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Abstract 

Although the environmental impact of trade has been a long-standing concern, there is still 

only scant evidence on the channels through which international market access affects 

pollution. In this paper, we exploit the unique episode of China's world market integration in 

the early 2000s to provide direct empirical evidence on three such mechanisms. We combine 

granular satellite data on air pollution with detailed information on manufacturing firms and 

coal power plants, and leverage exogenous foreign demand shocks for identification. Three 

main findings emerge: exporting firms reduce local pollution (scope-1); pollution levels around 

coal power plants rise due to regional export shocks (scope-2); and upstream suppliers reduce 

pollution in the face of export demand shocks to downstream firms (scope-3). Our findings 

point to China's reliance on coal power plants to fuel its export-driven growth as one of the 

main drivers of the rise in pollution. 
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1 Introduction

A longstanding question in economics concerns whether trade helps or hurts the environment.1 This is

particularly relevant for developing countries that hope for export-led growth, but fear the environmental

and ensuing public health costs. The right policies to accompany a push for openness depend on the

precise underlying mechanisms of how international market access affects pollution: Do firms change

their direct net emissions when serving the world market? Do they cause additional pollution due

to their rising demand for energy generation? How do suppliers and customers of exporters in the

domestic production network respond? Direct evidence on these channels—in jargon scope-1, 2, and

3 pollution—remains incomplete, limiting the ability to guide policymaking.

To make progress, in this paper we examine one of the most important episodes of trade expansion

in recent times, China’s world market integration between 2000 and 2007. China’s world market

integration implied export growth in the order of 15% per year and a multifold expansion of absolute

Chinese exports and their share of world exports. There is no question that accessing international

markets led the Chinese economy to expand considerably (Jarreau and Poncet 2012; Brandt and Lim

2024).

At the same time, pollution became one of the most prominent issues for the country’s residents

(Tang 2005; Yao et al. 2022). We combine granular satellite data with detailed firm and power

plant information to (re-)examine the relationship between exporting and air pollution. Employing

a shift-share identification approach inspired by Mayer et al. (2021), we start at the regional level and

confirm that the export demand shock led to higher concentrations of several pollutants, including fine

particulate matter (PM2.5). Next, we zoom in on individual plants of firms and find that export activity

reduces the PM2.5 load, so that scope-1 emissions appear to react in a desirable way. To investigate

how this local effect can be reconciled with the regional estimates, we turn to scope-2 pollution and

document that air pollution around coal power plants increases significantly when manufacturers in the

region scale up their exports. Finally, we use information from input-output tables to identify a firm’s

potential suppliers in the same region, which allows us to study the effect on pollution through scope-

3 emissions. We find that downstream export demand shocks also reduce local PM2.5 concentrations

upstream. Hence, our analyses attribute the large increase in pollution following trade expansion as

measured at the regional level to the way this expansion was powered. By relying heavily on coal

power plants for electricity generation (more than 80%, Yang 2006), China’s export-driven growth

was in fact coal-powered growth.

In addressing our research question, we face two main challenges. First, we require universal,

highly granular and objective information on air pollution. We therefore rely on satellite data, and

primarily on PM2.5 concentration measurements within 1km × 1km grid cells. This approach has

several advantages compared to the firm survey data often used in the previous literature. First, we
1E.g., Grossman and Krueger (1991), Copeland and Taylor (1994), Antweiler et al. (2001), Levinson (2009), Taylor

(2011), Shapiro and Walker (2018), and Shapiro (2021).
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can measure air pollution anywhere in China, allowing us to observe changes in pollution for a large

sample of firms potentially affected by export shocks, direct and indirect, and to track down pollution

around coal power plants. Second, satellite data on PM2.5 is available at a very high spatial resolution,

which reduces measurement error when we match with firm addresses and power plant coordinates.

Third, we do not depend on pollution records from monitoring stations or firm surveys in China, which

have been widely questioned, especially in the early 2000s (Ghanem and Zhang 2014; Stoerk 2016).2

Our second main challenge stems from tracing the causal effect of exporting and avoiding bias

from other correlated events and activities. Our identification strategy relies on a shift-share instrumental

variables approach. In the spirit of Mayer et al. (2021), we first construct proxies for foreign demand

shocks at the country × product × year level as imports by those countries from all origins except

China. These ‘shifts’ are numerous and assumed to be exogenous and quasi-randomly assigned.

Throughout the paper, we provide supportive empirical evidence in line with the best practices outlined

for shift-share instruments in Borusyak et al. (2025). Next, we assign these shocks to units of

observation, such as prefectures or firms, by means of their initial destination-product-level value

shares.3 Supported by the fixed effects we introduce throughout our regression analyses, we rely

on changes in the demand for Chinese products after its accession to the World Trade Organization

(WTO) for identification.

We implement our empirical strategy leveraging the rich data that we could access to address

our research question. In addition to information on air pollution, our analysis use data from several

additional sources. The main data on firms come from the Chinese Annual Survey of Manufacturing

Firms (ASIF), which is exhaustive for manufacturing companies above a low size threshold in terms

of revenue. This survey provides information on exports and a host of firm characteristics, such as

addresses, balance sheets, income and loss statements etc. Moreover, we employ Chinese customs

data, which provide us with the population of international trade transactions at the firm-product-

country-year level, in addition to aggregate trade data. To investigate electricity generation, we use

Global Energy Monitor data, which contain the exact location and fuel types of all power plants, and

to study scope-3 pollution along the supply chain, we use official input-output tables.

The first step in our analysis is to confirm that exporting increased pollution in China at the regional

level, as documented by Bombardini and Li (2020), who rely on tariff variation for identification

purposes. Despite the different identification strategy, we find that larger exports at the prefecture level

over time led to significantly higher concentration of PM2.5. Our estimates imply sizable magnitudes,

with an inter-quartile effect of around 3 percent. Our findings at the regional level are also consistent

with the concurrent study by Gong et al. (2023), which provides evidence on the nexus between
2Even if pollution monitors were reliable, as the comparison with the recordings from the few monitoring stations run by

the U.S. Embassy may suggest (Bombardini and Li 2020), sparseness and strategic siting may still be an issue (Meng and
Kc 2025), which has also been shown to affect other countries such as the United States (Grainger and Schreiber 2019).

3The main Chinese administrative units in descending order or size are provinces, prefectures, and counties. During our
sample period, mainland China was divided into 22 provinces (average population of 40 million) with about 330 prefectures
(4 million) and 2,860 counties (450,000).
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pollution and mortality using satellite data and sustained trade-induced changes in economic activity.

Next, we zoom in on individual plants and document that the PM2.5 concentration in their immediate

vicinities falls when the firm becomes an exporter or increases its international shipments. The

decline is statistically significant, and the magnitude of the effect is highly skewed due to the skewed

distribution of firm-level exports: While the inter-quartile effect implies a modest reduction of 0.3

percent, a firm at the 99th percentile experiences 3.4 percent lower ambient air pollution than a firm

at the median. This finding regarding scope-1 pollution is highly robust to a battery of alternative

specifications. First, we present evidence that the exclusion restriction for our instrumental variables

approach is not violated due to offshoring, other firm characteristics like state-ownership, local weather

conditions or population movements from rural to urban areas. Second, we show that the finding holds

in a sample of single-plant firms and that the imbalance of the manufacturing firm panel over time—

China experienced significant growth in the number of firms over our time period—does not affect

it either. Third, the finding extends to pollution with NO2, albeit in a smaller sample due to data

availability. Finally, we run several other checks, such as focusing on exported quantities as opposed

to values, using alternative instruments to explore the identifying variation, and exploring exports to

countries at different levels of income per capita. Overall, our estimates are in line with Rodrigue et al.

(2024), for the particular case of China, as well as for instance Cherniwchan (2017), suggesting that

the technique effect dominates the scale effect at the exporter level.

Following this evidence on scope-1 air pollution, and noting that it is in stark contrast with the

regional findings, we extend our analysis to scope-2 pollution from electricity generation and scope-3

pollution from input-output linkages. We first relate PM2.5 concentrations around coal power plants

over time to total export volumes in the regional power grid where the power plant is located, once

again instrumenting with foreign demand shocks. Chinese electricity grids in the early 2000s were

still heavily fragmented, a feature that allows us to establish a tight connection between additional

electricity demand due to export demand and largely coal-based power supply. We find a significant

and economically large effect: Comparing the power grid with the largest increase in export demand

to the one with the lowest, the former is predicted to incur a 22 percent higher PM2.5 concentration

because of such differential in trade activity. We furthermore show that this effect is not driven by

nearby coal mines and more than triples for areas downwind of a coal power plant. Scope-2 pollution

therefore appears to play a central role in the polluting effect of international market access.

Finally, we study how scope-3 air pollution reacts to exporting. On the one hand, exporters may

have a detrimental regional effect if their additional demand for intermediate inputs causes a scale

effect at their supplier plants. On the other hand, their technique effects may spill over through

their supply relationships, thus reducing pollution. We make use of disaggregate input-output tables

from China in the beginning of our sample period and identify all potential suppliers of our target

firms as those that operate in one of the 10 most important upstream industries (measured by the

direct requirement) and in the same prefecture. Analogously, we can also identify sets of potential

customers. No matter whether we regress average upstream PM2.5 concentrations on a downstream
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firm’s individual export shock or a firm’s local PM2.5 concentration on its customer’s average export

shock, we find that exporting downstream reduces air pollution upstream. This pattern is fully robust

to expanding the potential sourcing area of firms, as infrastructure projects in China improved market

access over time. In sum, scope-3 emissions are likely to dampen the negative effects of market access

on overall pollution.

To our knowledge, this is the first study to shed light on the three focal mechanisms through

which market access affects air pollution. In doing so, it contributes to several (overlapping) strands

of research. First, it advances an established strand of research examining empirically the relationship

between trade and the environment (e.g. Grossman and Krueger 1991; Copeland and Taylor 1994;

Antweiler et al. 2001; Levinson 2009; Taylor 2011; Levinson 2015; Cherniwchan 2017; Forslid et al.

2018; Shapiro and Walker 2018; Gutiérrez and Teshima 2018; Banerjee et al. 2021; Barrows and

Ollivier 2021; Shapiro 2021, as well as the reviews of Copeland and Taylor 2004; Tamiotti 2009;

Cherniwchan et al. 2017). Second, we speak to a growing stream of work analyzing the implications

of the large shock that was represented by China’s accession to the WTO, domestically (e.g. Jarreau

and Poncet 2012; Bombardini and Li 2020; Rodrigue et al. 2022; Kwon et al. 2023; Gong et al. 2023;

Rodrigue et al. 2024) and globally (e.g. Autor et al. 2013; Acemoglu et al. 2016; Jia and Ku 2019;

Autor et al. 2020).

