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Abstract 

Wars of conquest and wars of independence are characterized by an asymmetry in the 

payoff structure: The production of one party constitutes the winner's prize, while the 

production of the other party is not contested. We present and solve a model of warfare, 

which nests this asymmetric payoff structure as well as the standard symmetric payoff 

structure where the winner gets aggregate production. We use this model to discuss how 

equilibrium behavior and outcomes depend on resource endowments and military and 

production technologies in asymmetric wars; and to compare equilibrium behavior and 

outcomes in symmetric and asymmetric wars. Among others, we find that asymmetric wars 

are fought less intensively, and that defending countries in wars of conquest and secessionist 

groups in wars of independence have higher winning probabilities in such asymmetric wars 

than they would have in standard symmetric wars. 
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1 Introduction

The standard model of warfare goes back to Haavelmo (1954) and has been popularized

by Garfinkel (1990), Grossman (1991), Hirshleifer (1991, 2001) and Skaperdas (1992). This

model is based on the assumptions that a war takes place for exogenous reasons, that each

party can choose how to allocate its resources to production and warfare, that the outcome

of the war is probabilistic and determined by a contest success function, and that the winner

gets aggregate production.1 This last assumption makes clear that this is a model designed

for the study of wars with a symmetric payoff structure. The standard model is thus helpful

to understand strategic behavior in civil wars for state control, or symmetric wars between

neighboring countries. However it cannot inform us about strategic behavior in wars in which

the involved parties face fundamentally different incentives due to an asymmetry in the payoff

structure.

Wars of conquests and wars of independence are characterized by an asymmetry in the

payoff structure: The production of one party constitutes the winner’s prize, while the pro-

duction of the other party is not contested. In wars of conquests, the attacking country

can always keep its own production, and the countries fight only over the production (or re-

sources) of the defending country. Similarly, in wars of independence, the central government

and the secessionist region only fight over the production (or resources) in the secessionist

region. The payoff structure in these types of wars is asymmetric even though the parties

fight over the same prize. The reason for the asymmetry is that one party gets at worst its

own production, while the other party gets at best its own production.

Wars of conquest were common, e.g., during the European colonization. The Spanish

conquest of the Aztec empire is a prominent example. Both the Spaniards and the Aztecs

knew perfectly well that they were only fighting over the Aztecs’ production and resources,

and not any Spanish production or resources. More recently, it was clear to the Vietnamese

1These standard models are discussed in more detail in Garfinkel and Skaperdas (2007, section 3.2). See
Blattman and Miguel (2010), and again Garfinkel and Skaperdas (2007) for reviews of the literature on wars
and conflicts; and Konrad (2009) for a review of the literature on contests more generally.
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communists fighting the U.S. army, and the Afghan mujahideen fighting the Soviets that

they could at most win production or resources of their own territory, and no production or

resources from the United States or the Soviet Union, respectively. Meanwhile the U.S. army

and the Soviets knew that they would not lose any domestic production in case of defeat.

Wars of independence are still common and have recently been fought by secessionist groups

in, e.g., Aceh, Chechnya, Eritrea, Kosovo, Northern Sri Lanka, South Sudan, and Timor

Leste. In all these conflicts, it was foreseeable from the onset that if the central government

wins, it can control total production and resources; but if the secessionist group wins, it only

gets production and resources of the newly independent region, while the defeated central

government still gets production and resources from the rest of the country.

To the best of our knowledge, there exists no theory of wars that takes the asymmetry

inherent in wars of conquest and wars of independence into account. We aim at filling this

gap in the literature. We therefore introduce and solve a new workhorse model of warfare. In

this model, like in the standard model, war takes place for exogenous reasons, each player can

choose how to allocate its resources to production and warfare, and the outcome of the war is

determined by a Tullock (1980) contest success function. Moreover, we allow for asymmetries

in the players’ military technologies, their production technologies, as well as their resource

endowments. The key novelty of our workhorse model is its payoff structure which nests

both the symmetric payoffs of the standard model as well as the asymmetric payoffs of wars

of conquest and independence.

We use our workhorse model to better understand wars of conquest and independence.

We do so in two ways. First, we analyze how changes in military and production technolo-

gies, and in resource endowments, impact on military spending and winning probabilities

in asymmetric wars of conquest and independence. Second, we compare military spending

and winning probabilities between the symmetric wars on which the literature has focused

so far, and asymmetric wars of conquest and independence. We find, among others, that the

winning probability of the attacking country in wars of conquest (or the central government
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in wars of independence) increases in its relative military technology, but decreases in its

relative production technology. These comparative static results are similar as in symmet-

ric wars, but changes in production technologies have different effects on military spending.

While any change in production technologies increases military spending of the party that

becomes relatively less productive in symmetric wars, the military spending of the two parties

moves in the same direction in asymmetric wars. The two parties both fight less if the attack-

ing country becomes relatively more productive, and they both fight more if the defending

country becomes relatively more productive.

Another important difference between symmetric and asymmetric wars is that both par-

ties fight less intensively in asymmetric wars. The difference in military spending between

symmetric and asymmetric wars is larger for the party that would be the attacking country

(or the central government) in an asymmetric war. This party faces considerably higher

opportunity costs of military spending in an asymmetric war, in which it can keep its entire

production with certainty, than in a symmetric war. Therefore, this party is less likely to win

an asymmetric war than to win a symmetric war. This equilibrium outcome is consistent with

the surprisingly frequent victories of secessionist groups and defending parties, including the

Vietnamese communists and the Afghan mujahideen. Our model suggests that such victories

of relatively small and weak secessionist groups and defending countries against larger and

stronger opponents are no coincidence, but the result of the very different incentives faced

by the conflicting parties in wars of conquest and independence.

Our paper is complementary to contributions that focus on other asymmetries between

attacking and defending parties. Building on the standard models discussed above, Grossman

and Kim (1995, 1996), and Bester and Konrad (2004) study models of conflict in which both

parties can attack or defend, and in which there is a technological advantage for defensive

activities (modeled by asymmetric contest success functions). In our model, as in wars of

conquest and independence, there is a clear distinction between a party that can only attack

and another party that can only defend. Moreover, we also allow for differences in military
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technology. Shubik and Weber (1981), Clark and Konrad (2007), Powell (2007a,b), and Arce

et al. (2012) study models in which a defending party is vulnerable at several points, and

needs to defend all these points successfully to win the battle, while the attacker wins if he

can surmount the defender at one of these points. Wärneryd (2003) considers a contest in

which only one party knows the prize. Similarly, in our model of asymmetric wars, only the

defending country (or the secessionist group) knows the prize with certainty. But while the

prize is drawn from a commonly known distribution in Wärneryd’s model, it depends on

the defending country’s military spending and is therefore inversely related to this country’s

winning probability in our model.

