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Abstract 

Most sample selection models assume that the errors are independent of the regressors. 

Under this assumption, all quantile and mean functions are parallel, which implies that 

quantile estimators cannot reveal any (per definition non-existing) heterogeneity. However, 

quantile estimators are useful for testing the independence assumption, because they are 

consistent under the null hypothesis. We propose tests for this crucial restriction that are 

based on the entire conditional quantile regression process after correcting for sample 

selection bias. Monte Carlo simulations demonstrate that they are powerful and two 

empirical illustrations indicate that violations of this assumption are likely to be ubiquitous in 

labor economics. 
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1 Introduction

Estimation of economic models is frequently complicated by the problem of sample selection:

the variables of interest are only observed for a non-random subsample of the population. A

prominent example in labor economics consists in the estimation of the determinants of female

wages. Individuals are assumed to offer positive labor supply only if their potential wage exceeds

their reservation wage. It is well known that standard procedures will be biased if unobservables

jointly affect the decision of working and the potential wage. The ability to consistently estimate

econometric models in the presence of non-random sample selection is one of the most important

innovations in microeconometrics, as illustrated by the Nobel Prize received by James Heckman.

Gronau (1974) and Heckman (1974, 1976 and 1979) addressed the selectivity bias and pro-

posed fully parametric estimators, assuming that the residuals are independent and jointly nor-

mally distributed. This approach yields inconsistent results if the distribution of the error term is

misspecified. Therefore, Cosslett (1991), Gallant and Nychka (1987), Powell (1987), and Newey

(2009) proposed semiparametric estimators for the sample selection model. They relaxed the dis-

tributional assumption but kept the single index structure in both the selection and the outcome

equation. In addition, Ahn and Powell (1993) dropped the index structure in the selection equa-

tion. More recently, Das, Newey, and Vella (2003) considered fully nonparametric sample selec-

tion models. While these estimators have progressively weakened the parametric and distribu-

tional assumptions originally made, none of them is robust to the presence of conditional het-

eroscedasticity or higher order dependence between the residuals and the outcome.1

However, dependence in general and heteroscedasticity in particular is a ubiquitous

phenomenon in the fields where sample selection models have been used. As suggested by

Mincer (1973) in his famous human capital earnings model, residual wage dispersion should

increase with experience and education. In line with this finding, the large majority of the

applications using quantile regression in the empirical literature find significant heterogeneity in

the returns to education and experience. Therefore, the independence assumption cannot be

1Mean estimators only require the existence of a conditional moment restriction in the observed sample for

consistency. Therefore, a moment condition is sometimes assumed directly without imposing full independence,

but having the latter as a potential justification for the assumption. Note, however, that departures from full

independence that still satisfy the moment condition are not substantial. E.g., the moment condition allows for

heteroscedastic measurement errors affecting the dependent variable but not for heteroscedastic wage functions,

see the discussion in Newey and Powell (2003).



taken as granted in most economic applications. Donald (1995) alleviated the independence

assumption and proposed a two-step estimator that allows for conditional heteroscedasticity

but requires the error terms to be bivariate normally distributed. Chen and Khan (2003)

allowed for non-normality and heteroscedasticity. However, we show in Appendix B that proper

identification of their model de facto requires a new type of exclusion restriction: the availability

of a regressor that affects the variance but not the location of the dependent variable.

Quantile regression has progressively emerged as the method of choice to analyze the effects

of variables on the distribution of the outcome. In the absence of selection, Koenker and Bas-

sett (1978) proposed a parametric (linear) estimator for conditional quantile models. Due to its

ability to capture heterogeneous effects, its theoretical properties have been studied extensively

and it has been used in many empirical studies; see, for example, Powell (1986), Guntenbrunner

and Jurečková (1992), Buchinsky (1994), Koenker and Xiao (2002), Angrist, Chernozhukov, and

Fernández-Val (2006). Chaudhuri (1991) suggested a nonparametric quantile regression estima-

tor. Buchinsky (1998b), Koenker and Hallock (2001), and Koenker (2005) provide a comprehen-

sive discussion of quantile regression models and recent developments.

Buchinsky (1998a and 2001) was the first to consider the difficult problem of estimating quan-

tile regression in the presence of sample selection.2 He extended the series estimator of Newey

(2009) for the mean to the estimation of quantiles. Even in this approach the independence as-

sumption is required to obtain partially linear representations for the conditional quantile func-

tions in the observed sample. He assumed conditional independence between the error terms and

the regressors given the selection probability. This assumption implies that all quantile regression

curves are parallel, which limits the usefulness of considering several quantile regressions that by

assumption give the same result. In addition, the quantile slope coefficients are identical to the

mean slope coefficients.

The estimator proposed by Buchinsky is nevertheless useful for several reasons. The original

motivation for quantile regression was not the estimation of heterogeneous effects on the condi-

tional distribution but the robustness of the estimates in the presence of non-Gaussian errors.3

2Buchinsky (1998a) was awarded the Richard Stone Prize in Applied Econometrics for the best paper with

substantive econometric application that has been published in the 1998 and 1999 volumes of the Journal of

Applied Econometrics. It was also included in the virtual issue ”Celebrating 25 years of the Journal of Applied

Econometrics” as one of the most downloaded and cited articles during the JAE’s history.
3Ironically, Koenker and Bassett (1978) assume independence in their seminal paper.
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A similar result holds in the sample selection model and we illustrate the considerable efficiency

gains that can be achieved when the error distribution has fat tails in simulations. The second

motivation for quantile regression was to provide robust and powerful tests for heteroscedastic-

ity, as suggested by Koenker and Bassett (1982). Testing the independence assumption is even

more acute in the presence of sample selection because, as mentioned above, mean and quantile

estimators are inconsistent if this assumption is violated. Under the null hypothesis of indepen-

dence, the procedure proposed by Buchinsky (1998a) consistently estimates the slope coefficients,

which are constant as a function of the quantile. When the independence assumption is violated,

the estimated slope coefficients, while inconsistent, will be a nontrivial function of the quantile.

Therefore, we suggest testing the independence assumption by testing whether the coefficients

vary across quantiles. To the best of our knowledge, this is the first test for this identifying as-

sumption.

We could consider a finite number of quantile regression coefficients and jointly test for their

equality but more powerful test statistics can be built using the entire conditional quantile pro-

cess, see Koenker and Xiao (2002). We therefore suggest a test procedure similar to that pro-

posed by Chernozhukov and Fernandez-Val (2005). The critical values for this test are obtained

by resampling the empirical quantile regression processes. Since the computation of the estimates

is quite demanding, we follow Chernozhukov and Hansen (2006) and propose score resampling

instead of recomputing the whole process. Monte Carlo simulations indicate that size and power

properties of the suggested Kolmogorov-Smirnov and Cramer-Von-Mises tests are very satisfac-

tory.

