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Abstract
The increased availability of high-frequency data provides new tools for forecasting of variances and

covariances between assets. However, recent realized (co)variance models may su�er from a `curse of
dimensionality' problem similar to that of multivariate GARCH speci�cations. As a result, they need
strong parameter restrictions, in order to avoid non-interpretability of model coe�cients, as in the
matrix and log exponential representations. Among the proposed models, the Wishart autoregressive
model introduced by Gourieroux et al. (2007) analyzes the realized covariance matrices without any
restriction on the parameters while maintaining coe�cient interpretability. Indeed, the model, under
mild stationarity conditions, provides positive de�nite forecasts for the realized covariance matrices.
Unfortunately, it is still not feasible for large asset cross-section dimensions. In this paper we propose
a restricted parametrization of the Wishart Autoregressive model which is feasible even with a large
cross-section of assets. In particular, we assume that the asset variances-covariances have no or limited
spillover and that their dynamic is sector-speci�c. In addition, we propose a Wishart-based gener-
alization of the HAR model of Corsi (2004). We present an empirical application based on variance
forecasting and risk evaluation of a portfolio of two US treasury bills and two exchange rates. We
compare our restricted speci�cations with the traditional WAR parameterizations. Our results show
that the restrictions may be supported by the data and that the risk evaluations of the models are
extremely close. This con�rms that our model can be safely used in a large cross-sectional dimension
given that it provides results similar to fully parameterized speci�cations.
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1 Introduction
The increased availability of high-frequency data provides new tools for forecasting variances and co-
variances between assets. In particular, after the seminal paper by Andersen and Bollerslev (1998), the
literature on realized volatility has grown enormously; see McAleer and Medeiros (2006) for a review.

While most works has focused on the study of univariate series, recently there has been growing theoret-
ical and empirical interest in extending the results for the univariate process to a multivariate framework.
In this context, two pioneering contributions have been made by Barndor�-Nielsen and Shephard (2004)
and Bandi and Russel (2005). Barndor�-Nielsen and Shephard (2004) did not consider the presence of
microstructure noise, whereas of the noise has been considered in Bandi and Russel (2005).

Alternative approaches to the high-frequency covariance estimator have recently been introduced by
Hayashi and Yoshida (2005, 2006), Sheppard (2006) and Zhang (2006), among others. For example, instead
of using calendar returns, the Hayashi and Yoshida estimator (HY) is based on overlapping tick-by-tick
returns. Sheppard (2006) analyzed the conditions under which the realized covariance is an unbiased and
consistent estimator of the integrated covariance. Zhang (2006) also studied the e�ects of microstructure
noise and non-synchronous trading in the estimation of integrated covariance between assets.

Although the literature on multivariate extensions of the realized variance regarding the de�nition of
new estimators of the realized covariances resulted in a notable amount of academic works, only a few
papers provide �nancial applications for these new estimators.

One explanation for the scarcity of empirical contributions in multivariate realized volatility analysis
is the di�culty in �nding a dynamic speci�cation of a stochastic volatility matrix which satis�es the
symmetry and positivity properties of each forecasted matrix, does not su�er from the so called `curse of
dimensionality' and possesses a closed-form expression for the forecasts at any horizon.

In an interesting paper, de Pooter et al. (2006) investigate the bene�ts of high-frequency intraday
data when constructing mean-variance e�cient stock portfolios with daily rebalancing from the individual
constituents of the S&P 100 index. The author analyzed the issue of determining the optimal sampling
frequency, as judged by the performances of the estimated portfolios. As in Fleming et al. (2001, 2003),
and building on the work of Foster and Nelson (1996) and Andreou and Ghysels (2002), in this paper a
rolling window volatility estimator is used to forecast the conditional variance matrix Vt;h:bVt;h = exp(��h)bVt�1;h + �h exp(��)Yt�1 (1)

where �h can be estimated by means of maximum likelihood for the model

rt = bV 1=2
t;h zt (2)

with zt i:i:d:� N(0; I) and Yt as the realized covariance matrix estimated using I intraday returns of equal
length h � 1=I. rt is the usual n � 1 vector of daily returns at time t of the n assets composing the
portfolio.

In a related paper, Bandi et al. (2006) evaluate the economic bene�ts of methods that have been
suggested to optimally sample (in a MSE sense) high-frequency returns data for the purpose of realized
variance and covariance estimation in the presence of market microstructure noise. However, their approach
is di�erent from that in de Pooter et al. (2006); their method is designed to select the time-varying optimal
sampling frequency for each entry in the covariance matrix based on MSE criteria. Subsequently, the
economic gains yielded by the MSE-based optimal sampling are evaluated by comparing the utility gains
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provided by optimally sampled realized covariance with realized covariances based on �xed intervals. To
forecast each entry of the covariance matrix, they adopted an ARFIMA(2; d; 2) model.

An alternative way to forecast the realized variance/covariance matrix is to adopt a matrix transfor-
mation that guarantees the positive de�nitiveness of the forecasts.

Bauer and Vorkink (2007) present a new matrix logarithm model of realized covariance stock returns
which uses latent factors as functions of both lagged volatility and returns. The model has several ad-
vantages in that it is parsimonious, does not impose parametric restrictions, and yields positive de�nite
covariance matrices.

In Chiriac and Voev (2008) a model based on a multivariate, fractionally integrated autoregressive
moving average (ARMA) process for the elements of the Cholesky factors of the observed matrix series
is proposed. Denoting with Yt the n � n realized covariance matrix at time t, with n the number of
assets considered, the Cholesky decomposition of Yt is given by the upper triangular matrix Pt, for which
PtP 0t = Yt. Then the following model is used

�(L)D(L)(Xt � �) = �(L)�t; �t � N(0;�t): (3)

Xt = vech(Pt) is the vector obtained by stacking the upper triangular components of the matrix Pt in
a vector, �(L) and �(L) are matrix lag polynomials and D(L) = diag[(1 � L)d1 ; : : : ; (1 � L)dm ], where
d1; : : : ; dm are the degrees of fractional integration of each of the m elements of the vector Xt. � is a vector
of constants. Parameters in (3) are not directly interpretable. However, the dynamic linkages among the
variances and covariances series as functions of those parameters are derived.

While both the matrix logarithmic transformation and the Cholesky decomposition have the advantage
of guaranteeing the positive de�niteness of the covariance matrix, they also have a major drawback: the
coe�cients of the model totally rule out any possible interpretation. In other words, there is no way to
check the signi�cance of the interactions between variances and covariances and thus to reduce the number
of parameters in the model by imposing no or limited spillover between the variances and covariances.

A solution to this problem is represented by the Wishart autoregressive model (WAR) proposed by
Gourieroux et al. (2007). The model is based on a dynamic extension of the Wishart distribution. This
speci�cation is compatible with �nancial theory, satis�es the constraints on volatility matrices, has a
�exible form and, most importantly, maintains the coe�cients' interpretability.

The main innovation proposed in this paper is the introduction of a speci�c parametrization of the
WAR model. In particular, we show how to achieve a great reduction of the number of parameters
according to an economic criterion which is consistent with standard sectorial asset allocation approaches.
The parametric structure we propose imposes a block structure on the coe�cient matrices, hence we name
the model block WAR. The use of block structures in parameter matrices is similar to that in Billio et al.
(2006), Billio and Caporin (2008), Asai et al. (2008). Engle and Kelly (2008) introduce a block structure
for the correlation matrix while Caporin and Paruolo (2008) present a spatial solutions to the course of
dimensionality problem in multivariate volatility models that implies a block structure on the coe�cient
matrices. In this paper we assume that the asset variances-covariances have no or limited spillover and that
their dynamic is sector-speci�c. A pairwise preliminary analysis con�rms this assumption and allows us to
substantially reduce the number of parameters implied by the model. In addition, we propose a Wishart-
based generalization of the HAR model of Corsi (2004), named HAR-WAR model. We present an empirical
application based on variance forecasting and risk evaluation of a portfolio of two US treasury bills and
two exchange rates. We compare our restricted speci�cations with the traditional WAR parameterizations.
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Our results show that the restrictions may be supported by the data and that the risk evaluations of the
models are extremely close. This con�rms that our model can be safely used in a large cross-sectional
dimension given that it provides results similar to fully parameterized speci�cations.

