2 also shows similar observations for the remaining stock pairs. Note that

the deviations in correlation are more pronounced, the greater the spacing between

timescales. This is in line with the general intuition that daily correlations more

strongly resemble weekly rather than monthly correlations.

Overall, the correlation varies with the time horizon over which it is considered.

This divergence presents a first indication of scale-dependent relations between stock

price processes — at least within this very limited sample.

These basic results of heterogeneity in correlation suggest that there are different de-

grees of diversification across short-, medium-, and long-term investment horizons.

As initially mentioned, possible explanations of this disparity may be grounded in

heterogeneous agent and market theories. These theories imply the presence of non-

homogeneous market agents with different life-cycle preferences and heterogeneous

interpretations of information. Perceptual differences make short-, medium-, and

long-term investors react differently to the advent of new information and these dif-

ferences thus result in diverse investment decisions. Eventually, this heterogeneous

interpretation of information affects the price dynamics of financial assets and their

mutual interaction.

Another explanation of scale-dependent correlations may be the presence of market

frictions (e.g., transaction costs, illiquidity, or non-synchronous trading). These fric-

tions may expose stocks to lead-lag-effects and serial correlation. Both effects could

impart cross-correlations between assets across different timescales. However, given

that this study uses daily closing prices of large US stocks, at least the exempli-

fied market frictions seem less explanatory for timescale-varying cross-correlations.

First, all stocks are highly liquid with low transaction costs. Second, the closing

prices of US stocks are largely synchronized at daily sampling frequencies. In ad-

dition, all stocks are traded on the NYSE or the NASDAQ stock exchange, both of

which have the same closing and opening hours (full stock sample).

Nevertheless, numerous other market frictions significantly impact the correlation
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dynamics between stocks at different timescales (e.g., insider trading or non-hete-

rogeneous dissemination of information). Consequently, market frictions cannot be

completely discarded as a cause of heterogeneous timescale correlations.

Independent of the two above hypotheses, the core finding of Figure I.2 remains the

same: There is a reasonable degree of certainty that correlations vary over different

timescales for this subsample of stocks.

To investigate the significance of the above results, I introduce a statistical test for

the equality of scale correlations. This enables quantitatively assessing differences

in stock correlations between different timescales. To the best of my knowledge, this

is the first study to apply this form of statistical comparison to wavelet correlations.

The null hypothesis of the test statistic states that correlations measured for two

dissimilar timescales are identical (i.e. ρ̃p,q (λj) = ρ̃p,q (λk), where j 6= k). The al-

ternative hypothesis states that correlations are different (i.e. ρ̃p,q (λj) 6= ρ̃p,q (λk),

where j 6= k). The corresponding test statistic is given by (zj − zk) /√zse, where

zse = 1
N̂j−3 + 1

N̂k−3 , zj and zk are the Fisher z-transformed scale correlation coef-

ficients ρ̃p,q (λj), and ρ̃p,q (λk) for scale level j and k, respectively. Further, N̂j and

N̂k refer to the number of wavelet coefficients dictated by the decorrelating DWT.

This test is applied to every combination of timescales and to all pairwise stock in-

teractions in the specified subsample.11

Table I.2 presents the results for the statistical test of equality between correlations

of different timescales. Unlike the graphical analysis in Figure I.2, these results

provide a quantitative measure with exact p-values for testing the hypotheses. Note

that p-values are derived under the same distributional assumptions as adopted in

formula 8. The first column in Table I.2 specifies the two timescales for which

correlations are compared. Given that the original time series is decomposed into 7

timescales, a total of 21 unique tests for the equality of timescale correlation results

for each asset pair. The z-values reported in Table I.2 relate to the difference between

two timescale correlation coefficients and correspond to the nominator of the test

statistic. Hence, the sign of the z-value indicates the direction of deviations between

11The same test will be used in the next section to analyze the full sample.
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correlation measures. If the z-value is positive (negative), the first scale correlation

of the comparison is greater (smaller) than the second scale correlation. For example,

the positive z-value of 2.639 for GE/PG between the correlations at scale level 1 and

scale level 4 signifies reduced correlation from the former to the latter. Columns two

and three in Table I.2 further list the relevant DWT coefficients used to derive the

test statistic (denominator).12

In accordance with Figure I.2, Table I.2 shows that significant deviations in scale

correlations mainly appear between lower and medium timescales. Deviations be-

tween bi-daily (scale 1) and monthly (scale 4) correlations of the investigated stock

pairs — GE/PG, IBM/PG, GE/XOM, IBM/XOM, and PG/XOM — are all highly

significant. With the exception of GE/PG, all of these stocks also demonstrate sig-

nificant deviations between daily (scale 1), weekly (scale 2), and bi-weekly (scale 3)

correlations. Given that the correlation measures are based on the same underlying

stocks, i.e., the same price co-dynamics, these significances are unexpectedly high.

The results strongly indicate that correlations vary over different time horizons.

Moreover, all corresponding z-values of the significant deviations are positive, indi-

cating decreasing correlations from bi-daily to monthly periods. Interestingly, this

implies that those deviating stocks provide greater diversification benefits at weekly,

bi-weekly, and monthly rather than at bi-daily time horizons.

While Figure I.2 and Table I.2 exemplify that correlations decrease from short- to

medium-term horizons, there is no clear trend in their behavior from short- to long-

term horizons. Five stock pairs show reduced correlation from scale level 1 to scale

level 7, while one stock pair exhibits increasing correlation. However, only devi-

ations of GE/IBM, IBM/PG, and PG/XOM with positive z-values are significant,

moreover only at a relatively modest level of significance of 6%.

12Note that the quantity N̂j significantly decreases for higher scale levels. This reduction in coeffi-
cients is responsible for the expansion of the confidence region in Figure I.2 with increasing scale levels.
As a result, it becomes more difficult to draw statistical inferences about the relations of correlations at
higher timescales. Unfortunately, this problem cannot be resolved without introducing other limitations.
For example, extending the observation period may reduce the confidence intervals. However, this would
simultaneously further smooth non-stationarities in the time series and reduce the size of the stock sample
(full time series requirement).
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Table I.2: Test of equality between correlations of different timescales, covering
correlations between four stocks: Exxon Mobil (XOM), General Electric (GE),
International Business Machines (IBM), and Procter & Gamble (PG).

GE /IBM GE /PG IBM /PG GE /XOM IBM /XOM PG /XOM

N̂j N̂k z p z p z p z p z p z p

Scale 1 / Scale 2 4,967 2,483 1.749 0.080 0.473 0.636 3.293 0.001 1.635 0.102 4.393 0.000 2.146 0.032
Scale 1 / Scale 3 4,967 1,241 1.812 0.070 1.873 0.061 3.261 0.001 2.478 0.013 5.106 0.000 3.362 0.001
Scale 1 / Scale 4 4,967 620 1.579 0.114 2.639 0.008 3.806 0.000 3.664 0.000 3.081 0.002 3.979 0.000
Scale 1 / Scale 5 4,967 310 -0.230 0.818 1.202 0.230 3.051 0.002 0.801 0.423 1.325 0.185 2.970 0.003
Scale 1 / Scale 6 4,967 155 0.473 0.636 0.059 0.953 1.317 0.188 0.485 0.628 1.905 0.057 1.942 0.052
Scale 1 / Scale 7 4,967 77 2.018 0.044 -0.508 0.611 2.916 0.004 1.079 0.281 1.546 0.122 1.909 0.056

Scale 2 / Scale 3 2,483 1,241 0.418 0.676 1.376 0.169 0.650 0.516 1.107 0.268 1.557 0.119 1.553 0.120
Scale 2 / Scale 4 2,483 620 0.542 0.588 2.246 0.025 1.811 0.070 2.583 0.010 0.522 0.602 2.603 0.009
Scale 2 / Scale 5 2,483 310 -0.934 0.350 0.976 0.329 1.627 0.104 0.114 0.909 -0.497 0.619 2.015 0.044
Scale 2 / Scale 6 2,483 155 -0.048 0.961 -0.081 0.935 0.329 0.742 -0.003 0.997 0.585 0.559 1.283 0.200
Scale 2 / Scale 7 2,483 77 1.639 0.101 -0.603 0.546 2.208 0.027 0.730 0.465 0.619 0.536 1.448 0.148

Scale 3 / Scale 4 1,241 620 0.200 0.842 1.079 0.281 1.194 0.232 1.576 0.115 -0.623 0.533 1.279 0.201
Scale 3 / Scale 5 1,241 310 -1.115 0.265 0.175 0.861 1.189 0.234 -0.496 0.620 -1.322 0.186 1.065 0.287
Scale 3 / Scale 6 1,241 155 -0.216 0.829 -0.636 0.525 0.056 0.955 -0.451 0.652 -0.062 0.951 0.618 0.536
Scale 3 / Scale 7 1,241 77 1.494 0.135 -0.995 0.320 1.988 0.047 0.398 0.691 0.158 0.875 0.975 0.329

Scale 4 / Scale 5 620 310 -1.158 0.247 -0.601 0.548 0.243 0.808 -1.565 0.118 -0.767 0.443 0.069 0.945
Scale 4 / Scale 6 620 155 -0.314 0.754 -1.191 0.234 -0.596 0.551 -1.286 0.198 0.280 0.779 -0.109 0.913
Scale 4 / Scale 7 620 77 1.373 0.170 -1.400 0.162 1.455 0.146 -0.244 0.807 0.403 0.687 0.436 0.663

Scale 5 / Scale 6 310 155 0.529 0.597 -0.664 0.507 -0.715 0.474 -0.072 0.942 0.796 0.426 -0.149 0.882
Scale 5 / Scale 7 310 77 1.929 0.054 -1.005 0.315 1.251 0.211 0.612 0.541 0.797 0.426 0.377 0.706

Scale 6 / Scale 7 155 77 1.392 0.164 -0.454 0.650 1.644 0.100 0.610 0.542 0.171 0.864 0.449 0.654

Notes: The null hypothesis of the test states that for stocks p and q, timescale-correlations are equal ρ̃p,q (λj) =
ρ̃p,q (λk) for scale level j 6= k; tests are conducted for all possible combinations of scale levels 1–7; for a given

stock pair, the test statistics is defined by z/
√(

N̂j − 3
)−1

+
(
N̂k − 3

)−1
. The variables N̂j and N̂k refer to the

number of DWT coefficients for scale (levels) j and k. The variable z = zj − zk denotes the difference between
the Fisher z-transformed correlation coefficients zj and zk for different scale (levels) but the same stock pair; p
denotes the p-value of the test; a Daubechies least asymmetric MODWT filter of length 8 was used to decompose
returns; correlations are calculated for the period June 30, 1980 to June 30, 2018. Bold p-values indicate rejection
of the null hypothesis at least at the 10% level of significance.

Note that differences between correlations are predominantly traceable at lower time-

scales due to narrow confidence bands. The probability of a type 1 or type 2 error

at these levels of significance are relatively low. Understandably, fewer observa-

tions exist for longer cycles. This implies that the precision of estimates decreases,

and that confidence intervals widen with increasing timescales. Consequently, the

possibility of statistical inference generally deteriorates for tests that rely on mea-

sures at higher timescales. Nevertheless, deviations between correlations at bi-daily



30 CHAPTER I. ANALYSIS OF FREQUENCY DYNAMICS

(scale level 1) and half-yearly/yearly time horizons (scale level 7) for the stock pairs

GE/IBM, IBM/PG, and PG/XOM are significant.

The declining correlations with increasing timescales contrast with previous obser-

vations. For the full sample presented in Table I.1, an increasing trend in average

correlation was observed from scale levels 1 to 6. Previous studies also reported in-

creasing correlations with the timescale in stock markets (Fernández-Macho, 2012;

Gallegati, 2005; Conlon et al., 2018). Given the small sample size of only four assets

with six mutual interactions (out of 35’778 possible interactions for the full sample of

268 stocks), the declining trend might be a distinctive peculiarity observed for these

few stocks. Thus, extending the analysis to all 268 stocks is needed to give further

insights into the overall behavior of the stock market across different timescales.

4.2.2 Full Sample Analysis

Table I.3 presents the aggregated results of testing equality between timescale cor-

relations for the full data sample of 268 stocks. For each stock pair, I derive the

test statistics for the equality of scale correlations and retrieve the corresponding p-

value. Table I.3 shows three different levels of significance (10%, 5%, and 1%). If

the p-value retrieved from the test is below the specified level of significance, the

observation is considered a significant deviation. The percentage of significant devi-

ations for the full stock sample is given by the sum of the significant deviations over

the total number of analyzed correlations.

Table I.3 further subdivides the significant observations into positive and negative

deviations. This separation helps to understand whether correlations increase or

decrease with timescale. For example, the subdivision reveals that 22.32% of the

significant deviations (at 5%) are due to correlations decreasing from bi-daily (scale

level 1) to bi-weekly timescales (scale level 3). In contrast, 77.68% of the significant

deviations result from correlations increasing from bi-daily to bi-weekly timescales.

The bottom row in Table I.3 summarizes the stock pairs, which exhibit at least one

significant deviation between their timescale correlations. If none of the deviations

are significant, the stock pair is considered timescale-independent. If at least one

scale correlation deviates from the group, the stock pair correlation is classified as



4. EMPIRICAL RESULTS 31

timescale-dependent.13 In a nutshell, the last row in Table I.3 summarizes those

stocks with a non-flat correlation curve.

Table I.3 reveals a considerable number of significant deviations in correlations for

different timescales. Multiple stock pairs show at least one timescale correlation that

deviates from the general correlation level (67.47% at 10% level of significance).

Even at a more stringent level of significance of 1%, approximately 23.00% of stock

pairs demonstrate timescale-varying correlations. This amount is non-negligible.

Yet, these results need to be considered with caution. Combining the individual

tests inflates the number of scale-dependent stock pairs (experimentwise error rate).

Each individual test has an error margin of 1%. Therefore, the probability of find-

ing significant deviations between stock pairs increases considerably.14 Moreover,

individual tests are not strictly independent. Therefore, the tests for correlations be-

tween individual timescales are considered next. In addition, section 4.3 introduces

the a method (wavelet multiple correlation), to investigate the overall structure of the

correlation matrix, which is not subject to these limitations.

Analyzing the individual relations between scale correlations reveals that significant

deviations are mainly observed among low timescale correlations. This finding is

consistent with the results documented for the subsample in section 4.2.1. Unfor-

tunately, the test design does not enable concluding whether this occurs due to the

equivalence of longer-term correlations or due to the limited number of observations

at higher timescales.

Between scale levels 1 and 6, the share of significant negative deviations is 87.30%

(at the 5% level of significance). This implies that correlations for these stocks in-

crease from bi-daily to quarterly/half-yearly time horizons. In other words, stocks

exhibit higher interdependencies with increasing timescale. This finding further sup-

ports the initial assumption that correlation structure is increasingly determined by a

systematic component at higher timescales (see section 4.1).
13For example, while the correlations between GE/PG at scale levels 1 and 2 show no significant

deviations, correlations at scale levels 1 and 3 are significantly different. Therefore, the relationship
between the stock pair is considered timescale-dependent.

14Pairwise comparison of scale correlations across all timescales J = 7 increases the probability of
finding a significant deviation between stock pairs to 1− (1− α)21 = 0.1903 for a level of significance
of α = 1%.



32 CHAPTER I. ANALYSIS OF FREQUENCY DYNAMICS

Table I.3: Test of equality between wavelet correlations of different timescales,
covering the complete data sample of 268 stocks.
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Scale 1 / Scale 2 6,167 17.24 38.17 61.83 3,684 10.30 39.14 60.86 1,210 3.38 43.31 56.69
Scale 1 / Scale 3 9,330 26.08 23.44 76.56 6,482 18.12 22.32 77.68 2,859 7.99 22.04 77.96
Scale 1 / Scale 4 9,070 25.35 28.07 71.93 6,280 17.55 27.56 72.44 2,741 7.66 26.89 73.11
Scale 1 / Scale 5 7,331 20.49 22.34 77.66 4,622 12.92 20.58 79.42 1,648 4.61 19.42 80.58
Scale 1 / Scale 6 8,769 24.51 15.49 84.51 5,938 16.60 12.70 87.30 2,447 6.84 7.60 92.40
Scale 1 / Scale 7 6,647 18.58 23.30 76.70 4,044 11.30 20.05 79.95 1,190 3.33 15.13 84.87

Scale 2 / Scale 3 3,499 9.78 17.38 82.62 1,853 5.18 14.30 85.70 491 1.37 11.61 88.39
Scale 2 / Scale 4 5,489 15.34 28.38 71.62 3,245 9.07 25.45 74.55 1,049 2.93 22.50 77.50
Scale 2 / Scale 5 4,892 13.67 21.67 78.33 2,745 7.67 18.98 81.02 768 2.15 13.28 86.72
Scale 2 / Scale 6 7,053 19.71 14.08 85.92 4,498 12.57 10.87 89.13 1,701 4.75 4.59 95.41
Scale 2 / Scale 7 5,373 15.02 23.39 76.61 3,095 8.65 20.26 79.74 799 2.23 16.27 83.73

Scale 3 / Scale 4 1,707 4.77 48.80 51.20 684 1.91 49.27 50.73 115 0.32 53.91 46.09
Scale 3 / Scale 5 3,266 9.13 33.34 66.66 1,599 4.47 31.64 68.36 315 0.88 32.38 67.62
Scale 3 / Scale 6 5,410 15.12 17.21 82.79 3,226 9.02 13.30 86.70 991 2.77 6.26 93.74
Scale 3 / Scale 7 4,449 12.44 29.09 70.91 2,392 6.69 27.22 72.78 540 1.51 27.04 72.96

Scale 4 / Scale 5 1,239 3.46 33.17 66.83 458 1.28 32.75 67.25 53 0.15 20.75 79.25
Scale 4 / Scale 6 4,150 11.60 15.04 84.96 2,256 6.31 10.99 89.01 623 1.74 6.10 93.90
Scale 4 / Scale 7 3,545 9.91 27.67 72.33 1,768 4.94 26.13 73.87 360 1.01 22.50 77.50

Scale 5 / Scale 6 2,384 6.66 14.72 85.28 1,163 3.25 9.20 90.80 305 0.85 1.64 98.36
Scale 5 / Scale 7 2,756 7.70 36.57 63.43 1,245 3.48 34.62 65.38 222 0.62 30.18 69.82

Scale 6 / Scale 7 1,310 3.66 60.99 39.01 505 1.41 68.51 31.49 85 0.24 72.94 27.06

Any sig. dev. for
given asset pairs 24,140 67.47 17,916 50.08 8,230 23.00

Notes: The null hypothesis of the test states that for stocks p and q, timescale-correlations are equal ρ̃p,q (λj) = ρ̃p,q (λk)

for scale level j 6= k; for a given stock pair, the test statistics is defined by (zj − zk) /
√(

N̂j − 3
)−1 +

(
N̂k − 3

)−1
,

where the variables N̂j and N̂k refer to the number of DWT coefficients and the coefficients zj and zk are the
Fisher z-transformed correlations at different scale levels (j 6= k); tests are conducted for all possible combinations of
scale levels 1–7 and all possible combinations of stock pairs. For a given scale level combination j and k, "Num-
ber of sig. dev." summarizes the number of tests between all possible combinations of stock pairs that reject the

null hypothesis
(
R (λj , λk) ≡

∑
(p<q) I

[
{ρ̃p,q (λj) 6= ρ̃p,q (λk)}H

])
. "Perc. of sig. dev." determines the proportion of

these significant deviations to total number of correlation coefficients M(M−1)
2 = 35, 778. "Perc. of pos. sig. dev."

and "Perc. of neg. sig. dev." designate the proportion of positive
(∑

(p<q) I
[
{ρ̃p,q (λj) > ρ̃p,q (λk)}H

])
and neg-

ative deviations
(∑

(p<q) I
[
{ρ̃p,q (λj) < ρ̃p,q (λk)}H

])
of all significant deviations R (λj , λk); the bottom row

summarizes the number of stock pairs with at least one significant deviation over all scale level combinations(∑
(p<q) I

[∑
(j<k) I

[
{ρ̃p,q (λj) 6= ρ̃p,q (λk)}H

]
> 0
])

and its proportion to total number of correlation coefficients; tests

are conducted for level of significance p of 1%, 5%, and 10%; a Daubechies least asymmetric MODWT filter of length 8 was
used to decompose returns; correlations are calculated for the period June 30, 1980 to June 30, 2018.
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Unlike the observations for the subsample (Table I.2), most significant deviations be-

tween correlations at lower timescales are negative (i.e., indicative of increasing cor-

relations). For example, weekly correlations (scale level 2) are higher than bi-daily

correlations (scale level 1) in 60.86% of the cases for which significant deviations

are detected (at the 5% level). In contrast, only 39.14% of the significant deviations

can be attributed to higher correlations at the first two scale levels. This contradicts

the exemplary results in section 4.2.1, for which a reduced correlation was observed

from scale level 1 to scale level 2 for all stocks. However, the different proportion of

positive and negative deviations is relatively balanced. It should not be ignored that

many stocks pairs also display reduced correlations with increasing time horizon.

This might indicate that the mechanisms underlying the correlations exhibit more

complex structural changes over timescales than a simple increase in the global level

of correlation. For example, with increasing timescale, correlations between stock

groups (e.g., sectors) may evolve differently from within-group correlations. The

stocks in the subsample of section 4.2.1 all belong to different sectors. The declining

trend in correlations for those stocks may therefore represent an overall change in

the relationship between their corresponding sectors.15

Another cause might be the presence of non-stationarities in the time series. It is nat-

ural to assume that correlations of different time horizons show different sensitivities

regarding the dominant market state. In other words, short-term correlations behave

differently to market changes than long-term correlations. Therefore, the synop-

sis of observations from different market states might lead to a mixture of different

timescale correlation structures. For this reason, section 4.2.3 examines correlations

with regard to their evolution in different market states.

4.2.3 Non-Crisis and Crisis Period Analysis

To further investigate the term-structure of correlations, I subdivide the observation

period into market periods of non-crisis and crisis. For the period of analysis, I

15I leave analyzing the changes in the correlation substructure to future research as considering these
relationships would go beyond the scope of this study.
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qualitatively identify seven economic crises that significantly impacted the US stock

market.16

Note that specifying crisis-period duration is undermined by a trade-off between

long-term and short-term frequency characterization (besides the basic difficulty of

defining a start and an end date of a crisis period). If crisis duration is defined as too

short, longer-term cycles may be blended. In turn, wider time-window specification

may lead to incorporating price dynamics outside the scope of a particular crisis.

As a result, specifying the duration of crisis periods is clearly subject to debate. To

ensure the robustness of the results, I used longer and shorter time intervals for dif-

ferent crisis and non-crisis periods. However, correlation structures remained mostly

comparable for these adjusted periods.

Figure I.3 illustrates wavelet correlations for the subsample during crisis (red) and

non-crisis (blue) market states. Similar to the observations for the full time series in

Figure I.2, during crisis periods, correlations display an inverting curve from scale

levels 1 to 4. Correlations are high for bi-daily frequencies and decrease when ap-

proaching monthly periods. While another high is observed for most stocks at scale

level 5, correlations once again decrease for longer-term horizons (scale level 7).17

The correlation curves for non-crisis periods show no clear trend either. Some corre-

lations increase with the scale level, others decrease, and some remain flat. However,

unlike the correlation curve of crisis periods, there is little indication that correla-

tions differ during non-crisis periods. Interestingly, the term-structure of correlations

for crisis periods strongly resembles that of the full observation period (Figure I.2).

Thus, the correlation structure for the full observation period seems to be largely in-

fluenced by the correlation structures of crisis periods. This pattern emerges despite

the fact that market crises cover a shorter time span than non-crisis market phases.

These findings underline the necessity of dividing the observation period into crisis

16The following time periods were used to classify crisis market phases: the US savings and loan crisis
and Latin American crisis (Jan. 1980–Jun. 1980; Jan. 1981–Dec. 1982), the market phase after Black
Monday (Oct. 1987–Apr. 1989), the early 1990s recession (Feb. 1989–Mar. 1991), the Asian crisis (Apr.
1997–Dec. 1998), the early 2000s recession (Mar. 2000–Dec. 2002), the global financial crisis of 2007
(Jul. 2007–Jun. 2009), the European sovereign debt crisis and the time period after the downgrading of
America’s credit rating (Jun. 2011–May 2012). The remaining time periods were classified as non-crisis
periods.

17Again, no direct conclusion can be drawn about the shape of the correlation curve for longer
timescales due to the now even broader confidence bands.
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and non-crisis market states. The separation enables examining the non-crisis cor-

relation structures in more detail while excluding the dominant influence of crisis

period correlations.
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Figure I.3: Wavelet correlations between four selected stocks: Exxon Mobil
(XOM), General Electric (GE), International Business Machines (IBM), and
Procter & Gamble (PG) during non-crisis and crisis periods. Notes: The blue
and orange shaded regions in each graph represent the 95% confidence inter-
vals; a Daubechies least asymmetric MODWT filter of length 8 was used to
decompose returns.

Figure I.3 also allows comparing the correlations between non-crisis and crisis mar-

ket states. Correlations at a timescale of 2–4 days (scale level 1) are significantly

different during crisis and non-crisis market phases. Correlations in crisis states sur-

pass correlations in non-crisis states for all six stock pairs. This deviation between

correlations for different market states is consistent with the general expectation of
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higher correlations during distressed market phases. Interestingly, correlations of

non-crisis and crisis periods move closer together for all stocks as the timescale in-

creases from bi-daily (scale level 1) to monthly frequencies (scale level 4). With

the exception of GE/PG, this convergence in correlations roughly continues up to the

largest scale level 7. These exemplary results suggest that medium- to long-term cor-

relations are less exposed to short-term market perturbations (positive and negative

shocks). Also, a common level of long-term correlation may be assumed.

Nevertheless, the construction of the test statistics does not allow drawing conclu-

sions about the equality of correlations. Therefore, it can only be stated that no sig-

nificant differences can be found between correlations of crisis and non-crisis market

states at medium- to long-term frequencies.

Table I.4 extends the analysis of multiscale correlation structures for the different

market phases to the complete stock sample. Time series are divided into the same

non-crisis and crisis market periods. The level of significance of equality in corre-

lations is set at 5% (two-sided test). Considering the different market phases for the

overall sample directly complements the analysis of the complete observation period

in Table I.3.

Compared to the results in Table I.3, fewer significant relative deviations exist be-

tween scale correlations. The measure accounting for differences in correlations at

any timescale decreases from 50.08% for the full sample period to 38.22% (33.36%)

for the non-crisis (crisis) period (bottom row in Table I.4). While this reduction is

profound, it is most likely attributable to the broader confidence bounds resulting

from subdividing the sample period.

Individually comparing timescale correlations provides more detailed information on

those timescale correlations between which significant differences occur. Again, sig-

nificant differences are only observed between correlations of the lowest timescales

(scale levels 1 or 2) and those of the remaining timescales. No significant differences

can be found between correlations at higher timescales. This holds for both market

states.
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Table I.4: Test of equality between correlations of different timescales during
non-crisis and crisis periods, covering the complete data sample of 268 stocks.
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Scale 1 / Scale 2 2,065 5.77 174 8.43 1,891 91.57 2,425 6.78 1,426 58.80 999 41.20
Scale 1 / Scale 3 6,265 17.51 198 3.16 6,067 96.84 3,585 10.02 1,847 51.52 1,738 48.48
Scale 1 / Scale 4 5,790 16.18 167 2.88 5,623 97.12 3,080 8.61 1,725 56.01 1,355 43.99
Scale 1 / Scale 5 3,342 9.34 337 10.08 3,005 89.92 1,637 4.58 464 28.34 1,173 71.66
Scale 1 / Scale 6 2,400 6.71 260 10.83 2,140 89.17 3,110 8.69 446 14.34 2,664 85.66
Scale 1 / Scale 7 1,547 4.32 219 14.16 1,328 85.84 1,418 3.96 314 22.14 1,104 77.86

Scale 2 / Scale 3 1,427 3.99 54 3.78 1,373 96.22 958 2.68 421 43.95 537 56.05
Scale 2 / Scale 4 2,468 6.90 104 4.21 2,364 95.79 1,867 5.22 971 52.01 896 47.99
Scale 2 / Scale 5 1,793 5.01 289 16.12 1,504 83.88 1,087 3.04 226 20.79 861 79.21
Scale 2 / Scale 6 1,607 4.49 267 16.61 1,340 83.39 2,547 7.12 265 10.40 2,282 89.60
Scale 2 / Scale 7 1,109 3.10 228 20.56 881 79.44 1,138 3.18 227 19.95 911 80.05

Scale 3 / Scale 4 361 1.01 100 27.70 261 72.30 436 1.22 254 58.26 182 41.74
Scale 3 / Scale 5 1,100 3.07 531 48.27 569 51.73 785 2.19 207 26.37 578 73.63
Scale 3 / Scale 6 973 2.72 355 36.49 618 63.51 2,053 5.74 150 7.31 1,903 92.69
Scale 3 / Scale 7 753 2.10 270 35.86 483 64.14 1,008 2.82 239 23.71 769 76.29

Scale 4 / Scale 5 331 0.93 207 62.54 124 37.46 246 0.69 39 15.85 207 84.15
Scale 4 / Scale 6 705 1.97 345 48.94 360 51.06 1,642 4.59 78 4.75 1,564 95.25
Scale 4 / Scale 7 580 1.62 267 46.03 313 53.97 862 2.41 187 21.69 675 78.31

Scale 5 / Scale 6 244 0.68 93 38.11 151 61.89 726 2.03 50 6.89 676 93.11
Scale 5 / Scale 7 513 1.43 192 37.43 321 62.57 493 1.38 172 34.89 321 65.11

Scale 6 / Scale 7 135 0.38 65 48.15 70 51.85 208 0.58 171 82.21 37 17.79

Any sig. dev. for
given asset pairs 13,673 38.22 11,937 33.36

Notes: The null hypothesis of the test states that for stocks p and q, timescale-correlations are equal ρ̃p,q (λj) = ρ̃p,q (λk)

for scale level j 6= k; for a given stock pair, the test statistics is defined by (zj − zk) /
√(

N̂j − 3
)−1 +

(
N̂k − 3

)−1
,

where the variables N̂j and N̂k refer to the number of DWT coefficients and the coefficients zj and zk are the
Fisher z-transformed correlations at different scale levels (j 6= k); tests are conducted for all possible combinations of
scale levels 1–7 and all possible combinations of stock pairs. For a given scale level combination j and k, "Num-
ber of sig. dev." summarizes the number of tests between all possible combinations of stock pairs that reject the null

hypothesis
(
R (λj , λk) ≡

∑
(p<q) I

[
{ρ̃p,q (λj) 6= ρ̃p,q (λk)}H

])
. "Perc. of sig. dev." determines the proportion of

these significant deviations to total number of correlation coefficients M(M−1)
2 = 35, 778. "Positive sig. dev." and

"Negative sig. dev." denote the number of positive
(∑

(p<q) I
[
{ρ̃p,q (λj) > ρ̃p,q (λk)}H

])
and negative deviations(∑

(p<q) I
[
{ρ̃p,q (λj) < ρ̃p,q (λk)}H

])
. "Perc. of pos. sig. dev." and "Perc. of neg. sig. dev." designate the proportion

of these deviations over all significant deviations R (λj , λk); the bottom row summarizes the number of stock pairs with at

least one significant deviation over all scale level combinations
(∑

(p<q) I
[∑

(j<k) I
[
{ρ̃p,q (λj) 6= ρ̃p,q (λk)}H

]
> 0
])

and its proportion to overall combinations; tests are conducted for level of significance p of 5%; a Daubechies least asymmet-
ric MODWT filter of length 8 was used to decompose returns; (wavelet) correlations were calculated between 268 stocks for
the period June 30, 1980 to June 30, 2018; for selected crisis and non-crisis periods, see Figure I.3.
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Interestingly, compared to the full sample period in Table I.3, the share of nega-

tive deviations greatly increased for non-crisis periods. For example, the percentage

of negative deviations rose from 60.86% to 91.57% for the relation scale 1/scale 2

and from 74.55% to 95.79% for the relation scale 2/scale 4. These negative devi-

ations imply that almost all significant correlations increase from lower to higher

timescales. In other words, correlations between these stocks increase over longer

time horizons during regular market periods. Unlike the analysis of the reduced sam-

ple in Figure I.3, a clear trend is therefore observable in deviating correlations across

timescales with this separation of market states.

In contrast, correlations in crisis periods are more equally balanced between positive

and negative deviations at low timescales. Compared to the non-crisis period, cor-

relations more often decrease from short-term to medium-term time horizons. The

relations between lower timescale correlations generally even point to a slight in-

version of the timescale-correlation curve. For example, the relation scale 1/scale 4

exhibits a 56.01% share in positive significant deviations. However, the imbalance

between negative and positive deviations is not particularly pronounced.

Comparing short- and long-term correlations reveals that negative deviations again

outnumber positive deviations. For example, for the relation scale 1/scale 6 the share

of negative deviations rises to 85.66%. In accordance with the observation for non-

crisis periods, this indicates a positive trend in the term-structure of deviating cor-

relations for longer timescales. Note, however, that the results for the crisis period

must be considered with caution because the overall number of significantly deviat-

ing correlations is comparably low.

Overall, there are multiple observations for changes in the term-structure of correla-

tions for different market states. While correlations increase over timescales during

regular market periods, this trend may be (slightly) inverted during distressed market

phases. During these market periods, short-term correlations surge while medium- to

long-term correlations experience a smaller relative increase or even remain stable.

Heterogeneous market hypotheses can again be used to explain the divergent char-

acteristics of correlations in non-crisis and crisis periods. According to these hy-
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potheses, differences in correlations result from market agents with different invest-

ment horizons internalizing information heterogeneously. On this premise, these

agents are likely to react different to information depending on the prevailing market

state. In particular, newsbreaks may have different impacts in crises and calm market

states.

Following this intuition, in non-crisis periods, short-term correlations are influenced

to a higher degree by idiosyncratic price movements of individual stocks than long-

term correlations. However, as the time horizon increases, long-term macroeco-

nomic trends become more relevant. As a result, overall stock correlation increases

and a positive trend in correlations is observed with increasing time horizon.

By contrast, during distressed market phases, general market news equally affect all

market agents. Newsbreaks dominate the price behavior of all stocks and penetrate

all timescale levels. As a consequence, stock prices move in tandem and are suscepti-

ble to the same general market risk. This induces correlations over all time horizons

to increase. Thus, the positive trend in the term-structure of correlations weakens

or even disappears. This effect is particularly pronounced for the short-term time

horizon.

This correlation mechanism can be compared to the term-structure of interest rates

(yield curve). Similar to the yield curve, correlation structures may be influenced by

expectations about future interrelations in the stock market and steered by different

factor compositions both at the short- and long-term horizon and in different market

states.

In summary, this section has shown that the term-structure of correlations varies in

different market phases. While in times of crisis correlations increase with the time

horizon, the trend is less clear in non-crisis periods. At shorter timescales, the term-

structure of correlations is evenly balanced between positive and negative deviations.

This study argues that these differences may be attributed to the heterogeneity of

market agents and consequently to the heterogeneity of information.

Despite many significant differences in correlations, the majority of timescale cor-

relation pairs show no statistically significant differences. Thus, no heterogeneity

is detected for numerous timescale correlations. Moreover, the test design generally
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inflates type I errors due to the experimentwise error rate when considering the union

of the deviating correlations and the results in this section should be viewed with a

certain degree of caution.

Consequently, the analysis should be extended to considering the multivariate struc-

ture of correlation to legitimate the above results. This allows extending and general-

izing findings from individual correlation analysis to the overall correlation structure.

If analyzing the overall correlation structure reveals similar properties, this underpins

the findings of individual correlation analysis. The following section conducts this

multivariate analysis.

4.3 Overall Multiscale Correlation

Fernández-Macho (2012) introduced a statistical tool for studying the multiscale

properties of correlations in a multivariate dataset. The tool enables deriving a mea-

sure that summarizes all stock correlations in a single metric. This unified measure

— referred to as wavelet multiple correlation (WMC) — serves as a general proxy

of the overall relationship between stocks at a particular timescale. Thus, the method

provides a description of the overall structural behavior of correlations on a scale-

by-scale basis. Consolidating timescale correlations into a single measure enables a

holistic and simplified interpretation of the timescale dependency structure between

stocks.

According to Fernández-Macho (2012), the method not only simplifies interpreting

the complex stock market system but also offers other benefits beyond the analy-

sis of individual correlations. As explained, bundling tests for equality in correla-

tions of different timescales may cause type I errors to increase. The WMC method

overcomes this deficiency. In addition, it prevents misidentifying spurious correla-

tions, which only emerge due to possible hidden variables in the multivariate dataset.

Therefore, WMC-based correlation analysis is a useful addition to the previous ex-

amination of individual correlations (see previous section).18

18However, investigating both individual correlations and the overall correlation structure is needed
to obtain a complete picture of the timescale behavior of stocks. Thus, WMC-based analysis does not
replace investigating individual correlations.
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The wavelet multiple correlation ρ̄ (·) for timescale λj is defined by

ρ̄ (λj) =
√√√√1− 1

max
{
diag

(
C(λj)−1

)} , (9)

where C(λj)−1 refers to the inverse of the wavelet correlation matrix C (λj) =
{ρ̃p,q (λj) ; p = 1, . . . ,M ; q = 1, . . . ,M} at timescale λj and where the max
{diag (·)} operator extracts the largest element from the diagonal of the matrix. Sim-

ilar to wavelet correlation coefficients, wavelet multiple correlation coefficients lie

between −1 and +1. Moreover, confidence bounds for the WMC are given by the

same interval as in formula 8. The wavelet correlation coefficient ρ̃p,q (λj) simply

needs to be replaced by the WMC coefficient ρ̄ (λj).

Figure I.4 displays the WMC coefficients and the corresponding 95% confidence

bounds across timescales and for different market periods. The results generally

show growing stock correlation with increasing timescale. This trend can be ob-

served for the full period, as well as for the non-crisis and the crisis periods.
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Figure I.4: Wavelet multiple correlation of the 268 stocks for the full period and
the non-crisis and crisis periods. Notes: The blue-shaded region in each graph
represents the 95% confidence intervals; the full period covers June 30, 1980 to
June 30, 2018; a Daubechies least asymmetric MODWT filter of length 8 was
used to decompose returns.
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The WMC is quite high for all market phases and timescales. For the full period,

the WMC starts at approximately 0.83 at scale level 1 (bi-daily time horizon) and

increases with the timescale. The WMC approaches a value close to 1 at the highest

scale level 7 (half-yearly/yearly time horizon). This implies that stocks are highly

interconnected, and that this interrelationship even strengthens for longer time hori-

zons.

For the non-crisis periods, the correlation at scale level 1 is slightly lower than for

the full period. However, similar to the full period, the WMC coefficient rises with

the time horizon and approaches a value close to 1 at the largest timescale. As a

result, the trend in the term-structure of correlations for non-crisis periods is slightly

more positive than for the full period.

These results are consistent with the findings from analyzing the timescale charac-

teristics of individual correlations (see previous section, Table I.4). However, the

previous analysis only allowed interpreting those individual relationships that sig-

nificantly differ between the timescale correlations. Considering the WMC measure

enables extending this interpretation to describe the overall (global) change in cor-

relations. Analyzing the WMC coefficients demonstrates that, in non-crisis periods,

stock market correlations tend to increase with an increasing time horizon.

Interestingly, for crisis periods, we also observe higher correlations with increas-

ing time horizon. However, Figure I.4 shows a flat section of the curve and thus

highly similar WMC coefficients at the lowest two timescales. In other words, the

WMC graph shows no clear trend for changes between correlations of the shortest

time horizons. This observation concurs with the findings of the previous analysis

of individual correlations (section 4.2), where also no clear trend was found between

correlations at the lowest timescales.19 Similarly, in both analyses increasing corre-

lations are only detected at larger timescales.