Third, we add to a set of studies assessing firms’ abatement decisions in a variety of contexts (e.g.

Barbera and McConnell 1990; Berman and Bui 2001; Morgenstern et al. 2001; Martin et al. 2014;

Cullen and Mansur 2017). In this paper, we provide a novel angle on the domestic impact of China’s

trade expansion, through changes in pollutants for firms exposed to trade shocks, but also across their

supply chains, including the provision of electricity. Fourth, with our detailed analysis by pollution

scopes, and in particular our findings concerning scope-2 pollution, we also contribute to literature

concerned with capturing indirect pollution when designing policy, in the trade realm or otherwise

(Elliott et al. 2010; Fischer and Fox 2012; Larch and Wanner 2017; Brander et al. 2018; Lyubich et al.

2018; Rocchi et al. 2018; Carattini et al. 2022; Fontagné and Schubert 2023; Köveker et al. 2025).

The remainder of the paper is organized as follows. Section 3 describes our empirical approach.

Section 4 presents our data. Section 5 introduces our empirical results. Section 5 shortly concludes.

2 Background

China’s accession to the WTO in 2001 marked a watershed moment in its integration with the global

economy. Falling trade costs, lower trade policy uncertainty, rising productivity, access to better

foreign inputs, and booming foreign demand, catalyzed an unprecedented surge in exports in China

(Handley and Limão 2017; Brandt and Lim 2024; Huang et al. 2024). Between 2000 and 2007,

average exports increased fivefold at the prefecture level, as shown by Figure 1a. This rapid export

expansion coincided with a significant rise in air pollution, as industrial activity intensified to meet

global demand. Average PM2.5 concentration in Chinese prefectures went up by more than 30% from
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below 40µg/m3 in 2000 to above 50µg/m3 in 2007. To put these numbers into context, in 2005

the World Health Organization recommended an annual average exposure of less than 10µg/m3 to

moderate the impact of particulate matter on health (World Health Organization 2021). China would

go on to become the world’s largest consumer of energy and coal by 2010 as well as the largest emitter

of CO2 and SO2 (Greenstone et al. 2021). The co-movement of export growth and pollution remains

strong even when we compare prefectures in the same province and controlling for trends in these

variables: as Figure 1b indicates, exports de-meaned by province and year are strongly and positively

correlated with de-meaned PM2.5 concentration.

Figure 1: Export and Pollution at the Prefecture Level

(a) Trends (b) Within-province and -year Correlation

Notes: Figure (a) displays PM2.5 concentration and total exports in million USD for the average and median prefectures
over time. Figure (b) shows a bin-scatter plot of average PM2.5 concentration within 30 quantile-bins along the (ln) export
distribution (variables were de-meaned by province and year).

China’s integration into global markets provides an ideal laboratory to examine the environmental

impact of international trade. At the same time, its unique situation creates significant obstacles for

obtaining precise pollution data. While China’s foundational environmental protection law passed in

1989 established a regulatory framework, its vague language granted local governments substantial

discretion when it came to enforcement (Ma and Ortolano 2000). Local officials, whose career

advancement depended on economic performance, prioritized growth over environmental protection,

often adopting lax regulatory standards (Jia 2024). This incentive structure also encouraged strategic

data manipulation: pollution measurements were routinely under-reported to central authorities and

to the public due to high verification costs and weak accountability mechanisms (Ghanem and Zhang

2014; Greenstone et al. 2022). Only after 2014—well outside our time frame of interest—China

started the “war on pollution" and implemented significant regulatory changes to tackle pollution,

including improved and centralized measurement (Greenstone et al. 2021, 2022).
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China’s environmental damages during the 2000s were closely tied to its coal-dominated energy

system. Coal-fired power plants accounted for 74% of generating capacity and 82.9% of electricity

output in 2003 (Yang 2006), and their share was largely unchanged at 80.3% in 2010 (Jia 2024).

Cleaner hydropower only accounted for 14.8% of electricity output in 2003 and increased modestly to

18.4% in 2010. Coal power plants, especially older, inefficient ones without state-of-the-art filtering

technology, are well known for their polluting potential (Weng et al. 2023).

A defining characteristic of China’s power infrastructure during this period was its highly fragmented

grid system. The main reason for the lack of development in the grid system was local protectionist

policies that constrained inter-provincial electricity trading (Pittman and Zhang 2008; Lin and Purra

2010; Jia 2024). Although the Chinese central government unveiled an ambitious plan in January 2022

to establish a unified national electricity market by 2030, progress remains limited: as of 2022, 97%

of mid-to-long-term electricity contracts were still negotiated within provincial borders (International

Energy Agency 2023). This fragmentation of the energy infrastructure also implies that manufacturing

companies source electricity locally and generation capacity can be viewed as province-specific to a

large extent, for our time frame of interest as well as well beyond including present-day China.

3 Empirical Approach

3.1 Scope-1 Pollution and Baseline Estimation Strategy

In our firm-level exercises, we estimate linear models of the form

air pollutionf,t = β1exportsf,t + β2Xf,t + γt + δ + εf,t, (1)

where t and f indicate years and firms, respectively. Our main outcome measure of air pollution

is the local (ln) concentration of PM2.5 in the vicinity of the firm (details presented in Section 4).4

As an alternative measure, we also explore NO2. In both cases, the advantage of using air pollution

rather than emissions is that the former is the relevant dimension for health and mortality implications.

Exposure to international trade, exportsf,t, is proxied by the inverse hyperbolic sine-transformed total

value of exports, which takes both the skewness of export values and the prevalence of non-exporters

into account. In our robustness checks, we furthermore swap total export values for exported quantities

and exports to high income countries, which allows us to capture real production and product mix or

technological heterogeneity (albeit at the cost of reduced sample sizes).

Importantly, we use various sets of fixed effects in our regressions. Year effects γt absorb aggregate

shocks that affect export values and pollution around firms in China in the same way. δ is a placeholder

for various other sets of fixed effects that absorb confounding variation. In a less demanding approach,
4Our outcome variable is continuous and strictly positive, implying the use of natural logarithms without incurring in

the issues highlighted in Chen and Roth (2024), which arise in the presence of outcome variables for which the extensive
margin may be affected by the treatment.
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we include indicators for a firm’s province and 4-digit industry, which address location- and technology-

specific patterns of trade and pollution that are unrelated to a manufacturer’s production and emissions.

In a more demanding approach, we focus on variation in exporting and local pollution that occurs

within firm over time. These firm fixed effects not only absorb spatial and industry variation, but also

control for time-invariant characteristics of companies such as their relative size.

Finally, we include additional regressors to shore up the identification strategy outlined below. We

assume that error terms are predominantly correlated spatially, so that we cluster standard errors by

prefecture-year throughout.5

Serving foreign markets via exporting is a choice and likely depends on several underlying factors

that are correlated with emissions and local air pollution. For instance, managerial staff play a key role

for both trade participation and corporate environmental policy (e.g., Bloom et al. 2021, Gaganis et al.

2023). Fixed effects control for a range of potential concerns about such omitted variables, but to the

extent that some of the above-mentioned underlying factors may change over time, some endogeneity

may persist. Consequently, we adopt a shift-share instrumental variables strategy, where we use

foreign demand shocks to shift Chinese firms’ exports exogenously. Changes in foreign demand are

ideal for our purpose: for the most part, they occur far away from China, are not driven by individual

Chinese firms, and were the quantitatively biggest driver of Chinese export growth since 2000 as

shown by Brandt and Lim (2024). Thus, identification is based on “shifts”, rather than “shares.”

We follow the by-now standard approach of Mayer et al. (2021) to distill exogenous variation

for Chinese firms: We compute a destination country d’s total import value of product p from all

origins except China and take logs to obtain lnMdpt. Excluding imports from China addresses the

concern that we pick up Chinese supply shocks, which may affect pollution through channels that are

not trade-related. Following the best practices for shift-share instruments outlined in Borusyak et al.

(2025), we provide evidence that the number of shifts is large as required for identification below and

for all empirical exercises in this paper.

Next, we assign these shocks to firms. Starting with current exporters for which we have customs

data, we weight the Mayer et al. (2021) shocks using the firm’s export value share

sfpd,t0(fpd)Xfpd,t0(fpd)/
∑

pdXfpdt0(fpd) by destination-product. As Chinese firms rapidly expanded

their product-destination pairs following China’s ascendancy, we use the shares in the first period a

firm-product-destination is observed, t0(fpdt). While our identification relies on exogeneity of the

shifts, and not of the shares, we nevertheless keep the latter constant and largely pre-determined. As

a final note on the shares, their construction implies that they do not sum up to unity and we apply

the standard adjustment of controlling for this sum interacted with year indicators in all regressions

throughout this paper (Borusyak et al. 2025).

Our first instrumental variable, which we call the intensive margin IV, is computed as
5Especially in the presence of firm fixed effects, error terms may be highly correlated within firm over time, so that we

alternatively cluster by firm. Since this approach generally yields smaller standard errors, we opt for the more conservative
approach of clustering at prefecture-year level.
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IV int
ft =

∑
dp

Xfdp,t0(fpd)∑
pXfdp,t0(fpd)︸ ︷︷ ︸

initial export shares

lnMdpt︸ ︷︷ ︸
foreign demand shocks

.

This instrument is not defined for years in which a firm does not export or for firm-years that we

cannot match to customs information (the details are discussed in Section 4 below). Yet, these firms do

experience a latent export demand shock and excluding this firm extensive margin of exporting may

be particularly problematic: Standard trade theory, where firms select into exporting based on their

core productivity (e.g., Melitz 2003), predicts that the firm extensive margin consists predominantly

of comparatively unproductive companies that use relatively less advanced machinery, processes, and

filters, as Qi et al. (2021) show for the case of China. Relying only on the intensive margin IV, we

therefore ignore a potentially important mechanism; even if emissions are reduced by extant exporters

as documented by, for example, Cherniwchan (2017), new entrants to the world market may cause

an opposing effect. Irrespective of potential heterogeneity, however, analyzing the largest possible

sample of firm-level observations is in any case useful to broaden the scope of our insights.