Section 2 introduces the WAR model of Gourieroux et al. (2007), followed by our proposed generaliza-
tion. Section 3 presents the estimation procedure and show an alternative way to estimate the degrees of
freedom of the model, a key element to determine if the density of the Wishart distribution exists. The
dataset we used is presented in Section 4 and an empirical application based on portfolio risk evaluation
is provided in Section 5. Section 6 concludes and gives directions for future research.

2 The block Wishart autoregressive model
In the following we de�ne the basic Wishart auto regressive model of Gourieroux et al. (2007) and then
we introduce the set alternative parametric restrictions that de�ne the block WAR.

2.1 The Wishart Autoregressive Model
Denote by Yt the time t (realized) covariance for a group of n assets. The sequence of stochastic positive
de�nite Yt matrices is said to follow a Wishart process if the following relations hold.

At �rst, the (realized) covariance may be represented as a sum of underlying stochastic processes

Yt =
KX
k=1

xk;tx0k;t; (4)

where xk;t; k = 1; 2; : : : ;K are independent Gaussian VAR(1) processes of dimension n with a common
autoregressive parameter matrix M and common innovation variance �:

xk;t = Mxk;t�1 + �k;t; �k;t � N(0;�): (5)

When Yt is de�ned as in (4) and (5) we say it follows a WAR process of order 1, denoted W [K;M;�]. The
transition density of WAR(1) depends on the following parameters: K, the scalar degree of freedom (the
number of underlying VAR processes), strictly greater that n-1 (the number of assets minus one); M , the
n � n matrix of autoregressive parameters; and �, the n � n symmetric and positive de�nite matrix of
innovation covariances. We stress that the interpretation of Yt from latent Gaussian VAR(1) processes is
valid for integer valued K only.

From Proposition 2 in Gourieroux et al. (2007) we have:

Et (Yt+1) = MYtM 0 +K�: (6)

The �rst conditional moment is thus an a�ne function of the lagged values of the volatility process.
In particular, the WAR(1) process is a weak linear AR(1) process. More precisely we get:

Yt+1 = MYtM 0 +K� + �t+1; (7)

where �t+1 is a matrix of stochastic errors with a zero conditional mean. Equivalently, we may represent
Yt conditional mean in the following companion form:

vech(Yt+1) = A(M)vech(Yt) + vech(K�) + vech(�t+1); (8)
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where vech(Y ) denotes the vector obtained by stacking the lower triangular elements of Y , and A(M)
is a function of M . The error term � is a weak white noise, since it features conditional heteroskedasticity
and, even after conditional standardization, is not identically distributed.

In general, WAR processes with higher autoregressive order p may be considered and the Wishart
process can be easily extended to include more autoregressive lags. This is accomplished by replacing the
conditioning matrix MYtM 0 with any symmetric positive semi-de�nite function of Yt; Yt�1; : : : ; Yt�p+1.
However, when the autoregressive order is larger than 1, the interpretation of the Wishart process as the
sum of squares of autoregressive Gaussian processes in no longer valid even for integer K. For a WAR(p)
process, the equivalent of (6) reads:

Et (Yt+1) =
pX
j=1

MjYt+1�jM 0j +K�: (9)

In the following, unless di�erently stated, we will refer only to WAR(1) speci�cations.

2.2 Interpretation of the coe�cients
The principal drawback of many multivariate volatility models is the so-called `curse of dimensionality',
that is, the numbers of parameters is a power function of the cross-sectional model dimension. One of the
main contributions of this paper is to provide a sensible reduction of the parameter space by imposing a
set of restrictions on the standard WAR model. Our modeling approach will be presented in the following
section; here we provide the intuition on parameter interpretation within the WAR model.

In the simple case of a (2� 2) matrix, as done in Gourieroux (2007), we de�ne the best prediction of
Yt given by a WAR(1) model. Then we present the approaches we suggest to reduce the parameter space.

Consider the (2� 2) covariance matrix Yt, the autoregressive matrix M and the innovation variance �:

Yt =

 
Y11;t Y12;t

Y12;t Y22;t

!
;M =

 
m11 m12

m21 m22

!
and � =

 
�11 �12

�12 �22

!
The full WAR(1) model speci�es the best prediction of Yt as:

E[YtjYt�1] =

 
a1Y11;t�1 + b1Y12;t�1 + c1Y22;t�1 + d1 a2Y11;t�1 + b2Y12;t�1 + c2Y22;t�1 + d2

� a3Y11;t�1 + b3Y12;t�1 + c3Y22;t�1 + d3

!
(10)

where aj ; bj ; cj and dj ; j = 1; : : : ; 3 are scalar parameters. dj corresponds to K times the entries of �.
By construction, the prediction is a symmetric semi-de�nite positive matrix for any Yt�1 which belong to
S+, the set of symmetric positive de�nite matrices. To express it in terms of M we have:8>><>>:

a1 = m2
11; b1 = 2m11m12; c1 = m2

12;
a2 = m11m21; b2 = m11m22 +m21m21; c2 = m12m22;
a3 = m2

21; b3 = 2m21m22; c3 = m2
22;

The e�ect of the past variances and covariances on the present volatility can be seen immediately.
First, note that the full WAR model allows for spillover between variances and covariances.

Therefore, a possible strategy is to reduce the numbers of parameters by assuming no or limited
spillover between the variances. For instance, setting m12 = 0 implies that the conditional variance of
the �rst asset depends only on its past shocks and that the second asset variance does not in�uence the
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conditional covariance. Di�erently, a diagonal speci�cation of M corresponds to the absence of spillovers
between variances and covariances.

This very simple example in two dimensions helps us to identify the coe�cients in M that plays a
role in the spillover e�ect between variances. Using the delta method we can, in fact, easily compute
the standard errors for the ai; bi and ci and thus evaluate which parameters are signi�cant and check the
appropriateness of assumption of limited spillover. We will present now four di�erent parametrizations
for the WAR process that impose no or limited spillover. We also show in the empirical analysis that the
restrictions we impose on the matrix M are justi�ed by the data.

2.3 Speci�cations of the block Wishart autoregressive model
To derive the block WAR model we impose a set of restrictions on the matrix M . These restrictions come
from a criterion allowing assets to be grouped. Some examples are given by the economic sector of the
stocks entering into an equity portfolio, the type of assets entering into a diversi�ed equity-bond portfolio,
or the geographical reference areas of a group of assets. The main intuition behind asset grouping is that
the clustered variables may share common patterns or common features, and that their variance-covariance
dynamic is similar. In fact, we can presume that assets belonging to the same economic sector may have
a similar reaction to market shocks/news, and are similarly a�ected by market movements.

Clearly, groups may be de�ned on a data-driven basis, such as referring to the dynamic properties
of the series mean and/or variances, or on mixed criteria. The comparison of alternative methods for
clustering �nancial assets is outside the scope of this paper and will not be considered. In the following we
will use a priori de�ned groups in order to present our modeling approach and to show, on an empirical
basis, its advantages.

Consider the simple WAR(1) model as in Eq. 7:

Yt+1 = MYtM 0 +K� + �t+1:

Assume that our portfolio consists of n stocks and that we can classify them into N groups, according
to some economic (or data-driven) criterion, as discussed in the previous section (such as the economic
sector or the existence of common patterns in realized variances and covariances).

The N groups have dimension ni with
P
i ni = n. In addition, the assets are ordered following a group

rule, that is, assets from 1 to n1 belong to group 1, assets from n1 + 1 to n1 + n2 belongs to group 2, and
so on. Given this asset classi�cation, the autoregressive matrix M may be partitioned as follows:

M =

0BB@ M11 � � � M1N
... Mii

...
MN1 � � � MNN

1CCA ;

where Mij is a matrix of dimension ni � nj .
By imposing a particular structure on the matricesMij we be able to reduce the number of parameters

of the model. We propose the following speci�cations:

(i) Mij = 0 8i 6= j; i; j = 1; : : : ; N ,

(ii) Mij = 0 and Mii = �i(ini i0ni); 8i 6= j; i; j = 1; : : : ; N

(iiii) Mij = 0 and Mii = (�i;1; : : : ; �i;ni)(Ini); 8i 6= j; i; j = 1; : : : ; N
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(iv) Mij = 0 and Mii = �i(Ini); 8i 6= j; i; j = 1; : : : ; N

where ini is a ni � 1 vector of ones and Ini is the identity matrix of dimension ni.
If assets belonging to the same group share common reactions to shocks, we can hypothesize, to some

extent, that their co-volatilities also have a similar behavior. If the groups are sector-speci�c, model (i)
implies that the variances and covariances of each asset are only in�uenced by the variances and covariances
of assets belonging to the same class. Therefore, no volatility spillover exists between assets belonging to
di�erent sectors. We named this model block WAR. The number of parameters that needs to be estimated
is n(n+ 1)=2 +

PN
i=1 n

2
i , along with the degrees of freedom K.

