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Abstract 

In this paper, we show how instrumental variable and matching estimators can be combined 

in order to identify a broader array of treatment effects. Instrumental variable estimators are 

known to estimate effects only for the compliers, which often represent only a small subset 

of the entire population. By combining IV with matching, we can estimate also the treatment 

effects for the always- and never-takers. In our application to the active labour market 

programmes in Switzerland, we find large positive employment effects for at least 8 years 

after treatment for the compliers. On the other hand, the effects for the always- and never-

participants are small. In addition, when examining the potential outcomes separately, we 

find that the compliers have the worst employment outcomes without treatment. Hence, 

the assignment policy of the caseworkers was inefficient in that the always-participants were 

neither those with the highest treatment effect nor those with the largest need for 

assistance. 
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1 Introduction 

Although many empirical studies find it challenging to uncover one set of credible assump-

tions that allows point-identification identification of causal effects of interventions (treatments), 

sometimes several such assumptions may be available. If treatment effects are heterogeneous, such 

different identifying assumptions are likely to identify treatment effects for different populations. 

We show how the combination of these assumptions might lead to an increased policy relevance 

of the findings. One case where two sets of identifying assumptions plausibly hold simultaneously 

is the evaluation of the Swiss active labour market policy based on rich administrative data: Gerfin 

and Lechner (2002) and Gerfin, Lechner, and Steiger (2005) argue that the data is informative 

enough such that a conditional independence (or no confounding, or matching) assumption holds. 

In addition, Frölich and Lechner (2010) constructed an instrument that allowed them to estimate 

the effect of marginally changing the size of the policy.  

One important difference between instrumental variable (IV) estimators and matching es-

timators is that IV estimates only treatment effects for the compliers (LATE, Imbens and Angrist 

1994), whereas matching estimators estimate average population effects. In many situations, how-

ever, one would also like to know the treatment effects for the always- and never-takers, which are 

not identified by either of those approaches. In this paper, we show how IV and matching estima-

tors can be combined in order to identify treatment effects for the compliers, and the always- and 

never-participants. These methods are then used to obtain a broader understanding of the effects of 

active labour market policies in Switzerland. Frölich and Lechner (2010) found rather large posi-

tive treatment effects for the group of compliers. Since in their work the compliers represented 

only a rather small fraction of the total population, effect estimates are also needed for the always- 

and never-participants in order to draw broader policy conclusions. In a similar setting Gerfin and 



Lechner (2002) found considerably smaller average population effects, which were however unin-

formative about the effects for marginally increasing programme sizes, which is exactly what 

Frölich and Lechner (2010) identified.  

In this paper, we find that the treatment effects for the always- and for the never-

participants are much smaller than for the compliers. In addition to the treatment effects, we also 

examine the potential outcomes separately, in particular the potential outcome in the absence of 

treatment. Here, we find that the compliers have the worst employment chances, compared to the 

other groups. This means, that the assignment policy of the caseworkers was inefficient in that the 

always-participants were neither those with the highest treatment effect nor those with the largest 

need for assistance. This is important information for the design of a cost-effective active labour 

market policy. 

Also we further analyze the long-term effects of labour market programmes and find that 

the short-term effects do not fade away. This is important since the previous evaluation studies of 

labour market programmes for Switzerland (and many other countries) have only been able to look 

at short-term effects (e.g. one to three years after participation). 

The main contribution of this paper to the methodological literature is the combination of 

IV and matching methods in a fully nonparametric framework.1 Heckman (1997) and others have 

questioned the use of the local average treatment effect (LATE, i.e. the effect on compliers), be-

cause it provides an incomplete description of the overall impact of the programme, refers to an 

unknown population and is unsuitable for a cost-benefit calculation.2 If continuous instruments 

happen to be available, an alternative is to estimate marginal treatment effects (Heckman and Vyt-

                                                           
1  Instead of matching, one could also use weighting techniques as e.g. in Hirano, Imbens, and Ridder (2003). 
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lacil, 1999, 2005) and, if the instruments are sufficiently strong, by integrating the marginal treat-

ment effects one could even obtain the average treatment effect or the average treatment effect on 

the treated. In many situations, however, such strong continuous instruments are not available. In 

such situations, one could impose more (parametric) structure on the model in order to identify 

more than just the LATE (implicitly restricting effect heterogeneity). An alternative approach we 

suggest in this paper is to combine IV and matching estimators. Identification via instrumental 

variables requires a selection-on-observables or unconfoundedness assumption for the compliers 

(Frölich, 2007). If we extend this assumption to the always- and never-takers, i.e. believe that we 

have sufficiently informative data to permit this, we can identify not only the LATE but also the 

treatment effects for the always- and for the never-takers. We will suggest fully nonparametric 

estimation approaches to estimate the latter effects. 

Our main contribution to the empirical literature on the evaluation of active labour market 

policies is threefold:3 First, we find that the positive programme effects of active labour market 

programmes are long lasting, for at least 8 years, confirming, for example, the results for Germany 

by Lechner, Miquel, and Wunsch (2005). Second, the allocation of unemployed to the pro-

grammes does not appear to have been fully effective in the sense that the group of always-

participants has a lower programme effect and higher re-employment chances in the absence of the 

programmes than the group of compliers. These estimates are not consistent with an assignment 

policy where unemployed most in need or with largest programme effects were given priority. 

Otherwise, the always-participants should have had a higher programme effect than the compliers 

                                                                                                                                                                                              
2  For example, Manski (2003) notes that results for unobserved populations cannot be used by a planner to choose a 

treatment. In addition, for cost-benefit calculations we must measure the impacts on those who actually have been 

treated. 
3  For recent surveys of this literature see e.g. Kluve (2006), Kluve and Schmidt (2002), Lalive, van Ours, and 

Zweimüller (2008), and Martin and Grubb (2001). 
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or should have had worse employment outcomes in absence of the programmes than the com-

pliers. Neither is observed. Third, the quantity extension stimulated by the central government, 

however, appears to have had a positive effect on targeting. The extension of the programmes was 

targeted at those unemployed (i.e. these are the compliers) with large positive programme effects 

and poor employment chances without assistance.  

2 Combination of nonparametric IV and matching 

2.1 Nonparametric instrumental variable estimation 

Let D be a binary treatment variable and Y1 and Y0 be the potential outcomes in case of par-

ticipating (D=1) or not participating (D=0) in the treatment. In our application, D will refer to par-

ticipation in an active labour market programme and the outcome variable Y will be employment 

status or earnings, respectively, several years later. Let [ , ]Z z z∈  be an instrumental variable 

which takes values in the interval [ , ]z z  with masspoints at the boundaries of its support. Next, we 

will illustrate and motivate the results for the case where {0,1}Z ∈  is binary, as this is the case in 

our application, but all results work for the more general case of non-binary Z. (As we will point 

out later, if Z is non-binary, we will use the two values corresponding to the endpoints of its sup-

port in order to obtain the effects for the largest complier subpopulation.) Let Dz denote the poten-

tial treatment status of an individual i if the level of the instrument were externally set to z. With 

the instrument taking only two different values, the potential treatment variable Dz defines four 

different types of individuals denoted by { }, , ,T a n c d∈ . Following the literature, we call these 

different groups always-treated (a), never-treated (n), compliers (c) and defiers (d). The treatment 

status of the first two groups is not affected by the instrument. The group of compliers would not 

be treated if Z z= , but would be treated if Z z= . For the defiers, this pattern is reversed. Under 
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conditions described more precisely below, Imbens and Angrist (1994) have shown that the treat-

ment effect for the subpopulation of compliers is identified as: 

1 0 [ | ] [ | ][ | ]
[ | ] [ | ]

E Y Z z E Y Z zE Y Y T c = 
E D Z z E D Z z

− =
− = =

= − =
. (1) 

For identification, they require that the instrument Z is unconfounded. Such an assumption 

is reasonable when the instrument Z has been completely randomly assigned. In many situations, 

however, Z may be a choice variable or it may be affected by various other characteristics, such 

that the assumption of unconfounded Z is often questionable. We extend their setup in that we re-

quire Z to be unconfounded only conditional on some characteristics X.4 In our application, for 

example, Z is determined by a rule that depends on three characteristics of the local sites. These 

characteristics, as we discuss later, are likely to be related to the potential outcomes, thus violating 

the conventional instrumental variables assumption. However, conditional on the characteristics 

that determine Z, the instrumental variable assumption appears reasonable. We assume in the fol-

lowing: 

Assumption 1 (Conditional Instrumental Variable Assumption): 

