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Abstract 

Using a simulation design that is based on empirical data, a recent study by Huber, Lechner 

and Wunsch (2012) finds that distance-weighted radius matching with bias adjustment as 

proposed in Lechner, Miquel and Wunsch (2011) is competitive among a broad range of 

propensity score-based estimators used to correct for mean differences due to observable 

covariates. In this paper, we further investigate the finite sample behaviour of radius 

matching with respect to various tuning parameters. The results are intended to help the 

practitioner to choose suitable values of these parameters when using this method, which 

has been implemented as "radiusmatch" command in the software packages GAUSS, STATA 

and the R package "radiusmatching". 
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1 Introduction 

In the applied literature on the evaluation of binary treatments or policy interventions, 

matching estimators are often used to remove differences in the distributions of covariates 

across treatment states. Instead of matching on the covariates directly, these estimators are 

usually based on the propensity score, i.e., the conditional treatment probability given ob-

served covariates. 1 Propensity score methods are usually implemented as semiparametric 

estimators, i.e., the propensity score is estimated by a parametric model, whereas the relation-

ship between the outcome variables and the propensity score is nonparametric. This allows 

controlling for covariates in a more flexible way than (non-saturated) parametric regression 

and permits effect heterogeneity w.r.t. observables, whereas curse of dimensionality problems 

related to entirely non-parametric estimation are avoided. Popular classes of propensity score 

methods include direct matching (Rubin, 1974, Rosenbaum and Rubin, 1983), kernel match-

ing (Heckman, Ichimura and Todd, 1998), radius matching (Rosenbaum and Rubin, 1985, 

Dehejia and Wahba, 1999), inverse probability weighting (Horvitz and Thompson, 1952, 

Hirano, Imbens and Ridder, 2003), inverse probability tilting (Graham, Pinto and Egel, 2011), 

and doubly robust estimation (Robins, Mark and Newey, 1992). 

Huber, Lechner and Wunsch (2012), henceforth referred to as HLW12, assess the fi-

nite sample properties of a broad range of different (classes of) estimators of the average treat-

ment effect on the treated (ATET) by constructing a – what they call – Empirical Monte 

Carlo Study (EMCS) which is based on empirical labour market data from Germany. The 

simulation study considers various scenarios with different sample sizes, shares of treated and 

non-treated, levels of selectivity into the treatment and propensity score specifications. Over-

                                                 
1  See for example the recent surveys by Blundell and Costa-Dias (2009), Imbens (2004), and Imbens and 

Wooldridge (2009) for a discussion of the properties of such estimators as well as a list of recent applications. 



 

all, a version of radius matching with regression-based bias adjustment as proposed in Lech-

ner, Miquel and Wunsch (2011), henceforth LMW11, performed best in terms of root mean 

squared error when estimating the average treatment effect on those who received the treat-

ment. 2 The study also reveals that estimator performance may vary with the choice of tuning 

parameters such as the width of the radius, i.e., the size of the local neighbourhood around the 

propensity score within which counterfactual observations are matched and whether matching 

is not solely on the propensity score, but in addition on further important covariates based on 

the Mahalanobis distance metric. However, due to the large variety of estimators investigated 

and the related computational burden, HLW12 could not assess the sensitivity of the LMW11 

estimator w.r.t. to the values of these parameters in great detail. Previous simulation studies 

on propensity score methods (Frölich, 2004, Busso, DiNardo and McCrary, 2009a, b) do not 

even include radius matching.  

Using the same simulation design as HLW12, this paper aims at closing this gap by 

thoroughly analyzing the impact of tuning parameters on the root mean squared error, bias, 

variance, skewness and kurtosis of this estimator for the ATET. While the former three fea-

tures are relevant for consistency, the latter two moments indicate whether the estimator's 

distribution can be adequately approximated by the normal distribution, which is relevant for 

inference. The parameters considered are the size of the radius and whether matching is on the 

propensity score only or also on additional important predictors via Mahalanobis distance 

matching. The size of the radius is varied as a function of the distances of matched treated and 

controls in one-to-one (or pair) matching. I.e., the quantile at a particular rank in the distribu-

tion of distances is multiplied by a constant term, which we call the radius multiplier, to de-

fine the radius. The latter is thus not fixed in absolute terms but may change from one applica-

tion to another depending on the distribution of pair differences, an approach that has not been 

                                                 
2  It has also been used in Wunsch and Lechner (2008), Lechner (2009), Lechner and Wunsch (2009a, b), 



 

considered in previous simulation studies.3 In the EMCS, we consider three choices for the 

quantile (0.1, 0.5, 0.9) and four for the radius multiplier (0.25, 1, 10, 100), i.e., 12 different 

definitions of the radius. Concerning the covariates used in the Mahalanobis distance and the 

regression adjustment, we use none (propensity score matching), 1 or 4 additional matching 

variables on top of the propensity score. In addition, we also investigate the impact of assign-

ing different weights to the propensity score in the Mahalanobis metric, namely 0.5 (i.e., the 

score receives half the weight of any other covariate), 1, and 5.  

The results suggest that both the radius size and the number of covariates in the 

Mahalanobis metric/regression adjustment influence the estimator's behaviour importantly, 

while the propensity score weight does not (at least for the values investigated). Specifically, 

a larger choice of the radius and the number of covariates decreases the RMSE, which is 

mainly driven by a reduction in the standard deviation while the bias is not much affected. 

Because increasing these tuning parameters implicitly shifts more weight to the parametric 

regression adjustment, our results suggest that the latter performs well in terms of reducing 

the RMSE. Therefore, combining (distance-weighted) radius matching and regression in an 

appropriate way appears to improve the properties of the estimator. 

This paper makes several contributions to the literature on matching estimators. 

Firstly, it appears to be the first simulation study that systematically investigates the im-

portance of tuning parameters for radius matching estimator as proposed by LMW11. Sec-

ondly, it does so by using the EMCS design of HLW12, which is likely to be closer to real 

world applications than arbitrarily chosen data generating processes that are not at all based 

on empirical data. Finally and particularly relevant for practitioners, the LMW11 estimator 

has been implemented as "radiusmatch" command in the software packages GAUSS, STATA 

                                                                                                                                                         
Behncke, Frölich and Lechner (2010a, b), and Huber, Lechner and Wunsch (2011).  



 

and the R package "radiusmatching" along with options for tuning parameters, common sup-

port procedures and inference methods. The "radiusmatch" command constitutes an 

alternative to other matching packages, which so far do not offer a radius matching procedure 

that includes all of the following features/options inherent in this command: (i) weighting of 

the matched controls within the radius according to their distance to the treated observation, 

(ii) bias-adjustment based on OLS or logit regression depending on the support of the 

outcome variable, (iii) partially data-driven choice of the radius size as a function of the 

distances in pair matching and (iv) asymptotically unbiased propensity score trimming as 

considered in HLW12 to ensure common support in the propensity score across treatment 

groups. The estimator can be downloaded at 

http://www.alexandria.unisg.ch/publications/citation/Michael_Lechner/218871. 

The remainder is organized as follows. Section 2 discusses identification based on the 

propensity score (2.1) as well as matching estimation in general (2.2) and the LMW11 algo-

rithm in particular (2.3). It also covers common support procedures (2.4) and inference meth-

ods (2.5) that are available in the "radiusmatch" command. Section 3 reviews the Empirical 

Monte Carlo Study design of HLW12. The simulation results are presented in Section 4. Sec-

tion 5 concludes. 

2 Econometrics 

2.1 Identification and general estimation principle 

In the treatment evaluation literature, identification strategies based on a 'selection on 

observables' or 'conditional independence' assumption (CIA) require that all factors jointly 

affecting the treatment probability and the outcome are observed and thus, can be controlled 

                                                                                                                                                         
3  Note that HLW12 combine the radius multiplier with the maximum distance between matched, rather than 

http://www.alexandria.unisg.ch/publications/citation/Michael_Lechner/218871


 

for. I.e., potential outcomes that would have been realized under either treatment state are 

assumed to be independent of the actual treatment assignment conditional on the observed 

covariates, see for instance Imbens (2004) for an in-depth discussion. To formalize the discus-

sion, we denote by Y the observed outcome, e.g., employment or earnings in labour market 

applications, by D the binary treatment indicator taking either the value 1 (treated, e.g., 

receiving a training) or 0 (non-treated) and by X the vector of observed covariates (e.g., labour 

market experience, education, and age). Using the potential outcome framework advocated by 

Rubin (1974), among many others, we let Y(1) and Y(0) denote the potential outcomes under 

treatment and non-treatment, respectively. By the observational rule, only one potential out-

come can be observed, because (1) (1 ) (0)Y D Y D Y= ⋅ + − ⋅ . The CIA states that 

 (1), (0) |Y Y D X⊥ ,  (1) 

where ⊥  denotes independence. In many empirical applications, this assumption only appears 

plausible when controlling for a large set of covariates. However, conditioning on a high 

dimensional X may be problematic, as the number of possible combinations of elements in X 

increases exponentially in the dimension such that (acceptably precise) estimation quickly 

becomes exorbitantly data hungry, a problem known as curse of dimensionality.  