The analyses of the individual correlations and of the WMC coefficients in crisis

periods are generally consistent except for some slight differences. The emerging

19The balance between the positive and negative deviations of the individual timescale correlations in
Table I.4 seems to translate to a static WMC metric. This can be explained by the fact that the WMC
reflects the overall correlation structure. It summarizes the behavior of all correlations. Because the pos-
itive and negative deviations of the individual timescale correlations in Table I.4 approximately balance,
the WMC for the respective timescales therefore remains more or less static.
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ascent of the WMC curve starts at a lower timescale (scale level 3) than the corre-

sponding increase in the individual correlations (scale level 5) reported in Table I.4.

One possible reason for the discrepancy between the analyses could be a greater

similarity of correlations in times of crisis. These smaller differences complicate

identifying significant deviations in the analysis of individual correlations. This does

not necessarily affect the WMC metric to an equal extent as this metric considers

an aggregate of all correlations. Hence, the WMC method may be better suited to

detecting changes in the overall structure of correlations.

Conversely, analyzing individual correlations allows for better identifying finer

changes in the correlation structure. Because the WMC metric measures the general

degree of correlation, it might ignore more subtle changes (smoothing) and harbors

the risk of masking finer details of the structural interrelationship between stocks:

For example, with an increasing time horizon, correlations may change in the mar-

ket as a whole (global). However, they may also change within (intra-group) and

between (inter-group) certain groups of stocks. In other words, the structure of the

correlation itself may change with timescale. Therefore, the discrepancies between

individual correlation analysis and WMC analysis may point to deeper structural dif-

ferences in the correlations, independently of the evolution of the general correlation

level.

Overall, the WMC graph of crisis periods exhibits a high level of correlation across

all timescales. Even at low timescales, correlations are pronounced.20 Compared to

non-crisis periods, this results in a flatter term-structure of correlations with a less

positive trend. In other words, correlations across different timescales approach a

similarly high level. Again, this is consistent with the findings in section 4.2, which

also reported a less significant trend in the term-structure of correlations at short-

to medium-term time horizons. In periods of financial distress, stocks are highly

synchronized and share a common behavior at all timescales. This discovery has

important practical implications: In times of crisis, the benefits of diversification

20In fact, correlations of the lowest timescales rise the most. This can also be explained by the cor-
relation metric being limited to a maximum value of 1. Correlations of timescales already showing high
values may therefore only marginally increase. In contrast, low correlations have enough space to rise.
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disappear at all time horizons. The possibility of diversifying a portfolio reduces,

regardless of the investment horizon under consideration.

To summarize, analyzing the WMC coefficients generalizes and supplements the

findings in section 4.2. Together, they point to a dissimilar structure in correlations

for different market phases.

For the non-crisis period, a general increase in correlations is observed. The stock

market thus shows a stronger collective behavior. This suggests that macroeconomic

factors gain in relevance with increasing time horizon. Consequently, in non-crisis

periods, the diversification potential decreases with increasing time horizon. In con-

trast, in crisis periods, the general level of correlation is high at all timescales. Stocks

show a strong collective behavior over all time horizons. Only minor differences can

be observed, in particular for low timescales. However, analyzing the WMC and

the individual correlations reveals slightly different correlation dynamics at lower

timescales.

A major weakness of the WMC metric is its sensitivity to estimation errors in the

correlation matrix. This sensitivity arises because the WMC metric relies on the in-

verse of the correlation matrix for its derivation (see formula 9). As less information

is available for longer-term processes (fewer observations), the measurement error

of correlations generally increases with timescale. As a result, the reliability of the

WMC measure tends to decline with increasing time horizon.

Laloux et al. (1999), as well as Plerou, Gopikrishnan, Rosenow, Amaral and Stanley

(1999), showed that correlations already contain a high degree of randomness, re-

gardless of the timescale considered. Therefore, even for low timescales, the WMC

measure may already be noticeably influenced by random deflections in the time

series. Ultimately, the individual correlation estimates are not free of this problem

either. This deficiency raises the question about finding a more robust method for

extracting the structural properties of stock correlations.

Advanced filtration methods such as RMT and graph theory could be interesting

alternatives for studying the structure of correlations. Specifically, RMT enables fil-

tration of random components from the signal and hence would be less susceptible

to the aforementioned measurement errors. However, the applicability of RMT to
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wavelet correlations requires further investigation. In particular, it must first be clar-

ified whether the filtered components enjoy reasonable economic interpretation at

different time horizons. Similarly, considering substructures via graph theory needs

further tests, which would go beyond the scope of this study.

4.4 Robustness

This section substantiates the previous findings using different robustness tests. These

include changing the analyzed time interval and considering different wavelet filters.

Figure I.5 shows the WMC graphs for the extended period from December 31, 1960

to June 30, 2018. Hence, the observation period was extended by approximately

19 years compared to the analysis in the main section.21 However, as a full time

series history is required, this significantly reduces the breadth of the data sample to

a mere 65 stocks.

The results for this extended period generally confirm the previous findings regarding

timescale-variant correlation behavior. Again, in non-crisis periods, the graph indi-

cates increasing global correlation with the time horizon. In contrast, the results for

crisis periods slightly deviate from those in section 4.3. Particularly, correlations of

the weekly time horizon (scale level 2) fall below those of the bi-daily time horizon

(scale level 1). However, this deviation is neither particularly large nor significant.

Even if the deviation were significant, the observation would confirm the previous

assumption: In times of crisis, the trend in the average correlation is less pronounced

for increasing timescales and correlations of different timescales generally converge.

Further, Table I.7 (see appendix) shows the corresponding statistics for the compar-

ison of individual correlations. These results are also largely consistent with the

findings of the analysis from June 30, 1980 to June 30, 2018.

21The recession in the years 1960–61 (Apr. 1960–Feb. 1961), the 1973 oil crisis (Oct. 1973–Mar.
1974), and the 1979 energy crisis (Jan. 1979–Dec. 1980) were considered crisis market phases for these
additional years.
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Figure I.5: Wavelet multiple correlation of the 65 stocks for the full period and
the non-crisis and crisis periods, covering the extended sample period Dec. 31,
1960 to Jun. 30, 2018. Notes: The blue-shaded region in each graph represents
the 95% confidence intervals; additional crisis periods considered: 1960–61
recession (Apr. 1960–Feb. 1961), 1973 oil crisis (Oct. 1973–Mar. 1974), 1979
energy crisis (Jan. 1979–Dec. 1980); a Daubechies least asymmetric MODWT
filter of length 8 was used to decompose returns.

Next, I study the timescale characteristics of correlations for the shorter period be-

tween December 31, 1999 to June 30, 2018. The shortening of the observation period

makes it possible to examine a larger number of stocks and thus to better reflect the

overall stock market behavior. In total, the reduction of the observation period allows

for an expansion of the sample to 505 stocks. However, the shortening of the obser-

vation period means that correlation coefficients at higher timescales can no longer

be estimated reliably. Hence, Table I.5 only compares correlations up to scale level 5

(bi-monthly time horizons).

For non-crisis periods, Table I.5 again illustrates an increase in significant correla-

tions for bi-daily to longer time horizons. However, the trend is less evident and

even reverses for higher timescales. This finding disagrees with the results for the

longer observation period in the main analysis. However, the lower accuracy of

the correlation estimates is likely to cause these contradictions at higher timescales.

Nevertheless, the presence of a survivorship bias cannot be ruled out completely.

The deviating results might also be caused by a recent change in the general market

structure.
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Table I.5: Test of equality between correlations of different timescales for the
extended data sample of 505 stocks, covering the period December 31, 1999 to
June 30, 2018.
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Scale 1 / Scale 2 7,181 5.69 1,804 25.12 5,377 74.88 8,091 6.41 7,379 91.20 712 8.80

Scale 1 / Scale 3 13,733 10.88 3,773 27.47 9,960 72.53 8,430 6.68 5,512 65.39 2,918 34.61

Scale 1 / Scale 4 8,378 6.64 2,621 31.28 5,757 68.72 11,811 9.36 10,837 91.75 974 8.25

Scale 1 / Scale 5 7,302 5.78 5,736 78.55 1,566 21.45 4,253 3.37 3,547 83.40 706 16.60

Scale 2 / Scale 3 3,918 3.10 1,757 44.84 2,161 55.16 1,998 1.58 466 23.32 1,532 76.68

Scale 2 / Scale 4 4,833 3.83 2,191 45.33 2,642 54.67 5,304 4.20 4,343 81.88 961 18.12

Scale 2 / Scale 5 6,537 5.18 5,650 86.43 887 13.57 2,363 1.87 1,558 65.93 805 34.07

Scale 3 / Scale 4 2,054 1.63 1,043 50.78 1,011 49.22 2,490 1.97 2,299 92.33 191 7.67

Scale 3 / Scale 5 6,032 4.78 5,293 87.75 739 12.25 2,321 1.84 1,746 75.23 575 24.77

Scale 4 / Scale 5 2,997 2.37 2,697 89.99 300 10.01 630 0.50 158 25.08 472 74.92

Any sig. dev. for
given asset pairs 41,450 32.83 32,299 25.58

Notes: See description in Table I.4. However, the total number of correlation coefficients differs: M(M−1)
2 =

128, 778; selected crisis periods: early 2000s recession (Mar. 2000–Dec. 2002), global financial crisis (Jul. 2007–
Jun. 2009), European sovereign debt/American credit risk crisis (Jun. 2011–May 2012). All remaining time
periods were classified as non-crisis periods.

Lastly, I test the results of this study by employing wavelet filters of different families

and using different wavelet filter lengths to calculate wavelet correlations. Besides

a Daubechies least asymmetric filter of length 16 LA(16), I also use a symmetric

Daubechies filter of length 4 DB(4) (different filter family). The greater length of

the LA filter allows capturing longer term cycles in the time series. However, it

also results in a loss of time resolution. On the other hand, the shorter length of

the DB filter leads to a loss in the coverage of longer cycle characteristics. It does,

however, allow for better time resolution, which is important for classifying non-

crisis and crisis periods. Moreover, the symmetry of the DB filter allows replicating

and uncovering different aspects of the signal.
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Table I.6 presents the analysis for the LA(16) filter. The analysis of the DB(4) filter

is displayed in Table I.8 (appendix). Results are largely consistent with the findings

of the main section. However, LA(16) filter analysis generally shows higher signif-

icances compared to the analysis in Table I.4. Applying the longer filter thus even

reinforces the main results of this study.

Table I.6: Test of equality between correlations of different timescales using an
alternative LA(16) wavelet filter, covering the period June 30, 1980 to June 30,
2018.
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Scale 1 / Scale 2 2,788 7.79 290 10.40 2,498 89.60 3,382 9.45 2,092 61.86 1,290 38.14
Scale 1 / Scale 3 7,104 19.86 266 3.74 6,838 96.26 4,142 11.58 1,966 47.46 2,176 52.54
Scale 1 / Scale 4 6,283 17.56 229 3.64 6,054 96.36 3,657 10.22 2,152 58.85 1,505 41.15
Scale 1 / Scale 5 3,947 11.03 436 11.05 3,511 88.95 1,930 5.39 659 34.15 1,271 65.85
Scale 1 / Scale 6 2,908 8.13 335 11.52 2,573 88.48 4,007 11.20 555 13.85 3,452 86.15
Scale 1 / Scale 7 1,908 5.33 364 19.08 1,544 80.92 1,717 4.80 393 22.89 1,324 77.11

Scale 2 / Scale 3 2,227 6.22 105 4.71 2,122 95.29 1,651 4.61 628 38.04 1,023 61.96
Scale 2 / Scale 4 2,998 8.38 183 6.10 2,815 93.90 2,443 6.83 1,299 53.17 1,144 46.83
Scale 2 / Scale 5 2,285 6.39 409 17.90 1,876 82.10 1,409 3.94 369 26.19 1,040 73.81
Scale 2 / Scale 6 2,056 5.75 358 17.41 1,698 82.59 3,426 9.58 324 9.46 3,102 90.54
Scale 2 / Scale 7 1,440 4.02 397 27.57 1,043 72.43 1,437 4.02 281 19.55 1,156 80.45

Scale 3 / Scale 4 792 2.21 273 34.47 519 65.53 926 2.59 603 65.12 323 34.88
Scale 3 / Scale 5 1,571 4.39 781 49.71 790 50.29 1,131 3.16 415 36.69 716 63.31
Scale 3 / Scale 6 1,308 3.66 488 37.31 820 62.69 2,741 7.66 245 8.94 2,496 91.06
Scale 3 / Scale 7 1,083 3.03 485 44.78 598 55.22 1,253 3.50 331 26.42 922 73.58

Scale 4 / Scale 5 713 1.99 413 57.92 300 42.08 610 1.70 141 23.11 469 76.89
Scale 4 / Scale 6 1,017 2.84 486 47.79 531 52.21 2,461 6.88 123 5.00 2,338 95.00
Scale 4 / Scale 7 889 2.48 453 50.96 436 49.04 1,185 3.31 244 20.59 941 79.41

Scale 5 / Scale 6 538 1.50 191 35.50 347 64.50 1,540 4.30 150 9.74 1,390 90.26
Scale 5 / Scale 7 804 2.25 367 45.65 437 54.35 722 2.02 225 31.16 497 68.84

Scale 6 / Scale 7 358 1.00 202 56.42 156 43.58 539 1.51 435 80.71 104 19.29

Any sig. dev. for
given asset pairs 16,525 46.19 15,156 42.36

Notes: See description in Table I.4.
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5 Conclusion

Analysis of frequency dynamics in US stocks has shown that the stock relationships

change over different time horizons and market states. Specifically, in non-crisis pe-

riods, correlations between stocks pairs are generally lower at shorter than at longer

time horizons (timescales). Although examining individual correlations could only

significantly establish this relationship for a minority of correlation pairs, analyzing

wavelet multiple correlation (WMC) coefficients has revealed that this relation is

equally valid for the overall stock market.

A different structure emerges for correlations in crisis periods. Fewer significant

deviations between correlations of different timescales are detected. Moreover, the

few significant deviations relate to small differences between bi-daily and monthly

time horizons. Only for longer-term time horizons are correlations once again found

to increase with timescale. A similar behavior is observed for the change in overall

correlation structure (WMC) in crisis periods. However, the WMC analysis signals

increasing correlations at a lower timescale than the analysis of individual correla-

tions suggests. Regardless of these differences, the results indicate that after correla-

tions at shorter time horizons initially stagnate, the general level of correlation rises

with increasing time horizon.

These findings have important implications for risk management and portfolio deci-

sion-making. For example, they suggest that different risk assessments or portfolio

allocations may be necessary regarding an investor’s time horizon. These strategies

might need to be adjusted depending on the prevalent market state. Further, the re-

sults also provide intuitions as to why some market models deliver dissimilar results

for the consideration of different sampling intervals.

A possible explanation for timescale-variant correlations was found in heterogeneous

market theories. Based on these theories, the increasing correlations in non-crisis

times can be attributed to the growing influence of macroeconomic factors. On the

other hand, at low timescales, idiosyncratic factors have a higher impact on stock

interrelations. This relationship changes in times of crisis, during which all stocks

react collectively irrespectively of the time horizon. In this market state, the market
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factor is dominant across all timescales. However, investigating a subsample has

revealed that relationships between individual stock pairs may run counter to the

general trend. This suggests that the underlying structure is much more complex

and may not be explained by a single factor. Methods such as graph theory might

allow more efficiently deciphering the underlying timescale-variant dynamics in the

complex system of correlations.

A major limitation of this study is the large proportion of randomness hidden in the

correlations. This complicates identifying underlying trends and influences the ac-

curacy of the measures used. Advanced filtration methods could separate relevant

from non-relevant information in correlations. In this context, random matrix the-

ory in particular presents a promising avenue of research. In addition to filtering

noise from correlations, it also allows for identifying underlying factors in the corre-

lation structure. Thus, the method is likely to enable more adequately reflecting the

complexities in correlations described above.

This study underpins the existence of timescale-variant correlations and implies the

presence of a term-structure of correlations. As such, it has laid the foundation for

further investigating the timescale-dependent mechanisms underlying stock correla-

tions.
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Appendix

Table I.7: Test of equality between correlations of different timescales for the
extended data sample of 65 stocks, covering the period December 31, 1960 to
June 30, 2018.
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Scale 1 / Scale 2 208 10.00 13 6.25 195 93.75 119 5.72 70 58.82 49 41.18
Scale 1 / Scale 3 549 26.39 36 6.56 513 93.44 215 10.34 124 57.67 91 42.33
Scale 1 / Scale 4 471 22.64 28 5.94 443 94.06 205 9.86 130 63.41 75 36.59
Scale 1 / Scale 5 273 13.13 11 4.03 262 95.97 87 4.18 15 17.24 72 82.76
Scale 1 / Scale 6 222 10.67 27 12.16 195 87.84 203 9.76 34 16.75 169 83.25
Scale 1 / Scale 7 110 5.29 33 30.00 77 70.00 79 3.80 10 12.66 69 87.34

Scale 2 / Scale 3 156 7.50 9 5.77 147 94.23 40 1.92 19 47.50 21 52.50
Scale 2 / Scale 4 201 9.66 11 5.47 190 94.53 133 6.39 86 64.66 47 35.34
Scale 2 / Scale 5 141 6.78 7 4.96 134 95.04 79 3.80 12 15.19 67 84.81
Scale 2 / Scale 6 146 7.02 27 18.49 119 81.51 152 7.31 16 10.53 136 89.47
Scale 2 / Scale 7 76 3.65 33 43.42 43 56.58 58 2.79 5 8.62 53 91.38

Scale 3 / Scale 4 22 1.06 4 18.18 18 81.82 35 1.68 15 42.86 20 57.14
Scale 3 / Scale 5 81 3.89 20 24.69 61 75.31 51 2.45 9 17.65 42 82.35
Scale 3 / Scale 6 72 3.46 29 40.28 43 59.72 127 6.11 6 4.72 121 95.28
Scale 3 / Scale 7 49 2.36 31 63.27 18 36.73 41 1.97 0 0.00 41 100.00

Scale 4 / Scale 5 30 1.44 8 26.67 22 73.33 18 0.87 0 0.00 18 100.00
Scale 4 / Scale 6 50 2.40 30 60.00 20 40.00 101 4.86 3 2.97 98 97.03
Scale 4 / Scale 7 34 1.63 26 76.47 8 23.53 38 1.83 1 2.63 37 97.37

Scale 5 / Scale 6 14 0.67 9 64.29 5 35.71 31 1.49 4 12.90 27 87.10
Scale 5 / Scale 7 41 1.97 31 75.61 10 24.39 23 1.11 3 13.04 20 86.96

Scale 6 / Scale 7 11 0.53 9 81.82 2 18.18 0 0.00 0 0.00 0 0.00

Any sig. dev. for
given asset pairs 1,007 48.41 737 35.43
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Table I.7: (continued)

Notes: The null hypothesis of the test states that for stocks p and q, timescale-correlations
are equal ρ̃p,q (λj) = ρ̃p,q (λk) for scale level j 6= k; for a given stock pair, the

test statistics is defined by (zj − zk) /
√(

N̂j − 3
)−1 +

(
N̂k − 3

)−1
, where the variables

N̂j and N̂k refer to the number of DWT coefficients and the coefficients zj and zk
are the Fisher z-transformed correlations at different scale levels (j 6= k); tests are con-
ducted for all possible combinations of scale levels 1–7 and all possible combinations of
stock pairs. For a given scale level combination j and k, "Number of sig. dev." sum-
marizes the number of tests between all possible combinations of stock pairs that reject

the null hypothesis
(
R (λj , λk) ≡

∑
(p<q) I

[
{ρ̃p,q (λj) 6= ρ̃p,q (λk)}H

])
. "Perc. of sig.

dev." determines the proportion of these significant deviations to total number of correla-
tion coefficients M(M−1)

2 = 2, 080. "Positive sig. dev." and "Negative sig. dev." denote

the number of positive
(∑

(p<q) I
[
{ρ̃p,q (λj) > ρ̃p,q (λk)}H

])
and negative deviations(∑

(p<q) I
[
{ρ̃p,q (λj) < ρ̃p,q (λk)}H

])
. "Perc. of pos. sig. dev." and "Perc. of neg. sig.

dev." designate the proportion of these deviations over all significant deviations R (λj , λk);
the bottom row summarizes the number of stock pairs with at least one significant deviation

over all scale level combinations
(∑

(p<q) I
[∑

(j<k) I
[
{ρ̃p,q (λj) 6= ρ̃p,q (λk)}H

]
> 0
])

and its proportion to overall combinations; tests are conducted for level of significance p of
5%; selected crisis periods: 1960–61 recession (Apr. 1960–Feb. 1961), 1973 oil crisis (Oct.
1973–Mar. 1974), 1979 energy crisis (Jan. 1979–Dec. 1980), US savings and loan/Latin
American crisis (Jan. 1980–Jun. 1980; Jan. 1981–Dec. 1982), Black Monday (Oct. 1987–
Apr. 1989), early 1990s recession (Feb. 1989–Mar. 1991), Asian crisis (Apr. 1997–Dec.
1998), early 2000s recession (Mar. 2000–Dec. 2002), global financial crisis (Jul. 2007–Jun.
2009), European sovereign debt/American credit risk crisis (Jun. 2011–May 2012). All re-
maining time periods were classified as non-crisis periods; a Daubechies least asymmetric
MODWT filter of length 8 was used to decompose returns.
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Table I.8: Test of equality between correlations of different timescales using an alternative
DB(4) wavelet filter, covering the period June 30, 1980 to June 30, 2018.
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Scale 1 / Scale 2 1,292 3.61 72 5.57 1,220 94.43 1,413 3.95 784 55.48 629 44.52
Scale 1 / Scale 3 4,890 13.67 122 2.49 4,768 97.51 2,579 7.21 1,397 54.17 1,182 45.83
Scale 1 / Scale 4 4,855 13.57 83 1.71 4,772 98.29 2,251 6.29 1,263 56.11 988 43.89
Scale 1 / Scale 5 2,601 7.27 187 7.19 2,414 92.81 1,215 3.40 311 25.60 904 74.40
Scale 1 / Scale 6 1,770 4.95 178 10.06 1,592 89.94 2,079 5.81 321 15.44 1,758 84.56
Scale 1 / Scale 7 1,121 3.13 98 8.74 1,023 91.26 973 2.72 194 19.94 779 80.06

Scale 2 / Scale 3 562 1.57 8 1.42 554 98.58 385 1.08 198 51.43 187 48.57
Scale 2 / Scale 4 1,673 4.68 41 2.45 1,632 97.55 1,056 2.95 572 54.17 484 45.83
Scale 2 / Scale 5 1,227 3.43 149 12.14 1,078 87.86 717 2.00 131 18.27 586 81.73
Scale 2 / Scale 6 1,071 2.99 164 15.31 907 84.69 1,542 4.31 175 11.35 1,367 88.65
Scale 2 / Scale 7 740 2.07 96 12.97 644 87.03 750 2.10 151 20.13 599 79.87

Scale 3 / Scale 4 90 0.25 17 18.89 73 81.11 112 0.31 62 55.36 50 44.64
Scale 3 / Scale 5 529 1.48 206 38.94 323 61.06 374 1.05 74 19.79 300 80.21
Scale 3 / Scale 6 554 1.55 187 33.75 367 66.25 1,162 3.25 80 6.88 1,082 93.12
Scale 3 / Scale 7 423 1.18 102 24.11 321 75.89 630 1.76 135 21.43 495 78.57

Scale 4 / Scale 5 58 0.16 37 63.79 21 36.21 51 0.14 5 9.80 46 90.20
Scale 4 / Scale 6 341 0.95 173 50.73 168 49.27 774 2.16 32 4.13 742 95.87
Scale 4 / Scale 7 281 0.79 97 34.52 184 65.48 470 1.31 95 20.21 375 79.79

Scale 5 / Scale 6 55 0.15 23 41.82 32 58.18 194 0.54 8 4.12 186 95.88
Scale 5 / Scale 7 210 0.59 62 29.52 148 70.48 213 0.60 77 36.15 136 63.85

Scale 6 / Scale 7 17 0.05 5 29.41 12 70.59 15 0.04 14 93.33 1 6.67

Any sig. dev. for
given asset pairs 9,869 27.58 7,795 21.79

Notes: See description in Table I.7. However, the sample covers 268 stocks and the total number of correlation
coefficients differs: M(M−1)

2 = 35, 778. Selected crisis periods: US savings and loan/Latin American crisis
(Jan. 1980–Jun. 1980; Jan. 1981–Dec. 1982), Black Monday (Oct. 1987–Apr. 1989), early 1990s recession
(Feb. 1989–Mar. 1991), Asian crisis (Apr. 1997–Dec. 1998), early 2000s recession (Mar. 2000–Dec. 2002),
global financial crisis (Jul. 2007–Jun. 2009), European sovereign debt/American credit risk crisis (Jun. 2011–
May 2012). All remaining time periods were classified as non-crisis periods.
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Chapter II

Multiscale Analysis of the Underlying Struc-

tures in US Stock Correlations: A Wavelet-

Based Random Matrix Theory Approach

Christian Vial

1 Introduction

Stock markets are complex systems characterized by non-trivial interactions between

many components. The structures in the interdependencies between stocks are typ-

ically assumed to be invariant across different time horizons (timescales). In other

words, correlations and their defining structures are expected to remain identical

irrespective of whether we study daily or monthly price intervals. However, empir-

ical evidence on multiscale asset dependencies indicates that degrees of correlation

change across time horizons (see, e.g., Epps, 1979; Tumminello, Di Matteo, Aste

& Mantegna, 2007; Borghesi, Marsili & Miccichè, 2007). Similarly, the distribu-

tions of stock returns generally exhibit a multi-scaling behavior (see, e.g., Di Matteo,

2007; Mantegna & Stanley, 2004).

The notion of timescale-variant correlations agrees well with economic intuition and

is often connected to the underlying structural properties. For example, long-term

dynamics in the correlation structure are frequently explained by changes in common

systematic (macroeconomic) factors. In contrast, short-term changes in correlations

are often associated with the occurrence of singular events or with idiosyncratic price

movements (Conlon et al., 2018).

The present study aims to identify changes in the interdependencies between stocks

and the structure of cross-correlations across different time horizons. To this end,

it develops a method for filtering relevant information from the complexities of the
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system across different timescales. These timescales have common mechanisms,

which help to coherently explain the dependency structure between stocks.

Understanding the factors that govern the system of stocks and their influence across

different time horizons is crucial for many practical applications (e.g., portfolio and

risk management). Information about the structural dynamics of stock correlations

can help to assess the benefits of diversification across different timescales. In prac-

tice, investors have different decision-making time horizons and operate on different

investment timescales. At one end of the investment process are fundamentalist in-

vestors who focus on long-term investment horizons. At the other end are day traders

and intraday traders with short-term investment horizons (Gençay et al., 2010; In &

Kim, 2013; Müller et al., 1993). Understanding the timescale-dependent structural

relationship between stocks helps both types of investors to synchronize their in-

vestment decisions in accordance with their planned investment horizon. Similarly,

insights gained from analyzing structural timescale dynamics enable better under-

standing the macro- and microeconomic forces driving stock prices.

This study uses wavelet transformation to decompose return series into the compo-

nents of different timescales (scale-by-scale decomposition). From these compo-

nents, I derive the cross-correlation matrix to examine the interbehavior of stocks

over different time horizons. This decomposition helps to distinguish short- from

long-term comovements between stocks.

The correlation matrix is a useful metric for extracting meaningful information about

the interaction between stocks. However, analyzing and interpreting cross-correlation

is a complex task (Plerou, Gopikrishnan, Rosenow, Amaral & Stanley, 2000). It may

be difficult to identify apparent timescale-dependent structures in the complex web

of interactions with a large number of stocks. Similarly, estimating empirical cross-

correlation is beset by many complications. Market conditions change over time

and as a result cross-correlation between stocks may be non-stationary (Fenn et al.,

2011; Plerou et al., 2002). Moreover, the finite length of the time series introduces

measurement noise into cross-correlation estimates. In particular, fewer observations

(lower signal content) are available for estimating cross-correlations for longer time

horizons. Hence, the problem of measurement noise is even more pronounced for
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cross-correlation estimates at higher timescales.1 These limitations introduce ran-

domness to cross-correlations (Plerou et al., 2001, 2002, 2000).

It is therefore important to devise methods able to extract relevant information from

the system and to filter the non-random statistical fluctuations inherent in empirical

cross-correlation matrices, specifically when considering longer timescale dynam-

ics (Conlon, Crane & Ruskin, 2008; Conlon, Ruskin & Crane, 2009; Laloux et al.,

1999). Accordingly, this study combines wavelet decomposition with factorization

and random matrix theory (RMT) to explore the multi-scaling and multivariate cross-

correlation properties of financial time series. It is unclear which components of the

cross-correlation matrix provide genuine information about the correlation structure.

RMT has emerged as a useful tool to assess the non-random properties in a high-

dimensional multivariate system (Laloux et al., 1999; Laloux, Cizeau, Potters &

Bouchaud, 2000; Plerou et al., 1999).2 RMT describes the statistical properties of

matrices with independent random elements and provides many theoretical results

for these so-called random matrices. Comparing the statistics of the empirical cross-

correlation matrix with the properties of these random matrices provides information

about randomness in the system. Therefore, contrasting the RMT’s theoretical pre-

diction with the empirical observed correlations allows separating information (in-

congruity with RMT) from noise (conformity with RMT) in the empirical (wavelet)

correlation matrix.

Additionally, factorization of the cross-correlation matrix identifies a reduced num-

ber of common components, which largely explain variation in the system. Thus,

the suggested procedure parsimoniously represents the underlying structures in a

cross-correlation matrix. This low-dimensional representation of the multivariate

data helps to detect latent common factors in stock returns. Factorization thus en-

ables a condensed and streamlined analysis of the underlying structural relationships.

1Denoising techniques help to distinguish signal from noise and measurement errors (see Gençay et
al., 2002)). The technique employed in this study may be seen as a special form of denoising technique
for multivariate data.

2Originally, RMT was designed by Wigner (1951b, 1951a, 1955), Dyson (1962), Mehta and Dyson
(1963), Dyson and Mehta (1963), and Mehta (2004), and others to describe the statistics of energy levels of
complex nuclei (eigenvalues) in many-body quantum systems. Instead of predicting the detailed sequence
of energy levels in the nucleus, they focused on the general distribution of energy levels (Conlon et al.,
2009; Plerou et al., 2002).
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As a result, structures in stock return interactions may be uncovered that might oth-

erwise have remained hidden to the observer.

This study contributes to existing research in four important ways. First, it analyzes

the structural changes of correlations in the US stock market across different time

horizons. While the structure of US stock correlations has been investigated before,

analysis has mostly been limited to one timescale (e.g., Plerou et al., 2002; Laloux et

al., 2000) or some few assets (see, e.g., Gençay et al., 2002). The present study closes

this gap and provides a multivariate analysis of the underlying structural relationship

in the correlations for a large set of US stocks across different timescales. Results

show significant changes in the dependency structure in the US stock market across

different time horizons.

Second, this study uses RMT to analyze the correlation matrices of wavelet decom-

posed time series to handle high-dimensional data and to identify relevant structural

components. To the best of my knowledge, this is the first study to analyze the

combination of RMT and wavelet decomposition in more detail. Using a series of

simulations, I show that the theoretical predictions of RMT can also be applied to

wavelet-decomposed time series. The assumptions underlying the adjustment of pa-

rameters in the theoretical distributions are shown to match the simulation outcomes.

A third contribution involves using the eigendecomposition (factorization) of the

wavelet correlation matrices to identify latent structures in the correlation matrix.

This study differs from previous research by investigating changes in those latent

structures across different timescales. By studying the timescale dynamics of cor-

relations, I show that the largest eigenvalue (which is found to be associated with a

general market factor) changes with the time horizon. However, analysis of different

market states reveals that only in normal market periods the largest eigenvalue in-

creases with timescale. This relation breaks down during turbulent market periods,

where no significant differences in the largest eigenvalue can be observed. These

findings have important implications for both investment management and the gen-

eral understanding of financial markets.

Finally, this study contributes to ongoing research by applying a broad set of statis-

tical tests to underpin the findings obtained from factorization of the correlation ma-
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trix. While factorization (e.g., Principal Component Analysis or Explanatory Factor

Analysis) is used abundantly in financial research, statistical tests are rarely reported.

For example, the confidence intervals of eigenvalues are often missing. This is par-

ticularly critical in view of the general publication standards, which mandate that

confidence intervals always ought to be reported (Larsen & Warne, 2010). Similarly,

the classical criteria for determining the number of factors to be retained from factor-

ization are often arbitrary in nature (e.g., Kaiser-Guttman (1954) criterion and scree

test Cattell (1966)). In contrast, RMT uses theoretical results to define the number

of factors with relevant information.

The remainder of this study is organized as follows. Section 2 reviews the liter-

ature on multiscale analysis of correlations structures. Section 3 briefly outlines

wavelet theory and the methodology for deriving multiscale correlations. This the-

ory is complemented by describing factorization and by introducing random matrix

theory. These methods allow filtering relevant information from the wavelet correla-

tion matrices. Section 4 describes the empirical data, namely, the time series of the

historical constituents of the S&P 500 with a full track history. Extending RMT to

wavelet correlation matrices is tested in section 5. Based on these results, I analyze

the structural dependencies in the US stock market across different time horizons.

Section 6 provides a summary and gives inputs for future research.

2 Literature Review

The analysis of correlation structures in stock markets using RMT dates back to

Laloux et al. (1999, 2000) and Plerou et al. (1999, 2000, 2001, 2002). Laloux et

al. (1999, 2000) studied the eigenvalue distribution of correlations for an S&P 500

sample of 406 stocks. They analyzed this sample for the period 1991–1996 based

on daily return observations. Laloux et al. (1999, 2000) demonstrated that the eigen-

value and eigenvector distribution of the empirical observations strongly agree with

theoretical predictions from RMT. On the premise of RMT, they concluded that less

than 6% of eigenvalues appear to carry information. However, these eigenvalues

were found to be responsible for 26% of the volatility in the correlation structure.
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Similarly, Plerou et al. (1999, 2000, 2001, 2002) analyzed US stock correlations of

30-min and daily returns using RMT and detected comparable properties for eigen-

value and eigenvector distributions.3 In accordance with Laloux et al.’s (1999, 2000)

findings, they observed only a small portion of the largest eigenvalues (approxi-

mately 2%) to deviate from RMT predictions. Plerou et al. (1999, 2000, 2001, 2002)

substantiated these results by investigating additional statistical properties of the em-

pirical eigenvalues for which they also found good agreement with RMT. According

to their results, the correlation matrix of stock returns contains a large amount of

randomness.

Gopikrishnan, Rosenow, Plerou and Stanley (2000, 2001) showed that the largest

eigenvalues have meaningful economic interpretation. More precisely, they reported

that the largest eigenvalue globally influences all stocks and thus represents a collec-

tive market mode. In contrast, they found that the next largest eigenvalues (eigen-

vectors) are associated with conventional business sectors (see also Kim & Jeong,

2005).

Several studies confirmed these results and interpretations for other stock markets:

among others, for the Brazilian market (Sandoval, Bruscato & Venezuela, 2012), the

German market (Drozdz, Grümmer, Górski, Ruf & Speth, 2000; Drozdz, Grümmer,

Ruf & Speth, 2001; Kwapień, Drozdz & Speth, 2003), the Indian market (Kulkarni

& Deo, 2007; Pan & Sinha, 2007), the Japanese market (Utsugi, Ino & Oshikawa,

2004), and the South African market (Wilcox & Gebbie, 2004, 2007).

Gopikrishnan et al. (2000, 2001) also investigated the scaling properties of the time

series obtained from projecting the original time series on the eigenvectors. They

found the autocorrelation function of those time series to exhibit power-law decay.

This indicates that correlations persist over long timescales. However, they did not

examine these results in more detail.

Timescale characteristics in stocks were further explored for intraday dynamics and

different markets (see, e.g., Borghesi et al., 2007). Kwapień, Drozdz and Speth

(2004) used high-frequency tick-by-tick data for the American and the German stock

3Plerou et al. (1999) analyzed the cross-correlation matrix of the 30-min returns of 1,000 US stocks
for the period 1994–1995. Plerou et al. (2000, 2001, 2002) extended this analysis to 30-min returns of
881 US stocks for the period 1996–1997 and daily returns of 422 US stocks for the period 1962–1996.
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markets and examined changes in magnitude of the largest eigenvalue for timescales

ranging from seconds up to two days. Their results indicated an increase in the

dominant eigenvalue with timescale. Correlations were thus found to be timescale-

variant at low data frequencies.4 Kwapień et al. (2004) further discovered that the

market factor (collective market behavior) already emerges at short timescales —

such as minutes or even intra-minute timescales.

Characteristics of stock correlations of higher timescales were explored by Nakayama

and Iyetomi (2009) using daily price data for the Japanese stock market. They ap-

plied Fourier transformation to this daily data to construct correlation matrices at

each frequency and analyzed those matrices using RMT. They found that the col-

lective behavior of stock prices appears for timescales longer than one day and that

eigenvalues vary over different timescales.

In a related approach, Conlon et al. (2009) used wavelet decomposition to obtain

correlation matrices for different timescales. They applied this decomposition to a

rolling window of daily and intraday price data of the Dow Jones Euro Stoxx 50.

This analysis allowed them to study the evolution of the largest eigenvalue (retrieved

from correlation matrices) for timescales of 3 to 11 days. Similar to Nakayama and

Iyetomi (2009), Conlon et al. (2009) reported correlations to depend on both time

and timescale.

The present study differs from Conlon et al. (2009) in many ways: First, it inves-

tigates a larger number of stocks and a different stock market (US stock market).

Second, it also explores the properties of subdominant eigenvalues besides the char-

acteristics of the largest eigenvalues.5 Third, it analyzes correlation structures for

longer time horizons (up to 128–256 days) and directly compares eigenvalues across

different timescales. Fourth, it also introduces statistical tests and investigates the

applicability of RMT to wavelet correlation in more detail. Finally, it explores the

characteristics of eigenvalues for non-crisis and crisis market states.

Previously, Sharkasi, Crane, Ruskin and Matos (2006) studied the behavior of eigen-

value dynamics in crisis and non-crisis periods for mature and emerging markets

4This timescale-variant behavior of correlation accords with the well-reported Epps (1979) effect.
5Conlon (2009) extended this analysis and provided a rudimentary description of the dynamics of the

second- and third-largest eigenvalues. However, the present study more closely examines the characteris-
tics of these subdominant eigenvalues.
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(stock market indices). The authors reported different dynamics between the largest

and the subdominant eigenvalues and concluded that the second and third largest

eigenvalues provide additional information on market comovement (especially for

emerging markets). They also found that the dynamics of and between those eigen-

values differ in crisis and non-crisis periods. Sharkasi et al. (2006) assumed that

these changing dynamics are due to a heterogeneous behavior of market agents. Fur-

ther, they suggested that the largest eigenvalues may help explain crash dynamics.

However, the authors did not interpret the eigenvalues in more detail. Although

they initially decomposed the time series, the evolution of eigenvalues of different

timescales was not explored.6

In a similar study, Fenn et al. (2011) investigated the temporal evolution of eigenval-

ues for correlations between stock market indices. They also found changing relative

contributions of different eigenvalues in crisis periods. In particular, the authors re-

ported that the variance proportion, which the largest eigenvalue explains, increases

in the event of a crisis.

More recently, RMT has been combined with other filtering methods to study the

timescale characteristics of stock market correlations. Such methods include de-

trended cross-correlation analysis (Wang, Xie, Chen, Yang & Yang, 2013), multi-

fractal detrended (cross-correlation/fluctuation) analysis (Kumar & Deo, 2012; Lin,

Shang & Zhou, 2014), and topological approaches (Eom, Oh, Jung, Jeong & Kim,

2009). Most of these studies reported timescale-variant correlations in stock markets

and the same macroeconomic structures underlying these correlations.