Kolmar (2008) also presents a model in which two players can fight for the production of

one of them. Despite this similarity, our paper differs in some important ways: First, while

Kolmar focuses on the emergence of property rights, we focus on asymmetric warfare. Second,

while Kolmar studies how results depend on the timing of the player’s fighting choices, we

study how results differ between symmetric and asymmetric payoff structures. Moreover, our

model allows for rich comparative static analyses with respect to production and military

technologies as well as resource endowments.2

The remainder of the paper is organized as follows: Section 2 introduces our workhorse

model. Section 3 solves this model, and presents our novel results on asymmetric wars of

conquest and independence. Section 4 concludes. The appendix contains all proofs.

2 The Model

There are two risk-neutral players, labeled 1 and 2.3 Player i ∈ {1, 2} is characterized

by resource endowment ri > 0, military technology αi > 0, and production technology

2Furthermore, Hillman and Riley (1989), and Nti (1999) study the effect of asymmetric valuations of
contested prizes in rent-seeking contests. In our model of asymmetric wars, the attacking and the defending
player also get different payoffs when winning, but the prize of winning is the same for both players: the
defending player’s production. Asymmetric valuations and contest structures are also studied in the literature
on optimal contest design (see Franke et al., 2013, for a review).

3We adopt the convention that player 1 is a “he” and player 2 a “she”.
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βi > 0, which are all common knowledge. For later use, we define player 1’s relative resource

endowment r ≡ r1
r2

, his relative military technology α ≡ α1

α2
, his relative production technology

β ≡ β1
β2

, and his comparative advantage in warfare τ ≡ α
β

= α1/β1
α2/β2

.

The two players are at war for exogenous reasons. They simultaneously decide how to

allocate their resources to production and warfare.4 Given resource endowment ri, player i

chooses to allocate bi ∈ [0, ri] to warfare, and ri− bi to production. Player i’s military power

is then αibi, and his production βi(ri − bi). Nature determines the outcome of the war. The

probability that player 1 wins is given by the ratio-form contest success function

p =


α1b1

α1b1+α2b2
= αb1

αb1+b2
if b1 + b2 > 0

α
α+1

if b1 = b2 = 0,
(1)

and the probability that player 2 wins by 1− p.

The two players fight over the sum of player 2’s entire production and share x ∈ {0, 1} of

player 1’s production.5 Hence, their expected payoffs are

u1(b1, b2) = (1− x)β1(r1 − b1) + p1[xβ1(r1 − b1) + β2(r2 − b2)] (2)

u2(b1, b2) = (1− p1)[xβ1(r1 − b1) + β2(r2 − b2)]. (3)

This workhorse model nests the two models of conflict and warfare that are of interest to

us. First, when x = 1, then it boils down to the standard model of wars with symmetric

payoffs. Second, when x = 0, then it becomes a model of asymmetric wars of conquest and

independence. In this case, player 1 gets aggregate production if he wins, while each player

gets their own production if player 2 wins. Therefore, when thinking about wars of conquest,

player 1 represents the attacking country, and player 2 the defending country. When thinking

4This timing assumption is innocuous. The results by Hoffmann and Rota-Graziosi (2012) and our payoff
functions below imply that the equilibrium outcome would be the same if the players moved sequentially,
independently of which player moved first.

5The equilibrium, characterized in Theorem 1, would be the same if we assumed x ∈ [0, 1]. We focus on
the cases in which x = 0 or x = 1, because they represent the two payoff structures relevant to study wars of
conquest and independence, and to compare these asymmetric wars with symmetric wars.
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about wars of independence, player 1 represents the central government, and player 2 the

secessionist group.

The appropriate solution concept for this game is Nash equilibrium.

3 Analysis

In this section, we first illustrate the players’ trade-offs and their best responses. We then

derive the equilibrium of our workhorse model, and briefly present the equilibrium for the

well-known case of wars with symmetric payoffs (characterized by x = 0). We are then

ready to study wars of conquest and independence with their asymmetric payoff structure

(characterized by x = 1). We present comparative static results for equilibrium behavior and

outcomes in such asymmetric wars, and show how equilibrium behavior and outcomes differ

between asymmetric and symmetric wars.

3.1 The players’ trade-offs and best responses

The general trade-off that each player faces is that increasing military spending reduces

production. To study the trade-offs of the two players in more detail, we insert the contest

success function (1) into the expected payoff functions (2) and (3) and divide them by β2,

which is without loss of generality. We get

ũ1(b1, b2) = (1− x)β(r1 − b1) +
αb1

αb1 + b2
[xβ(r1 − b1) + (r2 − b2)] (4)

ũ2(b1, b2) =
b2

αb1 + b2
[xβ(r1 − b1) + (r2 − b2)]. (5)

Player 1’s trade-off of increasing military spending by one unit can be represented by

∂ũ1(b1, b2)

∂b1
= −β(1− x)− βx

(
αb1

αb1 + b2

)
+

αb2
(αb1 + b2)2

[xβ(r1 − b1) + (r2 − b2)]. (6)

The cost of increasing military spending is twofold for him: It implies lower uncontested
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production, β(1−x), which is foregone with certainty, as well as lower contested production,

βx, which is foregone if he is already a winner. He is already a winner with probability

αb1
αb1 + b2

. Thus, the sum of the first two terms in (6) represents player 1’s expected marginal

cost of increasing military spending. His benefit of increasing military spending is realized

only if that slight increase turns him into a winner, which occurs with probability
αb2

(αb1 + b2)2
.

In this case, he gains the contested production [xβ(r1 − b1) + (r2 − b2)]. Thus, the last term

in (6) represents his expected marginal benefit of increasing military spending.

The second-order condition of player 1’s utility maximization problem is satisfied, i.e.,

∂2ũ1(b1, b2)

∂b21
< 0, whenever b2 > 0.6 Therefore, player 1’s best response to b2 > 0 is the value

of b1 that solves the first-order condition ∂ũ1(b1,b2)
∂b1

= 0 or, equivalently,

1

τ
(αb1 + b2)

2 −
(x
τ
− 1
)

(b2)
2 − (xβr1 + r2)b2 = 0 (7)

if this value satisfies the resource constraint b1 ∈ [0, r1], and b1 = r1 otherwise.7

Player 2’s trade-off of increasing military spending by one unit can be represented by

∂ũ2(b1, b2)

∂b2
= − b2

αb1 + b2
+

αb1
(αb1 + b2)2

[(xβ(r1 − b1) + (r2 − b2)]. (8)

The cost of increasing military spending by one unit for player 2 is simply one unit of

production that is foregone if she is already a winner, which is the case with probability

b2
αb1 + b2

. Thus, the first term in (8) represents player 2’s expected marginal cost of increasing

military spending. Her benefit of increasing military spending is realized only if that slight

increase will turn her into a winner, which occurs with probability
αb1

(αb1 + b2)2
. In this case,

she gains the contested production [xβ(r1 − b1) + (r2 − b2)]. Thus, the second term in (8)

represents her expected marginal benefit of increasing military spending.

