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1 Introduction

The implementation of the Markets in Financial Instruments Directive (Mi-

FID) in Europe in 2007 lead to the emergence of several multilateral trading

facilities (MTFs). These alternative trading platforms compete with tradi-

tional exchanges for trading volume, i.e., for market share. Therefore, the

European trading landscape today is similar to the situation in the United

States, where the emergence of alternative trading platforms and fragmenta-

tion of trading took place over the last decade.

Several studies analyze the effects of fragmentation and come to different

conclusions. The two main strands of argumentation in the literature are

positive network externalities through consolidated liquidity versus fragmen-

tation leading to higher competition among trading venues. O’Hara and Ye

(2011) bring these two strands together with the proposition of a ”single vir-

tual market”, where different trading venues represent different connections

to a virtually consolidated market. However, this argumentation may not

be valid for the situation in Europe. Important differences are that under

MiFID neither a consolidated tape, nor a trade-through1 prohibition exist.

O’Hara and Ye (2011) argue that this lack of a consolidated tape and a

trade-through prohibition could prevent the emergence of a ”single virtual

market” in Europe. An increasing number of studies therefore analyze the

implementation of MiFID with a main focus on market quality, e.g., event

1A trade-through is a trade executed at a price, which is higher (lower) than the
best available ask (bid) price among all trading venues. Possible explanations for the
occurrence of trade-throughs are investors with a speed over price priority (see Kohler and
von Wyss (2012)). Another possible explanation for trade-throughs according to Foucault
and Menkveld (2008) is that trade-throughs are caused by investors not using smart order
routers to route their trades to the trading venue with the best available price.
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studies by Foucault and Menkveld (2008), Hengelbrock and Theissen (2009)

and Chlistalla and Lutat (2011) and regression analyses by Gresse (2010)

and Degryse et al. (2011).

A special aspect in the analysis of fragmented markets is information pro-

cessing, i.e., how information is incorporated into prices and which trading

venue is leading. Two studies that analyze this question in the fragmented

European equity market after the implementation of MiFID are Storkenmaier

et al. (2012) and Riordan et al. (2011). Storkenmaier et al. (2012) analyze

stocks that are traded on the LSE and Chi-X and find for the quote based

price discovery higher information shares for Chi-X (58.19%), than for LSE

(41.81%), although LSE provides more liquidity. Furthermore, they analyze

market reactions of LSE and Chi-X to Thomson Reuters newswire messages

and find a shift of information processing towards LSE on days where positive

news outweigh. Riordan et al. (2011) also report quote based information

shares for Chi-X, which are higher (56.77%) than for LSE (27.63%) or other

MTFs, like BATS (11.66%) or Turquoise (3.94%).

Both studies apply Hasbrouck information shares (see Hasbrouck (1995)) for

the attribution of information shares to the different trading venues. Al-

though information shares according to Hasbrouck is a widely used concept,

there are two main drawbacks. First, information shares require equidistant

data and, therefore, do not take the asynchronous nature of intraday data

(e.g., order arrivals or order book changes) into account. Second, if there is

contemporaneous correlation in the price innovations across different trad-

ing venues, the Hasbrouck information share of a market is not uniquely

determined, but given in terms of upper and lower bounds. Typically, these
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bounds cover a wide range, which makes the clear identification of a leading

venue impossible.

In this article we also apply Hasbrouck information shares, but extend the

analysis by using an autoregressive conditional intensity (ACI) model accord-

ing to Russell (1999) as a new measure. We are, therefore, able to contribute

to the literature on information processing after MiFID since, to our best

knowledge, this is the first study analyzing directly the intensity processes in

the fragmented European markets after MiFID. We analyze information pro-

cessing on the Swiss exchange and on Chi-X, which is the largest MTF com-

peting with the Swiss exchange2. Our contributions are twofold. First, we

use a multivariate intensity model which allows us to investigate the research

questions in a framework, which lies beyond the scope of previous studies.

By modelling the conditional intensities of the order arrivals on the Swiss

exchange and Chi-X, we can exploit the duration structure of the effective

order arrivals without the loss of information that results from time aggrega-

tion. Therefore, we can incorporate typical characteristics of asynchronous

order arrivals and we get unbiased point estimates for the information shares

of the two trading venues, rather than just upper and lower bounds. Second,

we use a new data set, since, to our best knowledge, this is the first study

analyzing information processing for Swiss stocks in the fragmented trading

landscape after the implementation of MiFID.

Our results suggest that there are significant cross effects between the in-

2According to Fidessa (fragmentation.fidessa.com) the Swiss exchange accounted for
50.48% of total trading volume in 2010, whereas Chi-X accounted for 12.07%. The MTFs
Bats Europe, Turquoise and Nasdaq Europe accounted together for 7.37% in the same
period.
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tensity processes of the trading venues. Furthermore, we provide evidence

that Chi-X is the leading market in terms of intensity based information

processing irrespective of the market capitalization of the stocks.

The remainder of this paper is organized as follows. The next section presents

the two methods that are used to analyze information processing for stocks

that are traded on multiple trading venues. In Section 2.1 we present infor-

mation shares according to Hasbrouck (1995). In Section 2.2 we introduce

the ACI model according to Russell (1999). Section 3 exhibits the data and

estimation details for the two models. Empirical results are presented and

discussed in Section 4. Finally, Section 5 concludes.

2 Measuring Information Processing

2.1 The Hasbrouck Information Shares

Information shares according to Hasbrouck (1995) (HIS) are a widely used

measure3 for the attribution of the share of price discovery to different trad-

ing venues. HIS show for different trading venues ”who moves first” (see

Hasbrouck (1995)). The basic idea is that prices4 of the same financial in-

strument on different trading venues are closely-linked and can, therefore, be

assumed to be cointegrated, i.e., a linear combination of the prices is station-

ary. We follow in the presentation of the model Hasbrouck (1995), Hasbrouck

(2002) and Storkenmaier and Wagener (2011).