A further reduction of the number of parameters is obtained by imposing a single parameter for each
group, as shown in model (ii). In this case, the variance and covariance of each asset belonging to, say,
group j depends on the past values of itself, on the past values of the variances of the other assets of the
same group and on the covariances with those assets via a function of the unique parameter �j . We call
this model restricted block WAR. This models contains n(n+ 1)=2 +N parameters in M and � plus K.

Model (iii) relaxes the assumption of spillover between assets belonging to the same sector. It assumes
each matricx Mii; i = 1; : : : ; Ni to be diagonal, i.e. the autoregressive matrix M is diagonal. In this case
grouping the assets according to some criterion does not a�ect the parametric space. We named this model
diagonal WAR. For this model, n parameters need to be estimated in the matrix M , plus the n(n+ 1)=2
parameters in � and the degrees of freedom K. One of the implications of the diagonal structure for M
is that each realized variance is only a function of its past values.

If we assume again that assets belonging to the same sector have common dynamics for the variance,
or if we can �nd a way to group assets whose volatilities obeys the same process, the number of parameters
can be further reduced. This is the case for model (iv). For each group a single parameter is taken to model
the dynamics of the variances for the assets in the considered group, i.e. the elements on the diagonal of
each Mii; i = 1; : : : ; N are all equal. In total only N + n(n + 1)=2 + 1 parameters are required in this
model. We refer to this model as the restricted diagonal WAR.

Is is worth mentioning that the speci�cations (i)-(iv) do not represent a complete generalization of the
WAR model. In fact, we set all the o�-diagonal blocks to zero. The assumption Mij = 0 8i 6= j; i; j =
1; : : : ; N can be replaced by the same structure we imposed on the matrices Mii: full, scalar, diagonal and
restricted diagonal. This allows us to consider not only the interactions between assets belonging to the
same group, but also interactions between a limited set of groups. In this paper we stick with a structure
that ignores the o�-diagonal blocks and leave a full generalization of the WAR model for future works.

2.4 The block HAR-WAR model
One of the stylized facts about asset returns is the long-run temporal dependencies of return volatilities.
The literature on volatility modeling has documented that such temporal dependencies are highly per-
sistent. In particular, the low �rst-order autocorrelations usually found in empirical analysis (Thomakos
and Wang, 2003), along with their slow decay, suggest that the logarithmic realized standard deviations
do not contain a unit root but exhibit long memory.

To account for this, fractionally integrated autoregressive models (ARFIMA) have been shown to be
e�ective in empirical modeling (see Andersen et al. (2001a) and Andersen et al. (2001b) among others).
Fractional integration achieves long memory parsimoniously by imposing a set of in�nite dimensional
restrictions on the in�nite variable lags but completely lacks a clear mathematical interpretation.
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Another crucial point is that the long memory observed in the data could be only an apparent behavior
generated from a process which is not really long memory. Indeed, the usual tests can indicate the presence
of long memory simply because the largest aggregation level that we are able to consider is not large enough.
LeBaron (2001) shows that a very simple additive model de�ned, as the sum of only three di�erent linear
processes (AR(1) processes) each operating on a di�erent time frame, can display hyperbolic decaying
memory, provided that the longest component has a half-life that is long relative to the test aggregation
ranges. Another result from Granger (1980) shows that the sums of an high number of short memory
processes can induce long memory. In Pong et al. (2004) an ARMA(2,1) is proposed to model and forecast
realized volatility. The authors' choice is motivated by the research of Gallant et al. (1999), who show that
the sum of two AR(1) processes is capable of capturing the persistent nature of asset price volatility. In
their paper Pong et al. (2004) show that the short memory ARMA(2,1) model is as good as long memory
ARFIMA models when forecasting futures volatilities. Motivated by the existence of multiple volatility
components in intraday frequencies, along with the apparent long-memory characteristic, Andersen and
Bollerslev (1997) formulated a version of the mixture-of-distributions hypothesis (MDH) for returns that
explicitly accommodates numerous heterogeneous information arrival processes.

An alternative to ARFIMA is the heterogeneous autoregressive (HAR) model suggested by Corsi (2004)
(see also Aït-Sahalia and Mancini, 2008; Corsi et al., 2007). Extending the heterogeneous ARCH model of
Müller et al. (1997), the long-memory pattern is reproduced by summing of (a small number of) volatility
components constructed over di�erent horizons. The basic ideas stems from the so called `heterogeneous
market hypothesis' presented by Müller et al. (1993), which recognized the presence of heterogeneity in
traders. Di�erently from Andersen and Bollerslev (1997), in this latter view the multi-component structure
in the volatility is to be found in the heterogeneity of agents rather than in the heterogeneous nature of
the information arrival.

De�ning the k-period realized volatility component by the sum of the single-period realized volatilities,
i.e. �p

RV
�
t�k:t�1

=
1
k

kX
j=1

p
RVt�j ; (11)

the HAR model for realized volatility of Corsi (2004), including the daily, weekly and monthly realized
volatility components, is given by

p
RV t = �0 + �d +

p
RV t�1 + �w

�p
RV
�
t�5:t�1

+ �m
�p

RV
�
t�22:t�1

+ �t: (12)

In Corsi (2004) �t is assumed to be Gaussian white noise., whereas in Corsi et al. (2007), a standardized
normal inverse Gaussian (NIG) is chosen to deal with the non-Gaussianity of the error terms.

In the spirit of the HAR model, we propose here to model the conditional realized covariance matrix
Yt with an autoregressive Wishart process which accounts for the temporal aggregation of the covariance
matrix. We call this process WAR-HAR process. In the sequel, we will show that this process, can be
interpreted as a particular WAR(23) process.

De�ne the k-period realized covariance matrix component by the sum of the single-period realized
covariance matrices:

Yt�k:t�1 =
1
k

KX
j=1

Yt�j (13)

Combining a WAR(p) structure with the temporal aggregation induced by the HAR model, we write the
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process Yt as:
Yt = M1Yt�1M 01 +M2Yt�5:t�1M 02 +M3Yt�22:t�1M 03 +K� + �t; (14)

Now, opening the summations and aggregating according to the same lag, we get:

Yt = (M1Yt�1M 01) +
�

~M2Yt�1 ~M 02 + ~M3Yt�1 ~M 03
�

+ � � �+ (15)�
~M2Yt�5 ~M 02 + ~M3Yt�5 ~M 03

�
+ ~M3Yt�6 ~M 03 + � � �+ ~M3Yt�22 ~M 03 + (16)

K� + �t; (17)

with ~M2 = 1p
5
M2 and ~M3 = 1p

22
M3.

To interpret the process as a WAR(22), we simply rewrite it as:

Yt = M1Yt�1M 01 +
5X
i=1

N2Yt�iN 02 +
23X
j=6

~M3Yt�j ~M 03 +K� + �t: (18)

where

N2 : N2YtN 02 = ~M2Yt ~M 02 + ~M3Yt ~M 03:

As for the WAR(p) process, the WAR-HAR process permits a vech representation, i.e.

vech(Yt) =
22X
j=1

Aj(M1;M2;M3)vech(Yt�j) + vech(K�) + vech(�t) (19)

where Aj(M1NM2; ~M3) is a matrix function of M1; N2 and ~M3.
Since the HAR-WAR model is a WAR(22) characterized using only three autoregressive matrices, the

reduction of the parametric space introduced in Section 2.3 is applied in this new context to matrices
M1;M2 and M3. This originates what we called the full HAR-WAR, the diagonal HAR-WAR, the
restricted diagonal HAR-WAR, the block HAR-WAR and the restricted block HAR-WAR.

3 Estimation

3.1 Identi�cation
Following the exposition in Gourieroux et al. (2007), we obtain an analogous identi�cation result for the
block WAR and block WAR-HAR model. For ease of exposition we present only the estimation procedure
for the WAR(1) process with diagonal autoregressive matrix M . The assumption of diagonal M , even if
strict, renders the estimation extremely easy and fast. The extension to the diagonal HAR-WAR case is
straightforward.