3 Methodology

To analyze the structure of the cross-correlations in the US stock market across dif-

ferent time horizons, I combine wavelet decomposition with random matrix theory.

The first part of this section briefly presents wavelet theory and introduces the basic

6They recomposed the filtered time series before studying the eigenvalues.
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concepts of wavelet decomposition.7 The second part explores the statistical proper-

ties of correlation matrices in the context of RMT.

3.1 Wavelet Theory

Wavelet transformation is a mathematical tool for studying the multiscale properties

of time series, i.e., to investigate the properties of time series across different time

horizons (timescales). It decomposes a time series into hierarchical sets of compo-

nents that relate to a certain timescale. Each element of a set is associated with a

location t and a timescale λj ≡ 2j−1 where j refers to the level of decomposition.

Hence, the decomposition simultaneously represents a time series in the time and in

the timescale domain and enables separating short- from long-term characteristics in

the time series.

Wavelet transformation is based on a discrete wavelet filter {hl; l = 0, . . . , L− 1}
and scaling filter {gl; l = 0, . . . , L− 1} in RL where L refers to the filter width.8

The wavelet filter {hl} is a high-pass filter. It passes dynamics at low timescales

(high frequencies) and attenuates dynamics at high timescales (low frequencies).

The filter is defined so as to fulfill three basic conditions: It must sum to zero(∑L−1
l=0 hl = 0

)
, have unit energy

(∑L−1
l=0 h2

l = 1
)

, and be orthogonal to its even

shifts
(∑∞

l=−∞ hlhl+2n = 0
)

for all integers n 6= 0. These conditions show that the

wavelet filter resembles a differencing operator that identifies changes in the data.9

7For a more detailed discussion of the mathematical properties of wavelets, see Daubechies (1992),
Percival and Walden (2000), or Ramsey (2002). Gençay et al. (2002), In and Kim (2013), and Gallegati,
Gallegati, Ramsey and Semmler (2014) have applied wavelet transformation to study various problems
in economics and finance. Finally, Ramsey (1999) as well as Chakrabarty, De, Gunasekaran and Dubey
(2015) have reviewed pertinent literature on application of wavelet transformation in economics and fi-
nance.

8The length of the filter L must be even. Further, we define the filters for l < 0 and l ≥ L such that
gl = hl = 0.

9Several functions fulfill the necessary conditions of a wavelet filter. This study uses the Daubechies
Least-Asymmetric (symmlet) wavelet filter of length L = 8. This wavelet filter is generally considered
as an appropriate filter for the decomposition of financial time series and is often used in studies on inter-
dependencies in financial assets (see, e.g., Gençay et al., 2001a; Gallegati, 2005; Ranta, 2010; Dajčman,
2013; Wang, Xie & Chen, 2017; Conlon et al., 2018). Similarly, the filter length L = 8 is generally con-
sidered adequate to reflect the timescale features of the signal (Najeeb, Bacha & Masih, 2015). Smaller
filter lengths may lead to leakages and produce misleading results (see Percival & Walden, 2000).
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In contrast, the scaling filter {gl} is a high pass-filter. The filter attenuates dynamics

at low timescales (high frequencies) and passes dynamics at high timescales (low

frequencies). It is given by the quadrature mirror relationship gl = (−1)l+1
hL−1−l,

from which three basic properties immediately follow:
∣∣∣∑L−1

l=0 gl

∣∣∣ =
√

2,
L−1∑
l=0

g2
l =

1, and
∑∞
l=−∞ glgl+2n = 0 for all integers n 6= 0.10 These conditions exemplify that

the scaling filter is a local averaging operator that captures long-term data variations

(Gençay et al., 2010).

These wavelet and scaling filters can be used to decompose a time series into com-

ponents related to variations at certain timescales. This is achieved through the so-

called pyramid algorithm formulated by Mallat (1989). Below, I first present the

discrete wavelet transform (DWT) followed by the maximal overlap discrete wavelet

transform (MODWT).

Let {rt; t = 0, . . . , N − 1} in RN be a vector of returns with dyadic length N . With

each iteration j, the pyramid algorithm filters (convolves) the return series with the

wavelet and scaling filters to obtain the DWT wavelet {Wj,t; t = 0, . . . , Nj−1 − 1}
and scaling coefficients {Vj,t; t = 0, . . . , Nj−1 − 1} for timescale λj :

Wj,t =
L−1∑
l=0

hlVj−1,2t+1−l modNj−1 , Vj,t =
L−1∑
l=0

glVj−1,2t+1−l modNj−1 , (1)

where Nj ≡ N 2−j and V0,t ≡ {rt} for t = 0, . . . , Nj−1. The wavelet coefficients

Wj,t capture high frequency dynamics, whereas the scaling coefficients Vj,t repre-

sent the long-term trends in the time series (low frequency dynamics). This filtering

operation may be applied J times where J = log2N . Note that the time series is

downsampled at each timescale λj , i.e., every second data point is removed with an

iteration in the algorithm.

The modulus operator in formula 1 is necessary to deal with the boundary of the finite

time series. The operation results in circular filtering. This, however, introduces a

10These conditions imply that the gain function of the wavelet filterH (f) and the scaling filter G (f)
have to fulfillH (f) + G (f) = 2 for all frequencies f . If the wavelet filter represents a high-pass filter,
the scaling filter therefore forms a low-pass filter.



3. METHODOLOGY 65

bias to the boundary coefficients as they are mixed with the circulated values. This

bias needs to be considered in estimating statistical moments.11

Percival and Mofjeld (1997) have shown that the discrete wavelet transform approx-

imately decorrelates a wide variety of time series (Percival & Mofjeld, 1997). This

decorrelation property is of critical relevance for many statistical tests. It is used

below to combine RMT results with wavelet theory (section 5.2).

This study specifically applies the maximal overlap discrete wavelet transform, which

is a modification of the DWT. In contrast to the DWT, the MODWT retains all val-

ues and does not downsample the filtered output. Although the MODWT introduces

redundancy, gives up orthogonality, and no longer decorrelates the time series, the

method has many useful properties. Three of these properties are specifically rele-

vant for this study: First, MODWT can handle any sample size and is not similarly

restricted to dyadic sample sizes N . This feature is important because I analyze

a non-dyadic time series. Second, with MODWT the wavelet and scaling coef-

ficients can be aligned with events and features in the original time series. This

property is needed to divide the transformed time series into different market phases

and to ensure the proper alignment of the wavelet coefficients with these periods.

Third, MODWT provides an asymptotically more efficient variance estimator than

the DWT (Gençay et al., 2002; Percival & Mofjeld, 1997; Percival & Walden, 2000).

The MODWT algorithm, which is used to retrieve the wavelet coefficients W̃j,t and

scaling coefficients Ṽj,t for time t and scale level j, is given by

W̃j,t =
L−1∑
l=0

h̃lṼj−1,t−2j−1l modN , Ṽj,t =
L−1∑
l=0

g̃lṼj−1,t−2j−1l modN (2)

for t = 0, . . . , N − 1 and where h̃l ≡ hl/
√

2 and g̃l ≡ gl/
√

2 are rescaled wavelet

and scaling filters and Ṽ0,t ≡ {rt}. The filters are rescaled to preserve the energy in

the system. This is necessary because the filter output is no longer downsampled.

11In this study, I use a reflection boundary, i.e., the time series is reflected at the last observation. This
procedure produces continuity in the function and allows us to avoid assuming periodicity in the time
series. However, the reflection does not alter the sample mean or variance (Gençay et al., 2002; In & Kim,
2013; Percival & Walden, 2000).
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Let {rp,t} and {rq,t} be two return time series and W̃p,j,t and W̃q,j,t the correspond-

ing MODWT wavelet coefficients for timescale λj . The MODWT estimator for the

wavelet variance, covariance, and correlation at timescale λj are then given by

ṽx (λj) = 1
Ñj

N−1∑
t=Lj−1

[
W̃x,j,t

]2
x ∈ {p, q} , (3)

ṽp,q (λj) = 1
Ñj

N−1∑
t=Lj−1

W̃p,j,tW̃q,j,t, (4)

ρ̃p,q (λj) = ṽp,q (λj)
ṽp (λj) ṽq (λj)

. (5)

where Lj ≡
(
2j − 1

)
(L− 1)+1 represents the wavelet filter length at scale level j,

and Ñj ≡ N − Lj + 1 refers to the number of coefficients that are not impaired by

the boundary.

The wavelet correlation coefficient ρ̃p,q (λj) describes the relationship between the

return series {rp,t} and {rq,t} on a scale-by-scale basis. Analogous to the usual

correlation coefficients, ρ̃p,q (λj) lies in the interval [−1, 1]. The wavelet correla-

tion coefficients between M assets for timescale λj can be collected in a correlation

matrix C (λj) = {ρ̃p,q (λj) ; p = 1, . . . ,M ; q = 1, . . . ,M} describing the interac-

tions between M stocks at timescale λj . This study uses daily returns and employs

seven levels of decomposition J = 7. Therefore, the wavelet correlation matrices re-

flect stock price interdependencies on time horizons of 2–4 days (C (λ1)), 4–8 days

(C (λ2)), 8–16 days (C (λ3)), 16–32 days (C (λ4)), 32–64 days (C (λ5)), 64–128

days (C (λ6)), and 128–256 days (C (λ7)).

3.2 Random Matrix Theory

Random matrix theory describes the universal statistical properties of random ma-

trices. In the context of financial applications, RMT is used to identify and filter

relevant information from empirical cross-correlations. To this end, the universal
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properties of random correlation matrices (i.e., a correlation matrix from mutually

uncorrelated time series) are contrasted with the statistical properties of the empirical

cross-correlation matrix. Congruency of the properties of the empirical correlation

matrix with the RMT’s universal predictions indicate that the empirical correlation

matrix is defined by randomness. In contrast, deviations of the properties of the em-

pirical cross-correlation matrix from those of random correlation matrices point to

non-random (informative) characteristics in the dependency structure. Comparing

the statistical properties of empirical cross-correlations with RMT’s universal prop-

erties thus helps to differentiate random components from genuine contributions in

multivariate data (Fenn et al., 2011; Plerou et al., 2002). Consequently, RMT anal-

ysis allows extracting information and identifying structures that might otherwise

have been obscured by the presence of random noise in the data.

Many RMT results relate to the statistical properties of correlation matrices in terms

of their eigenvalues and eigenvectors. Therefore, the following section first describes

factorization of the correlation matrix through eigendecomposition. This is followed

by the presentation of some fundamental results from RMT.

3.2.1 Eigendecomposition

As introduced in section 3.1, let C (λj) be the M ×M empirical (wavelet) cross-

correlation matrix collecting the (wavelet) correlation coefficients {ρp,q (λj) ; p = 1,
. . . ,M ; q = 1, . . . ,M} for M stocks and timescale λj . For the sake of simplicity,

the timescale variable λj is dropped below unless reference is made to a specific

timescale. Further, let C (λ0) refer to the correlation matrix of the original untrans-

formed time series.12 The eigenvalues {Ek; k = 1, . . . ,M} and the standardized

eigenvectors {uk; k = 1, 2, . . . ,M} of the empirical cross-correlation matrix C are

then given by

Cuk = Ekuk. (6)

These eigenvalues and eigenvectors are then rank-ordered with respect to the eigen-

values’ magnitude, E1 ≥ E2 ≥ . . . ≥ EM .

12The correlation between any two stocks for the untransformed return series is calculated with Pear-
son’s correlation coefficient. For higher timescales, formula 5 provides the respective wavelet correlation
coefficients.
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3.2.2 Eigenvalue Distribution of Random Matrices

Statistical properties of random matrices — specifically those of Wishart matrices —

are well known (Chatterjee & Chakrabarti, 2006; Dyson & Mehta, 1963; Rojkova &

Kantardzic, 2007; Sengupta & Mitra, 1999). A Wishart matrix is a random matrix

R = 1
NAAT where A is aM×N matrix ofM mutually uncorrelated time series of

lengthN . The elements of these time series are independent and identically Gaussian

distributed real random variables with zero mean and unit variance.

The Marčenko-Pastur distribution provides a limiting distribution of the eigenvalues

of a Wishart matrix. Particularly, as N → ∞ and M → ∞ such that Q ≡ M
N ≥ 1

is fixed, the probability density function PR (E) of the eigenvalues E of the random

matrix R follows the distribution (Marčenko & Pastur, 1967; Mehta, 2004):

PR (E) = Q

2π

√
(E+ − E) (E − E−)

E , (7)

for E within E− ≤ E ≤ E+, where E+ and E− are the lower and upper eigenvalue

bounds given by

E± = 1 + 1
Q
± 2
√

1
Q
. (8)

Note that equations 7 and 8 are only valid in the limitN →∞ andM →∞. Hence,

for finite N or M , there is a non-zero probability of finding eigenvalues larger than

E+ and smaller than E− (Fenn et al., 2011).

The eigenvalue distribution PC (E) of the empirical cross-correlation matrix C can

now be compared to the eigenvalue distribution PR (E) of the random matrix. Large

deviations between the empirical eigenvalues and the theoretical boundaries indicate

the existence of informative cross-correlations and the presence of distinct cross-

dependency patterns in the empirical time series.13 Eigenvalues that appear within

13The method can also be used as an alternative to traditional techniques for deciding on the number of
factors to retain in a factor analysis, such as the Kaiser-Guttman (1954) criterion or the scree test (Cattell,
1966).
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the maximum and minimum eigenvalue interval E− ≤ E ≤ E+ are generally referred

to as the bulk of the eigenvalue spectrum (Laloux et al., 1999; Plerou et al., 1999;

Rosenow, Plerou, Gopikrishnan & Stanley, 2002).

Analyzing and comparing eigenvalues further requires estimating confidence inter-

vals. These confidence intervals help to identify ranges of plausible values for the

eigenvalue estimates. Larsen and Warne (2010) provided theoretical results for the

confidence intervals around individual eigenvalues (by assuming Wishart distribu-

tion):

Ek ± Φ−1
(

1− α

2

)
·
(√

2E2
k

N

)
, (9)

where Φ−1 refers to the probit function and α to the level of significance.

3.2.3 Distribution of the Bulk of the Eigenvalue Spectrum

Plerou et al. (2002) conjectured that comparing the eigenvalue distribution of the

empirical cross-correlation with that of random matrices is not sufficient to measure

randomness in the eigenvalue spectrum. Random matrices with similar eigenvalue

distributions can have significantly different eigenvalue correlations. Conversely,

matrices with different eigenvalue distributions may show similarities in the structure

of eigenvalue correlations (Guhr, Müller-Groeling & Weidenmüller, 1998; Plerou et

al., 2002).

Hence, assessing randomness requires additional tests: Correlations of eigenvalues

of the empirical observations should be compared to those correlations of random

matrices. These correlations are described by the distribution of the spacings be-

tween adjacent rank-ordered eigenvalues (eigenvalue spacings). Comparison re-

quires constructing the random matrices in accordance with the properties of the

empirical cross-correlation matrix C. The latter is symmetric and consists of real

elements. Therefore, a random matrix must also be real and symmetric. The off-

diagonal elements of such a random matrix, however, can be chosen from an arbi-

trary distribution with zero mean.
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As the order of the matrix M → ∞, the eigenvalue correlations (in terms of local

mean eigenvalue spacings) of such a random matrix display the universal proper-

ties of the so-called Gaussian orthogonal ensemble (GOE) (Mehta, 2004; Plerou

et al., 2002; Sinha, Chatterjee, Chakraborti & Chakrabarti, 2010).14,15 These uni-

versal properties require uniform average spacing between adjacent rank-ordered

eigenvalues throughout the eigenvalue spectrum. However, local intervals between

eigenvalues vary as a function of the magnitude of the eigenvalues. This necessitates

applying a transformation to the eigenvalues, which ensures uniformity of the eigen-

value spacing. This transformation is known as unfolding and maps the eigenvalues

Ek to new variables, so-called unfolded eigenvalues Ẽk (Brody et al., 1981; Guhr et

al., 1998).

Deriving unfolded eigenvalues requires defining the cumulative distribution function,

which specifies the number of eigenvalues in the interval Ei ≤ E :

η (E) = M

∫ E
−∞

PE (E ′) dE ′, (10)

where PE (E ′) describes the probability density of eigenvalues, and where M corre-

sponds to the total number of eigenvalues. This function η (E) can then be separated

into an average and a fluctuating component:

η (E) = ηav (E) + ηfluc (E) . (11)

Given that the probability density of the fluctuating part is zero on average (Pfluc ≡
dηfluc (E) /dE = 0), the average eigenvalue density is given by dηav (E) /dE . The

14The GOE describes an ensemble of random symmetric matrices. The entries of these matrices
are statistically independent (up to the symmetricity constraint) and distributed according to a Gaussian
probability measure. The variances of the entries are defined such that the ensemble is invariant under
conjugation by orthogonal matrices. The cross-correlation matrix R (introduced in the previous section)
is not strictly a GOE-type matrix. However, the eigenvalue correlations of R in the bulk of the spectrum
can be shown to be generally consistent with those of the standard GOE.

15This relation holds true irrespective of the actual distribution of the matrix elements. This may be
viewed as analogous to the central limit theorem.
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dimensionless, unfolded eigenvalues are then defined as

Ẽk ≡ ηav (Ek) . (12)

With this transformation, distances between eigenvalues are rescaled with respect to

the local mean eigenvalue spacings. As a result, the distribution of these unfolded

eigenvalues is uniform.

The mean component ηav (Ek) in formula 12 can be approximated using a series of

Gaussian functions in a kernel density estimation. Accordingly, the eigenvalue dis-

tribution PE (E) is expressed as a superposition of δ-functions about each eigenvalue

PE (E) = 1
M

M∑
k=1

δ (E − Ek) , (13)

where the δ-function about each eigenvalue is approximated by a Gaussian distribu-

tion (Sinha et al., 2010, p. 69). This distribution is centered around the respective

eigenvalue with standard deviation (Ek+a − Ek−a) /2, where 2a is the broadening

window size. Integration of equation 13 approximates ηav (E), which reflects the

unfolded eigenvalues Ẽk (see equation 12).

Deriving the unfolded eigenvalues Ẽ enables studying two universal properties of

eigenvalue spacings of GOE-type matrices: i) the distribution of the nearest-neighbor

eigenvalue spacings and ii) the distribution of the next-nearest-neighbor eigenvalue

spacings (Plerou et al., 2002). These properties are used to assess the randomness of

the eigenvalue spectrum.

Nearest-Neighbor Eigenvalue Spacing Distribution

The distribution of the nearest-neighbor eigenvalue spacings for GOE-type random

matrices, i.e., the eigenvalue spacings for successive rank-ordered (unfolded) eigen-
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values s1 ≡ Ẽk+1 − Ẽk, is defined as

PGOE (s1) = πs

2 exp
(
−π4 s

2
1

)
(14)

(Brody et al., 1981; Guhr et al., 1998), also known as Wigner surmise.

This probability density declines with decreasing spacings between eigenvalues.

Hence, two eigenvalues are unlikely to be close to each other. This phenomenon

is referred to as eigenvalue level repulsion. A consequence of this repulsion is that

the eigenvalues of random matrices must be correlated. Uncorrelated eigenvalues

would otherwise follow a Poisson distribution PP (s1) = exp (−s1)
Given this intuition, the agreement of the empirical nearest-neighbor eigenvalue

spacing distribution Pnn (s1) with the assumption of RMT can be further tested.

This test can be conducted by fitting Pnn (s1) to the one-parameter Brody distribu-

tion

PBr (s1) = B (1 + β) sβ1 exp
(
−Bs1+β

1

)
, (15)

where B ≡
{

Γ
(
β+2
β+1

)}1+β
. A parameter value close to β = 1 indicates that eigen-

value spacings are distributed according to the theoretical expectation for GOE-type

matrices. Conversely, a parameter close to β = 0 implies that eigenvalue spacings

follow a Poisson distribution and that eigenvalues show no correlation (Brody et al.,

1981).

Next-Nearest-Neighbor Eigenvalue Spacing Distribution

Investigating the distribution of the empirical next-nearest-neighbor eigenvalue spac-

ings Pnnn (s2) provides an alternative independent test for assessing the randomness

of the bulk of the eigenvalue spectrum. Here, s2 is defined as s2 ≡
(
Ẽk+1 − Ẽk

)
+(

Ẽk+1 − Ẽk−1
)

= Ẽk+1−Ẽk−1. Thus, the next-nearest-neighbor eigenvalue spacing

for the unfolded eigenvalues corresponds to the sum of gaps of an eigenvalue Ek to

its two adjacent rank-ordered eigenvalues. According to Mehta and Dyson’s (1963)
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theorem, the distribution of the next-nearest-neighbor spacings for matrices of GOE-

type is equivalent to the distribution of the nearest-neighbor spacings of a Gaussian

symplectic ensemble (GSE), i.e., symmetric square matrices composed of quater-

nions (Brody et al., 1981; Guhr et al., 1998). Therefore, the distribution of the next-

nearest-neighbor eigenvalue spacings of the unfolded eigenvalue can be described

by

PGSE (s1) = 218

36π3 s
4
1 exp

(
− 64

9π s
2
1

)
. (16)

3.2.4 Eigenvector Distribution

The eigendecomposition in formula 6 provides not only eigenvalues but also eigen-

vectors of the empirical cross-correlation matrix. While an eigenvalue constitutes a

factor that is common to all stocks, eigenvector components specify the exposure of

individual stocks to this factor. Eigenvector analysis helps to understand the meaning

of a factor and its influence on individual stocks or groups of stocks.

Besides providing theoretical distributions for eigenvalues of random matrices (see

section 3.2.2), RMT also provides theoretical distributions for the eigenvector com-

ponents of random matrices. For a random correlation matrix R, the theoretical

distribution of the eigenvector components
{
ulk; l = 1, . . . ,M

}
of eigenvector uk

corresponds to a Gaussian distribution with zero mean and unit variance (Guhr et al.,

1998; Plerou et al., 2002):

PR (u) = 1√
2π

exp
(
−u

2

2

)
. (17)

Unless a factor is equally common to all stocks, deviations of PE (E) from the ran-

dom matrix eigenvalue distribution PR (E) should also be observable in the statistics

of the corresponding eigenvector components. Consequently, comparing the empiri-

cal eigenvector distribution PE (u) with PR (u) can provide additional details about

the interrelation between stocks.
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4 Data

The dataset in this study comprises daily price data for 268 constituents of the

S&P 500 from June 1980 to June 2018, i.e., for a total of 9,935 days. Time series data

were obtained from the Center of Research in Security Prices (CRSP). Information

on index affiliation and sector classification was acquired from Compustat.

The S&P 500 is a market capitalization stock market index consisting of 500 stocks

listed on US stock exchanges. The subset of 268 stocks results from filtering the

S&P 500 for those constituents with full track history of the analyzed period.16

Restricting data to this smaller subset is motivated by several factors: First, cor-

relation dynamics between stocks can be reliably estimated only if there is a suf-

ficient period of simultaneous observations between pairs of stocks. Second, an

appropriate observation period is required to capture long-term dynamics in stocks’

cross-correlations. Third, sufficiently long time series are necessary for consistently

estimating the (wavelet) correlation matrix and its subsequent eigendecomposition.

In this context, the choice of time series length for estimating empirical cross-cor-

relation matrices underlies a decisive tradeoff. The longer the time series used for

the estimation of correlations, the more information can be obtained about stock in-

terrelations. Thus, incorporating longer time series can help to reduce measurement

noise. However, stocks are also affected by constant changes in market conditions.

Consequently, correlations between pairs of stocks are not necessarily stationary.

Estimating correlations over a longer time period may conceal non-stationarities in

the signal and suppress dynamics in stock correlations. As a result, empirical cross-

correlation will contain random contributions.

A similar tradeoff exists between covering a broad spectrum of the market using

a large representative set of stocks and the accurate representation of interrelations

in the system of stocks. Samples that are too small may not sufficiently reflect the

market. Conversely, estimating a correlation matrix for a large set of stocks may

result in a matrix that is close to singular and contains only insufficient information

about the system’s dynamics.

16This is in accordance with previous research, such as Plerou et al. (2002), where a full survival
period of 35 years was required for each stock.
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The chosen observation period reflects an optimal choice between the length of the

time series and the number of stocks with full track history.

5 Empirical Results

This section combines RMT with wavelet decomposition to study the correlation

structure in the US stock market on a scale-by-scale basis. It investigates whether

this structure changes over different time horizons. Initially, I employ wavelet trans-

formation to construct empirical (wavelet) cross-correlations of return fluctuations at

different timescales. Then, I inspect these correlation matrices for changes over dif-

ferent time horizons. Ultimately, I use RMT to study the statistical properties of these

correlation matrices. This allows isolating structural relationships and identifying

common behavior in the multivariate data. If correlation matrices exhibit timescale-

varying structures, it is likely that these variations are also reflected in the common

components. In addition, RMT allows filtering noise from the system and revealing

relevant information about the correlation matrix (Nguyen, Tran & Nguyen, 2018).

This is especially important regarding the high noise content of wavelet correlations

for longer time horizons. Consequently, this section provides a deeper understand-

ing of the underlying mechanics in stock markets and their possible timescale-variant

behavior.

5.1 Cross-Correlation Statistics

Before analyzing the eigenvalues and eigenvectors of the empirical (wavelet) corre-

lation matrix C, I examine the distribution PE (ρ̃p,q (λj)) of its elements {ρ̃p,q (λj) ;
p 6= q} for different timescales {λj ; j = 0 . . . , 7}.17 However, correlations may not

17The correlation coefficients of timescale λ0 relate to the original (untransformed) return series.
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only vary across timescales but also with regard to the prevalent market state (Fenn

et al., 2011; Zheng, Podobnik, Feng & Li, 2012).18
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Figure II.1: Distribution of correlation coefficients {ρ̃p,q (λj) ; p 6= q} at dif-
ferent timescales {λj ; j = 0, . . . , 7} in non-crisis and crisis periods. Notes:
Correlation coefficients of timescale λ0 relate to the original (untransformed)
return series; correlations were estimated between 268 stocks, covering the pe-
riod June 30, 1980 to June 30, 2018.

Figure II.1 presents the distribution of the wavelet cross-correlation for crisis and

non-crisis periods. While the correlation distribution in the non-crisis period exhibits

an excess kurtosis at the lowest timescale (see Table II.1), it gradually approaches

the normal distribution as the timescale increases. However, the null hypothesis of

normality is still rejected at the 1% level of significance (Jarque-Bera test). The
18I subdivide the observation period into non-crisis and crisis periods. The crisis periods encompass

the global economic recession of the early 1980s (Jan. 1980–Jun. 1980; Jan. 1981–Dec. 1982), the
aftermath following Black Monday 1987 (Oct. 1987–Apr. 1989), the early 1990s recession (Feb. 1989–
Mar. 1991), the Asian crisis (Apr. 1997–Dec. 1998), the early 2000s recession (Mar. 2000–Dec. 2002),
the global financial crisis of 2007 (Jul. 2007–Jun. 2009), and the European Debt crisis, which was
accompanied by the downgrading of America’s credit rating (Jun. 2011–May 2012). All remaining
periods are considered to be non-crisis states.
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gradual assimilation of the empirical to the normal distribution might indicate that

the informational content of correlations decreases over increasing time horizons.

The distributions of the correlation coefficients in crisis periods exhibit a similar

reduction in kurtosis with increasing timescales. Thus, the correlation distribution

displays a higher peak for lower than for higher timescales.

Table II.1: Descriptive statistics of cross-correlation coefficients
{ρ̃p,q (λj) ; p 6= q} at timescales {λj ; j = 0, . . . , 7} for non-crisis and
crisis periods.

Orig. series Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6 Scale 7

Panel A: Non-Crisis

Mean 0.1879 0.1746 0.1886 0.2097 0.2181 0.2108 0.2187 0.2172
Std. dev. 0.0677 0.0656 0.0685 0.0779 0.0877 0.1001 0.1205 0.1432
Max. 0.7104 0.6876 0.7295 0.7386 0.7400 0.7372 0.8182 0.8074
Min. -0.0047 -0.0427 -0.0034 -0.0254 -0.0511 -0.1290 -0.2160 -0.3058
Skewness 0.9565 0.8280 0.9250 0.8155 0.7269 0.5690 0.3670 0.1605
Kurtosis 5.6720 5.4756 5.5865 4.9839 4.4321 3.8819 3.6971 3.0794
JB-stat. 16,099*** 13,224*** 15,075*** 9,834*** 6,208*** 3,090*** 1,528*** 163***
Observations 35,778 35,778 35,778 35,778 35,778 35,778 35,778 35,778

Panel B: Crisis

Mean 0.3365 0.3356 0.3326 0.3354 0.3312 0.3607 0.3896 0.3741
Std. dev. 0.0966 0.0995 0.1019 0.1024 0.1135 0.1213 0.1634 0.1966
Max. 0.7826 0.8052 0.7668 0.8011 0.7764 0.8169 0.9145 0.9402
Min. -0.0571 -0.0716 -0.0867 -0.0374 -0.1003 -0.1897 -0.2172 -0.3916
Skewness 0.1361 0.0837 0.0194 0.1796 0.0725 -0.1591 -0.1766 -0.4017
Kurtosis 3.4985 3.6004 3.4385 3.2263 2.9770 3.1246 2.7427 2.8584
JB-stat. 481*** 579*** 289*** 269*** 32*** 174*** 285*** 992***
Observations 35,778 35,778 35,778 35,778 35,778 35,778 35,778 35,778

Notes: JB-stat. shows the Jarque-Bera test statistics for the null hypothesis of normality in correlation coefficient
distribution; the correlation coefficients of timescale λ0 relate to the original (untransformed) return series.
*, **, and *** indicate rejection of the null hypothesis of the test statistics at the 1%, 5%, and 10% level of signifi-

cance, respectively.

The distributions in both market states also demonstrate a surge in mean correla-

tions with longer time horizons. This observation is consistent with the intuition that

macroeconomic variables exert a greater influence on stocks at higher timescales.
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Stocks collectively react to market stimuli and become more correlated at longer

time horizons.

Despite these similarities, the skewness in the two market phases adjusts differently

across timescales. In crisis periods, the correlation distribution shows an increas-

ing left skew over longer time horizons. Contrastingly, in non-crisis periods, the

distribution shows no similar change in skewness.

Correlations are also significantly higher in crisis periods.19 This observation agrees

well with the general intuition that stocks exhibit higher interrelation in distressed

market states. During these periods, stocks react jointly to news and display strong

collective behavior.

These initial results suggest that stocks show varying degrees of interaction over

different time horizons (timescales) and across different market states. They call for

investigating the timescale properties and underlying structures of stock correlations

in more detail.

5.2 Theoretical Eigenvalue Distribution of Wavelet Correlation
Matrix

RMT has previously been used in financial research to analyze statistical fluctua-

tions of empirical cross-correlations. However, the method has not yet been applied

to analyze wavelet filtered time series. This raises the question about whether the

theoretical RMT assumptions can be generalized to analyze these time series. This

requires first investigating whether RMT laws also apply to wavelet correlation ma-

trices. Hence, what follows studies the properties of wavelet correlation in the con-

text of RMT. Specifically, I define the theoretical assumptions about the distribution

of eigenvalues of random wavelet correlation matrices and the corresponding bounds

of the distributions.

Wavelet decomposition is an excellent tool for filtering and isolating characteristics

of the underlying time series while preserving full signal information. However,

19These results are consistent with the findings of previous studies (e.g., Aste et al., 2010).
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even if wavelet decomposition is applied, a basic problem of timescale analysis re-

mains: The finiteness of the data sample and the limited observation period hinder

adequately describing long-term dynamics.20 Hence, estimations of the eigenvalue

distribution are expected to be less representative at higher timescales.

The limited observation period most likely also impairs the theoretical bounds of

the eigenvalue distribution of wavelet correlation matrices at each timescale. One

might unwarily assume that the length of the original time series is suitable for de-

termining the eigenvalue bounds in formula 8, irrespective of the timescale under

consideration. However, due to the limited observation period, it is unlikely that this

specification correctly reflects the true eigenvalue distribution at higher timescales.

Hence, the measure Q (see section 3.2.2) should be adjusted to account for the lim-

ited information. Instead of the length of the full data sample, I therefore use the

number of DWT coefficients Nj (see section 3.1) to derive both the maximum and

the minimum eigenvalue bounds E+ and E−.

The dataset in this study consists of N = 9, 935 daily return observations and

M = 268 constituents of the S&P 500. I assume that the Marčenko-Pastur distri-

bution holds for the distribution of the eigenvalues of (wavelet) correlation matrices.

The maximum and minimum theoretical eigenvalue bounds for the untransformed

time series are then given by E+ = 1.356 and E− = 0.699. To evaluate the pro-

posed eigenvalue distribution of the wavelet correlation matrix, I dyadically reduce

the measure N , which accounts for the number of observations in Q, with each

timescale. This generates the number of corresponding DWT coefficients Nj . For

example, as a result of this reduction, the maximum and minimum eigenvalues at

scale level 4 change to E+ = 2.756 and E− = 0.116. Thus, the adjusted specifi-

cation of the theoretical distribution widens the eigenvalue interval with increasing

timescale.

Note that there is no theoretical proof justifying the use of the number of DWT

coefficients rather than the full time series length for evaluating the theoretical dis-

20A simple analogy to this problem may be found in an example from meteorology. While the obser-
vation of daily temperatures over a period of one year may provide good descriptions of daily, weekly, or
even monthly weather cycles, it is unlikely that the same descriptive quality is achieved for yearly cycle
periods.
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tribution. However, the dyadic increase in the length of the period interval used in

wavelet analysis suggests that the same decimation procedure should be applied to

calibrating the eigenvalue distribution. Furthermore, RMT relies on the distribu-

tion of eigenvalues of independent random matrices. The DWT is an approximately

decorrelating transformation. Consequently, the length of the DWT also appears to

be a suitable measure for determining the eigenvalue bounds. Lastly, using the num-

ber of DWT coefficients neither induces higher testing errors nor inflects fallacious

conclusions for identifying deviating eigenvalues. In fact, the theoretical bounds

widen with a reduced number of observations. Hence, the likelihood of identifying

eigenvalues that deviate from the theoretical distribution decreases. Under this more

stringent specification, the testing procedure is thus more restrictive and findings are

more robust. The only risk is that some eigenvalues with significant deviation might

not be detected.

The previous discussion has defined the theoretical assumptions about the Marčenko-

Pastur distribution of random wavelet correlation matrices. We can now test the

consistency of the bounds with the eigenvalue distribution obtained from simulated

wavelet correlation matrices. Specifically, I generate simulated random return series

and randomly reshuffled empirical return series. Next, I compare the eigenvalue dis-

tributions of correlation matrices obtained from these simulations with the previously

introduced distributional assumptions.

For the simulated random correlation matrix, I generate M = 268 mutually uncor-

related Gaussian distributed return series of length N = 9, 935. This corresponds

to the number of observations in the empirical dataset. The simulated returns are

then transformed using MODWT decomposition up to scale level 7. From these

decomposed series, I derive a correlation matrix for each timescale. The newly gen-

erated random correlation matrices reflect the interrelations of random wavelet time

series for timescales ranging from 2–4 days (scale level 1) up to 128–256 days (scale

level 7). Next, I derive the eigenvalue spectrum of these random correlation matrices

at each timescale. Generation of these random correlation matrices and deriving the

eigenvalue spectrum is repeated 1,000 times.

For the correlation matrix of the reshuffled returns, the empirical time series of each
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stock is randomly reshuffled, then MODWT wavelet transformed, and the correlation

matrix of the decorrelated series evaluated (1,000 independent repetitions).

There are two important reasons for introducing the random reshuffling of time series

in addition to the random simulation of time series: First, reshuffling destroys pos-

sible correlations within and among stock returns, while retaining the distributional

characteristics of the empirical time series (e.g., power-law of the tails). Hence, com-

paring the eigenvalues of the theoretical distribution with those obtained from the

randomly reshuffled time series allows assessing the conformity of the theoretical

predictions from random matrices with empirical observations. Second, the matrices

of the randomly reshuffled time series help to verify that possible outliers in obser-

vations are due neither to measurement noise nor to the finiteness of the data sample.

Merely considering simulated returns does not suffice to draw similar conclusions,

due to the artificial construction of the time series.

Figure II.2 displays the simulated, reshuffled, and theoretical distributions for dif-

ferent timescales. It shows the theoretical eigenvalue distribution that is reflective

of the number of DWT coefficients of the respective timescale Nj . By comparison,

Figure II.2 also provides the theoretical distribution accounting for the number of

coefficients of the next lower timescale 2Nj .

For low timescales, the eigenvalue distributions of the simulated and reshuffled re-

turn series generally agree well with the surmised theoretical distribution Nj . How-

ever, at high timescales, the generated distributions more closely resemble the the-

oretical predictions obtained from calibrating the eigenvalue distribution with the

number of DWT coefficients of the next lower timescale 2Nj (resulting in narrower

eigenvalue intervals). Therefore, the proposed specification of the theoretical eigen-

value distribution (i.e., using the number of DWT coefficients of the corresponding

timescale) does not fully account for the effective relation between the eigenvalue

spectrum across different timescales. Nevertheless, the simulated and reshuffled dis-

tributions are both embedded within the two theoretical distributions. Therefore,

the Marčenko-Pastur law generally adequately describes the distribution of random,

wavelet-decomposed time series at different timescales. This is the case besides the



82 CHAPTER II. RANDOM MATRIX THEORY

proposed distribution specification not being fully consistent with observations of

the simulated series.
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Figure II.2: Simulated, reshuffled, and theoretical (surmised) eigenvalue dis-
tributions at different timescales {λj ; j = 2, 4, 6}. Notes: The variable Nj
refers to the number of coefficients in the DWT transformation of scale level j.
The theoretical Marčenko-Pastur distribution was derived for scale level j (Nj)
and for the next lower scale level j − 1 (2Nj).

Note that the proposed theoretical bounds (Nj) consistently exceed the respective

eigenvalue intervals of the generated series. These more restrictive bounds might

prevent detecting eigenvalues containing information. However, the risk of erro-

neously classifying eigenvalues of random noise as relevant is also reduced. There-

fore, results are more robust with this specification of the theoretical bounds. Using

the proposed theoretical distribution Nj seems appropriate for identifying deviating

eigenvalues.
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5.3 Analysis of the Empirical Eigenvalue and Eigenvector
Distribution

The eigenvalue spectrum of the empirical correlation matrices can now be studied

by considering the theoretical and the generated eigenvalue bounds obtained in the

previous section. Comparing the theoretical predictions with the empirical observa-

tions allows distinguishing that part of the correlation matrix that agrees with RMT

(random correlations) from the deviations from RMT (genuine information).

Figure II.3 illustrates the distributions of the eigenvalues (left column) and the eigen-

vectors (right column) obtained from the empirical correlation matrices of the un-

transformed and the wavelet-decomposed daily return observations. For reasons of

space, Figure II.3 only displays the eigenvalue spectrum of wavelet correlation ma-

trices for timescales of 4–8 days (scale 2), 16–32 days (scale 4), and 64–128 days

(scale 6).21

Figure II.3 (a–d) exemplifies a well-defined bulk of eigenvalues that fall within the

theoretical bounds [E−, E+]. The eigenvalue distribution PE (E) of the empirical cor-

relation matrix is therefore in good agreement with the properties dictated by RMT.

However, several eigenvalues also appear outside the theoretical bounds. This dis-

persion of the deviating eigenvalues remains relatively stable across time horizons.