If pSWX
t denotes the price on the Swiss exchange in period t and pCHI

t denotes

3See Bingcheng and Zivot (2010).
4The model is applicable to different types of prices, such as bid or ask prices, midquote

prices or transaction prices.
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the price on Chi-X in the same period for the same financial instrument,

then the price vector pt = (pSWX
t , pCHI

t )′ is driven by a common random walk

component rt, i.e.,

pt = rt + (εSWX
t , εCHI

t )′, (2.1)

with

rt = rt−1 + ut, (2.2)

where ut are uncorrelated with E(ut) = 0 and E(u2t ) = σ2
u. Based on the

cointegration relation there exists a representation as bivariate vector error

correction model (VECM) for the price vector pt, which is given as follows

Δpt = pt − pt−1 = αβ ′pt−1 +Γ1Δpt−1 +Γ2Δpt−2 + · · ·+ΓTΔpt−T + εt. (2.3)

The vector β defines the cointegration relation between the two prices and

vector α shows how fast prices adjust to deviations from the underlying

equilibrium price process. Γi, i ∈ {1, . . . , T} denote parameter matrices as-

sociated with the ith lag of Δpt. εt has zero mean and variance Σε. With

V ar(εt) = Σε, the variance of the random walk component of the price pro-

cess pt can be expressed as

σ2
u = ξΣεξ

′, (2.4)

where ξ denotes the row vector5 of long run impacts of innovations εt. As

can be seen from Equation 2.4, both markets contribute to the variance of

5ξ can be calculated as common row vector of β⊥
[
α′
⊥
(
In −∑T

i=1 Γi

)
β⊥

]−1

α′
⊥, where

⊥ denotes the orthogonal complement and In denotes a n-dimensional identity matrix. See
Johansen (1991), Engle and Granger (1987) and Kehrle and Peter (2011).
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the random walk component. If Σε is diagonal, i.e., the innovations εt exhibit

no correlation, the contribution of each market’s innovation to the random

walk innovation is given by

Sk =
ξ2kΣεkk

ξΣεξ′
, (2.5)

where Sk is defined as market k’s information share, ξk denotes the kth ele-

ment of ξ and Σεkk denotes the kth diagonal element of Σε.

As price innovations across markets are typically not uncorrelated, two sug-

gestions are given in Hasbrouck (1995) to minimize correlation and limit

the information shares. First, shorter time intervals for price aggregation

are proposed. As markets will typically react sequentially to events with

one market adjusting faster than the other, price aggregation over long time

spans will make the adjustment of the leading market and the reaction of the

other market look contemporaneous. This effect can be minimized by short-

ening the observation intervals. In this paper we follow Hasbrouck (2003)

and use one-second sampling intervals. Second, upper and lower bounds for

the information shares can be calculated as

HISk =
([ξC]k)

2

ξΣεξ′
, (2.6)

where C denotes the lower triangular matrix resulting from the Cholesky

factorization of Σε. The lower triangular structure of C leads to a hierarchy

among the trading venues which results in maximized information shares

for the first and minimized information shares for the second trading venue.
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Hasbrouck (1995) suggests to permute Σε and ξ to get an upper (lower)

bound for HISk, denoted by HISup (HISlow), by setting market k as first

(last) market. The mean of the upper and lower bound for HIS is then taken

as the measure for the information share of market k, i.e.,

HISk =
HISk

up +HISk
low

2
. (2.7)

There are two major drawbacks of HIS. As discussed above and stated in

Hasbrouck (1995), upper and lower bounds for HIS have to be calculated

because of contemporaneous correlation among price innovations. These

bounds can diverge considerably6, which makes the determination of a lead-

ing market in terms of information processing very difficult7. Moreover, the

upper and lower bound do not present statistical confidence bounds and tak-

ing the mean does not result in a statistically meaningful point estimate.

The second and major drawback is that the calculation of HIS requires

equidistant data, i.e., for the calculation of information shares a time aggre-

gation is necessary. This time aggregation over equidistant intervals (typi-

cally over a one-second or one-minute interval) leads to a loss of information

as the irregular structure of the arrival of price changes cannot be taken into

account. This problem is even more pronounced with the recent emergence

of high frequency trading, which lead to a considerable increase8 in electronic

messages (for instance quote changes).

6See Booth et al. (2002), Hupperets and Menkveld (2002) and Kehrle and Peter (2011),
who show not only the estimates of HIS, but also estimates of HISup and HISlow.

7See Grammig and Peter (2011).
8See Hendershott et al. (2011).
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2.2 The Autoregressive Conditional Intensity Model

Russell (1999) proposes a model which focuses on the intensities of the price

processes of different trading venues. Several authors applied this model

on different research questions. Kehrle and Peter (2011) analyze the price

discovery of US-listed Canadian stocks with the home market. Bauwens and

Hautsch (2006) present a generalization of Russell’s model with a latent factor

that jointly influences the individual intensities. Hall and Hautsch (2006,

2007) analyze the intensity processes of order arrivals and order book changes

for a sample of five stocks on the Australian stock exchange. All authors

emphasize the flexibility of the approach, as it does not require equidistant

data, but can be applied on asynchronous data.

Let K denote the number of different trading venues and Nk(t) be the count-

ing process associated with the kth point process, i.e., Nk(t) equals the num-

ber of k-type events up to time t. We define the point process {tki }nk

i=1 as the

sequence of changes of the quoted prices on the Swiss exchange (k = SWX)

and on Chi-X (k = CHI). The pooled point process {ti}ni=1 is simply the

combination of the individual k-type point processes and is associated with

the counting process N(t). The arrival times of the pooled process and

therefore of the individual k-type events are assumed to be distinct, i.e.,

0 < t1 < t2 < · · · < tn. Ft denotes the filtration of the pooled process and

λk(t,Ft) the intensity of the k-type point process, i.e.,

λk(t,Ft) = lim
Δ→0

P
{
Nk(t+Δ)−Nk(t) > 0, Nk′(t +Δ)−Nk′(t) = 0 | Ft

}
Δ

,

(2.8)

where k �= k′. This means λSWX(t,Ft) and λ
CHI(t,Ft) are the instantaneous
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probabilities at time t of a change in the order book of the Swiss exchange

and Chi-X, respectively.