This motivates the use of propensity score methods frequently encountered in applied 

work. We denote p(X) ≡ Pr(D = 1|X) the propensity score, the conditional treatment probabil-

ity given the covariates. Rosenbaum and Rubin (1983) have shown that conditioning on the 

propensity score is asymptotically equivalent to conditioning on the covariates directly, as 

both X and p(X) are balancing scores in the sense that they adjust the distributions of covari-

ates in the treatment and in the control (or non-treated) group. Thus, if (1) is fulfilled, it also 

holds that the potential outcomes are independent of the treatment conditional on the propen-

sity score: 

                                                                                                                                                         
a particular quantile.  



 

 (1), (0) | ( )Y Y D p X⊥ . (2) 

In principle, conditioning on the propensity score therefore allows for the identification of 

causal effects such as the average treatment effect (ATE) in the entire population, 

[ (1) (0)]E Y Y− ,  because (2) implies that  

 
[ (0) | 1, ( )] [ (0) | 0, ( )] [ | 0, ( )],
[ (1) | 0, ( )] [ (1) | 1, ( )] [ | 1, ( )].

E Y D p X E Y D p X E Y D p X
E Y D p X E Y D p X E Y D p X

= = = = =
= = = = =

  

However, a large part of the applied literature focuses on the evaluation of the average treat-

ment effect on the treated (ATET), defined as [ (1) (0) | 1]E Y Y Dθ = − = , which is also the 

estimand considered in this paper.4 In this case, (2) may be relaxed to 

 (0) | ( )Y D p X⊥  (3) 

and identification also requires that the following common support assumption of the propen-

sity score holds for all values of the covariates: 

 ( ) 1p X < , (4) 

i.e., the treatment must not be perfectly predicted by any combination of the covariates to en-

sure that non-treated matches are available, at least asymptotically. Under (3) and (4) and by 

the law of iterated expectations,  

 
[ (1) | 1] [ (0) | 1]
[ | 1] [ [ | 0, ( )] | 1],

E Y D E Y D
E Y D E E Y D p X D

θ = = − =
= = − = =

  (5) 

so that the ATET is identified.  

                                                 
4  We focus on the ATET for reasons of computational costs. Note that estimating the average treatment 

effect on the non-treated (ATENT) is symmetric to the problem we consider (just recode D as 1-D) and thus not 

interesting in its own right. The ATE is obtained as a weighted average of the ATET and the ATENT, where the 

weight for the ATET is the share of treated and the weight of ATENT is one minus this share.  



 

Concerning estimation, assume that we have an i.i.d. sample of (Y,D,X) consisting of 

N observations denoted by i, where { }1,2,...,i N∈ . Then, a general class of estimators of (5) 

can be defined as 

 
1 11 0

1 1ˆ ˆ(1 ) ,
N N

i i i i i
i i

d y d w y
N N

θ
= =

= − −∑ ∑  (6) 

where, 1N  and 0N  are the number of treated and non-treated observations and ˆ iw  is a 

weight that is a function of the estimated propensity score ˆ ( )ip x . ˆ iw  reweights the non-

treated observations such that they resemble the treated sample in terms of the distribution of 

the propensity score as well as the covariates X and differs across distinct (classes of) estima-

tors (such as matching and inverse probability weighting). As a final remark, note that the 

applicability of these methods is not confined to the leading case of treatment evaluation in 

i.i.d. settings. They may be applied whenever the adjustment of covariate distributions across 

different groups is of interest, which does not necessarily imply a CIA or i.i.d. sampling. E.g., 

propensity score methods have been fruitfully applied to instrumental variable estimation, see 

for instance and Frölich (2007). 

2.2 Matching estimators  

Prototypical one-to-one or pair matching on the propensity score matches to each 

treated unit exactly one control that is closest in terms of the propensity score. In the subse-

quent discussion, we focus on matching 'with replacement', implying that the same control 

observation may be used several times as a match, whereas in estimators 'without replace-

ment' it is matched at most once. However, the latter principle only works well when there are 

many more controls than treated. The pair matching estimator based on matching with 

replacement is defined as  



 

 ( )
1 : 01

1ˆ ˆ ˆ(1 ) 1 min ( ) ( ) .
j

N

PM i i i j i j
i j d

d y d p x p x y
N

θ
= =

   = − − −  
    

∑ ∑
 (7)

 

1( )⋅  denotes the indicator function, which is one if its argument is true and zero otherwise. A 

direct extension of pair matching is 1:M nearest neighbour matching which uses several (i.e., 

M) controls instead of just one. Increasing M increases the precision but also the bias of the 

estimator, as even 'not so close' controls might be matched in this case. Radius matching, see 

for instance Rosenbaum and Rubin (1985) and Dehejia and Wahba (1999, 2002), tackles this 

issue by using only controls that are situated within a predefined distance around the propen-

sity score of each treated unit. Compared to 1:M matching, this may lead to a smaller bias in 

regions where comparable controls are sparse. Also, it increases precision compared to 1:M 

nearest neighbour matching in propensity score regions with many similar controls. Instead of 

fixing M globally, radius matching determines the number of matches, M, in the local 

neighbourhood of each treated observation. 

Further improvements to standard propensity score matching have been proposed in 

the literature. Rubin (1979) suggested combining pair matching with (parametric) regression 

adjustment to take into account the fact that treated and controls with exactly the same 

propensity score are usually very rare or non-existent. Also Abadie and Imbens (2006) con-

sider this idea and show (however for 1:M matching on X directly rather than on the propen-

sity score) that nonparametric regression removes the asymptotic bias that may occur when X 

is more than one-dimensional. Furthermore, instead of matching on the propensity score 

alone, one may use a distance metric that (in addition to the score) accounts for differences in 

those covariates that are particularly good predictors of the outcome. In finite samples, this 

potentially improves estimation by putting a larger emphasis on balancing the most important 

confounders across treatment states. The intuition behind this potential improvement is that it 

is particularly important to balance variables that have a large influence on the outcomes, as 



 

any imbalances of those variables will lead to larger biases than imbalances of variables that 

are only slightly correlated with the outcomes. In this case, the Mahalanobis metric is 

commonly used to collapse the multidimensional distances between the propensity scores and 

predictors of the treated and the controls into a single measure (see Rosenbaum and Rubin, 

1985) for details. The distance between two observations is defined as  

 ( ) ( )1 0 1 1 0'D D D D
i j i jx x C x x= = − = =− −    , (8) 

where 1D
ix =
 , 0D

jx =
  are the vectors of the K factors to be matched on, i.e., the propensity score 

and K-1 further covariates, of some treated observation i and some control j, respectively. C 

denotes the covariance matrix of the K covariates in the control group. In Mahalanobis match-

ing, the distances are weighted by the inverse of their covariance matrix to give a higher 

weight to less noisy differences. As a modification of the original metric, which treats the 

propensity score and each of the covariates as equally important, one may assign a higher 

weight to the propensity score than to the other elements in 1D
ix =
 , 0D

jx =
 . This is obtained by 

multiplying the inverse of the variance of the propensity score in 1C−  by a factor larger than 

one. As a further modification we do not take the square-root as proposed in equation (8), 

with the consequence that observations further away will receive less weight by the matching 

algorithm. 

2.3 The radius matching algorithm of Lechner, Miquel and Wunsch (2011)  

The LMW11 estimator combines the features of distance-weighted radius matching 

with a logit- or OLS-based regression adjustment (depending on whether the outcome is bi-

nary or not) as well as Mahalanobis matching when using further covariates besides the 

propensity score (which are, however, also included in the propensity score). The first step 

consists of distance-weighted radius matching either on the propensity score or the Mahalano-

bis metric, respectively. Distance-weighting implies that controls within the radius are 



 

weighted proportionally to the inverse of their distance to the respective treated they are 

matched to when computing the local mean outcome under non-treatment. In contrast to 

standard radius matching algorithms, controls within the radius do not obtain the same weight 

independent of their location. Therefore, the LMW11 estimator can also be interpreted as a 

kernel matching estimator based on a truncated triangular kernel. In the second step, the 

weights obtained from matching are used in a weighted linear or non-linear regression in or-

der to remove biases due to mismatches. Note that this estimator satisfies the so-called 'double 

robustness property': it is consistent if either the matching step is based on a correctly speci-

fied propensity score model or if the bias-adjustment step is based on a correctly specified 

regression model (see for instance Joffe, Ten Have, Feldman and Kimmel, 2004, and Rubin, 

1979). However, in our implementation the propensity and the variables included in the 

Mahalanobis metric are used as regressors in the local adjustment. Therefore, the relevance of 

the double robust property in our context is not clear. 