However, with increasing timescale, some of the eigenvalues begin to fall below the

maximum eigenvalue bound of the theoretical distribution E+ and into the bulk of

the eigenvalue spectrum. This is most likely caused by the dilation of the theoretical

bounds with increasing time horizons (finite data sample) and by the resulting loss

in statistical significance. Nevertheless, even if the loss in significance is due to the

smaller sample size, the corresponding eigenvalues should no longer be considered

non-random.

21Prior inspection of the eigenvalue distributions revealed that changes in the distributions from one
timescale to the next are incremental. For the sake of brevity and without significant loss of information,
results are therefore not shown for all timescales.



84 CHAPTER II. RANDOM MATRIX THEORY

0

1

2

3

5 45 85
0

0.05

0.1

0

0.2

0.4

0.6

0.8

1

0 1 2
0
1
2

0

0.5

1

1.5

2

2.5

5 45 85
0

0.05

0.1

0

0.2

0.4

0.6

0.8

1

0 1 2
0

2

0

0.5

1

1.5

2

2.5

5 45 85
0

0.05

0.1

0

0.5

1

0 1 2
0
1
2

0 1 2 3 4 5
0

1

2

3

4

5

5 45 85
0

0.05

0.1

-4 -2 0 2 4
0

0.2

0.4

0.6

0.8

0 1 2
0

1

2

(a) (e)

(b) (f)

(c) (g)

(d) (h)

O
ri

gi
na

l s
er

ie
s

Sc
al

e 
2

Sc
al

e 
4

Sc
al

e 
6

P
 (E

)
P

 (E
)

P
 (E

)
P

 (E
)

Eigenvalue E Eigenvector Components

P
 (E

)
P

 (E
)

P
 (E

)
P

 (E
)

P
 (u

)
P

 (u
)

P
 (u

)
P

 (u
)

P
 (u

)
P

 (u
)

P
 (u

)
P

 (u
)

u2

E

E

E

E

Emax

Emax

Emax

Emax

u1

u1

u1

u1

 Theoretical dist. Nj 
Gaussian dist.
u3

Reshuffled dist. 
u1
u20

Empirical dist.

Figure II.3: (a–d) Empirical, reshuffled, and theoretical (surmised) eigen-
value distributions at different timescales ({λj ; 0, 2, 4, 6}). The insets show
the largest eigenvalues. (e–h) Empirical eigenvector distribution of eigenvec-
tors corresponding to the three largest eigenvalues (u1,u2,u3), and an eigen-
value from the bulk (u20). These distributions are compared to the theoretical
Gaussian distribution. The inset displays the eigenvector distribution for the
eigenvector corresponding to the largest eigenvalue.
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The inset in Figure II.3 provides a microscopic view of the largest eigenvalues by

limiting the domain of the eigenvalue axis. This inset enables observing that on

the bi-daily horizon (scale level 2) the largest eigenvalue E1 of the group of out-

liers is roughly 40 times larger than the maximum eigenvalue E+. The second and

third largest eigenvalues also fall well outside the bounds of the theoretical distri-

bution. For higher timescales, fewer eigenvalues deviate from theoretical bounds.

However, the magnitude of the deviating eigenvalues generally increases. Under the

assumptions of RMT, all these deviating eigenvalues must be interpreted as carrying

information about the correlation structure and as "genuine indicators of correlated

movement among the stocks" (Sinha et al., 2010, p. 57).

Eigenvalue deviations from the RMT are most likely also reflected in the statistics of

the corresponding eigenvector components (Laloux et al., 1999; Plerou et al., 2001).

According to RMT, the eigenvector components of random correlation matrices fol-

low a Gaussian distribution with zero mean and unit variance (see section 3.2.4).

Comparing the empirical distribution of eigenvectors with the Gaussian distribution

therefore allows isolating structural differences between empirical observations and

random correlation matrices.

Note that analysis of eigenvectors is less indicative than that of eigenvalues. Eigen-

vectors may be normally distributed even if the corresponding eigenvalues exhibit

high deviations from the theoretical distribution. Hence, eigenvector coherence with

the normal distribution does not necessarily imply random behavior. In addition,

it is more difficult to identify significant deviations of the eigenvector distribution

from the theoretical distribution. However, the combined analysis of the eigenvalue

and the eigenvector distribution enables drawing inferences about the presence of

collective modes, about the contribution of single stocks to overall correlation, and

about the general structure of the correlation matrix. Together, the two analyses com-

plement each other and can be used to isolate the non-random components, which

explain the variance of the correlation matrix.

The right-hand side of Figure II.3 shows the distribution of eigenvectors u1, u2, u3,

and u20, which complement eigenvalues E1, E2, E3, and E20.22 The three eigenvalues

22Note that the eigenvectors are normalized such that
∑M

l=1

(
ulk

)2 = M .
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E1, E2, and E3 belong to the group of deviating eigenvalues, which fall outside the

theoretical bounds predicted by RMT. In contrast, eigenvalue E20 is chosen from the

bulk of the eigenvalue spectrum {E− ≤ Ek ≤ E+}. Analyzing the eigenvector distri-

bution of u20 shows good agreement with the Gaussian distribution. Similar results

are also observed for the remaining eigenvector distributions, whose corresponding

eigenvalues belong to the bulk of the eigenvalue spectrum (not shown). These find-

ings are consistent with the eigenvector distribution predicted by RMT and add to

the results of the previous analysis of the eigenvalue components.

In contrast, the distributions of eigenvectors u1, u2, and u3 (whose respective eigen-

values are larger than the maximum eigenvalue E+) systematically and significantly

deviate from the Gaussian distribution. The eigenvector distributions of u2 and

u3 are both heavily skewed and point to a non-random nature of its components.

Specifically, the eigenvector distribution u1, which corresponds to the largest eigen-

value (E1), profoundly differs from the theoretical eigenvector distribution for ran-

dom matrices. All of the components in u1 have positive signs and are located

around unity. This suggests that the corresponding eigenvalue represents a common

factor affecting all stocks (Laloux et al., 1999; Plerou et al., 2002). The non-random

nature of the eigenvectors related to the largest eigenvalues is also observed at all

other timescales. Indeed, the shape of most eigenvector distributions for the largest

eigenvalue exhibit only modest changes over different time horizons.

Table II.2 quantitatively assesses the number of eigenvalues and eigenvectors con-

forming and disagreeing with the theoretical distributional assumptions. To iden-

tify deviating eigenvalues, I use the theoretical maximum and minimum values ob-

tained from the Marčenko-Pastur distribution and extract the three sets E < E−,

E− ≤ E ≤ E+, and E < E+. In accordance with Wang et al. (2013), I then derive

the cardinality of each set such that:

ME<E− = # {E ; E < E−} ,
ME−<E<E+ = # {E ; E− ≤ E ≤ E+} ,

ME>E+ = # {E ; E > E+} ,



5. EMPIRICAL RESULTS 87

where # gives the number of observations. The contribution of each set, in relation

to all eigenvalues, is then obtained by division with the total number of eigenvalues

M .

Similarly, I classify the eigenvector components into two sets. This involves compar-

ing the empirical eigenvector distribution with the theoretical Gaussian distribution.

I apply the Kolmogorov-Smirnov test at a 5% level of significance to test for equal-

ity in distribution. Results classification leads to the two sets MKS<α and MKS≥α,

which specify the number of significant and insignificant test observations. Similar

to the previous test statistics, the relative share of each set compared to all observa-

tions is obtained by division with the total number of eigenvalues M .

Table II.2 illustrates the cardinality sets for the eigenvalue and eigenvector tests.

At scale level 1, approximately 48.89% of eigenvalues fall inside the interval pre-

dicted by RMT (39.26% for test with reshuffled data). With increasing timescale,

this amount increases to almost 97.04% at scale level 4 (68.15% for test with reshuf-

fled data). Tests show that this trend continues. The share of eigenvalues belonging

to the bulk of the spectrum increases with timescale.

In contrast, only 4.44% of eigenvalues exceed the maximum eigenvalue bound at

scale level 1 and 3.33% at scale level 4. Nevertheless, this amounts to 12 (6) eigen-

values at scale level 1 (4) with non-random characteristics. All these eigenvalues

may be considered to contain relevant, non-random information. This applies in

particular if deviations of the eigenvalues from the maximum eigenvalue bound are

large.



88
C

H
A

PT
E

R
II.

R
A

N
D

O
M

M
A

T
R

IX
T

H
E

O
RY

Table II.2: Number and percentage of eigenvalues and eigenvectors disagree-
ing with the theoretical assumptions from RMT.

Eigenvalue Eigenvector

E < E− E− ≤ E ≤ E+ E ≥ E+ MKS≥α; H0 : uk ∼ N(0, 1) MKS<α; H0 : uk 6∼ N(0,1)

ME<E− PE<E− ME−≤E≤E+ PE−≤E≤E+ ME≥E+ PE≥E+ MF PF ML PL MU PU MF PF ML PL MU PU

Scale 1 151 55.93% 106 39.26% 13 4.81% 221 81.85% 257 95.19% 234 86.67% 49 18.15% 13 4.81% 36 13.33%
(126) (46.67%) (132) (48.89%) (12) (4.44%)

Scale 2 137 50.74% 120 44.44% 13 4.81% 235 87.04% 260 96.30% 245 90.74% 35 12.96% 10 3.70% 25 9.26%
(81) (30.00%) (180) (66.67%) (9) (3.33%)

Scale 3 104 38.52% 155 57.41% 11 4.07% 246 91.11% 261 96.67% 255 94.44% 24 8.89% 9 3.33% 15 5.56%
(38) (14.07%) (225) (83.33%) (7) (2.59%)

Scale 4 77 28.52% 184 68.15% 9 3.33% 260 96.30% 265 98.15% 265 98.15% 10 3.70% 5 1.85% 5 1.85%
(2) (97.04%) (262) (97.04%) (6) (2.22%)

Scale 5 48 17.78% 214 79.26% 8 2.96% 266 98.52% 267 98.89% 269 99.63% 4 1.48% 3 1.11% 1 0.37%
(0) (0.00%) (265) (98.15%) (5) (1.85%)

Scale 6 31 11.48% 232 85.93% 7 2.59% 266 98.52% 268 99.26% 268 99.26% 4 1.48% 2 0.74% 2 0.74%
( – ) ( – ) ( – ) ( – ) ( – ) ( – )

Scale 7 25 9.26% 240 88.89% 5 1.85% 267 98.89% 268 99.26% 269 99.63% 3 1.11% 2 0.74% 1 0.37%
( – ) ( – ) ( – ) ( – ) ( – ) ( – )

Notes: The group "Eigenvalue" lists the number
(
ME<E− , ME−≤E≤E+ , ME>E+

)
and percentage

(
PE<E− , PE−≤E≤E+ , PE>E+

)
of eigenvalues that

lie below ({E < E−}), within ({E− ≤ E ≤ E+}), or above ({E > E+}) the theoretical Marčenko-Pastur eigenvalue bounds. The numbers without
parentheses illustrate results for tests with reshuffled data for scale level 1–5; the numbers in parentheses illustrate results for tests with theoretical
assumptions for scale level 1–5; the group "Eigenvector" shows the number (MF ) and percentage (PF ) of insignificant deviations from the
null hypothesis MKS≥α (H0 : uk ∼ N (0, 1)) and the number (MF ) and percentage (PF ) of significant deviations from the null hypothesis
MKS<α (H0 : uk 6∼ N (0, 1)) using a Kolmogorov-Smirnov test. Test results are split for lower (number: ML; percentage: PL) and upper
(number: MU ; percentage: PU ) eigenvector groups (i.e., eigenvectors corresponding to eigenvalues in the lower and upper half of the rank-ordered
eigenvalue spectrum).
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Eigenvector analysis yields similar results. Almost 18.15% of eigenvectors exhibit

significant deviations from the Gaussian distribution at scale level 1. The set of

eigenvectors was split further to determine whether these differences occur for those

eigenvectors that correspond either to the largest or to the smallest eigenvalue. For

this split, eigenvectors were ordered by the size of the corresponding eigenvalues.

Eigenvectors corresponding to the upper half of the ordered eigenvalue list are sub-

sumed in MU . Eigenvectors of the lower half of the ordered eigenvalue list are

summarized in ML. Results show that almost 13.33% of those eigenvectors that

correspond to the largest eigenvalues (MU ) significantly deviate from the Gaussian

distribution at the 5% level of significance. However, for scale level 4, this value

reduces to 1.85%. Note that the corresponding eigenvalues are still outside the the-

oretical bounds predicted by RMT for some observations with random eigenvector

characteristics. However, as mentioned, eigenvectors may display random character-

istics, whereas eigenvalues imply non-random behavior.
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Figure II.4: Number of significant components (eigenvalues) as a function of
the timescale identified using the RMT and the Kaiser-Guttman criterion.

The number of deviating eigenvalues that can be isolated with this method is rela-

tively restrictive compared to classical criteria such as the scree test or the Kaiser-

Gutmann criterion. Whereas the scree test is rather subjective, the Kaiser-Guttman

criterion is quantifiable. The Kaiser-Guttmann criterion allows dropping all eigen-

values falling below unity. Any component above this value is considered to con-
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dense more information than the original variable. Figure II.4 shows the number

of eigenvalue components deemed relevant by this classical criterion against the iso-

lated eigenvalues from RMT. The Kaiser-Guttman criterion is far less restrictive than

the RMT criterion and retains far more eigenvalues. Interestingly, the differences be-

tween these methods even increase with timescale.

To summarize, combining eigenvalue and eigenvector analyses indicates that eigen-

values mostly belong to the bulk of the eigenvalue spectrum. This agreement of the

eigenvalue statistics of the empirical cross-correlation matrix C with RMT implies

that considerable randomness exists in C (Plerou et al., 2000). Only few eigenvalues

and eigenvectors exhibit significant deviations. However, those deviations are rel-

atively large. For example, the largest eigenvalue exceeds the predicted maximum

eigenvalue of the theoretical distribution between 52 to 15 times from timescale λ0

to λ6. Considering the change in eigenvalues across different timescales, eigen-

values outside the bulk of the eigenvalue spectrum decrease in size. Nevertheless,

the largest eigenvalues still remain far outside the theoretical maximum Marčenko-

Pastur bound. Their sizes even tend to increase for longer timescales. In addition,

the reduction in the number of deviating eigenvalues most likely results from the

widening of the theoretical distribution.

These results indicate that the most relevant information is contained only in the

largest few eigenvalues. This pattern prevails across all time horizons and even inten-

sifies with increasing timescale. Accordingly, correlation matrices across different

timescales are characterized by underlying structures and common behavior — both

are incompatible with the assumption of random correlation matrices. These find-

ings point to an underlying factor structure that defines the structure of correlations.

Moreover, the influence of these factors can change across timescales. In general,

RMT is thereby far more conservative in the number of eigenvalues (factors) to be

retained compared to classical criteria.
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5.4 Consistency of the Bulk of the Eigenvalue Spectrum
with RMT

As elucidated in section 3.2.3, analyzing eigenvalue and eigenvector distributions is

not sufficient to evaluate the randomness of the bulk of the eigenvalue spectrum. It

is thus premature to draw conclusions about the suitability of RMT for evaluating

the statistical properties of the correlation matrix at different timescales. Additional

tests of the randomness of the bulk of the eigenvalue spectrum across different time

horizons are needed to interpret the eigenvalues and eigenvectors. These tests in-

volve investigating eigenvalue correlations by analyzing the nearest-neighbor and

the next-nearest-neighbor eigenvalue spacing distributions. These eigenvalue spac-

ing distributions (qua representations of the eigenvalue correlations) are compared

to the universal features of eigenvalue correlations displayed by real symmetric ran-

dom matrices. This comparison reveals the consistency of the empirical eigenvalue

correlations with RMT (Plerou et al., 2002).

Figure II.5 presents the nearest-neighbor (NNS, left column) and the next-nearest-

neighbor (NNNS, right column) eigenvalue spacing distributions of the empirical

cross-correlation matrix for different timescales. The empirical distributions are sup-

plemented by the corresponding theoretical distributions. These include the distribu-

tion of the nearest-neighbor eigenvalue spacings of a GOE-type matrix PGOE (s1)
for s1 ≡ ξk+1 − ξk (Wigner surmise) and the distribution of the nearest-neighbor

eigenvalue spacings of a GSE-type matrix PGSE (s1) (for the next-nearest-neighbor

eigenvalue spacings s2 ≡ ξk+2 − ξk of a GOE-type matrix). Figure II.5 also dis-

plays the fitted one-parameter Brody distribution for the nearest-neighbor eigenvalue

spacings and the corresponding parameter estimates.

Figure II.5 (a, b) shows that for lower timescales, the distribution of the next-nearest

eigenvalue spacings accords with the theoretical distribution PGOE (s1) predicted

by RMT. However, on an increasing time horizon, the empirical distribution starts

to deviate from the theoretical distribution (Figure II.5 c). This pattern is also con-

firmed by the parameter estimation from the Brody distribution. The β = 0.98 of the

first timescale indicates a close correspondence of the empirical distribution with the

GOE eigenvalue spacing distributions. In contrast, the parameter values β = 0.68
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and β = 0.68 observed for scale levels 4 and 6 present mixed results. The parameter

estimates lie between a value signaling a GOE-type distribution (β = 1) and a value

indicating a Poisson distribution (β = 0) of the eigenvalue spacings.
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Figure II.5: (a, b, c) Nearest-neighbor eigenvalue-spacing distribution and
(d, e, f) next-nearest-neighbor eigenvalue-spacing distribution for different
timescales {λj ; j = 2, 4, 6}. Notes: The variable β refers to the param-
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Analyzing the empirical distribution of next-nearest eigenvalue spacings Pnnn (s2)
reveals a similar picture (Figure II.5 d, e, f). At lower timescales, the empirical

distribution agrees well with the theoretical distribution from RMT. However, the

distribution begins to gradually differ on an increasing time horizon.

These results show that, at lower timescales, the eigenvalue-spacing distribution of

the empirically measured cross-correlation matrix is in general consistent with RMT

predictions. However, at higher timescales, the results are less conclusive and should

be viewed more cautiously. The difference in the eigenvalue-spacing distributions at

high timescales may be partially attributable to the presence of non-random char-

acteristics in the bulk of the eigenvalue spectrum. This would be in line with the

observation that the critical eigenvalue bounds expand on an increasing time hori-

zon. Thus, non-random components may be incorrectly considered to be part of the

bulk of the eigenvalue spectrum. Nevertheless, these findings indicate, that genuine

information is predominantly contained in those eigenvalues that deviate from the

Marčenko-Pastur bounds. Therefore, RMT predictions and the RMT criterion for

specifying relevant eigenvalues are appropriate for analyzing correlation structures

across different timescales.

5.5 Interpretation of Correlation Statistics Across Timescales

Having established RMT’s validity and suitability for evaluating (wavelet) cross-

correlation statistics, I now interpret the eigenvalues and eigenvectors. Does the

interpretation of eigenvalues remain consistent across different time horizons? Or

does the underlying structure instead change for different timescales? Eigendecom-

position makes no assumptions about its components and their relation to certain

economic factors. Consequently, we examine the eigenvalues and eigenvectors to

gain an economic understanding of their meaning, and ultimately to define the driv-

ing forces of cross-correlations between stocks across different time horizons. It is

important to note, however, that the observed eigenvalues and eigenvectors do not
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necessarily lend themselves to economic interpretation. This makes it even more

imperative to examine the components in detail.

First, I study the single eigenvectors corresponding to the deviating eigenvalues in

order to gain insight into the structure of correlation statistics and their possible inter-

pretation. Figure II.6 displays the absolute eigenvectors associated with the largest

six eigenvalues obtained for the correlation matrix of the original return series. The

eigenvectors corresponding to the largest eigenvalue E1 exhibit a relatively homoge-

neous distribution. Hence, all stocks show a more or less uniform exposure to the

largest eigenvalue. This is indicative of an influence that is common to all stocks

and that affects the entire stock market. It describes the part of the variation in the

correlation matrix that is due to the system responding collectively to external infor-

mation (news). Therefore, the largest eigenvalue is often associated with a general

market factor (Gopikrishnan et al., 2001; Laloux et al., 1999; Pan & Sinha, 2007;

Sinha et al., 2010).

In contrast, the eigenvectors of the second largest eigenvalue and all the following

eigenvalues are highly localized. Only few eigenvector components (i.e., stocks)

significantly contribute to each of these modes. The stocks shown in Figure II.6

are ordered by their GICS sector classification. This grouping reveals that stocks

contributing significantly to a certain eigenvector mostly belong to similar or related

sectors. For example, for the second largest eigenvalue, the corresponding eigenvec-

tor indicates significant contributions to stocks that are part of the Utilities sector (J).

In contrast, stocks in the Energy (C) and Consumer Staples (B) sector display the

highest loading for eigenvectors corresponding to the third and fourth largest eigen-

values. Similar findings are also obtained for the remaining eigenvectors. These

results are consistent with the findings in previous studies (see Gopikrishnan et al.,

2000, 2001; Kim & Jeong, 2005; Liu et al., 1999).
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Figure II.6: Sector classification of original (untransformed) return data us-
ing absolute eigenvector components

{∣∣ulk∣∣ ; k = 1, . . . , 6
}

of stock l corre-
sponding to the six largest eigenvalues {Ek; k = 1, . . . , 6}. Notes: Stocks are
grouped by sectors (dashed lines) where A: Consumer Discretionary, B: Con-
sumer Staples, C: Energy, D: Financials, E: Health Care, F: Industrials, G:
Information Technology, H: Materials, I: Real Estate, and J: Utilities.

Next, I investigate whether this localization property remains consistent across time-

scales. Following Gopikrishnan et al. (2001), I construct a mapMS,l for each stock l

indicating its affiliation to a sector S such thatMS,l =
{

1 if l ∈ S
0 otherwise

. An ag-

gregate measure for the industry affiliation of a given eigenvector is then given by

Xk
S =

∑M
l=lMS,l

[
ulk
]2

. This mapping is derived for each timescale.

Figure II.7 illustrates the aggregate measure Xk
S (λj) for the six largest eigenvalues
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and for selected timescales {λj ; j = 0, 2, 4, 6}. Similar to Figure II.6, the measure

X1
S (which corresponds to the largest eigenvalue) exhibits comparable loading across

all sectors. This indicates a common behavior across all sectors. Thus, the largest

eigenvalue is indeed related to a market factor. This association holds across all

timescales.
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S of the eigenvector uk to sector S over different

timescales.
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Similarly, the second and third largest eigenvalues are well localized. They can be

associated with the Utilities sector and the Energy sector respectively. For the next

larger eigenvalues, results are less indicative. Interpretation is less straightforward

as it is more difficult to relate the eigenvalues to one specific sector. Nevertheless,

the eigenvalues mostly associate with a group consisting of one or two sectors.

Figure II.7 further reveals that the sector association of a given eigenvector persists

across different timescales. The second largest eigenvalue is still associated with the

Utilities sector irrespective of the timescale under consideration. This consistency of

eigenvalue interpretation indicates that the general structure of correlation matrices

remains relatively stable across timescales. This is an important observation. It

shows that the correlation is driven by the same fundamental factors and that the

influence of these factors remains stable across different timescales. The eigenvalue

order seems to vary only between timescales for observations of the fifth and sixth

largest eigenvalues. For example, in contrast to the observation at lower timescales,

the fifth largest eigenvalue is no longer associated with the Information Technology

sector and the Consumer Staples sector at scale level 6.

Note that a more refined subgrouping might unearth even more detailed structural

relations between stocks. However, due to the relatively small sample of only 268

stocks, results for more granular subgroupings would most likely be hard to inter-

pret. For example, associating eigenvector components with a certain industry is

difficult to justify if there are only three members in that particular group. Other ap-

proaches, which do not use predefined exogeneous group classifications (e.g., graph

theory or clustering), also provide more data-driven methods for isolating subgroups

and for identifying clusters. On the other hand, these methods may lack reasonable

economic interpretation.

To confirm the assumption that the largest eigenvalue and the corresponding eigen-

vectors are representative of a market factor across different timescales, an additional

test was conducted. I derive the projection PF k,t (λj) of the wavelet transformed

returns W̃l,j,t of stock l on the eigenvector uk given by
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PFk,t (λj) ≡
M∑
l=1

ulkW̃l,j,t. (18)

Hence, this projection PF k,t (λj) can be interpreted as the return of a portfolio with

weighting uk. This (normalized) portfolio is now regressed onto the normalized

wavelet transformed returns of the S&P 500 index W̆Gj,t (qua representation of the

US stock market):

PF k,t (λj) = αk,j + βk,jW̆
G
j,t + εk,t (λj), (19)

where εk,t (·) is an independently and identically distributed idiosyncratic noise. The

value of the slope β is indicative of the relation between the projection and the market

index. A value close to unity (with little scattering) signifies a high correspondence

between the two time series. In contrast, a value of zero indicates the absence of a

linear relationship.

This regression is applied to portfolios PF 1,t (λj) and PF 20,t (λj), which are the

projections of the time series onto eigenvectors u1 and u20, respectively. Hence,

the former relates to the largest eigenvalue whereas the latter relates to the bulk

of the eigenvalue spectrum. Figure II.8 (a-c) displays the regressions of portfolio

PF 1,t (λj) on the market index W̆Gj,t for different timescales {λj ; j = 2, 4, 6}. For

the regression in Figure II.8 (d-f), the regressand is replaced by portfolioPF 20,t (λj).

The results for portfolio PF 1,t (λj) show close correspondence between the market

index W̆Gj,t and the projection at all timescales. Slope β is close to unity and the

datapoints scatter narrowly around the linear fit. Previously, Plerou et al. (2002)

reported a slope of 0.85 for 30-min returns of the largest 1,000 US stocks for the

period 1994–1995 and claimed similar results for daily returns series. The slope

obtained here for the untransformed series (daily returns) is β = 0.94 and thus even

higher than the value reported by Plerou et al. (2002). Similar values for the slope

are found across all timescales. Therefore, I conclude that the largest eigenvalue and

the corresponding eigenvectors are indeed representative of the market mode. This

interpretation is consistent for all timescales. In contrast, the slopes for the portfolio
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PF 20,t (λj) are close to zero for all time horizons. Hence, the eigenvalues and the

corresponding eigenvectors are independent of the market index W̆Gj,t.
23 This finding

accords with predictions for the bulk of the eigenvalue spectrum in RMT.

-20 -10 0 -20

-15
-10
-5
0
5

-20 -10 0 -20

-10
-5
0
5

10

-5 0 5

-5

0

5

10

-5 0 5

-10
-5
0
5

10

-5 0 5

-6
-4
-2
0
2
4

-5 0 5

-5

0

5

N
or

m
.    
P

 F
1,
t(λ

0)

N
or

m
.    
P

 F
20

,t
(λ

0)

N
or

m
.    
P

 F
1,
t(λ

3)

N
or

m
.    
P

 F
20

,t
(λ

3)

N
or

m
.    
P

 F
1,
t(λ

5)

N
or

m
.    
P

 F
20

,t
(λ

5)

(a)

(b)

(c)

(d)

(e)

(f)

β: 0.94

β: 0.94

β: 0.95

β: 0.18

β: 0.07

β: 0.11

Norm. W̆ G
0,t

W̆ G
3,tNorm.

W̆ G0,tNorm.

W̆ G3,tNorm.

W̆ G5,tNorm. W̆ G5,tNorm.

Figure II.8: (a, b, c) Eigenvector portfolio PF 1,t (λj), corresponding to
largest eigenvalue, regressed on the normalized S&P 500 (wavelet) return se-
ries W̆Gj,t for different timescales {λj ; 0, 3, 5}. (d, e, f) Eigenvector portfo-
lio PF 20,t (λj), corresponding to 20th largest eigenvalue, regressed on the
S&P 500 (wavelet) return series W̆Gj,t for different timescales {λj ; 0, 3, 5}.
Notes: The variable β refers to the slope of the linear regression.

23Note that the portfolio return series indicates a high degree of autocorrelation. However, this does
not affect the coefficient estimator, which is still unbiased.
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The results also demonstrate that the sample of stocks chosen for this study suf-

ficiently represents general market structures. Otherwise, no similarly high value

would be achieved for the slope of the regression in Figure II.8 (a-c). Consequently,

infliction due to the presence of a survivorship bias may be at least partially rejected.

Inverse Participation Ratio

Following Plerou et al. (1999, 2002), we next study the number of components par-

ticipating in a given eigenvector. This analysis indicates how far the influence of a

specific eigenvalue spreads across the stock universe. Further, it offers an additional

method for testing the deviations of eigenvector components from RMT assump-

tions. To obtain a quantitative measure of the number of eigenvector components

that contribute to a given eigenmode, the notion of the inverse participation ratio

(IPR) is introduced (Fyodorov & Mirlin, 1992, 1993). The IPR for the k-th eigen-

vector uk is defined as

Ik ≡
M∑
l=1

[
ulk
]4
, (20)

where ulk is the l-th component of eigenvector uk. The meaning of IPR is best

exemplified by considering two limiting cases. For an eigenvector that consists of

components with equal contributions (i.e. ulk = 1√
M
∀l), the IPR is Ik = 1/M .

Conversely, for an eigenvector with a single dominant stock (e.g. u1
k = 1 and ulk =

0 ∀l 6= 1), the IPR is Ik = 1. In RMT, the expected value for IPR of a random

correlation matrix is given by

〈Ik〉 = M
∞
∫
−∞

[
ulk
]4 1√

2πM
exp

(
−
[
ulk
]2

2M

)
dulk = 3

M
(21)

(Utsugi et al., 2004).

Figure II.9 presents the IPR for different timescales {λj ; j = 0, 2, 4, 6}. For the

eigenvalues lying outside the bulk of the eigenvalue spectrum, the IPR deviates from
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the theoretical expectation (formula 21). In particular, the IPR of the largest eigen-

value is below the expected value. To fathom this observation, we move to the more

intuitive interpretation of the IPR given by its reciprocal. This reciprocal quantifies

the number of eigenvector components making a significant contribution (Plerou et

al., 2002). At timescale λ0, the reciprocal of the IPR for the largest eigenvalue is

1/I1 (λ0) ≈ 240. With increasing timescale, the IPR shows a decreasing trend and

reduces to 1/I1 (λ6) ≈ 223 at timescale λ6. These results show that a significant

number of stocks contribute to the largest eigenvector at all timescales. Again, this

is consistent with the interpretation of the largest eigenvalue representing the market

mode. The intermediate eigenvalues (i.e., the eigenvalues lying between the largest

eigenvalue and the bulk of the eigenvalue spectrum) display a more localized behav-

ior. Hence, fewer stocks contribute to these eigenvectors. Again, this is consistent

with the association of these eigenvectors with group or sector characteristics. How-

ever, this localization seems to weaken slightly with increasing timescale.
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Figure II.9: Log-log plot of inverse participation ratio (IPR) as a function of
the eigenvalue for original (untransformed) stock returns and wavelet trans-
formed returns at different scale levels. Notes: The grey-shaded region marks
the bulk of the eigenvalue spectrum; the thick red-dotted line indicates the ex-
pected value of the IPR of a random matrix.
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In contrast, the eigenvalues belonging to the bulk of the eigenvalue spectrum closely

correspond to the expected value in formula 21. With increasing timescale, a grad-

ual convergence towards the expected value 〈Ik〉 may be observed. Hence, at higher

timescales, the bulk of the eigenvalue spectrum agrees better with the expectations of

RMT. To some extent, this contradicts the findings for the distribution of the eigen-

value spacings in section 5.4, for which a lower conformity with RMT was observed

at higher timescales.

The analysis in this section plainly shows that eigenvalues and eigenvectors have an

economic interpretation. While the eigenvector that corresponds to the largest eigen-

value can be described as a market component, those eigenvectors that correspond

to the intermediate eigenvalues relate to different market groups (sectors). The re-

maining eigenvalues are associated with random deflections and idiosyncratic risks

in the correlation matrix. These idiosyncratic risks are company-specific charac-

teristics of a stock’s price dynamics, which are not necessarily related to the price

dynamics of other stocks. This interpretation remains mostly consistent across the

different timescales and holds irrespective of the time horizon. Thus, over different

time horizons, the fundamental structure of the correlation matrix is driven by the

same underlying factors.

These results also show that eigenvalues and eigenvectors can be closely linked to

market models such as the Capital Asset Pricing Model (CAPM) and the Arbitrage

Pricing Theory (APT). Therefore, RMT-based analysis is closely coupled to eco-

nomic methods and theories (Chamberlain & Rothschild, 1983; Connor & Kora-

jczyk, 1986; Nguyen et al., 2018).
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5.6 Timescale Characteristics of Correlation

The fact that the correlation matrix is driven by the same underlying factors raises

the question about whether correlations actually change over different time horizons.

Therefore, this section explores the timescale properties of correlation statistics in

more detail.

To assess the stability of the eigenvector structure (i.e., the exposure of individual

stocks to a certain factor) across different timescales, I introduce a new metric. I

choose those eigenvectors that correspond to the 15 largest eigenvalues and derive

the 15× 268 eigenvector matrix Uλj for every timescale {λj ; j = 1, . . . , 7}. Next, I

use these eigenvector matrices to construct an overlap matrix O (λi, λj) = UλiUT
λj

where λi and λj refer to the i-th and j-th timescale. If the eigenvectors are absolutely

stable over the different timescales, O is equivalent to the identity matrix.

In contrast to the analysis in Figure II.7, this metric is detached from interpreting

eigenvalues and eigenvectors. The only problem with the metric arises when the

rank-order of the eigenvalues changes. In this case, different eigenvector components

are compared. However, the results in Figure II.7 show that the eigenvalue order is

generally stable (at least for the five lowest timescales).

Figure II.10 displays the O-metric for the given sample using a heat-map. For the

largest four eigenvalues, the corresponding eigenvectors show no significant changes

across different timescales. A modest decrease in eigenvector relations occurs only

at scale level 6. Therefore, results indicate a high degree of stability across different

timescales for eigenvectors corresponding to the largest eigenvalues.

However, for the remaining eigenvectors, the O-metric only reveals minor coherence

between the individual contributions of the eigenvector components at different time

horizons. Therefore, the remaining eigenvectors are less stable. Again, these re-

sults need to be considered with caution given that the eigenvalue order may change

between the different timescales. As a result, two different eigenvectors might be

compared. Nevertheless, shifts in the eigenvalue order imply changes in the relative

contribution of the eigenvalues. This would also be an indication of a less consistent

correlation structure across timescales.
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Because the contribution of the eigenvectors remains more or less stable across dif-

ferent timescales, only eigenvalues may lead to time-inconsistent correlations (see

section 5.1). Therefore, we now explore the timescale characteristics of the eigen-

values. The basic properties of eigenvalues link them to the total variance of the

correlation matrix. The ratio of the k-th largest eigenvalue Ek to the number of

stocks M describes the proportion of variation in the correlation matrix that is ex-

plained by the eigenvalue. Accordingly, the highest eigenvalue explains the highest

amount of variance. This property allows studying the contribution of an eigenvalue
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to total system variance across different timescales. This analysis is linked to the

investigation of the eigenvalue spectrum in section 5.3. However, it provides a more

refined picture of the actual contribution of those eigenvalues that deviate from RMT

predictions.

Panel A in Table II.3 shows the part of variance in the correlation matrix that can

be explained either by a single eigenvalue or by a group of eigenvalues. For scale

level 1, 25.86% of the variation in the correlation matrix is associated with the largest

eigenvalue. With increasing timescale, this percentage even tends to increase. As a

result, the largest eigenvalue roughly explains 30.23% of the variance in the corre-

lation matrix at scale level 7. The second largest eigenvalue already exhibits signifi-

cantly less explanatory power with only 3.07% at scale level 1. However, this value

increases to 6.27% for scale level 7 (half-yearly to yearly timescale). Similar in-

creasing trends in explanatory power can be observed for the remaining eigenvalues

in Table II.3.

Panel B in Table II.3 presents the cumulative explained variance. For scale level 1,

34.33% of the variance is explained by the 5 largest eigenvalues. Due to the afore-

mentioned increase in explained variance with an increase in timescale, the cumu-

lative percentage of explained variance even rises to 47.77% at scale level 7. The

contribution of the largest eigenvalues to the total variation of the correlation ma-

trix is profound. Nevertheless, the majority of variation is still associated with the

remaining eigenvalues {Ek; k = 6, . . . , 268}.24

24Note that I present only the five largest eigenvalues separate in Table II.3 because this corresponds to
the number of eigenvalues that are detected as deviating from the theoretical RMT bounds (see Table II.2).
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Table II.3: Percentage and cumulative percentage variance contribution of
eigenvalues at different timescales.

E1 E2 E3 E4 E5 E6,...,268

Panel A: Percentage variance contribution

Scale 1 25.86% 3.07% 2.13% 1.95% 1.31% 65.67%
Scale 2 26.25% 3.22% 2.45% 1.97% 1.38% 64.73%
Scale 3 27.26% 3.48% 2.67% 2.18% 1.50% 62.91%
Scale 4 27.38% 4.04% 2.87% 2.15% 1.69% 61.87%
Scale 5 28.34% 4.57% 2.91% 2.15% 1.71% 60.32%
Scale 6 30.82% 5.42% 3.60% 2.75% 2.01% 55.41%
Scale 7 30.23% 6.27% 5.22% 3.38% 2.67% 52.23%

Panel B: Cumulative percentage variance contribution

Scale 1 25.86% 28.93% 31.07% 33.02% 34.33% 100.00%
Scale 2 26.25% 29.47% 31.92% 33.89% 35.27% 100.00%
Scale 3 27.26% 30.74% 33.41% 35.59% 37.09% 100.00%
Scale 4 27.38% 31.42% 34.29% 36.45% 38.13% 100.00%
Scale 5 28.34% 32.91% 35.82% 37.97% 39.68% 100.00%
Scale 6 30.82% 36.24% 39.84% 42.58% 44.59% 100.00%
Scale 7 30.23% 36.50% 41.72% 45.10% 47.77% 100.00%

Notes: Percentage variance contribution (Panel A) is obtained by dividing the eigenvalue
Ek by the number of stocks M ; cumulative percentage variance is derived by summing
over all eigenvalues that are larger than Ek and dividing by the number of stocks M .

Consequently, a significant part of the correlation matrix can be explained by merely

some few eigenvalues. Further, the analysis over different timescales reveals that the

largest eigenvalues contribute more to the total variance with increasing timescale.

Therefore, correlation structure is subject to significant changes with the investment

horizon.

A fundamental property of eigenvalue decomposition is that the sum of all eigenval-

ues must equal the trace of the original correlation matrix. Consequently, if some

eigenvalues increase, others must decrease, to compensate for these effects. The ob-

servation that the largest eigenvalues increase with the timescale implies that the vari-

ation that is explained by lower eigenvalues must in turn decrease with the timescale.

In fact, Table II.3 shows a decreasing trend for eigenvalues λ6 to λ268. Hence, the
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increase in the explanatory power of the largest eigenvalue is mostly covered by a

reduction in the smaller eigenvalues of the bulk. The considerations in the previous

section have shown that the deviating eigenvalues can be interpreted as market or

sector factors. Eigenvalues from the bulk of the eigenvalue spectrum, on the other

hand, are associated with random noise. The increase in the explanatory power of

the largest eigenvalues indicates that the systematic risk factor, as well as factors

relating to the stock’s sector affiliation, become more important for describing the

variation in the correlation matrix. Therefore, we can conjecture that the structure of

the correlation matrix becomes more systematic with increasing timescale.

Handa et al. (1989) and Gençay et al. (2005) studied the timescale properties of the

systematic risk using the Sharpe-Lintner CAPM model and reached a similar conclu-

sion. Both studies found that the relationship between the return of a portfolio and

the market becomes stronger with increasing timescale. Therefore, they stated that

beta is horizon-inconsistent and that the systematic risk factor explains more of the

variation in the covariance matrix over longer time horizons. Similarly, Fama (1980,

1981) reported that the explanatory power of macroeconomic variables increases

with increasing time length.