6It holds that ∂2ũ1(b1,b2)
∂b21

= −2α b2
(b2+αb1)3

[α(r2 − b2) + xβ(b2 + αr1)].
7It is a well-known problem in this type of conflict models that player 1’s best response to b2 = 0 is not

well-defined (and vice versa). The reason is that he would want choose an infinitesimal positive amount in
response to b2 = 0 (and player 2 would want to do the same in response to b1 = 0). This problem is however
of minor importance as both players always have an incentive to choose bi > 0.
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The second-order condition of player 2’s utility maximization maximization problem is

satisfied, i.e.,
∂2ũ2(b1, b2)

∂b22
< 0, whenever b1 > 0.8 Therefore, player 2’s best response to

b1 > 0 is the value of b2 that solves the first-order condition ∂ũ2(b1,b2)
∂b2

= 0 or, equivalently,

(αb1 + b2)
2 +

(x
τ
− 1
)

(αb1)
2 − (xβr1 + r2)αb1 = 0 (9)

if this value satisfies the resource constraint b2 ∈ [0, r2], and b2 = r2 otherwise.

3.2 Equilibrium

Our workhorse model has always a unique Nash equilibrium. This equilibrium can take

various forms depending on parameter values. There can exist an interior equilibrium with

equilibrium strategies b∗1 ∈ (0, r1) and b∗2 ∈ (0, r2) determined by the values of b1 and b2

that solve (7) and (9) simultaneously. In addition, there can exist a corner equilibrium in

which b∗1 = r1, while b∗2 ∈ (0, r2) is determined by the value of b2 that solves (9); or a corner

equilibrium in which b∗2 = r2, while b∗1 ∈ (0, r1) is determined by the value of b1 that solves (7).

There can however not exist an equilibrium in which both players invest all their resources

ri into warfare. The reason is that both players’ expected payoff would be zero, so that

each player would have an incentive to deviate unilaterally, and to allocate some resources

to production instead.

The following thresholds are useful to partition the parameter space:

r ≡ 1

β

 2(x− τ)

1− 2τ+1−x√
4τ+(1−x)2

− x

−1 (10)

r ≡ 1

β

 2(x− τ)(
1+x√

4τ+(1−x)2
− 1

)
τx

− 1

x

 . (11)

Observe first that r > r > 0; and second that r and r are not defined for x = τ , but

8It holds that ∂2ũ2(b1,b2)
∂b22

= −2α b1
(b2+αb1)3

[r2 + αb1 + (r1 − b1)xβ].
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limx→τ r = τ
2α+β

and limx→τ r = α2+αβ+β2

α2β
.

Theorem 1 There exists a unique Nash equilibrium, which takes one of following forms:

1. Given x 6= τ and r ∈ (r, r), equilibrium strategies are

b∗1 =
xβr1 + r2

2α
(
1− x

τ

) [ 2τ + 1− x√
4τ + (1− x)2

− 1

]
(12)

b∗2 =
xβr1 + r2

2
(
1− x

τ

) [1− (1 + x)√
4τ + (1− x)2

]
. (13)

Given x = τ and r ∈ (limx→τ r, limx→τ r), equilibrium strategies are

b∗1 =
α

(β + α)2
(αr1 + r2) (14)

b∗2 =
βα

(β + α)2
(αr1 + r2). (15)

2. Given either x 6= τ and r ≤ r, or x = τ and r ≤ limx→τ r, equilibrium strategies are

b∗1 = r1 and

b∗2 =
√
αr1(αr1 + r2)− αr1. (16)

3. Given either x 6= τ and r ≥ r, or x = τ and r ≥ limx→τ r, equilibrium strategies are

b∗2 = r2 and

b∗1 =
1

α

[√
xr2(αr1 + r2)− r2

]
. (17)

Observe that strategies (12) and (13) converge to strategies (14) and (15), respectively,

as x goes to τ . The equilibrium strategies b∗1 and b∗2 are thus continuous in x and τ .

3.3 Symmetric wars

Our workhorse model boils down to the standard model of warfare with symmetric payoffs

when x = 1. For later use, we now characterize equilibrium behavior in this special case. The
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equilibrium strategies b∗1 and b∗2 follow directly from Theorem 1, and player 1’s equilibrium

winning probability can then be derived as p∗ =
αb∗1

αb∗1+b
∗
2
.

Corollary 1 Suppose x = 1. Then the equilibrium strategies are

b∗1 =


r2
α

(√
αr + 1− 1

)
if r > r|x=1

1
α

(
βr1+r2

2
τ√
τ+1

)
if r ∈ (r|x=1, r|x=1)

r1 if r < r|x=1,

b∗2 =


r2 if r > r|x=1

βr1+r2
2

√
τ√
τ+1

if r ∈ (r|x=1, r|x=1)

αr1

[√(
1 + 1

αr

)
− 1
]

if r < r|x=1,

where r|x=1 = 1

β(2
√
τ+1)

and r|x=1 = 1
β

(
2√
τ

+ 1
)

, and player 1’s winning probability is

p∗ =


1− 1√

αr+1
if r > r|x=1

√
τ√
τ+1

if r ∈ (r|x=1, r|x=1)

1√
1+ 1

αr

if r < r|x=1.

Given that the standard model with symmetric payoffs is well studied in the literature,

we refrain from presenting comparative static results here. There is however one result

worth mentioning (see also Garfinkel and Skaperdas, 2007): In the interior equilibrium,

where r ∈ (r|x=1, r|x=1), an increase in player 1’s relative production technology β leads to

lower b∗1, higher b∗2 and, consequently, lower p∗. To illustrate this result, suppose that one

player gets more productive. This player reduces military spending because the productivity

increase leads to a proportional increase in his cost of increasing military spending, but a less

pronounced increase of the winner’s prize, which also depends on his opponent’s production.

The opponent increases her military spending because the winner’s prize increases while her

cost of increasing military spending remains unchanged. Therefore, whenever a player gets

more productive, he becomes less likely to win a symmetric war.
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3.4 Asymmetric wars of conquest and independence

We now focus on the special case when x = 0 to study wars of conquest and indepen-

dence. Remember that in this case player 1 represents the attacking country or the central

government, and player 2 the defending country or the secessionist group, respectively. As

before, the equilibrium strategies b∗1 and b∗2 follow directly from Theorem 1, which again allow

determining player 1’s equilibrium winning probability p∗.

Corollary 2 Suppose x = 0. Then the equilibrium strategies are

b∗1 =


r2
2α

(
2τ+1√
4τ+1
− 1
)

if r > r|x=0

r1 if r < r|x=0,

b∗2 =


r2
2

(
1− 1√

4τ+1

)
if r > r|x=0

αr1

(√
1 + 1

αr
− 1
)

if r < r|x=0,

where r|x=0 = 1
2α

(
2τ+1√
4τ+1
− 1
)

, and player 1’s winning probability is

p∗ =


1−

√
4τ+1−1
2τ

if r > r|x=0

1√
1+ 1

αr

if r < r|x=0.