An open, though very important, question in radius matching is the choice of the size 

of the radius, for which no well-established algorithm exists. LMW11 suggest – rather 

arbitrarily but data-driven – defining the size as a function of the maximum distance between 

treated and matched controls in pair matching.5 Alternatively, one may also consider the 

quantile at a particular rank of the distance distribution instead of the maximum distance. The 

latter approach might be more robust to outliers in the distances. Considering both options, 

the LMW11 estimator follows the matching protocol outlined in Table 2.1:  

                                                 
5 We acknowledge that cross-validation might be an alternative data-driven approach worth considering. See Frölich 

(2005), whose simulations suggest that cross-validation performs rather well for bandwidth selection in kernel 

matching (and in particular better than a selection method based on an asymptotic approximation of the estimator's 

mean squared error), even though it does asymptotically not provide the optimal bandwidth. Similar arguments could 

carry over to radius matching as considered in this paper.  



 

Table 2.1: Matching protocol for the estimation of a counterfactual outcome and the effects 

Step A-1 Choose one observation in the subsample defined by d=1 and delete it from that pool. 

Step B-1 Find an observation in the subsample defined by d=0 that is as close as possible to the one chosen in step A-
1) in terms of either (i) ( )p x  (matching on the propensity score only), or (ii) ( )p x  and additional predictors 
(matching on the propensity score and a subset of X). In the latter case, 'closeness' is based on the 
Mahalanobis distance, in which ( )p x  and the additional predictors may or may not be weighted.  

Step C-1 Repeat A-1) and B-1) until no observation with d=1 is left. 

Step D-1 Compute the maximum distance (maxdist) obtained for any comparison between a member of the reference 
distribution and matched comparison observations. Alternatively, one may also compute the quantile at a 
particular rank in the distribution of distances (quantdist). 

Step A-2 Repeat A-1). 

Step B-2 Repeat B-1). If possible, find other observations in the subsample of d=0 that are at least as close as  
R * maxdist or R* quantdist, respectively, to the one chosen in step A-2), where R denotes the radius multi-
plier. Do not remove these observations, so that they can be used again. Compute weights for all chosen 
comparisons observations that are proportional to their distance. Normalise the weights such that they add to 
one. 

Step C-2 Repeat A-2) and B-2) until no participant in d=1 is left. 

Step D-2 D-2) For any potential comparison observation, add the weights obtained in A-2) and B-2). 

Step E Using the weights ( )iw x  of the comparison observations obtained in D-2), run a weighted linear regression 
of the outcome variable on an intercept, the  propensity score, its square, and any further variables used to 
define the distance. 

Step F-1 Predict the potential outcome 0 ( )iy x  of every observation using the coefficients of this regression: 0ˆ ( )iy x . 

Step F-2 Estimate the bias of the matching estimator for 0( | 1)E Y D =  as: 
0 0

1 0 1

ˆ ˆ(1 ) ( ) ( )N
i i i i i

i

d w y x d y x
N N=

−
−∑ . 

Step G Using the weights obtained by weighted matching in D-2), compute a weighted mean of the outcome vari-
ables in d=0. Add the bias to this estimate to get 0( | 1)E Y D = . 

Note: For estimation of the ATENT the counterfactual distribution can be obtained by replacing d by 1-d and repeating 
steps A to G. 

The estimator depends on several tuning parameters. Besides choosing the maximum distance 

(maxdist) or a particular quantile in the distance distribution (quantdist), which we henceforth 

refer to as distance quantile, in step D1, one also needs to define the radius multiplier R in 

step B-2. The product of R and maxdist or quantdist, respectively, determines the absolute 

size of the radius, which of course may vary from application to application because it is par-

tially data-driven by the distances in pair matching. Finally, (the number of) additional covari-

ates entering the Mahalanobis distance as well as the weight the propensity score receives 

relative to the covariates have to be selected in B-1. The sensitivity of the estimator's proper-

ties to the choice of these tuning parameters will be investigated in Section 4. 



 

2.4 Distributional overlap 

The issue of thin or even  lacking common support (or overlap) in the propensity score 

across treatment states has been discussed extensively in the literature (see the surveys by 

Heckman, LaLonde and Smith, 1999, Imbens, 2004, and Imbens and Wooldridge, 2009), be-

cause it may hamper estimation due to a non-comparability of treated and controls. If particu-

lar values of p(x) that are observed for the treated are either very rare ('thin common support') 

or absent (lack of common support) among the controls, as it may happen in particular close 

to the boundary of p(x)=1, control observations with such values, or very close to them, re-

ceive a large weight ˆ iw . In the case of thin common support, these observations may domi-

nate the estimator of the ATET which may entail a possible explosion of the variance. In the 

case of lacking common support, this even introduces asymptotic bias by giving a large 

weight to controls that are not comparable to the treated in terms of the propensity score.  

There have been different proposals in the literature on how to tackle the common/thin 

support problem, which, however, all introduce asymptotic bias, see Ichimura, Smith, and 

Todd (1998), Dehejia and Wahba (1999), Ho, Imai, King, and Stuart (2007) and Crump, Hotz, 

Imbens and Mitnik (2009).  In contrast, HLW12 suggest using a trimming procedure that was 

first discussed in Imbens (2004, p. 23) and is asymptotically unbiased in DGPs where com-

mon support holds asymptotically (such as the simulation design presented in Section 3). The 

idea is to set the weight of any control observation to zero whose relative share of all weights 

exceeds a particular threshold value in percent (denoted by t): 
 

 | 0
1

ˆ ˆ ˆ ˆ1 (1 ) %
i

N

i d i i j j
j

w w w d w t=
=

 
= − ≤ 

 
∑ . (9) 

As the trimming procedure is applied before the estimation, this raises the question of how to 

obtain the weights in (9). In principle, one could apply any propensity score-based method 

(including matching) as a preliminary procedure to compute ˆ iw . As in HLW12, we use 



 

normalized inverse probability weighting, which is computationally inexpensive and implies 

the following weights: 

 

1

ˆ(1 ) ( )
ˆ1 ( )ˆ ˆ(1 ) ( )

ˆ1 ( )

i i

i
i N

j j

j j

d p x
p xw d p x

p x=

−
−

=
−
−∑

. (10) 

To avoid a severely unbalanced sample induced by trimming the controls only, also all treated 

observations with a value of p(x) larger than the largest value of p(x) among the controls are 

removed (if such observations exist at all). Strictly speaking, this changes the estimand due to 

discarding extreme support areas, but ensures common support prior to matching. Note that 

the matching algorithm then produces its own (normalized) weights which are the base for the 

actual estimator and for inference, such that the weights defined in (10) are no longer used 

after trimming. Besides the trimming procedure, the "radiusmatch" command also includes 

the conventional common support procedure suggested by Dehejia and Wahba (1999), which 

removes all treated with propensity scores that are larger than the largest propensity score 

among controls.6    

2.5 Inference methods 

Under i.i.d. sampling, the variance of the ATET estimator is asymptotically simply the sum of 

the variances of the estimators of the treated population's mean potential outcomes under 

treatment and non-treatment (ignoring any correlation that may due to the propensity score 

being estimated). Denoting by ˆ( )V ⋅  the variance estimator, a consistent estimator of the vari-

ance of the mean potential outcome under treatment is 

( )ˆ ( | 1)i iV E y d = = 1 1

2

1: 1 : 1
11

1 1
1 i i

N N
i ii d i d

y y N
NN = =

  
−  −   

∑ ∑ . To approximate the variance 



 

under non-treatment, an estimator of 2 2[( ) | , 0]i i i iE y w dσ µ= − = , the conditional variance 

among controls given the matching weight, is required, with ( | , 0)i i i iE y w dµ = =  denoting 

the conditional mean. To this end, we first estimate the latter by ˆˆ ˆ( | , 0),i i i iE y w dµ = = where 

ˆ ( | )E ⋅ ⋅  denotes a local regression estimator. In a second step, the conditional variance is 

estimated by plugging in the first-step estimate ˆiµ : 2 2ˆˆ ˆ ˆ[( ) | , 0].i i i iE y w dσ µ= − =  In the 

"radiusmatch" command, both ˆiµ  and 2ˆiσ  are obtained from Nadaraya-Watson kernel 

regression using the Epanechnikov kernel, where the bandwidth is chosen by a Silverman 

(1986)-type rule of thumb for Epanechnikov kernels.7 Finally, the variance of θ̂  is 

approximated by 

 ( ) 2 2
,

1

ˆˆ ˆ ˆ ˆ( )= ( | 1) (1 ) .
N

i i i norm i i
i

V V E y d d wθ σ
=

= + −∑  (11) 

The second part on the right hand side is the variance estimate of the estimated mean potential 

outcome under non-treatment. Note that ,ˆ norm iw  is the normalized weight of the ATET 

estimator based on ˆ iw . The normalization is such that the non-treated weights add up to unity: 

,
1

ˆ ˆ ˆ(1 )
N

norm i i j j
j

w w d w
=

= −∑ . Even though (10) might be a reasonable approximation, it has to be 

stressed that it is not a consistent variance estimator. Firstly, it omits the fact that the 

propensity score entering the matching weights is itself an estimate which in general affects 

the distribution of θ̂ . Secondly, also the bias correction may affect the variance, which is not 

considered in (11). Thirdly, if the bias correction is based on logit regression (under binary 

                                                                                                                                                         
6  If both procedures are used at the same time, the common support restriction of Dehejia and Wahba (1999) 

is enforced prior to trimming the weights of the remaining observations. 