Under the assumption that K > n� 1 it is straightforward to show that:

i) K and � are identi�able while the autoregressive coe�cients in M (an thus M1;M2 and M3) are
identi�able up to their sign.

ii) � is �rst-order identi�able up to a scale factor and M is �rst-order identi�able up to its sign. The
degree of freedom K is not �rst-order identi�able but is second-order identi�able.
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3.2 First-order identi�cation
Following Gourieroux et al. (2007), the �rst-order conditional moments can be used to calibrate the
parameters in M and �, up to the sign and scale factor, respectively.

As the �rst-order method of moments is equivalent to non-linear least squares, the estimator is de�ned
as: �

M̂; �̂�
�

= ArgminM;��S2 (M;��)

where

S2 (M;��) =
TX
t=2

X
i<j

 
Yij;t �

nX
k=1

nX
l=1

Ykl;t�1mikmlk � ��ij
!2

=
TX
t=2

kvech(Yt)� vech(MYt�1M 0 + ��)k2

and �� = K�.
As mentioned in Gourieroux et al. (2007), any statistical software which accounts for heteroskedasticity

can be used to obtain the estimates. We present here the complete procedure under the assumption that
M is diagonal as we want to emphasize the quickness of the algorithm.

For each Yt; t = 1; : : : ; T of dimensions n�n, we consider the matrix Y, of dimensions T �n(n+ 1)=2
build with the vech of Yt for each time t = 1; : : : ; T ; i.e. the i-th row of Y is vech(Yi).

Under the hypothesis that M is diagonal, de�ne a = diag(M) and dg(a) as the diagonal matrix with
the vector a as diagonal. Then

MYt�1M 0 = dg(a)Yt�1dg(a) = (aa0)� Yt�1 (20)

and
vech(MYt�1M 0) = vech(aa0)� vech(Yt�1) (21)

De�ne [Y]T2 as the matrix obtained from Y when dropping the last row, i.e. considering the time from T
down to time 2. De�ne A = vech(aa0) and Z = vech(��). The residual matrix W is obtained as

W = [Y]T2 � (A0 
 iT�1)� [Y]T�1
1 � Z 0 
 iT�1 (22)

where iT�1 is a T � 1� 1 vector of ones.
Then the minimization problem reduces to:�

M̂; �̂�
�

= ArgminM;��
�
i0T�1 (W �W ) in(n+1)=2

�
: (23)

With our data set of four assets and 2,174 trading days (see Section 4 for a detailed description), only
1.2 seconds for the diagonal case (0.7 seconds for the restricted diagonal case) on a Pentium 4 PC are
necessary to obtain the estimates. This result, if compared with the 42 seconds required from the same
data set when a DCC model (Engle, 2002) is �tted, represents a great improvement.1 For the diagonal
HAR-WAR only 5 seconds are required, and for its restricted version only 3.9 seconds. See Table 8 for all
the other speci�cations.

1To ensure a fair benchmark, we tested both our Matlab code and the one provided by Kevin Sheppard in his UCSD
toolbox.
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3.3 Second-order identi�cation
Whereas the estimation of the entries of the autoregressive matrix M and of the innovation variance �
(up to multiplication for a scale parameter) is relatively straightforward, the estimation of the degrees
of freedom poses some challenges. We �rst present the estimation procedure introduced in Gourieroux
et al. (2007) and then show how the same parameter K can be estimated relying on the fact that, given a
portfolio allocation �, its volatility �0Yt� is gamma-distributed with a scale parameter equal to K.

Consider the simple WAR(1) model. The marginal distribution of the WAR(1) is the centered Wishart
distribution, de�ned as W (K; 0;�(1)), where �(1) is computed from

�(1) = M�(1)M 0 + �: (24)

Thus, the conditional variance of a portfolio's volatility is given by:

V (�0Yt�) =
2
K

[�0��(1)�]2; (25)

where � is a vector of dimension (n� 1) and ��(1) = K�(1). A consistent estimator of the degrees of
freedom K can be computed as follows:

Step 1 Compute �̂�(1) as solution of

�̂�(1) = M̂�̂�(1)M̂ 0 + �̂�(1): (26)

Step 2: Chose a portfolio allocation and compute its sample volatility

V (�0Yt�) =
1
T

TX
t=1

"
�0Yt�� 1

T

TX
t=1

�0Yt�
#2

: (27)

Step 3: A consistent estimator of K is:

^K(�) = 2[�0�̂�(1)�]2=V̂ (�0Yt�) (28)

Step 4: A consistent estimator of � is �̂(�) = �̂�=K̂(�).

A derivation of the above estimator for the general stationary WAR(p) process is reported in the
Appendix.

This method provides consistent estimates of the degrees of freedom but is problematic in two aspects:
�rst, it needs to estimate the matrix �(1); second, it makes use of the estimates M̂ and �̂, carrying their
estimation error into the estimate of K̂.

A more direct way that does not need to rely on the estimates of M and � comes from the distribution
of the volatility of a portfolio.

Consider a portfolio allocation � 2 Rn. We know that the unconditional distribution of Yt is a
W (K; 0;�(1)), a centered Wishart distribution. We can therefore easily show2 that

�0Yt� � Ga
�
K
2
; 2�0�(1)�

�
; (29)

i.e. the distribution of the portfolio with allocation � is a gamma distribution with the degrees of freedom
K as shape parameter. An unbiased estimator of K can be obtained simply via maximum likelihood

2See, for example, the proof given in Meucci (2005, Technical Appendix, p. 33-34) or the Appendix of this paper.
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by �tting a gamma distribution to the process �0Yt�3. As shown in Bonato (2008), both estimators
are unbiased but the second one is statistically more e�cient. However, it is important to recall that
these results are valid only if a WAR(1) is the true data generator process (DGP). This assumption,
even if realistic, is far from being true, and a divergence in the values of the estimates is expected. In
particular, Bonato (2008) shows that in the presence of extreme observations or when the DGP is not
a Wishart process, the estimates for the degrees of freedom using the WAR model are perceptibly lower
than predicted by the theory via gamma distribution.

A comparison of the two estimates should give a sort of measure of goodness of �t of the WAR model.
A perfect �t should bring the two values to coincide.

The value of the degrees of freedom is the key element in determining whether the process is non-
degenerate (K � n) or if it admits density (K > n� 1). Once the estimated degrees of freedom using the
two estimators con�rm the stationarity of the process, then the question of which estimator of K is to be
used is no longer an issue, as the forecasted covariance matrices are independent of K. In fact, M̂ and �̂�
are �rst-order identi�able and are only required to compute Et(Yt+1), as shown in Equation (6). Recall
that �̂ = �̂�=K̂ and K is second-order identi�able. So we do not need K̂ to obtain �̂�.

4 The data
Our model introduces parametric restrictions by grouping the assets according to their type. For this
reason we consider a portfolio composed of two currencies and two treasury bills. Bonds and currencies
are in fact not likely to be correlated and thus our choice not to impose limited spillover between variances
is justi�ed a priori. As currencies we used USD/CHF and USD/GBP �ve-minute spot prices provided
by Olsen and Associate Zürich . USD/CHF prices were available from 2 January 1997 to 9 August 2005
and USD/GBP series was covering the period from 2 January 1997 to 31 October 2006. The second
group consists of the prices of the 10-year and 30-year U.S. treasury bills. These futures are traded at the
Chicago Board of Trade (CBoT) from 7:20 to 14:00 Eastern Standard Time (EST). Our samples contain
�ve-minute prices from 2 January 1997 to 29 June 2007. We adopted the conventional4 practice of using
the futures contract with the largest trading volume. As the contract approached maturity (�ve trading
days before), we moved to the next contract, ensuring no overlapping periods in the price sequence and
no returns computed on prices from di�erent contracts. Days in which at least one of the series had no
match with the other three (e.g. when the CBoT was closed) were dropped. In addition, 23 October 1997,
9 September 1998, 14 April 2003 and 11 October 2004 were removed from the sample due to the presence
of irregularities. This left us with 2,147 trading days.