Corollary 2 shows that player 2 never allocates all her resources to warfare in equilibrium,

i.e., b∗2 < r2 for all parameter values. The reason is that the winner’s prize becomes zero

when she allocates all resources to warfare. Therefore, she is always better off when devoting

at least some resources to production to ensure that she gets a positive prize when winning.

We now turn to the comparative statics and discuss how changes in the relative technolo-

gies α and β, and the resource endowments r1 and r2 impact on equilibrium behavior and

winning probabilities. Thereby we need to look separately at the interior equilibrium (where

r > r|x=0) and the corner equilibrium (where r < r|x=0), in which player 1 allocates all his

resources to warfare. We first look at the effects of changes in military technologies:
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Proposition 1 Suppose x = 0. Then an increase in player 1’s relative military technology α

has always a positive effect on b∗2 and p∗, while it has an ambiguous effect on b∗1 if r > r|x=0,

but no effect on b∗1 if r < r|x=0.

Whenever a player’s military technology αi improves, the main direct effect is an increase in

his or her winning probability. Of course, any change in the relative military technology αmay

also change incentives, thereby leading to behavioral responses, i.e., changes in equilibrium

strategies. Nevertheless, an increase in player 1’s relative military technology α increases

his winning probability p∗ (which obviously implies that an increase in α2 increases player

2’s winning probability 1 − p∗). If player 1 is not resource constrained, better military

technology α increases both his cost and his benefit of increasing military spending. The

benefit increases because higher military spending now has a stronger positive effect on his

winning probability, and the cost increases because he is already winning the war with higher

probability. As a result of these countervailing effects, better military technology has an

ambiguous effect on his military spending.9 Trivially, a small change in military technologies

has no effect on his military spending if he allocates all resources to warfare anyway. Player

2’s behavioral response is always to increase her military spending if α increases, i.e., if

her military technology gets comparatively weaker. The reason is that the cost of increasing

military spending, which corresponds to the probability of already being the winner, decreases

more strongly than her benefit of increasing military spending.

We now turn to the effects of changes in the players’ production technologies:

Proposition 2 Suppose x = 0. Then an increase in player 1’s relative production technology

β has a negative effect on b∗1, b
∗
2 and p∗ if r > r|x=0. It has no effect on b∗1, b

∗
2 and p∗ if

r < r|x=0.

An increase in player 1’s relative production technology β raises his opportunity costs of

military spending, which corresponds to his foregone production, relative to the winner’s

9As shown in the proof of Proposition 1, the net effect is positive unless player 1’s comparative advantage
in warfare τ is sufficiently large. The reason is that he is winning with high probability anyway if τ is large,
such that he optimally reduces military spending in response to a further increase in α and τ .
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prize, which corresponds to player 2’s production. Player 1 therefore optimally reduces his

military spending b∗1 in response to an increase in β. Further, such an increase leads to

proportional changes in player 2’s cost and benefit of increasing military spending, such that

her best response to player 1’s military spending remains unchanged. Due to the reduction of

b∗1, player 2 however reduces her military spending b∗2 in equilibrium. But as her reduction in

military spending is less pronounced, she becomes more likely to win, and player 1’s winning

probability p∗ decreases. Hence, whenever a player gets more productive, he becomes less

likely to win the war.

As discussed in Section 3.3, a player whose production technology improves becomes less

likely to win a symmetric war. As just seen, this prominent result from the standard model

also holds in asymmetric wars. The underlying mechanism is however different. Figure 1

illustrates this difference.

Figure 1 around here

In the symmetric case, the player who gets relatively more productive reduces military spend-

ing while the opponent increases military spending. But in the asymmetric case, any change

in production technologies has the same qualitative effects on both players’ military spend-

ing. If player 1, i.e., the attacking country or the central government, gets relatively more

productive, both players reduce their military spending. But if player 2, i.e., the defending

country or the secessionist group, gets relatively more productive both players increase their

military spending. The same result with respect to the players’ winning probabilities arises

because player 2’s behavioral response to changes in the relative production technology is

less pronounced than player 1’s response.

Proposition 2 further shows that production technologies have no effect on equilibrium

behavior if player 1 does not produce anyway. At first, it may seem surprising that player 2

does not respond to changes in the production technologies β1 and β2 in this case. However,

a change in β1 is inconsequential to her because she does not get any of player 1’s production

anyway, and a change in β2 does not affect her behavior because it leads to proportional
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changes in her cost and her benefit of increasing military spending.

We finally look how resource endowments affect military spending and winning probabil-

ities:

Proposition 3 Suppose x = 0. Then, if r > r|x=0, an increase in player 1’s resource endow-

ment r1 has no effect on b∗1, b
∗
2 and p∗, while an increase in player 2’s resource endowment

r2 proportionally increases b∗1 and b∗2, thus having no effect on p∗. If r < r|x=0, an increase

in r1 has a positive effect on b∗1, b
∗
2 and p∗, while an increase in r2 has no effect on b∗1, but a

positive effect on b∗2 and a negative effect on p∗.

The equilibrium behavior of both players depends on player 2’s resource endowment r2, but

not on player 1’s resource endowment r1 as long as none of the players is resource constrained.

Looking at (6) and (8) suggests that the players do not respond to a change in r1 because

such a change affects neither their benefits, nor their costs of increasing military spending

when x = 0. An increase in r2 however increases both players’ benefits of increasing military

spending, without affecting their costs. Hence, they respond by increasing b∗1 and b∗2. More

intuitively, when player 2 gets additional resources, she finds it optimal to increase both

production and military spending. The increase in her production in turn motivates player 1

to increase his military spending as well. The increases in b∗1 and b∗2 are proportional to one

another, so that the winning probability p∗ does not change.

Obviously, player 1’s military spending b∗1 depends exclusively on his own resources r1

if he is resource constrained. In this case, player 2 also increases military spending b∗2 in

response to an increase in r1 (and the associated increase in b∗1), but less than player 1 does.

Player 1 becomes therefore more likely to win the war.

3.5 Comparison of asymmetric and symmetric wars

We now compare the players’ equilibrium behavior and the equilibrium outcome between

wars of conquest and independence with their asymmetric payoff structure (x = 0), and wars

with a standard symmetric payoff structure (x = 1).
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Observe that r|x=0 < r|x=1 < r|x=1. It therefore follows from Corollaries 1 and 2 that

the players’ military spending and, consequently, their winning probabilities are the same in

asymmetric and symmetric wars if r < r|x=0, i.e., if player 1 allocates all his resources to

warfare in both types of war.