7 2ˆiσ may also be obtained from different methods as for instance the Abadie and Imbens (2006) variance estimator 

based on matching within the same treatment group. 



 

outcomes), the matching weights taken for inference are those obtained prior to the bias 

correction and may therefore differ somewhat from the final matching weights. (In contrast, 

under linear bias correction the (correct) matching weights after bias correction are used.) 

As an alternative to analytical approximations, inference for matching is frequently 

based on the bootstrap (see Efron, 1979, or Horowitz, 2001, and MacKinnon, 2006, for more 

recent surveys in economics). This is in spite of the results of Abadie and Imbens (2008) 

which suggest that the bootstrap may not be valid for standard (i.e., pair or 1:M) matching 

because of the non-smoothness of the estimator. However, the LMW11 estimator is by 

construction smoother thanks to a variable number of (weighted) matched controls and the 

regression-based bias adjustment. Therefore, the bootstrap appears to be an attractive infer-

ence method which we highly recommend in applications rather than relying on the 

approximation in (11). In contrast to the latter, the bootstrap is consistent because it accounts 

for the estimation of the propensity score and all further issues raised before.  

While one could in principle bootstrap the ATET estimate directly to obtain standard 

errors and p-values, the bootstrap is known to have better properties when using a pivotal 

statistic such as the t-statistic. We therefore suggest to compute the t-statistic based on the 

variance estimator in (11) as first step of the bootstrap procedure: 
ˆ

ˆˆ( )
NT

V

θ

θ
= . In the second 

step, one randomly draws B bootstrap samples of size N with replacement to compute the 

ATET ˆbθ  as well as the t-statistic 
ˆ ˆ

ˆˆ( )

b
b

NT
V

θ θ

θ

−
=  in each draw, where b is the index of the 

bootstrap sample, { }1,2,...,b B∈ . Finally, accounting for the fact that the t-statistic is 

symmetrically distributed around zero, the p-value is computed as the share of absolute 

bootstrap t-statistics that are larger than the absolute value of the t-statistic in the original 

sample: 



 

 p-value = ( )
1

1 1
B

b
N N

b
T T

B =

>∑ , (12) 

where ⋅  denotes the absolute value of the argument. 

Analogously, the proposed method can be used for the estimation of the variance of 

the ATENT. Concerning the variance of the ATE, one may replace (11) by  

 2 2 2 2
1, , 0, ,

1 1

ˆ ˆ ˆ ˆ(1 ) ,
N N

i norm i i i norm i i
i i

d w d wσ σ
= =

+ −∑ ∑
 

(13) 

whith 1, , 0, ,ˆ ˆ,norm i norm iw w  being the normalized matching weights of the ATE estimator, where the 

normalization is such that the weights add up to unity within the treatment and control groups, 

respectively. Thus, Equation (13) approximates the sum of the variances of the mean potential 

outcomes under treatment and control of the entire population. All remaining steps are 

equivalent to those of the inference for the ATET. 

3 Empirical Monte Carlo Study  

3.1 Idea and data base 

In contrast to conventional simulation studies where all features of the data generating 

process (DGP) are specified by the researcher, the idea of an Empirical Monte Carlo Study 

(EMCS) as advocated by HLW12 is to exploit empirical data (e.g., observed outcomes and 

covariates) as much as possible in order to better imitate real world applications when 

investigating the finite sample behaviour of estimators.8 In this paper, we use the same data 

and simulation design as in HLW12 and therefore provide a review of their approach. The 

authors base their EMCS on a large German administrative data set to assess the performance 

                                                 
8  Papers with related approaches include Abadie and Imbens (2002), Bertrand, Duflo and Mullainathan 

(2004), Diamond and Sekhon (2008), Lee and Whang (2009), Khwaja, Salm and Trogdon (2010) and Huber (2012).  



 

of a broad range of propensity score-based estimators in the evaluation of an active labour 

market programme that is typical for industrialized economies.  

The data base consists of a 2% random sample of employees subject to social 

insurance9 from 1990 to 2006 and combines information from four different sources: (i) 

records provided by employers to the social insurance agency for each employee (1990-2006), 

(ii) unemployment insurance records (1990-2006), (iii) the programme participation register 

of the Public Employment Service (PES, 2000-2006) and (4) the jobseeker register of the PES 

(2000-2006).10 

 As in LMW11 and Lechner and Wunsch (2009b), participants (treated) in the 

simulation sample are defined as those individuals who start training courses that provide job-

related vocational classroom training11 within the first 12 months of unemployment (3'266 

observations). The non-treated are those who did not participate in any programme of the 

active labour market policy whatsoever in the same period (114'349 observations). 

3.2 Simulation design 

The EMCS in HLW12 consists of three steps: (i) estimation of the propensity score (the 

conditional probability to receive the training) in the 'population' which is then considered to 

be the true propensity score in the simulations, (ii) drawing a sample of control observations 

in which a (placebo-)treatment is simulated and the treatment effect is estimated (with the true 

effect being zero by definition) and (iii) repeating the second step many times to assess the 

performance of the estimators.  

                                                 
9  This covers 85% of the German workforce. It excludes the self-employed as well as civil servants.  

10  Further details regarding the data can be found in Appendix B. 

11  The programs we consider correspond to general training in Wunsch and Lechner (2008) and to short and long 

training in LMW11. 



 

Selection into treatment, which is relevant for step (i), is displayed in Table 3.1. 

Firstly, the upper part presents descriptive statistics for the two outcome variables considered: 

average monthly earnings over the three years after entering unemployment, and an indicator 

whether there has been some (unsubsidized) employment in that period. This choice has been 

made to evaluate estimator performance for both a binary outcome and a semi-continuous 

variable (50% zeros). Secondly, Table 3.1 includes the descriptive statistics for the 38 

confounders (among these eight interaction terms) that are considered in the 'true' selection 

equation for the estimation of the propensity score. It also contains the normalized differences 

between treated and controls as well as the marginal effects of the covariates at the means of 

all other covariates according to the estimation of the true propensity score. Both results sug-

gest that there is considerable selection into treatment due to imbalances in several variables.  

 



 

Table 3.1: Descriptive statistics of the 'population' 

Variable Treated Control Standardized 
difference 

Probit est. of 
selection equat. 

 mean std. mean std. in % Marg.eff. in % std. error 
3 years since beginning of UE spell 
 some unsubsidized employ. 

0.63 0.48 0.56 0.50 9 - - 

 av. monthly earnings (EUR) 1193 1115 1041 1152 9 - - 
Constant term - - - - - - - 
Age / 10 3.67 0.84 3.56 1.11 8 7.3 0.5 
… squared / 1000 1.42 0.63 1.39 0.85 3 -9.1 0.6 
    20 - 25 years old 0.22 0.41 0.36 0.48 22 0.9 0.2 
Women 0.57 0.50 0.46 0.50 15 -5.8 1.5 
Not German 0.11 0.31 0.19 0.39 16 -0.5 0.1 
Secondary degree 0.32 0.47 0.22 0.42 15 1.1 0.1 
University entrance qualification 0.29 0.45 0.20 0.40 15 1.0 0.1 
No vocational degree 0.18 0.39 0.34 0.47 26 -0.3 0.1 
At least one child in household 0.42 0.49 0.28 0.45 22 -0.2 0.1 
Last occupation: Non-skilled worker 0.14 0.35 0.21 0.41 13 0.3 0.1 
Last occupation: Salaried worker 0.40 0.49 0.22 0.41 29 1.8 0.2 
Last occupation: Part time 0.22 0.42 0.16 0.36 12 2.1 0.3 
UI benefits: 0 0.33 0.47 0.44 0.50 16 -0.6 0.1 
                   > 650 EUR per month 0.26 0.44 0.22 0.41 7 0.7 0.1 
Last 10 years before UE: share empl. 0.49 0.34 0.46 0.35 8 -1.4 0.2 
              share unemployed 0.06 0.11 0.06 0.11 1 -2.5 0.5 
              share in programme 0.01 0.04 0.01 0.03 9 5.1 1.2 
Last year before UE: share minor em.* 0.07 0.23 0.03 0.14 15 -1.0 0.7 
       share part time 0.16 0.33 0.11 0.29 10 -1.0 0.2 
       share out-of-the labour force (OLF) 0.28 0.40 0.37 0.44 14 -1.3 0.2 
Entering UE in 2000 0.26 0.44 0.19 0.39 13 1.6 0.2 
                        2001 0.29 0.46 0.26 0.44 5 0.9 0.1 
                        2003 0.20 0.40 0.27 0.44 12 0.0 0.1 
Share of pop. living in/ close to big city 0.76 0.35 0.73 0.37 6 0.4 0.1 
Health restrictions 0.09 0.29 0.15 0.36 13 -0.6 0.1 
Never out of labour force 0.14 0.34 0.11 0.31 6 0.6 0.2 
Part time in last 10 years 0.35 0.48 0.29 0.45 9 -0.5 0.1 
Never employed 0.11 0.31 0.20 0.40 17 -1.0 0.1 
Duration of last employment > 1 year 0.41 0.49 0.43 0.50 4 -0.6 0.1 
Average earnings last 10 years when 
employed / 1000 0.59 0.41 0.52 0.40 