Currencies are traded around the clock. T-bills are traded during the CBoT trading day and virtually
round the clock on GLOBEX starting from 1 July 2003. As our samples start in 1997 we studied only
the overlapping trading hours, i.e. the trading hours of the CBoT. To remove the overnight e�ect we
did not consider the �rst 15 minutes after the opening. Table 4 reports the descriptive statistics for the
�ve-minute and daily returns for the four asset we considered. The typical stylized fact are observed:
negative skewness, excess of kurtosis in both daily and intraday returns.

Intraday returns were constructed taking the �rst di�erences of the log-prices and multiply by 100.
3When performing the ML estimation one should be careful to the parametrization of the Gamma density function.

According to Meucci's notation , it would be for instance �0Yt� � Ga(K;�0�(1)�)
4As done in Martens and van Dijk (2007) and de Pooter et al. (2006) among others.
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Table 1: Summary statistics of �ve-minute and daily returns. Daily returns are computed as the logarithm of the di�erence
between the closing price and opening price. Exchange rates are traded round the clock but as we are interested in a portfolio,
only the trading hours coinciding with the CBoT trading hours were considered.

Return CHF/USD GBP/USD T-10Y T-30Y
Mean 0.0003 -0.0004 0.0001 0.0001

Maximum 1.2716 0.6765 0.7856 0.7916
5-min Minimum -1.3690 -0.6763 -1.0124 -0.8992

St. dev. 0.0575 0.0433 0.0570 0.0367
Skewness -0.0322 -0.0145 -0.3391 -0.4123
Kurtosis 16.1390 10.9153 11.1789 19.1486
Mean -0.0250 -0.0277 0.0049 0.0076

Maximum 3.1195 1.4240 1.9022 1.0802
Daily Minimum -2.8374 -2.0079 -1.9112 -1.3626

St. dev. 0.4967 0.3403 0.4970 0.3199
Skewness -0.1294 -0.0722 -0.3460 -0.3030
Kurtosis 5.3625 4.8464 3.9230 4.2370

The trading day we constructed runs from 7:40 (�rst observation) to 14:00 (last observation), resulting in
76 �ve-minute returns which we used to construct the series realized covariance matrices. Figure 1 shows
the realized volatility estimated from the data.

In the next step we constructed the series of realized covariance matrices using the classical estimator
presented in Barndor�-Nielsen and Shephard (2004) and used, for example, in de Pooter et al. (2006):

Yt =
IX
i=1

rt�1+ih;hr0t�1+ih;h (30)

We indicate with Yt the realized covariance matrix at time t in order to to be coherent with our previous
notation and because the use of � would probably create confusion as � denotes the covariance matrix of
the Gaussian vector underlying the WAR(1) model. rt�1+ih;h � pt�1+ih�pt�1+(i�1)=h denotes the (n�1)
vector of returns for the i-th intraday period on day t, for i = 1; : : : ; I, and with n = 4 the number of
stocks. I is the number of intraday intervals, each of length h � 1=I. In our case, with a frequency of �ve
minutes, I = 76. In contrast to de Pooter et al. (2006) we did not consider overnight returns. Including
overnight returns would a�ect only the volatility of the T-bills because currencies are traded 24 hours and
their equivalent to the overnight returns would be the over-weekend return. Therefore we contend that
adding overnight returns to only some components of the portfolio would induce distortion in the realized
volatility of the portfolio itself.
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Figure 1: Daily realized volatiliy for the two currencies and the two treasury bonds.

Table 2: Summary statistics for the realized volatilities

Realized volatility CHF/USD GBP/USD T-10Y T-30Y
Mean 0.2511 0.1422 0.2466 0.1022

Maximum 2.9772 1.8661 1.8043 1.3761
Minimum 0.0184 0.0164 0.0276 0.0119
St. dev. 0.1856 0.1039 0.1895 0.1006
Skewness 5.5066 4.8388 2.6636 4.5772
Kurtosis 59.7536 54.3341 14.2783 37.2670

5 Empirical application

5.1 Estimation results
The �rst model we estimated is the full WAR(1), in which the matrixM is full. The estimates are reported
in Table 3. As shown in Equation (10), the impact of the past values of realized variances and covariances
on future realized variances and covariances is a function of the entries of M , so, rather than checking
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the signi�cance of the elements of M , we are interested in checking the signi�cance of the coe�cients
ai; bi; ci; i = 1; : : : ; 3, i.e. the coe�cients that directly a�ect the realized variance-covariance matrix
forecasts.

0.4044 0.1033 0.0764 -0.1442
(3.3985) (0.2273) (0.1868) (-0.2282)
-0.0602 0.5637 -0.0344 0.0600
(-0.2441) (4.2327) (-0.1067) (0.1235)
0.0323 0.0008 0.7204 -0.1047
(0.2425) (0.0003) (3.3614) (-0.3092)
-0.0128 0.0489 0.1753 0.4037
(-0.0715) (0.2063) (0.5773) (0.9577)

Table 3: Estimated latent autoregressive matrix M for the full WAR(1) model. t-ratios in parenthesis.

0.0424 0.0007 -0.0011 0.0002
(7.9627) (0.1110) (-0.1812) (0.0445)

0.0197 -0.0017 -0.0023
(3.7092) (-0.3023) (-0.4465)

0.0279 0.0136
(4.8620) (2.7554)

0.0123
(2.8124)

Table 4: Estimated latent autoregressive matrix � for the full WAR(1) model. t-ratios in parenthesis.

Table 5 reports the estimates and the t-test values of the parameters that determine the best prediction
of Yt as given by a WAR(1) model. For simplicity we will only consider the case of two assets and report
the estimates of the di�erent pairs of combinations of the two currencies and two T-bills we used in our
analysis. The parameter a1, which tells us the e�ect of the realized volatility at time t� 1 on the realized
volatility expected at time t, is signi�cant for all the pairs5 . We have the same results for the coe�cients
b2 and c3, the autoregressive parameters for the realized covariances and realized variances of the second
component of the pair. The only exceptions are the couples CHF-GBP and T30-T10. In particular, for the
latter pair, only the autoregressive coe�cient for the 30-year U.S. treasury bill is statistically signi�cant.

It is very important to note that the rest of the coe�cients are not statistically signi�cant for any
of the di�erent combinations of pairs. This suggests that a reduction of the parameters of the models
hypothesizing a limited spillover is reasonable and to some extent necessary.

The estimates of the autoregressive matrix M for the four speci�cations of the WAR(1) model, the
diagonal, the diagonal restricted, the block-diagonal and the restricted block-diagonal are reported in Table
6. Standard errors are in parenthesis. Starting at the top left of the table, we see that imposing the same
value of the autoregressive coe�cient for assets belonging to the same type is a sensible choice. Consider
the diagonal WAR case. For the �rst two elements of the diagonal (exchange rates), we have a common

5Recall from (10) that a1 = m2
11 so that the signi�cance test is a one-sided test with 10% level at 1.28.
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CHF-GBP CHF-T30 CHF-T10 GBP-T30 GBP-T10 T30-T10
a1 0:1613 0:1786 0:1806 0:3279 0:3364 0:5419

(1.5543) (2.1789) (2.1754) (2.2469) (2.2960) (1.7310)
a2 -0.0418 0.0130 -0.0027 0.0081 0.0196 0.1304

(-0.4640) (0.2369) (-0.0340) (0.0857) (0.1500) (0.5772)
a3 0.0108 0.0009 0.0000 0.0002 0.0011 0.0314

(0.2190) (0.1184) (0.0170) (0.0429) (0.0750) (0.2874)
b1 -0.0835 0.0260 -0.0054 0.0162 0.0392 0.2607

(-0.3802) (0.2363) (-0.0338) (0.0857) (0.1500) (0.5638)
b2 0.2051 0:2783 0:2629 0:3783 0:3627 0.2722

(1.2183) (4.0238) (3.2827) (4.1564) (3.4078) (0.7471)
b3 -0.1171 0.0406 -0.0078 0.0187 0.0421 0.1417

(-0.4521) (0.2365) (-0.0340) (0.0856) (0.1491) (1.3579)
c1 0.0412 0.0004 0.0040 0.0001 0.0013 0.0161

(0.2635) (0.0799) (0.1065) (0.0417) (0.0830) (0.1876)
c2 0.1143 -0.0137 -0.0389 0.0062 0.0224 -0.0507

(0.5561) (-0.1598) (-0.2135) (0.0833) (0.1662) (-0.3345)
c3 0:3173 0:4356 0:3815 0:4361 0:3883 0.1602

(1.9316) (5.4035) (2.4987) (5.2972) (2.5243) (0.4589)

Table 5: Estimates and t-ratios for the coe�cients of Equation (10). Coe�cients that are signi�cant at the 10% level are
shown in bold.

parameter 0.4585 against 0.4175 and 0.5636. For the T-bills we have an autoregressive parameter for the
volatilities equal to 0.6481 in front of 0.6583 and 0.6209. Including spillover between assets belonging to
the same sector a�ects only the autoregressive parameter of the 30-years T-bill and appears unnecessary as
most of the o�-diagonal coe�cients are not signi�cant at the 5% level, con�rming the �ndings reported in
Table 5. The restricted block diagonal case presents estimates that are not compatible with the previous
cases and this seems to suggest that this kind of speci�cation might be too restrictive to model the
covariance matrix. The estimation results for the HAR-WAR process are similar to those for the WAR
process and are available upon request.