One way of interpreting these results is by turning to heterogeneous market theo-

ries. High-frequency fluctuations in stocks are assumed to be induced by short-term

traders with short-term investment perspectives. These investors rely on idiosyn-

cratic, i.e., company-specific, news to determine their investment strategy while pay-

ing less attention to systematic market news. On the other hand, long-term investors

base their investment decisions on long-term systematic and general market infor-

mation. As a result, the explanatory power of beta and of the other factors (largest

eigenvalues) becomes more pronounced when considering long-term horizons.

The previous analysis has shown that the largest eigenvalues, and thus the amount of

variance that is explained by the deviating eigenvalues, increases with the timescale.

However, no evidence exists that these deviations between eigenvalues of different

timescales are significant.

Earlier studies on the multiscale properties of stocks have often omitted provid-

ing statistical tests for eigenvalues and were more descriptive in nature. However,
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the present study introduces the necessary tests for evaluating the deviations be-

tween eigenvalues and thus provides a more quantitative assessment of differences

in timescale correlation structures.

Moreover, this study presents the properties of eigenvalues for different market pe-

riods (namely crisis and non-crisis market states). Similar to correlations tending to

surge during distressed market periods (see section 5.1), it is likely that the overall

correlation structure also changes during those market states. These changes would

be directly reflected in the eigenvalues of the correlation matrix. Consequently, I

subdivide the observation period into non-crisis and crisis periods.

Table II.4 presents the three largest eigenvalues and the corresponding confidence

bounds. Thereby, each eigenvalue is ascertained for the full periods and the non-

crisis and crisis periods. The theoretical bounds are obtained from formula 9. In

contrast, the empirical bounds are estimated using a block bootstrapping method. For

this simulation, 1,000 random variable block samples were drawn from the original

wavelet time series with replacements at each timescale. The correlation matrix

and the corresponding eigenvalues were calculated for each new sample. Finally,

the confidence interval was retrieved from the respective quantiles of the empirical

eigenvalue distribution.

The block bootstrapping technique is necessary to account for the respective serial-

correlations in the time series. Unlike the DWT, the MODWT is a non-decorrelating

transformation (see section 3.1). Hence, neighboring MODWT coefficients share

some interrelations that should not be discarded by the resampling procedure. The

block size is set to correspond to twice the length of the respective timescale λj =[
2j , 2j+1]. I have chosen this block size because it corresponds to twice the distance

between coefficients of the decorrelating DWT. Unfortunately, a block bootstrap pro-

vides no stationary observations. To test for the validity of the results, I therefore also

used a stationary bootstrap to specify the confidence bounds (not shown). However,

the stationary bootstrap generally showed smaller standard errors, which is why the

block bootstrap method using specified block sizes was used instead. This guaran-

tees the robustness of the results.
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Table II.4: Analysis of the three largest eigenvalues across different timescales for the full
period and for the non-crisis and crisis periods.

Eigenvalue E1 Eigenvalue E2 Eigenvalue E3

Full Period Non-Crisis Crisis Full Period Non-Crisis Crisis Full Period Non-Crisis Crisis

Scale 1 69.46 50.10 93.39 8.27 7.30 10.22 5.75 5.86 6.35
(66.73, 72.19) (47.79, 52.42) (86.47, 100.31) (7.94, 8.59) (6.96, 7.64) (9.46, 10.98) (5.53, 5.98) (5.59, 6.13) (5.88, 6.82)
(65.11, 73.80) (47.74, 52.46) (86.34, 100.45) (7.39, 9.15) (6.88, 7.71) (8.05, 12.39) (5.41, 6.09) (5.52, 6.20) (5.60, 7.10)

Scale 2 70.47 53.62 92.68 8.68 8.62 10.08 6.60 6.42 7.12
(66.55, 74.39) (50.12, 57.13) (82.97, 102.40) (8.19, 9.16) (8.06, 9.18) (9.02, 11.13) (6.23, 6.97) (6.00, 6.84) (6.37, 7.87)
(64.74, 76.20) (50.54, 56.71) (82.87, 102.50) (7.91, 9.45) (8.04, 9.20) (8.46, 11.69) (6.15, 7.06) (6.04, 6.80) (6.47, 7.77)

Scale 3 73.17 58.94 93.24 9.37 9.89 9.71 7.19 7.47 7.49
(67.42, 78.93) (53.49, 64.38) (79.42, 107.06) (8.63, 10.11) (8.98, 10.81) (8.27, 11.14) (6.62, 7.75) (6.78, 8.16) (6.38, 8.60)
(67.35, 79.00) (55.18, 62.69) (83.00, 103.47) (8.68, 10.06) (9.16, 10.63) (8.06, 11.35) (6.50, 7.88) (6.64, 8.30) (6.14, 8.85)

Scale 4 73.51 61.07 92.55 10.88 11.28 11.71 7.75 8.15 8.42
(65.34, 81.69) (53.09, 69.05) (73.15, 111.95) (9.67, 12.09) (9.81, 12.75) (9.25, 14.16) (6.89, 8.61) (7.09, 9.22) (6.65, 10.18)
(66.68, 80.34) (56.09, 66.05) (80.02, 105.07) (9.69, 12.06) (10.09, 12.47) (9.22, 14.20) (6.92, 8.58) (7.17, 9.14) (6.74, 10.09)

Scale 5 76.06 59.54 100.38 12.31 13.37 13.06 7.85 8.20 8.17
(64.09, 88.02) (48.54, 70.55) (70.62, 130.13) (10.37, 14.25) (10.90, 15.85) (9.19, 16.93) (6.61, 9.08) (6.68, 9.71) (5.75, 10.60)
(66.99, 85.13) (53.76, 65.33) (84.14, 116.61) (10.80, 13.82) (11.79, 14.96) (9.35, 16.77) (6.67, 9.03) (6.84, 9.55) (5.49, 10.86)

Scale 6 82.56 61.78 110.76 14.58 15.11 15.22 9.71 11.38 10.92
(64.20, 100.93) (45.63, 77.92) (64.33, 157.20) (11.33, 17.82) (11.16, 19.06) (8.84, 21.60) (7.55, 11.87) (8.40, 14.35) (6.34, 15.50)
(69.84, 95.29) (53.76, 69.79) (91.08, 130.44) (12.25, 16.90) (12.44, 17.77) (9.61, 20.82) (7.94, 11.47) (8.79, 13.97) (7.07, 14.76)

Scale 7 80.98 61.88 107.98 16.88 17.83 22.71 14.06 11.77 17.83
(55.50, 106.46) (39.00, 84.75) (43.96, 171.99) (11.57, 22.19) (11.24, 24.42) (9.25, 36.17) (9.64, 18.48) (7.42, 16.12) (7.26, 28.40)
(65.73, 96.23) (50.43, 73.32) (85.75, 130.20) (11.71, 22.06) (12.96, 22.71) (11.47, 33.95) (9.76, 18.36) (6.53, 17.01) (11.37, 24.29)

Notes: The 95% confidence interval for the theoretical (top values) and the block bootstrap (bottom values) eigenvalue distributions are depicted in
parentheses; block bootstrap confidence bounds are obtained using 1,000 random simulations.
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For the full sample period, all eigenvalues in Table II.4 show an increasing trend

with increasing timescale. This is in accordance with the observations in Table II.3.

However, unlike the second and third largest eigenvalues, the differences between

the largest eigenvalue E1 at different timescales are too small to be significant at a

5% level of significance. For example, the largest eigenvalue at timescale 1 (69.46) is

well within the theoretical and empirical bounds of all higher timescales. Therefore,

no significant deviations between timescale realizations of the largest eigenvalue can

be stated for the full sample period.
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Figure II.11: Evolution of eigenvalues across different timescales for the full period and for
the non-crisis and crisis periods. Notes: "Theoretical bound" indicates the 95% confidence
interval of the theoretical eigenvalue distribution; "Empirical bound" describes the 95% con-
fidence interval estimated using a block bootstrapping with 1,000 random simulations; the
horizontal dashed line (non-crisis period) extrapolates the lower confidence bound of wavelet
correlation at scale level 1 across all scale levels; the y-axis for the eigenvalues E3, . . . , E10
is log-transformed.
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Dividing the time series into non-crisis and crisis periods allows for a more detailed

interpretation of the eigenvalue structure. In non-crisis periods, the largest eigen-

value E1 now exhibits significant variation across timescales λj . While the eigen-

value is 50.10 at scale level 1, the same eigenvalue increases to 61.07 at scale level 4.

For a better understanding of this trend, Figure II.11 visualizes the eigenvalues for

the different timescales. The first row of subfigures represents the largest eigenvalue

for the full period and for the non-crisis and crisis periods. The blue- and orange-

dashed lines serve as reference for comparing eigenvalues at different scale levels.

Jointly examining this graph and the results in Table II.4 shows that the largest eigen-

value is indeed horizon-inconsistent during non-crisis periods. Both the theoretical

and empirical eigenvalue bounds at scale level 1 and scale level 4 do not overlap.

This implies that the null hypothesis of equal eigenvalues is at least rejected at a

2.5% level of significance. If the empirical bounds are considered, deviations are

even significant between the shortest and longest timescales.

Analyzing the largest eigenvalue in crisis periods draws a different picture. No

significant differences can be observed between the largest eigenvalue of different

timescales. Indeed, Table II.4 indicates that the largest eigenvalue even slightly de-

creases from scale levels 1 to 4.

Consequently, the influence of the market factor on the general correlation structure

markedly differs between non-crisis and crisis periods. While the impact of the sys-

tematic factor becomes stronger with increasing timescale during non-crisis periods,

this is not the case during crisis periods.

One possible interpretation of these results may again be found in heterogeneous

market theories. During regular market periods, idiosyncratic risks have a higher

impact on the correlation structure at shorter frequencies (low timescales) while the

market factor makes a smaller relative contribution. However, over longer timescales,

the impact of macroeconomic variables becomes stronger and thus both the largest

eigenvalue and the share of explained variance increase.

In contrast, during crisis periods, news (shocks) affect all stocks similarly over all

investment horizons. Hence, both long-term and short-term investors are directly

exposed to market risks during these periods. As a result, stocks are strongly cor-
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related and feature a collective mode across all time horizons. The market factor

becomes the universal element and hence equally affects stocks at all timescales

(Billio, Getmansky, Lo & Pelizzon, 2012; Zheng et al., 2012). By contrast, the im-

pact of idiosyncratic risks on the correlation structure reduces. The assimilation of

the largest eigenvalue across timescales results from this harmonization of risk across

time horizons.

Complementary to this analysis of the largest eigenvalues, the second row of subfig-

ures in Figure II.11 presents results for the next nine largest eigenvalues (log-scale

plot). Interestingly, the next higher eigenvalues show a distinct behavior. Almost all

eigenvalues increase with the timescale and show a positive trend irrespective of the

market state (significant at the 1–5% level for non-crisis periods and at the 5–10%

level for crisis periods). As shown in the previous section, these eigenvalues are typ-

ically associated with factors referring to sector or industry classifications. Hence,

these findings imply that the sectorial factors become more relevant for long-term

cycles in crisis and non-crisis periods. In other words, correlations between stocks

in the same sector increase with increasing timescale regardless of the market state.

However, the relative changes of these eigenvalues, between crisis and non-crisis

periods, are far smaller than for the market factor. This can be explained by eigen-

value repulsion. The market factor (largest eigenvalue) becomes predominant during

distressed market periods. This increase in the largest eigenvalue must be compen-

sated by decreases in the magnitude of the remaining eigenvalues. Even though this

compensation mainly stems from the bulk of the eigenvalue spectrum, it leaves less

room for the intermediate eigenvalues to expand. Hence, the smaller relative change

results from the declining relative importance of the sector factors compared to the

market factor.

Having established timescale-inconsistent eigenvalue behavior, I now study the ef-

fects on the structure of the correlation matrix. The above results suggest the exis-

tence of a market-induced structure in correlations that changes across timescales.

Similarly, the correlation structure is found to be driven by timescale-dependent sec-

tor characteristics. Therefore, I used filtering methods to separate the correlation

matrix from these effects. The correlation matrix is thus decomposed into a market
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(CM ), a group (CG), and a random (CR) component:

C = E1u1uT
1 +

Mg∑
k=2
EkukuT

k +
M∑

k=Mg+1
EkukuT

k = CM + CG + CR, (22)

whereMg refers to the number of eigenvalues that are used to define the collection of

group correlations. Although the diagonal of the filtered components does not equal

unity, these matrices can be interpreted and are referred to as correlation matrices.

The market component CM relies on the largest eigenvalue and the corresponding

eigenvectors. The group correlation matrix CG is the filtered correlation matrix of

stock groups. In accordance with the findings in section 5.3, I specify Mg = 9. This

value corresponds to roughly the average number of deviating eigenvalues across all

timescales (minus the largest eigenvalue).25 Finally, the random component CR is

obtained from those eigenvalues that belong to the bulk of the eigenvalue spectrum.

Again, this decomposition can be derived for different time horizons.

Figure II.12 shows the results for the decomposed components of the correlation ma-

trix for non-crisis and crisis market states across different timescales {λj ; j = 0, 2,
4, 6}. For non-crisis states, the right tail of the distribution of the market correlation

matrix (blue line) gradually increases from the daily time horizon (λ0) to the half-

yearly time horizon (λ6). In contrast, the left tail of the distribution remains roughly

equal across all timescales. This finding is consistent with the trend in the largest

eigenvalue (more extreme values) and the expectations of increasingly positive cor-

relations for longer time horizons. Surprisingly, a similar pattern can be observed

for the distribution of the market correlation matrix during crisis periods. However,

the broadening of the distribution is mainly present at the largest timescale. This

suggests that macroeconomic factors become more relevant at large timescales dur-

ing crisis periods than initially presumed. Contrary to the findings in Figure II.11,

correlations may thus also show timescale-varying properties during crisis periods.

25No profound alteration in results was registered for small changes in Mg .
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Figure II.12: Distribution of filtered correlation matrix for non-crisis and crisis periods at
different timescales. Notes: Correlations is filtered into market (CM ), group (CG), and
random (CR) components. The vertical lines indicate the largest element of the market cor-
relation matrix for the original (untransformed) time series and the wavelet time series at
scale level 4; the y-axis is log-transformed.

Similarly, the group component (red line) demonstrates non-trivial characteristics.

For non-crisis periods, the distribution of the group correlation shows an expand-

ing right tail with increasing timescale. At timescale λ6, the inter-group correlations

even surpass those of the market component. This indicates that correlations become

more systematic and inter-group correlations are likely to gain in significance over
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longer time horizons. While the distribution of the correlation matrix also widens

with increasing timescales during crisis periods, this expansion is far less pronounced

than for non-crisis periods. Notably, the probability of high inter-group correlations

is in fact greater during non-crisis periods. Again, this is most likely the result of

eigenvalue repulsion. During crisis periods, common market-wide behavior dictates

stock correlations. Thus, the market component represses the contribution of the

inter-group component to overall correlation. In contrast, during non-crisis periods,

the market component is less dominant and inter-group correlations have more lee-

way to unfold.

The random component (yellow line) shows only minor changes over different time

horizons and is comparable between the two market states. This agrees with the-

oretical expectations for the random component. In particular, the finding that the

distribution of the random component does not change for different market states

reinforces the assumption that these correlations are in fact random.

Consequently, the structure of the correlation matrix is determined by systematic

factors that change over time and with respect to market conditions. It is defined

by a subtle interplay of timescale-variant collective interconnectedness and inter-

group relations. These correlations are overlaid by idiosyncratic noise in the form of

random perturbations.

Generally, the structure of the correlation becomes more systematic with increasing

timescale. However, in times of crisis, the correlations for all time horizons are

equally characterized by a common behavior. While the market factor is overall the

dominant component, group correlations gain in significance in non-crisis periods

and for longer time horizons.

The results that correlations are determined by fundamental structural relationships

that change across timescales and market periods has important implications in prac-

tice. For example, portfolio and risk management decisions may have different im-

pacts on short- and long-term investment horizons. Thus, considering the timescale

properties of correlations is crucial to assessing potential diversification benefits.

Similarly, the findings presented here help to resolve certain contradictions in exist-

ing research. Studies using data from different time horizons produce diverging and
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sometimes even inconsistent results. The present study shows that such contradic-

tions might result from timescale-variant correlations. Finally, the obtained results

provide new insights into the functioning of stock markets.

5.7 Robustness

This section tests the reported results for robustness using an extended time interval

(June 30, 1970 to June 30, 2018). This longer measurement period enables reducing

measurement noise. At the same time, the required full track history reduces the

sample to 185 stocks. This describes the tradeoff between the depth and width of the

sample that was mentioned at the beginning of this study (in section 4).

Figure II.13 shows the ten largest eigenvalues for this increased sample period. We

note a reduction in magnitude of the eigenvalues. However, this reduced magnitude

results from the smaller sample size and is not due to changes in the relevance of the

respective components. Rather, it is a consequence of the property of eigenvalues,

which requires the trace of a matrix to equal the sum of its eigenvalues tr (C) =
M∑
k=1
Ek. If we therefore ignore the magnitude of the eigenvalues, almost no change is

evident compared to the results of the previous section. The eigenvalue curve shows

a similar trend. In fact, deviations of the largest eigenvalues even slightly increase in

significance.



5. EMPIRICAL RESULTS 117

1 2 3 4 5 6 7

40

50

60

70

1 2 3 4 5 6 7
25

30

35

40

45

50

55

60

1 2 3 4 5 6 7

40

60

80

100

120

The
or.

 bo

und

Empir. bound

Theor.  bo
un

d

Empir. bound

The
or.

 bo
un

d

Empir. bound

Theor. bound

Empir. 
bo

un
d

Theor. bound

Empir . bound

Theor. bound

Empir. b
ound

1 2 3 4 5 6 7100

101

1 2 3 4 5 6 7100

101

1 2 3 4 5 6 7100

101

Full Period Non-Crisis Crisis

Scale Scale Scale

{ε
k}

k=
2,
...
,1
0

ε1

Figure II.13: Evolution of eigenvalues across different timescales for the full
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6 Conclusion

Analyzing the structure of correlations reveals that stock interdependencies are driv-

en by a set of fundamental factors. This study has shown that the meaning and the

ranking of these factors remains comparable across different time horizons. Only a

few changes in the general structures have been observed over different timescales.

This research shows that the market factor (largest eigenvalue) is the principal de-

terminant of the correlation structure regardless of whether daily or monthly stock

correlations are considered. Similar findings emerge for the remaining key factors

(intermediate eigenvalues). These factors retain their significance for explaining the

correlation structure across different time horizons.

It is noteworthy that stock correlations at low timescales show strong sectoral struc-

tures given that idiosyncratic movements are often believed to account for the corre-

lation structure of stocks over short-term periods (lower explanatory power of CAPM

for daily data). In contrast, previous research generally attaches greater significance

to macroeconomic factors to describe longer-term dependency structures. The results

of this study relativize this view to some degree. The present findings indicate that

the short- and longer-term dependency structures of the stock market are determined

by the same fundamental systematic factors.

However, this study has also revealed that the strength of these underlying factors

varies over different time horizons. For example, factors reflecting sectoral affilia-

tion become increasingly important for longer-term periods. While the same factors

determine the dependency structure, they have a timescale-variant impact on corre-

lations. Hence, assuming timescale-variant correlation structures nonetheless seems

legitimate. Idiosyncratic risk may more strongly influence short-term correlations,

while longer-term dynamics are increasingly driven by structural factors.

Consideration of the market factor leads to a more diffuse interpretation. While the

market factor becomes increasingly important for longer time horizons during non-

crisis periods, this is not the case during crisis periods. This can be explained by the

fact that the market factor exerts even greater influence on correlation structure in

times of crisis. As the predominant factor, it determines the short- and longer-term

structures in the correlation matrix during these periods.
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Therefore, the results show that the stock market can be described in terms of struc-

tural factors and of how their influence changes over different time horizons. The

complex interplay of these factors produces timescale-variant correlations. As a re-

sult, this study gives new insights into the mechanisms of stock markets and into the

rationale underlying heterogeneous timescale-dependent correlation structures.

These results provide new perspectives for understanding stock markets. For ex-

ample, they help to explain conflicting empirical results for tests of capital market

models (e.g., CAPM). These models often display different explanatory power under

consideration of different return intervals (daily, monthly, yearly). The assumption

of changing correlation structures due to timescale-variant influencing factors (in

combination with heterogeneous market theories) at least partially helps to fathom

these contradictions.

Moreover, the present findings also have central implications for portfolio and risk

management decisions. They suggest that investors with different investment hori-

zons should adapt their investment strategy to the correlation structures of the cor-

responding timescale. This insight lays the foundation for future research into time-

scale-optimized portfolio strategies.

Finally, the methodological approach of combining wavelet transformation with ran-

dom matrix theory has possible applications in other academic and practical disci-

plines. Specifically, the method could be used in image processing. Wavelet transfor-

mation allows filtration of images into different granularities. Random matrix theory

could be used to identify common components between decomposed images and fil-

ter non-random information from this data. Thus, the approach could for example

be used in face recognition algorithms. Similarly, this methodological procedure

could be adopted in medical research for the joint analysis of MRI images (see, for

example, Conlon, 2009). This could make it possible to isolate characteristics that

may contribute to disease detection. Many other possible applications across other

academic and practical disciplines are conceivable.
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Chapter III

Portfolio Optimization Under Heterogeneous

Investment Horizons
Christian Vial

1 Introduction

Financial markets are complex interacting systems of heterogeneous agents. These

agents differ in their risk profile, beliefs, investment constraints, consumption re-

quirements, as well as in their perception and interpretation of information. Despite

these observable heterogeneities, many economic models neglect some of them and

rely upon the simplifying assumption of homogeneous agents. Economists have of-

ten viewed this assumption as an oversimplification and have proposed alternative

models that incorporate heterogeneities. Among others, Dacorogna et al. (1998),

Lux and Marchesi (1999), as well as Nekhili, Altay-Salih and Gençay (2002) showed

that the hypothesis of heterogeneous agents helps to explain stylized facts of financial

time series (e.g., fat-tails, long-memory, long-range dependence, and excess kurto-

sis).

A central assumption of these heterogeneous agent theories is the idea of agents op-

erating at different (heterogeneous) investment horizons. Following this intuition of

heterogeneity, financial markets consist of a diverse group of agents including but

not limited to intraday traders, day-traders, fund managers, central banks, insurance

companies, and pension funds. These agents have different life-cycle preferences

and base their decisions on heterogeneous investment horizons (timescales).1 For

example, agents with shorter investment horizons may perceive new information

(news) as negative, while agents with longer investment horizons consider the same

1Peters (1994) and Müller et al. (1993, 1997) formalized the theory of heterogeneous market agents
with the Fractal Market Hypothesis (FMH) and the Heterogeneous Market Hypothesis (HMH).
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information as a buying opportunity. In turn, agents may also adapt investment hori-

zons according to their perception of information and the relative attractiveness of a

short-term over a long-term strategy.

The assumption of timescale heterogeneity thereby implies both the risk of financial

assets and their interdependencies to be timescale-dependent. These two dimensions

are central to portfolio allocation decisions (Chakrabarty et al., 2015). A portfolio

allocation suitable for a short-term investor might therefore not be optimal for a long-

term investor (and vice versa) even though both possibly share identical objectives

and risk tolerance levels. For example, a pension fund might ignore short-term risk

due to the fund’s longer-term life-cycle preferences and investment horizon. In con-

trast, a day trader, who operates on a shorter timescale, might consider long-term risk

irrelevant. Consequently, it seems necessary for heterogeneous investors to optimize

their portfolios over their respective investment horizon.

This study aims to demonstrate that taking into account investment timescales ben-

efits portfolio allocation decisions. The main hypothesis is that a portfolio strategy

can be formed that minimizes the risk at a specific investment timescale. Accord-

ingly, investors with different life-cycle preferences can minimize their risk over their

respective investment horizon.

To test this hypothesis, I proceed in two steps: First, I examine stocks for timescale

dynamics in terms of their dependency structures and variances. Second, I study the

implications of those timescale properties of stock prices for portfolio optimization.

Specifically, I develop portfolio strategies that aim to minimize portfolio variance

at a specific time horizon (timescale). Further, I examine the ability of these port-

folio strategies for minimizing risk at a particular timescale. For this examination,

out-of-sample volatilities of those timescale-optimized portfolios are compared with

each other and with the volatility of a portfolio obtained from classical time domain

methods.2

Researchers have investigated heterogeneity in asset prices before by using long-

term and short-term time series analysis (see, for example, Burns & Mitchell, 1946).

2Classical time domain methods refer to the derivation of portfolios using covariance matrices that are
obtained from untransformed daily return observations. This study adopts different estimation windows
sizes for calculating these covariance matrices.
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In contrast, I apply wavelet decomposition to study timescale dynamics in stock

prices and to create portfolios optimized for a specific investment horizon.3 Wavelet

analysis enables analyzing finer frequency granularities by using a more sophisti-

cated filtering technique.4

My research contributes to existing literature in four ways. First, it analyzes the dy-

namics of individual assets and their dependency structures in the time- and spectral-

domain. Second, it extends existing portfolio optimization research by introducing

timescale considerations to portfolio allocation decisions. Thus, it constructs and

analyzes investment strategies in the context of heterogeneous investment horizons

using wavelet decomposition. Third, it introduces wavelet variance equality test

statistics to test differences in the variance of these timescale-optimized portfolios.

Fourth, it presents a new method for portfolio optimization, namely, multiscale port-

folio optimization.

Chakrabarty et al. (2015) observed that earlier wavelet studies in finance were pre-

dominantly exploratory. The present study bridges the gap between heterogeneous

investment analysis and practical application by constructing horizon-heterogeneous

portfolio strategies. It is structured as follows: Section 2 reviews the existing liter-

ature on investment horizon-based portfolio optimization. Section 3 describes the

wavelet methodology and its application to portfolio optimization. Section 4 intro-

duces the general properties and assumptions of the optimization method. Section 5

provides a brief data overview. Section 6 presents the main findings of the timescale

analysis for individual stocks, as well as the results of the analysis of timescale-

optimized portfolio strategies. Section 7 introduces multiscale portfolio optimiza-

tion as a basis for considering multi-horizon preferences in portfolio optimization.

Section 8 summarizes the results of this study and provides input for future research.

3Wavelet theory percolated into the sphere of economics and finance with the advent of so-called
econophysics (Iacobucci, 2003).

4Unlike the more familiar Fourier transformation, wavelet analysis permits simultaneous representa-
tion of the signal in the time and the timescale domain.
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2 Literature Review

Research on the impact of the investment horizon on asset prices and portfolio deci-

sions is not new in finance. In 1972, Levy demonstrated that incorrect assumptions

about an investor’s holding period can lead to systematic biases in performance and

risk measures. He conjectured that an empirical study using daily data might yield

different results than the same study using a monthly sampling interval. This bias

results from differences between the assumed investment horizon and an investor’s

actual behavior.

In a later study, Gressis, Philippatos and Hayya (1976) analyzed the effects of het-

erogeneous investment horizons on portfolio selection using a multiperiod mean-

variance approach. They found that the investment horizon affects portfolio choice.

Two investors sharing the same utility function but underlying different investment

horizons will choose different portfolios. Consequently, the authors concluded that

the utility function is not sufficient for determining portfolio choice. Gressis et al.

(1976) suggested that the investment horizon should thus become an additional pa-

rameter of an investor’s utility function.

These findings fostered further research on investment horizon effects and on how

different return intervals impact performance and risk measurement (see Levhari &

Levy, 1977; Gilster, 1983; Handa et al., 1989; Handa, Kothari & Wasley, 1993;

Brailsford & Faff, 1997; Bjornson, Kim & Lee, 1999). Following this reevaluation,

researchers began characterizing financial markets as dynamic systems consisting not

only of one, but of many agents with heterogeneous investment horizons operating

at different frequencies (Corsi, 2009; Dacorogna et al., 2001; Gençay et al., 2002,

2005; In & Kim, 2013; Ramsey, 2002).

Spectral theory — and more recently wavelet theory — have laid the foundation for

analyzing frequency characteristics of financial time series. The earliest adoption

of wavelet theory to economics and finance can be attributed to Ramsey and Zhang

(1997), Ramsey and Lampart (1998a, 1998b), and Gençay et al. (2002). Since then,

several studies investigating heterogeneity in risk and dependency structures between
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financial assets have appeared.5 However, only few studies have explored timescale-

based (i.e., frequency-based) portfolio strategies.

Orlov and Äijö (2015) investigated carry trade diversification under consideration

of timescale dynamics for the eight most liquid currencies and for LIBOR rates. At

each rebalancing date, they grouped the two assets with the lowest correlation (across

all horizons) into one portfolio. The authors concluded that the constructed wavelet

portfolios exhibit improved Sharpe ratios compared to equally weighted portfolios

and the S&P 500. However, Orlov and Äijö (2015) did not observe outperformance

for all timescales.

In a recent empirical study, Berger (2016) used wavelet decomposed US stock re-

turns to form timescale-optimized portfolios. He showed that portfolio strategies

concentrating on short-term frequencies outperform strategies using raw return data.

However, long-term timescale-optimized portfolios incur higher average losses than

benchmark portfolios and short-term optimized portfolio analogs. Even though Ber-

ger (2016) constructs portfolio strategies based on wavelet decomposed returns, he

evaluates performance and risk metrics only for daily portfolio returns. Thus, he

leaves unconsidered optimization effects at higher timescales or increasing sampling

intervals.

In a recent working paper, Chaudhuri and Lo (2016) introduced spectral portfo-

lio theory using Fourier transformation. Their analysis highlights that asset prices

change across time and frequency. Similarly, portfolio performance evaluation de-

pends on the investment horizon under consideration. They concluded that the fre-

quency dimension can be useful in portfolio design (specifically, if portfolio goals

differ across time horizons).

3 Wavelet Methodology

Wavelet analysis is a method for studying the frequency (timescale) characteristics

of a signal as a function of time. In contrast to Fourier transformation, wavelet

5It is referred to Chakrabarty et al. (2015) for a comprehensive review of pertinent literature about
wavelet analysis in economics and finance.
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analysis thereby enables simultaneously representing the signal in the time and in

the timescale domain. This makes wavelet analysis a particularly useful instrument

for examining the time evolution of spectral characteristics in financial time series.

Specifically, it allows analyzing time series that feature non-stationary power at many

frequencies (Daubechies, 1990; Torrence & Compo, 1998).

This study applies the discretized continuous wavelet transform (CWT) to analyze

the wavelet squared coherence spectrum. Further, it applies the Maximal Overlap

Discrete Wavelet Transform (MODWT) to construct scale-based portfolio strategies.

3.1 Continuous Wavelet Transform

Wavelet transformation employs an elementary function, the so-called wavelet func-

tion ψ (·), to decompose a time series into the time-timescale-dimension (Rua &

Nunes, 2012). This wavelet function can be real- or complex-valued and has support

on the real axis. The general definition of the wavelet function is relatively sim-

plistic: A wavelet function must i) integrate to zero
(
∫∞−∞ ψ (t) dt = 0

)
and ii) be

square integrable to unity
(
∫∞−∞ ψ2 (t) dt = 1

)
. While the second condition imposes

that the wavelet function is non-zero within a certain interval, the first condition im-

plies that the excursions from zero must cancel out overall. These excursions are

imposed to be localized, i.e., the non-zero values of the function are mostly lim-

ited to a finite interval (Percival & Walden, 2000). Accordingly, wavelet functions

(wavelets) resemble small waves that vacillate around zero (hence their name). In

contrast to their trigonometric counterparts in Fourier transformation, they do so only

in a limited range.

The wavelet function is used to decompose a time series into time-timescale-com-

ponents, the so-called continuous wavelet transforms. Let rt specify a real-valued

time series of an independent time variable t.6 The continuous wavelet transforms

{W (λ, τ) ; λ > 0,−∞ < τ <∞} are then obtained from the convolution of rt

6In fact, other units are also possible for the signal. It does not necessarily have to be a time series.
In this study, however, the signal always represents a return series (time series).
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with the wavelet function ψ (·)

W (λ, τ) ≡
∞∫
−∞

rtψ
∗
λ,τ (t) dt, (1)

where

ψλ,τ (t) ≡ 1√
λ
ψ

(
t− τ
λ

)
, (2)

(∗) indicates the complex conjugate, τ refers to the translation (location) parameter,7

and λ describes the dilation (timescale) parameter of the wavelet function.8 These

translation and dilation parameters shift and scale the wavelet function ψ (·), respec-

tively.9 Thus, the wavelet function ψ (·) serves as a prototype for the translated and

shifted derivatives of itself ψλ,τ (·) (Madaleno & Pinho, 2012).

As the translation parameter τ is altered, the wavelet function is shifted in time.

This shifting procedure allows obtaining wavelet transforms for different times. As

a result, wavelet transforms provide time resolution (time information).

Similarly, by varying the dilation parameter λ, the wavelet function is stretched

(compressed). Thereby, a large timescale parameter results in a broad support of

the wavelet function in the time domain. This large window enables isolating coarse

features in the signal, i.e., low-frequencies characteristics. In contrast, a small scale

parameter induces a narrow support of the wavelet function in the time domain. This

small window allows extracting finer features in the time series, i.e., high-frequency

characteristics (Madaleno & Pinho, 2012).10

Applying the transformation to a continuum of location and scale parameters pro-

7The translation parameter τ and the time variable t are directly connected and describe the same
dimension. However, a separate variable is used for the sake of clarity. In fact, the two values may differ
if a non-symmetric wavelet function is used for transformation (circular shifting).

8Deriving the wavelet transforms for a discrete stock return series requires discretizing the integral in
formula 1.

9A scale parameter λ > 1 dilates, whereas a scale parameter λ < 1 compresses the wavelet function.
Typically, only positive scale factors λ > 0 are considered.

10A wavelet function with a high scale parameter (narrow support) delivers good time resolution,
but bad timescale (frequency) resolution. In contrast, a wavelet function with a low scale parameter
(broad support) provides good timescale (frequency) resolution, but bad time resolution. This trade-off
between time and frequency localization describes the well-known Heisenberg uncertainty principle in
signal processing.
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vides a joint representation of the original signal in the time-timescale-domain. In

other words, the method simultaneously describes the high- and low-frequency con-

tent of the original time series and the change of these frequency characteristics over

time. For the analysis of stock returns series, this means that different frequency

(timescale) dynamics in stock returns can be extracted and studied for different time

periods.

Note that the two necessary conditions (previously introduced) for the wavelet func-

tions are met by many different functions. For analytical requirements and prac-

tical reasons, further conditions are typically imposed on the wavelet functions:

among others, admissibility and regularity11 conditions. The admissibility condi-

tion requires that CΨ ≡ ∫∞0 |Ψ(f)|2
|f | df satisfies 0 < Cψ < ∞, where f denotes

the frequency, and Ψ (f) defines the Fourier transform of ψ (·) given by Ψ (f) ≡
∫∞−∞ ψ (t) e−i2πftdt.12 This condition ensures that a square-integrable signal rt,

i.e.,
∞
∫
−∞

rtdt, can be reconstructed13 from the wavelet transformsW (λ, τ) such that

rt = 1
CΨ

∞∫
0

∞∫
−∞

W (λ, τ) 1√
λ
ψ

(
t− τ
λ

)
dτ
dλ

λ2 . (3)

Moreover, the condition guarantees conservation of energy:14

∞∫
−∞

|rt|2dt = 1
CΨ

∞∫
0

 ∞∫
−∞

|W (λ, τ)|2dτ

 dλ
λ2 , (4)

11The regularity condition requires the wavelet function to be local in both the time and the frequency
domain. To ascertain good localization in the frequency domain, the wavelet transformsW (λ, τ) needs
to converge rapidly to zero with a decrease of the scale parameter λ. This speed of convergence is
determined by the number of non-zero moments of the wavelet function (Sheng, 2000).

12Note that in order to guarantee Cψ <∞, it must hold that Ψ (0) = 0. It is straightforward to show
that this restriction reproduces the two necessary conditions of a wavelet function, i.e., ∫∞−∞ ψ (u) du =
0 and ∫∞−∞ ψ2 (u) du = 1.

13This reconstruction property is evident once the wavelet transforms are transformed into the Fourier
domain. This condition is directly related to the equivalence relationship in Parseval’s equality.

14The energy conservation property is directly linked to Parseval’s energy relation in Fourier transfor-
mation.
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where |W (λ, τ)|2 is the wavelet power spectrum (Grossmann & Morlet, 1984; Mal-

lat, 2009). This property implies that the total variance of the series is preserved.

Furthermore, it illustrates that variance (energy) can be decomposed on a scale-by-

scale basis. The quantity |W (λ, τ)|2/λ2 effectively specifies a density function of

the local variance of different time and timescales (Percival & Walden, 2000).

3.2 Maximal Overlap Discrete Wavelet Transform

The maximal overlap discrete wavelet transform is used below to derive timescale-

optimized portfolio strategies (see section 4). The MODWT differs from the CWT in

that it performs a (coarser) discretization of the scale parameter λ.15 In the MODWT,

wavelet transforms are calculated only for dyadic timescales λ = 2−j , where j is a

positive integer. As timescale-optimized portfolios are only evaluated for these dis-

crete timescales, the coarser discretization of the MODWT reduces the number of

investigated portfolios to a manageable amount. At the same time, it allows con-

structing portfolios that are optimized over a broader timescale spectrum. Finally, it

enables deriving wavelet variance and wavelet covariance measures that closely re-

semble conventional moment statistics (see section 3.3). In the following, λj = 2−j

is used to refer to a timescale of a specific scale level j.

The MODWT is usually implemented by an iterated filter bank. The respective al-

gorithm is referred to as pyramid algorithm and goes back to Mallat (1989).

Let
{
h̃l; l = 0, . . . , L− 1

}
in RL be a high-pass filter (wavelet filter) with even

filter width L that, nonetheless, represents an infinite sequence such that h̃l = 0
for l < 0 and l > L. Three properties characterize this filter: It must sum to

zero
(∑L−1

l=0 h̃l = 0
)

, have half-unit energy
(∑L−1

l=0 h̃2
l = 1

2

)
, and be orthogonal

15The wavelet function for the so-called maximal overlap discrete wavelet transform (MODWT) can
be described by ψj,k (t) = λ

−j/2
c ψ

(
tλ−jc − ktcλ−jc

)
where λc = 2 refers to a dyadic scaling factor,

tc = 1 specifies the time spacing, and k and j are integers of discrete dilations and translations. The
scaling parameter of the CWT in formula 1 is thus defined as λ = 2−j . The translation parameter from
formula 1 is expressed as u = ktc. Due to the discreteness of the return series, the translation factor
remained the same for both the CWT and the DWT.
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to its even shifts
(∑∞

l=−∞ h̃lh̃l+2n = 0
)
.16 This wavelet filter measures deviations

from the trend in the data and resembles a differencing operator. It captures high-

frequency (low timescale) and attenuates low-frequency (high timescale) character-

istics.

Similar to different wavelet functions satisfying the wavelet function conditions in

section 3.1, different wavelet filters fulfill these filter conditions. The choice of a

wavelet filter should be based on the characteristics of the underlying data. This

study uses a Least Asymmetric wavelet filter of length 8, LA(8). The LA(8) filter

was shown to match the characteristics of stock returns and has been widely used in

earlier studies (Gençay et al., 2010, 2002, 2005).

The low-pass filter (scaling filter) {g̃l; l = 0, . . . , L− 1} in RL complements the

wavelet filter h̃l. In contrast to the wavelet filter, it averages consecutive values and

thus can be considered an averaging operator. It is obtained from the quadrature mir-

ror relationship: g̃l = (−1)l+1
h̃L−1−l. This so-called scaling filter allows capturing

the remaining low frequency spectrum, which is left out by the wavelet filter.