After having provided the technology to detect violations of the independence assumption,

we examine whether such violations are an empirically relevant phenomenon by considering two

data sets which are representative for the application of sample selection correction procedures.

First, we apply the test to the medium-sized data of Martins (2001) and reject the independence

assumption at the 5% significance level. Second, using the more recent and considerably larger

sample of Mulligan and Rubinstein (2008), we reject the null hypothesis with even higher con-

fidence. We suspect that this problem is not limited to a few cases but is widespread in fields

where sample selection models have been used.4

4The codes for the simulations and applications and the datasets used in this paper can be downloaded at

http://www.econ.brown.edu/fac/Blaise Melly/code R selection.html. The interested researchers can, therefore,

easily verify whether our claim is true or not in their applications.
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What can be done in the case of rejecting the independence assumption? Unfortunately,

the parameters of interest are no longer point identified in the absence of the independence

(separability) assumption. In our companion paper Melly and Huber (2011), we derive the sharp

bounds on the quantile regression parameters when the this assumption is no longer imposed. In

this case, point identification can be attained only by an identification at infinity argument or by

a parametric assumption. Arellano and Bonhomme (2010) obtain point identification by a clever

parametrization of the copula between the error terms in the selection and outcome equations

while keeping their marginal distributions nonparametric.

The remainder of this paper is organized as follows. In Section 2 we describe the sample

selection model of Buchinsky (1998a) and discuss the implication of the independence assumption

in quantile models. Section 3 outlines the test procedure. In Section 4 Monte Carlo simulations

document the efficiency and robustness of quantile regression in sample selection models as well

as the power and size properties of the proposed test. Section 5 revisits two empirical applications

of sample selection models. Section 6 concludes.

2 The Sample Selection Model

In this paper, we consider the same sample selection framework of Buchinsky (1998a), which

can be regarded as the quantile version of Newey (2009). As in the seminal work of Heckman

(1974, 1976 and 1979), the outcome equation and the latent selection function are linear in the

covariates. The error terms in both equations are independent of the covariates (conditional

on the selection probability), but in contrast to the model of Heckman their joint distribution

is completely unrestricted. At this point, we would like to emphasize that the choice of linear

outcome and latent selection equations are made for completeness and to simplify the comparison

with important existing estimators. We could relax the assumptions restricting the selection

equation and allow for a fully nonparametric selection probability function as in Ahn and Powell

(1993). Furthermore, we could also allow for a nonparametric outcome equation as in Das, Newey,

and Vella (2003). Therefore, the insights of this paper about the implications and testability of

the independence assumption are valid for a much wider set of models than the linear case.

Bearing this in mind, we maintain the following assumption (equation 2 in Buchinsky, 1998a):

Y ∗
i = c+X ′

iβ + εi, (1)
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where Y ∗ denotes a potential outcome of interest, e.g. the potential hourly wage, X denotes a

vector of regressors without a constant, β is the vector of slope coefficients and εi is the error

term.

We do not observe the latent variable Y ∗
i but only Yi, which is defined by

Yi = Y ∗
i if Di = 1 and not observed otherwise.

D is an indicator function that depends on Z, a superset of X.5 The rest of the paper does not

depend on how Pr (D = 1|Z) is identified but for completeness we make the following assumption:

Di = 1
(
Z ′
iα+ Ui ≥ 0

)
. (2)

The selection probability is restricted to depend on the linear index Z ′α. In the implementation

of the test we will estimate α using the efficient semiparametric procedure suggested by Klein

and Spady (1993). Therefore, we rely on their restrictions and assume that U ⊥ Z|Z ′α. This

conditional independence assumption for U can be relaxed if Pr (D = 1|Z) is estimated nonpara-

metrically, as in Ahn and Powell (1993).

The model is not point identified without further assumptions. Following Buchinsky (1998a),

we assume:

Assumption 1 : (U, ε) has a continuous density,

Assumption 2 : fU,ε(·|Z) = fU,ε(·|Z ′α), where fU,ε denotes the joint density of U and ε.

These assumptions identify the parameter β. By Assumption 2, ε and U are independent of

Z given Z ′α, therefore, for any quantile 0 < τ < 1

Qτ (ε|Z,D = 1) = Qτ (ε|Z,U ≥ Z ′α)

= Qτ (ε|Z ′α,U ≥ Z ′α)

= Qτ (ε|Z ′α,D = 1).

where Qτ (ε|Z,D = 1) denotes the τ th conditional quantile of ε given Z and D = 1. Since X is a

subset of Z, it follows that Qτ (ε (τ) |X,D = 1) depends on X only through the linear index Z ′α.

5For identification, Z has to include at least one continuous variable which is not in X and has a non-zero

coefficient in the selection equation.
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Thus, for any 0 < τ < 1,

Qτ (Y
∗|X = x,Z = z,D = 1) = c+ xβ +Qτ (ε|z′α,D = 1)

= xβ + hτ
(
z′α

)
,

where hτ (z
′α) is an unknown function that depends only on z′α by Assumption 2. In other

words, β can be estimated consistently by any quantile regression of Y on X and a nonparametric

function of z′α̂, where α̂ is a first stage estimate of α.

It is obvious that these assumptions also have an unwanted consequence. The additivity in ε

in equation (1) associated with the conditional independence of ε and X in Assumption 2 implies

that all quantile regressions lead to the same slope coefficients. However, in the majority of cases

where quantile methods are applied the researcher is particularly interested in the heterogeneity

of the coefficients across the distribution. In the sample selection model, this heterogeneity para-

doxically points to the violation of (at least) one identifying assumption, since conditional inde-

pendence implies the homogeneity of the coefficients. In addition, knowing the slope of all quan-

tile regressions is not more informative than knowing the slope of the mean regression.6 Quantile

regression may, however, be preferred for the sake of robustness. We discuss this advantage in

Section 4.1.

At the same time, our arguments imply that Assumption 2 can be tested (while maintaining

the other assumptions) by testing the equality of the quantile coefficients. If different quantile

regressions give different slope coefficients, this has to imply that the independence assumption

is violated. We suggest such a test based on the quantile estimator of Buchinsky (1998a) in

Section 3. Our test bears great relevance for empirical work, as the independence assumption is a

necessary condition for the consistency of the estimators suggested in Heckman (1979), Cosslett

(1991), Gallant and Nychka (1987), Powell (1987), and Newey (2009), to name only a few. Even

though the importance of this assumption in sample selection models has not remained unnoticed

in the literature, see for instance Angrist (1997), we appear to be the first ones who suggest a

formal test.