The estimated values for the degrees of freedom are reported in Table 8. To obtain the estimates the
following allocation was used: � = (1 1 1 1)0. Di�erent allocations led to analogous results.

All the di�erent speci�cations result in a number of degrees of freedom strictly bigger than n, n = 4
being the number of assets making up the portfolio, and thus the Wishart process is stationary and non-
degenerate. All the estimates of K are close to each other except for the restricted block WAR-HAR. The
resulting degrees of freedom equal to 6.5 are slightly bigger than in the other cases and this might be due
to some problem in the optimization routine. Further investigation in this direction is necessary.

In addition to the estimated degrees of freedom, Table 8 also reports the number of parameters for
each model and the CPU time necessary to obtain the estimates on a Pentium IV PC. The advantage
of using a diagonal model (either WAR or HAR), compared with the full counterpart, is notable. The
time required to obtain the estimates ranges from 0.71 to 5 seconds, a great improvement compared, for
example, with the 323 required by the diagonal BEKK of Engle and Kroner (1995), which assumes the
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Block WAR Restricted block WAR
0.4080 0.1060 0.2740 0.2740
(3.5332) (0.2383) (4.8680)
-0.0648 0.5626 0.2740 0.2740
(-0.2649) (4.2528)

0.7216 -0.1078 0.3282 0.3282
(3.3565) (-0.3175) (12.8269)
0.1716 0.4035 0.3282 0.3282
(0.5640) (0.9389)

Diagonal WAR Restricted diagonal WAR
0.4175 0.4584
(4.2792) (5.9889)

0.5636 0.4584
(4.4107)

0.6583 0.6481
(11.1432) (13.595)

0.6209 0.6481
(6.0008)

Table 6: Estimated latent autoregressive matrix M for the di�erent speci�cation of the WAR(1) model. t-ratios in
parenthesis.

same autoregressive structure for the latent variance-covariance matrix6.

5.2 Variance Forecasting
The ability to forecast the volatility of a �nancial position is a key factor in many activities like risk
management, portfolio optimization or option pricing, just to mention the most common. For this reason
we preferred to give more emphasis to the out-of-sample forecast of the proposed model, rather than the
in-sample �t and in-sample forecast. Of course, in-sample �t is important to determine the goodness of a
model; however, unreported results showed that the WAR models have a very poor in-sample forecasting
ability. Our suspicion is that the degrees of freedom are unlikely to be constant through time, and therefore
�tting the model to the entire series is not appropriate. To check the variation of the degrees of freedom
within the sample, we split the 2,147 trading days into non-overlapping periods of 30 days. We then
estimated the degrees of freedom for each sub-period. Results are reported in Figure 2. We can clearly
see that the degrees of freedom are far form being constant over time, with values ranging approximately
between 3 and 20.

As done by banks and regulators, we use a rolling window to perform one-day-ahead out-of-sample
forecasts. Our �rst step is to construct a portfolio with the series of two exchange rates and two treasury
bills. We assume that the value of the portfolio is in dollars and that it therefore carries a long position
for the treasury bills and a short position in currencies. For simplicity, we assume equal (positive) weights

6 Again, to estimate the parameters of the BEKK model we used the Matlab code provided by Kevin Sheppard in the
UCSD Garch toolbox.
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Block WAR Restricted block WAR
0.0424 0.0007 -0.0002 -0.0003 0.0451 -0.0049 0.0000 0.0000
(8.0529) (0.1140) (-0.0604) (-0.0828) (11.1560) (-1.2006) (0.0070) (0.0069)

0.0197 -0.0019 -0.0014 0.0228 -0.0024 -0.0016
(3.7136) (-0.6149) (-0.4363) (5.6421) (-0.7805) (-0.4998)

0.0279 0.0136 0.0371 0.0127
(4.8738) (2.7514) (9.9012) (3.3877)

0.0124 0.0076
( 2.8801) ( 2.0225)

Diagonal WAR Restricted diagonal WAR
0.0424 0.0011 -0.0004 -0.0004 0.0406 0.0011 -0.0004 -0.0004
(8.1190) (0.3423) (-0.1238) (-0.1264) (8.5055) (0.3536) (-0.1201) (-0.1201)

0.0198 -0.0019 -0.0014 0.0230 -0.0021 -0.0015
(3.7920) (-0.6012) (-0.4396) (6.1516) (-0.6732) (-0.4760)

0.0285 0.0154 0.0292 0.0151
(5.6888) (4.2106) (6.6184) (4.2865)

0.0128 0.0121
(3.1117) (3.5788)

Table 7: Estimated latent autoregressive matrix � for the di�erent speci�cation of the WAR(1) model. t-ratios in
parenthesis.

for the treasury bills and equal (negative) weights for the exchange rates. In particular, we assume the
owner of the portfolio invests 0.75 of his wealth for each of the T-bills and short-sells 0.25 for each of the
currencies to buy CHF and GBP against USD, respectively. The forecasting period runs from 2 January
2003 until 8 August 2005, resulting in 653 one-step-ahead forecasts. For each day the realized variance
of the portfolio is forecast by �tting a WAR model to the series of covariance matrices and re-estimating
the model at each step. As already mentioned above, the degrees of freedom are likely not to be constant
and therefore at each step the model was estimated using a rolling window of 100 trading days, as done
in Aït-Sahalia and Mancini (2008). Table 9 presents the results of the Mincer-Zarnowitz regression:

IV 1=2
t = b0 + b1Et�1[RVt]1=2 + error; (31)

where IVt is the realized volatility of the portfolio at time t and Et�1[RVt] is the forecasted realized
volatility. Standard errors are reported in parenthesis. The R2 across the models varies from 0.3209
for the full WAR(1) to the 0.3655 for the diagonal HAR-WAR. The moving windows estimation of the
various WAR models delivered acceptable R2, that are, for instance, slightly higher than those reported
in Andersen et al. (2003).

It interesting to note that the full WAR(1) model has a worse performance if compared with its
restricted counterparts. This might be due to the fact that the the full model is not the most appropriate
as it carries over the estimation error of the parameters into the forecasts, which means that it is not as
good as a more parsimonious model. It should also be noted that, in terms of R2, the di�erence between
the diagonal model and the restricted diagonal model is not relevant. Neither is the di�erence between the
block diagonal and the restricted block diagonal. The diagonal model has the highest R2. This suggests
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Speci�cation Parameters CPU time (secs) K̂ fval Ranking
full WAR 27 117 4.8 209.01 9

block diag. WAR 19 94 4.9 209.11 8
restr. block diag. WAR 13 21 4.8 231.96 5

diagonal WAR 15 1.22 4.8 209.39 2
restr. diag. WAR 13 0.71 4.8 209.80 1
full HAR-WAR 59 531 4.7 189.78 11

block diag. HAR-WAR 35 410 4.7 189.37 10
restr. block diag. HAR-WAR 17 92 6.5 198.52 7

diagonal HAR-WAR 23 3.5 4.6 187.45 4
restr. diag. HAR-WAR 17 2.5 4.7 187.54 3

DCC 14 42 - - 6
diag. BEKK 18 639 - - 12

K̂ via gamma dist. 7.09 s.e. (0.8)

Table 8: Estimate of the degrees of freedom for the di�erent speci�cations of the WAR and HAR-WAR models (last
column). The �rst column reports the number of parameters for each speci�cation. The CPU necessary to obtain the
estimates are reported in the second column. fval is the value of the function (23) at the minimuim.The last row reports the
value of K when it is estimated relying on the gamma distribution for the variance of the portfolio.

that this simple parametrization is su�cient to capture the dynamics of the variances and covariances.