(CIV.1)  No defiers:  Pr( ) 0T d= =  

(CIV.2)  Compliers:  Pr( ) 0T c= >   

(CIV.3)  Unconfounded type:  For almost every X 

                                                           
4  Note that the nonparametric approach permits, to some extent, endogenous control variables X, i.e. the variables X 

may be correlated with the unobservables affecting the outcome Y, see e.g. Frölich (2008). This matters in our ap-

plication, because some of the X variables, e.g. past employment history, may well be correlated with the unobserv-

ables affecting our outcome variable future employment status. 
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Pr( | , ) Pr( | , ) {a,n,c}T t X Z z T t X Z z for t= = = = = ∈  

(CIV.4)  Exclusion restriction:  For almost every X 

0 0

1 1

[ | , , ] [ | , , ] {n,c

[ | , , ] [ | , , ] {a,c}

E Y X Z z T t E Y X Z z T t for t

E Y X Z z T t E Y X Z z T t for t

= = = = = ∈

= = = = = ∈

}
 

(CIV.5)  Common support: ( | ) ( | )Supp X Z z Supp X Z z= = = , 

 

Frölich (2007) showed that under Assumption 15 the treatment effect for all compliers 

1 0[ | ]E Y Y T c− =  is nonparametrically identified as:  

 
( )
( )

1 0
[ | , ] [ | , ]

[ | ]
[ | , ] [ | , ]

X

X

E Y X Z z E Y X Z z dF
E Y Y T c

E D X Z z E D X Z z dF

= − =
− = =

= − =
∫
∫

. (2) 

This formula is obtained by integrating out the distribution of X in the unknown complier 

population, and the effect can be estimated as 

 
( ) ( )

( ) ( )
: :1 0

: :

ˆ ˆ( ) ( )
[ | ]

ˆ ˆ( ) ( )
i i

i i

i z i i z i
i z z i z z

i z i i z i
i z z i z z

y m x y m x
E Y Y T c

d x d xμ μ
= =

= =

− − −
− = =

− − −

∑ ∑
∑ ∑

, (3) 

                                                           

d

i

5 Note that if the set of control variables X is empty, Assumption 1 is basically the same as in Imbens and Angrist 

(1994). Their assumptions were (Exclusion restriction):  for all . (Existence of instrument): 

 for all 

, ' , ''
d

i z i zY Y= , ', ''d z z

0 1
,, ,i i i zY Y D Z ( )z Supp Z∈  where  denotes independence. (Relevance of instrument): 

 is a nontrivial function of z. (Monotonicity): for all pairs  either [ | ]E D Z z= ( , ')z z ( ) ( ')≥i iD z D z  for all i or 

vice versa ( ) ≤i ( ')iD z D z  for all i. 
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where and ˆ zm ˆ zμ  are nonparametric estimators of ( ) [ | , ]zm x E Y X x Z z= = =  and 

( ) [ | ,z ]x E D x ZX zμ = = = . Notice that the denominator in the above formula is also an estimate 

of the fraction of compliers . Pr( )T c=

Next, we derive additional results to Frölich (2007), which will be helpful in obtaining a 

more detailed picture of the evaluation results. First, the population of compliers consists of two 

subpopulations: those who actually receive treatment and those who do not. When Assumption 1 

is valid without any X, the effects for these two subpopulations are identical; otherwise they are 

not. We can show that the treatment effect on the treated compliers is identified as: 

 
( )
( )

1 0
[ | , ] [ | , ] ( )

[ | 1, ]
[ | , ] [ | , ] ( )

X

X

E Y X Z z E Y X Z z X dF
E Y Y D T c

E D X Z z E D X Z z X dF

π

π

= − = ⋅ ⋅
− = = =

= − = ⋅ ⋅
∫
∫

, (4) 

where ( ) P( | , { , })x Z z X x Z z zπ = = = ∈ , see this proof in the supplementary appendix. 

Second, we can identify the potential outcomes of the complier population separately as 

 
( )
( )

1
[ | , ] [ | , ]

[ | ]
[ | , ] [ | , ]

X

X

E YD X Z z E YD X Z z dF
E Y T c

E D X Z z E D X Z z dF

= − =
= =

= − =
∫
∫

,  

 
( )

( )
0

[ (1 ) | , ] [ (1 ) | , ]
[ | ]

[ | , ] [ | , ]
X

X

E Y D X Z z E Y D X Z z dF
E Y T c

E D X Z z E D X Z z dF

− = − − =
= = −

= − =
∫

∫
. 

(The proofs are similar to the proof of the preceding expression and are omitted.) 

We obtain similar expressions for the treated compliers: 

 
( )
( )

1
[ | , ] [ | , ] ( )

[ | 1, ]
[ | , ] [ | , ] ( )

X

X

E YD X Z z E YD X Z z X dF
E Y D T c

E D X Z z E D X Z z X dF

π

π

= − = ⋅ ⋅
= = =

= − = ⋅ ⋅
∫
∫

, 
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( )
( )

0
[ (1 ) | , ] [ (1 ) | , ] ( )

[ | 1, ]
[ | , ] [ | , ] ( )

X

X

E Y D X Z z E Y D X Z z X dF
E Y D T c

E D X Z z E D X Z z X dF

π

π

− = − − = ⋅ ⋅
= = = −

= − = ⋅ ⋅
∫

∫
. 

The corresponding estimators are analogous to equation (3). 

Hence, via Assumption 1 we can identify 1[ | ]E Y T c=  and 0[ | ]E Y T c=  separately. 

Knowing the non-treatment outcome for the compliers will help us later to better understand who 

the compliers are. (In addition, estimating 1[ | ]E Y T c=  and 0[ | ]E Y T c=  separately allows impos-

ing restrictions on the range of the outcome variables in a straightforward way by capping them at 

the logical boundaries of their supports. That is, if the outcome variable is binary, both mean val-

ues should lie between 0 and 1.) 

Similar to the literature on matching estimators, a dimension reduction via a "propensity 

score" is possible. Let ˆiπ  be a consistent estimator of P( | , { , })i iZ z X x Z z zπ = = = ∈ , then the 

propensity score based estimator 

 
( ) ( )

( ) ( )
: :1 0

: :

ˆ ˆˆ ˆm ( ) m ( )
[ | ]

ˆ ˆ ˆ ˆμ ( ) μ ( )
i i

i i

i z i i z i
i z z i z z

i z i i z i
i z z i z z

y y
E Y Y T c

d d

π π

π π
= =

= =

− − −
− = =

− − −

∑ ∑
∑ ∑

, (5) 

where m ( ) [ | ( ) , ]z E Y X Z zρ π ρ= = =  and μ ( ) [ | ( ) , ]z E D X Z zρ π ρ= = =

i

, is a consistent 

estimator of the LATE, as shown in Frölich (2007). Compared to (3) it has the advantage that it 

requires only one-dimensional nonparametric regression, given estimates of π . Analogously, a 

propensity score based estimator of the potential outcomes 1[ | ]E Y T c=  and 0[ | ]E Y T c=  and of 

1[ | 1, ]E Y D = T c= 0[ | 1, ]and E Y D T c= =  can be obtained. 
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Besides the potential outcomes for the compliers, we identify the fractions of compliers, 

always-participants and never-participants, as well as the expected treatment outcome for the al-

ways-participants and the expected non-treatment outcome for the never-participants: 

 ( )Pr( ) [ | , ] [ | , ] XT c E D X Z z E D X Z z dF= = = − =∫ , 

 Pr( ) [ | , ] XT a E D X Z z dF= = =∫ , 

 Pr( ) [1 | , ] XT n E D X Z z dF= = − =∫ , 

 1
[ | , ]

[ | ]
[ | , ]

X

X

E YD X Z z dF
E Y T a

E D X Z z dF

=
= =

=
∫
∫

, 

 0
[ (1 ) | , ]

[ | ]
[1 | , ]

X

X

E Y D X Z z dF
E Y T n

E D X Z z dF

− =
= =

− =
∫
∫

. 

The proofs are analogous to those for the previous results and are omitted. 