These two filters enable decomposing the time series into components that relate

to timescale λj . Let {rt; t = 0, . . . , N − 1} in RN specify a vector of returns of

length N . Then, the wavelet and scaling coefficients at timescale λj are obtained

from convolution of the filters with the return series in step (j = 1) and with the

scaling coefficients in the subsequent steps (j > 1):

W̃j,t =
L−1∑
l=0

h̃lṼj−1,t−2j−1l mod N , Ṽj,t =
L−1∑
l=0

g̃lṼj−1,t−2j−1l mod N , (5)

for t = 0, 1, . . . , N − 1 and Ṽ0,t ≡ rt. The modulus operator is necessary because

the return series is finite. However, this operation results in wavelet and scaling

coefficients at the edges being flawed (boundary conditions). This edge-effect needs

to be accounted for in the derivation of unbiased wavelet moments (section 3.3).17

16These filter conditions are directly related to the conditions of the wavelet function in section 3.1.
17Note that the modulus operator imposes the signal to be cyclical. In the transition from the end

to the start value, this may lead to non-stationarity. To avoid this effect, the time series is reflected at
the last observation. This reflection has no effect on the estimated moments, but allows circumventing
non-stationarities in the time series.
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The wavelet coefficients W̃j,t capture the high frequency content of the signal. They

are directly related to the wavelet transforms in formula 1. With increasing scale

level j, oscillations of higher period lengths are covered. The relation between

scale level j of the wavelet transforms and the associated frequency band is given by[
1/2(j+1) < f ≤ 1/2j

]
. For daily data, this implies that scale level 1 wavelet trans-

forms describe oscillations in the signal for periods of 2–4 days (frequency band:

[1/4, 1/2]) and scale level 2 captures oscillations in the signal for periods of 4–8

days (frequency band: [1/8, 1/4]). This study uses a maximum scale level of de-

composition of J = 7. Consequently, the highest scale level 7 covers cycle period

lengths of 128–256 days (frequency band: [1/256, 1/128]).

The scaling coefficients Ṽj,t describe the remaining high-timescale dynamics and

contain the trend of the original signal. However, the scaling coefficients are not fur-

ther investigated in this study. They are only used to derive the wavelet coefficients

in the iterative algorithm of formula 5.

3.3 Wavelet Variance and Covariance

Wavelet and scaling coefficients (transforms) are associated with changes at a par-

ticular timescale. Formula 4 shows that this decomposition is energy preserving in

the CWT. An analog relation holds for the MODWT such that:

||r||2 =
N−1∑
t=0

r2
t =

J∑
j=1

N−1∑
t=0

W̃ 2
j,t +

N−1∑
t=0

Ṽ 2
J,t

=
J∑
j=1

∣∣∣∣W̃j

∣∣∣∣2 +
∣∣∣∣ṼJ

∣∣∣∣2, (6)

where W̃j = {Wj,t; t = 0, . . . , N − 1} and ṼJ = {Vj,t; t = 0, . . . , N − 1}. This

implies that the variance of the original signal can be decomposed on a scale-by-

scale basis. As a result, it is possible to calculate a variance for a specific timescale
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λj . An unbiased estimator of wavelet variance for scale λj is given by

ṽ2 (λj) = 1
Ñj

N−1∑
t=Lj−1

W̃ 2
j,t, (7)

where W̃ 2
j,t corresponds to the wavelet coefficient of scale level j for time series {rt},

Ñj ≡ N − Lj + 1 specifies the coefficients unaffected by the boundary conditions

(see section 3.2), and Lj ≡
(
2j − 1

)
(L− 1) + 1 refers to the length of a filter at

scale level j.

The analogous definition of the unbiased estimator of wavelet covariance between

the stochastic processes rp,t and rq,t is obtained from

ṽp,q (λj) = 1
Ñj

N−1∑
t=Lj−1

W̃p,j,tW̃q,j,t, (8)

where W̃p,j,t and W̃q,j,t are the wavelet coefficients of the respective time series

rp,t and rq,t. These covariances can be compiled in a wavelet covariance matrix

Σ (λj) = {ṽp,q (λj) ; p = 1, . . . ,M ; q = 1, . . . ,M} for a particular timescale λj ,

whereM refers to the number of stocks. Timescale-optimized portfolios in section 4

are derived based on these covariance matrices.

3.4 Standard Errors and Test Statistics of Wavelet Variance

Comparing the wavelet variances of different scale portfolios necessitates formulat-

ing test statistics. These test statistics require adopting distributional assumptions

and deriving standard errors of variances.

Let W̄j,t refer to those wavelet coefficients that are not affected by the boundary con-

ditions in formula 5 (edge-effect). It is assumed that W̄j,t is a Gaussian stationary

process with mean zero and spectral density Sj (·).18 Percival (1983, 1995) showed

18Let {rt} be a second-order discrete stationary process. Further, let {sτ ; τ = . . . ,−1, 0, 1, . . .}
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that the estimator for the variance v̂2 (λj) of these coefficients is asymptotically nor-

mally distributed with mean v2 (λj) and large sample variance 2Aj/Ñj , whereAj is

defined as Aj ≡ ∫1/2−1/2 S
2
j (f) df . This result holds if the spectrum Sj (f) is greater

than zero almost everywhere and if Aj is square integrable.19 For large Ñj it thus

follows that

Ñ
1/2
j

(
v̂2 (λj)− v2 (λj)

)
(2Aj)1/2 ∼ N (0, 1) . (9)

An approximately unbiased estimator for Aj is given by

Âj =

(
ŝ

(p)
j,0

)2

2 +
Ñj−1∑
τ=1

(
ŝ

(p)
j,τ

)2
= v̂4 (λj)

2 +
Ñj−1∑
τ=1

(
ŝ

(p)
j,τ

)2
, (10)

where ŝ(p)
j,τ is a biased estimator of the sample autocovariance sequence of W̄j,t,

defined as ŝ(p)
j,τ ≡ 1

Ñj

∑N−1−|τ |
t=Lj−1 W̃j,tW̃j,t+|τ | for 0 ≤ |τ | ≤ Ñj−1 and ŝ(p)

j,τ ≡ 0 for

|τ | ≥ Ñj (Percival, 1995). It is straightforward to derive confidence intervals and test

statistics of wavelet variance if Aj in formula 9 is replaced by the estimator Âj . The

test statistics for comparing wavelet variances of two dissimilar timescales v̂2 (λj)
and v̂2 (λk) is then given by:

v̂2 (λj)− v̂2 (λk)√
2Âj

Ñj
+ 2Âk

Ñk

, (11)

where j 6= k.

Even if the underlying process is non-Gaussian, the asymptotic distribution of the

be the autocovariance sequence, where the autocovariance between the components rt and rt+τ is given
by sτ = cov {rt, rt+τ} for all integers t and τ . If this autocovariance sequence is square summable(∑∞

τ=−∞ s2
τ <∞

)
, then the spectral density is given by S (f) =

∑∞
τ=−∞ sτ e−i2πfτ for |f | ≤ 1

2
(under the assumption of unit time-spacing).

19Due to Parseval’s theorem and the stationarity of
{
W̄j,t

}
, the latter condition is equivalent to im-

plying that the autocovariance sequence of
{
W̄j,t

}
dies down fast enough so that it is square summable.
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wavelet variance may be known. For a broad class of non-Gaussian and non-linear

processes, the estimator v̂2 (λj) is asymptotically Gaussian-distributed, with similar

properties as listed above (formula 9). However, the spectral density may no longer

have the same convenient form (Gençay et al., 2002).

The normal distribution assumption does not prevent the lower confidence limits

of wavelet variance from being negative. Therefore, Percival (1995) provided an

alternative approach to characterizing the distribution of wavelet variance using the

assumption of chi-square distributed wavelet variance. The distribution is adjusted

with respect to the degrees of freedom, in order to account for possible correlations

in the underlying variables (see Priestley, 1981, p. 466). For this approach, the

following approximation can be derived:

ξv̂2 (λj)
v2 (λj)

∼ χ2
ξ , (12)

where ξ is known as the equivalent degrees of freedom. It can be estimated by

ξ̂ = Ñj v̂
4 (λj)
Âj

, (13)

The respective F-test for equality of variance is readily derived from this definition.

4 Wavelet Portfolio Strategy

The adoption of timescale-optimized portfolio strategies centers around the assump-

tion of stock returns exhibiting distinct variance and covariance dynamics at different

time horizons. Accordingly, a portfolio can be optimized for dynamics at a spe-

cific timescale (risk optimization). In out-of-sample analysis, these portfolios should

show smaller risk at the optimized timescale compared to other portfolios (optimized

at other timescales or for the untransformed data). If test results confirm this assump-
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tion, it would imply that investors with different life-cycle preferences can optimize

their portfolio over their respective investment horizon. This section outlines the

portfolio formation and risk analysis techniques for constructing and assessing these

timescale-optimized portfolio strategies (henceforth scale portfolio strategy).

It is important to note that investors (specifically those with a long-term perspec-

tive) are likely to operate at multiple timescales rather than at a single timescale.

However, to study the effectiveness of scale portfolio strategies, I initially employ

the simplifying assumption of a single-timescale investor. This investor operates at

a specific timescale and strives to reduce risk over a specific timescale (fixed in-

vestment horizon). The single-timescale assumption is relaxed in section 7 and a

multiscale optimization is introduced.

4.1 Optimization Method

I use minimum variance portfolio optimization to construct scale portfolios. This

choice is made for analytical reasons and because of the implicit restrictions im-

posed by the properties of wavelet analysis. First, mean-variance optimization is not

applicable or at best subjective in nature. All wavelet coefficients have an expected

value of zero. Only scaling coefficients have non-zero expected values. Hence, it

is not possible to associate a mean with a specific timescale. Second, the mini-

mum variance portfolio optimization method only relies on the covariance matrix

estimate. For this reason, it is possible to attribute changes in portfolio allocation

solely to variations of the covariance matrix. Finally, minimum variance optimiza-

tion is less sensitive to estimation errors than other optimization approaches, such as

mean-variance optimization (see Chan, Karceski & Lakonishok, 1999; Jagannathan

& Ma, 2003). Among others, Michaud (1989), Broadie (1993), Best and Grauer

(1991), Green and Hollifield (1992), Britten-Jones (1999), and DeMiguel, Garlappi,

Nogales and Uppal (2009) have shown that small errors in estimated mean returns

can cause substantial changes in portfolio allocation. These estimation errors trans-

fer directly to errors in portfolio weights. In contrast, covariance matrices can be

estimated more precisely (see Merton, 1980).
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4.2 Weight Restrictions

Minimum variance portfolio optimization is also not immune to estimation errors

(see Chan et al., 1999; Jagannathan & Ma, 2003). Small measurement errors in the

covariance matrix can lead to unstable portfolio weights with high risk concentra-

tions in only few assets. Several approaches have been suggested to make portfolio

weights more stable. One strand of the literature has focused on the deduction of ro-

bust covariance matrix estimates using shrinkage (see Ledoit & Wolf, 2004). How-

ever, modifying the wavelet covariance structure makes it more difficult to study the

effects of scale-based portfolio optimization in isolation. Another strand of the liter-

ature has suggested imposing portfolio weighting restrictions using thresholds (see,

for example, DeMiguel et al., 2009). This method limits portfolio weights rather

than modifying the moments of asset returns. It can thus be considered less intrusive

than the first approach. Consequently, I use this weighting methodology below to

study the effects of scale-based portfolio optimization.

Weighting restrictions, however, limit the range of portfolio weights and constrain

system flexibility (especially if the asset universe is small). As a result, it can be more

difficult to identify the superiority of a certain portfolio strategy. For this reason, I use

two different weighting restrictions for portfolio formation: The maximum weight-

ing set Amw and the less restrictive long-only weighting set Alo. Analysis using

the long-only weighting approach is more flexible, whereas that using the maximum

weighting approach guarantees more stable results.

Let α ≡ (α1, . . . , αM )T specify the portfolio weight vector for M possible invest-

ment opportunities. The admissible set of strategies for the long-only portfolio is

then given by Alo =
{
α ∈ RM | α ∈ [0, 1]M , 1Tα = 1

}
. Similarly, the admissible

set for the maximum-weight portfolio is defined as Amw =
{
α ∈ RM | α ∈ [0, b]M ,

1Tα = 1
}

, where b < 1 is the threshold value. Hence, short selling and borrowing

additional capital is restricted.

No-short and no-leverage conditions prevent the emergence of extreme portfolio al-

locations. For example, some assets might otherwise be shorted extensively to fi-
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nance long positions in others.20 Moreover, short selling is accompanied by high

(borrowing) costs and is subject to several restrictions in practice. It is therefore

reasonable to exclude short selling and the borrowing of additional capital from the

analysis of scale portfolios.

4.3 Portfolio Formation

Scale-based minimum variance portfolio formation is conducted in two steps: First,

wavelet transformation is applied to past return observations for every stock and ev-

ery rebalancing date to derive wavelet transforms. Second, these transformed series

are used to obtain the covariance matrix for a specific timescale and estimation win-

dow. Thus, the covariance matrix estimate derives from the comovement between

stock price processes at a certain time and timescale.

Let Σt (λj) specify the wavelet covariance matrix at timescale λj and time t (with a

rolling estimation window ending at t).21 Then, the scale-based minimum variance

portfolio weights for the respective rebalancing date t+ 1 are obtained by

αt+1(λj)∗ = argmin
αt+1∈A

αt+1(λj)TΣt (λj)αt+1 (λj) , (14)

where A refers either to the long-only (Alo) or to the maximum-weight portfolio

weight set (Amw). The scale-based covariance matrix is re-estimated at every rebal-

ancing date. Finally, the collection of portfolio weights for all rebalancing periods is

used to derive out-of-sample portfolio returns.

20The presence of estimation errors can lead to high-risk concentrations.
21Different lag-days (2, 3, and 4) have been tested for implementation of the portfolio weights. Results

remained largely consistent.
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4.4 Performance & Risk Assessment

To test the main hypothesis of this study, portfolio performance and risk need to

be assessed and compared. Analyzing risk measures reveals whether, for a given

timescale, the lowest out-of-sample variance is indeed observed for the portfolio of

matching scale. Portfolio performance and risk can be assessed either with conven-

tional time domain methods or with wavelet decomposition.

Conventional time domain methods refer to analysis using simple portfolio returns.

Most studies have restricted themselves to the analysis of one uniform sampling in-

terval (e.g., daily, monthly, or yearly data). However, several different sampling

intervals have to be considered to assess the effectiveness of scale-optimized port-

folios in reducing variance at a particular timescale. Below, I thus analyze portfolio

statistics for multiple timescales. This is achieved by compounding discrete return

observations so that they conform with the targeted periodicity (temporal aggrega-

tion). For example, daily return data is compounded for each month so that a monthly

return series is obtained.

While conventional time domain analysis is intuitive and appealing in practice, it

is less accurate than wavelet decomposition. Higher frequency perturbations (e.g.,

daily variations) can superimpose longer cycle variations in returns. This might mask

the effectiveness of optimization by distorting the volatility estimates of conventional

sampling methods (using daily/weekly/monthly data).

Wavelet decomposition is a more advanced filtering method and allows for more

effectively isolating optimization effects for particular timescales. Moreover, the

wavelet transformation of portfolio returns provides a scale-by-scale decomposition

of variance that precisely matches the portfolio timescale. This is the case because it

is the same method as the one used initially to construct the scale portfolios. There-

fore, decomposing portfolio returns using wavelet transformation allows more accu-

rately testing the hypothesis of scale-based variance minimization.
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5 Data & Data Analysis

This study uses a subset of stocks temporarily or permanently listed on the Dow

Jones Industrial Average (DJIA) during the period from January 1, 1969 to Decem-

ber 30, 2016. Stocks not covering the full sample period were excluded, reducing

the number of securities from a total of 48 to 23. All stock prices are quoted in US

dollars (no exchange rate effects) and retrieved at the same closing time (no asyn-

chronous trading effects). Data for daily stock prices and the DJIA constituents list

were obtained from the Center of Research and Security Prices (CRSP) and Compu-

stat.

The condition of full data coverage for the period under study imposes restrictions on

analyzing and interpreting the data sample: First, a selection bias is present given that

some stocks are considered part of the sample before they were historically included

in the DJIA. Stocks that are subject to index inclusion are typically characterized by

sustained growth. Second, stocks that are no longer quoted at an exchange are not

considered in the sample (survivorship bias). Third, assets with a shorter track his-

tory, and having decisive and unique price dynamics (substituting or complementing

certain industries), might be excluded from the sample (e.g., Microsoft or Apple).

Due to these biases, certain stock price characteristics might not be uncovered that

would otherwise have been detected in a non-restricted sample.

While the loss of information due to excluding stocks cannot be offset, the impact

of the biases on the analysis and comparison of portfolio strategies is minimized.

This is achieved by comparing wavelet portfolio results with benchmark portfolios

comprising the same subsample of stocks. In contrast, comparison with the DJIA

index itself is limited: The index consists of different time-dependent constituents

and uses a different portfolio construction mechanism.

The restriction to a relatively small sample size of only 23 stocks is a compromise

between the stability of a covariance matrix estimate and the benefits of diversifica-

tion.22

22Evans and Archer (1968) conjectured that approximately 15 stocks are required to obtain a suffi-
ciently diversified portfolio. More recent studies conclude that the number of stocks necessary to elim-
inate non-systematic risk has risen in the recent past and more stocks are required (see Elton & Gruber,
Martin, 1977; Newbould & Poon, 1993; Campbell, Lettau, Malkiel & Xu, 2001).
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Table III.1: Descriptive statistics of daily log-returns, covering the period Jan-
uary 1, 1969 to December 30, 2016.

Ticker Ann.
mean

Ann.
std.

Skew. Kurt. Min. Max. SR
JB-stat.
(1,000) LB(20) LB2(20)

3M MMM 7.27% 23.50% -0.70 21.01 -0.30 0.11 0.31 156.7*** 66.5*** 701.3***

Alcoa AA.3 2.13% 35.60% -0.23 11.35 -0.28 0.21 0.06 33.3*** 108.9*** 7,593.5***

Altria Group MO 14.92% 26.79% -0.49 14.54 -0.26 0.15 0.56 64.3*** 74.7*** 588.3***

Boeing BA 9.98% 33.19% 0.10 7.81 -0.19 0.21 0.30 11.0*** 29.2* 1,385.6***

Caterpillar CAT 6.82% 30.51% -0.29 9.45 -0.24 0.14 0.22 20.0*** 70.4*** 2,033.2***

Chevron CVX 7.30% 26.42% -0.04 9.26 -0.18 0.19 0.28 18.6*** 78.8*** 6,141.5***

Coca-Cola KO 8.91% 24.64% -0.39 18.43 -0.28 0.18 0.36 113.6*** 69.9*** 2,632.9***

Du Pont DD 4.81% 26.81% -0.18 8.34 -0.20 0.11 0.18 13.8*** 21.3 3,303.8***

Exxon Mobil XOM 7.87% 23.36% -0.38 19.42 -0.27 0.16 0.34 128.0*** 187.2*** 3,758.0***

General Electric GE 7.61% 26.91% -0.07 10.85 -0.19 0.18 0.28 29.4*** 72.4*** 7,740.6***

Goodyear GT 1.63% 39.45% -0.45 12.28 -0.34 0.18 0.04 39.8*** 57.1*** 4,739.0***

HP HPQ 8.62% 36.86% -0.26 9.60 -0.23 0.19 0.23 21.2*** 59.7*** 830.4***

Honeywell Intl. HON 7.12% 31.63% -0.29 21.35 -0.35 0.27 0.23 158.7*** 35.8** 1,785.0***

IBM IBM 5.03% 26.07% -0.27 14.80 -0.26 0.12 0.19 68.4*** 30.6* 919.3***

Intl. Paper IP 3.54% 31.98% -0.28 14.68 -0.31 0.20 0.11 65.5*** 84.5*** 5,522.8***

JPMorgan Chase JPM 4.77% 34.99% -0.09 17.33 -0.32 0.22 0.14 96.7*** 24.6 4,995.3***

Johnson
& Johnson

JNJ 10.76% 23.69% -0.24 10.31 -0.20 0.12 0.45 25.8*** 101.0*** 2,066.5***

McDonald’s MCD 13.58% 28.17% -0.21 10.60 -0.22 0.15 0.48 27.7*** 83.0*** 2,707.4***

Merck MRK 8.52% 26.22% -0.70 18.71 -0.31 0.12 0.33 119.8*** 74.7*** 299.6***

Pfizer PFE 9.09% 28.20% -0.16 6.87 -0.19 0.11 0.32 7.1*** 81.1*** 2,477.9***

Procter
& Gamble

PG 9.02% 23.16% -2.25 68.16 -0.38 0.20 0.39 2,043.1*** 81.1*** 386.7***

United Tech. UTX 8.39% 28.53% -0.52 16.40 -0.33 0.13 0.29 85.9*** 51.2*** 681.2***

Walt Disney DIS 12.37% 32.53% -0.57 16.22 -0.34 0.17 0.38 84.8*** 48.8*** 1,294.3***

Notes: Mean and standard deviation are annualized; JB-stat. shows the Jarque-Bera test statistics
for the null hypothesis of normality in sample return distribution. The statistics is reported in 1,000s;
LB(20) and LB2(20) refer to the Ljung-Box test of autocorrelation of 20-order lags for changes and
squared changes in stock returns; SR defines the Sharpe ratio.
*, **, and *** indicate rejection of the null hypothesis of the test statistics at the 1%, 5%, and 10%
level of significance.

Table III.1 presents the descriptive statistics of the 23 stocks’ annualized daily log-

returns for the period from 1969 to 2016. Annualized mean returns lie between

1.63% for Goodyear and 14.92% for Altria Group. While Procter & Gamble displays

the most volatile returns among all stocks (in terms of standard deviation), it also

exhibits the highest negative return, highest kurtosis, and lowest skewness. Its mean
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return of 9.02% is approximately equal to Pfizer’s mean return. However, Pfizer

shows a higher standard deviation of 28.20% and less pronounced tails.

The return series are thus characterized by differing distributional characteristics.

However, all return series exhibit leptokurtic behavior and all series (except for Boe-

ing) are negatively skewed. The Jarque-Bera (JB) test statistic strongly rejects the

hypothesis of normally distributed returns for all 23 stocks. To test for the absence of

autocorrelation, the Ljung-Box (LB) statistic was employed with a 20-order lag. Re-

sults are significant for almost all return series. Only Du Pont and JPMorgan Chase

show no proof of serial correlation, while the test statistic is rejected for Boeing and

IBM at the 10% level of significance. The test to determine the absence of serial

correlation in squared returns (LB2) is rejected for all return series.

Table III.2 displays the correlation matrix of the 23 stocks for the period from March

29, 1986 to December 30, 2016.23 The lower triangular matrix represents daily return

correlations, while coefficients in the upper triangular matrix are calculated based on

monthly returns.

In general, daily return correlations experienced weaker linear dependence than the

same correlations estimated for monthly return data. Absolute correlations seem to

increase with higher sampling intervals.24

To more quantitatively estimate the deviations between correlations, differences be-

tween daily and monthly sampling interval correlations were tested using Fisher z-

transformation. The analysis revealed significantly lower correlation coefficients for

19 stocks at a monthly sampling period with 5% level of significance, whereas 13

stocks showed a higher correlation. In total, about 13% of the correlations displayed

significant differences (together with significant Jennrich test). Thus, Table III.2 in-

dicates a potential presence of scale-dependent correlation structures.

23The period of analysis is reduced since the analysis of dependency structures in the following sec-
tions only adopt this shorter time period. Data before April 1986 is only used for added precision in the
calculation of the wavelet coefficients.

24Note that the color code in Table III.2 is very narrowly specified with respect to the size of the cor-
relations. The difference between daily and monthly correlations may therefore appear more pronounced.
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Table III.2: Analysis of unconditional correlations covering the period March 29, 1986 to
December 30, 2016. Lower triangular matrix: daily log-return correlations; upper triangular
matrix: monthly log-return correlations.

MMM AA.3 MO BA CAT CVX KO DD XOM GE GT HPQ HON IBM IP JPM JNJ MCD MRK PFE PG UTX DIS

MMM 1.00 0.51 0.29 0.47 0.53 0.37 0.34 0.59 0.40 0.54 0.47 0.35 0.43 0.30 0.57 0.32 0.38 0.31 0.27 0.32 0.38 0.55 0.47
AA.3 0.44 1.00 0.17 0.38 0.66 0.38 0.22 0.57 0.33 0.48 0.48 0.47 0.48 0.40 0.61 0.41 0.25 0.25 0.20 0.20 0.16 0.51 0.42
MO 0.32 0.24 1.00 0.17 0.12 0.18 0.36 0.22 0.20 0.26 0.24 0.21 0.27 0.21 0.20 0.15 0.36 0.30 0.30 0.29 0.35 0.24 0.27
BA 0.40 0.39 0.24 1.00 0.40 0.34 0.36 0.50 0.34 0.48 0.41 0.26 0.46 0.17 0.48 0.29 0.33 0.35 0.33 0.31 0.28 0.60 0.47
CAT 0.47 0.52 0.26 0.40 1.00 0.47 0.24 0.57 0.38 0.49 0.48 0.42 0.50 0.36 0.56 0.42 0.28 0.35 0.25 0.28 0.22 0.54 0.45
CVX 0.42 0.45 0.27 0.34 0.40 1.00 0.23 0.47 0.75 0.42 0.32 0.27 0.42 0.28 0.39 0.33 0.30 0.34 0.19 0.31 0.17 0.40 0.32
KO 0.43 0.28 0.37 0.33 0.31 0.34 1.00 0.31 0.30 0.37 0.21 0.19 0.30 0.11 0.25 0.28 0.52 0.43 0.47 0.44 0.52 0.31 0.38
DD 0.55 0.52 0.29 0.41 0.51 0.45 0.39 1.00 0.46 0.60 0.51 0.35 0.49 0.33 0.67 0.45 0.39 0.37 0.32 0.32 0.29 0.57 0.45
XOM 0.47 0.43 0.30 0.36 0.40 0.75 0.43 0.47 1.00 0.45 0.28 0.30 0.40 0.28 0.37 0.29 0.34 0.36 0.25 0.32 0.29 0.37 0.31
GE 0.53 0.46 0.31 0.44 0.48 0.41 0.44 0.52 0.45 1.00 0.50 0.40 0.49 0.37 0.57 0.53 0.43 0.43 0.37 0.45 0.36 0.58 0.52
GT 0.42 0.44 0.21 0.36 0.44 0.33 0.28 0.44 0.33 0.45 1.00 0.39 0.50 0.29 0.51 0.41 0.25 0.33 0.21 0.23 0.22 0.48 0.42
HPQ 0.34 0.33 0.21 0.30 0.34 0.28 0.27 0.34 0.29 0.40 0.31 1.00 0.37 0.47 0.34 0.41 0.22 0.26 0.21 0.24 0.19 0.43 0.49
HON 0.48 0.43 0.26 0.45 0.46 0.40 0.36 0.48 0.43 0.51 0.42 0.35 1.00 0.33 0.52 0.42 0.24 0.43 0.28 0.28 0.33 0.58 0.44
IBM 0.38 0.34 0.24 0.31 0.36 0.30 0.30 0.37 0.35 0.45 0.31 0.47 0.38 1.00 0.30 0.34 0.22 0.27 0.13 0.18 0.07 0.30 0.35
IP 0.50 0.52 0.26 0.37 0.51 0.40 0.32 0.55 0.40 0.50 0.45 0.31 0.45 0.33 1.00 0.39 0.33 0.32 0.32 0.34 0.31 0.53 0.45
JPM 0.43 0.41 0.25 0.37 0.42 0.36 0.32 0.45 0.36 0.56 0.43 0.37 0.42 0.40 0.43 1.00 0.23 0.36 0.21 0.33 0.18 0.42 0.47
JNJ 0.41 0.27 0.34 0.31 0.29 0.35 0.47 0.36 0.41 0.44 0.25 0.26 0.33 0.31 0.30 0.32 1.00 0.41 0.55 0.58 0.48 0.38 0.37
MCD 0.36 0.28 0.30 0.32 0.31 0.29 0.40 0.34 0.33 0.40 0.27 0.26 0.33 0.30 0.30 0.33 0.36 1.00 0.37 0.39 0.44 0.40 0.48
MRK 0.35 0.29 0.31 0.31 0.28 0.32 0.39 0.35 0.36 0.40 0.26 0.25 0.30 0.28 0.30 0.34 0.53 0.31 1.00 0.56 0.38 0.32 0.33
PFE 0.37 0.30 0.32 0.32 0.31 0.34 0.40 0.35 0.38 0.43 0.28 0.26 0.32 0.31 0.31 0.34 0.53 0.32 0.56 1.00 0.32 0.42 0.43
PG 0.44 0.26 0.34 0.30 0.30 0.32 0.51 0.39 0.38 0.42 0.27 0.24 0.35 0.29 0.32 0.31 0.47 0.39 0.39 0.39 1.00 0.31 0.30
UTX 0.49 0.45 0.26 0.49 0.48 0.39 0.35 0.48 0.40 0.51 0.40 0.35 0.52 0.36 0.44 0.43 0.34 0.34 0.32 0.34 0.34 1.00 0.51
DIS 0.44 0.41 0.30 0.39 0.41 0.37 0.38 0.43 0.40 0.51 0.38 0.38 0.44 0.39 0.42 0.45 0.37 0.36 0.34 0.36 0.35 0.43 1.00

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Daily and monthly sampling correlations

Correlation
Notes: The color code of the correlation ranges from blue (low correlation) to red (high correlation).
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6 Empirical Analysis

This section explores the timescale dynamics of different stocks and their implica-

tions for portfolio optimization. Sections 6.1 uses coherence analysis to study how

stock prices co-move over time and across different time horizons. Section 6.2 in-

vestigates the timescale characteristics of variance in more detail. The variance of

stock returns and the dependency structure of these stocks are key factors for portfo-

lio optimization. Therefore, the analysis of these factors provides important insights

for interpreting results of scale-based portfolio optimization.

Finally, section 6.3 examines the main hypothesis of this study — namely that port-

folio variance can be minimized for a specific timescale with scale-based portfolio

strategies — and presents the results for these timescale-optimized portfolios.

6.1 Coherence Analysis

Coherence analysis transforms two time series into the two-dimensional time-fre-

quency plane in order to depict their dependency structures across different peri-

odicities (see Appendix A for mathematical details). Wavelet magnitude-squared

coherence is a bivariate linear dependency measure in the time-timescale-domain.

The measure is bounded between 0 and 1 such that 0 ≤ R2
p,q (λ, τ) ≤ 1. High

wavelet magnitude-squared coherence provides evidence for strong dependence and

low wavelet magnitude squared coherence indicates weak dependence. Hence, wave-

let magnitude-squared coherence resembles a squared correlation coefficient in linear

regression (Vacha & Barunik, 2012). It allows capturing time- and timescale-varying

features of correlation between two stocks (Rua & Nunes, 2009).25

25Coherence analysis has previously been used to examine the timescale dependency structures in and
across commodity (Aguiar-Conraria, Rodrigues & Soares, 2014; Akoum, Graham, Kivihaho, Nikkinen
& Omran, 2012; Barunik & Vacha, 2009; Bekiros, Nguyen, Uddin & Sjö, 2016; Madaleno & Pinho,
2014; Vacha & Barunik, 2012), foreign exchange (Andries, Ihnatov & Tiwari, 2014; Reboredo & Rivera-
Castro, 2013), and stock markets (Aloui & Hkiri, 2014; Graham, Kiviaho & Nikkinen, 2012; Graham,
Kiviaho, Nikkinen & Omran, 2013; Loh, 2013; Madaleno & Pinho, 2012; Rua & Nunes, 2009, 2012).
Furthermore, it has been employed to study macroeconomic interrelationships (Aguiar-Conraria, Azevedo
& Soares, 2008; Aguiar-Conraria & Joana Soares, 2011; Gallegati et al., 2014). However, it was rarely
used for the investigation of comovements between individual stocks.
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Figure III.1 displays contour graphs for the wavelet magnitude-squared coherence of

four selected stocks: Exxon Mobil (XOM), General Electric (GE), IBM, and Procter

& Gamble (PG). These stocks have been selected due to their heterogeneous de-

pendency structures and diverse sectoral affiliation (Energy, Industrials, Information

Technology, and Consumer Staples). A Morlet wavelet is used for decomposition.26

The color code for power (strength of relationship) in Figure III.1 ranges from blue,

indicating low magnitude-squared coherence, to red, specifying high magnitude-

squared coherence. The vertical axis depicts timescales in days.27 The so-called

"cone of influence", which encircles the region affected by boundary effects, is de-

picted by the thick solid black line (see Appendix A). Wavelet coefficients were

calculated based on the complete dataset. As a result, no cone of influence exists in

the left part of the figure.

The coherence analysis in Figure III.1 draws a more detailed picture of the dependen-

cies between stocks compared to the correlation analysis in Table III.2. Dependency

structures vary profoundly for different asset pairs and frequently change over time

and across timescales. For example, while IBM and General Electric exhibit high

coherence between 2008 and 2010 for periods around 256 days, this comovement is

not observed for IBM and Exxon Mobil. On the other hand, all stock pairs exhibit

high coherence across all timescales for the period after the stock market crash of

October 19, 1987 (Black Monday).

26The Morlet wavelet is defined as ψ (t) = π−(1/4)
(
eiκ0t − e−κ2

0/2
)
e−t

2/2. The parameter κ0

defines the number of oscillations within the Gaussian envelope. It directly relates to the frequency-/time-
localization of the wavelet function. Here, κ0 is set to 6.

27Note that the scale λj is a unitless standardized measure. A physical meaningful unit is only ob-
tained if the sampling interval tc is considered such that the physical scale λjtc is obtained. In this
analysis tc corresponds to one day and thus scales correspond to an actual physical unit of the same
magnitude.
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Figure III.1: Wavelet squared coherence between four selected stocks: Exxon
Mobil (XOM), General Electric (GE), International Business Machines (IBM),
and Procter & Gamble (PG), covering the period March 29, 1986 to December
30, 2016. Notes: The horizontal axis shows time and the vertical axis illustrates
the timescale (period) in days; the color code of the wavelet magnitude-squared
coherence ranges from blue (low power) to red (high power); the cone of influ-
ence (COI), which indicates the region affected by edge-effects, is displayed in
lighter shade; black contour lines designate the 5% significance level obtained
from Monte Carlo simulations using randomized surrogate series; a Morlet
wavelet is used for decomposition.
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The coherence contour graph of General Electric and IBM further reveals that the

global financial crisis of 2008 severely impacted correlations at periods of 256 days

and higher. The increase in comovement at these periodicities lasted for several

years. At low timescales (high frequencies), correlations show high variability. How-

ever, specific periods of high and persistent correlations are evident for the highest

frequencies at the end of 2008 and in the first quarter of 2010. Interestingly, these

increased comovements do not transfer to coherence dynamics in the period interval

between 64 and 256 days.

Another interesting observation is that the burst of the dot-com bubble in 2001 had a

higher relative impact on correlations at timescales corresponding to period lengths

of 64 days than at other timescales. In contrast, the global financial crisis of 2008

was more pronounced for oscillations with greater period lengths. The 2008 crisis

even had a higher impact on long-term correlation dynamics than the dot-com bubble

of 2001. In the years after 2012, high magnitude-squared coherence is again evident

at frequencies in the interval of 32–64 days. The coherence graph for General Elec-

tric and Procter & Gamble shows similar patterns to those of General Electric and

IBM. However, for the period after 2012, a high concentration of power of the Gen-

eral Electric/Procter & Gamble stock pair is located at lower frequencies with cycle

lengths of approximately 32 days.

Analyzing the interaction between Procter & Gamble and Exxon Mobil reveals a

low degree of comovement for frequency bands with cycle lengths greater than 16

days. Thus, Exxon Mobil provides high benefits of diversification at these higher

timescales.28 One of the sole exceptions occurred from the end of 2011 to mid-

2012, with the advent of the European sovereign debt crisis and the downgrading of

America’s credit risk. High magnitude-squared coherence can be observed within

the frequency interval for cycles from 2 to 64 days (power at higher timescales is

still relatively small). Exxon Mobil also displays unique characteristics in relation

to other assets. For example, the coherence analysis for IBM/Exxon Mobil after the

dot-com bubble of 2001 indicates a strong comovement at periodicities of 256 days

28Note that coherence is an absolute measure and thus "combines" positive and negative correlations.
Negative correlations would provide even better diversification. However, analysis of wavelet correlations
revealed almost no negative correlations between assets (at all timescales).
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and only modest comovement for timescales between 16 to 64 days. At short peri-

odicities of 2–16 days, power is locally concentrated and switches from high to low

regimes. In contrast, the global financial crisis mainly influenced comovements at

low timescales (2–4 days) and timescales between 16 to 64 days. However, the crisis

did not increase the power at lower frequencies (higher timescales). This contrasts

sharply with the observations for General Electric and Exxon Mobil. Their corre-

lations surged for all timescales in the aftermath of the financial crisis of 2008 and

remained at high levels across all timescales for the entire period thereafter.

To summarize, analyzing the relations between this selective subset of stocks has

revealed that stocks are characterized by a varying degree of interaction over time

and across frequencies.

6.2 Analysis of Variance

Estimation of variance is central to portfolio optimization and risk management deci-

sions. As outlined (section 3.3), variance can be decomposed into different timescale

components. Below, an equally-weighted index is used as a proxy to study timescale

characteristics of variance. Comparing the wavelet decomposition of single stocks

and an equally-weighted index revealed a similar pattern of energy distribution. Ta-

ble III.3 demonstrates the MODWT variances for the equally-weighted portfolio of

the subsample of DJIA stocks. Further, it shows the variance contribution of each

scale level, i.e., the portion of overall variance, which is explained by dynamics at

a certain timescale. Finally, Table III.3 displays the same metrics for non-crisis and

crisis market states to examine how the variance structure changes during these pe-

riods.29

Table III.3 indicates that most of the variance of daily data is explained by short

timescale dynamics, corresponding to bi-daily, weekly, and bi-weekly periodicities

29Market phases are classified qualitatively and encompass the following five economic crises: Black
Monday (Oct. 1987–Dec. 1988), Asian crisis (Jul. 1997–Dec. 1998), dot-com bubble (Jan. 2001–
Dec. 2002), global financial crisis (Jul. 2007–Jun. 2009), and European debt crisis/American credit
risk downgrading (Jun. 2001–May 2012). All remaining time periods are categorized as non-crisis states.
Note that crisis periods cover a relatively long period to guarantee filtration of longer-term cycle dynamics.
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(see columns 3 and 4). These scale variances contribute approximately 89% to to-

tal variance (scale level 1 to 3). In contrast, longer timescales only account for a

relatively small portion of total variance. For example, the variance at monthly pe-

riodicities (scale level 4) is only about 10% of the size of the variance at bi-daily

periodicities (scale level 1).

Table III.3: MODWT variance decomposition (J = 7) of equally-weighted,
daily portfolio returns for the full period and for the non-crisis and crisis peri-
ods (March 29, 1986–December 30, 2016).

Full period Non-Crisis Crisis

Scale
Level

Period
interval

Variance
cont.

Ann.
var. ×104

Variance
cont.

Ann.
var. ×104

Variance
cont.

Ann.
var. ×104

J1 2 - 4 51.53% 0.688 48.95% 0.369 53.06% 1.432
J2 4 - 8 25.65% 0.343 25.48% 0.192 25.96% 0.701
J3 8 - 16 12.19% 0.163 13.38% 0.101 11.34% 0.306
J4 16 - 32 5.34% 0.071 6.36% 0.048 4.70% 0.127
J5 32 - 64 2.74% 0.037 3.14% 0.024 2.56% 0.069
J6 64 - 128 1.45% 0.019 1.51% 0.011 1.40% 0.038
J7 128 - 256 1.10% 0.015 1.18% 0.009 0.99% 0.027

Notes: The equally-weighted portfolio is composed of the 23 DJIA stocks (sample); J1, J2, . . . , J7 refer
to scale levels 1–7; period intervals designate the periods (in days) corresponding to a certain scale level;
scale variance is annualized and multiplied by a factor of 104; variance contribution is obtained by dividing
the variance at a particular scale by the total variance.