A graphical illustration shall convey the intuition for the necessity of the independence as-

sumption and the possibility to use quantile regression to test its validity. Figure 1 displays 500

6The constant term of the mean or quantile function is not identified without further assumptions. Buchinsky

(1998a) uses an identification at infinity argument to identify c (τ). We do not pursue this strategy in this paper

and only consider the slope coefficients.
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simulated realizations of (X,Y ∗) which have exactly the same conditional selection probability

Pr(D = 1|Z) = 0.69. In the first case, the errors are independent while they are heteroscedastic

in the second case. The true median regression curve (dashed line) is flat in both cases. There

is the same positive selection in both cases such that we observe only the realizations with boxes

around the crosses. In Figure 1a, the selection induces a shift in the location of the observa-

tions but the slope remains the same as without selection. The reason is that the bias induced

by the selection is the same for all observations (remember that all observations have the same

participation probability) independently of the value of the regressor X. In Figure 1b, the bias

is increasing as a function of X because the variance of the errors is increasing with X. Obvi-

ously, controlling for the selection probability does not suffice in the absence of full independence

between the errors and regressors. The second insight of this figure is that the independence as-

sumption can be tested by comparing the slopes of several quantile regression.

Figure 1

Median Regression slopes under independence (1a) and heteroscedasticity (1b)

Note: Random sample of 500 observations. All observations have Z set such that Pr (D = 1|Z) = 0.69.
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3 Test Procedure

Our test procedure can be sketched as follows. We first estimate the selection equation using the

Klein and Spady (1993) estimator for binary choice models which is asymptotically efficient in

the sense that it attains the semiparametric efficiency bound. We then estimate the conditional

quantile regression process by approximating the bias by a series expansion of the inverse Mill’s

ratio, as suggested by Buchinsky (1998a and 2001). Finally, we test whether the quantile regres-

sion slopes are homogenous over the whole conditional outcome distribution. A rejection of this

null hypothesis implies a rejection of the independence assumption.

3.1 Estimation

In details, we estimate the selection equation by the semiparametric binary choice estimator

suggested in Klein and Spady (1993):

α̂ ≡ max
aϵℜ

∑{
(1−Di) log[1− Ê(D|Z, a)] +Di log[Ê(D|Z, a)]

}
, (3)

where

Ê(D|Z, a) =
∑

j ̸=iDjκ((Z
′
ia− Z ′

ja)/bn)∑
j ̸=i κ((Z

′
ia− Z ′

ja)/bn)
. (4)

bn is a bandwidth that depends on the sample size n and κ(·) denotes the kernel function,

which is Epanechnikov in our case. We select the bandwidth by the generalized cross

validation criterion (GCV) proposed in Craven and Wahba (1979). This estimator attains the

semiparametric efficiency bound for this model. Heteroscedasticity is allowed to depend on the

regressors only through the linear index. Klein and Spady’s Monte Carlo simulations indicate

that efficiency losses are only modest compared to probit estimation when the error distribution

is standard normal, while being considerably more efficient in finite samples when the errors are

non-Gaussian.

In a second step, the function hτ (z
′α) is approximated by a power series expansion. The exact

form of the approximation is asymptotically irrelevant. As suggested by Buchinsky (1998a), we

use a power series expansion of the inverse Mill’s ratio of the normalized estimated index. Thus,

the first order approximation will be sufficient if the error term is normally distributed. In any

case the estimator is consistent since the order of the approximation increases with the sample
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size. The coefficient estimates β̂(τ) is obtained by solving the following minimization problem:

β̂ (τ) , δ̂ (τ) = min
b,δ

1

n

∑
ρτ

(
Yi −X ′

ib−ΠJ

(
Z ′
iα̂
)
δ
)

(5)

where ρτ (A) = A(τ − 1 (A ≤ 0)) is the check function suggested by Koenker and Bassett (1978)

and 1 (·) denotes the indicator function. ΠJ (Z
′
iα̂) is a polynomial vector in the inverse Mill’s

ratio ΠJ(Z
′
iα̂) = (1, λ(Z ′

iα̂), λ(Z
′
iα̂)

2, ..., λ(Z ′
iα̂)

J). Again, generalized cross validation is used to

determine the optimal order J .

3.2 Testing

Our null hypothesis is: β (τ) = β for ∀ τ ϵ {0, 1} where β (τ) denotes the true τ quantile

regression coefficient. Buchinsky (1998a) gives the joint asymptotic distribution of β̂ (τ) for a

finite number of τ . Based on his results, we can use a finite number of quantile regressions and

apply a χ2 test as proposed by Koenker and Bassett (1982) in the absence of sample selection.

Even asymptotically, this does not allow for testing at an infinite number of τ and therefore, a χ2

test does not have power against all deviations from the null. Using the whole quantile process

should generally entail more power and we therefore construct Kolmogorov-Smirnov or Cramer-

Von-Mises-Smirnov tests. As suggested by Chernozhukov and Fernandez-Val (2005) we calculate

the critical values by resampling. When computing the estimated coefficient is computationally

too costly, we use score resampling as suggested by Chernozhukov and Hansen (2006). We

approximate the conditional quantile process by a grid of q equidistant quantiles between zero

and one, τ1:q ϵ T ⊂ (0, 1) , to test the null hypothesis

H0 : β (τ) = β, τ ϵ T . (6)

We estimate β by the vector of median regression coefficients β̂ (0.5). Alternatively, one could

use a trimmed mean or the mean coefficients but this last choice requires the existence of at

least the first two moments of Y given X. We measure the deviations from the null hypothesis

by the Kolmogorov-Smirnov (KS) and the Cramer-Von-Mises-Smirnov (CMS) statistics for the

empirical process β̂ (τ)− β̂ (0.5):

TKS
n = sup

τϵT

√
n||β̂ (τ)− β̂ (0.5) ||Λ̂τ

and TCMS
n = n

∫
T
||β (τ)− β̂ (0.5) ||2

Λ̂τ
dτ, (7)

where ||a||Λ̂τ
denotes

√
a′Λ̂τa and Λ̂τ is a positive weighting matrix satisfying Λ̂τ = Λτ + op(1),

uniformly in τ . Λτ is positive definite, continuous and symmetric, again uniformly in τ . In the
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empirical applications we use the inverse of the variance-covariance-matrix of X as weighting

matrix. We renounce to use Anderson-Darling weights because the variance of β̂ (τ) − β̂ (0.5)

converges to 0 as τ → 0.5.