In the remainder of this section we restrict our attention to the more interesting case in

which r > r|x=0. We first compare the players’ military spending b∗1 and b∗2:

Proposition 4 Given r > r|x=0, b∗1 and b∗2 are both lower in asymmetric wars (x = 0) than

in symmetric wars (x = 1) for all values of α, β, r1 and r2.

Hence, attacking and defending countries in wars of conquest, and central governments and

secessionist groups in wars of independence all allocate less resources to warfare than they

would in symmetric wars characterized by the same resource endowments and the same rela-

tive production and military technologies. The attacking countries and central governments

are aware that they can keep their own production anyway, which raises their cost of increas-

ing military spending. Moreover, their benefit of increasing military spending decreases as

the prize is only composed of the opponent’s production rather than aggregate production.

Similarly, the defending countries and secessionist groups are also aware that they cannot

possibly grab any production from their opponent, which lowers their benefit of increasing

military spending as well.

It directly follows from Propositions 4 that wars of conquest and independence involve

lower aggregate military spending (b∗1 + b∗2) than symmetric wars. Moreover, it follows:

Corollary 3 Given r > r|x=0, aggregate production [β1(r1 − b∗1) + β2(r2 − b∗2)] is higher in

asymmetric wars (x = 0) than in symmetric wars (x = 1) for all values of α, β, r1 and r2.

Hence, all else equal, wars of conquest and independence cause lower losses of production

than symmetric wars.

We next compare the players’ winning probabilities:
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Proposition 5 Given r > r|x=0, player 1’s probability of winning p∗ is lower in asymmetric

wars (x = 0) than in symmetric wars (x = 1) for all values of α, β, r1 and r2.

Hence, attacking countries in wars of conquest and central governments in wars of indepen-

dence are less likely to win than they would be in symmetric wars characterized by the same

resource endowments and the same relative production and military technologies. The op-

posite must obviously be true for defending countries and secessionist groups. Mechanically,

the reason must be that the difference in military spending between wars with symmetric and

asymmetric payoff structures is more pronounced for player 1 than for player 2. The reason

for this difference in differences is that while both players have lower benefits of increasing

military spending in asymmetric wars than in symmetric wars, player 1 has also much higher

costs of increasing military spending in asymmetric wars in which he can keep his entire

production.

We finally compare the players’ expected utility. Both players are indifferent between the

two types of war if player 1’s resource endowment is so poor that he allocates all his resources

to warfare in any type of war, i.e., if r < r|x=0. In this case the winner’s prize is anyway just

player 2’s production. We now focus on the more interesting case in which r > r|x=0. For

that purpose we define ρ ≡ 1
β

(
2
√
τ+1√
4τ+1
− 1
)

. Observe that ρ ∈ (r|x=0, r|x=1).

Proposition 6 Given r > r|x=0, player 1 prefers asymmetric wars (x = 0) over symmetric

wars (x = 1); and player 2 prefers symmetric wars if r > ρ, and asymmetric wars if r < ρ.

From player 1’s perspective there are two aspects that make asymmetric wars more attractive

than symmetric wars. First, when loosing, he can still keep his own production in asymmetric

wars, but not in symmetric wars. Second, when winning, his payoff is aggregate production

in both types of wars, but aggregate production is higher in asymmetric wars (see Corollary

3). Player 1 is thus unambiguously better off in asymmetric wars.

From player 2’s perspective there is a trade-off: Asymmetric wars have the advantage that

she wins with higher probability despite allocating fewer resources to warfare. Symmetric
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wars have the advantage that she gets not only her own, but also the opponent’s production

when winning. This advantage of symmetric wars is increasing in player 1’s relative resource

endowment r. Therefore, player 2 is better off in symmetric wars if r is relatively high, and

in asymmetric wars if r is relatively low.

In our model and in many real-world examples, the players or parties cannot choose what

type of war they fight. However, Proposition 6 can shed some light on the type of war

that parties might choose if they had a choice. We have two situations in mind. First, in

the context of interstate wars, suppose a country could commit never to counter-attack an

attacking country, not even after having successfully defeated it. Such a commitment might

be possible by signing multilateral treaties, or by holding weapons that serve only defensive

purposes. Proposition 6 predicts that the country would want to commit if and only if it

were relatively well-endowed with factors of production. In this case, the benefit of having a

less intensive conflict and a higher winning probability would outweigh the cost of forgoing

the chance of winning the opponent’s production.

Second, in the context of civil wars, an ethnic group that is currently out of power and

lives in a border area might have the choice between fighting for independence or fighting

for power over the entire country. Our model predicts that this ethnic group would choose

to fight for independence if it were relatively well-endowed with factors of production, and

for central government power otherwise. The reason is again that the benefit of fighting for

independence would be much larger if its own production tended to be substantial compared

to the opponent’s production.

Conclusions

Wars of conquest were common, and wars of independence are still common. These wars are

however not well understood. The standard model of warfare has a symmetric payoff struc-

ture, while wars of conquest and independence have an important asymmetry in the payoff
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structure: The production of one party constitutes the winner’s prize, while the production

of the other party is not contested. In this paper, we have presented the first model of war-

fare that incorporates this crucial asymmetry in the payoff structure of wars of conquest and

independence. We have used this model to study the determinants of equilibrium behavior

and outcomes in such asymmetric wars, and to compare equilibrium behavior and outcomes

between symmetric and asymmetric wars.

We find that the winning probability of the attacking country in wars of conquest (or the

central government in wars of independence) increases in its relative military technology, but

decreases in its relative production technology. These comparative static results are similar

as in symmetric wars, but the underlying mechanisms differ. In particular, both countries

increase their military spending if the attacking country becomes more productive, but re-

duce their military spending if the defending country becomes more productive. Another

important finding is that both parties choose lower military spending in asymmetric wars

than in symmetric wars. This difference is larger for the party that would be the attacking

country (or the central government) in an asymmetric war. This party is thus less likely to

win an asymmetric war than it would be to win a symmetric war. This result may explain

why supposedly relatively weak defending countries and secessionist groups often win against

larger and stronger opponents.

We hope that this first theoretical model of wars of conquest and independence will

encourage further research that helps to improve our understanding of these wars.
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Appendix: Proofs

Proof of Theorem 1: We prove parts 1-3 separately.

Part 1: We look for an interior solution (b∗1, b
∗
2) that simultaneously solves (7) and (9).