In the extended ACI model of Russell (1999) the conditional intensity func-

tion of process k can be written as

λk(t,Ft) = λk0ψ
k
t φ

k
t , (2.9)

where λk0 denotes a baseline intensity function, ψk
t equals the actual inten-

sity process and φk
t captures seasonal effects. The pooled bivariate intensity

process ψt = (ψSWX
t , ψCHI

t )′ itself is parametrized as

ψt = exp
(
ψ̃N(t) + z′N(t)μ

k
)
, (2.10)

where ψ̃i is a vector autoregressive moving average (VARMA) process, z =

(z1, z2, . . . , zn)
′ denotes a vector of explanatory variables for market charac-

teristics and μk is the coefficient vector of z. Hall and Hautsch (2006, 2007)

show the importance of the incorporation of the current state of the market

in the modeling of the intensity processes. Moreover, they show a significant

improvement of the goodness of fit of the model. The VARMA process ψ̃i is

given by

ψ̃i =
∑

k∈{SWX,CHI}
(akεki−1 +Bψ̃i−1)y

k
i−1, (2.11)

where ak are (2×1) coefficient vectors and B denotes a (2×2) coefficient ma-

trix. yki are variables, indicating where the i
th event occurred, i.e., ySWX

i = 1 if

the ith event occurred on the Swiss exchange and zero otherwise and yCHI
i = 1

if the ith event occurred on Chi-X and zero otherwise. Due to the autoregres-
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sive structure of the intensity process the model is called an autoregressive

conditional intensity (ACI) model. In the terminology of Russell (1999),

Equation 2.11 determines an ACI(1,1) model as it contains one autoregres-

sive and one moving average component. Extending the model to a higher

order ACI(p,q) model is done straightforward by including the respective

number of lags of εki and ψ̃i. The vectors ak = (ak1, a
k
2)

′, k ∈ {SWX,CHI}
measure the impact of innovations of the point process of market k, εki , on

the intensity process of the Swiss exchange by ak1 and on the intensity process

of Chi-X by ak2. It is therefore clear that the k-type intensity process ψk
t and

the k-type conditional intensity function λk(t,Ft) are not only influenced by

k-type innovations, but also by innovations of the other point process, i.e.,

by quote changes of the other trading venue.

The off-diagonal elements of the autoregressive coefficient matrix B are set

to zero following Russell (1999), Bauwens and Hautsch (2006) and Kehrle

and Peter (2011), which makes

B =

⎛
⎜⎝ bSWX 0

0 bCHI

⎞
⎟⎠

a diagonal matrix and Equation 2.11 a diagonal ACI(1,1) model9. This

restriction implies that only the vectors ak cause cross effects of an innovation

on the intensity of the other point process.

The innovation in Equation 2.11 is based on the compensator, which is given

9See the terminology used by Russell (1999). In the remainder of this paper the term
ACI model is used as synonym for a diagonal ACI(1,1) model.
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by

Λk(tki−1, t
k
i ) =

∫ tki

tki−1

λk(u,Fu)du =
∑
j

∫ t̃j+1

t̃j

λk(u,Fu)du, (2.12)

i.e., by the piecewise integration of the conditional k-type intensity λk(t,Ft)

over all inter-event intervals [t̃j , t̃j+1] with tki−1 < t̃j < t̃j+1 ≤ tki . As in

Equation 2.11 innovations of both point processes have an impact on the

conditional k-type intensity λk(t,Ft), the k-type compensator Λk(tki−1, t
k
i )

also depends on the cross effects of the other point process.

According to the multivariate random time change theorem10 the processes

Λk(0, tki ), i = 1, . . . , nk, k ∈ {SWX,CHI} are Poisson processes with unit

intensity. As increments of a Poisson process, Λk(tki−1, t
k
i ) are iid standard

exponentially distributed. We follow Russell (1999) and define the innova-

tions in the VARMA process by

εki = 1− Λk(tki−1, t
k
i ). (2.13)

The compensator Λk(tki−1, t
k
i ) expresses the expected number of events within

the interval [tki−1, t
k
i ]. Hence, a positive innovation term εki implies that the

arrival rate was underestimated and a negative innovation term implies an

overestimation of the arrival rate. As can be seen from Equation 2.11, an

underestimation of the arrival rate (εki > 0) leads to an increase in the inten-

sity process ψk
t and the k-type conditional intensity function λk(t,Ft) and an

overestimation (εki < 0) to a decrease. As stated in Bauwens and Hautsch

(2006), according to the definition the innovation term depends only on the

time between past events and on past intensities, which eases computation.

10See also Bowsher (2007), Bauwens and Hautsch (2006) and Brown and Nair (1988).
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The log-likelihood function of the ACI model can be expressed in terms of the

intensity function solely (see Bauwens and Hautsch (2006) and Karr (1991)).

For the bivariate point process the log-likelihood function logL(θ) is given

by

logL(θ) =
∑

k∈{SWX,CHI}

n∑
i=1

(−Λk(ti−1, ti) + yki log λ
k(ti,Fti)

)
, (2.14)

where θ denotes the vector of the model parameters. We follow Kehrle and

Peter (2011) and apply robust estimators11 for the standard errors of the com-

ponents of θ. These robust estimators for the standard errors are consistent

with quasi-maximum likelihood estimators for θ in case of a misspecification

of the model.