We therefore construct a second instrument by extrapolating IV int
ft . In particular, we assume that

non-exporters in a given 4-digit industry × prefecture cell experience similar (latent) demand shocks

from abroad as the average current exporter in that same cell. The extrapolated instrument, IV full
ft is

therefore equal to IV int
ft for current exporters and equal to IV int

jrpt, where we use the industry and

prefecture indices j and r to make the level of variation explicit.6

There are two channels through which the instruments manipulate Chinese exports, so that the

first stages could a priori be positive or negative. On the one hand, Chinese exports and the number of

exporters are expected to decline if goods imported from countries other than China act as substitutes—

in this case, lnMdpt is an inverse measure of the demand shock. On the other hand, if variation in

lnMdpt is due to income effects abroad or if Chinese goods are complements to the ones from other

countries, exports rise and more exporters enter the market. Since the vast majority of Chinese trade

exports go to developed countries where they either replace domestic production (“offshoring”) or

broaden the portfolio of varieties available to firms and customers, we strongly expect the demand

shocks to have a positive effect on exports, as in Mayer et al. (2021).

As a final note, we also subject our instrumental variables approach to a set of additional tests as

recommended in Borusyak et al. (2025), the results of which we report together with the main findings

in Section 5.
6To be precise, we use ρ × IV int

jrpt for non-exporters, where ρ is a factor close to, but below one. The reason is that
the instrument for non-exporters switches from IV int

jrpt to IV int
ft when they start exporting, which implies a negative

“shock” in that period for some firms if ρ = 1. To alleviate this issue, we set ρ = 0.85 and provide evidence based on
balance tests—following again Borusyak et al. (2025)—that this mechanical assignment is innocuous in the design of the
shift-share instrument. Moreover, we show that all our main results hold with either instrument.
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3.2 Scope-2: Power Generation

Serving additional demand from abroad requires energy and China’s electricity consumption was

predominately satisfied by coal during the early 2000s, as discussed in Section 2. Since coal power

plants are particularly polluting, we examine the effect of regional demand surges due to exporting. To

do so, we estimate the following power plant-level regression models (c denotes a coal power plant):

air pollutionct = β1exportsgrid(c),t + γt + δ + εct. (2)

We measure the pollution outcome in the immediate vicinity of each of China’s coal power

plants—leveraging the granularity of satellite data for PM 2.5—and regress it on the (inverse hyperbolic

sine-transformed) total export volume in the regional power grid where the power plant is located. As

described in Section 2, in the late 1990s and early 2000s, China’s power grid was divided into seven

regional sub-grids with little or no interconnection. Even though the central government prioritized

connectivity since the 2000s, we can exploit the regionalization of electricity provision to assign

demand to individual plants. Inevitable measurement error is expected to work against finding any

effects.

To identify the effect of exporting, we rely on year (γt) and spatial or power plant-level fixed

effects (δ) as well as on our shift-share instrumental variables strategy. In particular, we calculate

exposure measures as initial export shares at the grid level, once again in the first period that a grid

- 6-digit product - destination is observed in the data. As the extensive product-destination margin

plays no significant role at the high aggregation level of power grid regions, we do not extrapolate the

instrument as for scope-1 regressions.

3.3 Scope-3: Input-Output Analysis

To study the role of changes in scope-3 pollution, we investigate whether, and to what extent, an export

demand shock downstream affects pollution at supplier plants upstream.

To this end, we conduct two different exercises. In the first, we estimate regressions of the form

air pollutionpotential suppliers
f,t = β1exportsf,t + β2Xf,t + γt + δ + εf,t. (3)

Here, we measure pollution in the locations of firm f ’s potential manufacturing suppliers and relate the

simple average of PM2.5 concentrations across those to firm f ’s (inverse hyperbolic sine-transformed)

total value of exports as a proxy for downstream shock due to exporting.

There are two challenges we have to overcome in order to achieve clean identification of this

relationship. First, the regressor may be endogenous due to omitted variable bias. In particular,

upstream suppliers could experience their own changes in export demand, which may be correlated

with the downstream firm f ’s shock and influence air pollution. We address this concern in two

ways. For one, we include the (ln) average export value of the upstream suppliers, the (ln) number of
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exporters among suppliers, and their (ln) average sales as control variables. Moreover, we employ the

firm-level instrumental variables approach described above.

The second challenge concerns the domestic production network. On the face of it, running

regression 3 using actual suppliers appears preferable to using potential ones, but we do not have

access to information about local firm-to-firm trade networks in China. Even if such data were

available, however, downstream export demand shocks may induce changes in firms’ production

networks, which raises its own concerns and challenges. We therefore focus on suppliers that are

potentially relevant candidates for sourcing intermediate goods as inputs.

We define potential suppliers as follows. For each downstream customer firm f , we obtain the

main activity according to the 4-digit industry classification of China (CIC). By means of a Chinese

3-digit input-output table—to be precise, a USE table—for the year 2002 (122 industries), we identify

the 10 most important upstream supply industries according to the direct requirements. To avoid

conflating an export demand shock to suppliers with effects on competitors, we conservatively drop

the diagonal of the input-output table. The 10 biggest local suppliers in these industries in terms of

sales are selected as potential suppliers, where “local” refers to the same prefecture as firm f .7 This

approach is consistent with the idea of relatively strong “gravity” in production networks, i.e., firms

tend to source more inputs from suppliers that are closer (see, e.g., Bernard et al., 2019; Arkolakis

et al., 2023). Overall, we expect that including a large number of upstream firms would bias our

results towards finding no effect, because production networks tend to be sparse (Bernard et al. 2022;

Bernard and Zi 2022; Huang et al. 2024).

In the second, complementary approach, we view firm f as a supplier company in the value-

chain and study how pollution in its vicinity changes when it experiences a domestic demand shock

induced by downstream export activity at their customers’ sites. In the absence of production network

information, we again identify potential customers using input-output tables, just as in the case of

potential suppliers above. The only difference lies in how we find the 10 most important downstream

industries: Instead of a USE table, we employ a MAKE table, i.e., a matrix where each element

captures the share of purchases of a downstream industry in an upstream industry’s sales.

The regression model is now

air pollutionf,t = β1exports
potential customers
f,t + β2Xf,t + γt + δ + εf,t, (4)

where the outcome is PM2.5 concentration in the grid cell of firm f , as in the baseline firm-level

exercises. The regressor of interest to measure the downstream demand shock is now the average

value of the (inverse hyperbolic sine-transformed) exports across potential customers. Since we expect
7The number of candidates we include is subject to a trade-off. It should not be too low, so that we catch all actual and

the most relevant potential suppliers. At the same time, in the light of great sparsity in production networks, it is unlikely
that a firm sources from a large number, let alone all of the upstream firms. We have confirmed that our results are not
sensitive to using 5 or 25 candidates. In both cases, and consistent with the trade-off described, the t-statistics are slightly
lower, but the coefficients retain their level of significance.
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larger demand shocks from customers in more important downstream industries, we weight potential

customers’s exports with their industries’ input-output coefficients in the MAKE table.

To achieve identification, we rely on our shift-share approach once again. We instrument

exportspotential customers
f,t with the full instrument IV full

s(f)t described above, taking the direct requirement-

weighted average across firm f ’s potential suppliers s(f) to aggregate. Moreover, we include exportsf,t
in all regressions to address the concern that localized export demand shocks shift firm f ’s local air

pollution through its own exports. To afford comparability with our scope-1 results, we instrument

this regressor with IV full
ft as well.

As a final methodological remark, note that this analysis focuses on the role of supply chain

linkages, the key component in the standard definition of scope-3 pollution. Scope-3 pollution may in

principle also include more minor indirect pollution not included under scope-1 and scope-2 pollution,

such as waste disposal, business travel, and commuting by workers. Acknowledging this limitation,

we focus on air pollution due to intermediate goods supply, given its absolute and relative importance.8

4 Data

In this section, we describe the data sources used for our analyses in detail. We use four main sources

of data. First, firm-level data on economic activity, including information on exporting activity and

employment. Second, we use satellite data on local air pollution, which provide our outcome variables.

Third, we include data on coal power plants. Fourth, we use customs data and data on input-output

linkages. We generally focus on the period from 2000 to 2007 due to data availability (and quality).

4.1 Local Air Pollution

We retrieve satellite reanalysis data from Shen et al. (2024) and Anenberg et al. (2022) to construct our

measures of PM2.5 and NO2 concentrations, respectively. The particulate matter data combine Aerosol

Optical Depth from multiple satellite data with a chemical transport model to construct surface-level

estimates of PM2.5 concentrations after calibration with the ground-based pollution monitors. The

nitrogen dioxide data are produced by extrapolating an existing concentration dataset for 2010-12

from a land use regression model based on monitors and land use variables to other years, using NO2

column densities from several satellite and reanalysis datasets. The spatial resolution of these data is

0.01◦× 0.01◦, which roughly corresponds to a spatial grid of 1km × 1km. The temporal resolution of

the PM2.5 data is the month and we aggregate to the annual level by means of simple averages (NO2 is

directly provided at annual level). While particulate matter concentrations are available for every year

in our sample period, nitrogen dioxide information is limited to the years 2000 and 2005-2007.

To assign concentrations to prefectures, manufacturing firms, and coal power plants, we use

precise geo-location information. For prefectures, we take the average pollution concentration across
8Some local scope-3 emissions such as those caused by commuting may be captured in our scope-1 exercises.
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grid cells within each spatial unit. Whenever a grid cell spreads across a border, the concentration

value enters with a weight based on the share of the cell that lies within the the prefecture. For

manufacturing companies in China (further details below), we use headquarters addresses and Gaode

Map API’s geo-coding services to assign pollution concentrations based on the grid cell in which each

firm is located.Since some firms operate multiple establishments in different locations for which we do

not have addresses, we confirm that our findings hold in the subsample of single-plant firms. Finally,

we follow the same procedure for coal power plants, for which we have exact geographic coordinates.

Table 1: Descriptive Statistics

2000 2007

Mean 25th Perc 50th Perc 75th Perc Mean 25th Perc 50th Perc 75th Perc

Panel A: Prefecture level

PM2.5 µg/m
3 38.13 29.42 36.30 46.34 50.52 39.67 47.00 59.76

Exports (100k USD) 53.66 2.26 8.15 23.43 271.54 9.10 34.63 109.77

Panel B: Firm level

PM2.5 µg/m
3 41.76 34.70 39.40 47.20 55.79 46.80 53.10 61.90

Exports (10k USD) 2.20 0.00 0.00 1.34 3.83 0.00 0.00 1.14
Exporter indicator 0.47 0.38
Exports (10k USD, conditional) 4.64 0.64 1.46 3.54 10.23 0.81 2.09 5.52
# of plants 1.09 1.00 1.00 1.00 1.07 1.00 1.00 1.00
Firm age 12.17 5.00 8.00 14.00 10.15 5.00 7.00 13.00
1(State Owned Enterprise) 0.12 0.02
1(Multinational Enterprise) 0.36 0.29
1(Located in Special Economic Zone) 0.05 0.05
1(Located on coast) 0.29 0.31

Panel C: Coal power plant level

PM2.5 µg/m
3 45.13 35.40 46.80 54.00 60.81 46.00 59.60 75.80

Exports (10m USD) 21.80 6.80 21.78 21.78 114.75 36.62 107.95 107.95

Notes: Summary statistics based on estimation sample in preferred specifications. Numbers of observations across the two years are 259 and 265
(Panel A), 53,894 and 174,162 (Panel B), and 547 (Panel C).