 
13 -0.4 0.2 

Women x age / 10 2.13 1.95 1.65 1.94 17 2.6 0.6 
    x squared / 1000 0.83 0.85 0.65 0.90 15 -2.6 0.8 
    x no vocational degree 0.09 0.28 0.16 0.36 15 -0.9 0.1 
    x at least one child in household 0.32 0.47 0.17 0.37 25 0.9 0.2 
    x share minor employment last year 0.06 0.22 0.02 0.13 16 3.2 0.7 
    x share OLF last year 0.19 0.36 0.18 0.35 3 1.0 0.2 
    x average earnings last 10 y. if empl. 0.26 0.34 0.19 0.30 16 -1.0 0.2 
    x entering UE in 2003 0.10 0.30 0.13 0.33 6 -0.6 0.1 

ˆ
ix β  -1.7 0.42 -2.1 0.42 68 - - 

ˆ( )ix βΦ  0.06 0.03 0.05 0.03 59 - - 
Number of obs., Pseudo-R2 in % 3266  114349   3.6  
Note:  * Minor em(ployment) is employment with earnings of no more than 400 EUR per month, which are not or only 

partially subject to social insurance contributions. 'binary': indicates a binary variable (standard deviation can be di-
rectly deduced from mean). β̂  is the estimated probit coefficients and ( )aΦ  is the c.d.f. of the standard normal 
distribution evaluated at a. Pseudo-R2 is the so-called Efron's R2 [ ] ( )( )1 1 1

ˆ1 ( ) /N N N
i i i ii i i

d p x d d N
= = =

 − − − ∑ ∑ ∑ . The 

Standardized Difference is defined as the difference of means normalized by the square root of the sum of esti-
mated variances of the particular variables in both subsamples (see e.g. Imbens and Wooldridge, 2009, p. 24). 
Marg. effect: Average marginal effect based on discrete changes for binary variables and derivatives otherwise. 



 

After having estimated the propensity in the full population, the treated are discarded 

and no longer play a role in the simulations. The next step is to draw the random sample of 

size N from the population of controls (independent draws with replacement). HLW12 use 

sample sizes of 300, 1'200, and 4'800 and thoroughly motivate this choice. In each sample, 

(pseudo-)treated observations are simulated based on the propensity score in the population. 

For each individual in the sample, ˆˆ ( ) ( )i i ip x x β= Φ  is computed, where ( )Φ ⋅  denotes the 

cumulative distribution function of the standard normal distribution, ix  is the observed 

covariate vector of observation i (including the constant), and β̂  are the coefficient estimates. 

We consider three choices of selection into treatment in the simulations: selection that roughly 

corresponds to the one in the population, random assignment and a case of very strong selec-

tion. The resulting scenarios are implemented based on the following equation: 

{ }ˆ1( 0), (0,1), 0,1, 2.5 ,i i i id x u u Nλ β α λ= + + > ∈  (8) 

where iu  denotes a standard normally distributed i.i.d. random number, λ  is a parameter 

with three different values that determine the magnitude of selection. Finally, the parameter 

α  gauges the shares of treated and controls and is chosen such that the expected number of 

treated equals 10%, 50%, or 90%, respectively.12 Note that due to the assignment of a pseudo-

treatment, the true treatment effect on any individual in any scenario is zero.  

This simulation routine always ensures common support, at least in expectation. Neverthe-

less, when strong selection is combined with the large share of treated, overlap of the distribu-

tions of the propensity score in the treated and control sample becomes very thin in the right 

tail of the treated population, as documented in HLW12. In addition, it is not possible to com-

bine the small sample size with the extreme shares of participants. This would frequently in-

                                                 
12  Note that the simulations are not conditional on D. Thus, the share of treated is random.  



 

clude cases in which the number of covariates exceeds the number of treated or non-treated 

observations. Hence, in the small sample the unconditional treatment probability is 0.5, which 

also makes small sample issues concerning the common support unproblematic. Table 3.2 

summarizes the 21 scenarios that are used in the EMCS and gives summary statistics about 

the amount of selection implied by each scenario.13 In the analysis, we consider estimator 

performance not only with a correctly specified propensity score, but also under misspecifica-

tion. In the latter case, we omit all eight interaction terms and the two higher order terms 

capturing non-linearities in age from the estimation of the propensity score to judge the 

robustness of the results. 

Table 3.2: Summary statistic of DGP's 

Magnitude of 
selection 

Share of 
treated in % 

Standardized 
difference of 

p-score 

Pseudo-R2 of 
probit in % 

Sample size  

Random 10 0 0         1200, 4800 
 50 0 0 300, 1200, 4800 
 90 0 0         1200, 4800 

Observed 10 0.5 6        1200, 4800 
 50 0.4 10 300, 1200, 4800 
 90 0.5 6         1200, 4800 

Strong 10 1.1 27        1200, 4800 
 50 0.8 36 300, 1200, 4800 
 90 0.8 27         1200, 4800 

Note: See note of Table 3.1.  

The final parameter in the EMCS to be discussed is the number of Monte Carlo 

replications. As simulation noise depends negatively on the number of replications and posi-

tively on the variance of the estimator, HLW12 choose the number to be proportional to the 

sample size. They use 16'000 replications for the small sample, 4'000 for the medium sample, 

and 1'000 for the largest sample, as the latter is computationally most expensive and has the 

least variability of the results across simulation samples.  

                                                 
13  The standardized differences as well as the pseudo-R2s are based on a re-estimated propensity score in the 

population with simulated treated (114'349 obs.). However, when reassigning controls to act as simulated treated this 



 

4 Results 

This section discusses how the properties of the DGP and the four tuning parameters 

affect the small sample behaviour of the LMW11 estimator. The latter parameters are the 

radius size, which is determined by (i) the distance quantile and (ii) the radius multiplier, (iii) 

the additional covariates in Mahalanobis matching and the regression adjustment and (iv) the 

weight of the propensity score relative to the additional covariates. Concerning the choice of 

the distance quantile, the values at the 0.1th, 0.5th, and 0.9th quantile of the distribution of 

minimum distances in pair matching are considered. To obtain the radius size, the quantile is 

multiplied by the radius multiplier which is set to 0.25, 1, 10 and 100 in the simulations. We 

therefore cover a more extensive range of radius sizes than HLW12, who only investigated 

three choices: 0.5, 1.5 and 3 times the maximum distance in pair matching. Note that if a ra-

dius is empty, which may happen only if the product of the distance quantile and the multi-

plier is smaller than the maximum distance, the algorithm picks the nearest control.  

With regard to additional covariates in the Mahalanobis metric and the regression 

adjustment, we consider 0 (propensity score-matching only), 1 (woman) and 4 covariates 

(woman, no vocational degree, UI benefits of zero, average earnings in the last 10 years when 

employed / 1000). To alter the weight of the propensity score in the metric, the inverse of its 

variance is multiplied by 0.5 (propensity score receives less weight than the covariates), 1 

(propensity score and each covariate are equally weighted) and 5 (propensity score receives 

more weight than the covariates).  

 

                                                                                                                                                         
changes the control population. Therefore, this effect, and the fact that the share of treated differs from the original 

share leads to different values of those statistics even in the case that mimics selection in the original population. 



 

Table 4.1: Impact of the features of the DGP and the estimator on the RMSE (OLS regression) 

  
Employment Earnings 

  
300 1200 4800 300 1200 4800 

Constant   8.95*** 4.05*** 1.87*** 207.32*** 101.02*** 46.92*** 
    Features of the data generating process 

Selection Random -0.52*** -0.50*** -0.67*** -20.54*** -20.33*** -22.60*** 

 
Observed ref. ref. ref. ref. ref. ref. 

 
Strong 1.95*** 1.79*** 2.03*** 43.26*** 47.39*** 52.99*** 

Share treated 10%   1.90*** 0.73***   52.34*** 20.87*** 

 
50% 

 
ref. ref. 

 
ref. ref. 

 
90% 

 
2.89*** 1.75*** 

 
52.64*** 39.04*** 

Misspecified p-score   -0.75*** 0.23*** 0.95*** -8.76*** 11.59*** 27.12*** 
                                            Features of the estimator 

Additional matching 0 (only p-pscore) ref. ref. ref. ref. ref. ref. 
variables 1 -0.23*** -0.05** -0.09** -7.27*** -2.79*** -0.20 

 
4 -1.31*** -0.61*** -0.41*** -33.53*** -18.26*** -8.90*** 

Scoreweight 0.5 0.01 0.00 -0.00 0.15 0.08 -0.01 

 
1 ref. ref. ref. ref. ref. ref. 