Adding (9) to (7) and rearranging yields

(
1 +

1

τ

)
(αb∗1 + b∗2)

2 +
(x
τ
− 1
)

(αb∗1 + b∗2)(αb
∗
1 − b∗2)− (xβr1 + r2)(αb

∗
1 + b∗2) = 0. (18)

We can divide this equation by αb∗1 + b∗2 > 0 to obtain

(
1 +

1

τ

)
(αb∗1 + b∗2) +

(x
τ
− 1
)

(αb∗1 − b∗2)− (xβr1 + r2) = 0. (19)

Solving this equation for b∗2 yields

b∗2 =
(xβr1 + r2)τ

2τ + 1− x
− 1 + x

2τ + 1− x
(αb∗1) . (20)

Substituting this equation into (9) yields

[
αb∗1 +

(xβr1 + r2)τ

2τ + 1− x
− 1 + x

2τ + 1− x
(αb∗1)

]2
+
(x
τ
− 1
)

(αb∗1)
2 − (xβr1 + r2)αb

∗
1 = 0, (21)

which can be simplified as a quadratic equation of the form

(x
τ
− 1
)

(αb∗1)
2 − (xβr1 + r2) (αb∗1) +

[τ(xβr1 + r2)]
2

(1− x)2 + 4τ
= 0, (22)

with discriminant

∆ = (xβr1 + r2)
2 − 4

(x
τ
− 1
) [τ(xβr1 + r2)]

2

(1− x)2 + 4τ
= (xβr1 + r2)

2Ω > 0, (23)

where

Ω =
[β(1− x) + 2α]2

β2(1− x)2 + 4αβ
. (24)
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Thus, equation (22) has two roots of the form

αb∗1 =
xβr1 + r2

2
(
x
τ
− 1
) (1∓

√
Ω
)
. (25)

Note that (25) is defined only if x 6= τ . If x < τ , then the denominator in the first multiplicand

in (25) is negative and
√

Ω > 1, such that there is a unique positive root:

αb∗1 =
xβr1 + r2

2
(
x
τ
− 1
) (1−

√
Ω
)
. (26)

If x > τ , then the denominator in the first multiplicand in (25) is positive and
√

Ω < 1,

such that there is an unique feasible positive root, which is again of the form (26). (The

other candidate root is not feasible as it would imply b∗2 < 0.) The equilibrium strategy (12)

follows from (26) and the definition of Ω. Moreover, substituting (12) into (20) yields player

2’s equilibrium strategy (13).

Now consider the case when x = τ . In this case, (19) reduces to

1 + τ

τ
(αb∗1 + b∗2)− (αr1 + r2) = 0 (27)

and yields

b∗2 =
(αr1 + r2)τ

1 + τ
− αb∗1. (28)

Substituting it into (9) and solving for b∗1 gives player 1’s equilibrium strategy (14). Substi-

tuting the latter back into (28) yields player 2’s equilibrium strategy (15).

It remains to show that the equilibrium is characterized by (12) and (13) if and only if

r ∈ (r, r) when x 6= τ ; and by (14) and (15) if and only if r ∈ (limx→τ r, limx→τ r) when

x = τ .

Consider first the case when x 6= τ . Using (12) the necessary condition b∗1 < r1 can be
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written as
xβ + r2

r1

2β(x− τ)

[
1− 2τ + 1− x√

4τ + (1− x)2

]
< 1. (29)

Given that (x − τ) and

[
1− 2τ+1−x√

4τ+(1−x)2

]
must have the same signs, we can rewrite this

inequality as

r2
r1
< β

 2(x− τ)

1− 2τ+1−x√
4τ+(1−x)2

− x

 . (30)

Because the term in the square brackets is positive for all τ > 0 and x ∈ [0, 1], this inequality

is equivalent to r > r.

Similarly, using (13) the necessary condition b∗2 < r2 can be written as

xβr + 1
2
τ
(x− τ)

[
1 + x√

4τ + (1− x)2
− 1

]
< 1. (31)

Note again that (x− τ) and

[
1+x√

4τ+(1−x)2
− 1

]
have the same signs, such that this inequality

can be rewritten as r < r. Thus, when x 6= τ , conditions b∗1 < r1 and b∗2 < r2 are jointly

satisfied if and only if r ∈ (r, r).

Consider now the case when x = τ : It follows from (14) and (15) that conditions b∗1 < r1

and b∗2 < r2 are jointly satisfied if α
(α+β)2

(αr1+r2) < r1 and αβ
(α+β)2

(αr1+r2) < r2. Rearranging

each inequality and bringing them together yields the condition r ∈ (limx→τ r, limx→τ r).

Part 2: Consider first the case when x 6= τ : Suppose that b∗1 = r1. Then (8) implies

∂ũ2
∂b2

(r1, b2) =
αr1

(αr1 + b2)2
(r2 − b2)−

b2
αr1 + b2

= 0

when

b2 = −αr1 +
√
αr1(r2 + αr1) < r2.

So, b∗2 given by (16) is best response to b∗1 = r1.

Now, suppose that b∗2 is given by (16). Then it follows from ∂2ũ1(b1,b2)

∂b21
< 0 that b∗1 = r1 is
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best response if and only if ∂ũ1
∂b1

(r1, b
∗
2) > 0. Using (6), ∂ũ1

∂b1
(r1, b

∗
2) > 0 can be rewritten as

−β(1−x)−βx

[
αr1√

αr1(αr1 + r2)

]
+

[√
αr1(αr1 + r2)− αr1

]{
r2 −

[√
αr1(αr1 + r2)− αr1

]}
r1(αr1 + r2)

> 0,

(32)

which can be simplified to

(2x− 4τ − 1)τ(βr)2 +
[
2xτ − 4τ − (1− x)2

]
(βr) + τ > 0. (33)

This latter condition can be shown to hold whenever r < r. The proof for the case when

x = τ follows along similar lines.

Part 3: Consider the case when x 6= τ . Suppose that b∗2 = r2. Then, (6) implies

∂ũ1
∂b1

(b1, r2) = −β(1− x)− βx
(

αb1
αb1 + r2

)
+

αr2
(αb1 + r2)2

xβ(r1 − b1) = 0

when

b1 =
1

α

[√
xr2(αr1 + r2)− r2

]
< r1

So, b∗1 given by (17) is best response to b∗2 = r2.

Now, suppose that b∗1 is given by (17). Then it follows from ∂2ũ2(b1,b2)

∂b22
< 0 that b∗2 = r2 is

best response if and only if ∂ũ2
∂b2

(b1, r2) > 0. Using (8), ∂ũ2
∂b2

(b1, r2) > 0 can be rewritten as

[√
xr2(αr1 + r2)− r2

]
xβ

{
r1 −

1

α

[√
xr2(αr1 + r2)− r2

]}
− r2

√
xr2(αr1 + r2) > 0, (34)

which can be simplified to

(βr)2xτ − (βr)
(
2τ + (1− x)2

)
+
τ

x
− 1

τ
(1− x)2 − 4 > 0. (35)

This latter condition can be shown to hold whenever r > r. The proof for the case when

x = τ follows along similar lines. �
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Proof of Proposition 1: Suppose condition r > r|x=0 holds. The partial derivatives with

respect to α are
∂b∗1
∂α

= r2
2α2 (4τ + 1)−

3
2

[
(4τ + 1)

3
2 − (4τ 2 + 6τ + 1)

]
, which is positive if and

only if τ . 1.2071;
∂b∗2
∂α

= r2

β(4τ+1)
3
2

, which is positive; and ∂p∗

∂α
= 1

α
2τ+1−

√
4τ+1

2τ
√
4τ+1

, which is

positive.