The empirical distribution of the residuals of the estimated innovations ε̃ki =

Λk(tki−1, t
k
i ) is then compared to the theoretical distribution iid Exp(1) for

testing the model specification. We follow previous studies (e.g., Russell

(1999), Bauwens and Hautsch (2006), Kehrle and Peter (2011) and Hall and

Hautsch (2006, 2007)) and report summary statistics of the series of esti-

mated residuals and a Ljung-Box Test with 20 lags (LB20) for autocorrela-

tion. Additionally, a test for overdispersion is applied, which follows Engle

and Russell (1998), who propose the test statistic ODk =
√

nk

8(σk
ε̃ )

2 , where

nk denotes the number of k-type residuals and (σk
ε̃ )

2 the empirical variance.

ODk is asymptotically standard normally distributed under the null hypoth-

esis (ε̃ki ∼ Exp(1)).

11The robust variance-covariance matrix of the components of θ is calculated following

Kehrle and Peter (2011) as Σθ̃ = H−1E
[(

δ logL
δθ

)(
δ logL

δθ

)]
H−1, where H denotes the

estimator of the Hessian matrix.
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As we are particularly interested in the cross effects of the intensity processes

of the two markets, we follow Kehrle and Peter (2011) and calculate intensity

based information shares for the two trading venues (IISk, k ∈ {SWX, CHI})
based on the respective impulse response functions. We define the intensity

based information share as

IISSWX =

|aSWX
2 |

|aCHI
2 |

|aCHI
1 |

|aSWX
1 | +

|aSWX
2 |

|aCHI
2 |

and IISCHI =

|aCHI
1 |

|aSWX
1 |

|aCHI
1 |

|aSWX
1 | +

|aSWX
2 |
|aCHI

2 |
, (2.15)

which is the ratio of the absolute impact12 of a cross effect (e.g.,
∣∣aSWX

2

∣∣
denotes the absolute impact of an innovation shock at Swiss exchange on Chi-

X’s intensity) relative to the absolute impact of a shock in the same market

(e.g.,
∣∣aCHI

2

∣∣ denotes the absolute impact of an innovation shock at Chi-X on

Chi-X’s intensity). This measure is then standardized by
|aCHI

1 |
|aSWX

1 |+
|aSWX

2 |
|aCHI

2 | to lie

between zero and one. Higher values of IISSWX indicate that shocks in the

point process of the Swiss exchange have a relatively larger absolute effect

on Chi-X’s intensity process and vice versa. The delta method is applied to

calculate standard errors of IISSWX and IISCHI.

3 Data and Estimation

We use quote data from the Thomson Reuters Tick History database for 28

Swiss stocks which are traded on the Swiss exchange and on Chi-X. Table 1

12In contrast to the definition of IIS in Kehrle and Peter (2011), we take the absolute
values of ak for the calculation of IIS, as we do not discard negative values for the
coefficients ak, i.e., we allow a shock in one market to have a negative impact on the
intensity of another market.
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gives the company names and ticker symbols of the stocks in our sample.

[Insert Table 1 here]

The quote data contains changes in the limit order book of the Swiss ex-

change and Chi-X on the best bid and ask level and is timestamped to the

millisecond.

3.1 Estimation of Hasbrouck Information Shares

For the calculation of Hasbrouck Information Shares we build one-second

snapshots13 of historical order books containing the best bid and ask price.

Based on the series of midprices14 the VECM model according to Equation

2.3 is estimated with T = 300 lags, i.e., with a memory of 5 minutes. As

for every lag i a (2 × 2) matrix Γi has to be estimated, the model includes

roughly 2×2×300 = 1, 200 coefficients. In order to reduce the complexity we

follow Hasbrouck (2003) and use quadratic distributed lags over lags 1− 10,

11− 20 and 21− 30 and constant coefficients over lags 31− 60, 61− 120 and

121 − 300. Upper (HISup) and lower (HISlow) bounds for the information

shares are calculated on a daily basis and HIS is set to the arithmetic mean

of the bounds, i.e.,

HISk =
HISk

up +HISk
low

2
, k ∈ {SWX, CHI}. (3.1)

13One second sampling intervals are also used by Hasbrouck (2003), Hendershott and
Jones (2005) and Tse et al. (2006).

14Erroneous quotes are filtered by applying a rule that discards all midprices, where the
deviation between the prices exceeds 5%.
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3.2 Estimation of Intensity Based ACI Model

For the determination of the intensity processes we build point processes for

the two trading venues based on the interarrival times between two consec-

utive quote changes, denoted by τki = tki − tki−1, where k = SWX denotes a

quote change in the limit order book of the Swiss exchange and k = CHI in

the limit order book of Chi-X. The two series of individual interarrival times

are then combined to the pooled series of interarrival times denoted by τi.

Subsequently, overnight spells and quote changes before 9:30am (CET) and

after 4:30pm (CET) are removed to eliminate any disturbances from open-

ing and closing and, as the simultaneous arrival of two quote changes is not

permitted in the model, quote changes with the same timestamp are skipped.

Furthermore, we use price marks15 for the thinning of the processes following

Engle and Russell (1997), Bauwens and Hautsch (2006) and Kehrle and Peter

(2011). First, we calculate the mean midquote change per day. Second, we

retain quote changes of the individual series of interarrival times of the two

venues where the absolute cumulative price change exceeds the threshold of

50 times the mean midquote change per day, which is consistent with previous

studies16. With the thinned processes, we can disentangle information driven

price changes from pure noise.

Following Kehrle and Peter (2011) we use polynomial and trigonometric time

functions according to Eubank and Speckman (1990) for the adjustment of

15Price marks are information that is observed simultaneously with the arrival of a price
change, e.g., the change in the midquotes.