Hence, as already pointed out in Imbens and Angrist (1994), via instrumental variables we 

can estimate the treatment effect for the compliers but not for the always- nor for the never-

treated.6 

                                                           
6  So far, we discussed the case where the instrument { , }Z z z∈  is binary. We mentioned in the beginning of this 

section that we can also permit for Z to be non-binary or continuously distributed. In this case, we can define LATE 

for any pair of values of z or even marginal treatment effects if Z is continuous (Heckman and Vytlacil, 1999, 

2005). Any pair of values of z would define a different subpopulation of compliers. Nevertheless, the effect on the 

largest population of compliers is identified by using the boundaries of the support of Z. As long as [ , ]Z z z∈  has 

masspoints at the boundaries of its support, the previously defined nonparametric estimators using z  and z  are 

root-n consistent under smoothness assumptions discussed in more detail in Frölich (2007). (Of course, we could 
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2.2 Combination of Matching and IV estimation 

In many situations, however, it would be helpful to know also the potential outcomes for 

the always- and never-treated. The missing pieces not identified in the previous section are 

0[ | ]E Y T a=  and 1[ | ]E Y T n=

]

. Next, we show that under an additional assumption, we can iden-

tify 0[ |E Y T c 0[ |= , ]E Y T = a  and 0[ | ]E Y T n=  and  1[ | ]E Y T c= , 1[ | ]E Y T a=  and 

1[ | ]E Y T n= . This will permit us not only to compare the treatment effects for these groups, but  

information about the non-treatment outcome  for each group will also enhance our understand-

ing of who the compliers are. In our application, where Y refers to employment, we will find that 

the never-treated have on average a larger non-treatment outcome  than the always-treated, who 

themselves have a larger  than the compliers. Hence, in our population of unemployed, this 

indicates that the never-treated are the “good-risks”, who most likely find a job even without assis-

tance, whereas the compliers are the “bad-risks”, who have the least chances to find a job without 

assistance. The always-treated represent an intermediate group. 

0Y

0Y

0Y

Following, we lay out that the IV estimator of Section 2.1 is identical to a “Selection-on-

observables” or “Matching” estimator for the compliers. Hence, the IV estimator relies on a selec-

tion-on-observables assumption for the compliers. If, furthermore, we believe that we can extend 

the selection-on-observables assumption also to the non-compliers, i.e. have sufficiently informa-

tive data to justify this, we will find the missing pieces. 

Matching estimators have been popularized by Rosenbaum and Rubin (1983), Heckman, 

Ichimura and Todd (1998), Lechner (1999), Imbens (2004) and others. Under an assumption 

known as “selection on observables” or “ignorable treatment assignment”: 

                                                                                                                                                                                              
obtain even more information by examining the various complier groups separately, but since Z is essentially binary 
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(CIA) , (6) 1 0,Y Y D X⊥ |

)

where A B|C denotes mean independence of A and B conditional on C, the average 

treatment effect (ATE) is identified as 

⊥

 , (7) (1 0[ ] [ | , 1] [ | , 0] XE Y Y E Y X D E Y X D dF− = = − =∫

provided there is common support. 

 

To better understand the relationship between the IV and the matching estimator, let us as-

sume selection-on-observables in the complier population: 

 1 0, | ,Y Y D X T c⊥ = . (CIV.4') 

Developing a matching estimator for the complier treatment effect analogous to (7) would 

result in 

 . (8) ( )1 0
|[ | ] [ | , 1, ] [ | , 0, ] X T cE Y Y T c E Y X D T c E Y X D T c dF =− = = = = − = =∫

In contrast to (7), however, this is not directly identified, because the type (a, n, c) is unob-

served. Nevertheless, in the supplementary appendix it is shown that using Bayes’ theorem this 

expression is exactly equivalent to (2). Therefore, the IV estimator is essentially a matching esti-

mator for the compliers. It thus requires conditional independence for the compliers, whereas iden-

tification of the ATE requires conditional independence to hold also for the non-compliers. 

                                                                                                                                                                                              
in our application, we do not discuss this further here.) 
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In fact, assumptions CIV.4' and CIV.4 for the compliers are equivalent, given the direct 

correspondence between D and Z for the compliers. Hence, CIV-4' can be thought of as the core 

“selection-on-observables” assumption. The IV estimator requires additionally the assumptions 

CIV.1, CIV.2, CIV.3, CIV.5 and CIV.4 for the never- and always-participants, whereas, loosely 

speaking, matching estimators of ATE require “selection-on-observables” to hold for always- and 

never-participants as well (and for defiers, if they exist).  

The “selection-on-observables” assumption may often be more plausible for the compliers 

than for the always- and never-participants, as they are at the margin of changing participation 

status, i.e. their participation status may be more or less random. Nevertheless, in various applica-

tions one may be willing to extend this assumption also to the always- and never-participants. If, in 

addition to Assumption 1, we assume 

 , (9) 0 |Y D X⊥

the expected potential outcome 0[ | ]E Y T a=  is identified: By noting that 

 0 0 0 0[ ] [ | ]Pr( ) [ | ]Pr( ) [ | ]Pr( )E Y E Y T a T a E Y T c T c E Y T n T n= = = + = = + = = , 

it follows that 

 
0 0 0

0 [ ] [ | ]Pr( ) [ | ]Pr( )[ | ]
Pr( )

E Y E Y T c T c E Y T n T nE Y T a
T a

− = = − = =
= =

=
. (10) 

Alternatively, a similar decomposition of 0[ | 1]E Y D =  leads to:  

 
0 0

0 [ | 1] [ | , 1]Pr( | 1)[ | ]
Pr( | 1)

E Y D E Y T c D T c DE Y T a
T a D

= − = = =
= =

= =
= . (11) 
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Since all terms on the right-hand side are identified, also noting that 

 using Bayes’ theorem, the outcome Pr( | 1) Pr( ) / Pr( 1)a D a D= = = 0[ | ]E Y T a=  can be esti-

mated. With the corresponding outcome 1[ | ]E Y T a=  already having been identified in Section 

2.1, the treatment effect for the always-participants can be estimated.  

To identify the effect for never-participants, we assume that 

 , (12) 1 |Y D X⊥

to obtain the corresponding quantity for the never-participants (analogous derivations as 

before): 

 
1 1 1

1 [ ] [ | ]Pr( ) [ | ]Pr( )[ | ]
Pr( )

E Y E Y T c T c E Y T a T aE Y T n
T n

− = = − = =
= =

=
, (13) 

 
1 1

1 [ | 0] [ | , 0]Pr( | 0)[ | ]
Pr( | 0)

E Y D E Y T c D T c DE Y T n
T n D

= − = = = =
= =

= =
. (14) 

Hence, 0[ | ]E Y T c= , 0[ | ]E Y T a=  and 0[ | ]E Y T n=  and  1[ | ]E Y T c= , 1[ | ]E Y T a=  and 

1[ | ]E Y T n=  are all identified if we combine CIV with CIA. 

3 Evaluation of active labour market policies in Switzerland 

3.1 Active labour market programmes, regional quota, local labour markets, and the 

resulting instrument 

As in many European countries, active labour market programmes were widely introduced 

in Switzerland during the 1990s. Until the recession of the early 1990s, unemployment was very 

low in Switzerland, a small country with 26 different administrative regions, called cantons. With 
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the recession, the unemployment rate rose rapidly to 5% and triggered a comprehensive revision of 

the federal unemployment insurance act. This revision, which became effective partly in January 

1996 and partly in January 1997, introduced active labour market programmes (ALMP) on a much 

wider scale than before. Although different in some details, the main components of the Swiss 

ALMP can be found in various programmes in the USA, Germany and the UK as well, and in-

clude training and subsidized employment and on-the-job training in private as well as public sec-

tor jobs. A key element of the reform, which will permit an instrumental variables approach, was 

the introduction of a minimum quota in order to provide a sufficiently large number of programme 

places. 

The 26 Swiss cantons enjoy a high degree of autonomy with respect to taxation, expendi-

ture and many other policies. Therefore, there was a suspicion that the cantons might have been 

slow or even reluctant to implement the reform. To accelerate the implementation of the reform 

and the provision of active labour market programmes, the federal government mandated by law a 

minimum number of places in labour market programmes to be filled per year. For the year 1998, 

the minimum number was 25000 year-places (each representing 220 programme days) and was 

distributed across the cantons according to the formula 

 , ( )1996 199612 '500 population share unemployment share⋅ +

where population share is the fraction of the population living in the respective canton as of 

1996 and unemployment share is the average number of unemployment benefit recipients in the 

period April 1996 to March 1997 in the respective canton relative to the total for Switzerland.7 

                                                           
7  The costs of active labour market programmes and of their administration generally are borne by the federal unem-

ployment insurance fund. The cantons pay a very small lump sum contribution of 3000 Swiss Francs (CHF) per 

year-place for their assigned minimum quota. They can reduce this lump sum payment by up to 25% if the average 
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This formula for the computation of the minimum quota induced regional variation in programme 

participation, because, relative to the number of unemployed persons, the quota was rather high in 

cantons with a low unemployment rate in 1996 since 50% of the quota was distributed according 

to the population share. 

This minimum quota was used by Frölich and Lechner (2010) to estimate treatment effects 

for the compliers, and we roughly present it here. In this paper, we complement their empirical 

analysis by also estimating the treatment effects for the always- and the never-treated. Such treat-

ment effects are interesting in that the compliers actually represent only a rather small fraction of 

the total population. In addition, we also provide estimates for the long-term effects, whereas 

Frölich and Lechner (2010) only contained short-term effects. 