Suppose condition r < r|x=0 holds. The partial derivatives with respect to α are
∂b∗1
∂α

= 0;

∂b∗2
∂α

= r1√
1+ 1

αr

(
1−

√
1 + 1

αr
+ 1

2αr

)
, which is positive since the term in the parenthesis is

decreasing in αr and converges to zero as αr goes to infinity; and ∂p∗

∂α
= 1

2α2r(1+ 1
αr )

3/2 , which

is positive. �

Proof of Proposition 2: Suppose condition r > r|x=0 holds. The partial derivatives with

respect to β are
∂b∗1
∂β

= − 2τr2

β2(4τ+1)
3
2

, which is negative;
∂b∗2
∂β

= − τr2

β(4τ+1)
3
2

, which is negative; and

∂p∗

∂β
= −2τ+1−

√
4τ+1

2α
√
4τ+1

, which is negative.

Suppose condition r < r|x=0 holds. Since b∗1, b
∗
2 and p∗ are all independent of β, the result

immediately follows. �

Proof of Proposition 3: Suppose condition r > r|x=0 holds. Since b∗1, b
∗
2 and p∗ are all

independent of r1, an increase in r1 has no effect on them. Since p∗ is also independent of

r2, an increase in r2 has no effect on p∗. Moreover, b∗1 and b∗2 are linearly increasing in r2.

Suppose condition r < r|x=0 holds. Since b∗1 = r1, it is obvious that b∗1 increases in r1

and is not affected by changes in r2. The partial derivatives of b∗2 with respect to r1 and r2

are
∂b∗2
∂r1

= α√
1
αr

+1

(
1

2αr
+ 1−

√
1
αr

+ 1
)

, which is positive since the term in the parenthesis

is decreasing in αr and converges to zero as αr goes to infinity; and
∂b∗2
∂r2

= 1

2
√

1
αr

+1
> 0,

respectively. Finally, p∗ = 1√
1+ 1

αr

increases in r. Hence, p∗ is increasing in r1 and decreasing

in r2. �

Proof of Proposition 4: Observe that r|x=0 < r|x=1 < r|x=1. This inequality and Corollar-

ies 1 and 2 allow splitting the parameter space into three different ranges satisfying r > r|x=0.

We show that b∗1 is no larger when x = 0 than when x = 1 in any of these three ranges.

First, suppose r ∈ (r|x=0, r|x=1, ). Then it follows from Corollaries 1 and 2 that b∗1 = r1
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when x = 1, but b∗1 < r1 when x = 0. Moreover, it follows from Corollaries 1 and 2 that b∗2

is smaller when x = 0 than when x = 1 if and only if

1− 1√
4τ + 1

< 2αr

(√
1 +

1

αr
− 1

)
. (36)

The left-hand side is independent of r. The right-hand side is increasing in r, such that its

lowest value within the feasible range is attained at r = r|x=0 = 1
2α

(
2τ+1√
4τ+1
− 1
)

. This value

is 1− 1√
4τ+1

. Hence b∗2 is indeed smaller when x = 0 than when x = 1 if r ∈ (r|x=0, r|x=1).

Second, suppose r ∈ (r|x=1, r|x=1). Then it follows from Corollaries 1 and 2 that b∗1 is

smaller when x = 0 than when x = 1 if and only if

r2

(
2τ + 1√
4τ + 1

− 1

)
< (βr1 + r2)

τ√
τ + 1

⇔ r >
1

β

[(
2τ + 1√
4τ + 1

− 1

)(√
τ + 1

τ

)
− 1

]
. (37)

Since the smallest possible value of r in this range is r|x=1 = 1

β(2
√
τ+1)

, we need to show that

1

β (2
√
τ + 1)

>
1

β

[(
2τ + 1√
4τ + 1

− 1

)(√
τ + 1

τ

)
− 1

]
⇔ −4τ

(
4τ + 2

√
τ + 4τ

3
2 + 1

)
< 0,

(38)

which holds for all τ > 0. Moreover, it follows from Corollaries 1 and 2 that b∗2 is smaller

when x = 0 than when x = 1 if and only if

r2

(
1− 1√

4τ + 1

)
< (βr1 + r2)

√
τ√

τ + 1
⇔ r >

1

β

[(
1− 1√

4τ + 1

) √
τ + 1√
τ
− 1

]
. (39)

Since the smallest possible value of r in this range is r|x=1 = 1

β(2
√
τ+1)

, we need to show that

1

β (2
√
τ + 1)

>
1

β

[(
1− 1√

4τ + 1

) √
τ + 1√
τ
− 1

]
⇔ 2
√
τ −
√

4τ + 1 + 1 > 0, (40)

which holds for all τ > 0. (To see this note that the left-hand side is increasing in τ .)

Finally, suppose r > r|x=1. Then it follows from Corollaries 1 and 2 that b∗1 is smaller
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when x = 0 than when x = 1 if and only if

1

2

(
2τ + 1√
4τ + 1

− 1

)
<
√
αr + 1− 1⇔ r >

1

α

[(
2τ + 1 +

√
4τ + 1

2
√

4τ + 1

)2

− 1

]
(41)

Since the smallest possible value of r in this range is r|x=1 = 1
β

(
2√
τ

+ 1
)

, we need to show

that

1

β

(
2√
τ

+ 1

)
>

1

α

[(
2τ + 1 +

√
4τ + 1

2
√

4τ + 1

)2

− 1

]
⇔ − 1

8τ + 2

(
6τ −

√
4τ + 1 + 6τ 2 + 4

√
τ + 16τ

3
2 − 2τ

√
4τ + 1 + 1

)
< 0,

which holds for all τ > 0. Moreover, it follows from Corollaries 1 and 2 that b∗2 = r2 when

x = 1, but b∗2 < r2 when x = 0. �

Proof of Proposition 5: We proceed as in the proofs of Propositions 4, and show that p∗

is no larger when x = 0 than when x = 1 in any of the three ranges of the parameter space

satisfying r > r|x=0.

First, suppose r ∈ (r|x=0, r|x=1). Then it follows from Corollaries 1 and 2 that p∗ is

smaller when x = 0 than when x = 1 if and only if

1−
√

4τ + 1− 1

2τ
<

1√
1 + 1

αr

⇔ r >
1

2α

(
2τ + 1√
4τ + 1

− 1

)
= r|x=0, (42)

which holds by assumption if r ∈ (r|x=0, r|x=1).