Inference requires the knowledge of the asymptotic distributions of TKS
n , TCMS

n .

Chernozhukov and Fernandez-Val (2005) show that asymptotically valid critical values can be

obtained by resampling the recentered test statistics. To this end, B samples of block size m

(with m ≤ n) are drawn from the original sample with replacement to compute the inference

process

β̂m,j (τ)− β̂m,j (0.5) , (8)

where 1 ≤ j ≤ B and β̂m,j (τ) are the quantile slope coefficient estimates for draw j and block

size m. Note that there is no statistical reason for using m < n when m = n is computationally

feasible. The corresponding KS and CMS statistics of the recentered resampled process are

TKS
n,m,j = sup

τϵT

√
m||β̂m,j (τ)− β̂m,j (0.5)− (β̂ (τ)− β̂ (0.5))||Λ̂τ

and (9)

TCMS
n,m,j = m

∫
T
||β̂m,j (τ)− β̂m,j (0.5)− (β̂ (τ)− β̂ (0.5))||2

Λ̂τ
dτ.

The p-value for the respective test statistic is computed as the share of Tn,m,j being larger than

Tn: 1/B
∑B

j=1 1 (Tn,m,j > Tn).

The repeated computation of the coefficients for each bootstrap sample can be quite costly,

especially when the sample sizes are large. For this reason, we follow Chernozhukov and Hansen

(2006) and use score resampling based on the linear approximation of the empirical processes

instead, which is considerably less burdensome. In Appendix A we derive the following asymptotic

linear representation
√
n(β̂ (τ)− β̂ (0.5)) = − 1√

n

n∑
i=1

si(τ) + op(1). (10)

si(τ) denotes the score contribution of the ith observation at quantile τ . Again, B samples of

score estimates with block size m are drawn. Let Υj denote a specific (sub)sample of scores,

1 ≤ j ≤ B. The KS and CMS statistics for the jth iteration are

TKS
n,m,j ≡ sup

τϵT

√
m||1/m

∑
iϵΥj

ŝi(τ)||Λ̂τ
and TCMS

n,m,j ≡ m

∫
T
||1/m

∑
iϵΥj

ŝi(τ)||2Λ̂τ
dτ .

p-values are computed analogously as outlined above.
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4 Monte Carlo Simulations

In this section, we present the results of simulations. We consider a very simple data generating

process:

Di = I{Xi +Wi + Ui > 0},

Yi = Xi + (1 +Xiγ) · εi if Di = 1, (11)

X ∼ N(0, 1), W ∼ N(0, 1)

The parameter γ controls the amount of heteroscedasticity. When γ = 0 there is independence

and both mean and quantile estimators are consistent. We consider this case in the first subsection

and we examine the relative efficiency of the mean and quantile estimators under different joint

distributions for U and ε. In the second subsection, we analyze the size and power properties of

the procedures proposed in Section 3 to test the independence assumption when γ = 0, 0.25 and

0.5.

4.1 Efficiency and robustness under independence

The need for robust statistical procedures has been stressed by many authors both in the statistical

and econometric literature. This was the first motivation for considering quantile regression in

Koenker and Bassett (1978). One way to measure robustness is to require that the estimators

have bounded influence. Ronchetti and Trojani (2001) show that GMM are (locally) robust if

and only if the orthogonality conditions are bounded. Interpreting the estimator proposed by

Buchinsky (1998a) as a GMM estimator, we see that the scores given in Appendix A are bounded

in the direction of ε (or Y ) because Y is inside the indicator function and in the direction of U

(or D) because a probability is necessarily bounded between 0 and 1. However, it is not bounded

in the Z direction, which is well known for quantile regression. We consider this to be a limited

problem in many applications because the support of the covariates is often bounded and outliers

in Z are easier to identify. If this was not the case, a trimming function in Z could be added to

the quantile objective function to obtain a fully robust estimator.

In their seminal paper on quantile regression, Koenker and Bassett (1978) provide Monte

Carlo evidence on the precision of mean and quantile regression for several error distributions.

They conclude that in the presence of Gaussian errors, the median estimator makes only small

efficiency sacrifices compared to the mean estimator. It is, however, considerably more accurate
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when errors have a non-Gaussian distribution, such as Laplace, Cauchy or contaminated Gaussian.

Thus, even when errors are independent of the regressors, quantile regression can be preferable for

the sake of robustness. To illustrate that such efficiency and robustness considerations also apply

to sample selection models, we conduct Monte Carlo simulations. Define the following location

and scale parameters

µ =

 0

0

 , ν =

 1 0.8

0.8 1

 . (12)

We consider six different distributions for (U, ε). (i) Gaussian distribution: (U, ε) ∼ N(µ, ν) (ii)

t-distribution with three degrees of freedom, location vector µ and scale matrix ν (iii) Cauchy

distribution with location vector µ and scale matrix ν, (iv) contaminated normal errors (Gaussian

mixture):

C = Ber (0.95) , (U1, ε1) ∼ N(µ, ν), (U2, ε2) ∼ N(µ, ν)

U = C · U1 + (1− C) · U2

ε = C · ε1 + (1− C) · 10 · ε2,

(v) contaminated data: (U, ε) ∼ N(µ, ν) but the regressor is contaminated by the factor 10 with

5% probability:

C = Ber (0.95) , X∗ ∼ N(0, 1), X = (C + (1− C) · 10) ·X∗.

For each model, 1000 Monte Carlo replications are conducted with n = 400 and 1600 obser-

vations. The bandwidth for the Klein and Spady (1993) estimator and the order of the power

series approximation of the selection bias term are determined by GCV.
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Table 1

Coefficient estimates and variances of mean and median estimators

n=400 Median estimator Mean estimator

Distributions Mean Variance MSE Mean Variance MSE

(i) Gaussian 1.009 0.013 0.013 1.003 0.009 0.009

(ii) Student’s t (df=3) 1.021 0.024 0.025 1.009 0.035 0.036

(iii) Cauchy 1.044 0.089 0.091 1.356 1430.522 1430.649

(iv) Contaminated Gaussian error 0.997 0.014 0.014 0.984 0.062 0.062

(v) Contaminated data 1.105 0.016 0.027 1.909 0.176 1.002

n=1600 Median estimator Mean estimator

Distributions Mean Variance MSE Mean Variance MSE

(i) Gaussian 1.002 0.003 0.003 1.000 0.002 0.002

(ii) Student’s t (df=3) 1.007 0.004 0.005 1.002 0.006 0.006

(iii) Cauchy 1.015 0.009 0.009 1.199 434.655 434.695

(iv) Contaminated Gaussian error 1.003 0.003 0.003 1.000 0.014 0.014

(v) Contaminated data 1.096 0.004 0.013 1.901 0.040 0.851

The mean, variance and mean squared errors (MSEs) of the median and mean7 coefficients

are reported in Table 1. Apart from specification (i), where the error terms are jointly normally

distributed, the median estimator is more precise and has a smaller MSE than the mean estimator.