Frölich and Lechner (2010) analyzed and discussed in detail that the proclaimed minimum 

quotas, which were codified in law in November 1996, indeed induced a regional variation in the 

probability of being treated: The correlation between the quota per unemployed and treatment in-

cidence for the population of unemployed was 0.53 across the cantons. However, using the mini-

mum quota in a conventional instrumental variable analysis might not be a valid approach as one 

would be comparing Western and urban regions of Switzerland (where the quota was relatively 

lower) to regions of Eastern and Central Switzerland (where the quota was relatively higher). 

These regions, however, differ not only in their quota but also in many other respects, including 

past unemployment rates and industry structure, such that the needed exclusion restriction might 

                                                                                                                                                                                              
unit costs of the purchased programme slots are below the national average within defined programme categories. 

No financial contribution has to be paid for places filled beyond the required minimum. On the other hand, cantons 

which fill less than the required minimum number of year-places, have to compensate the federal unemployment 

insurance fund with 20% of the unemployment benefits paid to those persons to whom no ALMP could be offered. 

Hence, there are financial and political incentives for the cantons to meet their quota. In fact, they were encouraged 

to provide even more ALMP places. 
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not be plausible. (Generally speaking, the formula used for calculating the quota implies that the 

quota per unemployed is higher in regions where unemployment was low in 1996.)  

As an alternative, therefore they used the minimum quota as an instrument only within lo-

cal labour markets that are partitioned by a cantonal border, i.e. within a neighbourhood of a can-

tonal border. Individuals living left and right of a cantonal border essentially live in the same la-

bour market and have access to the same job opportunities. When actually becoming unemployed, 

however, they have to register with the local employment office according to their place of resi-

dence. Their chances of being sent to active labour market programmes then depend on the man-

agement strategy of the local employment office, which is governed by the canton and seeking to 

fulfil the quota for the entire canton. Although living in the same local neighbourhood, the treat-

ment probability in case of becoming unemployed is thus differentially affected by the rest of the 

canton.  

Despite living in the same local area, we might potentially still be concerned about differ-

ences in the characteristics of the populations living left and right of the border. We therefore will 

also control for a large number of characteristics Xi, which includes among other things the unem-

ployment history, which is a key determinant of the quota as seen from the formula above.8 

3.2 Construction of the local labour markets 

In this section, we briefly discuss the construction of the local labour markets. (More de-

tails can be found in the supplementary appendix and in Frölich and Lechner, 2010.) With the re-

form in 1996 the municipal unemployment offices were consolidated into about 150 regional em-

                                                           
8  Frölich and Lechner (2010) found that, in fact, there were no important differences in X for the compliers, since the 

estimates with and without controlling for X were very similar. Hence, endogeneity concerns within the local labour 
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ployment offices (REO), supervised by the cantonal centres. The REO are geographically organ-

ised, each REO serving several municipalities. For each unemployed there is one unique REO de-

fined by place of residence. They cannot change their assigned REO other than by moving to an-

other municipality. (Exceptions are the city centres of Zurich and Geneva, which are served by 

several REO, and which we exclude from our analysis.)  

We think of a local labour market if the value of different job opportunities does not de-

pend on the location of residence. In other words, all relevant employment opportunities can be 

reached within convenient commuting distance (e.g. half an hour) from both sides of the border, 

such that the choice of workplace location and the choice of residence are not immediately tied. 

There should then be no opportunities for wage arbitrage by moving residence. Switzerland, with 

its numerous winding administrative borders and a very good commuting infrastructure, is a can-

didate country for finding such local labour markets stretching across internal borders. 

As in Frölich and Lechner (2010), we use the following criteria to define integrated local 

labour markets with internal administrative borders. A local labour market is defined in terms of 

the area corresponding to one or more regional employment offices (REO), which satisfy: (1) The 

REO is spread over 2 cantons, (2) commuting times by car between these REOs are 30 minutes or 

shorter, (3) the same language (French, German or Italian) is spoken in the areas belonging to the 

REO, (4) the ALMP composition is similar in the REO. With the first criterion, we identify local 

labour markets pair-wise between cantons. For the econometric analysis, this will imply that the 

instrumental variable quota per unemployed will take only two different values within each local 

labour market. The second criterion ensures that all potential employers can be reached within 

convenient commuting distance from both sides of the cantonal border. This criterion is imple-

                                                                                                                                                                                              
markets do not seem to be important. In this paper, however, we only show the results with controlling for X, in or-
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mented by examining the distances between any pair of regional employment offices in terms of 

commuting times by car.9 The third criterion takes into account the different language regions, as 

Switzerland consists of German, French and Italian speaking parts.10 The fourth criterion requires 

that the allocation of the treated to the different ALMP categories is similar on both sides of the 

border. As discussed in Section 2, the identification assumption CIV.4 or CIV.4' requires that the 

potential outcomes Y0 and Y1 are independent of the instrument. For Y1 to be independent of the 

instrument, the quality and type of treatment should be identical on both sides of the border. It 

appears reasonable to assume that the quality of the services does not vary systematically between 

neighbouring regions, since these are offered by private profit or non-profit organisations which 

usually operate nationwide (or at least within the language region). On the other hand, there was 

some variation in the types of programmes used. We therefore restrict our analysis to those 18 

local labour markets, which have the same ALMP-structure on each side. The following table pro-

vides some summary measures for these labour markets. (More details can be found in Frölich and 

Lechner (2010) and the discussion paper.) Column (1) indicates the cantonal border that partitions 

the labour market, and columns (2) and (3) report the REO belonging to this labour market, left 

and right of the border. Columns (4) and (5) report the number of observations in our dataset, left 

and right of the border. (The dataset is explained in the next section.) Columns (6) and (7) present 

which percentage of these observations was treated, left and right of the border. An unemployed 

person is defined as treated, if he/she entered a labour market programme (with duration of at least 

                                                                                                                                                                                              
der to save space (and also for comparability with the estimator used for the always- and never-participants).  

9  Switzerland is one of the countries with the highest per capita car ownership worldwide. In addition, public trans-

portation is very good and reaches every village. 
10  Local labour markets where French is spoken on the one side of the border and German on the other side are ex-

cluded. French-German bilingual regions bordering to German speaking regions are not excluded, though. In such 

local labour markets, all observations with French mother tongue are deleted, as they may not consider the 

neighbouring German-speaking region as part of their labour market when searching for jobs. 
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one week) during January to March 1998. Finally, column (8) gives the difference between col-

umns (6) and (7), i.e. the cross-border difference in the treatment probability. This difference 

represents an estimate of the fraction of compliers (when no covariates X are controlled for). This 

percentage of compliers lies in the range of ±18 percentage points, with many small values. It is 

highly correlated with the cantonal quota. As shown in Frölich and Lechner (2010), the correlation 

between the compliers and the differences in the quota is larger than 0.5. Hence, the instrument 

quota per unemployed does indeed have an effect on the probability of receiving treatment. 

From Table 1, we also see that the compliers represent only a small portion of the total 

population. The largest number in column (8) is 18%, hence more than 80% of the unemployed in 

each labour market are always- and never-participants. Therefore, it is interesting to learn not only 

the treatment effects on the compliers but also for the always- and the never-participants. Before 

we show the latter estimates in Section 4, we first provide some more information on the individ-

ual-level dataset. 

Frölich and Lechner (2010) discuss potential threats to the validity of an instrument con-

structed in such a way at substantial length and come to a positive conclusion. Here, we do not 

want to repeat these arguments but refer the reader to their paper. 
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Table 1: The 18 local labour markets divided by administrative border  

Cantons Regional employment offices (REO),  
left and right of the border 

Number of ob-
servations 

N1                N2 
% Treated % Com-

plierb 

(1) (2) (3) (4) (5) (6) (7) (8) 

SO-BE Solothurn, Oensingen, 
Biberist, Zuchwil 

Wangen, Langenthal, 
Burgdorf 877 818 51.7 48.2 3.5 

BE-AG Langenthal Zofingen 313 472 45.7 49.2 -3.5 
BE-FR Gümligen, Zollikofen, 

Köniz, Bern (2x) Murten, Tafers, Fribourg 2660a 763a 45.5 46.9 -1.4 

FR-VD ChatelSt.Denis Oron la Ville 107 107 51.4 44.9 6.5 
FR-VD Romont, Estavayer Payerne, Moudon 371 355 47.4 40.6 6.9 
VD-GE Nyon Genf (6x) 576 5700 35.8 33.3 2.5 
VD-VS Vevey, Aigle, Montreux Monthey (2x) 1580 609 40.3 50.1 -9.8 
BL-BS Pratteln, München-

stein, Binningen Basel (3x) 934 2081 52.0 34.3 17.8 

LU-NWOW Luzern, Emmen, Em-
menbrücke, Kriens Hergiswil (2x) 1607 265 49.0 52.5 -3.5 