The descriptive statistics for our estimation sample in Table 1 illustrate that pollution intensified

significantly over our sample period and for all units of observation: Local PM2.5 concentrations

rose by around one third at the prefecture, firm, and coal power plant level—on average and for

all percentiles in the distribution. Since air pollution is particularly intensive around coal burning

thermal power plants, the greatest absolute increase occurs around such facilities, which suggests

a substantial expansion of pollution. Moreover, as manufacturing plants are typically clustered in

industrial districts, air pollution at the firm level generally exhibits a higher PM2.5 concentration.
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4.2 Firm-level Data on Economic Activity and Exports

We access data from the Chinese Annual Survey of Industrial Firms (ASIF) from 2000 to 2007.

The National Bureau of Statistics of China collects ASIF data from reports submitted by sampled

enterprises. The sample includes all State-Owned Enterprises (SOEs) and non-SOEs with annual

sales of over 5 million RMB, or roughly 600,000 USD in 2000. The sample covers firms in the

manufacturing, mining, and utilities sectors, and we focus on the 30 manufacturing industries, which

range from agricultural and sideline food processing to handicraft and other manufacturing industries.9

The dataset provides a diverse and broad set of information, including details on balance sheets,

income statements, cash flow statements, and basic information on firms, including name, location,

ownership, industry, date of establishment, employment, etc. We exclude data from years after 2007

due to the unavailability of key variables and changes in sampling scheme (Brandt et al. 2014). To

ensure the quality of our analysis, we follow the data cleaning procedures described by Brandt et al.

(2012), which include dropping firms with missing, zero, or negative values for capital stock, exports,

or value-added, and only retain firms with more than eight employees.10

Panel B of Table 1 shows key firm-level variables that characterize these companies and allow

us to document several salient patterns. First, and prefacing more substantive points, the estimation

sample expanded substantially over time: Due to policy- and growth-induced firm entry and increased

coverage of ASIF, the number of firm observations more than doubled from 54,000 to 174,000 between

2000 and 2007. We will explore the implications of entry and exit explicitly in our robustness checks

below.

Second, and in line with a substantial body of international trade research, export activity is highly

skewed (Bernard et al. 2007; Mayer and Ottaviano 2008). In our estimation sample, only around

40% of firms are exporters, and conditional on exporting, the value shipped at the 75th is roughly

35,000 USD. Moreover, the mean export value among exporters greatly exceeds the median, which

suggests that a small number of “superstar exporters” account for the lion’s share of trade. Third,

export activity expanded significantly over time. Between 2000 and 2007, the average value of exports

overall rose by 74%, reflecting a larger number of exporters (the extensive margin) and rising export

values conditional on exporting (the intensive margin). These patterns imply that transforming the

export variable with the inverse hyperbolic sign is appropriate and that we can expect a substantial

effect of trade participation on local air pollution.

Finally, the firms in our sample displays several features that are well known in the context

of China. The vast majority of companies operates only a single factory, state and multinational

ownership falls over time, and economic growth takes place everywhere in China, both inside and

outside special economic zones. Notably, firm age falls from 12 to 10 years over time, which is

consistent with the widespread emergence of new manufacturers during China’s economic miracle
9We use the industry mapping from Brandt et al. (2012) to concord industries before and after the implementation of

industry classification code of GB/T4754-2002.
10Export values at the prefecture- and regional electricity grid-level are the sum of firm-level exports in our sample.
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in the beginning of the century. In one of the robustness checks below, we control directly for

these and several other firm characteristics to address concerns about the exclusion restriction and

the relationship between exports and air pollution at the firm level in general.

4.3 Coal Power Plant, Customs, Input-Output and other Data

We use coal power plant unit data from Global Energy Monitor, Global Coal Plant Tracker, July

2023 release (Global Energy Monitor 2023). These data provide information on the geo-location,

capacity, operational years (from the date the power plant started operations to the date when it was

decommissioned), coal type, and combustion technology of each coal power plant.

In addition to the key datasets discussed so far, we make use of the Chinese customs data and the

BACI database (Gaulier and Zignago 2010) to construct our instrument. The customs data come from

the General Administration of Customs of China. This dataset provides transaction data at the 8-digit

Harmonized System (HS) code level, covering the universe of import and export records between

China and other countries or regions. The variables include basic information such as HS product

code, HS product name, value, quantity, unit, customs region involved, transportation method, trade

regimes (processing versus others etc.), and the identity of the Chinese firms. Unfortunately, the

customs dataset does not share the same firm identifier as ASIF. Therefore, we follow the literature

(Manova and Yu 2016; Chor et al. 2021) and match the two datasets based on firms’ names, addresses,

telephone numbers, and zip codes.

Information on connections between upstream and downstream sectors—which we employ to

study production network effects—is based on the official Chinese Input-Output tables (National

Bureau of Statistics of China 2006). The NBS publishes input-output tables every five years and

we use the 2002 edition. The tables contain the value transacted by each selling and buying sector

for 122 individual manufacturing industries. On this basis, we can calculate the USE and MAKE

tables mentioned in Section 3.3 above. That is, we divide each flow by the total expenditures of a

downstream sector on all upstream sectors to arrive at the standard direct requirement in a USE table.

Analogously, for the MAKE table, we calculate sales shares of downstream sectors in each upstream

sector as the ratio between a flow and the total sales of the upstream sector to all downstream ones.

To conclude the exposition, we introduce various other data sources. First, we use information

on precipitation, temperature, and wind direction from Muñoz Sabater (2019) in several robustness

exercises. In each case, we aggregate data at a higher frequency up to the annual level by taking

simple averages. Second, we obtain information on population density at the county level from the

Statistical Yearbooks (National Bureau of Statistics of China 2023).
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5 Results

In this section, we describe how China’s export activities between 2000 and 2007 affected air pollution.

We start by confirming that exports raise air pollution at the regional level and subsequently zoom in

on localities of individual firms. In a second step, we provide evidence on how individual firm-level

exporting translates into aggregate air pollution: We study pollution outcomes around coal power

plants in the vicinity of exporters (to scrutinize scope-2 pollution) and how export shocks generate

pollution through local production networks (scope-3 pollution).

5.1 Scope-1: Exports and Pollution at the Regional and Firm Level

In Table 2, we summarize estimation results based on equation (1) at the prefecture and the firm

level. The first main finding is that export-intensive prefectures experienced significantly higher

air pollution. Based on the preferred estimate in column (2), prefectures with total exports at the

75th percentile of the distribution suffered from a 3 percent higher concentration of PM2.5 than a

prefecture at the 25th percentile.11 Over time, the local average treatment effects imply that the average

increase in exporting within province between 2000 and 2007 can explain 10 percent of the increase in

particulate matter concentration. In sum, our results confirm the findings in Bombardini and Li (2020)

with a different approach and relying on satellite data for measurement.

Table 2: Scope-1 – Results

ln PM2.5

prefecture level firm level

(1) (2) (3) (4) (5) (6)

asinh(total value of exports) 0.021∗ 0.018∗ -0.014∗∗∗ -0.002∗∗∗ -0.005∗∗∗ -0.009∗∗

(0.012) (0.010) (0.002) (0.001) (0.002) (0.004)

N 2,104 2,104 995,784 995,781 995,784 279,547
OLS Coefficient 0.036 0.032 -0.008 -0.002 0.000 -0.001
OLS P-value 0.000 0.000 0.000 0.000 0.050 0.000
KP-Statistic 226.0 197.8 2423.6 5915.5 867.2 101.5
Mean outcome 3.753 3.753 3.896 3.896 3.896 3.842

Year FE YES YES YES YES YES YES
Province FE YES YES
4-digit Industry FE YES
Firm FE YES YES

Notes: The table shows 2SLS regression results at the prefecture and the firm level (first stage results are reported in online Appendix Table A.1). Outcome variables
are the local (ln) concentrations of PM2.5. The regressor of interest is the inverse hyperbolic sine-transformed total export value of the prefecture or firm. The shift-share
instrument is described in Section 3.1 and all regressions include the sum of initial shares interacted with year fixed effects as unreported controls. Standard errors are
clustered by province × year in columns (1) and (2), and by prefecture × 4-digit industry in columns (3) to (6). * p<.10 ** p<.05 *** p<.01

The second main finding concerns pollution at the local level, i.e., in the direct vicinity of individual

firms that start to export for the first time or increase shipments abroad. In columns (3) to (5), where
11These figures are calculated on the de-meaned distributions to give an accurate impression. In the case of PM2.5, the

inter-quartile effect is exp(0.018 ∗ (0.916− (−0.875)))− 1 ≈ 3%.
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we use the full shift-share instrument, the effect is negative: Exporters reduce the local burden of

pollution. This finding is consistent, for instance, with Cherniwchan (2017), and with a technique

effect dominating a scale effect due to expanding production. The decline is statistically significant,

and the magnitude of the effect is highly skewed due to the skewed distribution of firm-level exports:

While the inter-quartile effect implies a modest reduction of 0.3 percent, a firm at the 99th percentile

experiences 3.4 percent lower ambient air pollution than a firm at the median. Moreover, while average

local air pollution worsened over the sample period as shown in the descriptive statistics, this increase

in PM2.5 concentration would be even more pronounced in the absence of the effect of exporting; the

reduction due to exports amounts to around 0.8 percent of the total increase in pollution over time.

Both figures are substantial, given that not even half of the manufacturers in our sample export in the

first place. To round out the picture, this finding also holds when we rely on the intensive margin

instrument in column (6).

This main finding is highly robust as we demonstrate by means of various exercises in Table 3.12

First, to the extent that the demand shocks used for identification reflect general globalization, one

may be worried that the effects we find are confounded by offshoring, i.e., by Chinese firms sourcing

intermediate inputs from abroad. In this case, our instrument would no longer be excluded. For

the relatively small subsample of firms for which we have customs information and which are both

exporters and importers, however, we can directly control for the total value of imports (doing so also

means that we ignore the entire extensive margin of new exporters). While the estimate of interest in

column (1) is smaller than the preferred one and only marginally significant, it is still negative.

Second, we control for the firm-level characteristics described in Table 1, for precipitation, for

temperature, and for local population density. Column (2) illustrates that the estimate remains virtually

unchanged, suggesting that the instrument is balanced for firm-level and locational characteristics.