When the error terms are Cauchy distributed, the moments of the mean estimator do not exist

whereas the bias and the variance of the median estimator are relatively well-behaved. In presence

of contaminated date, the mean estimator is severely upward biased and quite noisy, whereas the

median estimator is only slightly biased and very precise.

4.2 Power and size properties of the independence tests

In this section, we present Monte Carlo evidence about the size and power properties of the

independence test that we have proposed in Section 3. We use the same data generating process

as above, which is defined in display (11). We consider three distributions for (U, ε): Gaussian,

t (3) and t (1). The location and scale of these distributions are set to µ and ν defined in (12).

We consider three values for the critical parameter γ. Under he null hypothesis (independence)

7Analogous to the estimation of the quantile coefficients, the mean coefficients are estimated following the two

step procedure of Newey (2009).
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the regressor X has a pure location shift effect; this corresponds to γ = 0. This case allows us to

analyze the empirical size of our tests. We also evaluate the power of our tests in two location

scale shift models (γ = 0.2, 0.5).

As above, the bandwidth for the Klein and Spady (1993) estimator and the order of the power

series approximation of the selection bias term are determined by GCV. We present the results of

the score bootstrap tests based on the Kolmogorov-Smirnov (KS) and Cramer-Von-Mises-Smirnov

(CMS) statistics. In order to construct the test statistics, the coefficients β̂ (τ) are estimated at

equidistant quantiles with step size 0.01 and compared to the median estimate β̂ (0.5). Results

are presented for three different regions of τ over which the quantile coefficients are estimated:

[0.05, 0.95], [0.1, 0.9], and [0.2, 0.8].

In the simulations, we consider five sample sizes from n = 100 to n = 3200. We run 1000

Monte Carlo replications and draw 250 bootstrap samples within each replication. The theoretical

level of significance is set at 5%. For the sake of brevity, we only report the rejection frequencies

for the bootstrap, i.e., for the block size m = n. The results for subsampling (i.e., for some m

smaller than n) are comparable and available from the authors upon request.
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Table 2

Empirical rejection frequencies for 5% bootstrap tests

Normal distribution, 1000 replications, 250 bootstrap draws

Kolmogorov-Smirnov statistics

γ = 0 γ = 0.2 γ = 0.5

τ ϵ [0.05,0.95] [0.1,0.9] [0.2,0.8] [0.05,0.95] [0.1,0.9] [0.2,0.8] [0.05,0.95] [0.1,0.9] [0.2,0.8]

n = 100 0.003 0.000 0.000 0.005 0.001 0.001 0.021 0.004 0.001

n = 400 0.022 0.006 0.002 0.273 0.145 0.054 0.895 0.780 0.434

n = 800 0.024 0.019 0.009 0.636 0.482 0.253 0.996 0.994 0.952

n = 1600 0.038 0.033 0.017 0.934 0.885 0.705 1.000 1.000 1.000

n = 3200 0.042 0.029 0.027 0.999 1.000 0.975 1.000 1.000 1.000

Cramer-Von-Mises-Smirnov statistics

γ = 0 γ = 0.2 γ = 0.5

τ ϵ [0.05,0.95] [0.1,0.9] [0.2,0.8] [0.05,0.95] [0.1,0.9] [0.2,0.8] [0.05,0.95] [0.1,0.9] [0.2,0.8]

n = 100 0.001 0.000 0.000 0.001 0.000 0.000 0.006 0.005 0.003

n = 400 0.011 0.006 0.002 0.192 0.112 0.045 0.924 0.838 0.498

n = 800 0.017 0.009 0.010 0.617 0.463 0.252 0.999 0.998 0.957

n = 1600 0.026 0.020 0.014 0.958 0.911 0.735 1.000 1.000 1.000

n = 3200 0.026 0.024 0.021 1.000 0.999 0.978 1.000 1.000 1.000

The empirical rejection frequencies reported in Table 2 suggest that the bootstrap score tests

have good size and power properties with normally distributed error terms. In the presence of

independent errors (γ = 0), both the KS and CMS tests are conservative, at least for the sample

sizes considered. However, the empirical size slowly converges to the theoretical size of 5% as

the sample size increases. The KS test does so at a faster pace than the CMS test. Under

heteroscedastic errors, the rejection probabilities correctly converge to 100% as n becomes larger.

As expected, this happens at a faster pace for γ = 0.5 than for γ = 0.2. The power properties

of the KS and CMS tests are rather similar, albeit the latter become relatively more powerful

in larger samples and/or for a higher γ. The empirical power increases as the range of quantiles

considered increases and this holds true for both test statistics and both values of γ. Summing

up, the KS and CMS tests seem to perform well in finite samples with Gaussian errors. Under

sample sizes of several thousand observations, they are powerful in any scenario considered.

Table 3 reports the rejection frequencies for t (3)-distributed error terms: (U, ε) ∼ t (3, µ, ν).

As one would expect, deviations from the null hypothesis are harder to detect because of the fatter
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tails. The KS test statistic suffers particularly because it is more likely to confound a single outlier

with a deviation from H0. Accordingly, rejection frequencies of the KS test ‘overshoot’ in small

samples when the range of quantiles used is too large. Even in this case, the empirical size

converges eventually to the true value. The CMS test performs better as it stays on the ‘safe

side’ for all ranges of quantiles and is more conservative than the than the theoretical rate of

5%. Furthermore, the CMS rejection frequencies converge faster to 100% when the errors are

heteroscedastic.