16The chosen threshold leads to a median threshold of 0.06 Swiss Francs, which lies
between the average thresholds used by Kehrle and Peter (2011) and Bauwens and Hautsch
(2006). Hall and Hautsch (2006) use a thinning algorithm based on the order volume which
skips 94.3% of all observations in their initial sample.
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intraday patterns of the pooled process. The interarrival times of the pooled

process (τi) are regressed on polynomial and trigonometric time functions

according to the following regression equation

τi = β0 +
d∑

j=1

βp
j t

j
i +

δ∑
j=1

[βc
j cos(jti) + βs

j sin(jti)] + εi. (3.2)

We select the number of polynomial (d) and trigonometric (δ) regressors

as the combination that minimizes the generalized cross-validation criteria

GCV given by

GCV =
nRSS

(n− 2δ − d− 1)2
, (3.3)

where RSS is the residual sum of squares, n the number of observations and

GCV is evaluated for d ∈ {1, . . . , 5} and δ ∈ {1, . . . , 5}. Figure 1 shows a

typical intraday pattern of interarrival times, which follows a ∩-shape, i.e.,
the time periods between two consecutive price changes are lower at the

beginning and the end of the trading day and exhibit a maximum around

noon.

[Insert Figure 1 here]

Additionally any linear trend, which would indicate a general increase or

decrease in interarrival times due to a generally decreasing or increasing

market activity, is removed. The series of the adjusted pooled process of

interarrival times is then calculated by the division of the interarrival times

of the pooled process (τi) by the typical intraday pattern (φi), which results

from Equation 3.2, i.e.,

τ̃i =
τi
φi

. (3.4)
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Based on the adjusted interarrival times τ̃i the ACI(1,1) model in Equation

2.11 is estimated by the maximization of the log-likelihood function given by

Equation 2.14 with the BHHH17 algorithm and numerical derivatives18.

The baseline intensity function λk0 in Equation 2.9 is modeled in dependence

of a baseline intensity specific to the trading venue and the backward recur-

rence time associated with the point process of the trading venue. In detail,

we follow Bauwens and Hautsch (2006) and Hall and Hautsch (2007) and

model λk0 as a Burr-type hazard function, i.e.,

λk0(t) = exp(ωk)
Uk(t)

γk
1−1

1 + γk2U
k(t)γ

k
1

, (3.5)

where Uk(t) denotes the backward recurrence time at time t of the kth point

process, i.e., in Equation 3.5 Uk(t) is given and ωk, γk1 and γk2 have to be

estimated. We restrict the baseline intensity function λk0 of process k to

depend only on its own backward recurrence time19. Therefore, we can ensure

that cross effects are captured by the vectors ak solely.

For the incorporation of the current state of the market by vector z, the

current liquidity, we follow Hall and Hautsch (2006) and include the rela-

tive spread of the respective market (RSk), the logarithm of the cumulated

volume of the bid and ask side of the respective market (BV k, AV k), the

cumulated midquote price change (MQk
15) and the volatility (V OLk

15) over

the last 15 minutes, k ∈ {SWX, CHI}. This choice of variables reflects the

17See Berndt et al. (1974).
18See also Engle and Russell (1997) and Russell (1999)
19Bauwens and Hautsch (2006) propose a parameterization that includes also the back-

ward recurrence time of the other k − 1 processes. However, in the numerical estimation
they restrict the Burr-type hazard functions to depend on the backward recurrence time
of the own process solely.
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multi-dimensionality of liquidity20.

4 Empirical Results

We present descriptive statistics for the series of adjusted order book changes

for the Swiss exchange and Chi-X in Table 2.

[Insert Table 2 here]

The average number of midquote price changes Q per stock for the Pooled

Sample during the sample period January 1 to March 31, 2010 is 1, 542 for

the Swiss exchange and 1, 379 for Chi-X with mean price durations of 35 and

56 minutes, respectively. Bauwens and Hautsch (2006) report mean price

durations in the range of 12 − 20 minutes for their sample of five highly

liquid NYSE stocks, which is comparable to our findings for the first quartile

of subsample Stocks L where we find average price durations in the range of

13 − 29 minutes. Overall, the number of midquote price changes is higher

on the Swiss exchange and for the stocks in subsample Stocks L, where this

difference is significant for the Swiss exchange.

4.1 Empirical Results from HIS

Table 3 shows the average daily HIS per stock for the Pooled Sample and

for the subsamples Stocks L and Stocks S.

[Insert Table 3 here]

20Liquidity is understood as multi-dimensional concept and, therefore, multiple mea-
sures are used for capturing different dimensions of liquidity. See Chordia et al. (2000)
and Chordia et al. (2001).
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The mean information share of the Swiss exchange for the Pooled Sample

equals 53.25%, which would indicate that the Swiss exchange has a higher

information share than Chi-X. However, the median information share of

the Swiss exchange is 48.16%, which is slightly below 50%. The problem of

clearly identifying the leading venue in terms of the information share arises

with the consideration of the upper and lower bounds of HIS. Figure 2

shows the estimated HIS together with the upper and lower bounds HISup

and HISlow, respectively.

[Insert Figure 2 here]

As already stated, HISSWX and HISCHI are calculated as mean of the re-

spective upper and lower bounds HISup and HISlow. This means that for

the Pooled Sample the information share of the Swiss exchange lies between

40.47% (HISSWX
low ) and 66.04% (HISSWX

up ) and the information share of Chi-

X between 33.96% (HISCHI
low ) and 59.53% (HISCHI

up ), respectively. No trading

venue has an information share which lies clearly above or below 50%, which

makes the identification of the leading trading venue for the Pooled Sample

impossible.

The same holds true for subsample Stocks L. Although the mean and the

median information share of Chi-X are larger than 50%, according to the

upper and lower bounds, a clear identification of the leading venue is not

possible as the mean of HISSWX
low lies with 27.92% below 50% and the mean

of HISSWX
up with 60.33% above 50%.