The classification of time periods into different market phases shows that overall

variance of the index significantly increases during crisis states. However, energy

distribution between individual scale levels remains relatively similar in the two mar-

ket phases. While a modest increase in variance contribution can be observed for

lower timescales (scale levels 1 and 2) during crisis periods, variance contribution at

higher timescales (scale levels 5, 6, and 7) does not markedly change. Increases in

variance contribution for bi-daily and weekly periodicities are predominantly offset

by decreases for bi-monthly and monthly periodicities. One possible interpretation

is that monthly investors react more frequently to shocks and adopt a shorter invest-
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ment horizon. In contrast, longer-term investors do not show the same sensitivity

and remain with their initial investment timescale.30

Figure III.2 depicts the 1-year (colored areas) and the 5-year (black lines) rolling

window estimations of the sample variance contribution of daily returns for the pe-

riod between January 1986 and December 2016. Red-dashed lines illustrate the vari-

ance contribution of a decomposed white-noise process. In analogy to Chaudhuri

and Lo (2016), these bounds are constructed by generating random permutations of

the order of the return series. Wavelet decomposition is then applied to the result-

ing serially uncorrelated data. The white-noise boundaries (red lines) are obtained

by averaging the variance contributions of 10,000 of these simulated white-noise

processes. Because variance contribution decreases exponentially with increasing

timescale, Figure III.2 only shows variance decomposition up to scale level 5. Vari-

ance contribution of higher timescales (scale level 5 and higher) is subsumed in the

last level of decomposition.

Figure III.2 illustrates that the variance contribution of both the 1-year and 5-year

rolling window deviates from the expectations of a serially uncorrelated process dur-

ing certain periods. While the variance contribution of scale level 1 is smaller at the

beginning of analysis, it gradually approaches the white-noise band by 1999. Scale

levels 2 and 3 absorb most of the energy during this period. Strong serial correla-

tions of weekly and bi-weekly returns during this period are a potential reason for

higher fluctuations at these scale levels. These findings are in line with test results

for 20-order lag Ljung-Box statistics for serial correlation of individual stocks (see

Table III.1).

30Effectively, agents operate at several timescales at once; there is no unique stream of investment
behavior. Observations in Table III.3 thus might be even better explained by an information theoretic
approach. Adapting this view, short-term news (shocks) exhibit a higher impact during crisis states,
prompting adjustments in the beliefs and investment timescale of investors.
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Figure III.2: MODWT-decomposed variance contribution of 1-year and 5-year
rolling window equally-weighted daily portfolio returns, covering the period
March 29, 1986 to December 30, 2016. Notes: The equally-weighted portfolio
is composed of the 23 DJIA stocks (sample); colored regions indicate variance
contribution using a 1-year rolling window for estimation, whereas black lines
depict variance contribution using a 5-year rolling window for estimation; for
both estimation windows, variance contribution is shown for scale level 1 (pe-
riod of 2–4 days) to 5 (period of 32–64 days). Variance contribution of higher
timescales is subsumed in scale level 5; red dashed lines specify white-noise
boundaries of scale variance contribution obtained from simulation of 10,000
independent Gaussian-distributed returns.

For the interval between 2003 and 2006, variance contribution closely resembles

the energy distribution of a white-noise process. However, the advent of the global

financial crisis of 2007–08 increased the energy contribution of lower timescales (to

almost 94% for the first three scales combined). This observation is in line with

higher serial correlations of stock returns during market downturns.

Similar to the findings in Table III.3, Figure III.2 demonstrates that lower timescales

account for most of the variation in daily stock returns (specifically during crisis pe-

riods). Higher scales rarely show variance contributions exceeding the bounds of a

white-noise process. However, these observations do not render lower frequency pro-
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cesses irrelevant for three reasons: First, variance contribution is a relative measure.

Hence, congruency of scale energy between the white-noise process and the index

at high scale levels does not necessarily imply the absence of long-term fluctuations.

Second, fluctuations at low timescales might smooth or cancel out over the course of

longer investment periods. Therefore, these oscillations might not be perceived as a

risk by long-term investors, for whom long-term fluctuations are more relevant. For

example, a pension fund assesses the risk of intra-day fluctuations differently than

an inter-day trader. Finally, correlation is a key factor in all portfolio formation. The

interaction of scale variance with scale correlation is thus an important factor to be

considered (covariance). As shown in the previous section, interdependence between

stocks shows high variation for different timescales.

To summarize, in accordance with findings in previous literature, the highest time-

scales have been found to contribute most to the variation of daily returns. However,

this does not necessarily render higher timescales irrelevant, specifically if fluctua-

tions smooth over the course of a longer investment period.

6.3 Wavelet-Based Portfolio Optimization

Given the previous results for coherency and timescale variance, I now investigate

the main hypothesis that it is possible to construct portfolios that minimize volatility

for a targeted timescale. This section tests this hypothesis by introducing wavelet-

based scale portfolios and by comparing their relative performances. A daily rebal-

ancing period is used for the rolling recalibration of the portfolio weights. The first

rebalancing date, and thus the beginning of the out-of-sample period (the following

day), is chosen as February 28, 1986. This allows for a relatively large estimation

(calibration) period, which goes back to January 1, 1969 and continuously extends

with each rebalancing day.31

31Note that this long estimation period from January 1, 1969 to March 1, 1986 is required for the
evaluation of the dynamic estimation-window-strategy in section 6.4.
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Portfolio Construction

The general structure and testing procedure for the portfolio strategies relies upon

the specifications outlined in section 4. In accordance with these specifications, the

detailed construction of wavelet-based scale portfolios is as follows: i) At each re-

balancing date, the return series is subsampled to only contain past data, i.e., data up

until the specific rebalancing date. ii) Wavelet filtering is then applied to the reduced

dataset, returning a time series for every scale level. Return series of single stocks

are decomposed into seven scale components corresponding to periodicities of 2–4

(scale level 1), 4–8 (scale level 2), 8–16 (scale level 3), 16–32 (scale level 4), 32–64

(scale level 5), 64–128 (scale level 6), and 128–256 (scale level 7) days. For example,

the transformed time series at scale level 4 (corresponding to cycle lengths of 16–

32 days) approximately covers monthly stock price periodicities. iii) Subsequently,

the transformed series are circularly shifted to align the wavelet coefficients with the

effective sequence of events. iv) After shifting, the wavelet transforms are subsam-

pled to obtain the 1,250 data points with closest proximity to the rebalancing date

(corresponding to an estimation window of approximately five years). v) Finally, the

covariance matrix for a particular scale is derived from this subsampled series. Port-

folio weights are obtained using the scale covariance matrix as input to the minimum

variance optimization problem in formula 14. Optimal portfolio weights are derived

for each individual timescale. This results in portfolio weights for seven different

scale portfolios at each rebalancing date (seven levels of decomposition).

It is important to highlight and discuss some critical aspects of this procedure in

more detail:

First, I use a daily rebalancing period because this periodicity corresponds to the

sampling rate of the original data. This periodicity lies outside the frequency band

for which portfolio dynamics are studied here (Nyquist frequency). Therefore, daily

rebalancing (at least partially) prevents the dynamics of the rebalancing procedure

from being mixed with portfolio dynamics. Nevertheless, a bias will remain due to

the effects of aliasing32.

32In signal processing, aliasing describes the effect of misidentifying a signal frequency because of
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Second, limiting the raw data sample prior to applying wavelet filtering prevents

future observations entering wavelet coefficients, i.e., observations made after the

rebalancing date (filtration). At the same time, no observations prior to the rebalanc-

ing date have been excluded. Hence, the entire set of past observations (information)

is available for deriving the wavelet coefficients.

Third, applying circular shifting is necessary because a Least Asymmetric (LA)

wavelet filter is used for wavelet decomposition. The LA filter is a non-zero phase

filter. As a result, coefficients are not properly aligned with the effective sequence of

events after transformation. Circular shifting ensures that coefficients, and thus co-

variance estimates, are in sync. Note that the circular shift is only necessary because

a subset rather than the full wavelet series is used to estimate the covariance matrix.

Finally, the presented procedure improves estimates of the scale covariance matrix.

Instead of reducing the time series before wavelet transformation, it applies wavelet

transformation first and then shortens the time series to match the estimation win-

dow (used to estimate the covariance matrix). This procedure allows incorporating

additional information to derive wavelet coefficients. As a result, the coefficients at

the beginning of the estimation window are no longer affected by boundary effects

(see section 3.2). This procedure improves the covariance estimation compared to an

approach where the two steps are applied in reverse order (i.e., first subsampling data

and subsequently using wavelet transformation). Despite this improvement in esti-

mation, coefficients near a rebalancing date remain subject to boundary effects. This

bias has to be taken into account in the unbiased covariance estimator of formula 8.

Note that an even better covariance estimate can be achieved if all coefficients are

retained for estimating the covariance matrix. However, to compare the models and

to account for non-stationarities, the size of the estimation window is fixed to 1,250

data points. While the presented technique for deriving scale portfolios is rather

complex, it ensures that no future information enters the estimation of scale-based

covariance matrices (out-of-sample restriction). At the same time, it minimizes the

covariance matrix estimation bias.

an insufficient sampling rate. As a result, higher frequency components of the signal cannot be captured
accurately (leading to distortion or errors).



154 CHAPTER III. WAVELET-BASED PORTFOLIO OPTIMIZATION

Comparison of Scale-Decomposed Variance

The returns of the scale portfolios can be derived directly from the portfolio weights

obtained in the previous steps. Let PJj refer to the portfolio optimized for dynamics

at timescale λj . For example, portfolio PJ1 minimizes variance at timescale λ1.

Similarly, portfolio PJ2 is optimized for stock price fluctuations at timescale λ2. In

total, seven portfolios up to timescale λ7 are constructed, i.e. {PJj ; j = 1, . . . , 7}.
The returns of these individual scale portfolios need to be decomposed by wavelet

decomposition once again (section 4.4). Using the same decomposition level J = 7
as before yields seven scale variances

{
ṽ2
PJj

(λk) ; j = 1, . . . , 7; k = 1, . . . , 7
}

for

each individual scale portfolio {PJj ; j = 1, . . . , 7}. These variances enable testing

whether scale portfolios are effective in minimizing variance (volatility) at a targeted

timescale. Comparing scale variances among portfolios now allows assessing the

validity of the main hypothesis of this study, i.e., that scale portfolio optimization

reduces variance for the respective timescale. Following this hypothesis, I expect to

observe the lowest variances (volatilities) where the scale of the portfolio and the

scale of the variance measure coincide, i.e. where j = k.

Table III.4 presents scale-decomposed variances for the individual scale portfolios.

Note that scale variance ṽ2
PJj

(λk) is normalized by multiplication with the scale-

level-dependent factor 2j−1.33 Multiplication with the scaling factor has no implica-

tions for interpretation but allows for better visual comparison of results.

The description "Wavelet Covariance Estimator Portfolios" groups the seven scale

portfolio strategies {PJj ; j = 1, . . . , 7}. The subscript of each portfolio corresponds

to the scale level return dynamics for which the portfolio is optimized. For example,

scale portfolio PJ1 minimizes variance at scale level 1.

33This multiplication factor derives from the scaling properties of a Brownian motion.
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Table III.4: MODWT-decomposed variance of conventional time domain and
scale-based (wavelet-based) minimum variance portfolios, covering the period
March 29, 1986 to December 30, 2016 (daily rebalancing).

Conv. covariance Wavelet covaraiance estimator
estim. portfolios portfolios

Scale
Level

Period
interval

P0.5y P1y P5y PJ1 PJ2 PJ3 PJ4 PJ5 PJ6 PJ7

J1 2 - 4 43.92 44.29 48.76 48.80 50.60 52.08 54.78 57.96 60.57 64.45
(0.028) (0.028) (0.031) (0.031) (0.032) (0.033) (0.035) (0.038) (0.039) (0.042)

J2 4 - 8 44.17 44.73 49.79 51.90 50.89 51.02 51.67 55.46 56.73 59.54
(0.024) (0.024) (0.027) (0.028) (0.028) (0.027) (0.028) (0.030) (0.030) (0.032)

J3 8 - 16 42.79 42.78 44.64 48.07 45.13 44.11* 44.34* 47.22 50.10 55.38
(0.025) (0.024) (0.025) (0.027) (0.025) (0.024) (0.025) (0.026) (0.028) (0.031)

J4 16 - 32 39.60 39.41 39.33 43.37 40.73 37.68** 37.15** 38.40* 38.77* 44.05
(0.022) (0.022) (0.022) (0.024) (0.022) (0.021) (0.020) (0.021) (0.020) (0.024)

J5 32 - 64 41.58 42.15 40.66 43.93 42.28 39.45 37.21* 39.95 44.08 48.83
(0.023) (0.024) (0.022) (0.024) (0.023) (0.022) (0.020) (0.022) (0.025) (0.028)

J6 64 - 128 43.68 43.71 38.83 41.76 38.58 37.38 37.91 37.40 47.35 45.62
(0.023) (0.023) (0.020) (0.021) (0.020) (0.020) (0.020) (0.019) (0.024) (0.026)

J7 128 - 256 45.35 46.05 40.61 45.42 37.59 37.77 34.56 36.75 42.04 49.69
(0.028) (0.028) (0.025) (0.027) (0.023) (0.024) (0.019) (0.020) (0.023) (0.029)

Notes: Conventional time domain portfolios P0.5y , P1y , and P5y are constructed using half-yearly, yearly, and 5-
yearly estimation windows, respectively; portfolio PJ1, PJ2, . . . , PJ7 refer to the scale portfolios optimized for scale
variance at scale level 1–7 and are calculated using an estimation window of approximately 5 years; each row specifies
the scale variance of these portfolios at a specific scale level, where J1, J2, . . . , J7 refer to scale levels 1–7. Scale
variance is multiplied by the scale-level-dependent factor 2j−1×106; period intervals designate the periods (in days)
corresponding to a certain scale level; grey-shaded areas indicate lowest scale variances; the null hypothesis of the
test statistics states that ṽ2

PJ1
(λk) = ṽ2

PJj
(λk) for j 6= k (two-sided test). However, significances are only reported

where ṽ2
PJ1

(λk) > ṽ2
PJj

(λk); standard errors are multiplied by the scale-level-dependent factor
√

2(j−1) × 109 and
depicted in parentheses.
*, **, and *** indicate rejection of the null hypothesis of the test statistics at the 1%, 5%, and 10% level of signifi-

cance, respectively.

Table III.4 compares variances of these scale portfolios at each individual scale level

(row-by-row). The grey boxes indicate the lowest variances among the group of

scale portfolios at a particular timescale. In addition to this qualitative comparison,

I further test for variance equality. The variance of portfolio PJ1 serves as a bench-

mark against which the variances of all other portfolios are tested. Thus, the null

hypothesis of the test statistics states that — at timescale λk — the variance of port-

folio PJ1 optimized for timescale λ1 is identical to the variance of another portfolio
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PJj optimized for timescale λj (i.e. ṽ2
PJ1

(λk) = ṽ2
PJj

(λk), where j 6= 1). The

alternative hypothesis states that the variances between these portfolios are different

(i.e. ṽ2
PJ1

(λk) 6= ṽ2
PJj

(λk), where j 6= 1). The choice of comparing all scale port-

folios to PJ1 is motivated by the fact that the highest variance contribution stems

from dynamics at the lowest timescale (see section 6.2). If stock returns do not ex-

perience different dynamics across timescales, there should be no differences among

the variances of the different portfolios.

The test for variance equality uses the Gaussian standard errors introduced in sec-

tion 3.4. In general, tests for which the Gaussian distributional assumption was em-

ployed showed less significant results than the corresponding tests using the chi-

square distributional assumption. Thus, Table III.4 only displays the more stringent

(robust) results using the test in formula 11.

Table III.4 illustrates that portfolioPJ1 exhibits the lowest variance among all wavelet

covariance estimator portfolios at scale level 1 (row 1). These results are consistent

with the findings of Berger (2016). Comparison of the variance against the remaining

portfolios shows that this difference is highly significant. For the sake of readability,

Table III.4 only presents test results where variances are found to be significantly

lower than the benchmark portfolio.34 Hence, even though portfolio PJ1 exhibits

significantly lower variances than the remaining portfolios, these results are not re-

ported in Table III.4.

Note that portfolio PJ1 does not dominate other strategies at higher scale levels. At

these timescales, portfolios optimized with respect to lower scale dynamics prevail.

For example, at scale level 4, variances of portfolio PJ3 and PJ4 are significantly

lower (at 5% level of significance) compared to the variance of portfolio PJ1. In

general, the lowest variance is observed for portfolios optimizing fluctuations within

the same frequency band over which variance is measured. This is where the scale

of the portfolio and the scale of analysis coincide (diagonal elements). This finding

demonstrates that it is possible to construct portfolios that minimize volatility at a

certain timescale and thus supports the main hypothesis of this study.

34If results were reported for both sides of the test, nearly the entire upper triangular part of Table III.4
would show significances. Listing all these significances would make it more difficult to interpret the
results. Consequently, the test in Table III.4 is a two-sided test, where only significant deviations at left
tail of the benchmark distribution are reported.



6. EMPIRICAL ANALYSIS 157

The fact that there is no dominating strategy in Table III.4 substantiates the assump-

tion that individual stocks follow timescale (cross-)dynamics. If stock behavior or

interaction was invariant over different timescales, either all portfolios would show

the same variances (due to equal portfolio weights), or the variance ranking of port-

folio strategies would remain constant over different scale levels (and thus produce

the aforementioned dominant strategy).

However, the results must be considered with caution. First, only some variances ex-

hibit significant deviations and only with a relatively modest confidence level of 5%.

Nevertheless, these results are relatively strong given that portfolios were optimized

with respect to the same small set of underlying stocks. Second, results are less

conclusive for observations beyond scale level 5. At these frequencies, the lowest

variance is no longer observed for portfolios of approximately matching timescale.

This ambiguity might be due to two reasons:

First, covariance matrix estimates at higher scales are less representative due to fewer

observations of long-cycle periods. For example, scale level 6 covers quarterly to

half-yearly frequencies. Given that the estimation window for calibrating the co-

variance matrix comprises approximately five years of data, there might be too few

observations for extracting long frequency dynamics.

Second, stock prices contain less information at higher scales and show weak time-

scale-dynamics within these frequency bands. As a result, portfolio optimization

might produce less reliable strategies. This would agree with the above variance

analysis (section 6.2), which found that most variance contribution can be attributed

to the first four timescales. Higher timescale-dynamics only contribute little to over-

all variance.35 Compared to shorter-term dynamics, long-term fluctuations appear to

be less pronounced and more random.

While the first explanation claims that estimation errors are responsible for the incon-

clusive results at higher timescales, the second explanation implies that the energy of

timescale dynamics is limited to shorter frequencies. Section 6.4 shows that extend-

ing the estimation window reduces variances at higher scale levels. This indicates

35Even for normalized scale variance (with respect to its scale level) the relative variance contribution
is generally subpar.
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that the inconclusive results for higher timescales are more likely caused by higher

estimation errors.

The results in Table III.4 thus support the assumption that stock prices exhibit time

and frequency characteristics and are consistent with the above findings (sections 6.1

and 6.2). Remarkably, wavelet covariance estimator portfolios exhibit significantly

different scale variances even though they all employ the same optimization method-

ology and the same underlying dataset (only the timescale of the data varies). The

fact that scale variance differs significantly between the portfolios despite using the

same data strongly indicates the existence of frequency dynamics in stock prices.

Accordingly, a stock should not be assessed solely based on its time dimension. Fre-

quency characteristics should be given equal consideration. A stock can have prop-

erties that are desired at one timescale but undesired at others. Investors’ preferences

define how these different timescale features are related. Consequently, the invest-

ment horizon should be considered as an additional dimension in an investor’s utility

function. This study thus comes to a similar conclusion as Gressis et al. (1976).

Besides scale portfolios, Table III.4 shows the scale-by-scale decomposition of port-

folio variance using conventional covariance estimates for optimization ("Conven-

tional Covariance Estimator Portfolios"). These portfolios rely on the covariance

estimates obtained from undecomposed stock returns. Subscripts in portfolio nota-

tion refer to the size of the estimation window used to derive the covariance matrix.

Correspondingly, the covariance matrices studied in Table III.4 are based on half-

yearly (P0.5y), yearly (P1y), and five-yearly (P5y) estimation intervals.

At lower timescales, conventional estimator portfolios outperform wavelet covari-

ance estimator portfolios in terms of risk optimization. Among all tested portfolios,

these portfolios exhibit the lowest variance. But even for higher scale levels, con-

ventional portfolios perform reasonably well. Variance lies somewhere between the

values of short- and long-term scale portfolios.

These low variances can be explained by the structure of conventional portfolios.

A portfolio optimization strategy using conventional covariance estimators is tanta-

mount to an optimization method minimizing variance across all timescales. The
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dynamics of each timescale are combined and effectively weighted by their contri-

bution to overall variance. This method can therefore be interpreted as a variance-

contribution-weighted portfolio strategy. This helps to explain why conventional

covariance estimator portfolios perform reasonably well across several scale levels.

Within-group comparison of conventional covariance estimator portfolios reveals

that the size of the estimation window impacts portfolio variance at different scale

levels. The smallest scale variances are achieved for portfolios using short estima-

tion windows at low scale levels and long estimation windows at high scale levels. A

widening of the estimation window seems to allow capturing longer cycle periods.

The reason for observing decreasing portfolio variance at higher timescales for port-

folios with longer estimation intervals can most likely be attributed to the (implicit)

filtering incurred by the extension of the estimation window. Long-term effects are

included (attenuated) with longer estimation windows while non-stationarities are

smoothed. Therefore, a longer estimation window helps to construct more stable co-

variance estimates and to include long-term dynamics. This explains why portfolios

with short estimation intervals outperform portfolios with long estimation intervals

at low timescales, whereas portfolios with longer estimation intervals perform better

at higher timescales.

It is reasonable to assume that results for scale portfolios might be similarly affected

by the specified estimation window. To exclude the possibility of falsely attributing

the effects of variance reduction to the effects of scale optimization (rather than the

calibration of the estimation window), several different sizes of estimation windows

were also tested for the scale portfolios. However, findings remained unchanged ir-

respective of the estimation window (see section 6.4). Lowest scale-variances were

generally observed for portfolios optimized for dynamics of matching timescale.

Consequently, the estimation window has no effect on the general relationship be-

tween scale variance and the ranking of portfolio optimization strategies. The size of

the estimation window can thus be excluded as the main driving factor of timescale

variance minimization.
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Adjustment of Sampling Intervals

Wavelet decomposition of scale portfolio returns is a powerful technique for analyz-

ing the impact of scale portfolio optimization. However, analysis of scale portfolio

returns with wavelet decomposition also shows some deficiencies.

One caveat of the analysis in Table III.4 is that portfolio strategies are decomposed

with the same filtering technique as that used to construct scale portfolios. Note that

portfolio strategies were tested out-of-sample and no data-generating processes were

imposed by wavelet decomposition. However, it might be argued that the observed

scale variance structures emerge due to the lacking separation between the analysis

and the construction method (model testing bias). In addition, the analysis in Ta-

ble III.4 is also complex and the concept of wavelet variance is difficult to interpret.

An alternative method of multiscale analysis is to study portfolio returns using differ-

ent sampling intervals (e.g., daily, weekly, or monthly return intervals). The choice of

sampling interval highlights fluctuations at a particular timescale (with a certain con-

tamination). This approach helps to substantiate the findings obtained from wavelet

decomposition in Table III.4.

There are three main benefits of reviewing the results in Table III.4 with this tech-

nique:

First, the underlying data is not filtered or transformed. Only the sampling interval

over which returns are compiled is changed. Hence, the analysis is independent of

the frequency decomposition used to construct the portfolio strategies. If findings

for the sampling interval technique are consistent with results from wavelet analysis,

the presence of a model bias can be refuted.

Second, the effects of scale portfolio optimization can be studied for aggregated

frequency dynamics. This is relevant because variance reductions at a particular

timescale are negligible if they are superimposed by other frequency dynamics. An-

alyzing scale portfolio returns with different sampling intervals reveals whether pos-

sible optimization effects are strong enough to also capitalize on reducing sampling

interval volatility.

Third, the method is more intuitive. Researchers and practitioners alike are familiar

with measuring variance over different sampling intervals in the time domain. For
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example, in risk management, variance and other risk measures are often considered

over multiple horizons. Therefore, the method provides a more intuitive representa-

tion of risk at different timescales. Moreover, it is a heuristic approach to analyzing

the effects of scale portfolio optimization.

Despite these useful properties, the sampling interval approach also has some major

deficiencies (which is why wavelet decomposition is used in the first place). In gen-

eral, it is a less powerful technique than wavelet decomposition as it does not allow

for a similarly seamless time-timescale decomposition. It also adds some fundamen-

tal flaws to the analysis (see Gençay, Selçuk & Whitcher, 2001b):

First, an increasing sampling interval significantly reduces the number of available

observations. Hence, information for analyzing higher timescales is lost. Second, the

estimated variance critically depends on the specific sampling date used. A changing

sampling date may alter the results of analysis (non-shift invariance). Third, obser-

vations at a particular sampling frequency may be blended by periodicities outside

the targeted frequency interval (aliasing).

In light of these advantages and disadvantages, the results in Table III.4 will subse-

quently be reviewed using the time domain method (temporal aggregation).

Table III.5 presents descriptive statistics of scale portfolios using varying data sam-

pling intervals of raw stock returns (daily/weekly/monthly/quarterly/yearly data).

The analysis shows that scale portfolio volatility varies with respect to the sampling

interval employed. For a given sampling interval, the lowest volatility is generally

observed for the portfolio for which the scale approximately matches the sampling

interval. For example, for daily data, the lowest volatility is reported for the scale

portfolio optimized with respect to processes of scale level 1 (portfolio PJ1). This

scale levels corresponds to periodicities of two to four days. On the other hand,

lowest standard deviation at a monthly sampling interval is observed for portfolios

optimized with respect to monthly scale dynamics (portfolio PJ4).
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Table III.5: Descriptive statistics of conventional time domain and scale-based
(wavelet-based) minimum variance portfolios for different sampling intervals,
covering the period March 29, 1986 to December 30, 2016 (daily rebalancing).

Conv. covariance
estim. portfolios

Wavelet covariance estimator
portfolios

P0.5y P1y P5y PJ1 PJ2 PJ3 PJ4 PJ5 PJ6 PJ7

Panel A: Daily sampling interval

Mean (%) 9.71 9.91 11.03 11.32 10.54 10.06 10.63 10.70 10.27 10.74
Volatility (%) 14.63 14.66 15.24 15.49 15.45 15.52 15.76 16.24 16.60 17.17
Sharpe ratio 0.66 0.68 0.72 0.73 0.68 0.65 0.67 0.66 0.62 0.63
Skewness -1.30 -1.64 -1.45 -1.31 -1.50 -1.32 -1.14 -1.05 -1.00 -1.03
Kurtosis 36.76 47.04 46.73 40.38 53.67 48.92 43.58 33.01 27.16 29.05
Obs. 8,283 8,283 8,283 8,283 8,283 8,283 8,283 8,283 8,283 8,283

Panel B: Weekly sampling interval

Mean (%) 9.69 9.86 10.89 11.23 10.37 9.82 10.38 10.47 10.03 10.45
Volatility (%) 14.30 14.16 14.06 14.69 14.15 13.77 14.00 14.46 14.98 15.66
Sharpe ratio 0.68 0.70 0.77 0.76 0.73 0.71 0.74 0.72 0.67 0.67
Skewness -1.05 -1.19 -0.84 -0.87 -0.86 -0.69 -0.82 -0.68 -0.79 -0.42
Kurtosis 9.72 11.65 8.83 9.28 9.03 7.82 8.75 7.71 8.54 7.08
Obs. 1,656 1,656 1,656 1,656 1,656 1,656 1,656 1,656 1,656 1,656

Panel C: Monthly sampling interval

Mean (%) 10.10 10.34 11.41 11.76 10.83 10.26 10.83 10.67 10.47 10.97
Volatility (%) 14.46 14.45 14.19 14.71 14.11 13.93 13.59 13.44 14.69 15.78
Sharpe ratio 0.70 0.72 0.80 0.80 0.77 0.74 0.80 0.79 0.71 0.70
Skewness -0.97 -1.15 -0.67 -0.75 -0.64 -0.47 -0.52 -0.46 -0.57 -0.79
Kurtosis 6.90 8.95 5.81 6.24 5.50 4.92 5.03 4.97 6.23 7.40
Obs. 380 380 380 380 380 380 380 380 380 380
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Table III.5: (continued)

Conv. covariance
estim. portfolios

Wavelet covariance estimator
portfolios

P0.5y P1y P5y PJ1 PJ2 PJ3 PJ4 PJ5 PJ6 PJ7

Panel D: Quarterly sampling interval

Mean (%) 10.13 10.29 11.41 11.77 10.79 10.20 10.85 10.77 10.27 10.98
Volatility (%) 14.75 14.77 14.82 15.35 14.56 14.53 14.40 14.35 14.44 16.19
Sharpe ratio 0.69 0.70 0.77 0.77 0.74 0.70 0.75 0.75 0.71 0.68
Skewness -0.88 -0.88 -0.58 -0.65 -0.51 -0.37 -0.50 -0.67 -0.79 -0.62
Kurtosis 5.84 6.26 4.67 4.78 4.75 4.18 4.39 4.52 5.26 7.38
Obs. 126 126 126 126 126 126 126 126 126 126

Panel E: Yearly sampling interval

Mean (%) 9.95 10.18 11.19 11.50 10.57 9.90 10.68 10.57 10.03 10.65
Volatility (%) 14.24 14.84 13.30 13.64 13.25 12.60 13.11 13.21 12.32 13.11
Sharpe ratio 0.70 0.69 0.84 0.84 0.80 0.79 0.81 0.80 0.81 0.81
Skewness -0.29 0.24 -0.37 -0.27 -0.37 -0.43 -0.45 0.10 -0.94 0.01
Kurtosis 3.66 3.13 3.12 2.97 3.12 3.71 3.25 2.82 4.20 3.41
Obs. 31 31 31 31 31 31 31 31 31 31

Notes: Conventional time domain portfolios P0.5y , P1y , and P5y are constructed using half-yearly,
yearly, and 5-yearly estimation windows, respectively; portfolios PJ1, PJ2, . . . , PJ7 refer to the scale
portfolios optimized for scale variance at scale level 1–7 and are calculated using an estimation window
of approximately 5 years; mean and volatility are annualized.
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In correspondence with previous findings, scale portfolio strategies mainly minimize

variance at the timescales for which portfolios are optimized. However, similar to

analysis using wavelet transformation in Table III.4, results become less conclusive

for higher sampling intervals such as quarterly or yearly estimations (approximately

scale levels 5/6 and 7). Again, this could be due to a lower number of observations or

because longer-term timescale dynamics contain less information. In general, results

therefore support the previous findings from wavelet analysis (Table III.4).

Further, Table III.5 shows that portfolio PJ1 demonstrates the highest Sharpe ratios

compared to the other scale portfolio strategies at all sampling intervals. It could be

argued that no benefit is gained from scale-based investment strategies because the

high volatility of portfolio PJ1 for lower sampling rates might be compensated for

by a return premium.

However, this interpretation ignores four important aspects: First, minimum vari-

ance portfolios are optimized with respect to variance. Therefore, variance (volatil-

ity) should be the main consideration when assessing the effectiveness of a portfolio

strategy. Second, the estimation of mean returns is accompanied by higher measure-

ment errors. The Sharpe ratio might thus be biased. Third, the return premium might

be due to lower skewness and higher kurtosis. Both characteristics are observed for

portfolio PJ1 at higher sampling frequencies. Finally, deviations in Sharpe ratio are

insignificant. Therefore, findings for the Sharpe ratio do not contradict the effective-

ness of scale-based minimum variance portfolio optimization.

Analysis of Portfolio Weights

Next, I study the weights of stocks in the different scale portfolios. Figure III.3

demonstrates the portfolio composition of portfolio strategies PJ1, PJ3, and PJ5.

The left-hand side of the figure shows the portfolio weights of the different strategies

over the observation period. The right-hand side presents the distribution of portfolio

weights over the entire period. This distribution is approximated by a kernel density

estimation.
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Figure III.3: Portfolio weights of scale-based (wavelet-based) minimum vari-
ance portfolio strategies optimized for scale level 1 (PJ1), scale level 3 (PJ3),
and scale level 5 (PJ5), covering the period March 29, 1986 to December 30,
2016 (daily rebalancing). Notes: Left panel: portfolio weights over time; the
color code of portfolio weights ranges from white (small weight) to magenta
(large weight); right panel: the portfolio weights distribution approximated by
kernel density; vertical lines indicate mean weights.
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Composition between the three portfolios differs significantly at the beginning of the

observation period. While portfolio PJ1 shows a relatively diverse investment in dif-

ferent stocks, portfolio PJ5 is highly concentrated in only few stocks. For example,

in the period from 1990 to 2002, portfolio PJ5 shows a particularly high exposure to

Exxon Mobil with almost 60% of the portfolio weight being allocated to that stock.

In contrast, Portfolio PJ1 displays no similar concentration in any stock. Portfolio

PJ3 lies somewhere in between these two portfolios. While portfolio PJ3 exhibits

lower exposure to Exxon Mobil than scale portfolio PJ5, it has a significantly higher

exposure than portfolio PJ1. This indicates that the benefit of diversification con-

tributed by Exxon Mobil gradually increases with the investment horizon.

Interestingly, the composition of the three portfolios becomes more similar at the end

of the observation period. This suggests that the differences in stock price processes

across different timescales are less pronounced in the second part of the sample pe-

riod.

Another considerable observation is that PJ5 displays less stable portfolio weights

than its lower-scale counterparts. Indeed, analysis of average turnover (not shown)

revealed a substantial increase in turnover from portfolio PJ1 (1.39%) to portfolio

PJ5 (4.78%). These findings contradict general intuition, that portfolios focusing on

long-term cycle periods are more stable. The increase in average turnover is most

likely due to a lower signal-to-noise ratio for higher timescales. As a result of higher

noise contamination, the covariance matrix of the high-scale portfolio is likely to be

less stable than its lower timescale counterparts.

In order to ensure the consistency of results, I tested two different approaches to in-

creasing the stability of the covariance matrix for high-scale portfolios: soft thresh-

olding and extension of the estimation interval.

Soft thresholding smooths wavelet coefficients and sets lower wavelet coefficients

to zero see Gençay et al. (2002). This method is comparable to applying shrinkage

to the covariance matrix. In contrast, for the extension of the estimation interval, a

larger estimation window is used to derive the covariance matrix at higher timescales

(see section 6.4). Both approaches resulted in more stable covariances and smaller

turnover ratios. Average turnover for the portfolio PJ5 with soft thresholding and
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estimation interval extension reduced to 2.94% and 3.68%, respectively.36 These

findings support the hypothesis that the relative instability of portfolio weights is

due to higher measurement errors at higher timescales. It is important to view re-

sults in light of the larger amount of noise that is contained in the signal at higher

timescales. Covariance at higher timescales should thus not be considered without

proper stabilization procedures or sufficiently large estimation intervals.

Crisis and Non-Crisis Periods

Sections 6.1 and 6.2 have shown that stocks are characterized by varying time and

frequency characteristics during crisis and non-crisis periods. Therefore, Table III.6

separates the observation period and presents the variance of the different portfolios

during crisis and non-crisis market states.37 Again, tests statistics indicate whether a

certain scale portfolio exhibits significantly lower volatility compared to the bench-

mark portfolio PJ1. An F -test is applied to test for equality of variances.

The sampling volatility structure of wavelet covariance estimator portfolios for both

states are consistent with observations in Table III.5. Portfolios whose scale closely

resembles the frequency of the sampling interval exhibit comparably low volatility

(diagonal structure). While differences in volatility are significant for observations in

non-crisis periods (Panel B), results for crisis periods (Panel A) are less conclusive.

However, the insignificance in results for crisis periods may be due to the smaller

number of observations.

36Note that the latter method is generally prioritized since it is considered a less intrusive method.
37The same time intervals as in section 6.2 are thereby used for the division of the time series into

crisis and non-crisis periods.
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Table III.6: Annualized volatility of conventional time domain and scale-based
(wavelet-based) minimum variance portfolios for crisis and non-crisis periods,
covering the period March 29, 1986 to December 30, 2016 (daily rebalancing).

Conv. covariance
estim. portfolios (%)

Wavelet covariance estimator
portfolios (%)

Sampling
interval

Obs. P0.5y P1y P5y PJ1 PJ2 PJ3 PJ4 PJ5 PJ6 PJ7

Panel A: Crisis

Daily 2,431 19.87 20.03 20.88 20.97 21.36 21.58 21.95 22.23 22.68 23.52
Bidaily 1,215 20.18 20.43 21.30 21.39 21.86 21.87 22.05 22.22 22.31 22.34
Weekly 486 19.20 19.26 19.26 19.79 19.60 19.22 19.78 20.18 21.15 21.56
Biweekly 243 18.15 18.53 17.57 18.33 17.69 17.34 17.20 17.56 18.46 20.50
Monthly 121 18.42 18.49 17.50 18.30 17.63 17.34 17.17 16.93 18.53 20.60
Bimonthly 59 17.73 18.23 16.52 17.04 16.37 16.01 16.21 15.94 17.69 19.67
Quarterly 39 19.18 19.37 17.33 18.44 16.88 16.74 16.58 15.47 18.75 19.48
Half-yearly 19 16.44 18.21 14.95 15.57 15.30 15.36 14.56 12.42 15.44 18.22
Yearly 9 16.95 18.88 12.14 13.55 11.46 11.85 12.83 10.78 13.16 10.28

Panel B: Non-Crisis

Daily 5,835 11.78 11.72 12.16 12.52 12.18** 12.14** 12.30 12.96 13.29 13.69
Bidaily 2,917 11.87 11.78 12.33 12.87 12.34** 12.11*** 12.06*** 12.81 12.98 13.52
Weekly 1,167 11.54 11.40 11.67 12.30 11.71* 11.45** 11.22*** 11.62* 11.97 12.85
Biweekly 583 11.61 11.20 11.36 11.95 11.38 11.06* 10.75** 11.27 11.50 12.25
Monthly 291 11.63 11.20 11.16 11.79 11.20 10.98 10.62* 10.97 11.72 12.17
Bimonthly 142 11.98 11.77 11.56 11.97 11.56 11.73 11.10 11.37 11.78 12.27
Quarterly 94 11.09 10.84 11.54 12.29 11.34 11.01 10.40 10.76 10.14* 10.78
Half-yearly 46 12.36 12.14 11.17 12.28 11.33 10.62 10.36 10.65 9.10 10.32
Yearly 23 12.42 13.31 13.73 15.01 13.56 12.36 11.22 11.53 9.87* 10.95

Notes: Conventional time domain portfolios P0.5y, P1y, and P5y are constructed using half-yearly, yearly, and 5-
yearly estimation windows, respectively; portfolios PJ1, PJ2, . . . , PJ7 refer to the scale portfolios optimized for
scale variance at scale level 1–7 and are calculated using an estimation window of approximately 5 years; grey-
shaded areas indicate lowest volatilities; the null hypothesis of the test statistics states that the variance of portfolio
PJ1 is equal to the variance of portfolio PJk for k = 2, . . . , 7 (two-sided F -test). However, significances are
only reported where the volatility (variance) of a portfolio {PJk; k = 2, . . . , 7} is lower compared to the volatility
(variance) of PJ1.
*, **, and *** indicate rejection of the null hypothesis of the test statistics at the 1%, 5%, and 10% level of
significance, respectively.