 
5 0.00 0.01 0.01 -0.07 0.10 0.26 

Radius 0.1 x 0.25 ref. ref. ref. ref. ref. ref. 
(quantile x multiplier) 0.1 x 1 0.00 -0.00 0.00 -0.01 -0.01 -0.01 

 
0.1 x 10 -0.03 -0.02 -0.01 -0.64 -0.38 -0.11 

 
0.1 x 100 -0.26*** -0.15*** -0.05 -5.55*** -3.02*** -0.96 

 
0.5 x 0.25 -0.02 -0.02 -0.01 -0.36 -0.32 -0.12 

 
0.5 x 1 -0.07 -0.05 -0.03 -1.52 -1.15 -0.50 

 
0.5 x 10 -0.49*** -0.33*** -0.13 -10.61*** -6.93*** -2.86 

 
0.5 x 100 -0.97*** -0.62*** -0.23*** -21.66*** -13.84*** -5.81*** 

 
0.9 x 0.25 -0.20*** -0.18*** -0.08 -4.37*** -3.85*** -1.77 

 
0.9 x 1 -0.49*** -0.37*** -0.16** -10.67*** -7.99*** -3.67* 

 
0.9 x 10 -1.06*** -0.70*** -0.27*** -23.90*** -15.79*** -7.01*** 

 
0.9 x 100 -1.22*** -0.79*** -0.29*** -27.86*** -18.95*** -8.77*** 

                                                 Statistics 
Observations   648 1,944 1,944 648 1,944 1,944 

Adjusted R-squared 
 

0.96 0.92 0.80 0.97 0.96 0.82 
Note: Dependent variable: RMSE. Significance levels are indicated as *** p<0.01, ** p<0.05, * p<0.1. 'ref'=reference group. 

  
 

All results are based on trimming as described in Section 2.4 and equation (9), with 

the trimming threshold set to t=4%. This choice has been made because it dominated the non-

trimmed version of the estimator as well as larger t (e.g., 6%) in HLW12 in terms of the mean 

squared error (RMSE). Furthermore, we remove all treated with larger propensity scores than 

the largest control observation prior to matching. Moreover, we use bias adjustment based on 

logit regression (for the binary employment outcome) and OLS (for earnings), as this resulted 

in a lower RMSE of the estimator in HLW12 than an unadjusted version. Table 4.1 presents 



 

the impact of the DGP features and the tuning parameters of the estimator on the RMSE, 

whereas the results for the bias and the standard deviation are presented in Appendix A. 

Similarly to HLW12, the analysis is based on an OLS regression in which the RMSE is the 

outcome variable and the DGP features and tuning parameters serve as regressors. Our 

simulations all in all provide us with 648 data points in the small sample and 1'944 in the 

medium and large samples (which consider more shares of treated). As expected, the baseline 

RSME, which is captured by the constant, decreases in the sample size for both the binary 

outcome (employment) and the semi-continuous outcome (earnings) and does so roughly at 

root-N rate. Taking a look at the DGP features, we see that a stronger selection into treatment 

significantly increases the RMSE across all sample sizes and outcomes (the reference point is 

the selectivity observed in the data, i.e.,λ =1). This is due to both a larger bias and a higher 

standard deviation (see Tables A.1 and A.2 in the appendix). With regard to the share of 

treated, the estimator performs best in terms of the RMSE for a share of 50%. Even though 

the bias is slightly (but not significantly) larger than for 10% treated, where in both relative 

and absolute terms more potential matches are available, the standard deviation is 

considerably lower due to a higher number of treated observations. The 90% share does worse 

than the 50% share in terms of bias and standard deviation, as too few comparisons among the 

controls are available. In conclusion, none of the effects of the DGP features comes with a 

surprise. 

Under the misspecification of the propensity score, the bias is increased because an 

incorrect functional form is assumed. At the same time, the propensity score is more precisely 

estimated due to omitting the interaction and higher order terms of covariates, which also re-

duces the variance of the radius matching estimator. In the smaller sample, the variance 

reduction outweighs the bias increase such that misspecification reduces the RMSE, in the 

medium and large samples the contrary holds true.  



 

We now analyse the impact of the tuning parameters, starting with the additional 

covariates. For both outcomes the RMSE decreases in the number of covariates in the 

Mahalanobis metric and the regression/logit adjustment suggesting that controlling for the 

most important confounders may be beneficial, as long as the curse of dimensionality does not 

kick in. The reduction is largest in the small sample. As Table A.2 reveals, the effect is 

primarily driven by a reduction in the standard deviation (in particular when using four 

covariates). The impact on the bias is more ambiguous. For employment, it is significantly 

negative when using one covariate, but insignificant when using four. For earnings, it is 

economically negligible and insignificant in any sample size. In contrast to the number of 

covariates, the values of the propensity score weights considered in the simulations do not 

play any role. The effects on the RMSE, bias and standard deviation are consistently close to 

zero and insignificant in all scenarios.  

Finally, we consider the 12 different combinations of the distance quantile and the 

multiplier that determine the radius size. The clear cut result of our simulations is that the 

larger the radius, the smaller the RMSE. For any sample size and outcome, increasing the 

quantile while holding the multiplier fixed or doing it vice versa reduces the RMSE. This is 

entirely driven by a decrease in the standard deviation, as a larger radius uses more controls 

for the estimation of the local mean outcome under non-treatment and therefore increases 

precision. On the other hand, including controls that are more distant and thus, less compara-

ble to the treated observations may increase bias, giving rise to a potential bias-variance-

trade-off. However, Table A.2 shows that the bias is not significantly affected by the radius 

size in any but the two cases with the largest radius. Clearly, this finding is dependent on the 

ability of the parametric bias removal to be effective. I.e., in the DGPs considered, using a 

larger radius does not come at the cost of an increased bias, but allows realizing gains in effi-

ciency such that the RMSE is reduced. 



 

Our results on the effects of additional covariates and the radius size suggest that the 

regression/logit adjustment performs well in terms of reduction of the RMSE. We arrive at 

this conclusion because additional covariates and a larger radius implicitly shift more weight 

to the parametric component of the estimator. Therefore, our findings are in line with those of 

HLW12 showing that the parametric OLS and logit estimators (although more flexibly speci-

fied than here) fair surprisingly well when estimating the ATET. 

Tables 4.2 and 4.3 present the effects of the number of covariates in the Mahalanobis 

metric/regression adjustment and of the radius multiplier on the behaviour of the estimator in 

terms of RMSE, bias, standard deviation, skewness and kurtosis within strata defined by the 

sample size, selection into treatment, correct/incorrect propensity score specification and the 

share of treated (the latter for the medium and large sample sizes only). This allows 

investigating the heterogeneity of the effects across DGP features, while averaging over all 

remaining tuning parameters, e.g., the choices of the distance quantile and the propensity 

score weight. Note that the propensity score weight itself is no longer investigated due to its 

obvious irrelevance, at least for the values considered. In Table 4.2, the number of additional 

covariates in the Mahalanobis metric and adjustment procedure is varied. Clearly, choosing 

four covariates performs best in terms of the RMSE in any stratum and for both outcomes. 

This result is driven by a considerable reduction in the standard deviation, while the bias is 

often non-monotonic in the number of predictors, but overall barely affected.  

 



 

Table 4.2: Estimator properties as  function of additional covariates    

 
Employment Earnings 

 RMSE Bias StdDev Skew Kurtosis RMSE Bias StdDev Skew Kurtosis 
Covars in Mahal N = 300 

0 8.6 1.4 8.5 0.1 5.5 201.5 33.3 195.9 -0.3 5.5 
1 8.4 1.3 8.3 -0.1 4.2 194.2 33.6 188.6 -0.2 3.7 
4 7.3 1.3 7.2 0.1 3.0 167.9 32.8 162.4 -0.0 3.0 
  N = 1200 
0 5.9 1.5 5.5 0.1 3.0 144.8 38.9 134.5 -0.1 3.1 
1 5.9 1.4 5.5 0.1 3.0 142.0 39.5 130.7 -0.1 3.1 
4 5.3 1.5 5.0 0.1 3.0 126.5 38.0 115.0 -0.0 3.1 
  N = 4800 
0 3.5 1.5 2.8 0.1 3.0 88.0 35.1 72.3 -0.0 3.0 
1 3.4 1.4 2.8 0.1 3.0 87.8 37.7 70.1 -0.1 3.1 
4 3.1 1.4 2.5 0.1 3.0 79.1 36.6 60.7 -0.0 3.0 
  Normal selection 
0 4.8 1.2 4.5 0.1 3.4 118.8 29.9 112.0 -0.1 3.4 
1 4.7 1.2 4.5 0.1 3.2 116.4 32.3 107.9 -0.1 3.2 
4 4.3 1.2 4.0 0.1 3.0 103.9 30.6 95.4 0.0 3.0 
  No selection 
0 4.2 0.1 4.2 0.0 3.5 97.1 2.7 97.1 -0.1 3.6 
1 4.2 0.1 4.2 0.0 3.3 94.8 3.3 94.7 -0.1 3.2 
4 3.7 0.3 3.7 0.0 3.0 83.1 3.0 83.0 -0.0 3.1 
  Heavy selection 
0 6.9 3.1 5.7 0.1 3.2 169.8 76.8 140.8 -0.1 3.2 
1 6.7 2.9 5.7 0.1 3.0 167.5 78.0 136.4 -0.1 3.1 
4 6.0 2.8 5.0 0.1 3.0 149.4 76.3 117.0 -0.1 3.0 
  Correctly specified pscore 
0 5.1 0.7 5.0 0.1 3.7 123.5 14.2 121.9 -0.1 3.8 
1 5.0 0.7 4.9 0.0 3.3 118.4 12.6 117.0 -0.1 3.3 
4 4.4 0.8 4.3 0.1 3.0 102.0 13.3 100.0 -0.0 3.0 
  Misspecified pscore 
0 5.5 2.3 4.6 0.1 3.0 133.6 58.7 111.3 -0.1 3.0 
1 5.4 2.1 4.6 0.1 3.0 134.1 63.1 109.1 -0.1 3.1 
4 4.9 2.0 4.2 0.1 3.0 122.2 60.0 97.0 -0.0 3.0 