For subsample S the mean and median information share is higher for the

Swiss exchange than for Chi-X with a mean information share of 62.38%
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and a median information share of 60.92% for the Swiss exchange. For this

subsample the range between upper and lower bounds of HIS are disjoint,

which allows the identification of the Swiss exchange as trading venue ”who

moves first”.

Overall, the question which trading venue is actually leading in terms of

Hasbrouck information shares cannot be answered conclusively. For the large

caps some evidence is found that Chi-X is the leading market, which would

confirm the results of Storkenmaier and Wagener (2011) and Riordan et al.

(2011). However, upper and lower bounds of HIS do not allow a clear

identification of the leading venue. For the small caps evidence suggests that

the Swiss exchange is the leading market.

4.2 Empirical Results from ACI Model

We present the estimation results for the bivariate ACI(1,1) model outlined

in Section 2.2 in Table 4. Estimation is done by the maximization21 of the

log-likelihood function given in Equation 2.14.

[Insert Table 4 here]

As can be seen from Table 4, the estimates of aSWX
1 and aCHI

2 are positive for

all stocks, which indicates positive autocorrelation in the intensities of the

two trading venues. The coefficients are significantly positive for 64% and

71% of the stocks in the Pooled Sample, for 71% and 79% of the stocks in

subsample Stocks L and for 57% and 64% of the stocks in subsample Stocks

21Maximization is performed without constraints for ωk and ak. bk are constraint to lie
between 0 and 1 to ensure stationarity of the VARMA process defined in Equation 2.11.
γk are constraint to be positive.
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S. An underestimation of the intensity on the Swiss exchange (εSWX
i > 0),

therefore, leads to an increase in the Swiss exchange’s intensity and the same

holds true for Chi-X where an underestimation of the intensity (εCHI
i > 0)

also increases Chi-X’s intensity.

The coefficients aSWX
2 and aCHI

1 are positive and significant for the majority

of the stocks of the Pooled Sample, which means that there are significant

spillover effects between the different intensity processes22. Furthermore, the

first quartiles for both coefficients are positive. For subsample Stocks L the

mean of the coefficient aCHI
1 is negative, however, the median and the first

quartile are positive. The coefficients are significant for 64% and 71% of the

stocks in subsample Stocks L. This means that an intensity shock on one

trading venue directly affects the intensity on the other trading venue, e.g.,

an underestimation of the Swiss exchange’s intensity (εSWX
i > 0) leads to an

increase of the intensity on Chi-X and vice versa.

The persistence of innovation shocks, measured with the coefficients bSWX

and bCHI, is high and significant for the majority of the stocks. The mean

of bSWX, which measures the persistence of the innovation shocks on the

Swiss exchange, equals 0.906 for the Pooled Sample and 0.874 and 0.938 for

Stocks L and Stocks S, respectively. For Chi-X the persistence is similar with

bCHI = 0.890 for the Pooled Sample and 0.935 and 0.844 for Stocks L and

Stocks S, respectively. These findings are consistent with findings from other

authors (e.g., Engle and Russell (1998) and Kehrle and Peter (2011)).

22Similar findings are documented in other studies using the ACI model, e.g., Kehrle
and Peter (2011), Bauwens and Hautsch (2006) and Hall and Hautsch (2006, 2007).

21



The baseline intensity functions show rather stable coefficients γk1 for the

dependence on the backward recurrence time Uk(t), where both Burr-type

hazard functions have a positive but decreasing slope, which means that the

baseline intensity λk0(t) increases between two k-type events. These findings

correspond to the results of Bauwens and Hautsch (2006), who estimate

very similar coefficients γk1 for their backward recurrence functions. There is

considerable cross-sectional variability in the coefficients ωk, which reflects

the variability in the baseline intensity functions among the different stocks.

We control for the current state of the market and liquidity situation by

incorporating the five state variables relative spread (RSk), logarithm of the

cumulated volume of the bid and ask side (BV k, AV k), cumulated midquote

price change (MQk
15) and volatility (V OLk

15) over the last 15 minutes, k ∈
{SWX, CHI}. Table 5 shows the estimation results for the impact of the

state variables.

[Insert Table 5 here]

The coefficient of RSk is negative and significant for the majority of the

stocks for the Swiss exchange and positive for Chi-X. The coefficients for the

cumulated depth on the other hand are positive and predominantly signifi-

cant for the Swiss exchange and negative for Chi-X. This means high liquidity

on the Swiss exchange increases intensity on the Swiss exchange while high

liquidity on Chi-X is associated with decreasing intensity on Chi-X.

The coefficients of the cumulated midquote price change over the last 15

minutes are negative for both trading venues and both subsamples meaning

that a recent increase of the midquote price is associated with a decrease of
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the intensity of the two trading venues. This corresponds to the findings of

Hall and Hautsch (2006) who find evidence that positive midquote returns

decrease the overall intensity on the ask side of the order book, while in-

creasing the intensity of the bid side of the order book. A possible reason

for the net negative effect of recent midquote returns and intensity, which is

also discussed in Hall and Hautsch (2006), could be liquidity considerations

which lead to an overall decrease of the intensity of order book changes after

a significant midquote change.

Findings for recent volatility are mixed for the different stocks and subsam-

ples. Overall, the median coefficients for V OL15 tend to be positive (e.g., for

Chi-X in the Pooled Sample and in subsample Stocks S and for both trad-

ing venues for subsample Stocks L). This is consistent with findings from

Hall and Hautsch (2006, 2007) who also find positive relations between past

volatility and intensity processes.

Hall and Hautsch (2007) show that including state variables that describe

the current state of the market significantly improves residual diagnostics,

which are displayed in Table 6 for the three subsamples.