Table 3

Empirical rejection frequencies for 5% resampling tests

t (3) distribution, 250 bootstrap draws, 1000 replications

Kolmogorov-Smirnov statistics

γ = 0 γ = 0.2 γ = 0.5

τ ϵ [0.05,0.95] [0.1,0.9] [0.2,0.8] [0.05,0.95] [0.1,0.9] [0.2,0.8] [0.05,0.95] [0.1,0.9] [0.2,0.8]

n = 100 0.037 0.006 0.000 0.041 0.005 0.001 0.064 0.006 0.001

n = 400 0.070 0.032 0.009 0.252 0.153 0.043 0.801 0.758 0.415

n = 800 0.103 0.068 0.013 0.447 0.414 0.253 0.966 0.986 0.943

n = 1600 0.066 0.061 0.026 0.642 0.743 0.632 0.999 1.000 1.000

n = 3200 0.068 0.055 0.045 0.909 0.969 0.945 1.000 1.000 1.000

Cramer-Von-Mises-Smirnov statistics

γ = 0 γ = 0.2 γ = 0.5

τ ϵ [0.05,0.95] [0.1,0.9] [0.2,0.8] [0.05,0.95] [0.1,0.9] [0.2,0.8] [0.05,0.95] [0.1,0.9] [0.2,0.8]

n = 100 0.000 0.000 0.000 0.001 0.000 0.000 0.014 0.003 0.001

n = 400 0.020 0.007 0.001 0.205 0.104 0.019 0.890 0.800 0.462

n = 800 0.053 0.017 0.004 0.581 0.462 0.230 1.000 0.998 0.960

n = 1600 0.050 0.034 0.020 0.896 0.862 0.665 1.000 1.000 1.000

n = 3200 0.049 0.036 0.036 0.995 0.998 0.976 1.000 1.000 1.000

Table 4 displays the rejection rates for Cauchy distributed error terms. Since the tails are

extremely fat, larger sample sizes are required to obtain satisfactory results. The KS is, as

expected, more sensitive to outliers and performs less well than the CMS test statistics. In

contrast to Gaussian errors, T =[0.05, 0.95] is generally not the best choice with worse size and

power properties. The narrowest range, T =[0.2, 0.8] yields the best results because it does

not use the uninformative tails of the Cauchy. The differences between the results for different

16



distributions show that none of the ranges or test statistics is uniformly more powerful. For

well-behaved distributions, using a wide range of quantiles and the KS statistic yields better

results. For fatter tailed distributions, CVM applied to a narrower range of quantiles is preferable.

This suggests that an applied researcher should choose regions T that are not too close to the

boundaries if she suspects the error distribution to have fat tails. Given the uncertainty about

the shape of the distribution, it may also be beneficial to report the results of several tests.

Table 4

Empirical rejection frequencies for 5% resampling tests

Cauchy distribution, 250 bootstrap draws, 1000 replications

Kolmogorov-Smirnov statistics

γ = 0 γ = 0.2 γ = 0.5

τ ϵ [0.05,0.95] [0.1,0.9] [0.2,0.8] [0.05,0.95] [0.1,0.9] [0.2,0.8] [0.05,0.95] [0.1,0.9] [0.2,0.8]

n = 100 0.088 0.018 0.004 0.088 0.025 0.003 0.113 0.030 0.006

n = 400 0.091 0.056 0.018 0.103 0.084 0.030 0.285 0.333 0.270

n = 800 0.086 0.063 0.036 0.097 0.076 0.072 0.433 0.553 0.661

n = 1600 0.069 0.031 0.023 0.132 0.144 0.220 0.704 0.881 0.963

n = 3200 0.079 0.041 0.035 0.279 0.325 0.472 0.926 0.989 0.999

Cramer-Von-Mises-Smirnov statistics

γ = 0 γ = 0.2 γ = 0.5

τ ϵ [0.05,0.95] [0.1,0.9] [0.2,0.8] [0.05,0.95] [0.1,0.9] [0.2,0.8] [0.05,0.95] [0.1,0.9] [0.2,0.8]

n = 100 0.053 0.005 0.000 0.057 0.007 0.000 0.066 0.013 0.001

n = 400 0.072 0.036 0.004 0.090 0.066 0.013 0.395 0.441 0.254

n = 800 0.083 0.040 0.016 0.110 0.092 0.063 0.625 0.773 0.812

n = 1600 0.052 0.033 0.014 0.174 0.245 0.292 0.888 0.980 0.993

n = 3200 0.061 0.031 0.025 0.385 0.525 0.668 0.994 1.000 1.000

Before ending this section, we investigate whether the violation of the null hypothesis actually

biases the estimators. If this was not the case, one would not be too worried about the rejection

of the independence assumption. Table 5 reports the mean, variance and MSE of the median and

mean regression estimator for n = 1600 and for the different scenarios. Biases are not negligible

under heteroscedasticity (γ = 0.2, 0.5) and MSEs are largely driven by these biases, such that

these rejections have to be taken seriously at least for the DGPs considered.
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Table 5

Coefficient estimates and variances of mean and median estimators

n=1600 Median estimator Mean estimator

Distributions Mean Variance MSE Mean Variance MSE

Normal, γ = 0 1.002 0.003 0.003 1.000 0.002 0.002

Normal, γ = 0.2 1.076 0.003 0.009 1.067 0.003 0.007

Normal, γ = 0.5 1.208 0.004 0.047 1.174 0.004 0.035

Student’s t (df=3), γ = 0 1.007 0.004 0.005 1.002 0.006 0.006

Student’s t (df=3), γ = 0.2 1.101 0.005 0.015 1.123 0.007 0.023

Student’s t (df=3), γ = 0.5 1.258 0.005 0.072 1.305 0.011 0.104

Cauchy, γ = 0 1.015 0.009 0.009 1.199 434.655 434.695

Cauchy, γ = 0.2 1.144 0.010 0.030 2.353 503.527 505.357

Cauchy, γ = 0.5 1.340 0.009 0.124 4.082 673.510 683.008

Note: 1000 Monte Carlo replications. The true value is 1.

5 Labor Market Applications

5.1 Female wage distribution in Portugal

In this section we apply our tests proposed in Section 3 to empirical data. The first one uses

female labor market data from Portugal previously analyzed by Martins (2001), who compared

parametric and semiparametric estimators. The sample stems from the 1991 wave of the Por-

tuguese Employment Survey and consists of 2,339 married women aged below 60 whose husbands

earned labor income in 1991. The data contain information on the wages and hours worked for

428 women with positive labor supply along with a set of regressors for the whole sample. We ob-

serve the outcome hourly wage only for those 1,400 women who participate in the labor market,

whereas explanatory variables are observed for the entire sample. In the test procedures, we use

the same model specification as in Martins (2001). The regressors (X) in the wage equation in-

clude (potential experience)/10, (potential experience)2/100, and the interactions of both terms

with the number of children. The variables (Z) characterizing labor market participation contain

age/10, age2/100, years of education, the number of children under 18, the number of children

under 3, and the log of the husband’s monthly wage.
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Table 6

Labor market application I: p-values

τ ∈ [0.05,0.95] [0.1,0.9] [0.2,0.8]

KS 0.044 0.005 0.011

CMS 0.015 0.032 0.306

Note: 10,000 bootstrap draws.

Table 6 reports the p-values of the KS and CMS tests for B = 10, 000 bootstrap replications.

We consider three ranges of quantiles for τ , [0.05, 0.95], [0.1, 0.9] and [0.2, 0.8], with steps of 0.01.