Third, we explore several sub-samples. We begin by restricting to single-plant firms to address

the concern that we measure pollution at service-intensive headquarters, while production and export

activity happen somewhere else. The estimate in column (3) suggests that this is not a first-order

problem. In columns (4) to (6) we alternatively focus on firms that do not exit the sample at any

point during the period, firms that do not enter later during the period, and firms that are present

in every year (balanced panel). Interestingly, the main effect appears to be relatively homogeneous

across incumbents, entrants, and exiters. In a fourth empirical exercise, we study NO2 as a different

pollutant, although the sample is reduced due to the lower availability of granular satellite information

as described in Section 4. Column (7) illustrates that the export-induced reduction in air pollution is

not confined to particulate matter, but instead a broad and robust pattern.13

12The same exercises based on the intensive margin shift-share instrument are shown in online Appendix Table A.4.
13We also explored several changes in the estimation strategy, the results of which are reported in online Appendix Table

A.3. First, we restrict the origins for other countries’ imports to a set of competitor developing countries for China, namely
Bangladesh, India, Indonesia, Malaysia, Mexico, Thailand, Turkey, and Vietnam. Demand shocks based on countries that
may produce substitutes for Chinese goods could be mis-measured and hence monotonicity of our instrument may be
violated. However, we do find a positive and significant first stage estimate and the same effect of exports on air pollution
(see column 1). Second, one may be worried that price variation contained in export values biases our findings upwards

18



Table 3: Scope-1 – Robustness

ln PM2.5 ln NO2

(1) (2) (3) (4) (5) (6) (7)

asinh(total value of exports) -0.002∗ -0.004∗∗ -0.005∗∗∗ -0.005∗∗∗ -0.005∗∗∗ -0.005∗∗∗ -0.010∗∗∗

(0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003)

N 224,525 728,276 871,719 872,812 375,961 252,989 545,254
OLS Coefficient -0.000 0.000 0.000 0.000 0.000 0.000 -0.000
OLS P-value 0.021 0.037 0.074 0.024 0.111 0.049 0.062
KP-Statistic 285.8 593.5 754.1 769.3 587.1 461.3 315.7
Mean outcome 3.837 3.904 3.890 3.904 3.859 3.870 2.510

Year FE YES YES YES YES YES YES YES
Firm FE YES YES YES YES YES YES YES
Import control YES
Firm, weather, pop. density controls YES

Notes: The table shows 2SLS regression results at the firm level. Outcome variables are the local (ln) concentrations of PM2.5 and NO2. The regressor of interest is the
inverse hyperbolic sine-transformed total export value of the firm. The shift-share instrument is described in Section 3.1 and all regressions include the sum of initial
shares interacted with year fixed effects as unreported controls. Column (1) features (ln) import values as a control. Column (2) features indicators for MNE, SOE
and coastline locations as well as (ln) firm age, the (ln) number of plants, local wind speed, local precipitation, local maximum and minimum temperatures, and (ln)
population density in the county as controls. The samples in columns (3) to (6) contain only single-plant firms, firms that never exit the sample, firms that do not enter
the sample later, and firms that are always in the sample, respectively. Standard errors are clustered by prefecture × 4-digit industry. * p<.10 ** p<.05 *** p<.01

Before we conclude this section with the third main finding, we first turn to a discussion regarding

the validity of our shift-share approach and the discrepancy between the OLS and 2SLS results

in Table 2. The export demand shocks used for identification typically have a strong effect on

both prefecture- and firm-level export activities and the KP-statistics usually exceed conventional

thresholds. Moreover, the first stage coefficients are positive as shown in online Appendix Table A.1,

consistent with the idea that Chinese goods complement imports from other countries on the world

market or add additional varieties during our sample period. Finally, OLS estimates typically have

the same sign as the relevant 2SLS estimates in both the prefecture- and firm-level exercises, but the

magnitude is smaller in the former. It is likely that this implied bias arises due to measurement error:

Exports reported in the ASIF data may have been reported with considerable noise and values contain

price variation that may be unrelated to pollution.

Apart from always controlling for the sum of non-unitary shares and clustering standard errors

appropriately (Adão et al. 2019), we have conducted further diagnostic checks for our instrumental

variables approach at the firm level, following the best practices in Borusyak et al. (2025) in the

case of exogenous shifts. First, we compute the number of “effective” shocks employed in our

design. In principle, if all firms exported the same amount of all destination-products—i.e., if all firms

or downwards (Rodrigue et al. 2022). For the subsample of firms where we have detailed customs information, we can
compute total quantities (in kg) exported and use this variable as an alternative regressor. Column (2) shows that our main
finding fully extends to actual physical units of production. From an exploratory point of view, it is interesting to investigate
if the income level of a destination country affects the impact of exporting on local air pollution. In column (3), we focus
on shipments to high income countries in the sample of firms for which we have customs information. We find that the
coefficient is in fact smaller in absolute magnitude. Finally, in column (4) we provide suggestive evidence that exporting
induces a technique effect that reduces air pollution by using the export share in sales, rather than export values, as the
regressor.
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had the same exposure to all import demand shocks abroad—, we could leverage a total of around

185 ∗ 4860 ≈ 900k shocks per period. Since exports and exposure are highly concentrated, however,

it is more insightful to compute the “effective” number as recommended by Borusyak et al. (2025),

which amounts to around 33k shocks per period in the estimation sample. This number appears to

be sufficiently large for identification.14 Second, we conduct the recommended balance-tests for all

preferred specifications in this paper, where we regress lagged levels of PM2.5 on the instrument,

the sum-of-shares control interacted with year fixed effects, and further relevant fixed effects as

appropriate. A significant correlation between the instrument and pollution in the previous period

would suggest that the instrument is not quasi-randomly assigned. The results for the prefecture-

and firm-level regressions are reported in columns (1) to (3) in online Appendix Table A.2, and,

reassuringly, none of the three instruments used in this subsection shows a significant correlation.

The third main finding is the observation that the impact of exporting at the local level does not

match the impact at the regional level. While scope-1 air pollution fell, exporting likely worsened

regional air quality, suggesting that international market access affects air pollution via multiple

channels. In the next two sections, we explore two such candidates to explain the apparent discrepancy.

5.2 Scope-2: Power Generation

We start with evidence on pollution due to power generation. Table 4 reports estimates of equation (2),

where each column features different sets of fixed effects.15 According to the results in column (3),

the effect of exporting in a coal power plant’s regional electricity grid on the local PM2.5 concentration

is positive and highly significant, despite the demanding specification where we only rely on variation

within power plant over time. This finding is consistent with the idea that coal power plants were

pushed towards capacity following the export shock to local customers. The concentration of PM2.5 in

the direct locality of the power plant increases by exp(0.464∗0.468)−1 ≈ 22 percent when the export

volume rises from the regional grid with the lowest, to the regional grid with the highest (de-meaned)

export shock.

To substantiate this key finding, we conduct two robustness exercises. First, given transportation

costs, the location of coal power plants is at least partially determined by proximity to coal mines,

which also produce substantial amounts of particulate matter. To address this potential ambiguity

regarding the source of pollution, we compute the number of coal mines within a 2.5km radius of

a coal power plant and control for it in our regression. Column (4) of Table 4 shows that the point

estimate is virtually unchanged, so that mining-related concerns do not appear to be first order.
14For comparison, Aghion et al. (2023) study access to automation technology in France, using imports of 167 HS 6-digit

product categories of robots from 98 origin countries that yield 341 effective shocks. Our share of effective shocks in the
total possible number is similar and slightly higher: Robot imports are expected to be somewhat more concentrated than
Chinese exports.

15The balance-test for the coal power plant-level shift-share exercise is shown in column (4) of online Appendix Table
A.2. The conditional correlation between the grid-level instrument and lagged (ln) PM2.5 concentration is insignificant,
suggesting quasi-random assignment.
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Table 4: Scope-2 – Pollution around Coal Power Plants

ln PM2.5

power plant location downwind

(1) (2) (3) (4) (5)

asinh(total value of exports) -0.105∗∗∗ 0.469 0.468∗∗∗ 0.428∗ 1.443∗∗∗

(0.019) (0.481) (0.133) (0.228) (0.330)

N 4,375 4,375 4,375 4,375 4,375
OLS Coefficient 0.022 0.127 0.128 0.128 0.360
OLS P-value 0.002 0.244 0.000 0.000 0.000
KP-Statistic 200.0 35.8 31.4 13.3 31.4
Mean outcome 3.930 3.930 3.930 3.930 3.615

Year FE YES YES YES YES YES
Grid FE YES
Power Plant FE YES YES YES

Notes: The table shows 2SLS regression results at the coal power plant level (first stage results are reported in online
Appendix Table A.6). The outcome variable is the (ln) concentration of PM2.5 in the immediate vicinity of a plant in columns
(1)-(4) and the (ln) concentration of PM2.5 in a 90◦circle segment with 2.5km radius downwind from the coal power plant.
The regressor is the inverse hyperbolic sine-transformed total export value of manufacturing firms in the same electricity
grid as the coal power plant. The shift-share instrument is described in Section 3.2 and all regressions include the sum of
initial shares interacted with year fixed effects as unreported controls. Unified sample across columns. Standard errors are
clustered by prefecture × year. * p<.10 ** p<.05 *** p<.01

Second, we try to eliminate any local pollution that is unlikely to come from burning coal. If coal

power plants are typically located in industrial districts to be close to their most important customers,

air pollution measurements could reflect both scope-1 and scope-2 pollution. We therefore compute

PM2.5 not in the plant’s satellite grid cell, but in a quarter circle segment with radius 2.5km downwind

from the plant’s geo-coordinates. The estimate in column (5) of Table 4 is more than four times larger

and highly statistically significant. Unless manufacturing factories are systematically built downwind

of coal power plants, this evidence suggests that, if anything, our main results may underestimate the

role of burning coal for the polluting effects of exporting.

5.3 Scope-3: Input-Output Linkages

We now turn to the second indirect effect of international market access and investigate whether

one firm’s exporting activity influences the emissions of other firms in the same local production

network. Spillovers could be positive or negative. If suppliers are affected by the scale effect,

but not the technique effect, we could see pollution increase around the location of suppliers. The

same logic applies to the case in which there is a technique effect that does not dominate the scale

effect. Conversely, we could observe a decrease in pollution if the technique effect sufficiently affects
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suppliers, too.

In Table 5, we report estimates from regression model (3) in columns (1) to (3), and from model

(4) in columns (4) to (6).16 In the first triplet of regressions, the outcome is the local (ln) PM2.5

concentration averaged across all of a firm’s supplier candidates, while the regressor of interest is that

firm’s own export shock, which we instrument with the full shift-share instrument. Importantly, we

control for the upstream supplier candidates’ exports and sales throughout.