[Insert Table 6 here]

If the model is correctly specified, the residuals ε̃ should follow an iid Exp(1)

distribution, i.e., the mean of the empirical residuals and their standard de-

viation should be equal to 1. Table 6 shows summary and test statistics for

the empirical residuals of the Pooled Sample and for the two subsamples.

The mean and median of ε̃ki are close to 1 for the Swiss exchange and Chi-X

for both subsamples. The average standard deviation of the residuals σε̃ is
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0.76 and 0.75 for the Swiss exchange and for Chi-X, respectively, which indi-

cates that the residuals are slightly underdispersed. This is consistent with

the test statistic for overdispersion ODk, which is negative and indicates an

underdispersion. As proxy for the iid property, we present two test statistics

for autocorrelation, namely the first order autocorrelation coefficients ACk
1

and the Ljung-Box test statistic LBk
20. While ACk

1 should be close to zero,

the critical value for LBk
20 equals 37.57 on a 99% confidence level. Both

test statistics indicate that the residuals exhibit some autocorrelation, where

the degree of autocorrelation for the residuals Chi-X is smaller with a mean

ACCHI
1 of 0.01 and a mean LBCHI

20 of 36.70. The results from the residual di-

agnostics are consistent for the full sample and the two subsamples. Overall,

the model fit is comparable to previous studies using autoregressive condi-

tional intensity models, e.g., Hall and Hautsch (2006, 2007) and Kehrle and

Peter (2011).

Based on the estimated ACI(1,1) model we calculate intensity based infor-

mation shares for the Pooled Sample and the two subsamples. Table 7 gives

the results.

[Insert Table 7 here]

The intensity based information share for Chi-X equals 63.4% in terms of

the mean and 66.4% in terms of the median which means that for the Pooled

Sample Chi-X is the leading market in terms of the intensity based informa-

tion share. The lead of Chi-X is highly significant for 42.9% of the Pooled

Sample, whereas the lead of the Swiss exchange is only significant for 3.6%

of the stocks. These findings are supported by the analysis of the two sub-
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samples. For Stocks L the mean of IISCHI equals 62.4% and for 57.1% of

the stocks in subsample Stocks L the lead of Chi-X is highly significant. The

same holds true for subsample Stocks S with a mean IISCHI of 64.4%. How-

ever, the lead of Chi-X is only significant at the 1% level for 28.6% of the

stocks. There is no stock in subsample Stocks S for which the Swiss exchange

is significantly leading at the 1% or 5% level.

Overall, we find strong evidence that Chi-X is the leading market in terms of

the intensity based information shares, which, in contrast to the Hasbrouck

information shares, take the effective duration structure of the order book

changes into account. Although the first quartiles of IISCHI lie below 50%

for the Pooled Sample and subsample Stocks L, the mean estimates, which

in case of the intensity based information shares are point estimates for the

true values, lie well above the 50% threshold and are confirmed by respective

significance tests.

The findings from the analysis of the intensity based information shares con-

firm our findings from the Hasbrouck information shares for subsample Stocks

L, which suggested that Chi-X is the leading trading venue. The intensity

based information shares also confirm the lead of Chi-X for the second sub-

sample Stocks S, where Hasbrouck information shares suggested a lead of

the Swiss exchange. Overall, by taking the effective duration structure into

account we calculated unbiased point estimates for the information share,

which suggest that Chi-X is the leading market in terms of intensity based

information processing irrespective of the market capitalization of the stocks.
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5 Conclusion

The exchange landscape in Europe changed fundamentally with the imple-

mentation of MiFID in 2007. The emergence of several MTFs lead to a

fragmentation of trading in European equities. A key question when a stock

is traded in a fragmented market is, where information is processed, i.e.,

which trading venue is leading in incorporating new information.

Previous studies analyzed information processing after MiFID with the well

known Hasbrouck information shares. We also apply Hasbrouck information

shares with inconclusive results. Evidence suggests that Chi-X is the leading

trading venue for larger stocks, whereas for smaller stocks the Swiss exchange

is still leading. However, overall the clear identification of the leading venue

according to Hasbrouck information shares is not possible. This finding stems

from the fact that Hasbrouck information shares do not result in a point

estimate of the information shares, but rather in upper and lower bounds,

which differ significantly.

In this article a new method for the analysis of information processing is

used by the calculation of intensity based information shares. By applying

an autoregressive conditional intensity model, we calculate intensity based

information shares, which take the effective irregular duration structure of

order book changes into account. Furthermore, the autoregressive intensity

model allows to calculate statistically meaningful point estimates for the

information shares of the respective trading venues.

We find significant cross effects between the intensity processes of the Swiss

exchange and Chi-X. Furthermore, we provide evidence that Chi-X is the
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leading market in terms of intensity based information processing irrespective

of the market capitalization of the stocks.
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Table 1 – Final Sample
The table shows the 28 companies contained in our final sample.
The sample consists of Swiss stocks that are listed on the Swiss
exchange and on Chi-X. MCAP denotes the average daily market
capitalization in billion Swiss francs over the first quarter 2010.
The full sample is divided into two subsamples, denoted by Stocks
L and Stocks S.