LU-ZG Luzern, Emmen, Em-
menbrücke, Kriens Zug 1607 571 49.0 49.6 -0.6 

SZ-UR Goldau Altdorf 337 150 57.9 39.3 18.5 

AG-ZH Baden, Wettingen, 
Wohlen 

Opfikon, Effretikon, 
Uster, Wetzikon, Bülach, 

Dietikon, Regensdorf  
1529 4165 45.5 39.7 5.8 

ZH-TG Winterthur Frauenfeld  1221 537 39.0 53.6 -14.7 
ZH-SG Meilen, Thalwil Rapperswil 1421 360 40.2 43.9 -3.7 
ZH-SZ Meilen, Thalwil Lachen 1421 529 40.2 53.3 -13.1 
TG-SH Frauenfeld  Schaffhausen 537 605 53.6 45.6 8.0 
TG-SG Amriswil Rohrschach, Oberuzwil 474 853 42.4 42.9 -0.5 
SG-SZ Rapperswil Lachen 360 529 43.9 53.3 -9.4 

Note: a Number of observations after deleting individuals with French mother tongue, because a French-German bilingual 
region is bordering a German-speaking region. 
b The estimate of the fraction of compliers is the difference between the previous two columns. Here we do not control for 
differences in X. 

3.3 Administrative data from the Swiss unemployment and pension system and the 

matching assumption 

The basis of this study is a large random sample of Swiss unemployed, with individual in-

formation from very detailed administrative records from the unemployment insurance system and 

the social security / pension system. Those records contain ten years of employment histories (in-

cluding self-employment), monthly earnings, monthly unemployment benefits, participation in 

ALMP and personal characteristics for the years 1988 to December 2006. (From the year 2000 
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onwards, only the data from the unemployment insurance system are available.) The personal in-

formation includes age, gender, marital status, household size, place of residence, nationality, type 

of work permit, mother tongue, foreign language skills, education, qualification, caseworker’s rat-

ing of employability, position in last job, occupation and industry of last job, size of town where 

worked before, looking for part-time or full-time job, occupation and industry of desired job, in-

formation on earnings in last job, duration of contribution to unemployment insurance, disability, 

etc. The population for our study are all individuals who were unemployed on January 1, 1998, for 

at most one year.11 We use the same dataset as in Frölich and Lechner (2010), which contains 

32634 individuals who live in one of the 18 local labour markets of Table 1.12 

In our empirical analysis, we estimate the effects of participation in ALMP during 1998 on 

employment and earnings in 1999 and the following years. Participation (=treatment) is defined as 

entering in a programme of at least one week duration during January to March 1998. We also 

                                                           
11  Persons who were unemployed for more than one year are excluded because they entered in unemployment before 

the reform was enforced in January 1997 and were thus subject to different rules and regulations at the entry in un-

employment. 
12  The original dataset, which is a random sample from the population of all individuals who were unemployed on 

January 1, 1998, for at most one year, contained 81399 individuals. Several sample selection criteria are applied to 

restrict the population to individuals who are eligible to take part in ALMP, and for whom no restrictions to their 

mobility are known or probable. In particular, disabled persons are excluded, as well as foreigners with a working 

permit of less than a year (i.e. without a 'B' or 'C' permit) since there are legal restrictions to their mobility. In addi-

tion, persons with very low earnings (monthly earnings in last job below 1000 CHF, ≈ 650 EURO) are excluded, 

because monetary costs of commuting might be an obstacle to taking advantage of job opportunities that are not 

nearby. We restrict the sample to the prime age group (25-55), and excluded students, apprentices and home work-

ers, and persons registered as part-time employees. The remaining sample contains 66713 individuals, of which 

32634 individuals live in one of the 18 local labour markets of Table 1. 
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examine robustness of the results when using a treatment window of four months (January to April 

1998), respectively.13 

For making the conditional independence assumption (CIA) of Section 2.2 credible, we 

must control for individual characteristics X that jointly affect treatment status as well as potential 

outcomes. Our selection of these control variables is based on earlier studies by Gerfin and 

Lechner (2002), Gerfin, Lechner and Steiger (2005) and Frölich and Lechner (2010). We control 

for socio-demographic characteristics (age, gender, marital status, household size, nationality, 

year of immigration), language skills (mother tongue, number of languages, first foreign lan-

                                                           
13  In Frölich and Lechner (2010), a treatment window of 12 months was used. (Therefore, their estimates for the com-

pliers differ slightly from our estimates in Section 4 of this paper.) In contrast to Frölich and Lechner (2010), here 

we require conditional independence between the potential outcomes and treatment status not only for the com-

pliers, but also for the entire population, i.e. including the always- and never-participants. In our matching estima-

tor, we thus compare individuals with different values of D, rather than the quota Z. A problem discussed in detail 

in Fredriksson and Johansson (2008) is that the definition of treatment automatically implies some ‘conditioning-

on-the-future’. Suppose that treatment assignment D and finding a job are two competing processes. This will im-

ply that the group of non-treated contains disproportionately many observations who found a job before treatment 

started, whereas the group of treated contains more individuals who would have found a job on their own rather late 

and treatment happened to start before it. Hence, individuals with good labour market chances (which may be partly 

unobservable) are over-represented in the D=0 group and under-represented in the D=1 group. Our matching esti-

mates would thus tend to be downward biased, with the size of the effect increasing with the length of the treatment 

window. For a very short window, e.g. one day, the bias would be zero since in our population everybody is unem-

ployed on January 1, 1998. On the other hand, a short treatment window leads to a very small number of treated 

and thus to imprecise estimates. In addition, a short treatment window also implies that many of those defined as 

untreated during this window might actually receive treatment shortly afterwards, thus making the interpretation of 

such estimates difficult. A treatment window of three or four months appears as a reasonable trade-off between 

sample sizes and bias in this application. Of our total sample, 60% of all unemployed entered active labour market 

programmes during the year 1998. Of these, 70% entered during the first three months of 1998, 87% entered during 

the first six months, 95% entered during the first nine months, and only 1% entered ALMP in December (for the 

first time in 1998). Note that various other approaches exist as well, e.g. the random start date setup (as in Lechner, 

1999) or a dynamic treatment model (as in Lechner and Miquel, 2005) or the integrated hazard approach of 

Fredriksson and Johansson (2008). However, combining such approaches with our instrumental variables estimator 

would be beyond the scope of this paper. 
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guage), skills and qualifications (professional qualification, education), employability rating (as-

sessment made by the caseworker about ease of finding a job and how much assistance required), 

characteristics of last job (earnings, previous job position, industry and type of last job, industry 

unemployment rate), characteristics of job search (searching for part-time or full-time job, job 

preferences), unemployment and employment history (length of current unemployment spell, un-

employment and employment history in last 10 years), and history of participation in ALMP. The 

following table presents the descriptive statistics of these 67 variables (including several square 

and interaction terms). Those descriptive statistics reveal that the differences between participants 

and nonparticipants are not dramatic, although visible e.g. in the short- and long-term labour mar-

ket histories. In addition, we also observed that the descriptive statistics of the 32634 individuals 

who live in one of the 18 local labour markets are on average not very different from the total 

population. Therefore, we think that our estimation results, which only make use of those indi-

viduals living in these 18 local labour markets, might roughly carry over to the remaining parts of 

the country. 

The first rows of Table 2 show the average employment outcomes during 1999 to 2006. 

The average employment outcome is about 0.55, i.e between 6 to 7 months employed per year. 