GCV is applied to determine the optimal bandwidth boptn in (4) and the optimal order J .8 At

the 5% significance level all tests reject the independence assumption with the exception of the

CMS test statistic applied the narrowest range. To better understand this result the upper part of

Figure 2 shows the quantile coefficients on experience and experience squared with 95% pointwise

confidence intervals.9 For these two variables the coefficients show a U-shape and inverted U-

shape pattern as a function of the quantile. This explains why the CMS test is not able to detect

heterogeneity when we consider only the 60% in the middle of the distribution.

5.2 Female wage distribution in the USA

While the first application shows that our test can be quite powerful even in medium-size samples

(428 observed wages), considerably larger data sets are available for our second application.

In their study on US women’s relative wages, Mulligan and Rubinstein (2008) estimate the

conditional mean wages of married white women using a normal parametric correction for sample

selection. They investigate two repeated cross-sections covering the periods 1975-1979 and 1995-

1999 in the US Current Population Survey (CPS) and restrict the data to married white females

aged 25-54. The outcome variable is the female’s log weekly wage. Labor market participation

(D) is defined as working full time and at least 50 weeks in the respective year. The 1975-79

period contains 116,843 observations, of whom 36,817 report to work full time. For the 1995-99

period, the respective numbers are 102,395 and 52,242. The regressors X include wife’s education

(dummies for 8 or less years of schooling, 9-11 years of schooling, high school graduate, college

8boptn = 0.14, J = 4
9The other coefficients are available from the authors upon request.
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graduate, advanced degree), potential work experience as well as squared, cubic, and quartic

terms thereof, marital status, regional dummies, and interactions between all variables capturing

potential experience and education. Z contains X as well as the number of children aged 0-6 and

its interactions with the marital status.

Table 7

Labor market application II: p-values

1975-1979

τ ∈ [0.05,0.95] [0.1,0.9] [0.2,0.8]

KS 0.001 0.008 0.002

CMS 0.000 0.000 0.005

1995-1999

τ ∈ [0.05,0.95] [0.1,0.9] [0.2,0.8]

KS 0.000 0.000 0.000

CMS 0.000 0.000 0.000

Note: 1000 bootstrap draws.

Table 7 reports the p-value of our tests for the same range of quantiles than for the first

application.10 1000 bootstrap draws of the scores were sampled. The null hypothesis is rejected

at the 1% significance level for both years, both test statistics and all ranges. The low p-values

leave little doubt about the violation of the independence assumption. One may argue that small

deviations from the null hypothesis may lead to a rejection in so large samples. However, the

quantile coefficients plotted in the lower half of Figure 2 show that there are important and

systematic deviation from the null hypothesis for economically important regressors. This means

that there is at least the potential for an economically significant bias. In addition, since the

selection probability is changing over time, the researchers have to be extremely careful when

they compare the wage functions between the 70s and the 90s. The apparent differences may be

the results of a changing bias.

10boptn is 0.15 for 1975-1979 and 1995-1999. J is 5 and 6 for 1975-1979 and 1995-1999, respectively.
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Figure 2

Quantile regression coefficients on selected variables
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Note: The coefficients have been estimated using the estimator suggested by Buchinsky (1998a). The

samples, the other variables and the details of the implementation are described in the text. 95% pointwise

confidence intervals are also plotted. Caution: Given the result of our test, these results are not consistent

for the true parameters.

6 Conclusion

Assuming additivity and independence of the error term in the outcome equation is rather re-

strictive. It implies that all units with the same observable variables react to changes in the lat-

ter in the same way. However, the unobservable random terms may have important economic

interpretations. The recent econometric literature has considerably relaxed restrictions on the in-
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teraction of observables and unobservables. Advances have been reported in models based selec-

tion on observables, instrumental variables, and panel data, among many others, see for instance

Matzkin (2007) for a discussion.

Somewhat surprisingly, the sample selection model has been excluded from this trend. Almost

all sample selection estimators still assume that the error terms are independent.11 This is also the

case in the quantile regression model of Buchinsky (1998a). However, in the quantile regression

framework the independence assumption implies that the quantile slope coefficients are equal to

the mean slope coefficients and all quantile curves are parallel. In other words, the heterogeneity

that we want to analyze is excluded by assumption. Applications of the sample selection correction

for quantile regression that have found significant differences between the coefficients estimated

at distinct quantiles have merely proven the violation of the underlying assumptions and the

inconsistency of the estimator.12

Given the importance of the independence assumption for the identification of sample selection

models, this assumption should be tested whenever this is possible. In this paper we propose the

(to the best of our knowledge) first formal test for this assumption. Our method is based on

the quantile estimator of Buchinsky (1998a), which is consistent under the null hypothesis, and

compares the coefficients obtained at different quantiles. It is relevant for the consistency of both

mean and quantile regression. Monte Carlo simulations provide evidence on the satisfactory power

and size properties of our test procedures. We also present two applications to representative labor

market data. The results foster the suspicion that the independence assumption may be violated

in many empirical problems.

The question that naturally follows is: What can be done in the case of the rejection

of this critical assumption? In our companion paper, Melly and Huber (2011), we derive

the sharp bounds on the quantile regression parameters when the independence assumption

(separability) is no longer imposed. It appears that point identification can be attained only

11In addition to the papers discussed below, Newey (2007) is a notable exception. However, he is interested in

outcomes defined in the selected population and not in the whole population.
12Restrictions similar to the independence assumption also appear in some instrumental variable models, see

for example Amemiya (1982), Powell (1983), Chen and Portnoy (1996), Lee (2007), Blundell and Powell (2007),

and Carneiro and Lee (2009). These restrictions are particularly useful to justify a control function or a fitted

value approach in order to tackle endogeneity problems. Also in these models, this assumption implies that the

coefficients do not vary across quantiles. Therefore, these estimators are not useful for analyzing heterogeneity

(which was not the intention of their authors).
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by an identification at infinity argument or by a parametric assumption. In the absence of

observations that are observed with probability one, only the second strategy can help recovering

point identification. Donald (1995) and Chen and Khan (2003) make one step away from

independence and allow for multiplicative heteroscedasticity. Donald (1995) identifies the model

by a normality assumption while Chen and Khan (2003) use de facto an exclusion restriction

for the conditional variance (see Appendix B). Arellano and Bonhomme (2010) obtain point

identification by a clever parametrization of the copula between both error terms (selection and

outcome equations) while keeping the marginal distributions of the error terms nonparametric.

This weaker parametric restriction does not restrict the relationship of the outcome and the

observables.

Another strategy consists in changing the estimand by considering a different population.