5.3 Distribution of the portfolio's realized volatility
As demonstrated in the Appendix, under the WAR hypothesis the realized volatility of a portfolio follows
a gamma distribution with shape parameter K=2, where K denotes the degrees of freedom of the Wishart
process and scale parameter 2!0�(1)! with �(1) solution of

�(1)� = M�(1)�M 0 + ��:

as in (26), where ! is the vector of portfolio weights, i.e. ! = [�:25 � :25 :75 :75]0. Figure 4 (left)
displays the density of the realized volatility of the portfolio under the hypothesis that it follows a gamma
distribution. The dashed red line represents the kernel density of the portfolio's realized volatility. The
green dash-dot line is the density of a Ga(K�=2; 2!0�(1)!) where K� denotes the degrees of freedom
estimated via the gamma distribution. The blue line is the density of a gamma distribution but with
K estimated as in Gourieroux et al. (2007), Steps 1-4. Recall that to obtain both the estimates for K
� = (1 1 1 1)0 was used.

In Figure 4 (right) we �tted a gamma distribution to the realized volatility of our portfolio. The blue
line represents the kernel density of the realized variance, the blue line is the gamma �tting and the black
dash dot line represents the log-normal density. Numerous studies (Andersen et al., 2003, among others)
show that the logarithm of the realized volatility tends to follow a normal distribution. Is therefore no
surprising that a lognormal distribution clearly better �ts the distribution of the realized volatility of the
portfolio. On the other hand, the �t provided by the Wishart model, i.e. the a gamma distribution, from
a very rough graphical analysis, provides an acceptable alternative7.

7The assumption of a gamma distribution to model the realized volatility is also at the basis of the multiplicative model
of Engle and Gallo (2006)
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b0 b1 R2

full WAR(1) 0.0226 0.8988 0.3209
(0.0333) (0.0512)

block diagonal WAR(1) 0.0004 0.9349 0.3262
(0.0342) (0.0526)

restr. block diag. WAR(1) 0.0046 0.9405 0.3224
(0.0341) (0.0524)

diagonal WAR(1) 0.0064 0.9434 0.3299
(0.0343) (0.0526)

restr. diag. WAR(1) 0.0059 0.9428 0.3298
(0.0342) (0.0526)

full HAR-WAR 0.1387 0.7361 0.3103
(0.0275) (0.0429)

block diag. HAR-WAR 0.0685 0.8439 0.3584
(0.0284) (0.0442)

restr. block diag. HAR-WAR 0.0647 0.8440 0.3623
(0.0284) (0.0438)

diagonal HAR-WAR 0.0520 0.8630 0.3662
(0.0289) (0.0446)

restr. diag. HAR-WAR 0.0550 0.8594 0.3655
(0.0286) (0.0443)

Table 9: Out-of-sample one-day-ahead forecast of IV 1=2. The models are estimated on a rolling window of 100 days from
2 January 2003 to 8 August 2005. Standard errors in parenthesis.
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Figure 2: Estimated degrees of freedom for the sample split into non-overlapping periods of trading days.

5.4 Value-at-Risk performance evaluation
Given the growing need to manage �nancial risk, risk prediction plays an increasing role in banking and
�nance. The Value-at-Risk (VaR) concept has emerged as the most prominent measure of downside market
risk. Regardless of the criticisms levelled at it, regulatory requirements are heavily geared towards VaR. In
the light of the practical relevance of the VaR concept, the need for reliable VaR estimation and prediction
strategies arises. A key ingredient when predicting the VaR of a �nancial position is the ability to forecast
the conditional variance of the asset considered. To fully test the proposed model we also consider VaR
as an economic criterion to judge the forecast performances. We follow the methodology proposed in Giot
and Laurent (2004), that, to our knowledge is the only paper, along with that by Andersen et al. (2003),
Clements et al. (2008) and Brownlees and Gallo (2008), to deal with VaR and realized volatility.

A series of asset returns rt; t = 1; : : : ; T , known to be conditionally heteroskedastic, is modeled as
follows:

rt = �t + �t (32)
�t = �t�t (33)
�t = c(�j
t�1) (34)
�t = h(�j
t�1); (35)
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Figure 3: Out-of-sample forecast of the realized variance for the restricted diagonal WAR(1) (red line) and the restricted
diagonal HAR-WAR model (green line). The blue line represents the ex-post observed realized volatility of the portfolio.

where c(�;
t�1) and h(�;
t�1) are functions of 
t�1 (the information set at time t � 1), and depend
on an unknown vector of parameters �; �t is an independent and identically distributed (i.i.d.) process,
independent of 
t�1, with E[�t] = 0 and E[�2

t ] = 1. �t is the conditional mean of rt and �t is its
conditional variance. In our setting we assume, for simplicity, a constant mean for all the assets in our
portfolio. In particular, if rt represents the return of the portfolio, �t = � and for the (realized) variance
of the portfolio we have:

RVt = !0Yt!; (36)

where ! are the portfolio weights as previously chosen. To compute one-day-ahead forecasts for the VaR
of the daily return rt using the conditional realized volatility, we re-estimate the model in Eq. (32) with
constant conditional mean while the conditional variance is proportional to RVtjt�1, the one-step-ahead
forecast of the realized volatility of the portfolio; i.e. �2

t = �2RVtjt�1(with �2 being an additional parameter
to be estimated). �2 is used to ensure that the rescaled innovations have unit variance.

We used the same forecasting period as in the previous section. For each model we computed the
one-day-ahead variance and then the one-day-ahead forecast of the VaR. A Gaussian distribution and
a Student's t distribution were used to model the residuals zt. Table 10 presents the performances of
the di�erent models in terms of VaR predictions. Forecasts of VaR at level � = 1%; 5% and 10% were
computed. For each model and distribution for �t, we reported the percentage of violations, i.e. the
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Figure 4: Kernel densities of the realized volatility of the portfolio (red dashed line), density of a Ga(K�=2; 2!0�(1)!)
where K� denotes the degrees of freedom estimated via the gamma distribution (blue line) and density of a gamma distribu-
tion (green dash-dot line) with K estimated as in Gourieroux et al. (2007) [left-hand panel]. Kernel densities of the realized
volatility of the portfolio (red dashed line), gamma (blue line) and log-normal (black dash-dot) distribution �tted to the
series [right-hand panel].

percentage of times that the realized return is smaller that the forecasted VaR. A good density forecast
should satisfy two criteria. First, for a given VaR level �, the percentage of violations should be �. Second,
violations should conditionally unpredictable, i.e. a violation of nominal �1 VaR today should convey no
information as to whether nominal �2 percent VaR will be violated tomorrow.

To check the robustness of the di�erent WAR models in this VaR forecast evaluation, we also report
in Table 10 the p-values of the test proposed in Berkowitz (2001) to evaluate a density forecast. This
test relies on the fact that for a given daily return rt, if the series of one-day-ahead conditional density
forecasts f̂tjt�1(rt) coincides with f(rt; It�1), it then follows under weak conditions that the sequence of
probability integral transformation of rt with respect to f̂tjt�1(�)

ut =
Z rt

�1
f̂tjt�1(s)ds = bF (rt) (37)

should be i.i.d. uniformly distributed on (0,1). This transformation was �rst presented in Rosenblatt
(1952).

If the series of ut is distributed as an i.i.d. U(0,1), then

zt = ��1
�Z rt

�1
f̂tjt�1(s)ds

�
is an i.i.d. N(0,1).

Once the series has been transformed, it is straightforward to calculate the Gaussian likelihood and con-
struct the likelihood ratio (LR) statistics.

In particular, Berkowitz (2001) suggested a test that allows the user to intentionally ignore model
failures that are limited to the interior of the distribution; the proposed LR test is based on a censored
likelihood: the tail of the forecasted density is compared with the observed tail.