The average monthly earnings are between 2100 and 2400 CHF.14 

                                                           
14  The earnings data are only available for 1999. For the employment outcomes, note that these are based on the un-

employment insurance data. When we construct employment indicators on the basis of the social security/pension 

data, which are only available for 1999, the average employment outcome is about 0.60 to 0.63, and thus higher 

than the numbers shown in Table 2. The impact estimates, i.e. the average difference between Y1 and Y0, however, 

are similar irrespective of the data source used. 
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Table 2: Descriptive statistics (means or shares multiplied by 100) 

Variable name 66713 32634 individuals 
 ALMP Non-ALMP ALMP Non-ALMP 

Observations 28122 38591 13746 18888 
Outcome variables 1999 to 2006     
Employment 1999: Number of months employed in 1999, divided by 12 0.49 0.46 0.50 0.47 
Employment 2000: Number of months employed in 2000, divided by 12 0.59 0.54 0.59 0.54 
Employment 2002: Number of months employed in 2002, divided by 12 0.60 0.55 0.60 0.54 
Employment 2003: Number of months employed in 2003, divided by 12 0.58 0.52 0.58 0.52 
Employment 2004: Number of months employed in 2004, divided by 12 0.57 0.51 0.56 0.51 
Employment 2006: Number of months employed in 2006, divided by 12 0.56 0.51 0.55 0.50 
Employment 1990-2006: Number of months employed in 1999-2006, divided by 96 0.57 0.52 0.57 0.51 
Earnings 1999: Total earnings from employment &  self-employment, divided by 12 2318 2141 2408 2222 
     
Control variables X     
Age  in years 38 38 38 38 
 older than 50 years (%) 11 10 11 11 
 30 years and younger (%) 23 25 22 25 
Female (%) 45 42 45 43 
Marital status: married (%) 59 60 58 59 
  single (%) 28 27 27 28 
Number of (dependent) persons in household 2.4 2.4 2.4 2.4 
     interacted with foreigner status 1.2 1.3 1.3 1.3 
     interacted with marital status 1.9 1.9 1.9 1.9 
Foreigner with yearly permit (%) 15 17 16 16 
Swiss national (%) 58 53 57 55 
Mother tongue not German, French or Italian (%) 33 37 35 37 
Immigrant who migrated to Switzerland in 1988-1992 (and ≥ 25 years old then) (%) 5 6 5 5 
     in 1993-1997 (and ≥ 25 years old then) (%) 6 5 6 5 
Number of languages known, other than mother tongue (0-3) 1.4 1.4 1.4 1.4 
First foreign language is German, French or Italian (%) 64 64 62 62 
          English, Spanish or Portuguese (%) 14 14 16 18 
Qualification: skilled (%) 58 54 58 56 
  semi-skilled (%) 14 16 15 17 
Job position: unqualified labourer (%) 37 38 36 36 
  management (%) 6 5 7 7 
Industry unemployment rate (January 1998, unemployment rate in percent) 6.4 6.6 6.3 6.3 
Job type: office (%) 16 14 16 15 
 hotels, restaurant, catering  (%) 15 16 15 14 
 construction (%) 7 8 7 8 
 chemistry, metal (%) 8 8 8 8 
 painting, technical drawing (%) 7 7 7 7 
 scientists, teaching, education (%) 5 4 5 4 
 agriculture, food processing (%) 2 3 2 3 
 health care (%) 3 3 3 3 
 management, entrepreneurs, senior officials, justice (%) 3 3 3 4 
 transportation, traffic (%) 3 4 3 3 
Preferred job equals last job (%) 72 74 72 73 
Looking for a part time job (%) 12 14 13 15 

Table 2 to be continued 
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Table 2: … continued 

Variable name 66'713 32'634 individuals 
 ALMP Non-ALMP ALMP Non-ALMP 

Unemployment duration in days (as of 1.1.1998) 178 160 180 165 
     squared (divided by 10000) 4.3 3.8 4.3 3.9 
Part time unemployed (i.e. not available for a full time job) (%) 10 13 10 14 
Insured earnings (CHF) 4030 3840 4130 3960 
Earnings  < 2000 CHF 7 10 7 10 
  > 6000 CHF 11 9 12 11 
Never been unemployed in last 10 years (1988-1997) (%) 49 44 50 46 
        5 years (1993-1997) (%) 53 48 54 50 
Number of unemployment spells in the period 1988-1992 0.29 0.33 0.26 0.29 
             last 5 years (1993-1997) 0.92 1.08 0.87 0.99 
Fraction of time spent in unemployment (since first registration in pension data) 0.12 0.12 0.12 0.12 
     interacted with immigrant status 0.03 0.02 0.03 0.02 
Duration of last employment spell (months) 44 41 45 43 
Wage increase during last employment spell (last wage compared to first wage) 0.004 0.003 0.003 0.003 
Number of employment spells in last 10 years (1988-1997) 2.50 2.68 2.41 2.55 
Fraction of time spent in employment (since first registration in pension data) 0.79 0.77 0.79 0.78 
     interacted with immigrant status 0.07 0.07 0.07 0.07 
Number of contribution months to unemployment insurance  18 18 18 18 
Continuously increasing annual earnings (since first registration in pension data) (%) 10 10 9 9 
       decreasing annual earnings (since first registration in pension data) (%) 8 7 8 8 
Yearly earnings  1997 (CHF) 27090 25280 27240 25440 
  1996 (CHF) 40520 37570 41880 38960 
  1995 (CHF) 39610 37510 41310 39260 
Ever been self-employed in the period 1988-1992 (%) 7 8 7 7 
                last 5 years (1993-1997) (%) 5 5 5 5 
     
Employability rating: unknown (%) 4 5 3 3 
   does not need assistance (%) 5 6 2 2 
   good (%) 17 16 18 16 
   intermediate (%) 57 55 57 56 
Participated in employment programme in 1997 (%) 11 3 9 3 
     in a temporary wage subsidy in 1997 (%) 37 19 36 19 
     in training in 1997 (%) 4 3 5 5 
Treatment started on 1.1.1998 (%) 13 0 12 0 

Note: 1 Swiss Franc (CHF) ≈ 2/3 Euro. For non-binary variables the means are given. For binary variables (=dummies) the 
means multiplied by 100 are given.  

Gerfin and Lechner (2002) and Gerfin, Lechner, and Steiger (2005) argue at length why in 

the Swiss institutional setting, it is plausible that these data sources contain all variables jointly 

related to treatment and potential outcomes. Thus, controlling for them is sufficient to remove con-

founding. Again, we do to repeat these arguments in detail, but refer the reader to their paper. 
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4 Empirical results 

In this section, we present the estimated effects of participation in ALMP on subsequent 

labour market outcomes. To see the dynamics of the effects, we follow the individual labour mar-

ket situation over the years 1999 to 2006 and create the following outcome variables: Employment 

is defined as the number of months with positive earnings in a non-subsidized job in a particular 

year, divided by 12. Employment in a subsidized job, e.g. temporary wage subsidies, is not 

counted as regular employment. Earnings are defined as total earnings from employment or self-

employment during a year, divided by 12. In the following tables, we show the estimated effects 

on employment during the years 1999, 2003 and 2006,15 and in addition, the average effect over 

the 8 years 1999 to 2006, i.e. the number of months employed between January 1999 and Decem-

ber 2006, divided by 96 months. The earnings estimates are only available for the year 1999.16  

4.1 Implementation of the nonparametric estimators 

All the objects of Section 2 we need to estimate are functionals of various potential means, 

which can be obtained via nonparametric regressions on X and subsequently taking averages. As 

an alternative, nonparametric regression on the propensity score is used here. For the treatment 

                                                           
15  We also examined the effects for each of the years from 1999 to 2005, which did not provide additional insight 

beyond what is shown in the following tables. 
16  The earnings data are obtained from the social security/pension system, to which we have access only until the end 

of 1999. The employment data are taken from the unemployment insurance system, to which we had access until 

the end of 2006. We define an individual as employed if he is de-registered because of having entered employment. 

This definition only relies on the exit code and is thus somewhat imprecise since we cannot observe subsequent 

movements between employment and out-of-labour-force if no intermittent unemployment spell is registered. For 

the year 1999, we had employment data from both the unemployment insurance and the social security/pension sys-

tem (i.e. earnings and earnings sources each month) and could thus cross-validate whether exits into employment 

and positive earnings in the pension data are jointly observed. There was a rather high correspondence, and perhaps 

more importantly, the treatment effects on employment were very similar irrespective of whether the employment 

outcomes were constructed from the pension or the unemployment insurance data. 
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effects for the compliers, and in fact all other objects defined in Section 2.1, the relevant propen-

sity score is ( )xπ , within a particular labour market.  

For the treatment effects for the always- and the never-participants, we additionally need 

estimates of 0[ ]E Y  and of 1[ ]E Y  (see Section 2), which are identified via a selection-on-

observables assumption. These potential outcomes are obtained via propensity score matching 

where the relevant propensity score now is ( ) Pr( 1| )p x D X x= = = , within a particular labour 

market, i.e. the probability of participating in ALMP among all individuals within the same labour 

market. With an estimate ˆ ip  of ( i )p x , the expected potential outcomes are estimated as 
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where ( ) [ | ( ) , ]dm E Y p X Dρ ρ= = = , and analogously for 0[ ]E Y  and 1[ ]E Y . 