The volatility structure in panel B of Table III.6 appears to be slightly shifted in

favor of higher scale portfolios (right shift). For daily, bi-daily, and weekly peri-

odicities, the lowest volatility is observed for portfolios with higher timescale than

the main hypothesis of this study has suggested (for portfolios PJ3, PJ4, and PJ5,

respectively). Higher-scale portfolios seem to compete with lower-scale strategies in

non-crisis states. This shift might be explained by the fact that long-term trends be-

come more important during calm market periods. As a result, variance reductions at
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higher timescales could surpass reductions at lower timescales. However, the anal-

ysis of wavelet variance (Table III.9 in Appendix B) shows no similar shift in the

diagonal volatility structure. Thus, the shift is more likely due to measurement inac-

curacies. Nevertheless, we cannot completely rule out that the reduction in variance

is caused by an increased relevance of long-term dynamics. Panel B in Table III.6

further indicates that the diagonal volatility structure extends to higher sampling in-

tervals (e.g., the lowest volatility is observed for portfolio PJ6 at a yearly sampling

rate with 5% level of significance). However, when the same analysis is conducted

using wavelet decomposition, findings are still only significant for low timescales

(Table III.9 in Appendix B). For example, the scale level 5 portfolio exhibited no sig-

nificantly lower variance at the corresponding scale level. Consequently, Table III.6

needs to be considered with caution for higher timescales. As for the analysis of the

full period, the effects of scale minimization cannot be confirmed with a reasonable

degree of scientific certainty at higher timescales. Nevertheless, the effectiveness of

scale optimization at lower scales is further substantiated by both methods of analy-

sis (wavelet decomposition and conventional sampling interval).

Again, the discrepancy between analysis using wavelet decomposition and the sam-

pling interval technique can be explained by the fact that wavelets are more accu-

rate filters than conventional time domain methods. Aliasing and the reduction of

the sample dilute the results of the sampling interval technique. However, the gen-

eral structure is consistent with previous results (Tables III.4 and III.5). The lowest

volatilities lie approximately on the diagonal. Furthermore, this diagonal structure

seems to prevail irrespective of the market period. However, results for the crisis

period are not significant.

Summary and Implications of Findings

This section shows that scale portfolio optimization effectively reduces variance at

the corresponding timescale. While it seems trivial at first that portfolio variance

can be minimized for short-, mid-, or long-term processes, these findings have far-

reaching consequences:
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First, they further support the assumption that stock price processes exhibit some

form of scale-dependency. Stock prices are likely to be driven by information het-

erogeneity, by investment heterogeneity, or by both.

Second, performance evaluation and the assessment of portfolio results are timescale-

dependent. Similarly, the diversification potential of an individual stock critically

depends on the investment perspective and on the evaluation approach employed by

an investor. A stock having undesirable characteristics for a portfolio at shorter fre-

quencies might provide high diversification benefits at longer frequencies and vice

versa.

Therefore, investment decisions should consider the timescales over which perfor-

mance is measured. A pension fund for which performance is assessed over a

long-term perspective should factor long-term processes into its investment decision-

making process (the effects of scale optimization are only established up to monthly

frequencies with significance). In contrast, a day-trader might focus on short-term

dynamics. Both investors can achieve better results with respect to their idiosyncratic

investment perspective. This insight might help to explain the enigma of why both

short- and long-term portfolio strategies can be observed in practice.

Third, the results imply that an investor’s utility function should include an additional

dimension in the form of the investment horizon. Note that stock timescale processes

cannot be traded in isolation. A portfolio strategy reducing variance at one timescale

can simultaneously increase variance at other timescales. Utility gains due to risk

reductions at a certain timescale might therefore be offset by losses in utility due

to an increase in variance at other timescales. Thus, the benefit of scale portfolio

strategies is difficult to assess in the absence of a utility function that accounts for

the investment horizon.

Fourth, in contrast to general intuition, high scale portfolios exhibit less stable port-

folio weights. This instability is most likely due to a lower signal-to-noise ratio.

However, increasing the estimation window or applying thresholding methods can

improve the stability of portfolio weights.

Finally, the diagonal volatility structure prevails irrespective of the market phase.

However, differences are not significant for crisis periods.
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6.4 Robustness

The portfolio optimization discussed in the previous section is only subject to no-

short and no-leverage restrictions. However, the effects of scale portfolio optimiza-

tion might only be valid under extreme portfolio allocations. To test for robustness of

results, this section introduces more restrictive portfolio weighting constraints apply-

ing the maximum weighting approach Amw =
{
α ∈ RM | α ∈ [0, b]M , 1Tα = 1

}
from section 4.2.

Table III.7 analyzes constrained portfolios where maximum weights of individual

constituents are restricted to b = 20% (columns 3–9) and b = 10% (columns 10–

16). While panel A displays wavelet decomposed portfolio variances, panel B shows

volatilities derived from sampling interval returns.

Even with weighting restrictions imposed, the same diagonal volatility (variance)

structure as previously stated can be observed. Neither the analysis with wavelet

decomposition (panel A), nor with varying sampling intervals (panel B), deviates

from previous results. Portfolio weight restrictions do not change the interpretation

regarding the effectiveness of scale-based portfolio optimization. Further, differ-

ences in volatility (variance) between portfolios with 20% and 10% thresholds are

generally relatively small. Consequently, the above findings for timescale-optimized

portfolios can be considered to be robust and independent of extreme portfolio allo-

cations.
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Table III.7: MODWT-decomposed variance and annualized volatility of conventional time
domain and scale-based (wavelet-based) minimum variance portfolios using different weight-
ing restrictions, covering the period March 29, 1986 to December 30, 2016 (daily rebalanc-
ing).

Panel A: Wavelet variance decomposition

Minimum variance portfolio with 20% threshold Minimum variance portfolio with 10% threshold

Scale
Level

Period
interval

PJ1 PJ2 PJ3 PJ4 PJ5 PJ6 PJ7 PJ1 PJ2 PJ3 PJ4 PJ5 PJ6 PJ7

J1 2 - 4 4.87 50.80 51.91 53.24 55.36 55.71 61.00 51.72 52.70 53.03 55.15 55.82 56.68 60.35
J2 4 - 8 5.16 50.75 50.45 50.51 53.79 53.11 55.88 53.51 52.48 51.78 52.86 54.00 54.15 56.59
J3 8 - 16 4.80 45.15 44.15* 44.23* 45.84 47.52 51.65 49.60 47.36 46.33* 46.72 48.63 48.85 52.57
J4 16 - 32 4.30 40.84 38.17** 37.70** 38.90* 39.05* 44.54 44.38 42.76 40.36* 39.99* 42.20 41.98 44.70
J5 32 - 64 4.38 42.50 39.86 37.68* 40.96 45.17 49.43 45.37 44.91 41.81 41.53 44.19 47.30 49.59
J6 64 - 128 4.16 38.30 38.14 38.31 38.72 48.38 44.99 43.63 42.37 39.97 40.50 42.07 48.49 46.15
J7 128 - 256 4.49 37.10 37.75 36.55 37.00 41.70 45.37 42.86 37.77 38.06 36.52 37.48 41.74 43.44
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Table III.7: (continued)

Panel B: Sampling interval decomposition

Minimum variance portfolio with 20% threshold (%) Minimum variance portfolio with 10% threshold (%)

Scale
Level Obs. PJ1 PJ2 PJ3 PJ4 PJ5 PJ6 PJ7 PJ1 PJ2 PJ3 PJ4 PJ5 PJ6 PJ7

Daily 8,283 15.46 15.46 15.49 15.60 15.96 16.05 16.67 15.83 15.78 15.73 15.94 16.13 16.21 16.66
Bidaily 4,141 15.29 14.87* 14.82** 14.90* 15.28 15.54 16.13 15.64 15.32 15.21* 15.38 15.64 15.76 16.13
Weekly 1,656 14.67 14.18* 13.90** 14.03* 14.29 14.74 15.36 14.91 14.62 14.27* 14.40 14.74 14.88 15.39
Biweekly 828 13.76 13.30 13.12** 13.11* 13.48 14.26 14.64 14.05 13.80 13.45* 13.57 13.87 14.42 14.64
Monthly 380 14.66 14.06 13.98 13.60 13.57 14.49 15.14 14.70 14.33 14.06 13.97 14.06 14.46 14.70
Bimonthly 190 14.65 13.77 13.88 13.49 13.25 14.31 14.72 14.82 14.12 14.00 13.89 13.99 14.21 14.38
Quarterly 126 15.33 14.56 14.73 14.41 14.15 14.07 15.81 15.56 14.95 14.86 14.92 15.11 14.68 15.45
Half-yearly 63 14.91 14.25 14.12 14.08 13.68 12.81 14.87 14.92 14.31 14.22 14.42 14.19 13.28 14.07
Yearly 31 13.72 13.24 12.92 12.97 12.78 12.14 12.56 14.28 14.04 13.47 14.49 13.95 12.97 13.72

Notes: Conventional time domain portfolios P0.5y , P1y , and P5y are constructed using half-yearly, yearly, and 5-yearly estimation windows, respectively; portfo-
lios PJ1, PJ2, . . . , PJ7 refer to the scale portfolios optimized for scale variance at scale level 1–7 and are calculated using an estimation window of approximately
5 years; Panel A: each row specifies the scale variance of these portfolios at a specific scale level, where J1, J2, . . . , J7 refer to scale levels 1–7. Scale variance is
multiplied by the scale-level-dependent factor 2j−1× 106; period intervals designate the periods (in days) corresponding to a certain scale level; grey-shaded areas
indicate lowest scale variances; the null hypothesis of the test statistics states that ṽ2

PJ1
(λk) = ṽ2

PJj
(λk) for j 6= k (two-sided test). However, significances are

only reported where ṽ2
PJ1

(λk) > ṽ2
PJj

(λk). Panel B: each row specifies portfolio volatility obtained from using a different sampling interval; the null hypothesis
of the test statistics states that the variance of portfolio PJ1 is equal to the variance of portfolio PJk for k = 2, . . . , 7 (two-sided F -test). However, significances
are only reported where the volatility (variance) of a portfolio {PJk; k = 2, . . . , 7} is lower compared to the volatility (variance) of PJ1.
*, **, and *** indicate rejection of the null hypothesis of the test statistics at the 1%, 5%, and 10% level of significance, respectively.
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Additional robustness tests were carried out. These included i) altering the analysis

base date, ii) changing portfolio rebalancing intervals, iii) varying the rebalancing

date, and iv) adjusting the covariance matrix estimation window:

1. Results for the analysis of a return series using the sampling interval technique

depend on the chosen base date (non-shift-invariance). Therefore, several base

dates were tested for each analysis in which a sampling interval approach

was applied. Irrespective of the chosen alternative base date, the relation of

volatiles between portfolios (ranking) and the sizes of volatilities display no

major differences (Table III.10 in Appendix B). Therefore, the results for the

sampling interval technique are consistent with respect to the analysis base

date.

2. In addition to a daily portfolio rebalancing period, rebalancing intervals of 2,

4, 8, 16, 32, 128, and 256 days were tested (Table III.11 in Appendix B shows

the results for 4, 32, 64, and 256 days whereas the remain days are not shown).

For almost all portfolios, variance increases with the size of the rebalancing

period. However, variance does not increase proportionally for all portfolios.

Portfolios whose scale most closely resemble the rebalancing period exhibit a

smaller relative increase in variance.38 For example, if a monthly rebalancing

period is established, the portfolio optimized for monthly frequencies (PJ4)
exhibits a smaller relative increase in variance than the remaining portfolios.

This observation can be explained by the fact that portfolio rebalancing itself

inflicts frequency dynamics on portfolio returns. As a result, scale portfolios

optimizing dynamics matching the periodicity of the rebalancing interval more

effectively reduce variations at the given periodicity. The relative increase in

variance is smaller for these portfolios.

For an unbiased study of scale portfolio strategies, this feedback effect should

be excluded from analysis. For this reason, this study resorts to using a daily

rebalancing period to assess relations between portfolio strategies.

38However, no change in the overall variance ranking of portfolios was observed. Lowest sampling
variance was still recorded for the portfolio which closely resembled the periodicity of the sampling
interval (rather than the rebalancing interval).
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3. Altering the portfolio rebalancing date shows no notable change in results

compared to the previous analyses (not shown). This can be explained by the

fact that wavelet decomposition is shift-invariant and not prone to altered start-

ing dates. Because scale portfolios are constructed using wavelet decomposed

series, altering the rebalancing date thus only exerts a minor impact on portfo-

lio optimization. In any case, altering the rebalancing date has no influence on

results when applying a daily rebalancing frequency.

4. Several different estimation window sizes were tested for the wavelet covari-

ance matrix (results not shown; compare Table III.8). With a smaller esti-

mation window, portfolio variance was found to decrease at low timescales.

This reduction in variance can most likely be attributed to better time reso-

lution and to taking into account local characteristics in the time series (e.g.,

non-stationarities). At the same time, variance at higher timescales increased

for all scale portfolios. This increase in variance at higher timescales is most

likely due to less representative and less stable covariance estimates.

In contrast, extending the estimation interval generally reduces variances at

longer timescales. Portfolios considering long-term dynamics are more likely

to suffer from ill-conditioned covariance estimates because of fewer observa-

tions. An extension of the estimation window helps to lessen the impact of

these measurement errors and thus reduces volatility. At the same time, local

features of the signal may be lost.

This sensitivity of the covariance matrix estimate with respect to the estimation win-

dow has some similarities with the considerations of the Heisenberg uncertainty prin-

ciple.39 A larger estimation window allows deriving more stable variance estimates

but simultaneously leads to a loss of local features (e.g., non-stationarities).

Wavelet analysis adapts to the restrictions dictated by the Heisenberg uncertainty

principle by dynamically partitioning the time-frequency plane. I suggest a simi-
39In quantum mechanics, the Heisenberg uncertainty principle asserts that complementary variables,

such as position and moment, of a particle cannot be measured with absolute precision. The more accu-
rately the position of the particle is determined, the less accurately the momentum of the particle is known
and vice versa. In signal processing, it refers to the fact that it is not possible to simultaneously improve
time and frequency resolution (Gençay et al., 2002, p. 99).
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lar specification for the wavelet covariance matrix by using a dynamic estimation

window approach. To this end, I define the size of the estimation window by intro-

ducing an exponential function with base 128 and an exponent j (corresponding to

the scale level of analysis). For scale level j, the estimation window thus comprises

128j business days. The relation between the width of the wavelet filter and the

estimation interval remains constant (so-called constant Q-factor).

Table III.8 presents the wavelet variance of scale portfolios with these dynamically

adjusted estimation windows. Note that the estimation window for the covariance

matrix of scale portfolio PJ7 needs to be reduced due to an insufficient number

of observations. Hence, the highest scale portfolio only uses a shorter estimation

window of 4,096 data points.

Lowest variance is again observed for portfolios optimized with respect to price peri-

odicities (scale) closely matching the scale of the variance estimate (grey diagonal).

The relation between scale investment strategies and the scale variance estimate is

even more evident when applying this adaptive-estimation-window approach. While

the diagonal variances at low timescales only marginally change compared to the

variances in Table III.4, portfolio variance at higher timescales decreases signifi-

cantly.40 These reductions in variance even suffice for portfolios PJ5, PJ6, and PJ7

to display lowest variance among all portfolios at scales 5 to 7. The diagonal struc-

ture for minimal variance (which was previously only observed at low timescales)

is extended to also include higher timescales. Scale-based portfolio optimization

thus effectively reduces variance at longer timescales if a sufficiently large estima-

tion window is used. This property aligns well with the main hypothesis of this

study. Thus, the results for this adaptive-estimation-window approach further sup-

port the findings in the previous section and illustrate the effectiveness of timescale-

optimized investment strategies. I previously used a constant-time-window approach

because of its simplicity and heuristic nature (section 6.3). However, the dynamic-

estimation-window approach presented in Table III.8 generally achieves better re-

sults.

40In contrast, variances increase for some off-diagonal elements.
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Table III.8: MODWT-decomposed variance of adaptive-estimation-window scale portfolio
approach, covering the period March 29, 1986 to December 30, 2016 (daily rebalancing).

Scale
Level

Period
interval

PJ1 PJ2 PJ3 PJ4 PJ5 PJ6 PJ7

J1 2 - 4 46.65 48.51 50.62 53.81 59.95 68.11 721.69
(0.031) (0.032) (0.033) (0.035) (0.038) (0.039) (0.042)

J2 4 - 8 47.54 49.01 49.72 51.56 57.38 62.99 65.37
(0.028) (0.028) (0.027) (0.028) (0.030) (0.030) (0.032)

J3 8 - 16 47.84 45.79 44.63 44.68 48.38 55.86 56.93
(0.027) (0.025) (0.024) (0.025) (0.026) (0.028) (0.031)

J4 16 - 32 45.27 41.49 39.13** 37.86*** 38.09** 44.15 43.08
(0.024) (0.022) (0.021) (0.020) (0.021) (0.020) (0.024)

J5 32 - 64 44.89 43.14 41.70 39.47 38.72 46.74 44.30
(0.024) (0.023) (0.022) (0.020) (0.022) (0.025) (0.028)

J6 64 - 128 47.43 44.09 39.90 39.66 36.48** 40.80 40.36
(0.021) (0.020) (0.020) (0.020) (0.019) (0.024) (0.026)

J7 128 - 256 54.61 44.18 38.35* 36.34* 34.16** 35.43** 35.06**

(0.027) (0.023) (0.024) (0.019) (0.020) (0.023) (0.029)

Estim. window 128 256 512 1,024 2,048 4,096 4,096

Notes: Portfolios PJ1, PJ2, . . . , PJ7 refer to the scale portfolios optimized for scale variance at scale
level 1–7 and are calculated using an adaptive estimation window; each row specifies the scale variance
of the constructed portfolios at a specific scale level, where J1, J2, . . . , J7 refer to scale levels 1–7;
scale variance is multiplied by the scale-level-dependent factor 2j−1× 106; period intervals designate
the periods (in days) corresponding to a certain scale level; grey-shaded areas indicate lowest scale
variances; the null hypothesis of the test statistics states that ṽ2

PJ1 (λk) = ṽ2
PJj

(λk) for j 6= k (two-
sided test). However, significances are only reported where ṽ2

PJ1 (λk) > ṽ2
PJj

(λk); standard errors

are multiplied by the scale-level-dependent factor
√

2(j−1) × 109 and depicted in parentheses.
*, **, and *** indicate rejection of the null hypothesis of the test statistics at the 1%, 5%, and 10%

level of significance, respectively.

The dynamic-estimation-window and the wavelet decomposition seem to comple-

ment each other. A narrower estimation window highlights local features, whereas

a wider estimation window smooths singularities and non-stationarities. The size of

the estimation window acts in a similar way as a filter. Arguably, the estimation win-

dow has a comparable impact on optimization as wavelet filtering. However, even

if this were true, it does not change the general conclusion of this study: Portfolio

risk at a specific timescale can be reduced with proper optimization. Moreover, the
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observation that wider estimation windows lead to better results at higher timescales

similarly insinuates the presence of timescale dynamics in stock returns.

7 Multiscale Portfolio Optimization

So far, I have used the simplifying assumption that investors operate at a specific

timescale and strive to reduce risk over fixed investment horizons. However, a more

realistic assumption is that investors optimize and assess risk over several different

investment timescales. For example, daily variations can be conceived as posing

considerable risk by long-term investors, even if these variations cancel out over the

course of their investment period.

Investors often face heterogeneity in their decision-making process. For example,

a portfolio manager may have to simultaneously satisfy investors with short- and

long-term investment perspectives. Similarly, risk management requires identifying,

evaluating, and prioritizing risk over several investment periods. Consequently, a

portfolio optimization method focusing on a single timescale interval might be un-

suitable for practical applications. Considering that investors have diverse timescale

preferences, the portfolio optimization problem becomes more complex. The effects

of portfolio adjustments must be considered across multiple timescales. Variance

minimization over one frequency band changes risk at all other timescales and vice

versa. Consequently, I introduce a multiscale portfolio optimization strategy that

facilitates simultaneous risk diversification across multiple timescales.

Whitcher, Guttorp and Percival (1999) demonstrated that for appropriate stationary

processes {rp,t} and {rq,t}, the scale-decomposed covariance is given by Cov {rp,t,
rq,t} = Cov

{
Ṽp,J,t, Ṽq,J,t

}
+
∑J−1
j=1 ṽp,q (λj) where Ṽp,J,t and Ṽq,J,t are the scal-

ing coefficients of {rp,t} and {rq,t} at scale level J , respectively. This property al-

lows excluding covariances between scale processes and reduces the dimensionality

of a multiscale portfolio optimization problem. Consequently, a multiscale minimum

variance portfolio strategy — which optimizes risk over several timescales — can be
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expressed as:

α∗ = argmin
α∈A

J∑
j

2j−1θjα(λj)TΣ (λj)α (λj)

= argmin
α∈A

αT

 J∑
j

2j−1θjΣ (λj)

α,

(15)

where Σ (λj) is the scale covariance matrix and α (λj) the portfolio weights at scale

λj .41 The upper limit of the summation J specifies the level of decomposition.

The higher the level of decomposition, the more accurate the optimization for lower

frequency characteristics of the signal.42 The factor 2j−1 serves as a means of nor-

malizing scale variance and corresponds to a standardization factor derived from the

energy distribution of a white-noise process (scaling law).

However, it is not possible to invest in a single-frequency process. Only stocks

(which constitute superpositions of individual frequency processes) are investable.

Hence, the portfolio weights in formula 15 apply equally to every scale covariance

matrix and hence α (λj) = α. The dimension of the weight vector α remains the

same for both the multiscale and the single-scale portfolio optimization. Hence, the

same admissible sets as outlined in section 4.2 can be used.43

Finally, θj =
{
θ ∈ RJ | θ ∈ [0, 1]J , 1Tθ = 1

}
specifies the relative energy that is

attributed to a particular scale within the optimization. This concentration measure

incorporates the multiscale utility function and characterizes the risk relationship be-

tween different timescales in accordance with an investor’s preferences. The method

allows minimizing risk at several timescales and can be adjusted to fit an investor’s

individual scale-risk preferences. The concentration measure thereby serves as a

weighting function for covariance matrices at different timescales. For example, an

investor preferring risk minimization at scale levels 1 and 5 can allocate 50% of rel-

41For simplification, the time index for the covariance matrix and the portfolio weights is omitted.
42At scale level J , the covariance matrix estimation needs to be replaced by the covariance matrix of

the respective scaling coefficients in order to cover the full frequency spectrum.
43In accordance with previous notation, A either represents the long-only or the maximum-weight

admissible set.
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ative energy to scale level 1 (i.e., θ1 = 0.5) and 50% of relative energy to scale

level 5 (i.e., θ5 = 0.5). If the concentration measure is specified as θj = 2−(j−1),

the optimization in formula 15 corresponds to a minimum variance strategy applied

to untransformed returns. If relative energy is attributed to only one timescale, a

single-scale portfolio optimization results (as applied in section 6.3).

Note that other functional forms are possible for multiscale portfolio optimization.

For example, in contrast to the approach in formula 15, a regularization term could

be added to the multiscale minimum variance objective function. This term would

serve as a cost function penalizing high risk concentrations in certain timescales.

However, the formulation in formula 15 allows integrating both conventional mini-

mum-variance optimization and single-scale portfolio optimization into a general-

ized model.

The approach presented here lays the foundation for introducing multiscale invest-

ment strategies. This method helps to include individual timescale preferences in

portfolio decision-making processes. While other research has studied the invest-

ment horizon in multi-period optimization problems, this section provides a new

approach to optimizing the multi-horizon portfolio choice problem.

8 Conclusion

This study has investigated timescale dynamics of stock returns and the implica-

tions of these dynamics for an investor’s portfolio formation process. It has applied

wavelet analysis to decompose the time series into its individual scale components,

which reflect stock return dynamics at a particular timescale. Decomposition has

enabled examining the behavior of stock return interdependencies and variances at

particular timescales. Based on this decomposition, I have developed a portfolio

optimization method that allows minimizing risk at a specific investment timescale.

My empirical results suggest that the scale-based portfolio optimization strategy

minimizes portfolio variance at a targeted timescale. Similarly, results indicate that

stock prices unfold varying timescale characteristics. Nevertheless, these findings
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must be treated with caution because the significance of the presented results is

mostly limited to 5%–10%.

One important implication of the above findings is that a stock’s diversification po-

tential depends on an investor’s investment perspective and evaluation approach.

Hence, the investment timeframe is an important factor for assessing and pricing

stocks. It is thus essential to simultaneously analyze financial assets in the time- and

spectral-domain.

Similarly, the investment timescale is central to portfolio construction and should be

included in deriving the optimal portfolio choice. Portfolio managers should opti-

mize their portfolios in accordance with their investment horizon perspectives and

the horizons over which performance/risk is measured. For example, it might be

sensible for a long-term portfolio manager — whose performance is assessed on a

long-term basis — to more strongly weigh long-term information. In contrast, it

might be more beneficial for a short-term trader — whose performance is measured

on a day-to-day basis — to invest with respect to daily timescale information. Con-

sequently, the investment horizon should be considered as an additional dimension

in an investor’s utility function.

In practice, it is unlikely that market agents optimize their portfolios only over a par-

ticular timescale. Instead, they base their investment decisions on different time

horizons and diversify their portfolios over multiple timescales. This study has

shown that the conventional covariance matrix estimate already provides some (de-

cent) diversification across different timescales. However, I have presented a more

flexible multiscale portfolio strategy, one which can incorporate investors’ selective

timescale preferences. This strategy extends existing multi-horizon portfolio choice

approaches.
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Appendix A

Wavelet Squared Coherence

After the decomposition of variance in formula 4, a natural next step involves deriv-

ing the cross-wavelet transform and the cross-wavelet power. Let rp,t and rq,t spec-

ify two time series with wavelet transforms Wp (λ, τ) and Wq (λ, τ), respectively.

The cross-wavelet transform is defined asWp,q (λ, τ) ≡ Wp (λ, τ)Wq(λ, τ)∗. The

cross-wavelet power spectrum then follows from |Wp,q (λ, τ)|. This measure indi-

cates common power between two series in the time-timescale-space. Analogously

to the wavelet power spectrum, this quantity can be interpreted as a local covariance

measure of the time series for different time and timescales.44

When examining stock return comovements in the time domain, the relationship

between stocks is often considered independently of variance. Similarly, it can be

of interest to examine the interaction patterns between two stocks independently of

cross-wavelet power. The wavelet coherence measure is a useful tool for this pur-

pose. It can be considered as a localized correlation coefficient in the time-timescale-

domain. Following Grinsted, Moore and Jevrejeva (2004), as well as Torrence and

Webster (1999), wavelet coherence is computed as

R2
p,q (λ, τ) ≡

∣∣S (λ−1Wp,q (λ, τ)
)∣∣2

S
(
λ−1|Wp (λ, τ)|2

)
S
(
λ−1|Wp (λ, τ)|2

) , (16)

where S (·) refers to a smoothing operator and 0 ≤ R2
p,q (λ, τ) ≤ 1 (Rua & Nunes,

2009; Torrence & Webster, 1999).45 The smoothing operation is successively ap-

plied to the time and to the scale dimension of the wavelet coherence coefficients
44If the wavelet function is complex, the resulting wavelet transforms are also complex. As a result,

the wavelet transforms can be divided into a real and an imaginary part. In addition to the amplitude, this
property allows deriving the phase for different timescales tan−1 (I {Wp,q (λ, τ)} /<{Wp,q (λ, τ)}).

45Following Torrence and Webster (1999), a suitable smoothing operator for the Morlet wavelet is

Stime (W)|λ =
(
W(λ, τ)∗%−t

2/2λ2

1

)∣∣∣
λ

and Sscale (W)|τ = (W(λ, τ)∗%2Π (0, 6λ))|τ , where

%1, and %2 are normalization constants, and Π is the rectangle function. In practice, the normalization
constants are estimated numerically. The constant 0.6 refers to the scale decorrelation length of the Morlet
wavelet (Grinsted et al., 2004; Torrence & Webster, 1999).
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such that Sscale (Stime (·)), where Stime (·) refers to the smoothing operation in the

time dimension, and Sscale to the smoothing operation in the timescale dimension.46

Following Grinsted et al. (2004) and Torrence and Compo (1998), the statistical sig-

nificance of the wavelet squared coherence can be obtained by applying Monte Carlo

simulation (generation of surrogate matrices).

This study uses finite length return observations. When deriving the wavelet trans-

forms for finite data, the signal is implicitly assumed to be cyclical. As a result,

wavelet transforms at the beginning and at the end of the series are erroneous. This

problem can be mitigated by padding the time series with zeros (Torrence & Compo,

1998). An alternative approach is to reflect the signal at the last data point. This

study uses the second approach.

Nevertheless, the boundary values of the wavelet transforms remain less reliable.

Note that the support of the wavelet function increases with the scale parameter λ.

As a result, the number of wavelet transforms suffering from these edge-effects in-

creases with λ (Madaleno & Pinho, 2014). The cone of influence (COI) defines the

region in the wavelet squared coherence spectrum that is affected by these edge-

effects (boundary conditions) (Torrence & Compo, 1998). This COI must be inter-

preted with caution when analyzing wavelet squared coherence.

46This application of a smoothing operation is analogous to the derivation of coherency in Fourier
transformation. The operation is necessary in order that the wavelet squared coherence is not simply
unity.
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Appendix B

Table III.9: MODWT-decomposed variance of scale-based (wavelet-based)
minimum variance portfolios for crisis and non-crisis periods, covering the pe-
riod March 29, 1986 to December 30, 2016.

Conv. covariance
estim. portfolios (%)

Wavelet covariance estimator
portfolios (%)

Scale
level

P0.5y P1y P5y PJ1 PJ2 PJ3 PJ4 PJ5 PJ6 PJ7

Panel A: Crisis

J1 82.78 84.86 95.82 94.02 101.48 104.87 109.46 111.22 114.99 127.82
J2 84.82 86.13 94.67 95.81 99.16 101.58 102.09 105.68 106.40 108.15
J3 76.20 78.11 80.12 84.19 82.33 80.72 82.51 86.64 94.93 98.61
J4 68.69 69.58 66.20 72.90 68.57 62.55 64.46 66.27 65.48 72.93
J5 61.51 65.84 60.74 65.73 62.79 58.55 58.06 62.55 66.24 67.85
J6 56.62 64.47 55.87 60.45 54.93 51.37 48.43 49.97 59.38 68.00
J7 21.55 23.03 23.77 27.64 21.14 22.85 24.27 26.33 25.74 37.46

Panel B: Non-Crisis

J1 27.70 27.37 29.13 29.93 29.39 30.09 31.99 35.73 37.92 38.05
J2 84.82 27.53 31.15 33.67 30.83** 30.01*** 30.71** 34.57 36.12 39.35
J3 76.20 28.14 29.93 33.10 29.70* 28.93** 28.50*** 30.84 31.48 37.39
J4 68.69 26.89 28.18 31.13 29.16 27.36* 25.80** 26.84** 27.69 32.02
J5 61.51 32.03 32.12 34.69 33.57 31.31 28.33* 30.25 34.48 40.60
J6 56.62 35.12 31.78 34.03 31.81 31.58 33.55 32.17 42.36 36.23
J7 21.55 55.68 47.63 52.84 44.44 44.00 38.84 41.06 48.88 54.84

Notes: Conventional time domain portfolios P0.5y , P1y , and P5y are constructed using half-yearly, yearly, and
5-yearly estimation windows, respectively; portfolios PJ1, PJ2, . . . , PJ7 refer to the scale portfolios optimized for
scale variance at scale level 1–7 and are calculated using an estimation window of approximately 5 years; each
row specifies the scale variance of these portfolios at a specific scale level, where J1, J2, . . . , J7 refer to scale
levels 1–7. Scale variance is multiplied by the scale-level-dependent factor 2j−1 × 106; period intervals designate
the periods (in days) corresponding to a certain scale level; grey-shaded areas indicate lowest scale variances;
the null hypothesis of the test statistics states that ṽ2

PJ1
(λk) = ṽ2

PJj
(λk) for j 6= k (two-sided test). However,

significances are only reported where ṽ2
PJ1

(λk) > ṽ2
PJj

(λk).
*, **, and *** indicate rejection of the null hypothesis of the test statistics at the 1%, 5%, and 10% level of

significance, respectively.
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Table III.10: Annualized volatility of conventional time domain and scale-
based (wavelet-based) minimum variance portfolios using different base date,
covering the period March 29, 1986 to December 30, 2016 (daily rebalancing).

Conv. covariance
estim. portfolios (%)

Wavelet covariance estimator
portfolios (%)

Sampling
interval

Obs. P0.5y P1y P5y PJ1 PJ2 PJ3 PJ4 PJ5 PJ6 PJ7

Panel A:50 day lag

Daily 8,283 14.63 14.66 15.24 15.49 15.45 15.52 15.76 16.24 16.60 17.17
Bidaily 4,141 14.36 14.37 14.76 15.29 14.84 14.79 14.88 15.36 15.82 16.64
Weekly 1,656 14.30 14.15 14.06 14.69 14.14 13.76 13.99 14.45 14.98 15.64
Biweekly 828 13.53 13.49 13.17 13.74 13.25 12.99 13.05 13.42 14.32 15.09
Monthly 380 14.56 14.57 14.22 14.91 14.22 13.94 13.72 13.74 14.40 15.48
Bimonthly 190 14.91 14.76 14.13 14.75 13.92 13.92 13.83 13.64 14.38 15.63
Quarterly 126 15.21 15.32 14.49 15.21 14.26 14.26 13.98 14.29 14.46 16.56
Half-yearly 63 15.49 16.05 15.70 16.23 15.66 15.72 15.19 15.08 15.30 17.30
Yearly 31 16.56 17.23 17.72 18.13 17.71 17.52 16.44 16.51 16.45 18.99

Panel B: 100 day lag

Daily 8,283 14.81 14.83 15.43 15.67 15.64 15.71 15.95 16.44 16.80 17.37
Bidaily 4,141 14.36 14.37 14.76 15.29 14.84* 14.79** 14.88* 15.36 15.82 16.64
Weekly 1,656 14.31 14.32 14.46 15.05 14.52* 14.35** 14.22*** 14.64 15.19 16.26
Biweekly 828 14.16 14.18 14.02 14.63 14.07 13.91 13.63** 13.99 14.46 15.24
Monthly 380 14.53 14.61 14.33 14.87 14.34 14.12 13.79* 14.05 14.81 15.61
Bimonthly 190 13.77 13.96 13.58 14.12 13.43 13.42 12.84 12.98 14.01 15.10
Quarterly 126 14.61 14.62 14.11 14.80 13.97 13.67 12.93 13.13 13.63 14.74
Half-yearly 63 15.19 15.12 14.14 15.01 14.18 13.53 13.28 13.15 13.40 14.77
Yearly 31 14.13 15.02 13.27 13.90 13.12 13.01 13.28 13.01 13.12 11.90

Notes: Conventional time domain portfolios P0.5y, P1y, and P5y are constructed using half-yearly, yearly, and 5-
yearly estimation windows, respectively; portfolios PJ1, PJ2, . . . , PJ7 refer to the scale portfolios optimized for
scale variance at scale level 1–7 and are calculated using an estimation window of approximately 5 years; grey-
shaded areas indicate lowest scale variances; the null hypothesis of the test statistics states that the variance of
portfolio PJ1 is equtal to the variance of portfolio PJk for k = 2, . . . , 7 (two-sided F -test). However, signifi-
cances are only reported where the volatility (variance) of a portfolio {PJk; k = 2, . . . , 7} is lower compared to the
volatitility (variance) of PJ1.
*, **, and *** indicate rejection of the null hypothesis of the test statistics at the 1%, 5%, and 10% level of
significance, respectively.
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Table III.11: MODWT-decomposed variance of scale-based (wavelet-based)
minimum variance portfolios using different rebalancing intervals, covering the
period March 29, 1986 to December 30, 2016.

Rebalancing interval: 4 days Rebalancing interval: 32 days

Scale
Level

Period
interval

PJ1 PJ2 PJ3 PJ4 PJ5 PJ6 PJ7 PJ1 PJ2 PJ3 PJ4 PJ5 PJ6 PJ7

J1 2 - 4 4.88 50.57 52.37 55.01 58.21 60.81 64.13 49.26 50.51 52.28 55.43 59.25 61.20 65.98
J2 4 - 8 5.27 51.62 51.38 51.88 55.61 56.72 59.99 53.31 51.61 51.23 52.38 57.02 57.21 63.21
J3 8 - 16 4.81 45.28 44.11** 44.23** 47.13 49.41 55.00 48.43 45.46 43.94** 44.41** 47.40 50.22 56.97
J4 16 - 32 4.30 40.44 37.71** 36.76** 38.11** 38.52* 44.02 42.65 39.97 37.10** 36.36** 37.73** 38.13* 43.56
J5 32 - 64 4.33 41.75 39.22 37.02* 39.42 44.01 48.62 43.69 42.10 39.28 37.26* 38.27* 41.63 47.31
J6 64 - 128 4.11 37.69 37.13 38.14 36.98 46.36 43.30 41.01 38.02 37.83 37.03 35.44 41.44 42.34
J7 128 - 256 4.42 36.42 37.24 34.77 37.28 40.00 44.05 46.20 38.53 40.12 36.14 37.28 39.64 39.19



8.
C

O
N

C
L

U
SIO

N
187

Table III.11: (continued)

Rebalancing interval: 64 days Rebalancing interval: 256 days

Scale
Level

Period
interval

PJ1 PJ2 PJ3 PJ4 PJ5 PJ6 PJ7 PJ1 PJ2 PJ3 PJ4 PJ5 PJ6 PJ7

J1 2 - 4 4.96 51.06 51.53 55.33 60.51 61.28 66.35 51.78 53.07 53.49 56.37 60.85 60.91 66.19
J2 4 - 8 5.34 51.67 50.67* 52.18 57.82 57.52 62.74 54.21 52.80 52.05 53.00 58.53 58.18 65.05
J3 8 - 16 4.84 45.14 43.79** 44.27** 47.83 50.51 56.61 49.00 46.50 45.89* 45.38* 49.10 50.22 58.00
J4 16 - 32 4.26 40.01 37.19** 36.54** 38.11* 37.74** 42.36 41.30 39.48 37.51* 37.31* 38.89 38.21 45.36
J5 32 - 64 4.37 42.04 39.12 37.48* 38.74 41.58 46.42 44.46 42.33 40.03 38.32* 38.62* 41.81 48.20
J6 64 - 128 4.08 37.90 37.74 36.85 35.49 40.44 42.75 41.19 38.48 38.17 36.55 36.01 38.84 43.96
J7 128 - 256 4.56 38.14 39.45 35.68 37.89 39.95 40.03 43.97 37.66 38.41 34.66 36.75 35.17 34.50

Notes: Portfolios PJ1, PJ2, . . . , PJ7 refer to the scale portfolios optimized for scale variance at scale levels 1–7 and are calculated using an estimation window
of approximately 5 years; number of observations reduce by the size of the rebalancing window (not shown); each row specifies the scale variance of these
portfolios at a specific scale level, where J1, J2, . . . , J7 refer to scale levels 1–7. Scale variance is multiplied by the scale-level-dependent factor 2j−1 × 106;
period intervals designate the periods (in days) corresponding to a certain scale level; grey-shaded areas indicate lowest scale variances; the null hypothesis of
the test statistics states that ṽ2

PJ1
(λk) = ṽ2

PJj
(λk) for j 6= k (two-sided test). However, significances are only reported where ṽ2

PJ1
(λk) > ṽ2

PJj
(λk).

*, **, and *** indicate rejection of the null hypothesis of the test statistics at the 1%, 5%, and 10% level of significance, respectively.
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