Table 5: Scope-3 – Pollution in Production Networks

ln PM2.5

supplier locations firm locations

(1) (2) (3) (4) (5) (6)

asinh(exports of firm) -0.008∗∗∗ -0.001∗∗ -0.005∗∗∗ -0.012∗∗∗ -0.000 -0.005∗∗∗

(0.002) (0.000) (0.002) (0.002) (0.000) (0.002)
cus_aexport_sp -0.029∗∗∗ -0.005∗∗∗ -0.015∗∗∗

(0.005) (0.002) (0.003)

N 824,325 824,320 824,325 841,323 841,321 841,323
KP-Statistic 1230.2 3343.5 729.5 380.0 112.7 324.9
Mean outcome 3.892 3.892 3.892 3.890 3.890 3.890

Upstream export controls FE YES YES YES
Year FE YES YES YES YES
Prefecture FE YES YES
4-digit Industry FE YES YES
Firm FE YES YES

Notes: The table shows 2SLS regression results in input-output relationships (first stage results are reported in online Appendix Table A.7). Outcome
variables are the (ln) concentration of PM2.5 averaged across locations of all potential suppliers within a firm’s prefecture and the (ln) concentration
of PM2.5 in a firm’s own location. The regressors of interest are the inverse hyperbolic sine-transformed total export value of the firm and the average
inverse hyperbolic sine-transformed total export value of all potential customers within a firm’s prefecture. In columns (1) to (3), the control variables
are the (ln) average export value of the upstream suppliers, the (ln) number of exporters among suppliers, and the (ln) average sales across suppliers.
All displayed regressors are instrumented with the shift-share instruments described in Section 3.3 and all regressions include the sum(s) of initial
shares interacted with year fixed effects as unreported controls. Standard errors are clustered by 4-digit industry × prefecture. * p<.10 ** p<.05
*** p<.01

Regardless of the fixed effects used, we find that a positive shock to exports downstream propagates

upstream and leads to a reduction in pollution around the suppliers’ sites. The size of these production

network effects is of the same order of magnitude as the direct impact of exporting in Table 2, which

suggests that changes in scope-3 emissions are a relevant component to understand the overall effect

of exporting.

A similar conclusion can be drawn when we study positive export demand shocks to a firm’s

customers downstream. In columns (4) to (6) of Table 5, the outcome is the PM2.5 concentration

at a firm’s site and the regressor of interest is the average export value of all customer candidates

downstream. Once again, we control for the firm’s own exports to address the concern that the
16The balance-tests for the supplier- and buyer-level shift-share exercises are reported in columns (5) and (6) of online

Appendix Table A.2. The conditional correlation between the instrument and lagged (ln) PM2.5 concentration is marginally
significant in the supplier-level regressions, while neither instrument is significantly correlated in the buyer-level regressions.
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downstream demand shock is correlated with the upstream one, and instrument both regressors as

described in Section 3.3. Irrespective of the specific variation we exploit, we find that when a firm’s

customers start exporting or expand their sales abroad, this leads to a reduction of pollution at the

supplier’s site ceteris paribus.

These results may be affected by measurement error, however, if the supplier and customer candidates

are not correctly identified. During our sample period, China substantially improved and expanded its

highway road network, which allowed manufacturers to access business partners located farther away.

Restricting potential suppliers and customers to those in the same prefecture may therefore appear

somewhat more problematic over time. To explore this issue, we re-compute the sets of candidates

taking not only the same, but also all directly adjacent prefectures into account. When we run the

regressions using the resulting variables, the estimates are not significantly different, as shown in

online Appendix Table A.8.

Overall, we find that domestic production networks act as an amplification mechanism: Exporting

not only reduces emissions and therefore air pollution directly through scope-1 emissions, but also

through the indirect effect that domestic demand shocks due to exports downstream lead to lower

emissions upstream (scope-3 emissions). This finding is related to a recent strand of research that

documents the benefits in terms of productivity and working conditions of supplying to internationally

active companies in developing countries (e.g. Alfaro-Urena et al. 2022, 2023). Our results suggest

that such positive local spill-overs also include beneficial environmental effects.17

6 Conclusions

We exploit one of the most interesting and important trade experiments in recent times, China’s world

market integration between 2000 and 2007, to provide evidence on the mechanisms through which

international market access affects air pollution in the economy benefiting from such access. To do so,

we combine granular satellite data with detailed information on manufacturing firms and coal power

plants, and employ a shift-share identification approach inspired by Mayer et al. (2021). Starting at the

regional level, we confirm that the export demand shock China experienced after its accession to the

World Trade Organization led to higher concentrations of several pollutants, including fine particulate

matter (PM2.5). Next, we study the effect on scope-1 pollution by zooming in on individual plants of

firms, and find that export activity reduces the PM2.5 load.

To investigate how this local effect can be reconciled with the regional estimates, we focus on

scope-2 pollution and document that air pollution around coal power plants increases significantly

when manufacturers in the region up their exports. Finally, we use information from input-output

tables to identify a firm’s potential suppliers in the same region, which allows us to study the effect of

scope-3 pollution. We find that downstream export demand shocks also reduce local PM2.5 concentrations.
17Similar to our findings, Mo et al. (2024) finds Chinese firms report lower pollution once they become suppliers or

customers of foreign invested firms in China.
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The increase in pollution from export-driven growth is thus largely driven by China’s almost complete

reliance, at the time, on coal power plants.

Our paper combines granular satellite data and firm-level data to obtain these findings, shedding

new light on how trade shocks reverberate across the economy and ultimately affect air quality, thus

informing policymakers about the potential downsides from trade expansion. It can also help inform

future research aimed at decomposing the contribution of each channel in a structural way, to further

our understanding of trade shocks’ pervasive economic effects.

24



References

Acemoglu, D., D. Autor, D. Dorn, G. H. Hanson, and B. Price (2016). Import competition and the

great US employment sag of the 2000s. Journal of Labor Economics 34(S1), S141–S198.

Adão, R., M. Kolesár, and E. Morales (2019, 08). Shift-share designs: Theory and inference.

Quarterly Journal of Economics 134(4), 1949–2010.

Aghion, P., C. Antonin, S. Bunel, and X. Jaravel (2023, March). Modern manufacturing capital, labor

demand and product market dynamics: evidence from France. CEP Discussion Papers dp1910,

Centre for Economic Performance, LSE.

Alfaro-Urena, A., B. Faber, C. Gaubert, I. Manelici, and J. P. Vasquez (2023). Responsible sourcing?

Theory and evidence from Costa Rica. CEP Discussion Papers dp1909, Centre for Economic

Performance, LSE.

Alfaro-Urena, A., I. Manelici, and J. P. Vasquez (2022). The effects of joining multinational supply

chains: New evidence from firm-to-firm linkages. Quarterly Journal of Economics 137(3), 1495–

1552.

Anenberg, S. C., A. Mohegh, D. L. Goldberg, G. H. Kerr, M. Brauer, K. Burkart, P. Hystad, A. Larkin,

S. Wozniak, and L. Lamsal (2022, 1). Long-term trends in urban NO2 concentrations and associated

paediatric asthma incidence: estimates from global datasets. The Lancet. Planetary Health 6(1).

Antweiler, W., B. R. Copeland, and M. S. Taylor (2001). Is free trade good for the environment?

American Economic Review 91(4), 877–908.

Arkolakis, C., F. Huneeus, and Y. Miyauchi (2023). Spatial production networks. NBER Working

Papers 30954, National Bureau of Economic Research, Inc.

Autor, D., D. Dorn, G. Hanson, and K. Majlesi (2020). Importing political polarization? The electoral

consequences of rising trade exposure. American Economic Review 110(10), 3139–3183.

Autor, D. H., D. Dorn, and G. H. Hanson (2013). The China syndrome: Local labor market effects of

import competition in the United States. American Economic Review 103(6), 2121–2168.

Banerjee, S. N., J. Roy, and M. Yasar (2021). Exporting and pollution abatement expenditure:

Evidence from firm-level data. Journal of Environmental Economics and Management 105, 102403.

Barbera, A. J. and V. D. McConnell (1990). The impact of environmental regulations on

industry productivity: Direct and indirect effects. Journal of Environmental Economics and

Management 18(1), 50–65.

25



Barrows, G. and H. Ollivier (2021). Foreign demand, developing country exports, and CO2 emissions:

Firm-level evidence from India. Journal of Development Economics 149, 102587.

Berman, E. and L. T. M. Bui (2001). Environmental regulation and productivity: Evidence from oil

refineries. Review of Economics and Statistics 83(3), 498–510.

Bernard, A. and Y. Zi (2022, November). Sparse Production Networks. CEPR Discussion Papers

17667, C.E.P.R. Discussion Papers.

Bernard, A. B., E. Dhyne, G. Magerman, K. Manova, and A. Moxnes (2022). The origins of firm

heterogeneity: A production network approach. Journal of Political Economy 130(7), 1765–1804.

Bernard, A. B., J. B. Jensen, S. J. Redding, and P. K. Schott (2007). Firms in international trade.

Journal of Economic Perspectives 21(3), 105–130.

Bernard, A. B., A. Moxnes, and Y. U. Saito (2019). Production networks, geography, and firm

performance. Journal of Political Economy 127(2), 639–688.

Bloom, N., K. Manova, J. Van Reenen, S. T. Sun, and Z. Yu (2021, 07). Trade and management. The

Review of Economics and Statistics 103(3), 443–460.

Bombardini, M. and B. Li (2020). Trade, pollution and mortality in China. Journal of International

Economics 125, 103321.

Borusyak, K., P. Hull, and X. Jaravel (2025). A practical guide to shift-share instruments. Journal of

Economic Perspectives 39(1), 181–204.

Brander, M., M. Gillenwater, and F. Ascui (2018). Creative accounting: A critical perspective on the

market-based method for reporting purchased electricity (scope 2) emissions. Energy Policy 112,

29–33.

Brandt, L. and K. Lim (2024). Opening up in the 21st century: A quantitative accounting of Chinese

export growth. Journal of International Economics 150, 103895.

Brandt, L., J. Van Biesebroeck, and Y. Zhang (2012). Creative accounting or creative

destruction? Firm-level productivity growth in Chinese manufacturing. Journal of Development

Economics 97(2), 339–351.

Brandt, L., J. Van Biesebroeck, and Y. Zhang (2014). Challenges of working with the Chinese NBS

firm-level data. China Economic Review 30, 339–352.

Carattini, S., E. Hertwich, G. Melkadze, and J. G. Shrader (2022). Mandatory disclosure is key to

address climate risks. Science 378(6618), 352–354.