The estimation of 0[ ]E Y , 1[ ]E Y  and 0[ | ]E Y T c= , and 1[ | ]E Y T c=  is done in three steps, 

separately for each local labour market and each outcome. First, the propensity scores ( )xπ  and 

( )p x  are estimated by a binary probit to obtain predicted probabilities ˆiπ  and ˆ ip  for all observa-

tions. Second, the conditional expectation functions m ( ) [ |z E Y ( , Z)X ]zρ π ρ= = =  and 

μ ( )z [ | ( )E D X , ]Z zρ π ρ= = = d or m E( ) ,[ | ( )Y p X ]D dρ ρ= = = , respectively, are estimated via 

(one-dimensional) nonparametric regression on the respective propensity score. Separately for 

each conditional expectation function, the bandwidth value is selected by leave-one-out least 

squares cross-validation. Bandwidths are chosen from the expanding grid with 10 values: {1/100, 
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1.9/100, 1.92/100, ..., 1.98/100, ∞}.17 With the selected bandwidth values, the conditional expecta-

tion functions are estimated nonparametrically and sample averages are computed to obtain esti-

mates of 0[ ]E Y , 1[ ]E Y , 0[ | ]E Y T c= , 1[ | ]E Y T c=  etc. These estimates are then restricted to be 

within the support of the respective outcome variables, i.e. to be non-negative for earnings and to 

be within [0,1] for the employment variable. 

For the nonparametric regression, we use nonparametric ridge regression, which performed 

best in Frölich (2004). Ridge regression is a variant of local linear regression with a ridge term 

added to the denominator to reduce its variance.18 Given a sample o  

( , )i iy w ∈ℜ×ℜ , where yi is the outcome variable and wi the (one-dimensional) regressor, i.e. one 

of the two estimated propensity scores defined above, and a bandwidth value h, the ridge regres-

sion estimate at location 

f observations

w is defined as 

 1,0 1,1

0,0 0,2

( )
]

| |
T T w w

w
T T rh w w

⋅ −
= = +[ |E Y W , 

+ −

where ,a b
i

T y∑ ( )a b i
i i

w ww w K
h
−⎛ ⎞= ⋅ − ⎜ ⎟
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 and /i i

i
i i
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h h
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∑ ∑ ⎞
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. The 

ridge parameter r is set to 0.35 for the Gaussian kernel (see Seifert and Gasser, 1996, 2000, and 

Frölich, 2004). 

                                          
17  For ease of comparison, all estimators use the same X variables, and the same nonparametric estimator and band-

width search grid. The implementation of the estimator follows Frölich (2004, 2007). Bandwidth choice via cross-

validation is not optimal but performed very well in the simulations of Frölich (2004). All estimates are based on 

the 32634 individuals who live in the 18 labour markets defined in the previous section. All estimations, including 

bandwidth choice, are done exclusively for each local labour market (i.e. exact match on labour market). 
18  Conventional local linear regression estimators often perform poorly. For curve estimation, this is observed by 

Seifert and Gasser (1996) and for matching estimation by Frölich (2004). 

 28



4.2 Aggregated treatment effects 

For each of the five different outcome variables defined before, we estimate the potential 

outcomes separately for each of the 18 local labour markets. This leads to a large number of esti-

mates, which are displayed in Tables 1 to 10 in the supplementary appendix. (One table for each 

outcome variable for the treatment definition window January to March, and again for the alterna-

tive treatment definition window January to April.) This large number of estimates makes it diffi-

cult to find any discernible patterns, and many of the estimates are very noisy due to the small 

number of observations in most labour markets. To reduce the dimensionality of the estimates and 

to increase statistical precision, we will compute weighted averages of the estimated outcomes 

across these 18 labour markets. These aggregated effects are self-weighted averages for the popu-

lations in these labour markets. More precisely, the average potential outcomes for the compliers 

are obtained by weighting the 18 estimates with the number of compliers (i.e. the fraction of com-

pliers multiplied with the sample size) in each labour market. The average potential outcomes for 

the always-participants are obtained by weighting with the number of always-participants, and 

analogously for the never-participants.19 Table 3 presents the average effects of ALMP on em-

ployment and earnings, in addition to bootstrap standard errors.20 We further test whether the 

                                                           

N

N

19  Hence, for the compliers the average outcome is a weighted average of all 18 labour markets, where the weights are 

 where N is the number of observations in the respective labour market. The weights for the 

always-participants are , and analogously for the never-participants. We also examined alter-

native weighting schemes, where we used the sample size only as weight. The results were similar. 

Pr( )cw T c= = ⋅

Pr( )aw T a= = ⋅

20 499 bootstrap replications. The nonparametric bootstrap proceeded by drawing with replacement from the original 

sample with the 66713 observations and repeating the entire estimation process. The probits are estimated by 

maximum likelihood augmented with the following features to deal with collinearity problems that might occur 

during the bootstrapping. 1) All regressors without variation are dropped. 2) All regressors that cause local multi-

collinearity are dropped. For detecting (nearly) linear dependencies in the regressor matrix, the pivotal orthogonal-

triangular (QR) decomposition is used, see Judd (1998, p. 58f) or Press, Flannery, Teukolsky, and Vetterling (1986, 

p. 357ff). This decomposition decomposes a regressor or moment matrix into an orthogonal matrix Q and an upper 

 29



treatment effects are different from zero, and whether the treatment effect for the compliers is sta-

tistically significantly different from the effect for the always-participants, or for the never-

participants. (Two-sided bootstrap test of an equal effect.) Significance levels rely on the percen-

tiles of the estimates.21 From this table, we first confirm the main result of Frölich and Lechner 

(2010): The one-year-after treatment effect on the compliers is 0.155, which corresponds to a little 

less than two months of additional employment during the year 1999. This effect is rather similar 

to the findings in Frölich and Lechner (2010). The earnings effect is 57 CHF and thus smaller than 

in Frölich and Lechner (2010), but both cases are very noisy estimates, and given this large uncer-

tainty, we cannot draw any conclusions about earnings. 

In addition, we obtain three new results: First, the positive treatment effects for the com-

pliers are not short-lived. The effects are positive for employment in 2003 and 2006 (and in fact 

for every other year, not shown). Furthermore, the average effect over the 8 years from 1999 to 

2006 is 0.163, thus positive, and very similar to the short-term effect of 0.155. Hence, for the 

compliers participation in ALMP has a long-lasting effect. 

Second, the treatment effects for the always- and never-participants are much smaller than 

for the compliers, albeit still mostly positive. The effects are somewhat (and often statistically sig-

nificantly) greater for the always- than for the never-participants. We also observe that the me-

                                                                                                                                                                                              
triangular matrix R, where diagonal elements of R that are close to zero indicate (nearly) linear dependencies attrib-

utable to the corresponding columns. All regressors associated with a diagonal element in R smaller than 10-5 are 

dropped in the local regression. (Different threshold values have been tried and did not affect the results very much. 

10-5 is a conservative choice, in the sense that rather more than less regressors are dropped to spare local degrees of 

freedom for estimating the remaining coefficients.) 3) Furthermore, regressors with coefficients diverging towards 

infinity are dropped. 
21  The bootstrap standard errors should be dealt with caution since the finite-sample standard errors might be infinite 

(e.g. for the earnings estimate) as it is well known that the conventional IV estimator (without over-identification) 
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dium-term effects are somewhat greater than the short-term effects. Hence, after an initial lock-in 

period, the participation in ALMP is also beneficial for the always-participants and perhaps also 

for the never-participants, but in any case much less than for the compliers. 

Third, when comparing the potential outcomes E[Y0], we observe that these numbers are 

biggest for the never-participants, followed by the always-participants and are smallest for the 

compliers. This ordering is the same for every outcome variable, except for the earnings estimates. 

(This ordering is also the same in Table 4 below.) Hence, on average, the group of never-

participants contains the good-risks, i.e. those who can find a job on their own, whereas the com-

pliers are the worst group, and are least likely to find a job without ALMP. In other words, the 

always- and never-participants consist of unemployed people who have better chances on the la-

bour market, or accept more job offers, than the compliers. Perhaps for this reason, the effect of 

ALMP is small for the always- and never-participants.22  

In this sense, it seems that the (external) introduction of the quota was actually effective in 

terms of targeting: Increasing the quota let the worst-off people participate in ALMP, who then 

actually benefitted from it. On the other hand, the priority orderings of the caseworkers themselves 

seems not to have been as effective due to the treatment effects on the always-participants being 

rather small. The always-participants would have been sent to the programme even if the quota 

had been lower (i.e. without the external pressure). Hence, some external pressure could be helpful 

to overcome incorrect beliefs of the caseworkers about who benefits most from ALMP. (Had the 

caseworkers been effective in targeting those unemployed who benefit most from the programmes, 

                                                                                                                                                                                              
does not have finite moments if errors are normal. A similar problem might well exist for the nonparametric CIV 

estimator. Therefore, we do not use them. 
22  Interestingly, the Y0 earnings outcomes for the compliers suggest that, although they may not be as successful in 

finding jobs, if they find them, they are better paid than the other two groups. Alternatively, they may have higher 

reservation wages that led them to reject (or not receive) job offers that the two other groups accepted. 
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the treatment effects should have been biggest for the always-participants and smallest for the 

never-participants.) 