Newey (2007) analyzes a nonseparable model but shows identification only in the selected

population instead of the entire population. In the absence of an exclusion restriction, Lee

(2009), Lechner and Melly (2010), and Huber and Mellace (2010) provide sharp bounds for

several subpopulations. This is of interest in some applications but clearly not in all. For

instance, it does not allow the researcher to compare female and male wages or wages across

different years.
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A Appendix A: Score function

In this appendix, we derive the score function used for the test proposed in Section 3. We

first consider the estimator of the selection probability. Define the short-hand notation Pi(a) =

Pr(D = 1|Z ′
ia) (where a denotes the vector of first stage regressors the true value of which is α).

Klein and Spady (1993) show in their equation (49) that, under some regularity conditions,

√
n(α̂− α) = ∆−1

P

n∑
i=1

Ki + op (1) , (A-1)

where

∆P = E

[
∂Pi(a)

∂a

∣∣∣∣
a=α

∂Pi(a)
′

∂a

∣∣∣∣
a=α

1

P (α)(1− P (α))

]
(A-2)

and Ki =
∂Pi(a)

∂a

∣∣∣∣
a=α

· Di − Pi(α)

Pi(α)(1− Pi(α))
. (A-3)

We heavily draw from the appendix in Buchinsky (1998a) to derive the score function for the

second step quantile estimator. β̂ (τ) solves the moment condition for the τth quantile regression:

Ψ (Z, Y,D, a, b) = D[τ − I
{
Y < X ′b− hτ (Z

′a)
}
]X.

Following the arguments in Buchinsky (1998a), we can combine his equations (A3) to (A8) with

the simplications in (A14) to (A16) to obtain the following representation:

√
n(β̂(τ)− β) = ∆−1

b,τ

1√
n

n∑
i=1

(ℓi (τ)−∆a,τ

√
n(α̂− α)) + op (1) . (A-4)

∆b,τ is the derivative of the expected value of Ψ (Z, Y,D, a, b) with respect to b and ∆a,τ is the

derivative of the same expected value with respect to a. Precisely,

Mi = Di

(
Xi − E

[
Xi|Z ′

ia
])

,

∆b,τ = E[fε(τ)(0|Z ′
ia))MiM

′
i ],

∆a,τ = E[fε(τ)(0|Z ′
ia)Mi

(
∂h(Z ′a)

∂a

)′
],

ℓi (τ) = (τ − I{Yi < X ′
iβ(τ) + hτ (Z

′
iα)})Mi.

We now insert (A-1) into (A-4):

√
n(β̂(τ)− β) = ∆−1

b,τ

1√
n

n∑
i=1

(ℓi (τ)−∆a,τ∆
−1
P Ki) + op (1)

≡ 1√
n

n∑
i=1

Ai(τ) + op (1) .
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Our test statistics exploit the differences between β̂(τ) and β̂(0.5). Therefore, the test’s score

function si(τ) is obtained by subtracting one score from the other. Thus,

√
n(β̂ (τ)− β̂ (0.5)) =

1√
n

n∑
i=1

si(τ) + op(1),

where

si(τ) = Ai(τ)−Ai(0.5).

B Appendix B: Chen and Khan (2003)

Chen and Khan (2003) discuss the estimation of sample selection models subject to conditional

heteroscedasticity in both the selection and outcome equations. They consider a model similar

to that of Donald (1995) but relax the normality assumption on the errors. They propose a

three-step estimator and show that it is
√
n consistent.

In terms of our notation, their model is defined as follows:

Di = I {µ (Zi)− σ1 (Zi) · υi ≥ 0} ,

Y ∗
i = X ′

iβ + σ2 (Xi) · ϵi,

Yi = Y ∗
i if Di = 1,

where β are the parameters of interest, Xi, Zi and Di are observed, µ (Zi), σ1 (Zi) and σ2 (Xi)

are unknown functions, and υi and ϵi are unobserved disturbances, which are independent of the

regressors but not necessarily of each other.

They show (equation 2.13) that

F−1
Y ∗
i
(τ |Zi, Di = 1) = X ′

iβ + σ2 (Xi)λτ (Pi) ,

where λτ is an unknown function (different at each quantile) and Pi = Pr (Di = 1 |Zi ). This

implies that the inter-quartile range is

∆Q (Zi) = F−1
0.75 (τ |Zi, Di = 1)− F−1

0.25 (τ |Zi, Di = 1)

= σ2 (Xi) (λ0.75 (Pi)− λ0.25 (Pi)) ≡ σ2 (Xi)∆λ (Pi) .

The more conventional selection correction equation is given by

E [Y ∗
i |Zi, Di = 1] = X ′

iβ + σ2 (Xi)λ (Pi) ,
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where λ (Pi) = E [ϵi |Di = 1, Zi ]. We now define the transformed variables

Ỹi =
Yi

∆Q (Zi)
, X̃i =

Xi

∆Q (Zi)
, λ̃ (Pi) =

λ (Pi)

∆λ (Pi)

and obtain the new selection correction equation

E
[
Ỹ ∗
i |Zi, Di = 1

]
= X̃ ′

iβ + λ̃ (Pi) .

This looks like the partial linear form of the conditional expectation function in the homoscedastic

sample selection model. Chen and Khan (2003) propose to use the same kernel procedure as Ahn

and Powell (1993) to estimate β.

In their regularity assumption I, Chen and Khan (2003) directly assume identification of the

parameters of interest. Here, we show that this assumption excludes the simplest case of linear

multiplicative heteroscedasticity:

σ2 (Xi) = X ′
iγ.

In this case

X̃i =
Xi

∆Q (Zi)
=

Xi

X ′
iγ∆λ (Pi) ,

such that X̃iγ = 1
∆λ(Pi)

. Since we have to condition on Pi in order to control for selection bias,

this implies that the transformed regressors X̃i are multicollinear given the propensity score.

In other words, the parameters β are not identified. Identification of β when σ2 (Xi) is linear

requires a new type of exclusion restrictions: a variable that affects the conditional variance but

has no effect on the conditional mean of Y . If σ2 (Xi) is nonlinear, the model is identified without

exclusion restriction with σ2 (Xi) minus its linear projection on Xi serving as excluded regressor.

Ahn and Powell (1993) make a similar assumption in a homoscedastic sample selection model

(σ2 (Xi) = 0). They note that Z must include a variable excluded from X if µ (Z) is linear in

Z. If µ (Z) is nonlinear, then the model is identified without exclusion restriction with µ (X)

minus its linear projection on X serving as the excluded regressor. This is very similar to the

identification of the model in Chen and Khan (2003).
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