 10% treated** 
0 4.8 1.2 4.4 0.1 3.1 125.7 29.6 118.4 0.0 3.0 
1 4.7 1.1 4.4 0.1 3.0 122.9 31.7 113.0 0.0 3.1 
4 4.3 1.1 4.0 0.1 3.0 112.9 32.3 101.8 0.0 3.0 
  50% treated** 
0 3.5 1.2 2.9 0.1 3.0 87.3 30.3 74.2 -0.1 3.1 
1 3.4 1.1 2.9 0.1 3.0 86.5 31.8 71.8 -0.1 3.1 
4 3.1 1.2 2.6 0.0 3.0 77.9 31.0 62.6 -0.0 3.0 
  90% treated** 
0 5.9 2.1 5.2 0.1 2.9 136.3 51.1 117.7 -0.1 3.0 
1 5.8 2.0 5.2 0.1 2.9 135.3 52.2 116.5 -0.2 3.1 
4 5.2 2.0 4.6 0.1 3.0 117.7 48.5 99.1 -0.1 3.1 

Note: **: Contains only results for N = 1200 and N = 4800.           
 
 
 
 



 

Table 4.3: Estimator properties as function of the radius multiplier   

 
Employment Earnings 

 RMSE Bias StdDev Skew Kurtosis RMSE Bias StdDev Skew Kurtosis 
Radius multiplier N = 300 

0.25 8.3 1.3 8.2 0.0 4.1 192.4 33.1 187.1 -0.1 4.0 
1 8.0 1.3 7.9 0.0 4.3 186.1 33.0 180.6 -0.1 4.1 

10 7.5 1.4 7.3 0.0 4.6 172.9 33.7 166.6 -0.1 4.4 
100 7.3 1.4 7.1 0.0 4.8 168.9 33.7 162.4 -0.1 4.5 

  N = 1200 
0.25 5.8 1.4 5.4 0.1 3.0 139.9 38.4 129.3 -0.1 3.1 

1 5.6 1.4 5.2 0.1 3.0 135.8 38.5 124.8 -0.1 3.1 
10 5.3 1.6 4.9 0.1 3.0 128.0 39.9 115.7 -0.1 3.1 

100 5.2 1.6 4.7 0.1 3.0 124.8 40.5 112.1 -0.1 3.1 
  N = 4800 

0.25 3.4 1.4 2.8 0.1 3.0 85.9 36.2 68.8 -0.0 3.0 
1 3.3 1.4 2.7 0.1 3.0 84.0 36.3 66.6 -0.0 3.0 

10 3.2 1.5 2.5 0.1 3.0 80.6 37.2 62.2 -0.0 3.0 
100 3.2 1.6 2.4 0.1 3.0 78.9 38.1 59.6 -0.0 3.0 

  Normal selection 
0.25 4.7 1.2 4.4 0.1 3.2 114.9 30.5 107.3 -0.1 3.2 

1 4.5 1.2 4.2 0.1 3.2 111.5 30.7 103.5 -0.0 3.2 
10 4.3 1.3 3.9 0.1 3.3 105.2 31.9 96.2 -0.0 3.3 

100 4.2 1.3 3.8 0.1 3.3 102.7 32.5 93.3 -0.0 3.3 
  No selection 

0.25 4.1 0.1 4.1 0.0 3.3 93.7 2.8 93.6 -0.1 3.3 
1 3.9 0.1 3.9 0.0 3.3 89.8 2.7 89.7 -0.1 3.3 

10 3.7 0.3 3.6 0.0 3.3 83.3 3.5 83.2 -0.0 3.4 
100 3.6 0.4 3.6 0.0 3.4 81.3 4.3 81.1 -0.0 3.4 

  Heavy selection 
0.25 6.6 2.9 5.6 0.1 3.0 164.2 76.7 134.1 -0.1 3.1 

1 6.5 2.9 5.4 0.1 3.0 161.1 77.0 130.3 -0.1 3.1 
10 6.1 3.0 5.0 0.1 3.1 153.9 78.2 120.7 -0.1 3.1 

100 6.0 3.0 4.8 0.1 3.1 150.3 78.7 116.0 -0.1 3.1 
  Correctly specified pscore 

0.25 4.9 0.7 4.8 0.1 3.3 117.0 13.3 115.3 -0.1 3.3 
1 4.8 0.7 4.7 0.1 3.4 113.1 13.3 111.4 -0.1 3.4 

10 4.4 0.7 4.3 0.1 3.5 105.1 13.6 103.4 -0.1 3.4 
100 4.3 0.8 4.2 0.0 3.5 101.6 14.0 99.8 -0.0 3.5 

  Misspecified pscore 
0.25 5.3 2.1 4.5 0.1 3.0 131.5 60.0 108.0 -0.1 3.0 

1 5.2 2.1 4.4 0.1 3.0 128.4 60.3 104.2 -0.1 3.0 
10 5.0 2.3 4.1 0.1 3.0 123.1 62.2 96.7 -0.1 3.0 

100 4.9 2.4 3.9 0.1 3.0 121.3 63.1 93.8 -0.0 3.0 
Note: Contains only specifications with rquantil=0.9 as a larger radius always dominates a smaller one.  



 

 

Table 4.3 (cont'd): Estimator properties as function of the radius multiplier    

 
Employment Earnings 

  RMSE Bias StdDev Skew Kurtosis RMSE Bias StdDev Skew Kurtosis 
Radius multiplier 10% treated** 

0.25 4.7 1.1 4.3 0.1 3.0 121.9 30.7 112.6 0.0 3.0 
1 4.5 1.1 4.1 0.1 3.0 117.2 31.0 107.6 0.0 3.0 

10 4.2 1.2 3.9 0.1 3.0 110.6 32.5 100.2 0.0 3.1 
100 4.2 1.4 3.8 0.1 3.0 108.6 34.2 97.4 0.0 3.1 

  50% treated** 
0.25 3.3 1.2 2.9 0.1 3.0 84.8 30.6 70.7 -0.1 3.0 

1 3.3 1.2 2.8 0.1 3.0 83.0 30.7 68.6 -0.1 3.0 
10 3.1 1.3 2.6 0.1 3.0 79.6 32.1 64.2 -0.0 3.1 

100 3.1 1.4 2.5 0.0 3.0 77.5 33.0 61.4 -0.0 3.1 
  90% treated** 

0.25 5.7 2.0 5.1 0.1 2.9 132.0 50.5 113.9 -0.1 3.1 
1 5.6 2.0 5.0 0.1 2.9 129.5 50.5 110.9 -0.1 3.1 

10 5.3 2.1 4.6 0.1 3.0 122.7 51.1 102.4 -0.1 3.0 
100 5.2 2.1 4.4 0.1 3.0 119.4 50.7 98.7 -0.1 3.0 

Note: Contains only specifications with rquantil=0.9 as a larger radius always dominates a smaller one.  
**: Contains only results for N = 1200 and N = 4800. 

 

A similar picture arises when looking at the impact of the multiplier in Table 4.3, 

where the distance quantile is now fixed at 0.9 (rather than averaging over all choices), as 

higher quantiles always dominate lower ones (given equal multipliers). The RMSE decreases 

in the radius size in any scenario. Even though the bias generally increases slightly, this is 

more than offset by a reduction in the standard deviation. Interestingly, the decrease of the 

RMSE is much larger when switching from 1 to 10 than when switching from 10 to 100, 

suggesting that the marginal effect of further increases of the radius is a decreasing function. 

Finally, we take a look at the skewness and kurtosis of the estimator, telling us whether it is 

approximately normally distributed. In general, this appears to be the case. The skewness is 

always close to zero and the kurtosis is close to three in most scenarios and only somewhat 

higher in the small sample. In the latter case, a larger number of covariates in the Mahalanobis 

metric/regression adjustment shifts the kurtosis back to three, while a larger radius size ap-

pears to slightly shift the kurtosis further away from that of a normal distribution.  



 

In conclusion, the EMCS suggests that Mahalanobis matching on the propensity score 

and several important covariates is preferable to matching on the propensity score only. Sec-

ondly, a radius that is at least several times larger than the maximum distance in pair matching 

appears to be superior to smaller choices, at least in for the DGPs and empirical data consid-

ered in our simulation design. 