Company Symbol MCAP Subsample
Nestle NESN 188.2 Stocks L
Novartis NOVN 150.9
Roche ROG 125.5
Credit Suisse CSGN 59.8
UBS UBSN 56.0
ABB ABBN 48.9
Zurich Financial Services ZURN 36.6
Syngenta SYNN 26.9
Holcim HOLN 24.9
Swisscom SCMN 19.9
Richemont CFR 19.7
Swiss Re RUKN 18.1
Synthes SYST 15.8
Kuehne + Nagel KNIN 12.3
SGS SGSN 11.0 Stocks S
Adecco ADEN 10.9
Swatch Group I UHR 9.3
Givaudan GIVN 7.7
Geberit GEBN 7.7
Actelion ATLN 6.7
Baloise BALN 4.6
Swiss Life Holding SLHN 4.4
Lonza LONN 4.3
Nobel Biocare NOBN 3.8
Logitech LOGN 3.4
Clariant CLN 2.8
Petroplus PPHN 1.6
OC Oerlikon OERL 0.5
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Table 2 – Descriptive Statistics
The table shows descriptive statistics of the number of quote revi-
sions Q and interarrival times τ in seconds for the thinned process
of order arrivals for the Swiss exchange (SWX) and Chi-X (CHI).
For the thinning process mean midquote changes per day are cal-
culated and quote changes are retained where the absolute cumula-
tive price change exceeds 50 times the mean midquote change per
day. Panel A covers the Pooled Sample and Panel B and Panel
C the subsamples Stocks L and Stocks S, respectively. The mean,
median, first and third quartile are given over the sample period
January 1 to March 31, 2010. Panel D presents the differences in
the means and medians between subsamples Stocks L and Stocks S,
together with p-values for significant differences between the means
and medians, respectively.

Panel A: Pooled Sample
QSWX QCHI τSWX τCHI

Mean 1,542 1,379 2,081 3,337
Median 1,223 1,179 1,687 2,942
Q75 1,925 1,587 2,827 4,423
Q25 830 574 1,016 2,010
Panel B: Stocks L

QSWX QCHI τSWX τCHI

Mean 1,997 1,785 2,017 3,405
Median 1,864 1,511 1,054 2,603
Q75 2,924 2,007 3,272 4,931
Q25 982 561 805 1,741
Panel C: Stocks S

QSWX QCHI τSWX τCHI

Mean 1,087 973 2,145 3,270
Median 1,049 1,139 2,068 2,942
Q75 1,308 1,249 2,819 4,353
Q25 823 587 1,491 2,474
Panel D: Diff. Stocks L - Stocks S

QSWX QCHI τSWX τCHI

Mean 910 812 -128 135
p-value 0.02 0.11 0.82 0.84
Median 815 372 -1,014 -339
p-value 0.06 0.18 0.12 0.60
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Table 3 – Hasbrouck Information Shares
The table shows the average daily mean, median, first and third
quartile of the Hasbrouck information shares (HIS) together with
the upper and lower bounds (HISup and HISlow) for the Swiss
exchange (SWX) and for Chi-X (CHI) over the sample period Jan-
uary 1 to March 31, 2010. Panel A covers the Pooled Sample and
Panel B and Panel C the subsamples Stocks L and Stocks S, re-
spectively. The information shares are calculated as daily means
of the upper and lower bound.

Panel A: Pooled Sample
HISSWX HISCHI HISSWX

up HISCHI
up HISSWX

low HISCHI
low

Mean 53.25% 46.75% 66.04% 59.53% 40.47% 33.96%
Median 48.16% 51.84% 63.94% 67.55% 32.45% 36.06%
Q75 67.62% 63.50% 77.49% 81.23% 58.80% 45.87%
Q25 36.50% 32.38% 54.13% 41.20% 18.77% 22.51%
Panel B: Stocks L

HISSWX HISCHI HISSWX
up HISCHI

up HISSWX
low HISCHI

low

Mean 44.12% 55.88% 60.33% 72.08% 27.92% 39.67%
Median 41.34% 58.66% 58.87% 75.92% 24.08% 41.13%
Q75 51.65% 67.23% 68.21% 85.44% 35.74% 49.10%
Q25 32.77% 48.35% 50.90% 64.26% 14.56% 31.79%
Panel C: Stocks S

HISSWX HISCHI HISSWX
up HISCHI

up HISSWX
low HISCHI

low

Mean 62.38% 37.62% 71.74% 46.98% 53.02% 28.26%
Median 60.92% 39.08% 71.96% 49.07% 50.93% 28.04%
Q75 81.86% 55.73% 86.46% 71.10% 78.18% 41.15%
Q25 44.27% 18.14% 58.85% 21.82% 28.90% 13.54%
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Table 7 – Intensity Based Information Shares
The table shows the intensity based information shares IISSWX =

|aSWX
2 |
|aCHI

2 |
|aCHI

1 |
|aSWX

1 |+
|aSWX

2 |
|aCHI

2 |
and IISCHI =

|aCHI
1 |

|aSWX
1 |

|aCHI
1 |

|aSWX
1 |+

|aSWX
2 |
|aCHI

2 |
, where the pa-

rameters ak1 and ak2 , k ∈ {SWX, CHI}, are estimates from the
bivariate autoregressive conditional intensity (ACI) model for the
intensity of order book changes of the Swiss exchange (SWX) and
Chi-X (CHI) over the sample period January 1 to March 31, 2010.
Panel A covers stocks from the Pooled Sample and Panel B and
Panel C stocks from the subsamples Stocks L and Stocks S, respec-
tively. Lead 95% and Lead 99% denote the fraction of stocks in the
respective subsamples, where the intensity based information share
of one market is significantly higher than 50% with a confidence
level of 95% and 99%, respectively.

Panel A: Pooled Sample
IISSWX IISCHI

Mean 36.6% 63.4%
Median 33.6% 66.4%
Q75 52.8% 83.7%
Q25 16.3% 47.2%
Lead 95% 7.1% 46.4%
Lead 99% 3.6% 42.9%
Panel B: Stocks L

IISSWX IISCHI

Mean 37.6% 62.4%
Median 42.1% 57.9%
Q75 57.3% 84.0%
Q25 16.0% 42.7%
Lead 95% 14.3% 57.1%
Lead 99% 7.1% 57.1%
Panel C: Stocks S

IISSWX IISCHI

Mean 35.6% 64.4%
Median 31.1% 68.9%
Q75 44.6% 83.3%
Q25 16.7% 55.4%
Lead 95% 0.0% 35.7%
Lead 99% 0.0% 28.6%
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