26



Chen, J. and J. Roth (2024, 12). Logs with zeros? Some problems and solutions. Quarterly Journal

of Economics 139(2), 891–936.

Cherniwchan, J. (2017). Trade liberalization and the environment: Evidence from NAFTA and U.S.

manufacturing. Journal of International Economics 105, 130–149.

Cherniwchan, J., B. R. Copeland, and M. S. Taylor (2017). Trade and the environment: New methods,

measurements, and results. Annual Review of Economics 9, 59–85.

Chor, D., K. Manova, and Z. Yu (2021). Growing like China: Firm performance and global production

line position. Journal of International Economics 130, 103445.

Copeland, B. R. and M. S. Taylor (1994). North-South trade and the environment. Quarterly Journal

of Economics 109(3), 755–787.

Copeland, B. R. and M. S. Taylor (2004). Trade, growth, and the environment. Journal of Economic

Literature 42(1), 7–71.

Cullen, J. A. and E. T. Mansur (2017). Inferring carbon abatement costs in electricity markets: A

revealed preference approach using the shale revolution. American Economic Journal: Economic

Policy 9(3), 106–133.

Elliott, J., I. Foster, S. Kortum, T. Munson, F. Pérez Cervantes, and D. Weisbach (2010). Trade and

carbon taxes. American Economic Review 100(2), 465–469.

Fischer, C. and A. K. Fox (2012). Comparing policies to combat emissions leakage: Border carbon

adjustments versus rebates. Journal of Environmental Economics and Management 64(2), 199–216.

Fontagné, L. and K. Schubert (2023). The economics of border carbon adjustment: Rationale and

impacts of compensating for carbon at the border. Annual Review of Economics 15, 389–424.

Forslid, R., T. Okubo, and K. H. Ulltveit-Moe (2018). Why are firms that export cleaner?

International trade, abatement and environmental emissions. Journal of Environmental Economics

and Management 91, 166–183.

Gaganis, C., E. Galariotis, F. Pasiouras, and M. Tasiou (2023). Managerial ability and corporate

greenhouse gas emissions. Journal of Economic Behavior & Organization 212, 438–453.

Gaulier, G. and S. Zignago (2010). Baci: International trade database at the product-level. The 1994-

2007 version. Working Papers 2010-23, CEPII.

Ghanem, D. and J. Zhang (2014). ’Effortless perfection:’ Do Chinese cities manipulate air pollution

data? Journal of Environmental Economics and Management 68(2), 203–225.

Global Energy Monitor (2023). Global Coal Plant Tracker. July 2023 release.

27



Gong, Y., S. Li, N. J. Sanders, and G. Shi (2023). The mortality impact of fine particulate matter in

China: Evidence from trade shocks. Journal of Environmental Economics and Management 117,

102759.

Grainger, C. and A. Schreiber (2019). Discrimination in ambient air pollution monitoring? AEA

Papers and Proceedings 109, 277–282.

Greenstone, M., G. He, R. Jia, and T. Liu (2022). Can technology solve the principal-agent problem?

Evidence from China’s war on air pollution. American Economic Review: Insights 4(1), 54–70.

Greenstone, M., G. He, S. Li, and E. Y. Zou (2021). China’s war on pollution: Evidence from the first

5 years. Review of Environmental Economics and Policy 15(2), 281–299.

Grossman, G. M. and A. B. Krueger (1991). Environmental impacts of a North American free trade

agreement. NBER Working Paper 3914, National Bureau of Economic Research, Inc.

Gutiérrez, E. and K. Teshima (2018). Abatement expenditures, technology choice, and environmental

performance: Evidence from firm responses to import competition in Mexico. Journal of

Development Economics 133, 264–274.

Handley, K. and N. Limão (2017). Policy uncertainty, trade, and welfare: Theory and evidence for

China and the United States. American Economic Review 107(9), 2731–2783.

Huang, H., J. Ju, and V. Yue (2024). Accounting for the evolution of China’s production and trade

patterns. Technical report, National Bureau of Economic Research.

Huang, H., K. Manova, O. Perello, and F. Pisch (2024, July). Firm heterogeneity and imperfect

competition in global production networks. CEP Discussion Papers dp2020, Centre for Economic

Performance, LSE.

International Energy Agency (2023). Building a unified national power market system in China.

Licence: CC BY 4.0.

Jarreau, J. and S. Poncet (2012). Export sophistication and economic growth: Evidence from China.

Journal of Development Economics 97(2), 281–292.

Jia, R. (2024). Pollution for promotion. The Journal of Law, Economics, and Organization, ewae025.

Jia, R. and H. Ku (2019). Is China’s pollution the culprit for the choking of South Korea? Evidence

from the Asian dust. The Economic Journal 129(624), 3154–3188.

Köveker, T., P. M. Richter, A. Schiersch, and R. Sogalla (2025). Clean production, dirty sourcing:

How embodied emissions alter the environmental footprint of exporters. Discussion Papers of DIW

Berlin 2126, DIW Berlin, German Institute for Economic Research.

28



Kwon, O., H. Zhao, and M. Q. Zhao (2023). Global firms and emissions: Investigating the dual

channels of emissions abatement. Journal of Environmental Economics and Management 118,

102772.

Larch, M. and J. Wanner (2017). Carbon tariffs: An analysis of the trade, welfare, and emission

effects. Journal of International Economics 109, 195–213.

Levinson, A. (2009). Technology, international trade, and pollution from US manufacturing. American

Economic Review 99(5), 2177–2192.

Levinson, A. (2015). A direct estimate of the technique effect: Changes in the pollution intensity

of US manufacturing, 1990-2008. Journal of the Association of Environmental and Resource

Economists 2(1), 43–56.

Lin, K.-C. and M. Purra (2010). Transforming China’s industrial sectors: institutional change and

regulation of the power sector in the reform era. Lee Kuan Yew School of Public Policy Research

Paper No. LKYSPP10-12.

Lyubich, E., J. Shapiro, and R. Walker (2018). Regulating mismeasured pollution: Implications of

firm heterogeneity for environmental policy. AEA Papers and Proceedings 108, 136–142.

Ma, X. and L. Ortolano (2000). Environmental regulation in China: Institutions, enforcement, and

compliance. Rowman & Littlefield.

Manova, K. and Z. Yu (2016). How firms export: Processing vs. ordinary trade with financial frictions.

Journal of International Economics 100, 120–137.

Martin, R., L. B. de Preux, and U. J. Wagner (2014). The impact of a carbon tax on manufacturing:

Evidence from microdata. Journal of Public Economics 117, 1–14.

Mayer, T., M. J. Melitz, and G. I. P. Ottaviano (2021). Product mix and firm productivity responses to

trade competition. Review of Economics and Statistics 103(5), 874–891.

Mayer, T. and G. Ottaviano (2008, May). The happy few: The internationalisation of european firms.

Intereconomics: Review of European Economic Policy 43(3), 135–148.

Melitz, M. J. (2003). The impact of trade on intra-industry reallocations and aggregate industry

productivity. Econometrica 71(6), 1695–1725.

Meng, X. and S. Kc (2025, January). Location choice of air quality monitors in China. Journal of

Environmental Management 373, 123496.

Mo, J., Y. Yuan, and Z. Zhang (2024). FDI, supply chain linkages, and industrial emissions. Working

paper, School of Economics, Peking University.

29



Morgenstern, R. D., W. A. Pizer, and J.-S. Shih (2001). The cost of environmental protection. Review

of Economics and Statistics 83(4), 732–738.

Muñoz Sabater, J. (2019). ERA5-Land hourly data from 1950 to present. Accessed on 08-08-2025.

National Bureau of Statistics of China (2000–2023). China County Statistical Yearbook. Beijing,

China: China Statistics Press. Compiled under the supervision of the National Bureau of Statistics

of China.

National Bureau of Statistics of China (2006). China 2002 Input-Output Table. Beijing, China: China

Statistics Press.

Pittman, R. W. and V. Y. Zhang (2008). Electricity restructuring in China: the elusive quest for

competition. Available at SSRN 1126357.

Qi, J., X. Tang, and X. Xi (2021). The size distribution of firms and industrial water pollution: A

quantitative analysis of China. American Economic Journal: Macroeconomics 13(1), 151–83.

Rocchi, P., M. Serrano, J. Roca, and I. Arto (2018). Border carbon adjustments based on avoided

emissions: Addressing the challenge of its design. Ecological Economics 145, 126–136.

Rodrigue, J., D. Sheng, and Y. Tan (2022). The curious case of the missing Chinese emissions. Journal

of the Association of Environmental and Resource Economists 9(4), 755–805.

Rodrigue, J., D. Sheng, and Y. Tan (2024). Exporting, abatement, and firm-level emissions: Evidence

from China’s accession to the WTO. Review of Economics and Statistics, 1–45.

Shapiro, J. S. (2021). The environmental bias of trade policy. Quarterly Journal of Economics 136,

831–886.

Shapiro, J. S. and R. Walker (2018). Why is pollution from US manufacturing declining? The roles

of environmental regulation, productivity, and trade. American Economic Review 108(12), 3814–

3854.

Shen, S., C. Li, A. van Donkelaar, N. Jacobs, C. Wang, and R. V. Martin (2024). Enhancing global

estimation of fine particulate matter concentrations by including geophysical a priori information in

deep learning. ACS ES&T Air 1(5), 332–345.

Stoerk, T. (2016). Statistical corruption in Beijing’s air quality data has likely ended in 2012.

Atmospheric Environment 127, 365–371.

Tamiotti, L. (Ed.) (2009). Trade and climate change: A report by the United Nations Environment

Programme and the World Trade Organization. Geneva: World Trade Organization; United Nations

Environment Programme.

30



Tang, W. (2005). Public Opinion and Political Change in China. Stanford University Press.

Taylor, M. S. (2011). Buffalo hunt: International trade and the virtual extinction of the North American

bison. American Economic Review 101(7).

Weng, Z., Y. Song, C. Cheng, D. Tong, M. Xu, M. Wang, and Y. Xie (2023). Possible underestimation

of the coal-fired power plants to air pollution in China. Resources, Conservation and Recycling 198,

107208.

World Health Organization (2021). What are the who air quality guidelines? Accessed: 2025-04-25.

Yang, H. (2006). Overview of the Chinese electricity industry and its current issues.

Yao, Y., X. Li, R. Smyth, and L. Zhang (2022). Air pollution and political trust in local government:

Evidence from China. Journal of Environmental Economics and Management 115, 102724.