Second, suppose r ∈ (r|x=1, r|x=1). Then it follows from Corollaries 1 and 2 that p∗ is

smaller when x = 0 than when x = 1 if and only if

1−
√

4τ + 1− 1

2τ
<

√
τ√

τ + 1
⇔ 2τ + 1 <

(√
τ + 1

)√
4τ + 1−

√
τ , (43)

which is true for any τ > 0.
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Finally, suppose r > r|x=1. Then it follows from Corollaries 1 and 2 that p∗ is smaller

when x = 0 than when x = 1 if and only if

1−
√

4τ + 1− 1

2τ
< 1− 1√

αr + 1
⇔ r >

1

α

[
4τ 2(√

4τ + 1− 1
)2 − 1

]
, (44)

which is true whenever r > 1
β

(
2√
τ

+ 1
)

= r|x=1. �

Proof of Proposition 6: We start by stating the players’ equilibrium expected payoffs

given x = 0 and x = 1. First, suppose that x = 0, then their equilibrium expected payoffs

are given by

ũ1 (b∗1, b
∗
2)|x=0 =

 βr1 + r2
2

(
1
τ

+ 1− 3+ 1
τ√

4τ+1

)
if r > r|x=0

αr1

(√
1 + 1

αr
− 1
)

if r < r|x=0

ũ2 (b∗1, b
∗
2)|x=0 =


r2√
4τ+1

if r > r|x=0

r2 − 2αr1

(√
1 + 1

αr
− 1
)

if r < r|x=0

Second, suppose that x = 1, then their equilibrium expected payoffs are given by

ũ1 (b∗1, b
∗
2)|x=1 =


r2
τ

(√
αr + 1− 1

)2
if r > r̄|x=1

√
τ√
τ+1

βr1+r2
2

if r ∈ (r|x=1 , r̄|x=1)

αr1

(√
1 + 1

αr
− 1
)

if r < r|x=1

ũ2 (b∗1, b
∗
2)|x=1 =


r2
τ

(√
αr + 1− 1

)
if r > r̄|x=1

1√
τ+1

βr1+r2
2

if r ∈ (r|x=1 , r̄|x=1)

r2 − 2αr1

(√
1 + 1

αr
− 1
)

if r < r|x=1

We now focus on player 1 and show that ũ1 (b∗1, b
∗
2) |x=0 > ũ1 (b∗1, b

∗
2) |x=1 holds in any of

the three ranges of the parameter space satisfying r > r|x=0. First, suppose r ∈ (r|x=0, r|x=1).
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In this case, ũ1 (b∗1, b
∗
2) |x=0 > ũ1 (b∗1, b

∗
2) |x=1 can be rewritten as

αr

[
1− τ

(√
1 +

1

αr
− 1

)]
+

1

2

(
1 + τ − 3τ + 1√

4τ + 1

)
> 0. (45)

This inequality holds for all r ∈ (r|x=0, r|x=1) because its left-hand side is increasing in αr

and

lim
r→r|x=0

αr

[
1− τ

(√
1 +

1

αr
− 1

)]
= −1

2

(
1 + τ − 3τ + 1√

4τ + 1

)
. (46)

Second, suppose r ∈ (r|x=1, r|x=1), which implies τ
2
√
τ+1

< αr < τ
(

2√
τ

+ 1
)

. In this case,

ũ1 (b∗1, b
∗
2) |x=0 > ũ1 (b∗1, b

∗
2) |x=1 can be rewritten as

αr >

(
τ
√
τ√

τ+1
+ 3τ+1√

4τ+1
− (1 + τ)

)
(√

τ+2√
τ+1

) . (47)

The smallest value of αr in the feasible range is τ
2
√
τ+1

. So, the above inequality holds in the

feasible range if

τ

2
√
τ + 1

>

(
τ
√
τ√

τ+1
+ 3τ+1√

4τ+1
− (1 + τ)

)
(√

τ+2√
τ+1

) . (48)

This latter inequality can be shown to be equivalent to 4τ + 16τ 2 + 4τ
3
2 + 12τ

5
2 > 0, which

is always true.

Third, suppose r > r|x=1, which implies αr > τ
(

2√
τ

+ 1
)

. In this case, ũ1 (b∗1, b
∗
2) |x=0 >

ũ1 (b∗1, b
∗
2) |x=1 can be rewritten as

1 + τ − 3τ + 1√
4τ + 1

> 4
(

1−
√
αr + 1

)
. (49)

The right-hand side of the above inequality is decreasing in αr. Hence, it is enough to show

that the inequality holds for αr = τ
(

2√
τ

+ 1
)

. Inserting αr = τ
(

2√
τ

+ 1
)

allows rewriting

the above inequality as

1 + τ − 3τ + 1√
4τ + 1

> −4
√
τ . (50)
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This inequality always holds since the left-hand side is positive and the right-hand side

negative for τ > 0.

We now turn to player 2. We again look separately at the three ranges of the parameter

space satisfying r > r|x=0. First, suppose r ∈ (r|x=0, r|x=1). In this case, ũ2 (b∗1, b
∗
2) |x=0 >

ũ2 (b∗1, b
∗
2) |x=1 can be rewritten as

1√
4τ + 1

> 1− 2αr

(√
1 +

1

αr
− 1

)
. (51)

Note that the right-hand side is decreasing in αr, and that the right-hand side converges

to left-hand side as r converges to r|x=0. Hence, this inequality holds in the feasible range.

Therefore, player 2 prefers asymmetric warfare over symmetric warfare whenever r ∈ (r|x=0, r|x=1).

Second, suppose r ∈ (r|x=1, r|x=1). In this case, ũ2 (b∗1, b
∗
2) |x=0 > ũ2 (b∗1, b

∗
2) |x=1 can be

rewritten as r < ρ. Therefore, player 2 prefers asymmetric warfare over symmetric warfare

whenever r ∈ (r|x=1, ρ), and symmetric warfare over asymmetric warfare whenever r ∈

(ρ, r|x=1).

Finally, suppose r > r|x=1, which implies αr > τ
(

2√
τ

+ 1
)

. In this case, ũ2 (b∗1, b
∗
2) |x=0 <

ũ2 (b∗1, b
∗
2) |x=1 can be rewritten as

αr >

(
τ√

4τ + 1
+ 1

)2

− 1. (52)

This inequality holds in the feasible range because

τ

(
2√
τ

+ 1

)
>

(
τ√

4τ + 1
+ 1

)2

− 1 (53)

reduces to τ
(

29τ + 54τ 2 + 9τ 3 + 4
√
τ + 28τ

3
2 + 48τ

5
2 + 4

)
> 0, which is always true. There-

fore, player 2 prefers symmetric warfare over asymmetric warfare whenever r > r|x=1. �
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Figure 1: Equilibrium strategies for different values of β in symmetric wars (x = 1, left panel)
and asymmetric wars (x = 0, right panel) given α = 1 and r = 1
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