5 Conclusion 

In this paper, we investigated the finite sample properties of a distance-weighted ra-

dius matching estimator with regression-based bias adjustment proposed in LMW11 by using 

a simulation design based on empirical labour market data as suggested in HLW12. We find 

that the choice of tuning parameters, such as the radius size, and whether matching is on the 

propensity score only or additionally also on the most important confounders via the 

Mahalanobis metric affects the performance of the estimator, in particular its root mean 

squared error. Across all simulations, our results consistently suggest picking a large radius 

dominates smaller choices. Likewise (and related), including the most important covariates 

(on top of the propensity score) in the matching algorithm and the regression adjustment 

performs always well in terms of the root mean squared error. Because increasing the radius 

and the number of covariates implicitly shifts more weight to the parametric regression 

adjustment, our results suggest that the latter performs well in terms of reducing the RMSE. 

Therefore, combining radius matching and regression in an appropriate way appears to 

improve estimation. The study also reveals that the estimator is close to being normally 

distributed in almost all scenarios. The estimator is available as "radiusmatch" command in 

GAUSS, STATA and the R package "radiusmatching" at 

http://www.alexandria.unisg.ch/publications/citation/Michael_Lechner/218871. 

http://www.alexandria.unisg.ch/publications/citation/Michael_Lechner/218871


 

and includes options for the choice of the various tuning parameters, common support 

procedures and inference methods.  
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Appendix A: More details on the features of the DGP and the estimator 

Table A.1: Impact of the features of the DGP and the estimator on the bias (OLS regression) 

  
Employment Earnings 

  
300 1200 4800 300 1200 4800 

Constant   0.89*** 0.38*** -0.03 12.37*** 4.08* -6.65** 
    Features of the data generating process 

Selection Random -0.94*** -1.09*** -1.01*** -25.61*** -29.89*** -26.71*** 

 
Observed ref. ref. ref. ref. ref. ref. 

 
Strong 1.57*** 1.77*** 1.77*** 41.40*** 46.38*** 47.42*** 

Share treated 10%   -0.06 -0.04   2.51** -2.19 

 
50% 

 
ref. ref. 

 
ref. ref. 

 
90% 

 
0.87*** 0.82*** 

 
18.75*** 20.32*** 

Misspecified p-score   0.51*** 1.21*** 1.96*** 31.04*** 43.27*** 56.51*** 
    Features of the estimator 

Additional matching 0 (only p-pscore) ref. ref. ref. ref. ref. ref. 
variables 1 -0.08*** -0.08* -0.11** 0.25 0.54 2.63* 

 
4 -0.02 -0.06 -0.10* -0.49 -0.93 1.49 

Scoreweight 0.5 -0.00 0.00 -0.00 -0.04 0.03 -0.02 

 
1 ref. ref. ref. ref. ref. ref. 

 
5 0.02 0.01 0.01 0.38 0.17 0.27 

Radius 0.1 x 0.25 ref. ref. ref. ref. ref. ref. 
(quantile x multiplicator) 0.1 x 1 -0.00 0.00 -0.00 -0.01 0.00 -0.01 

 
0.1 x 10 -0.00 0.00 -0.00 -0.05 0.02 -0.00 

 
0.1 x 100 -0.01 0.00 -0.00 -0.11 0.14 -0.00 

 
0.5 x 0.25 -0.00 0.00 -0.00 -0.06 0.01 -0.00 

 
0.5 x 1 -0.01 0.00 -0.00 -0.10 0.07 -0.05 

 
0.5 x 10 -0.02 0.01 0.01 -0.15 0.35 0.20 

 
0.5 x 100 0.06 0.12 0.11 0.46 1.64 1.18 

 
0.9 x 0.25 -0.01 0.01 0.01 -0.08 0.12 0.18 

 
0.9 x 1 -0.02 0.01 0.02 -0.14 0.27 0.31 

 
0.9 x 10 0.05 0.12 0.12 0.52 1.68 1.17 

 
0.9 x 100 0.07 0.20** 0.21* 0.53 2.31 2.08 

                                                   Statistics 
Observations   648 1,944 1,944 648 1,944 1,944 

Adjusted R-squared 
 

0.92 0.74 0.71 0.87 0.79 0.71 
Note: Dependent variable: Bias. Significance levels are indicated as *** p<0.01, ** p<0.05, * p<0.1.     

 

 



 

Table A.2: Impact of the features of the DGP and the estimator on the std.dev. (OLS reg.) 

  
Employment Earnings 

  
300 1200 4800 300 1200 4800 

Constant   8.93*** 4.05*** 1.98*** 208.61*** 104.05*** 54.49*** 
    Features of the data generating process 

Selection Random -0.43*** -0.30*** -0.27*** -17.42*** -13.73*** -11.92*** 

 
Observed ref. ref. ref. ref. ref. ref. 

 
Strong 1.63*** 1.13*** 1.00*** 32.83*** 27.72*** 22.80*** 

Share treated 10%   2.04*** 0.92***   56.45*** 26.67*** 

 
50% 

 
ref. ref. 

 
ref. ref. 

 
90% 

 
2.79*** 1.59*** 

 
49.78*** 33.32*** 

Misspecified p-score   -0.90*** -0.20*** -0.15*** -17.20*** -5.91*** -5.07*** 
    Features of the estimator 

Additional matching 0 (only p-pscore) ref. ref. ref. ref. ref. ref. 
variables 1 -0.22*** -0.01 0.01 -7.28*** -3.85*** -2.15*** 

 
4 -1.31*** -0.59*** -0.32*** -33.50*** -19.60*** -11.59*** 

Scoreweight 0.5 0.00 -0.00 -0.00 0.10 0.02 -0.05 

 
1 ref. ref. ref. ref. ref. ref. 

 
5 0.00 0.00 0.01 -0.07 0.10 0.22 

Radius 0.1 x 0.25 ref. ref. ref. ref. ref. ref. 
(quantile x multiplicator) 0.1 x 1 -0.00 -0.00 -0.00 -0.03 -0.01 -0.02 

 
0.1 x 10 -0.03 -0.02 -0.01 -0.64 -0.40 -0.15 

 
0.1 x 100 -0.26*** -0.16*** -0.06 -5.74*** -3.26*** -1.17 

 
0.5 x 0.25 -0.02 -0.02 -0.01 -0.36 -0.34 -0.17 

 
0.5 x 1 -0.07 -0.06* -0.03 -1.55 -1.22 -0.61 

 
0.5 x 10 -0.50*** -0.35*** -0.16*** -10.96*** -7.54*** -3.52*** 

 
0.5 x 100 -1.01*** -0.69*** -0.33*** -22.67*** -15.54*** -7.47*** 

 
0.9 x 0.25 -0.20*** -0.19*** -0.10** -4.48*** -4.09*** -2.22*** 

 
0.9 x 1 -0.50*** -0.39*** -0.20*** -10.96*** -8.59*** -4.48*** 

 
0.9 x 10 -1.10*** -0.78*** -0.38*** -24.99*** -17.65*** -8.89*** 

 
0.9 x 100 -1.27*** -0.91*** -0.47*** -29.13*** -21.30*** -11.41*** 

                                               Statistics 
Observations   648 1,944 1,944 648 1,944 1,944 

Adjusted R-squared 
 

0.94 0.95 0.82 0.95 0.96 0.90 
Note: Dependent variable: Standard error. Significance levels are indicated as *** p<0.01, ** p<0.05, * p<0.1.    
  

Appendix B: Dataset description 

The data comprise all aspects of an individual's employment, earnings and unemploy-

ment insurance history since 1990 (e.g., type of employment such as full/part-time and 

high/low-skilled, occupation, earnings, type and amount of unemployment insurance benefits 

and remaining claims), participation in major labour market programmes from 2000 onwards 

(including the exact start date, end date, planned end date and type of programme), individual 



 

characteristics (e.g., date of birth, gender, educational attainment, marital status, number of 

children, age of youngest child, nationality, occupation, the presence of health impairments 

and disability status) and job search activities (the type of job looked for such as full/part-

time, high/low-skilled and the occupation, mobility within Germany and health impairments 

affecting employability). Furthermore, a variety of regional variables has been matched to the 

data, including information about migration and commuting, average earnings, unemployment 

rate, long-term unemployment, welfare dependency rates, urbanisation codes, and measures 

of industry structure and public transport facilities. 

The sample used for the simulations covers all entries into unemployment in the period 2000-

2003, however, excluding East Germany and Berlin since they are still affected by the after-

math of reunification. Furthermore, unemployment entries in January-March 2000 are dis-

carded because with programme information starting only in January 2000, it should be pre-

vented that entries from employment programmes (which we would consider as unemployed) 

are accidentally classified as entries from unsubsidized employment due to missing infor-

mation regarding the accompanying programme spell. Entries after 2003 are not considered 

such that the outcome variables, employment and earnings, are observed for at least three 

years after entering unemployment. Moreover, the analysis is restricted to the prime-age 

population aged 20-59 in order to limit the impact of schooling and (early) retirement deci-

sions and to individuals who were not unemployed or in any labour market programme in the 

last 12 months before becoming unemployed to make the sample more homogeneous. Finally, 

the very few cases whose last employment was any non-standard form of employment such as 

internships were excluded. 
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