31



Online Appendix

A Additional tables

Table A.1: Regional and Firm-level Results – First Stages

asinh(total value of exports)

(1) (2) (3) (4) (5) (6)

prefecture-level IV 0.666∗∗∗ 0.385∗∗∗

(0.044) (0.027)
firm-level IV (full) 0.860∗∗∗ 0.966∗∗∗ 0.193∗∗∗

(0.017) (0.013) (0.007)
firm-level IV (intensive) 0.059∗∗∗

(0.006)

N 2,104 2,104 995,784 995,781 995,784 279,547

Year FE YES YES YES YES YES YES
Province FE YES YES
4-digit Industry FE YES
Firm FE YES YES

Notes: The table shows first stage results for the 2SLS regressions at the regional and firm level in Table 2. All regressions include the sum of initial shares
interacted with year fixed effects as unreported controls. Standard errors are clustered by 4-digit industry × prefecture. * p<.10 ** p<.05 *** p<.01

Table A.2: Balance Regressions

lagged ln PM2.5

(1) (2) (3) (4) (5) (6)

prefecture-level IV 0.007
(0.004)

firm-level IV (full) -0.001 -0.001∗ -0.001
(0.000) (0.000) (0.000)

firm-level IV (intensive) -0.000
(0.000)

electricity grid-level IV 0.167
(0.102)

customer-level IV -0.002
(0.002)

N 1,834 720,657 244,706 2,612 583,115 601,537

Year FE YES YES YES YES YES YES
Province FE YES
Firm FE YES YES YES YES
Power Plant FE YES

Notes: The table shows balance regressions for instruments at the prefecture, firm and power plant level. Outcome variables are the lagged local (ln) concentrations
of PM2.5 except for column (4), where it is measured at the upstream supplier-level. The regressors are the instrumental variables used in prefecture-level regressions
in column (1), in firm-level regressions in columns (2) and (3), in coal power plant-level regressions in column (4), in supplier-level regressions in column (5), and
in buyer-level regressions in column (6). The instruments are described in Section 3.1 and all regressions include the sum of initial shares interacted with year fixed
effects as unreported controls. Standard errors are clustered by province × year in column (1), and by prefecture × year in columns (2)-(6). * p<.10 ** p<.05 ***
p<.01
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Table A.3: Scope-1 – Further Robustness

ln PM2.5

(1) (2) (3) (4)

asinh(total value of exports) -0.005∗∗∗

(0.002)
asinh(total quantity of exports) -0.007∗

(0.004)
asinh(total value of exports to high income dest.) -0.001∗∗

(0.001)
export intensity (exports/sales) -0.124∗∗∗

(0.048)

N 995,784 281,846 281,846 934,911
OLS Coefficient 0.000 -0.000 -0.000 -0.002
OLS P-value 0.050 0.001 0.002 0.009
KP-Statistic 812.3 35.5 456.4 337.5
Mean outcome 3.896 3.843 3.843 3.905

Year FE YES YES YES YES
Firm FE YES YES YES YES

Notes: The table shows 2SLS regression results at the firm level. Outcome variables are the local (ln) concentrations of PM2.5 and SO2. The regressors of interest are
the inverse hyperbolic sine-transformed total export value (1 and 5), total quantity (2), total exports to high income destinations (3), and export intensity of the firm.
The shift-share instrument in (1) is described in Section 3.1, but based on competitor countries of China; the instrument in columns (2) to (5) is constructed in the same
way but using all countries. All regressions include the sum of initial shares interacted with year fixed effects as unreported controls. Standard errors are clustered by
prefecture × 4-digit industry. * p<.10 ** p<.05 *** p<.01

Table A.4: Scope-1 – Robustness – Intensive Margin Instrument

ln PM2.5 ln NO2

(1) (2) (3) (4) (5) (6) (7)

asinh(total value of exports) -0.004 -0.002 -0.011∗∗ -0.008∗ -0.013∗∗∗ -0.013∗∗ -0.035∗∗

(0.004) (0.004) (0.005) (0.005) (0.005) (0.005) (0.015)

N 192,083 193,279 246,671 244,878 138,862 104,193 137,262
OLS Coefficient -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.002
OLS P-value 0.001 0.000 0.000 0.000 0.000 0.001 0.000
KP-Statistic 86.6 74.4 81.4 89.3 76.1 63.5 34.1
Mean outcome 3.829 3.866 3.834 3.851 3.814 3.826 2.590

Year FE YES YES YES YES YES YES YES
Firm FE YES YES YES YES YES YES YES
Import control YES
Firm, weather, pop. density controls YES

Notes: The table shows 2SLS regression results at the firm level. Outcome variables are the local (ln) concentrations of PM2.5 and NO2. The regressor of interest is the
inverse hyperbolic sine-transformed total export value of the firm. The shift-share instrument is described in Section 3.1 and all regressions include the sum of initial
shares interacted with year fixed effects as unreported controls. The samples in columns (3) to (6) contain only single-plant firms, firms that never exit the sample,
firms that do not enter the sample later, and firms that are always in the sample, respectively. Standard errors are clustered by prefecture × 4-digit industry. * p<.10 **
p<.05 *** p<.01
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Table A.5: Scope-1 – Further Robustness – Intensive Margin Instrument

ln PM2.5

(1) (2) (3) (4)

asinh(total value of exports) -0.009∗∗

(0.004)
asinh(total quantity of exports) -0.007∗∗

(0.004)
asinh(total value of exports to high income dest.) -0.001∗∗

(0.001)
export intensity (exports/sales) -0.128

(0.086)

N 279,547 279,547 279,547 276,698
OLS Coefficient -0.001 -0.000 -0.000 -0.004
OLS P-value 0.000 0.001 0.001 0.000
KP-Statistic 100.9 39.2 535.0 17.5
Mean outcome 3.842 3.842 3.842 3.868

Year FE YES YES YES YES
Firm FE YES YES YES YES

Notes: The table shows 2SLS regression results at the firm level. Outcome variables are the local (ln) concentrations of PM2.5 and SO2. The regressors of interest are
the inverse hyperbolic sine-transformed total export value (1 and 5), total quantity (2), total exports to high income destinations (3), and export intensity of the firm.
The shift-share instrument in (1) is described in Section 3.1, but based on competitor countries of China; the instrument in columns (2) to (5) is constructed in the same
way but using all countries. All regressions include the sum of initial shares interacted with year fixed effects as unreported controls. Standard errors are clustered by
prefecture × 4-digit industry. * p<.10 ** p<.05 *** p<.01

Table A.6: Scope-2 – Pollution around Coal Power Plants – First Stages

asinh(total value of exports)

(1) (2) (3) (4) (5)

electricity grid-level IV 0.987∗∗∗ 0.230∗∗∗ 0.230∗∗∗ 0.135∗∗∗ 0.230∗∗∗

(0.070) (0.038) (0.041) (0.037) (0.041)

N 4,375 4,375 4,375 4,375 4,375

Year FE YES YES YES YES YES
Grid FE YES
Power Plant FE YES YES YES

Notes: The table shows first stage results for the 2SLS regressions at the coal power plant level in Table 4. The outcome
variable is the inverse hyperbolic sine-transformed total export value of manufacturing firms in the area of the regional
electrictiy grid where the plant is located. The instrument is described in Section 3.2 and all regressions include the sum of
initial shares interacted with year fixed effects as unreported controls. Unified sample across columns. Standard errors are
clustered by prefecture × year. * p<.10 ** p<.05 *** p<.01
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Table A.7: Scope-3 – Pollution in Production Networks – First Stages

asinh(exports of firm) asinh(total value of customers’ exports) asinh(exports of firm)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

firm-level IV (full) 0.321∗∗∗ 0.325∗∗∗ 0.081∗∗∗ 0.804∗∗∗ 0.916∗∗∗ 0.188∗∗∗ -0.017 0.010∗∗ 0.001
(0.009) (0.006) (0.003) (0.019) (0.013) (0.007) (0.015) (0.005) (0.006)

cus_iv_firm_ini_f_v_4_6d_sp 0.659∗∗∗ 0.039 0.018 1.018∗∗∗ 0.620∗∗∗ 0.435∗∗∗

(0.071) (0.034) (0.015) (0.050) (0.042) (0.055)

N 824,325 824,320 824,325 841,323 841,321 841,323 841,323 841,321 841,323

Year FE YES YES YES YES YES YES YES YES YES
Prefecture FE YES YES YES
4-digit Industry FE YES YES YES
Firm FE YES YES YES

Notes: The table shows first stage results for the 2SLS regressions investigating input-output relationships in Table 5. Outcome variables are the inverse hyperbolic sine-
transformed total export value of the firm and the inverse hyperbolic sine-transformed total export value of all potential customers within a firm’s prefecture. In columns 1 to
3, the control variables are the (ln) average export value of the upstream suppliers, the (ln) number of exporters among suppliers, and the (ln) average sales across suppliers.
The instruments are described in Section 3.3 and all regressions include the sum of initial shares interacted with year fixed effects as unreported controls. Standard errors are
clustered by 4-digit industry × prefecture. * p<.10 ** p<.05 *** p<.01

Table A.8: Scope-3 – Pollution in Production Networks – adjacent prefectures included

ln PM2.5

supplier locations firm locations

(1) (2) (3) (4) (5) (6)

asinh(exports of firm) -0.008∗∗∗ -0.001∗∗∗ -0.005∗∗∗ -0.013∗∗∗ -0.000 -0.006∗∗∗

(0.002) (0.000) (0.001) (0.002) (0.000) (0.002)
asinh(average value of customers’ exports) -0.028∗∗∗ -0.009∗∗∗ -0.012∗∗∗

(0.004) (0.002) (0.002)

N 846,310 846,308 846,310 839,956 839,954 839,956
KP-Statistic 1338.4 3367.0 779.4 543.9 78.3 323.4
Mean outcome 3.895 3.895 3.895 3.888 3.888 3.888

Upstream export controls FE YES YES YES
Year FE YES YES YES YES
Prefecture FE YES YES
4-digit Industry FE YES YES
Firm FE YES YES

Notes: The table shows 2SLS regression results in input-output relationships. Outcome variables are the (ln) concentration of PM2.5 averaged across
locations of all potential suppliers within a firm’s prefecture and the (ln) concentration of PM2.5 in a firm’s own location. The regressors of interest
are the inverse hyperbolic sine-transformed total export value of the firm and the average inverse hyperbolic sine-transformed total export value of all
potential customers within a firm’s prefecture. In columns (1) to (3), the control variables are the (ln) average export value of the upstream suppliers,
the (ln) number of exporters among suppliers, and the (ln) average sales across suppliers. All displayed regressors are instrumented with the shift-
share instruments described in Section 3.3 and all regressions include the sum(s) of initial shares interacted with year fixed effects as unreported
controls. Standard errors are clustered by 4-digit industry × prefecture. * p<.10 ** p<.05 *** p<.01
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