First, for di�erent values of � the desired cuto� point VaR = ��1(�) is computed. Then we de�ne the
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new variable of interest as

z�t =

(
VaR if zt � VaR
zz if zt < VaR:

The log-likelihood function for joint estimation of � and �2 is

L(�; �jz�) =
X

z�<V aR
log

1
�
�
�
z�t � �
�

�
+

X
z�=V aR

log
�

1� �
�
V aR� �

�

��
(38)

=
X

z�<V aR

�
�1

2
log(2��2)� 1

2�
(z�t � �)2

�
+

X
z�=V aR

log
�

1� �
�
V aR� �

�

��
: (39)

To construct the LR test the null hypothesis requires that � = 0, �2 = 1. Therefore the restricted
likelihood L(0,1) is compared to the unrestricted one, L(�̂; �̂2). The test statistic is then

LRtail = �2(L(0; 1)� L(�̂; �̂2)) (40)

Under the null hypothesis, the test statistic is distributed �2(2).

[Table 10 somewhere here]

Table 10 reports, for the di�erent models considered and di�erent assumptions for the residuals, the
percentage of violations along with the p-value of the Berkowitz's test.

The relative number of violations is close to the theoretical one and assuming a t distribution for the
residuals does not really improve the forecasting performances. For all the proposed speci�cations of the
WAR model, the Berkowitz test does not reject the null hypothesis of appropriateness of the forecasted
densities. Therefore all the models provide acceptable VaR forecasts. For the 1% VaR level, the results are
somewhat surprising. The percentage of VaR violations is, for all the speci�cations, around 2.4% in front
of a theoretical value of 1%. However, the p-values of the Berkowitz test are all higher than the rejection
threshold of, say, 5%. This might be explained by the fact that the test proposed by Berkowitz is not a
pointwise evaluation of the VaR violations, but rather analyzes the entire forecasted densities, or, in our
case, the left tail of the distribution.

Besides the good forecasting performances of the proposed models, we want to stress the fact that
there is no notable di�erence in the forecasting ability of the di�erent speci�cations. Therefore, a very
parsimonious (and thus quick to estimate) model like the restricted diagonal WAR is su�cient to model
the riskiness of our portfolio.

6 Conclusions and direction for future research
In this paper we proposed a particular set of restricted speci�cation of the WAR model for realized
(co)variances. Our speci�cations rely on the ability to group assets according to some criterion, for example
the economic sector, a common feature in the variance-covariance dynamics, and so on. This allowed us to
drastically reduce the number of parameters. A comparison between the di�erent speci�cations highlighted
that there is no loss when a more parsimonious model is chosen. This is essentially due to the fact that
the restricted model was justi�ed by the data.

However, some aspects of the WAR process need to be clari�ed. In particular, the degrees of freedom
seem to vary through time and it is not clear by which variables they are driven.
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A straightforward extension of the present work involves applaying the WAR model to solve concrete
�nancial problems like dynamic portfolio choice, for instance.

This and other applications of the WAR model are left for future research.
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A Appendix

A.1 Relation between Wishart and gamma distribution
This proof follows the one in the Technical Appendix in Meucci (2005).

If Y is a Wishart distribution, then for any comfortable matrix A we have

AYA0 = AX1X01A0 + � � �+ AXKX0KA0 (41)
= Z1Z01 + � � �+ ZKZ0K (42)
� W(K;AΣA0) (43)

since

Xt � N(0;�) (44)

and

Zt � AXt � N(0;AΣA0): (45)

By taking a row vector, i.e. A � a0, each term in the sum is normally distributed as follows:

Zt � a0Xt � N(0; a0Σa): (46)

Now, for any random variable
yi � N(0; �2) (47)

the gamma distribution with K degrees of freedom is de�ned as the distribution of the following variable:

x = y2
1 + � � �+ y2

K � Ga(K=2; 2�2): (48)

and has p.d.f. of the form8

f(xjK=2; 2�2) =
1

(2�2)K=2�(K=2)
xK=2�1ex=2�

s
: (49)

Therefore from (48)
a0Ya � Ga(K=2; 2(a0Σa)): (50)

Note that in Meucci (2005) we have a0Ya � Ga(K; (a0Σa)), because a di�erent parametrization of the
gamma distribution is used.

A.2 Estimation of the degrees of freedom for a general WAR(p) process
We present here a way to derive the estimator of the degrees of freedom K in a general WAR(p) process.
Di�erently from Chiriac (2007), we do not rely on the interpretation of a WAR process in terms of a
Gaussian VAR process; in fact, for a WAR(p) process with p > 1 this interpretation is no longer valid
(see Gourieroux et al., 2007). Instead, we use the fact that any portfolio of Wishart-distributed matrices
follows a gamma distribution, as shown in the previous section.

8Recall that if x � Ga(a; b), then f(xja; b) = 1
ba�(a)x

a�1ex=b
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Let Yt 2 Rn � Rn be a WAR(p) process:

E [YtjIt�1] =
pX
j=1

MjYt�jM 0j +K�: (51)

where It�1 is the information set available up to time t� 1.
Under stationary conditions, the unconditional mean of the process, E [Yt], is obtained using the law

of iterated expected values:

E [Yt] = E [E [YtjIt�1]] =
pX
j=1

MjE [Yt�j ]M 0j +K� (52)

As the unconditional distribution of any WAR(p) process is a centered Wishart distribution, applying
the de�nition of centered Wishart distribution, we can write:

Yt =
KX
k=1

zk;tz0k;t; (53)

where zt;k i:i:d� N(0;�(1)).
From (53) we have that

E [Yt] =
KX
k=1

E
�
zk;tz0k;t

�
(54)

= KV [zk;t] (55)
= K�(1): (56)

Combining this result with (53) and de�ning ��(1) = K�(1) and �� = K� we get

��(1) =
pX
j=1

Mj��(1)M 0j + �� (57)

From (48) we know that, for any given vector ! 2 Rn

!0Yt! � Ga(K=2; 2!0�(1)!): (58)

Knowing the variance of a gamma-distributed random variable, we have

V [!0Yt!] =
K
2

(2!0�(1)!)2: (59)

�(1) is not observable, but given the estimated matrices M̂j ; j = 1; : : : ; p and �̂� we can recover
�̂�(1) that satis�es (57). Thus:

V [!0Yt!] =
K
2

 
2!0 �̂

�(1)
K

!

!2

(60)

=
2
K

�
!0�̂�(1)!

�2
: (61)

Therefore the estimated degrees of freedom are

K̂ =
2(!0�̂�(1)!)2

V [!0Yt!]
(62)
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Table 10: VaR failure rate and Berkowitz (2001) test's p-value

10% 5% 1%
full WAR(1) N 0.1072 0.0490 0.0230

(0.6608) (0.7038) (0.8174)
t 0.1041 0.0490 0.0230

(0.8137) (0.8508) (0.9446)
block diagonal WAR(1) N 0.1041 0.0521 0.0245

(0.6441) (0.6865) (0.7984)
t 0.1026 0.0505 0.0245

(0.7836) (0.8209) (0.9157)
restr. block diag. WAR(1) N 0.1057 0.0536 0.0245

(0.6677) (0.7093) (0.8184)
t 0.1041 0.0521 0.0245

(0.7991) (0.8341) (0.9220)
diagonal WAR(1) N 0.1057 0.0521 0.0245

(0.6705) (0.7121) (0.8208)
t 0.1041 0.0505 0.0245

(0.7988) (0.8337) (0.9214)
restr. diag. WAR(1) N 0.1057 0.0521 0.0245

(0.6664) (0.7080) (0.8168)
t 0.1041 0.0505 0.0245

(0.7980) (0.8329) (0.9208)
full HAR-WAR N 0.1103 0.0658 0.0291

(0.0697) (0.0800) (0.1112)
t 0.1087 0.0658 0.0260

(0.1393) (0.1574) (0.2104)
block diag. HAR-WAR N 0.1133 0.0536 0.0260

(0.2612) (0.2898) (0.3711)
t 0.1133 0.0536 0.0245

(0.3929) (0.4292) (0.5297)
restr. block diag. HAR-WAR N 0.1149 0.0551 0.0245

(0.3722) (0.4076) (0.5057)
t 0.1149 0.0551 0.0245

(0.4991) (0.5392) (0.6474)
diagonal HAR-WAR N 0.1118 0.0475 0.0245

(0.4440) (0.4831) (0.5909)
t 0.1103 0.0475 0.0245

(0.5716) (0.6141) (0.7281)
restr. diag. HAR-WAR N 0.1133 0.0475 0.0245

(0.3707) (0.4065) (0.5063)
t 0.1133 0.0475 0.0245

(0.5333) (0.5751) (0.6881)
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