Table 3: Estimates for compliers, always- and never-participants, treatment window 3 months 

 Employment 
1999 

Employment 
2003 

Employment 
2006 

Employment 
1999-2006 Earnings 1999 

 
Always-participants      

E[Y1|T=a] 0.502 0.579 0.550 0.572 2419 
E[Y0|T=a] 0.473 0.526 0.508 0.522 2318 

E[Y1-Y0|T=a] * 0.029 (0.019) *** 0.053 (0.021) ** 0.042 (0.022) *** 0.049 (0.019) 100 (123) 
 
Never-participants 

     

E[Y1|T=n] 0.481 0.557 0.543 0.554 2281 
E[Y0|T=n] 0.503 0.546 0.520 0.545 2245 

E[Y1-Y0|T=n] *** -0.019 (0.013) 0.011 (0.013) * 0.023 (0.013) 0.011 (0.012) 55 (67) 
 

Compliers 
     

E[Y1|T=c] 0.548 0.609 0.542 0.584 2788 
E[Y0|T=c] 0.393 0.399 0.422 0.421 2731 

E[Y1-Y0|T=c] *** 0.155 (0.108) *** 0.210 (0.113) * 0.120 (0.121) *** 0.163 (0.108) 57 (12317) 
      
Are treatment effects statistically different ? 
E[Δ|T=c] = E[Δ|T=a] ** ***  **  
E[Δ|T=c] = E[Δ|T=n] *** ***  ***  
E[Δ|T=a] = E[Δ|T=n] ** ***  **  

Note: An unemployed is defined as treated if entering in ALMP between January to March 1998. The employment outcomes 
refer to number of months employed per year divided by 12. Earnings refers to monthly earnings in CHF. The aggregated 
potential outcomes and treatment effects are given for the always- and never-participants and for the compliers. Boot-
strap standard errors in parentheses. ***, **, * indicate significance at the 1%, 5% and 10% level, respectively. Inference 
is obtained from bootstrapping the estimate (percentile method). 67 regressors. 18 local labour markets. 32634 observa-
tions. 

In Table 4 we show the estimates when using a treatment definition window of four months 

instead of three months, i.e. an unemployed is defined as treated if he/she entered ALMP during 

January to April 1998. Overall, we obtain rather similar conclusions as from Table 3. 
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Table 4: Estimates for compliers, always- and never-participants, Treatment window 4 months 

 Employment 
1999 

Employment 
2003 

Employment 
2006 

Employment 
1999-2006 Earnings 1999 

 
Treatment window: January to April 1998 (= 4 months) 

 
 
Always-participants      

E[Y1|T=a] 0.492 0.565 0.543 0.563 2394 
E[Y0|T=a] 0.481 0.535 0.519 0.534 2333 

E[Y1-Y0|T=a] 0.011 (0.017) 0.030 (0.018) 0.024 (0.020) 0.029 (0.017) 61 (106) 
 
Never-participants 

     

E[Y1|T=n] 0.491 0.553 0.533 0.559 2204 
E[Y0|T=n] 0.514 0.550 0.525 0.551 2291 

E[Y1-Y0|T=n] ** - 0.024 (0.015) - 0.001  (0.015) 0.007 (0.014) 0.004 (0.014) - 79 (75) 
 

Compliers 
     

E[Y1|T=c] 0.455 0.630 0.574 0.537 3090 
E[Y0|T=c] 0.354 0.360 0.357 0.358 2210 

E[Y1-Y0|T=c] 0.102 (0.111) *** 0.270 (0.114) *** 0.218 (0.117) *** 0.179 (0.110) 880 (12395) 
      
Are treatment effects statistically different ? 
E[Δ|T=c] = E[Δ|T=a]  *** *** ***  
E[Δ|T=c] = E[Δ|T=n]  *** *** ***  
E[Δ|T=a] = E[Δ|T=n]  *    

Note: An unemployed is defined as treated if entering in ALMP between January to April 1998. See note below previous table. 

Finally, in Table 5 we compare the treatment effects for the compliers and for the treated 

compliers. (The results for the compliers are reproduced from Tables 3 and 4.) Note that these ef-

fects differ only because of differences in the distributions of X among the treated and non-treated 

compliers. (In Imbens and Angrist (1994), the effects for the treated and non-treated compliers are 

identical since the IV was assumed to be valid without the need to condition on any X.) Overall we 

find that the effects on the treated compliers tend to be somewhat larger than for the non-treated 

compliers. In this sense, the targeting was again successful in that of all compliers, on average 

those who benefited more from ALMP, received it. 
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Table 5: Estimates for compliers and treated compliers 

 Employment 
1999 

Employment 
2003 

Employment 
2006 

Employment 
1999-2006 Earnings 1999 

 
Treatment window: January to March 1998 (= 3 months) 

 
E[Y1-Y0|T=c] *** 0.155 (0.108) *** 0.210 (0.113) * 0.120 (0.121) *** 0.163 (0.108) 57 (12317) 

E[Y1-Y0|D=1,T=c] ** 0.142 (0.113) *** 0.252 (0.113) ** 0.175 (0.124) *** 0.205 (0.109) 109 (107905) 
 

Treatment window: January to April 1998 (= 4 months) 
 

E[Y1-Y0|T=c] 0.102 (0.111) *** 0.270 (0.114) *** 0.218 (0.117) *** 0.179 (0.110) 880 (12395) 
E[Y1-Y0|D=1,T=c] *** 0.142 (0.109) *** 0.292 (0.117) *** 0.295 (0.121) *** 0.307 (0.112) 913 (14990) 

Note: See note below previous table. 

5 Conclusions 

In this paper, we proposed a fully nonparametric method to identify potential outcomes not 

only for compliers but also for always- and never-treated. Learning about the potential outcomes 

of always- and never-treated is important since in many applications the compliers comprise only a 

very small subpopulation. These potential outcomes and treatment effects can be estimated by a 

combination of IV and matching estimators in cases when the no-confounding (conditional inde-

pendence) assumptions holds and a instrument can be observed as well. 

These methods have then been used to evaluate the effects of active labour market policies 

in Switzerland. We found positive and long-lasting employment effects of ALMP for the com-

pliers. The effects on the always- and never- participants were much smaller, but still mostly posi-

tive. 

Furthermore, the comparison of the estimated potential outcomes showed that, on average, 

the never-participants had the best chances to find a job, even without ALMP, followed by the 

always-participants and finally by the compliers. Hence, the compliers were the group with the 

worst chances on the labour market, and at the same time, those with the largest treatment effect. 
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Hence, the initial selection by the caseworkers was not efficient in the sense that they nei-

ther send those unemployed to treatment who benefited most from it nor picked those with the 

worst employment prospects. On the other hand, the expansion of ALMP was effective in reaching 

those unemployed who benefited strongly from it and, in addition, would have been worst off oth-

erwise. 
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Appendix - Proofs of identification 

Proof of expression (4): Notice first that in the subpopulation of compliers, conditioning 

on D =1 is equivalent to Z z=  and conditioning on D=0 is equivalent to Z z= . It follows that 

1 0 1 0
| ,

1 0
| ,

[ | 1, ] [ | , , ]

[ | , ]

X Z z T c
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E Y Y X T c dF
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− = = = − = = ⋅

= − = ⋅

∫
∫

 

where the last equality follows from the exclusion restriction CIV.4. 

By Bayes' theorem the conditional distribution of X can be written as  
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=

∫

∫

 

by the unconfounded type assumption CIV.3. By assumption CIV.1 to CIV.5 we can also show 

that via iterated expectations over the subpopulations complier, always- and never-treated 
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 [ | , ] [ | , ] Pr( | )E D X Z z E D X Z z T c X= − = = = , and 

 1 0[ | , ] [ | , ] [ | , ] Pr( | )E Y X Z z E Y X Z z E Y Y X T c T c X= − = = − = ⋅ = . 

Combining these results, we obtain 
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∫

. (17) 

Proof of equivalence between (8) and (2): Notice that for compliers conditioning on D 

and conditioning on Z are equivalent. Therefore, by exploiting the assumption of conditional inde-

pendence for the compliers, the expression (8) can be written as 

( )1 0 1 0
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by the exclusion restriction.  

By Bayes' theorem the conditional distribution of X can be written as 

|
Pr( | ) Pr( | )

Pr( ) Pr( | )
X X

X T c
X

T c X dF T c X dFdF
T c T c X dF=
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by the unconfounded type assumption CIV.3. Now using the previously obtained results that 

[ | , ] [ | , ] Pr( | )E D X Z z E D X Z z T c X= − = = = , and 

1 0[ | , ] [ | , ] [ | , ] Pr( | )E Y X Z z E Y X Z z E Y Y X T c T c X= − = = − = ⋅ = ,  
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